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Abstract

Epigenetics plays an important role in cancer development and progression. Cancer cells hijack the 
epigenome by modifying the histone protein units responsible for packaging DNA, or by modifying the 
DNA itself, resulting in changes to chromatin topology and transcriptional programming within the cell. 
In this thesis, I report our investigation to uncover the mechanisms of epigenetic regulation and how 
epigenetic control of transcriptional programming goes awry in cancer. We investigate these processes 
in two separate contexts. 

In our first study, we investigate the mechanisms by which EZH2 oncogenic mutations alter 
structure and function of topologically associating domains in non-Hodgkin lymphoma.
The process of chromatin folding leads to a systematic arrangement of hierarchical structural and 
regulatory elements found within the nucleus. A topologically associating domain (TAD) is a regulatory 
unit of self interacting DNA, where the transcription of the genes within a TAD is usually dictated by 
the presence of active (H3K36me3) or inactive (H3K27me3) histone marks. In cancer, the somatic point 
mutation in EZH2Y646X leads to a genome wide increase in H3K27me3, associated with transcriptional 
repression. While this alteration leads to changes in the global epigenetic status of the cell, its impact 
on chromatin organization and TAD-related function remain unclear. By combining transcriptomics 
and epigenetics with analyses of chromatin structure, we demonstrate a functional interplay between 
TADs and the epigenetic and transcriptional program of the genes found within them. This balance 
is altered by EZH2Y646X, leading to the synergistic silencing of entire domains directly targeting cell 
differentiation and tumor suppressive programs. A closer look reveals that the silencing of tumor 
suppressive TADs are coupled with structural modifications and changes in promoter interactions 
within EZH2Y646X target TAD6.139. Impressively, the TAD’s transcriptional and epigenetic programs 
are restored by pharmacological inhibition of EZH2Y646X. Our results indicate that EZH2Y646X alters the 
topology and function of chromatin domains to promote synergistic oncogenic programs.

In our second study, we dissect the epigenetic, transcriptomic, and metabolic signaling dependencies 
using a novel model of central nervous system primitive neural ectodermal tumors (CNS-PNETs).
Central nervous system (CNS) tumors are the leading cause of cancer-associated death in children. 
Primitive neural-ectodermal tumors (CNS-PNETs) are a particularly aggressive subtype of embryonal 
CNS-tumor, with a five-year overall survival rate in less than 50% of patients. Despite sharing a similar 
cell of origin of other CNS tumors, CNS-PNETs have a different anatomical location, unique genetic 
and epigenetic features, and significantly worse clinical outcome. In addition, a lack of in vivo models 
for studying CNS tumors challenges the opportunity to dissect the genetic variables that underlie the 
origin of these tumors.
We developed a novel CNS-PNET mouse model, called CNS-NPCs, using neural progenitor cells 
derived from human-iPS cells. Through histological, DNA methylation, and RNA sequencing analyses, 
we find that the CNS-NPC model recapitulates the the morphologic, epigenetic, and transcriptomic 
features of primary CNS-PNETs. In addition, through in vivo metabolic analyses of CNS-NPCs and 
the patient derived cell line, PFSK-1, we identified dysregulation in the neurotransmitter associated 
metabolites, N-acetyl aspartate (NAA) and γ-amino butyric acid (GABA). In addition, we identified 
metabolic features associated to CNS-PNET tumors that can be used as potential biomarkers for 
diagnosis, including glycine, taurine, and choline. Finally, using in vivo 1H NMR and 13C hyperpolarized 
magnetic resonance imaging, we identified two metabolic biomarkers, myo-inositol and lactate, that 
correlate to tumor growth, aggressiveness and blood brain barrier damage. 

Keywords: 
Cancer epigenetics, Cancer metabolism, EZH2 mutations, Chromatin organization, Lymphoma, CNS-
PNET
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Resume

L’épigénétique joue un rôle important dans le développement et la progression du cancer. Les cellules 
cancéreuses détournent l’épigénome en modifiant les unités protéiques de l’histone responsables 
de l’emballage de l’ADN ou en modifiant l’ADN lui-même, ce qui entraîne des modifications de la 
topologie de la chromatine et de la programmation transcriptionnelle au sein de la cellule. Dans cette 
thèse, nous rapportons notre enquête pour découvrir les mécanismes de la régulation épigénétique et 
comment le contrôle épigénétique de la programmation transcriptionnelle va à l’encontre du cancer. 
Nous étudions ces processus dans deux contextes distincts.

Dans notre première étude, nous avons étudié les mécanismes par lesquels les mutations 
oncogéniques EZH2 modifient la structure et la fonction des domaines topologiquement associés 
dans les lymphomes non hodgkiniens.
Le processus de repliement de la chromatine conduit à un arrangement systématique des éléments 
structurels et régulateurs hiérarchiques présents dans le noyau. Un domaine topologiquement associant 
(TAD) est une unité régulatrice de l’ADN auto-interagissant, où la transcription des gènes au sein 
d’un TAD est généralement dictée par la présence de marques histones actives (H3K36me3) ou 
inactives (H3K27me3). Dans le cancer, la mutation ponctuelle somatique chez EZH2Y646X entraîne 
une augmentation du génome de H3K27me3, associée à une répression de la transcription. Bien que 
cette altération génère une variabilité dans le statut épigénétique global de la cellule, son impact sur 
l’organisation de la chromatine et sur la fonction liée à la TAD reste flou. En combinant transcriptomique 
et épigénétique avec des analyses de la structure de la chromatine, nous démontrons une interaction 
fonctionnelle entre les TAD et le programme épigénétique et transcriptionnel des gènes qui s’y trouvent. 
EZH2Y646X modifie cet équilibre, ce qui conduit à la désactivation synergique de domaines entiers ciblant 
directement les programmes spécifiques à la différenciation cellulaire et à la suppression des tumeurs. 
Un examen plus attentif révèle que le silence des TAD suppresseurs de tumeurs est associé à des 
modifications structurelles et à des modifications des interactions des promoteurs au sein du TAD. De 
manière impressionnante, les programmes transcriptionnels et épigénétiques du TAD sont restaurés par 
inhibition pharmacologique de EZH2Y646X. Nos résultats indiquent que EZH2Y646X modifie la topologie 
et la fonction des domaines de la chromatine afin de promouvoir des programmes oncogéniques 
synergiques.

Dans notre deuxième étude, nous avons disséqué les dépendances de signalisation épigénétiques, 
transcriptomiques et métaboliques en utilisant un nouveau modèle de tumeurs ectodermiques 
neurales primitives du système nerveux central (CNS-PNET).
Les tumeurs du système nerveux central (SNC) sont la principale cause de décès associé au cancer chez les 
enfants. Les tumeurs neuro-ectodermiques primitives (SNC-PNET) sont un sous-type particulièrement 
agressif de tumeur embryonnaire du SNC, avec un taux de survie global à cinq ans chez moins de 50% 
des patients. Bien qu’ils partagent une cellule d’origine similaire à celle d’autres tumeurs du SNC, 
les systèmes CNS-PNET ont une localisation anatomique différente, des caractéristiques génétiques 
uniques et un résultat clinique nettement pire. En outre, l’absence de modèles in vivo pour l’étude des 
tumeurs du SNC remet en cause la possibilité de disséquer les variables génétiques qui sous-tendent 
l’origine de ces tumeurs.
Nous avons développé un nouveau modèle de souris CNS-PNET, appelé CNS-NPC, utilisant des 
cellules progénitrices neurales dérivées de cellules iPS humaines. Par des analyses histologiques, de 
méthylation de l’ADN et de séquençage d’ARN, nous trouvons que le modèle CNS-NPC récapitule 
les caractéristiques morphologiques, épigénétiques et transcriptomiques des systèmes primaires CNS-
PNET. De plus, par des analyses métaboliques in vivo de NPC-CNS et de la lignée cellulaire dérivée du 
patient, PFSK-1, nous avons identifié une dysrégulation des métabolites associés aux neurotransmetteurs, 
l’aspartate de N-acétyle (NAA) et l’acide amino-butyrique (GABA). De plus, nous avons identifié 
des caractéristiques métaboliques associées aux tumeurs CNS-PNET pouvant être utilisées comme 
biomarqueurs potentiels pour le diagnostic, notamment la glycine, la taurine et la choline. Enfin, en 
utilisant l’imagerie par résonance magnétique 1H RMN et 13C hyperpolarisée in vivo, nous avons  
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identifié deux biomarqueurs métaboliques, le myo-inositol et le lactate, qui sont corrélés à la croissance 
tumorale, à l’agressivité et aux dommages de la barrière hémato-encéphalique.

Mots clés:
épigénétique du cancer, métabolisme du cancer, mutations EZH2, organisation de la chromatine, 
lymphome, CNS-PNET
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Chapter 1: Introduction

“Down to their innate molecular core, cancer cells are hyperactive,
survival-endowed, scrappy, fecund, inventive copies of ourselves.”

The Emperor of all Maladies – Siddahartha Mukherjee

1.1 Cancer

Cancer is the second leading cause of death worldwide, with approximately 18 million new cases arising 
annually, and 9.8 million deaths recorded in 2018 alone (WHO). According to the 2018 WHO report, 
one in five men and one in six women will develop cancer during their lifetime. One in eight men and 
one in eleven women will die from the disease.

Cancer arises from a cell that acquires multiple alterations, where this accumulation over time eventually 
leads to the transformation from a normal cell to a cell that no longer retains control over it’s own 
cellular processes, leading to rapid division and cell growth. These alterations can occur either by 
external factors, known as carcinogens, or by random errors that occur during DNA replication, and 
these alterations damage the cell’s DNA beyond repair. Accumulation of DNA damage over time can 
result in a cell’s transformation from normal to malignant.

Cancer is a complex disease with many types of alterations contributing to pathogenesis. Classically, 
cancer is generally defined by the cell or tissue of origin, although the complexity of alterations between 
and even within patients is highly heterogeneous, with each tumor exhibiting a unique assortment of 
aberrations that, together, drive pathogenesis. Regardless of these molecular complexities, there are 
a set of basic principles that comprise the underlying biology of tumors, known as the hallmarks of 
cancer64, 65. The six hallmarks of cancer include: cells which have an acquired capability to grow self-
sufficiently, are insensitive to anti-growth signaling, have limitless replicative potential, sustained 
angiogenesis, the ability to evade apoptosis, and invade the surrounding tissue as well as extravagate 
to distal organs (metastasis)64 (Figure 1). More recently, an emerging body of knowledge indicates two 
additional hallmarks of cancer: deregulation of cellular metabolism and avoiding immune invasion65 
(Figure 1). 
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Figure 1: The Hallmarks of Cancer

Adapted from: The Hallmarks of Cancer: The Next Generation
Douglas Hanahan and Robert Weinberg

Cell 2011
https://doi.org/10.1016/j.cell.2011.02.013

The fascinating aspect about each of these traits is that normal, quiescent cells have vast networks of 
cellular programming, or check points, to stop each of these phenomena from occurring. The ability of 
a cell to acquire each of these traits is vexingly difficult to imagine, nonetheless the retention of these 
traits is achieved and observed amongst most, if not all, tumors. 

With the advent and technological advances in genetic sequencing techniques, our knowledge of 
malignant transformation has progressed significantly over the past 20 years, allowing researchers to 
reliably map the complex network of genetic alterations observed in tumors. Functional studies have 
revealed that certain molecular pathways are altered at a high frequency across many cancer subtypes, 
like loss of p53 signaling, a major DNA damage signaling pathway in the cell. While other molecular 
alterations tend to be tissue specific, like BRCA1 mutations found in breast cancer116, or even context 
specific, like the C>A genetic transversions caused by tobacco smoke inhalation2. In addition to the 
alterations observed in the genetic code itself, it has become increasingly apparent that alterations in the 
molecules responsible for post-translational modifications of the genetic code (epigenetics) are wide 
spread and play an important role in the initiation, and propagation of cancer as well153.

1.2 Epigenetics

Epigenetics is defined as ‘the study of heritable changes in gene expression that occur independent of 
changes in the primary DNA sequence153. Epigenetics was first defined by C.H. Waddington in 1942 
to describe a mechanism that connects a genotype to a phenotype177. While this initial observation 
focused on regulation during developmental processes, it has become increasingly clear that epigenetic 
dysregulation plays an important role in cancer development as well. 
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Epigenetic regulation of transcription is inherently intertwined with DNA structure and chromatin 
organization. The initial process of compacting DNA inside the nucleus is aided by a unique class 
of DNA binding proteins that wind, loop, and fold DNA into a higher level of structural organization 
inside the nucleus, called histones223. Histones make up the basic building block of the chromosomal 
structure. DNA is wrapped around histones to form a protein-DNA complex called the nucleosome. 
Each nucleosome unit consists of two copies of each of the four core histone protein: H2a, H2b, H3, 
and H4. The resulting histone octamer contains two H2a/b dimers, and one H3/H4 tetramer. DNA is 
wrapped around the the histone octamer, creating the nucleosome, and each nucleosome is tethered to 
its neighbor with the help of the peripheral H1 linker histone. From the generation of nucleosomes, to 
chromosomes, to chromatin, DNA becomes highly condensed and methodically packaged into higher 
order structures until all the DNA is neatly packaged inside the nucleus, inside the cell. 

The ability for the transcriptional machinery to physically access its target DNA is a critical step for 
initiating transcription, and is an important mechanism used by the cell to regulate gene expression. 
Specifically, chromatin structure can be modulated into an accessible (open) state to enable recruitment 
of transcriptional regulatory elements, or vice versa, can be in an inaccessible (closed) state to inhibit 
recruitment of regulatory elements. Thus, a functional interplay exists between chromatin structure and 
epigenetic regulators which work together to exert cell-specific and/or context-dependent transcriptional 
programming.

There are three epigenetic modifications that can alter chromatin structure, modulate chromatin 
accessibility, and regulate transcription: DNA methylation, histone modifications, or RNA-associated 
silencing. These three types of epigenetic modifications provide a mechanism for diversity by regulating 
the genetic information that can be accessed by the cell’s transcriptional machinery153. 

1.2.1 DNA Methylation
DNA methylation is a biochemical process where a methyl group is directly added to the DNA, and 
is often associated to gene silencing. DNA methylation is highly specific, where methyl groups can 
only be placed between a cytosine and guanine nucleotide linked by a phosphate group, called a CpG 
site. Interestingly, DNA methylation occurs more frequently at individual CpG sites, but long CG-rich 
regions >500bp are concentrated in distinct areas of the genome (called CpG islands), and are enriched 
in gene promoters. Indeed, CpG islands occupy ~60% of all gene promoters in humans, and tend to 
remain un-methylated153. DNA methylation is associated to stable transcriptional silencing, where once 
the silent state is established, it is generally not revocable. This phenomenon highlights a particularly 
important role in genomic imprinting and x-inactivation during development209.

1.2.2 Histone Modifications
Histones can be modified by adding a chemical group, such as methyl, acetyl, phospho, ubiquitin, or small 
ubiquitin-like modifying (SUMO) groups, to a specific residue of the histone protein142. Methylation 
and acetylation are the two most common histone modifications, and can only be added to the lysine 
(K) residue of the histone protein. Acetylation involves the transfer of one acetyl group from acetyl 
coenzyme-A (acetyl co-A) to one lysine residue on the histone protein, and is generally associated with 
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active transcription. Histone methylation modifications can include the addition of up to three methyl 
groups onto a single lysine residue, resulting in a mono-, di-, or tri-methylation state. Depending on the 
location of the lysine residue, the addition of methyl groups can result in transcriptional activation or 
transcriptional repression. For example, the tri-methylation of lysine 36 on histone H3 (H3K36me3) is 
an active transcription mark, whereas the tri-methylation of lysine 27 on histone H3 (H3K27me3) is a 
repressive transcription mark. Unlike DNA methylation, histone modifications are more flexible, where 
the modification can be added and removed in response to various intracellular or extracellular cues. 

1.2.3 RNA Association Silencing
RNA associated silencing is a post-transcriptional modification where small non-coding RNA units 
(called miRNAs) pair with complementary 3’ regions of untranslated target messenger RNA (mRNA) 
to enact degradation or to inhibit translation67. While RNA-associated silencing enacts epigenetic 
programs to inhibit translation on its own, RNA associated silencing can modulate or be modulated 
by other epigenetic regulatory mechanisms, highlighting the integration between all transcriptional 
regulator mechanisms within the cell. 

Taken together, the composition of the various biochemical marks across nucleosomes (DNA and 
histones) comprise the structural landscape of chromatin, and sets the framework for transcriptional 
programming within the cell.

1.3 Mechanisms of Epigenetic Dysregulation in Cancer

The epigenetic network comprises a series of transcription factors and chromatin modifying enzymes 
that enact various tissue-specific and context-dependent functions within the cell. Epigenetic alterations 
can contribute to all facets of tumor development, from potentiation and initiation to tumor progression, 
and can occur in all facets of epigenetic regulation and chromatin structure, including alterations in 
DNA methylation, histone modification patterning, miRNA silencing, as well as the proteins responsible 
for enacting these epigenetic programs. In cancer, the epigenome exhibits vast reorganization of its 
network to enact oncogenic signaling pathways, activate transcription of oncogenes, and suppress 
transcription of tumor suppressors. Indeed, while altered epigenome activity contributes to oncogenic 
signaling, vice-versa, genetic mutations can also contribute to alterations observed in the epigenome. 
Indeed, ~50% of all tumors exhibit mutations in genes relating to epigenetic regulation and chromatin 
structure, indicating a functional interplay between genetic and epigenetic alterations that work together 
to enact oncogenic programming224. While the number of epigenetic alterations observed in cancer are 
far reaching, some recurrent alterations emerge across a wide variety of tumor subtypes, highlighting 
their importance in cancer development. 

1.3.1 DNA methylation
DNA methylation is one of the most extensively studied epigenetic alterations observed in cancer. 
DNA methylation occurs at genomic regions containing a cytosine and guanine nucleotide linked by 
a phosphate group (CpG site). While CpG sites occur across the entire genome, they are not evenly 
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distributed. There are distinct CpG-rich genomic regions, called CpG islands, that are enriched in gene 
promoters and are generally unmethylated under homeostatic conditions. In many cancers, CpG islands 
become hypermethylated, which leads to transcriptional silencing of target genomic regions. Functional 
studies of hyper-methylated CpG islands has uncovered a number of novel tumor suppressor genes that 
have become epigenetically silenced in cancer, even if not genetically mutated itself20, 49,70. 

One intersting example is the MGMT gene, which encodes for the DNA repair enzyme, O6-methylguanine-
DNA methyltransferase. MGMT removes the naturally recurrung alkyl adducts from the O6-position of 
guanine and reconstructs the guanine molecule, which prevents mismatch and errors during downstream 
DNA replication and transcription213.  Interestingly, MGMT and its corresponding promoter region 
is hypermethylated and transcriptionally silenced in approximately 50% of glioblastomas (GBMs)49. 
While it is unclear which mechanism(s) drives this hyper-methylation phenotype in these tumors, it is 
clear that MGMT is targeted and inactivated by epigenetic alterations, rather than emerging as  hotspot 
genetic lesions. Since its initial discovery, the epigentic status of MGMT has been used as prognostic 
biomarker in primary glioblastomas68. Indeed, MGMT methylation status is an indicator of treatment 
response to DNA alkylating chemotherapeutic agents, such as temozolomide, which is commonly used 
for the treatment of glioblastoma98. While in normal cells MGMT functions as a tumor suppressor, 
upon treatment with temozolomide, MGMT can actually become transcriptionally reactivated and 
tumor-supportive, by counteracting against the chemo-induced DNA damage. Thus, sustained MGMT 
promoter methylation upon chemotherapeutic treatment with temozolomide correlates with favorable 
survival in patients with glioblastoma68. MGMT is an important DNA repair enzyme which protects the 
cell from erroneous mutations during replication. The systematic silencing of MGMT in glioblastoma 
highlights an important epigenetic mechanism used by tumors cells to reduce stability and control over 
DNA replication. In addition, through epigenetic modifications, GBM cells are able to retain remarkable 
control over transcription, switching from an inactive to active transcriptional state in response to 
chemotherapy to evade apoptosis and promote tumor cell survival98. 

MGMT is just one example of tumor-driven DNA methylation and transcriptional silencing, however  
there are many other targets of DNA hyper-methylation observed in cancer. Some examples include 
the cyclin dependent kinase inhibitors (CDKN2a and CDKN2b), the Ras-associated domain family 
1 isoform A (RASSF1A), androgen receptor (AR), and adenomatous polyposis coli (APC), among 
others20, 38, 82, 132. Each of these genes have important tumor suppressive functions, being involved 
in DNA damage response, cell cycle regulation, corticosteroid signaling, and cell proliferation and 
survival. In addition, these genes are common targets of DNA-methylation mediated transcriptional 
silencing in cancer.  

Protines involved in the generation and establishment of DNA methylation patterning are also frequent 
targets of genetic mutations in tumor cells. For example, isocitrate dehydrogenase 1/2 (IDH1 and IDH2) 
mutations are frequently observed in glioblastoma, and the presence of a mutation in IDH is correlated 
to global CpG-island hyper-methylation and subsequent transcriptional silencing of tumor suppressor 
genes. Specifically, mutations in the IDH gene leads to a novel function of the IDH protein, namely 
the production and accumulation of D-2-hydroxyglutatarate (2HG). The accumulation of 2HG leads to 
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the competitive inhibition of α-ketoglutarate-dependent dioxygenases, and subsequent accumulation of 
DNA and histone methylation in IDH-mutant cells178. The mutations in IDH observed in glioblastoma 
is an interesting example of the functional interplay between genetics and epigenetics, where a genetic 
mutation results in a novel function of the encoded protein, which gives rise to epigenetic alterations, 
and aberrant metabolic signaling.  

In addition, mutations in the enzymes responsible for catalyzing the transfer of methyl groups onto 
the DNA are also frequently observed in cancer. In mammals, there are three DNA methyltransferase 
enzymes, DNMT1, DNMT3a, and DNMT3b. Oncogenic mutations in DNMTs result in genome-
wide alterations to the DNA methylation landscape in many tumor subtypes, particularly hematologic 
malignancies, including acute myeloid leukemia (AML)102, myelodysplastic syndrome (MDS)181, t-cell 
lymphoma36, and colon cancer84. 

Taken together, DNA methylation plays an important role in tumorigenesis, and is altered in a variety 
of different ways to enact oncogenic programming in tumor cells. On one side, the promoter regions 
of tumor suppressor genes can become hyper-methylated to shut down tumor-suppressive activity 
within tumor cells. While on the other side, tumor cells can exhibit genetic mutations within the DNA 
methylation machinery that lead to global changes in methylation landscape and wide-spread changes 
in transcriptional programming of the cell. 

1.3.2 Histone Modifications
In addition to modifications observed at the DNA Methylation level, a number of alterations in histone 
remodeling factors have been observed in cancer as well. Histones can be modified by the addition or 
removal of various chemical groups, such as acetyl and methyl groups, which are the two most common 
histone modifying groups found in human cells. Acetyl groups are added or removed from histones by 
histone acetyltransferases (HATs) and deacetylases (HDACs), respectively. Methyl groups are added or 
removed from histones by histone methyltransferases (HMTs) and demethylases (HDMs), respectively. 
Alterations in all four classes of enzymes have been observed widely across many cancer subtypes, and 
herein, a few examples of cancer-associated histone modifications are discussed.

First, the AML1-ETO chimeric fusion protein generated by the t(8;21) translocation is one of the most 
common alterations observed in acute myeloid leukemia (AML). Interestingly, this fusion generates 
a novel DNA interaction site for the HAT enzyme, p300, leading to the active transcription of the 
AML1-ETO fusion protein, which is important for leukemic cell transformation in this context183. It 
has been shown that the HAT activity of p300 is critical for the transcriptional activating function 
of AML1-ETO, and loss of p300 leads to a decrease in tumor cell growth in vitro183. In this context, 
the p-300 mediated histone acetylation is required for the transcriptional activity of the AML1-ETO 
oncogenic fusion protein, both of which are generated by the t(8;21) translocation and requierd for 
leukemic cell transformation. This particular example outlines an interesting mechanism of epigenetic 
hijaking because the precise site of the t(8;21) translocation not only generates the genetic code for the 
synthesis of an oncogenic fusion protein, but also ensures its transcription by creating a new site for 
transcriptional activation through p300 binding and subsequent acetylation of the histone protein. 
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Histone modifications can also occur by directly mutating the histone modifying machinery. For 
example, EZH2 is the histone methyltransferase (HMT) of the polycomb repressive complex 2 (PRC2), 
which is responsible for transcriptional silencing through the mono- di- and tri- methylation of lysine 
27 on histone-H3 (H3K27). A single mutation in EZH2 has the potential to alter the global methyl 
landscape of H3K27, which results in modifications to the transcriptional landscape observed in these 
cells. Mutations in EZH2 provide an example of how one single genetic mutation can have widespread 
effects on the chemical modifications of histones and thus transcrptional programming within the 
cell. However, the types of mutations in EZH2 observed in cancer can be highly context and tissue 
dependent. For example, enzymatic gain-of-function EZH2 mutations are often observed in lymphoma, 
which results in a global increase in H3K27me3 and subsequent transcriptional silencing119. In solid 
tumors, EZH2 is often overexpressed or amplified, also resulting in a global increase in H3K27me327. 
However, in myeloid malignancies, enzymatic loss-of-function mutations are observed, indicating cell-
type specific oncogenic activity of the EZH2 enzyme173. In addition to mutations observed in EZH2, 
alterations in other PRC2 complex proteins are also frequently observed in cancer, and have the ability 
to modulate the HMT activity of EZH2 and the PRC2 complex. The PRC2 core subunit proteins, EED 
and SUZ12, are targets of inactivating mutations or deletions in T-cell acute lymphoblastic leukemia 
(T-ALL), and are associated to the activation of Notch signaling due to loss of H3K27me3124. Taken 
together, alterations to the HMT EZH2 enzyme, whether activating or silencing, result in wide-spread 
effects on the histone methylation patterning in the cell, leading to genome-wide transcriptional re-
programming that contributes to oncogenic programming in a tissue-specific manner. 

The variety of alterations in histone modifying enzymes observed in cancer highlights a particularly 
important role in epigenetic transcriptional regulation, where alterations can lead to both activation or 
repression of transcription in a context-dependent manner, seeminly designed to enhance the fitness and 
survival of these cells. The extent of histone modifications observed in cancer is widespread, and the 
exact role of each alteration is not completely understood. Nonetheless, a growing body of knowledge on 
the mechanisms guiding these alterations continues to expand our understanding of how modifications 
to histones work to exert oncogenic signaling and tumor-specific functions. 

1.3.3 Chromatin Remodeling and Positioning
Nucleosomes play an important part in transcription, and a number of protein subunits are responsible 
for maintaining nucleosome structure in an ATP-dependent manner191. Mutations in the nucleosome 
remodeling machinery are often observed in cancer, pinpointing an important link between chromatin 
remodeling and oncogenic programming. For example, the SWI/SNF (BAF) complex is a large 
nucleosome remodeling complex with multiple varieties of subunit assemblies, and is silenced in many 
cancer subtypes. The prevailing hypothesis is that while many individual SWI/SNF subunit complex 
proteins have tumor suppressive activity, the systematic targeted silencing of the multiple SWI/SNF 
complex subunits leads to epigenetic and genomic instability by changing nucleosome occupancy 
patterning throughout the nucleus, thereby altering tumor suppressive programming144. 
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1.4 Targeting the Epigenome in Cancer

The epigenome plays a hierarchical role in regulating transcription in the cell, where a mutation in 
a single epigenetic regulator can lead to alterations in many cell signaling pathways. The extent of 
epigenetic alterations observed in cancer lends an attractive path for the development of targeted 
therapeutic approaches. Indeed, a number of inhibitors targeting epigenetic regulators have shown 
promise in the clinic, and herein, a few clinical examples are outlined. 

DNA methyltransferase (DNMT) inhibitors were the first clinically approved class of epi-therapeutics 
used for the treatment of cancer. Azacitidine and 5-Aza-2-deoxycytidine (Decitabine) are two compounds 
that act as competitive inhibitors of DNMTs in the cell by binding the cytidine nucleotide and blocking 
the deposition of methyl groups onto target CpG sites, thus inducing de-methylation and reactivation 
of previously silenced genes149. Aza-nucleosides have shown efficacy in treating various hematologic 
malignancies, including acute myeloid leukemia (AML), t-cell leukemia, and myelodysplastic syndrome 
(MDS)56, 57. However, while still effective in treating many hematologic malignancies in the clinic, aza-
nucleosides show high cytotoxicity and poor chemical stability in vivo, limiting their potential to be 
effective in treating solid tumors60. More recently, a chemical variant of decitabine has emerged (CC-
486, Celgene), which allows for oral ingestion and increased half-life of the chemical compound in 
vivo, and is currently in clinical trial for the treatment of breast and lung carcinomas (clinical trial ID: 
NCT02223052, NCT02250326, NCT02546986). 

One reason for the high cytotoxicity observed with aza-nucleosides is that they target all DNA that is 
actively replicating in the body, and do not specifically target tumor cells. To specifically target tumor 
cells, new compounds have been developed to target the upstream mutations responsible for the hyper-
DNA methylation phenotype observed in tumor cells specifically. For example, a number of IDH-
mutant specific inhibitors (AG-120, AG-221, AG-881, BAY1436032, IDH305) have been developed to 
inhibit the mutant IDH protein leading to the inhibition of D-2-hydroxyglutatarate (2HG) production and 
subsequent reversal of the hyper DNA and histone methylation observed in tumor cells178.  Treatment 
with IDH-mutant inhibitors restores the DNA and histone methyl-landscape and induces cellular 
differentiation in hematopoietic malignancies165, 194. Indeed, pre-clinical and clinical studies of IDH-m 
inhibitors have shown significant response rates and survival benefits for patients with IDH-m tumors 
(Clinical trial ID: NCT02273739, NCT02073994, NCT02481154, NCT02746081, NCT02977689). In 
addition, these orally available small molecule inhibitors are highly selective with relatively few side-
effects arising with treatment166. Treatment with small molecular inhibitors that target IDH-mutations 
outline one specific example of selectively targeting genetic mutations to reverse DNA methylation 
alterations that contribute to tumor development and progression in this context. 

In addition to targeting alterations in aberrant DNA methylation patterning, a number of inhibitors 
targeting histone modifications have been developed as well. In a similar mechanism as DNA methylation 
inhibitors, two classes of inhibitors have been developed: those targeting histones globally, and those 
targeting the upstream mutations responsible for enacting hyperactivity of histone modifications. Both 
classes of small molecule inhibitors have been applied in the clinic for the treatment of various cancer 
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subtypes. 

Small molecule inhibitors targeting histone deacetylases (HDACs) increase the accumulation of 
acetylated histones leading to an open chromatin state. The result of hyperacetylation of histones leads to 
both the activation and repression of gene expression, indicating a diverse regulatory role of acetylation 
in nuclear receptor signaling functions, that eventually leads to cell cycle arrest and apoptosis147. Two 
HDAC inhibitors have been approved for the treatment of T-cell lymphoma, vorinostat and romidepsin, 
showing significant improvements in overall survival in patients8, 31, 46, 127, 190. Further pre-clinical studies 
have broadened the application for HDAC inhibitors to a number of additional tumor subtypes, resulting 
in the initiation of clinical trials assessing the efficacy of HDAC inhibitors in other hematologic and 
solid tumors, including mantle cell lymphoma, melanoma, breast, and lung cancer (clinical trial ID: 
NCT02836548, NCT02151721, NCT03742245).

Inhibitors targeting recurrent mutations in the histone modifying machinery have also been applied 
to the clinical setting. One clinical example applies to mutations frequently observed in the histone 
methyltransferase, EZH2. Mutations in EZH2 are frequently observed across a variety of tumor 
subtypes, but are particularly prevalent in non-Hodgkin lymphomas (NHL), where EZH2 mutations 
are identified in approximately 20-30% of patients11, 119. Mutations in EZH2 alter the HMT activity of 
PCR2, resulting in hyper-methylation of target histones and subsequent transcriptional silencing159. A 
number of inhibitors targeting EZH2 mutations have been tested in the clinical setting for the treatment 
of EZH2-m lymphoma, which function to reduce the HMT activity of the EZH2 protein leading to the 
reactivation of previously silenced target genes. While a number of chemical inhibitors of EZH2 have 
been developed over the years, the most recent EZH2 inhibitors act as selective inhibitors of S-adenosyl 
methionine (SAM) pocket of the catalytic set domain of EZH2, where SAM acts at the universal methyl 
donor for HMTs. Indeed, while the early EZH2 inhibitors did not show clinical benefit and clinical trials 
were halted (GSK2816126, GlaxoSmithKline; NCT02082977), next generation EZH2 inhibitors (EPZ-
6438, Epizyme and CPI-1205, Constellation Pharmaceuticals, Inc.) have shown promise in early phase 
clinical trials for the treatment of NHL, leukemia, and other solid tumors78 (NCT02395601). 

Epigenetic therapies offer an intriguing method for targeting the multi-faceted, hierarchical  transcriptional 
machinery in cancer. Indeed, a number of inhibitors have been developed to target the epigenetic 
machinery in a variety of different ways, and have shown promise in the pre-clinical and early clinical 
trials of many cancer subtypes. However, epigenetic dysregulation in cancer is an extremely complex 
process whose consequences can vary dramatically depending on the cell or tissue of origin. Functional 
studies that incorporate analyses of epigenetic regulation, chromatin architecture, and transcriptional 
programming will continue to unravel the complex mechanisms of oncogenic programming and help to 
identify exploitative vulnerabilities for therapeutic intervention.

9



1.5 Aim and Scope of Thesis

Epigentic regulation is an important mechanism that allows the cell to maintain control over which 
genes are actively transcribed at any given time, thereby altering the cell’s phenotype without alterting 
the genetic code itself. Epigenetic regulation of transcription occurs as a result of various intracellular 
and extracellular cues, where the resulting cellular phenotype can be inherited from generation to 
generation and ultimately contributes to the remarkable heterogeneity observed in humans and other 
higher order organisms.  

Cancer cells exhibit extensive dysregulation of epigenetic machinery and epigenetic control of 
transcription, allowing the tumor cell to alter various cell signaling pathways, to activate oncogenes, 
and silence tumor suppressor genes in one fell swoop. In tumors, a functional interplay exists between 
epigenetic alterations and genetic mutations that work together to alter chromatin structure and enact 
oncogenic signaling. The extent of epigenetic reprogramming and types of epigenetic alterations 
observed in cancer can be highly context dependent and tissue-specific. Therefore functional studies 
aimed to improve our understanding of the interdependencies between epigenetic alterations and genetic 
mutations and their contrubtion to cancer development and progression in different contexts will provide 
valuable insight into the various mechanisms of oncogenic programning observed in human cancers.   

In this thesis, we explore the mechanisms of epigenetic dysregulation in cancer in two separate contexts.

Chapter 2: EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes 
within chromatin domains

In the first study, we explore how gain-of-function mutations in the PRC2 histone methyltransferase, 
enhancer of zeste homologue-2 (EZH2), alter the structure and function of topologically associating 
chromatin domains in non-Hodkin Lymphoma. Approximately 20-30% of diffuse-large b-cell (DLBC) 
and follicular lymphomas harbor a somatic point mutation in EZH2, called EZH2Y646X.  EZH2Y646X 
mutations lead to a genome wide increase in H3K27me3, which is associated to transcriptional silencing. 
Given the association between transcriptional silencing and chromatin structure, we sought to explore 
these associations in the context of EZH2Y646X in NHL. In this study, we combined transcriptomics and 
epigenetics with analyses of chromatin structure, to uncover how the EZH2Y646X epigenetic mutations 
drive global changes in transcription to drive tumorigenesis by modulating chromatin interactions and 
chromatin three-dimensional structure. 
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Chapter 3: Dissecting epigenetic, transcriptomic, and metabolic signaling dependencies using a 
novel model of central nervous system primitive neural ectodermal tumors (CNS-PNETs)

In our second study, we dissect the epigenetic, transcriptomic, and metabolic signaling dependencies of  
central nervous system primitive neural ectodermal tumors (CNS-PNETs). CNS-PNETs are a particularly 
aggressive subtype of embryonal CNS-tumor that exhibit distinct genetic and epigenetic features, and 
have a significantly worse clinical outcome compared to other pediatric CNS tumors. Furthermore, 
diagnosis and patient stratification of CNS-PNETs is limited to descriptive MRI analyses, which solely 
provide insight into the anatomic location and size of these tumors, but lend little information to aid in 
diagnosis and treatment response. 

In the absense of distinct driving genetic mutations, it has been hypothesized that CNS-PNETs are 
instead driven by aberrant DNA methylation linked to complications during neural development208. 
However, a lack of in vivo models for studying CNS-PNETs has challenged the opportunity to dissect 
the genetic and epigenetic variables that underlie the development of these tumors.

Due to the lack of models for studying CNS-PNET pathogensis, our first aim was to develop a novel 
in vivo model of CNS-PNET tumors using neural progenitors cells dervied from human induced 
pluripotent stem (hIPS) cells, called the CNS-NPC model. In addition, we utilized the only CNS-PNET 
patient-derived cell line as a second model of CNS-PNET pathogenesis in our study (called PFSK-1). 
We performed a comprehensive characterization of CNS-NPC and PFSK-1 tumor models, including 
analyses of tumor growth, histology, immunochemistry, gene expression and DNA methylation 
profiling, and confirmed that that the epigenetic and molecular features of distinct subtypes of CNS-
PNET tumors are recapitulated by the CNS-NPC and PFSK-1 models. Finally, we utilized the CNS-
NPC and PFSK-1 tumor models for pilot studies to assess the efficacy of metabolic imaging platforms 
in the diagnosis of CNS-PNETs.  By employing both ex vivo and in vivo metabolic analyses of CNS-
NPC and PFSK-1 tumors, we identified a number of metabolic alterations in CNS-PNET tumors that 
are detectable using 1H nuclear magnetic resonance imaging, as well as 13C hyperpolarized magnetic 
resonance imaging, including glycine, taurine, and choline. In addition, we identified two metabolic 
markers, lactate and myo-inositol, which are associated to tumor growth, and varying stages of tumor 
aggressiveness observed between the two models.  
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Chapter 2: EZH2 oncogenic mutations drive epigenetic, transcriptional, and 
structural changes within chromatin domains

2.1 Introduction

2.1.1 Lymphoma
Lymphoma accounts for approximately 5% of all cancers,and over 50% of all blood-specific cancers 
globally (WHO). Lymphoma is a cancer that develops specifically in the lymphocytes (i.e. b-cells, 
t-cells, and natural killer cells), which collectively form the adaptive immune system. Lymphoma can 
originate in all types of lymphocytes and are categorized as such into several classes and subclasses. 

In the context of b-cell lymphoma, diagnosis is classified into two main sub-types: Hodgkin lymphoma 
(HL) and non-Hodgkin lymphoma (NHL). The Reed-Sternberg cell, a cell type that is present specifically 
in HL, is primarily used to distinguish HL from NHL. NHL accounts for all other lymphomas (85-
90% of all cases), and is further classified based on the pathological features observed during b-cell 
differentiation. Diffuse large b-cell lymphoma (DLBCL) is one of the most common and aggressive 
forms of NHL, accounting for approximately 40% of all NHL cases. Other less common subtypes of 
NHL include follicular lymphoma, mantle cell lymphoma, lymphoplasmacytic lymphoma, marginal 
zone lymphoma, and small-cell lymphocytic lymphoma (SLL) (WHO).

Recent molecular analyses of DLBC lymphoma have revealed distinctions between tumors that 
contribute to varying responses to treatment. In the clinic, first line treatment for DLBCL primarily 
consists of anti-CD20 antibody (Rituximab) and the generic chemotherapies: Cyclophosphamide 
(Cytoxan), Doxorubicin Hydrochloride (Adriamycin), Vincristine Sulfate (Oncovin), and Prednisone 
(collectively known as R-CHOP combination)197. Clinical response to R-CHOP is highly heterogeneous, 
with only about 40% of patients responding to therapy, underlining a pressing need to identify better 
ways to stratify patients for treatment optimization203. In early 2000, molecular analyses revealed 
distinct subtypes of DLBCL: germinal center b cell-like (GCB) and activated b cell-like (ABC), which 
are representative of b-cell tumors that originate from different stages during b cell development203, 218. 
These different signatures are not absolute, meaning that a certain degree of heterogeneity exists across 
patient samples. Nonetheless, these signatures help to provide a better understanding of the unique 
signaling dependencies in DLBCL and to stratify patients, with regard to treatment response, progression 
free survival, and overall survival. Germinal center b cell-like (GCB) tumors have transcriptional 
signatures characteristic of normal germinal center b cells, including expression of genes like BCL6, 
a well established marker for germinal center b cells, as well as the cell surface proteins, CD10 and 
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CD38203. Activated b cell-like (ABC) tumors have a significantly worse clinical outcome than those of 
the GCB subtype. ABC tumors show hallmark transcriptional signatures of the mitogenically activated 
peripheral b cells, up-regulating expression of genes like BCL2, a critical component of the b cell 
receptor signaling pathway, and IRF4, an important component of b-cell proliferation following antigen 
receptor stimulation203. 

As one might expect from such variable expression signatures, GCB and ABC DLBC lymphomas also 
tend to have distinct genomic alterations and signaling dependencies. GCB lymphomas exhibit de-
regulation of the phosphatase and tensin homologue (PTEN), phosphatidylinositol 3-kinase (PI3K), and 
the janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways175. In 
addition, GCB lymphomas exhibit recurrent genomic alterations in chromatin regulators or modifiers 
like KMT2D (MLL2), CREBBP and EZH285, 205. ABC lymphomas tend to exhibit recurrent mutations in 
genes involved in b cell receptor signaling, including CD79a/b, CARD11, BCL10, BTK, IRF4, and IRF885, 

155. As a result of chronic b cell receptor signaling activation, ABC tumors have constitutive activation 
in the NF-kB pathway. Since early 2000, when the distinctions between various DLBC lymphomas 
subtypes were first established, there has been an enormous effort to better characterize these molecular 
subtypes (ABC and GCB) to inform and implement improvements for clinical treatment30, 197. 

2.1.2 Polycomb Group Proteins
Polycomb group proteins (PcG) are involved in epigenetically-mediated transcriptional silencing 
through the post-translational modification of target histone proteins. Specifically, the polcomb group 
proteins methylate histone H3 at lysine 27 (H3K27 methylation). The PcG proteins were initially 
discovered in fruit flies (Drosophila melanogaster), where they were identified as transcriptionally 
repressive regulators of the Hox-family genes45, 101. Hox gene expression patterns are established early 
in embryonic development, and are responsible for cell differentiation patterning along the anterior-
posterior axis of the fly77. However, the early transcription factors of the Hox genes are short lived, 
decaying rapidly in the initial stages of development, but the transcriptional status of these genes are 
maintained throughout development by two protein groups: PcG for maintaining a silent state, and 
trithorax group (TrxG) for maintaining an active state86, 137. Since their initial discovery, PcG proteins 
have been shown to play critical roles in maintaining identity of stem, progenitor and differentiated 
cells far beyond simply the regulation of the Hox-family genes34. PcG proteins have been identified in a 
number of different species, from plants to animals, including worms, mice, and humans16, 99, 157, 189. Both 
structural and functional analyses of the PcG protein complexes reveal remarkable similarity across 
several species, underlining its important role throughout evolution75, 100. Despite such similarities, there 
are also some clear divergences. For example, some plants species can contain as many as 12 different 
PcG complex variants all with unique functions, while humans have only two PcG core complexes, 
PRC1 and PRC2, which seem to exhibit highly overlapping function69. 

In mammals, the PRC complexes have been found to regulate many cellular processes through 
transcriptional silencing of genes involved in cell plasticity and differentiation, cell fate determination, 
cell cycle regulation, X-inactivation, and senescence182, 204. PRC1 functions to catalyze the 
monoubiquitylation of lysine 119 of histone H2A (H2A119ub) and is thought to mediate transcriptional 
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silencing through the physical compaction of chromatin mediated by the HPC proteins (CBX2, CBX4, 
CBX7, CBX8)61. PRC2 mediates transcriptional silencing through the di- and tri-methylation of 
histone3 lysine 27 (H3K27), which is carried out through the histone methyltransferase activity of a 
core subunit protein, EZH1/EZH21. During early development, PRC proteins play an important role in 
the maintenance and regulation of stem cell identity, binding up to 20% of gene promoters in embryonic 
stem (ES) cells17, 99. For many early cell-fate decisions, the stable PcG epigenetic footprint is maintained 
throughout multiple cell divisions, where existing histones maintain their epigenetic marks and newly 
synthesized histones gradually acquire their post-translational modifications during the cell cycle202. 

While the H3K27 methylation fingerprint exists to maintain transcriptional repression throughout 
multiple cell divisions, it has also been shown that PcG-mediated transcriptional silencing can be a 
dynamic process as well. This dynamic action between inactive and active states can be carried out by 
a class of histone demethylases, including JMJD3 (KDM6B) and UTX (KDM6A), which can remove 
PcG protein-dependent histone modifications enabling reactivation of previously silenced genes151, 167. 
Another example of transcription state switching is observed during development. Some genes that are 
initially silenced by PRC can become activated, and vice versa, through the establishment of bivalent 
domains. For example, in early ES cells, many H3K27me3 regions also contain the active histone 
mark, H3K4me3. Many targets that are silenced early in development are poised for activation at a 
later stage of differentiation, where at the right time, the target loses the H3K27me3 mark and gains 
the H3K4me3 mark, thus becoming transcriptionally activated. Vice versa, a poised repressive bivalent 
domain will eventually lose the active H3K4me3 mark and gain the repressive H3K27me3 mark. The 
choice between a maintained versus dynamic silent state depends on the PRC-target region, as well 
as other factors (like histone demethylases), which guide such cell-specific and/or context-specific 
decisions143. In summary, the PRC complexes have an important role in transcriptional regulation 
during development and throughout the entire life cycle of a cell that is carried on through generations. 
In specific contexts, PRC-mediated transcriptional regulation can also be dynamic, allowing the cell to 
adjust to both intra- and extra-cellular cues. 

2.1.3 PRC Binding to Chromatin 

The PRC complexes function to maintain transcriptional silencing by depositing methyl and ubiquitin 
groups onto target histones, thereby inhibiting transcriptional machinery from accessing DNA. The 
ability for the PRC complexes to bind to chromatin is a critical step in exerting its epigenetic program. 

The mechanisms by which PRC2 is recruited to target loci in mammals is unclear. Unlike the D. 
melanogaster PRC2 homologue, where PRC2 is recruited to a specific DNA sequence (called a 
polycomb-responsive element, or PRE), only a few human PRE’s have been identified to date. Yin 
Yang 1 (YY1) was previously identified as a PRC2 binding protein in certain tissue and cell types5, 

24, however YY1 has also been implicated in a number of other processes, indicating that it does not 
function exclusively as a mammalian PRE. More recently, a more general PRC2 target sequence was 
identified in mammalian genomes, whereby PRC2 binds to large GC rich elements contained in CpG 
islands called G-quadruplex sequences [G4N1-7]4 115. However, this model integrated bacterial artificial 
chromosomes (BACs) from the Escherichia coli genome to functionally demonstrate this binding 
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capacity, but these naturally occurring elements in mammals have yet to be functionally annotated. 
Nonetheless, there are a number of possible mechanisms of PRC2 recruitment. First, DNA binding 
motifs (PRE), such as G-quadruplex sequences, may indeed preferentially bind PRC2, however further 
studies are required to determine how specific these sequences are for PRC2 and their exact functional 
relevance in mammals. In addition, there may be cell-specific or gene-specific transcription factors 
or non-coding RNA that act as PRC2 recruiters185, but, as in the case of YY1, may be context or tissue 
specific. Finally, histone variants within a cell (whether structural or biochemical) may also play a role 
in PRC2 recruitment and binding to chromatin.

Genome-wide mapping studies of PRC1 and PRC2 in human cells confirmed that the two complexes 
tend to co-localize on the genome together with H3K27me317, 99. Studies in mouse and human embryonic 
cells have shown that PRC1 binds to PRC2 methyl regions of H3K27, meaning that PRC2 could play 
a role in facilitating PRC1 binding184. Given this binding preference, it has been suggested the PRC2 
establishes and maintains transcriptional silencing and chromatin compaction through PRC189, 207. 
However, this mechanism has not been well established in the context of human cells. First, a number 
of reports have shown that a variety of different PRC1 complex subtypes exist, and these subtypes 
may each have different functions within the cell59. In addition, it has been shown that some genomic 
regions are only occupied by PRC2, and do not additionally contain PRC194. And finally, while human 
PRE’s have yet to be identified, a report in 2009 identified the first mammalian PRE in mouse cells 
(called kr-PRE). Interestingly, it was shown that this kr-PRE is PRC1-specific and does not bind PRC2, 
suggesting that recruitment of PRC1 is not completely dependent on PRC2, at least in this context158. 
Taken together, it is likely that in mammals (and humans in particular), there are both overlapping and 
distinct roles of PRC1 and PRC2 binding to mediate transcriptional repression, and further research in 
the field will continue to unravel these distinctions.

2.1.4 The PRC2 Complex
The PRC2 complex is comprised of four core components required for its activity: EZH1 or 2 (enhancer 
of zeste homologue 1/2), SUZ12 (suppressor of zest 12), EED1-4 (embryonic ectoderm development 
transcript variants 1-4), and RbAp46/48 (retinoblastoma-binding protein p46/48; also known as 
RBBP7/4). The primary role of PRC2 is the di- and tri- methylation of lysine 27 on histone H3 (H3K27), 
which is carried out through the catalytic activity of EZH1/2. While PRC2-EZH1 and PRC2-EZH2 
both preferentially utilize H3K27me1 for substrate binding and have many shared target regions, the 
two complexes can function differently in the cell. The most apparent evidence for this is exhibited by 
the histone methyltransferase (HMT) activity of the two proteins, where EZH1 has approximately 20-
fold lower HMT activity than that of EZH2108. In a genetic knockdown experiment of EZH2 in vitro, 
global levels of H3K27me2 and H3K27me3 were significantly reduced, and H3K27me1 was slightly 
elevated.  However, in a similar experiment with EZH1, no significant changes on H3K27me1, 2 or 3 
were observed, indicating highly varied roles for PRC2-EZH1 and PRC2-EZH2 in mammalian cells108.

While the catalytic activity lies with the EZH proteins, the non-enzymatic subunits, SUZ12 and EED, 
are also required for the histone methyltransferase (HMT) activity of EZH1/2. Specifically, EED aids 
in PRC2 recruitment to H3K27me3 and also helps to stimulate the HMTase activity of EZH1/2. SUZ12 
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provides structural integrity to the PRC2 complex and EZH1/2 itself154, 163. While RbAp46/48 is not 
required for the HMTase activity of EZH1/2, the protein subunit acts as a histone chaperone, binding 
H3-H4 heterochromatin to help mediate PRC2 recruitment and maintain chromatin stability154.

Figure 2: The PRC2 Complex

PRC2 methylation of Histone 3 Lysine 27 and it’s effect on transcription
Adapted from Olaneli 
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In addition to the four PRC2 subunits, there are also transient proteins that have been shown to interact 
with the PRC2 complex. Some of the cofactors have a known function with respect to PRC2, including 
JARID2, AEBP2, and the polycomb-like genes (PCL) 1-3 (PHF1, MTF2, and PHF19, respectively). 
PCL1-3 and JARID2 aid recruitment of PRC2 to chromatin, particularly during cell lineage commitment, 
most often described in mouse ES cells96, 150, 200. Specifically, JARID2 contains a DNA binding domain 
which stabilizes binding of PRC2 to chromatin, and has been shown to play a role in the catalytic activity 
with both activating and repressive properties133, 150. PCL1-3 have highly specific recognition sites for 
H3K36me3, which work to inhibit PRC2-mediated H3K27 methylation in recognized chromatin120, 141. 
AEBP2 is a zinc finger protein that binds to multiple components of the PRC2 complex to enhance its 
enzymatic activity. AEBP2 also contains a DNA binding domain, which may aid in PRC2 recruitment 
to chromatin112. Additional proteins have also been shown to interact with PRC2, including HDACs, 
SIRT1, and DNMTs, yet their role or function remain unclear110, 180. These transient proteins are not 
always found to be associated to the PRC2 complex, suggesting an important role for PRC2 to have 
the flexibility in modulating its binding and/or enzymatic activity in the cell. Given the number of 
variants between the core subunit proteins as well as the number of transiently interacting proteins, the 
PRC2 complex comes in many different forms and flavors, all of which contribute to PRC2 functional 
diversity within the cell. 

2.1.5 EZH2 mutations in lymphoma
Both loss and gain of function mutations in the PRC2 core complex proteins have been identified in 
many cancer types, and are generally associated with poor prognosis. For the purpose of this study, 
we focus specifically on mutations that arise in the histone methyltransferase of the PRC2 complex, 
EZH2. Mutations in EZH2 have been identified in a number of different tumor types, including non-
hodgkin lymphoma (NHL), follicular lymphoma119, melanoma161, ewing sarcoma171, and many solid 
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tumors including prostate and breast cancers27 (www.cbioportal.org/genie). The types of mutations 
observed can vary dramatically, with specific mutations occurring more frequently within specific 
tissue or cancer subtypes. Furthermore, the phenotype and functional consequence of such mutations 
can vary dramatically. Many solid tumors, including breast, lung, and prostate cancers exhibit EZH2 
overexpression or amplifications. In hematological malignancies, EZH2 seems to have opposing roles 
depending on the cell of origin. In b-cell lymphomas, EZH2 has an oncogenic function119, but in myeloid 
malignancies EZH2 has a tumor suppressive function173, indicating diverse roles of action of EZH2. 

In developing b-cells, EZH2 is required for germinal center (GC) formation. Specifically, in GC b cells, 
EZH2 expression helps to speed up the G1 to S phase transition to facilitate rapid cell division and 
clonal expansion during b cell differentiation9. In the context of b cell lymphoma, a specific somatic 
point mutation emerges as a recurrent alteration in the GCB subtype of DLBC lymphomas (~20-
30%) and follicular lymphomas (~5-10%), where the tyrosine (Y) residue at position 646 is changed 
to phenylalanine (F) or asparagine (N), and is more commonly referred to as EZH2Y646X 11, 119. In it’s 
initial discovery, EZH2Y646X was described as a loss of function mutation119, however, it was quickly 
determined that the EZH2Y646X mutations observed in tumors is in fact a gain-of-function heterozygous 
mutation. Interestingly, EZH2Y646X homozygous mutations are embryonic lethal. Instead, EZH2Y646X 
requires the wild-type EZH2 allele to modulate substrate specificity, which leads to a global increase in 
H3K27me3159. Furthermore, in a CD19-dependent Cre-conditional EZH2Y646X mouse model, EZH2Y646X 
was sufficient to induce lymphoma and melanoma development in vivo161. Thus, EZH2Y646X mutations 
function to promote oncogenic programming of DLBCL and follicular lymphoma. 

2.1.6 Chromatin organization
The advent of techniques aimed to map the three-dimensional conformation of chromatin, called 
chromatin conformation capture, has allowed researchers to begin to unravel the importance of the 
hierarchical structure of chromatin in regulating fundamental signaling processes inside the cell. Briefly, 
chromatin conformation capture involves the crosslinking of histones with formaldehyde, which creates 
bonds that “freeze” interacting genomic loci in space and time. Restriction enzymes are then used 
fragment DNA, and are used as recognition sites for subsequent mapping to the human genome in 
downstream processing. Following restriction enzyme digestion, proximity ligation allows for the 
annealing of two DNA fragments that are close to one another in 3D space but not necessarily connected 
on the linear genomic template. The resulting fragments of interacting DNA are then prepared for high-
throughput sequencing. The resulting output allows one to quantify the number of genomic interactions 
that occur in 3D space, and can be mapped to analyze the spatial organization of chromatin inside the 
cell at multiple levels of hierarchical structure. 

Studies of three-dimensional chromatin conformation have identified a hierarchical pattern of chromatin 
looping and folding inside the nucleus of eukaryotic cells13, 43, 52, 41. Hierarchical structural features 
can include loops made of relatively short sequences (~1-10kb), medium size domains of densely 
interacting chromatin (~100kb-1Mb), also known as topologically associating domains (TADs), and 
large chromatin compartments (> 1Mb), which segregate genomic regions that are either actively 
transcribed or silenced105.
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Most comparative studies of chromatin architecture have focused on developmental processes, including 
cell differentiation and cell fate commitment14,15, 92, 192. Studies of genome architecture in relation to 
human disease have begun to gain attention in recent years, particularly in the interest of improving our 
understanding of the functional consequences of cancer-associated alterations. In one example of t-cell 
acute lymphocytic leukemia (t-ALL), a recurrent deletion of chromosome 1p33 leads to the creation 
of a new super-enhancer (marked by H3K27ac) that hijack transcription and activate expression of 
TAL1, an important oncogenic transcription factor in t-ALL109. Another study of gliomas demonstrated 
a novel role for the gain-of-function isocitrate dehydrogenase (IDH) mutation in chromatin remodeling 
by hypermethylation of the CTCF protein binding sites. This epigenetic alteration leads to the reduction 
of CTCF biding and loss of TAD boundaries, leading to aberrant enhancer activity and transcriptional 
activation of the platelet derived growth factor receptor alpha (PDGFRA) glioma oncogene51. Both 
studies present unique methods of oncogenic transcriptional reprograming by modifying chromatin 
organization, and further studies combining 3D architecture with transcriptomics and epigenetics will 
continue to unravel this functional interplay. 
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2.2 Rationale for Project

It has been speculated that, in the context of EZH2Y646X mutations, such a dramatic global increase in 
H3K27me3 may lead to a similarly vast reorganization of chromatin within the nucleus, and the advent 
of high-throughput sequencing techniques combined with chromatin conformation capture has enabled 
further research on this topic. TADs have been proposed as candidate functional elements that work 
to regulate gene expression during development and other epigenetic differentiation programs52, 41, 91. 
Indeed, it has been shown that TADs are preferentially enriched for active or repressive transcription 
marks, like H3K36me3 or H3K27me3, respectively97, 122, 152. Given that EZH2Y646X has been shown to 
increase H3K27me3 and promote transcriptional repression genome wide219, we wondered whether 
oncogenic EZH2 mutations lead to structural and/or functional modifications of chromatin. To address 
this question, we investigated epigenetic, transcriptional, and structural changes in EZH2 wild-type and 
mutated lymphoma cells in the context of their chromatin architecture. 
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2.3 Main Findings

EZH2 oncogenic mutations drive epigenetic, transcriptional, and 
structural changes within chromatin domains

Maria Donaldson Collier*, Stephanie Sungalee*, Marie Zufferey*, Daniele Tavernari*, 
Natalya Katanayeva, Marco Mina, Kyle M. Douglass, Timo Rey, Franck Reynaud, Suliana Manley, 

Giovanni Ciriello, and Elisa Oricchio
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(Appendix 1)44

Using high-throughput chromatin conformation capture (Hi-C), we found that epigenetic changes 
induced by EZH2Y646X do not disrupt hierarchical chromatin organization, but rather are enriched within 
chromatin topologically associating domains (TADs). In particular, by mapping transcriptional changes 
to chromatin organization in lymphoma, we found that the increase of H3K27me3 in EZH2Y646X tumors 
drives concordant gene silencing within TADs, leading to the inactivation of entire domains (termed 
inactive TADs). Inactive TADs are enriched for EZH2 target genes involved in b-cell differentiation and 
cell death. In one specific example, we show that synergistic inactivation of multiple tumor suppressors 
within the same inactive TAD, TAD6.139, synergistically accelerates b cell proliferation and lymphoma 
progression in vivo. Indeed, pharmacological inhibition of mutated EZH2 depletes H3K27me3, restores 
intra-TAD chromatin interactions to the status observed in EZH2WT, and reactivates transcriptional 
activity within TAD6.139. Finally, using targeted chromatin conformation capture with a unique 
molecular identifier (UMI-4C) for TAD6.139, we found that the intra-TAD epigenetic and transcriptional 
changes, driven by EZH2Y646X, are coupled with rewired promoter-promoter interactions. Using STORM 
super resolution microscopy, we observed structural modifications of TAD6.139 associated with the re-
wiring of promoter interactions of DNA. Our results underline the relevance of the genome topology in 
understanding how cancer-associated epigenetic alterations act beyond single genes and instead modify 
the activity of multiple genes comprised within entire chromatin domains. 
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2.4 Discussion

The PRC2 complex binds up to 20% of all gene promoters found in mammals, making it one of the master 
regulators of transcriptional silencing in the cell. PRC2 genes are often mutated in cancer, and correlate 
to disease progression, metastasis, and poor prognosis in patients71, 90. EZH2 gain-of-function mutations 
(EZH2Y646X) in GCB-DLBCL and follicular lymphoma were first characterized in 2010 and have since 
become an intense area of interest for targeted therapeutic approaches in the clinic107, 114, 119, 125. Indeed, 
the characterization of EZH2Y646X, as well as other mutations identified in the SET domain of EZH2, 
lead to the development of a number of small molecule competitive inhibitors of S-adenosylmethionine 
(SAM), the methyl donor essential for the HMT activity of EZH2Y646X, and have showed some promise 
in early phase clinical trials (NCT02875548; NCT01897571)78. However, some limitations with regard 
to efficacy and acquired resistance remain problematic (NCT02082977: terminated). Understanding 
the underlying mechanisms of EZH2Y646X mutations in cancer development and disease progression will 
provide a more complete picture to inform the clinical efficacy of attacking this target in patients.

Our study takes into account the three-dimensional organization of chromatin and its fundamental 
building blocks, DNA and histones. The process of folding DNA inside the nucleus is not random, 
rather DNA is packaged systematically to position genes and their transcriptional machinery into the 
exact right location to turn transcription on or off with ease in a tightly regulated manner. Interestingly, 
this process is not static, but can be dynamic, meaning that chromatin can move and shift to adjust 
to what it needs at any given time while also maintaining a remarkable memory function that can be 
passed through generations of the cell cycle. While this process has been well studied under normal 
homeostatic conditions (during cell fate commitment, for instance), we do not fully understand how this 
delicate balance is perturbed when a normal cell becomes malignant. 

In our study, we begin unraveling the complexities of this delicate balance between transcriptional 
programming and the three-dimensional organization of chromatin, and how this goes awry in the 
context of EZH2Y646X mutations in lymphoma. By taking into account the three-dimensional organization, 
we were able to pinpoint a novel mechanism of epigenetically-mediated transcriptional hijacking that 
occurs in lymphoma, which is coupled with the structural rearrangement of the chromatin itself. 

EZH2Y646X mutations lead to a global increase of H3K27me3 and subsequent transcriptional silencing 
within the cell. By mapping the epigenetic and transcriptional profiles of EZH2WT and EZH2Y646X 
mutant lymphomas to the three-dimensional organization of chromatin, we characterized the targeting 
and synergistic inactivation of entire chromatin domains (termed inactive TADs) by EZH2Y646X. We 
functionally validate target TAD6.139, which contains two tumor suppressor genes: FOXO3 and SESN1. 
Interestingly, both FOXO3 and SESN1 are direct transcriptional targets of the tumor suppressor gene, 
p5319, 145, and have a functional role in Akt-mTOR signaling. FOXO3 is a transcription factor directly 
regulated by Akt39, and SESN1 regulates mTOR activity and its downstream translational program134. 
Indeed, we found that concurrent inactivation of FOXO3 and SESN1 synergistically promotes B-cell 
proliferation in vitro and tumor growth in vivo. By mapping the transcriptional changes associated 
with EZH2Y646X epigenetic alterations to chromatin structure, we were able to elucidate the synergistic 
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behavior between these two genes, a phenomenon that would have likely been missed otherwise. 

Importantly, we were able to rescue this effect using small molecule inhibitors (EPZ-6438 and GSK-
126) targeting EZH2 in vitro.  Using a specialized chromatin conformation capture technique to target 
interactions occurring within TAD6.139 (UMI-4C), we were able to pinpoint structural changes within 
the domain. By analyzing the chromatin interactions within TAD6.139 in GSK-126 treated and untreated 
EZH2Y646X lymphoma cell lines, we found that upon TAD re-activation, the chromatin conformation 
is modified to bring the FOXO3 and SESN1 promoters into contact with one another, thus allowing 
transcription to proceed in a coordinated fashion. We further confirmed these structural changes by visual 
inspection using STORM super-resolution microscopy. We conclude that this structural modification 
is an important factor in the transcriptional regulation of these tumor suppressive genes, providing a 
functional link between histone post-translational modifications, chromatin structure, and transcription 
in the context of EZH2Y646X lymphoma. 

Our work uncovering this novel mechanism of action of EZH2Y646X identifies a potential secondary effect 
of targeting EZH2 in the clinic that was not previously known. For example, the genes found within 
TAD6.139 can be used as novel biomarkers for the efficacy of EZH2-targeted therapy in patients, or 
could be considered potential candidates for targeted therapeutics themselves. Interestingly, TAD6.139 is 
often deleted in lymphoma, and these deletions tend to be mutually exclusive with EZH2Y646X mutations, 
leading us to speculate that the synergistic down-regulation or chromosomal deletion is sufficient to 
block this distinct tumor suppressive activity and is important in this context. 

In summary, our study demonstrates that mutations in the epigenetic modifying enzyme, EZH2, can lead 
to modifications in the structure and function of entire topologically associating domains. In the context 
of lymphoma, EZH2Y646X mutations target b-cell specific and tumor suppressive TADs to synergystically 
downregulate transcription and disable their tumor suppressive function.  
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2.5 Further considerations and future directions

2.5.1 Further studies of EZH2Y646X in the context of b-cell lymphoma
In future studies, it will be interesting to further elucidate the functional role(s) of EZH2Y646X in b-cell 
malignancies in the context of chromatin structure. In our study, we identify a subset of chromatin 
domains (n=72) that are epigenetically and transcriptionally down-regulated by EZH2Y646X.  In future 
studies, it will be interesting to determine the functional relevance of these other EZH2Y646X target 
regions. In addition, while we see that the subset of inactive TADs identified in our study are enriched 
for various b-cell specific and tumor suppressive programs, their precise relevance is still yet to be 
determined. We provide a functional mechanism for the tumor suppressive TAD6.139, but it will be 
interesting to further interrogate other EZH2Y646X target TADs in order to determine their functional 
relevance in lymphoma pathology. In addition, our analyses identified a small number of domains which 
actually become transcriptionally activated in EZH2Y646X lymphoma (n=2). While much less abundant 
than their inactive counterparts, it would be interesting to determine if this activation is directly caused 
by EZH2Y646X, or indirectly by some unknown mechanism, and if these TADs are functionally relevant.

2.5.2 What is the mechanism of action of EZH2Y646X in other cancer subtypes? 
EZH2Y646X mutations are observed in other tumor subtypes, albeit at a much lower incidence than 
observed in b-cell lymphomas. In b-cell lymphoma, EZH2Y646X target TADs are enriched for tissue 
specific programs, so it is intriguing to think that EZH2Y646X may target different domains (tissue-specific 
domains) in tumors of other tissue types. If so, what would drive this conscience decision-making? It is 
intriguing to speculate that it stems from the cell-lineage specific properties of PRC2, and cell epigenetic 
memory may play a role. For example, it has already been shown that EZH2Y646X is sufficient to drive 
tumorigenesis in vivo. If EZH2Y646X oncogenic mutations are introduced to one of two cell lineages 
derived from the same stem cell population (lymphocytes versus melanocytes, the two most common 
tumor cell types with EZH2Y646X, for instance), are the target regions of EZH2Y646X tissue specific? And to 
what degree is the target specificity conserved within a given tissue? Finally, how would this contribute 
to tumorigenesis in a tissue-specific context? 

2.5.3 What is the link between EZH2Y646X and chromatin structure?
We provide a functional link between EZH2Y646X and chromatin structure through TAD6.139, however 
the exact mechanism of PRC2-mediated chromatin looping is still unclear. Indeed, the global 
mechanisms guiding changes to chromatin architechture are still unclear in the context of PRC2. In 
our study, we see a clear link between H3K27me3 and chromatin structure, however we do not yet 
understand the molecular mechanisms underlying this apparent synergy. Which begs the question, to 
what extent can PRC2 modify chromatin structure, and what are the features of PRC2 that work to 
drive chromatin compaction in this context? It has been suggested that PRC2-driven chromatin looping 
is actually mediated by PRC1, however this mechanism has not been well established in mammalian 
cells, even under normal homeostatic conditions or during development. Previous studies of mouse ES 
differentiation provide an impressive link between PRC1 and chromatin compaction, but demonstrate 
that this mechanism is not dependent on H2AK119Ub95. Instead, one hypothesis is that there may 
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be a distinct PRC1 complex conformation (or subtype) that could mediate chromatin compaction. As 
previous studies have shown, there are 16 known PRC1 subunits, making at least 180 potential PRC1 
conformations. Thus, there may be a distinct PRC1 associated protein or subunit conformation that lends 
the mechanical force to alter chromatin structure. In addition to PRC1, previous studies have shown 
the ability of the (BAF) SWI/SNF complex to remodel nucleosomes in an ATP-dependent manner. 
Indeed, in studies of mammalian cell differentiation, it was shown that PRC2 and BAF subunit proteins 
counterbalance one another during mouse ES-cell differentiation, indicating a functional interplay 
between the two complexes during development222. In addition, the BAF complex has been implicated 
in HSC maintenance, and regulation of erythroid, lymphoid, and myeloid lineages in studies of mouse 
ES cells. Furthermore, it has been shown that the BAF complex plays a role in chromatin remodeling 
during hematopoesis, and aberrant expression of BAF complex proteins have been previously implicated 
in hematologic malignancies220. In the context of PCR2-EZH2Y646X-driven chromatin remodeling, I 
hypothesize that additional chromatin remodeling factors, such as PRC1 and BAF, among others, may 
have some secondary role in the structural remodeling of the EZH2Y646X-target chromain regions, and 
further functional studies combining epigenetics and transcriptomics with analyses of chromatin 3D 
structure will further elucidate these interdependencies. 

2.5.4 What is the functional relevance of other genomic alterations in the context of chromatin 
organization in lymphoma?
Multiple genomic alterations, including mutations, chromosomal rearrangements, and epigenetic 
alterations can contribute to cancer development and progression. Many alterations observed in cancer 
cover large portions of the genome encompassing not just one single gene, but multiple genes. When an 
alteration spans large portions of the genome it can be difficult to understand the functional relevance 
of such alterations. it has been shown that chromosomal alterations in cancer can modify the three-
dimensional structure of chromatin to drive oncogenic programs217. Using the abundance of data 
generated from genome-wide transcriptional, epigenetic, and Hi-C experiments in Donaldson Collier 
et al., 2019, it is feasible to begin to explore the relevance of other genomic alterations in DLBC 
lymphoma on chromatin structure and pathogenic function. 

In a follow-up study of chromatin dynamics in cancer, we have begun to explore the functional relevance 
of the chr.2p16.1 amplification in the context of b cell malignancies. Amplifications of Chr.2p16.1 
are observed in 18-26% of b cell lymphomas, and always encompass two genes: BCL11a and REL. 
BCL11a is a transcription factor essential for lymphoid development106, and REL is part of the NF-κ 
B complex that regulates the gene expression in activated b-cells210. Regardless of the prevalence of 
this amplification, the functional link between chr.2p16.1 amplifications and lymphomagenesis remain 
illusive. 

Using analyses of chromatin structure, we are investigating the effects of the chr.2p16.1 amplification on 
chromatin organization and chromatin interactions at different levels of hierarchical organization of the 
genome. Using gene expression analysis, we can map the differentially expressed genes to structurally 
altered genomic regions, allowing for the identification of genes that are both directly and indirectly 
affected by the chr.2p16.1 amplification. Finally, using chromatin-immunoprecipitation combined 

26



with high-throughput sequencing (ChIP-seq), we can map the exact location of enhancers (marked by 
H3K27ac) and promoters (marked by H3K4me3) in b cell lymphomas with or without the chr.2p16.1 
amplification. In future studies, we will further elucidate how changes in chromatin interactions affect 
gene expression in cancer. This particular follow up study will integrate chromatin structural changes 
with oncogene expression, thus providing a new lens to understand the role of chromatin three-
dimensional organization in supporting tumor growth.
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Chapter 3: Dissecting epigenetic, transcriptomic, and metabolic signaling 
dependencies using a novel model of central nervous system primitive neural 

ectodermal tumors (CNS-PNETs)

3.1 Introduction

3.1.1 Pediatric Central Nervous System Tumors
Pediatric central nervous system (CNS) tumors are the leading cause of cancer-associated death in 
children worldwide, notwithstanding the lower frequency compared to other tumor subtypes, including 
leukemia and lymphoma (WHO). Despite many hallmark advances to our understanding of the 
mechanisms of development, growth, and treatment of cancer over the last 50 years, advances in our 
understanding of pediatric CNS tumors has lagged in comparison.

Pediatric CNS tumors, on average, harbor a 14-fold lower mutational load than adult tumors of a similar 
tissue of origin206. For many of these tumors, where driving mutations cannot be identified, it is unclear 
how and under which conditions these tumors arise. Furthermore, relatively few models exist to explore 
the underlying mechanisms of tumor development, progression, and response to treatment123. It has been 
proposed that pediatric CNS tumors arise as a result of aberrant neuronal development, with both the cell 
of origin and anatomical location contributing to tumor behavior169. There is evidence that many CNS 
tumors propagate not necessarily as a result of genetic mutations, but rather from epigenetic alterations 
- particularly aberrant DNA methylation patterning208. In addition, pathological and molecular analyses 
of pediatric CNS tumors consistently reveal high expression of various neural stem cell and neural 
development markers, including the neural stem cell marker, CD133 and the neural development type 
VI intermediate filament protein, Nestin, indicating that tumors may arise from a small population of 
neural cancer stem cells that have the ability to generate and propagate tumor development169, 188. Cancer 
stem cells are quite similar to normal stem cells in that they posses the typical characteristics of self 
renewal and the ability to differentiate into multiple cell types, however unlike normal stem cells, their 
capacity for self-renewal is uncontrolled. The data suggests it is likely that both mechanisms play an 
important role in pediatric CNS-tumor initiation and development, as well as resistance to treatment. 
However, additional research is required to better understand these mechanisms of action across various 
subtypes of pediatric CNS tumors. 

3.1.2 Pediatric Central Nervous System-Primitive Neural Ectodermal Tumors (CNS-PNETs)
Central nervous system primitive neural ectodermal tumors (CNS-PNETs) are a rare but rather aggressive 
subtype of pediatric CNS tumors arising from poorly differentiated neuro-epithelial cells. Due to the 
rarity of this tumor, comprising of approximately 5% of all pediatric brain tumors, significant advances 
in new diagnostic tools, molecular-based characterization, and therapeutic strategies have been limited 
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in scope123. While CNS-PNETs histologically resemble medulloblastomas and high grade gliomas, 
previous studies have shown that these tumors have distinct molecular profiles that are representative 
of tumors arising from different cells of origin79, 103, 138. In addition, the cytogenic profiles and genetic 
alterations observed in CNS-PNETs are remarkably different from those observed in other CNS tumors, 
indicating unique biological derivations between tumor subtypes that are not otherwise apparent on the 
basis of morphological features alone103. However, most of these studies are descriptive and the paucity 
of specific in vitro and in vivo CNS-PNET models has limited the possibility to define the role of these 
genomic alterations in tumor development and progression.

3.1.3 Diagnosis and Treatment of CNS-PNETs
Traditional diagnosis of pediatric CNS-PNETs is rather difficult and sometimes even inaccurate, relying 
solely on anatomical location and descriptive histological features 23, 79, 208 . Based on the 2007 WHO 
report of pediatric CNS tumors, CNS-PNETs are defined as highly heterogeneous tumors that exhibit 
remarkably divergent patterns of differentiation. CNS-PNETs generally encompass tumors containing 
poorly differentiated cells that follow along neuronal, astrocytic, or ependymal lines of origin, which 
underlines the heterogeneity observed108. 

Although it is noted that CNS-PNET tumors are highly heterogeneous across patients and exhibit  variable 
responses to treatment, regimens remain more or less consistent in practice, with little understanding 
of the underlying causes for such variability in prognostic outcome169. Treatment of CNS-PNETs is 
limited to intensified chemo and radiotherapy following surgical resection, a regimen initially designed 
for high grade medulloblastomas21. More recently, to reduce the neurological damage in young patients 
(<4 years of age), radiotherapy has been replaced with an intensive chemotherapy treatment regimen 
of five agents, including methotextrate, clophosphamide, vincristine, carboplatin, and etoposide (SKK-
HIT’92 clinical trial)148. However, CNS-PNETs and medulloblastoma are molecularly distinct from one 
another, and from a prognostic standpoint, CNS-PNETs show a significantly worse clinical outcome, 
with an estimated 3-year progression free survival in only ~50% of patients regardless of the intensified 
treatment regimen79, 170. Surgical resection, when possible, remains the best prognostic measure for 
progression-free survival and overall survival79. However, complete macroscopic surgical resection is 
only feasible in 30-50% of patients, oftentimes due to the tumor’s precarious location79, 170. Furthermore, 
despite their small numbers, these highly aggressive and highly resistant tumors primarily affect young 
children, whereby if they survive the disease they may suffer long-term damage due to the chemo- and 
radio-therapeutic treatment88. 

In the context of CNS-PNETs, few advances have been made to apply targeted novel therapeutic 
approaches to the treatment of the disease, which may be in large part due to both the rarity of the 
disease and a general lack of research tools available to dissect the molecular mechanisms driving 
tumor initiation, development, and treatment response123. More recently, some clinical trials have been 
initiated to combine conventional chemotherapy treatment with targeted therapeutic strategies, such as 
Bevacizuman (Avastin) targeting vascular endothelial growth factor (VEGF) to inhibit angiogenesis 
(ClinicalTrial ID: NCT01217437). Nonetheless, given the unique complexity underlying CNS-PNET 
pathogenesis and the high mortality rates associated with this disease, there is a pressing need to improve 
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our knowledge to identify new diagnostic and therapeutic strategies in the clinic123. 

3.1.4 The Role of DNA Methylation in CNS-PNET Pathogenesis
DNA methylation is an epigenetic program whereby methyl groups are directly added to the DNA 
sequence to alter the transcriptional program of the cell without directly modifying the genetic code 
itself. Cancer cells often exhibit abnormal DNA methylation patterns compared to normal cells. In normal 
cells, individual CpG sites are often methylated, and CpG-islands (CGIs) are often unmethylatlated. In 
cancer, individual CpG sites become globally unmethylated (hypomethylation) with the exception of 
CGIs, which actually become hypermethylated50. It is thought that DNA hypomethylation is an early 
event in cancer, introducing chromatin instability and activating proto-oncogenes47,40. Cancer-driven 
hypermethylation of CpG islands (CGIs) is often located at promoters of tumor suppressor genes, which 
are frequently transcriptionally down-regulated as a result of their methylation status. The identification 
of this epigenetic regulatory network in cancer has opened a therapeutic window for prognosis and 
treatment applications in many cancer subtypes. Indeed, DNA methyltransferase (DNMT) inhibitors 
were some of the earliest epi-therapeutics approved for the treatment of cancer, and are currently used 
for the treatment of various hematologic malignancies56, 57. In addition, aberrant DNA methylation has 
been further linked to important signaling events in in various cancer subtypes. For example, estrogen 
receptor-α (ERα) activity was found to be tightly coupled with DNA methylation in breast cancer, 
where the methylation status of CpGs is correlated with the transcriptional activity of the hormone 
receptor and were found to be good predictors of clinical response to anti-estrogens73, 172. In summary, 
DNA methylation is an important mechanism for epigenetic and transcription regulation in the cell. 
Aberrant DNA methylation patterning is observed across many types of cancers, which functions to 
alter transcription and enact oncogenic signaling to drive tumor development and progression.

In the absence of defining genetic lesions present in CNS-PNETs, it has been hypothesized that these 
tumors may instead be driven by epigenetic alterations, specifically maladaptive alterations to the DNA 
methylation profiles that occur during development206, 23, 208. To this end, there has been a recent effort to 
profile the epigenetic landscape of pediatric CNS-PNETs, providing new insight into the unique biology 
underlying the development of these tumors. In a multi-institutional collaboration, researchers collected 
over 350 institutionally diagnosed pediatric CNS tumors biopsies for matched DNA methylation and 
expression analysis, thus creating the largest information repository of these rare tumors available to 
date23, 208. The implementation of high-throughput sequencing methods has provided a unique opportunity 
for identifying epigenetic biomarkers even within rare, mutation-low tumor types like pediatric CNS-
PNETs. The results from this study revealed remarkable heterogeneity between patient samples, with 
some CNS-PNETs exhibiting features of other types of CNS-tumors, as well as the identification of 
new unique sub-classes (Figure 3). This novel classification system is based specifically on the DNA 
methylation profile of each patient, indicating that epigenetic alterations may be a powerful driving 
force behind CNS-PNET development208. In light of this new finding, it will need to be determined 
whether this new classification system will lead to improvements in the diagnosis and treatment of 
patients in the clinic. Most importantly, the identification of specific biomarkers and prognostic factors 
relating to each distinct subtype will be important to help translate such findings to the clinical setting. 
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Figure 3: Molecular Classification of CNS-PNETs by DNA Methylation Profiling

From: New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs
Sturm et al., Cell 2016

DOI: 10.1016/j.cell.2016.01.015

3.1.5 Cancer Metabolism and Metabolic Imaging
Metabolism encompasses a set of biochemical processes that function to turn organic material into 
energy, synthesize new materials in the body, and eliminate waste; a process that is vital to every 
known living organism. Metabolic transformation is a major hallmark of cancer, whereby cells undergo 
a divergent switch to sustain uncontrolled growth and cell survival64, 65. The most common metabolic 
transformation was first observed by Otto Warburg in the 1920s, and is referred to as aerobic glycolysis 
or the “Warburg effect” 214, 215, 216. In humans, differentiated cells generally undergo glycolysis to convert 
glucose into pyruvate to feed into the tricarboxcylic acid (TCA) cycle in the mitochondria to produce 
adenosine triphosphate (ATP) via oxidative phosphorylation (Figure 4). However, many tumor cells 
instead convert glucose into lactate for the production of ATP even in the presence of oxygen (Figure 4), 
whereas in quiescent cells this process is usually only observed under anaerobic conditions. While, in the 
presence of oxygen, aerobic glycolysis is generally considered less efficient than mitochondrial-driven 
oxidative phosphorylation, cancer cells are able to produce ATP more rapidly to support continuous cell 
division, growth, and invasion64, 65.
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Figure 4: Schematic representation of the principal pathways involved in glucose catabolism

 

From: Aerobic Glycolysis: Beyond Proliferation
William Jones and Katiuscia Bianchi

DOI: 10.3389/fimmu.2015.00227

While metabolic transformation to aerobic glycolysis has been observed across many different tumor 
types, recent evidence has suggested that a number of additional metabolic processes can be altered in 
cancer as well. For example, recent studies have shown that certain cancers can also up-regulate the 
oxidative phosphorylation (OXPHOS) pathway, thus providing some rationale for treating tumors with 
OXPHOS inhibitors in specific contexts4. Other evidence has identified impaired mitochondrial function 
linked to specific mutations in mitochondrial proteins, or simply due to an increase in mitochondrial 
DNA content in some cancers160. 

One particularly intriguing point is that cellular metabolism can be highly dynamic and heterogeneous 
across tumor types or even within the same tumor. For example, one study of pancreatic ductal 
adenocarcinoma (PDAC) suggests that a population of cancer stem cells within PDAC tumors are more 
reliant on oxidative phosphorylation, while the surrounding non-stem cancer cells rely more heavily on 
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aerobic glycolysis160, 174. These results suggest that intra-tumor molecular heterogeneity is associated to 
distinct metabolic signatures. In another example, researchers used 1H magnetic resonance spectroscopy 
(MRS) to profile the metabolic features of three subtypes of brain tumors reflecting various stages of 
aggressiveness and invasiveness. In each subtype, the metabolic signature contained unique features, 
with low-grade astrocytomas exhibiting high levels of myo-inositol, and more mildly elevated levels 
of lactate and choline. Conversely, glioblastomas exhibited the opposite, with high levels of lactate 
and choline and very low (or no) signal detected for myo-inositol25. These results indicate that tumors 
may undergo either: (1) dynamic switching that occurs during the evolution of tumor growth and 
transformation, or (2) indicate differences in metabolic signaling dependencies between tumor subtypes 
and/or cell of origin (for example: astrocytes and glial cells). In summary, metabolic transformation is 
an important hallmark of cancer, but the types of metabolic alterations can vary between tumors and 
even within tumors.

The abundance and range of metabolic alterations observed in cancer pinpoints an attractive avenue 
for treatment targeting cancer-associated metabolic signaling, as well as exploiting these fundamental 
differences for cancer detection and patient stratification. One of the most successful examples is the 
use of radioactive glucose derivatives combined with positron emission tomography (PET) imaging for 
detection of various types of cancer22. 18fluorodeoxyglucose (FDG) is a glucose analogue, whereby upon 
uptake, FDG becomes phosphorylated and then trapped, leading to an intense radiolabeling of cells and 
tissues with high glucose uptake. FDG-PET is successful and routinely used in the diagnosis, staging, 
and monitoring treatment response in many types of cancer, including Hodgkin and non-Hodgkin 
lymphomas, colorectal cancer, lung cancer, and melanoma12. In the context of the PI3K pathway and 
its role in mediating glucose transport and metabolism, FDG-PET has even been used to measure 
the efficacy of treatment with PI3K-inhibition in xenograft mouse models of human cancer48, 106, 113.  
However, in tissues with high glucose uptake under homeostasis, like the brain, liver, and kidneys, 
FDG-PET measurements are not always reliable126, 146. 

Current protocols for treating pediatric brain tumors take into account a number of different risk factors 
including age at the time of diagnosis, radiographic imaging features, and histological features, all of 
which contribute to diagnosis. In the clinic, diagnosis of CNS-PNETs is limited to magnetic resonance 
imaging (MRI). However, morphological features obtained from an MRI are not always reliable in 
predicting prognosis and treatment response208. While FDG-PET has been successfully applied in 
the clinic for the detection of various tumor types, providing valuable information about tumor size, 
aggressiveness, and treatment response, FDG-PET is not feasible for diagnosing CNS-PNETs due to the 
high background of glucose in the brain. For this reason, there has been a recent push to apply 1H MRS-
based metabolomics to human brain tumors to identify and stratify tumors based on their metabolic 
profiles3, 87, 121. 

Anywhere from 12-18 different metabolites can be reliably measured with 1H MRS depending on the 
measurement techniques used, and reports indicate that there are a number of altered metabolites in both 
adult and pediatric brain tumors that can be reliably measured using 1H MRS3, 25, 66, 73, 121, 139. Based on 
previous studies of primary tumors, some specific metabolites have emerged as potential biomarkers for 
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diagnosing and monitoring CNS-PNETs in the clinic28, 54, 55, 117, and herein some examples are outlined.

Some metabolic features are robustly observed across almost all brain tumors, including a decrease in 
N-acetyl aspartate (NAA) and an increase in choline73, 179. N-acetyl aspartate is one of the most abundant 
amino acids in the central nervous system and is thought to be a contribution from neurons, axons and 
dendrites, and loss of NAA is indicative of loss of normal neuronal density7. Choline is a major source 
of the methyl groups used in the synthesis of phosphatidylcholine and sphingomyelin, two important 
phospholipids for the generation of the cell membrane. Thus, choline is thought to be a biomarker 
for membrane synthesis and/or degradation, and elevated levels of choline could indicate increased 
membrane turnover and high cellular density7, 63. 

Other metabolic changes that have been observed in brain tumors include lactate, glycine, and myo-
inositol, albeit more variable depending on the tumor subtype, size, and aggressiveness25, 66, 73. An 
increased level of lactate is generally thought to be a result of anaerobic glycolysis in tumor cells, 
however other factors may contribute to lactate abundance, including lack of blood flow in the region 
of interest as well as tissue necrosis73. Glycine is an important amino acid for nucleotide biosynthesis, 
particularly pyrimidine biosynthesis. Glycine/Serine metabolic pathway associated enzymes (glycine-
N-methyltransferase (GNMT) and S-adenosylmethionine (SAMe)) have been linked to aberrant DNA 
methylation signatures in hepatocellular carcinoma, providing an interesting link between altered 
glycine metabolism and DNA methylation in cancer76, 179. In addition, glycine has been identified as a 
marker for poor prognosis in pediatric brain tumors6. Myo-inositol is primarily produced in astrocytes. 
A derivative of glucose, myo-inositol and is considered a secondary messenger in many signal 
transduction pathways and is considered an important osmolarity regulator in the brain. Relative to 
normal brain tissue, increases in myo-inositol have been linked to lower-grade brain tumors, like low 
grade gliomas and astrocytomas, but is decreased in high grade gliomas and glioblastoma164, therefore 
making it an attractive marker associated with tumor aggressiveness. However, it is not clear if myo-
inositol is linked directly to aggressive behavioral traits (e.g. increased in cellular proliferation and 
tissue invasion). Indeed, it may also be linked to distinct features of the tumor itself, which depend on 
factors suchs as, the cell or origin (astrocytes versus glial cells), or osmoregulation related to tumor-
induced brain swelling and blood brain barrier damage. 

In addition to 1H MRS-based methods, live imaging using hyperpolarized magnetic resonance (HMR) 
has also gained a considerable amount of attention in recent years. HMR allows for the noninvasive 
measurement of metabolic reactions in vivo, following the administration of a 13C-tagged substrate. 
Hyperpolarized magnetic resonance is >10,000 times more sensitive than previously used methods, 
such as 1H MRS, which only has the ability to measure highly abundant amino acids211. MRS technology 
implies numerous metabolic intermediates between the injected precursor and many assumptions 
are required to derive the underlying enzymatic fluxes. Through the use of hyperpolarized magnetic 
resonance, the 13C signal is enhanced by several orders of magnitude, which allows one to measure 
metabolic processes with much higher spatial and temporal resolution. As a result, HMR gives access 
to the intermediates present in various metabolic pathways, and determines the enzymatic flux of each 
reaction that are otherwise undetectable33. 
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In conclusion, given the paucity of methods for identifying cancer risk factors combined with the 
established patterns of metabolic alterations observed in brain tumors, non-invasive, in vivo-based 
metabolic imaging techniques lends an attractive method for stratifying behavioral characteristics for 
the refinement of risk factors associated to the diagnosis and treatment of CNS-PNETs. 

3.1.6 Existing Models of CNS-PNET Pathogenesis
Due to the rarity of these tumors and the lack of knowledge of oncogenic drivers, few in vitro and 
in vivo models exist for CNS-PNETs. To our knowledge, one patient-derived CNS-PNET cell line 
exists, called PFSK-1 (ATCC CRL-2060)53. Given the heterogeneity observed in primary CNS-PNETs, 
the characteristics of one cell line cannot encompass the global behavior of CNS-PNET tumors, and 
thus the development of further models is required to fully capture the biology of these tumors. More 
recently, an in vivo zebrafish model of CNS-PNETs was developed to encompass the broad heterogeneity 
of CNS-PNET tumors118. However, this model is based on non-human cell of origin, and may not 
accurately recapitulate the distinct human biology of CNS-PNETs. Indeed, only 70% of human genes 
share orthologs with zebrafish genes, and thus there may be clear divergences in zebrafish models of 
human genetics that do not accurately translate to the genetics of human diseases18. In addition, while 
a small number of primary patient-derived xenograft (PDX) mouse models do exist for CNS-PNETs, 
these models have not been publically available, thus limiting their potential to be used for pre-clinical 
research of CNS-PNETs globally. 
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3.2 Rationale for Study

It has been speculated that CNS-PNETs arise from poorly differentiated or undifferentiated neuro-
epithelial cells. In the absence of distinct genomic alterations, it is thought that these tumors are instead 
driven by aberrant DNA methylation patterning that works to favor oncogenic programming in the 
cell, which gives rise to malignant transformation. Furthermore, treatment options are very limited 
and prognosis is poor for patients suffering from this disease, pinpointing a pressing need to find 
alternative methods for diagnosing, stratifying, and treating patients in the clinic. Given that CNS-
PNET tumors arise from poorly differentiated neural epithelial cells that resemble the early stages of 
neural differentiation and the paucity of specific in vivo models for studying CNS-PNET pathogenesis, 
we wondered if it would be possible to derive a CNS-PNET mouse model based on human neural 
progenitor cells. We sought to develop a murine model based on neural progenitor cells derived from 
human induced pluripotent stem cells in an attempt to unravel disease complexities using a multi-
faceted approach involving epigenetic, transcriptomic, and metabolic analyses. 

3.3 Study Aims

	 1. To generate a robust model of CNS-PNETs based on hIPS-derived neural progenitor cells 	
	 (human CNS-NPC model)

	 2. Identify the epigenetic, molecular, and physical features of CNS-NPC model to determine 	
	 its accuracy in recapitulating key features of primary CNS-PNETs

	 3. To utilize the CNS-NPC model for pilot studies in the efficacy of metabolic imaging 		
	 platforms to assess the efficacy of metabolic imaging platforms in the diagnosis of CNS-PNETs
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3.4 Results: Modeling CNS-PNETs in vivo

“A model is a lie that helps you see the truth.”
Siddhartha Mukherjee, The Emperor of All Maladies

3.4.1 Modeling CNS-PNETs in vivo
The lack of specific in vitro and in vivo CNS-PNET models has limited the opportunity to investigate the 
underlying mechanisms driving CNS-PNET tumor formation in order to identify novel ways of targeting 
these tumors using novel therapeutic intervention stragegies. Given that CNS-PNET tumors arise from 
poorly differentiated neural epithelial cells that resemble the early stages of neural differentiation, we 
wondered if it would be possible to derive a CNS-PNET mouse model based on human neural progenitor 
cells (NPCs). Previous studies have shown that it is indeed possible to recapitulate features of CNS-
PNETs from neural progenitor and stem cells, however these models are based on NPCs derived from 
zebra fish, rather than human cells, and may lack some critical information regarding inherent biological 
differences between the two organisms118.  To this end, we generated a xenograft CNS-PNET mouse 
model based on NPCs derived from human-induced pluripotent stem cells (hIPS cells).

3.4.2 Development of a CNS-PNET Mouse Model Derived from Human Stem Cells 
hIPS cells were generated from IMR-90 fetal lung fibroblasts (ATCC CCL-186) by viral transduction 
of four genes: OCT4, SOX2, MYC and KLF4129. Following de-differentation into hIPS, cells are then 
re-differentiated towards a neural stem cell fate by a modified dual SMAD-inhibition protocol as 
previously described168, 93, where in approximately 3-4 weeks neural progenitor cells are generated in 
vitro (Figure 5A and 5B). Using immunofluorescence and quantitative-PCR (qPCR) analyses of specific 
neural development markers, we were able to confirm the robust generation of NPCs in vitro. Indeed, 
NPCs in vitro show an up-regulation of neural progenitor markers, including NESTIN, GFAP, PAX6, 
SOX2, and Synaptophysin (SYP), at the mRNA and protein level (Supplemental Figure 5A and 5B). 
Upon differentiation, NPCs transduced with a plasmid containing green fluorescent protein (GFP) and 
luciferase are dissociated, collected, and intracranially transplanted into immune-compromised NOD-
SCID mice (Figure 5C). The constitutive expression of GFP allows for cell identification in downstream 
histological analyses, and the luciferase allows for bioluminescence imaging (BLI) by IVIS spectrum 
(perkin elmer) by exploiting the light emitted following the chemical reaction between luciferase and 
its substrate, luciferin (Figure 5C and 5D)201. 

3.4.3 Analysis of the PFSK-1 Patient-Derived Cell Line 
To our knowledge, one immortalized patient-derived CNS-PNET cell line exists, called PFSK-1 
(ATCC CRL-2060)53. While the activity of one cell line does not necessarily represent the majority of 
the behavioral characteristics of all CNS-PNET tumors, it can be informative in some in vitro and in 
vivo experimental studies of CNS-PNETs and is used in this study as a second model of CNS-PNET 
pathogenesis. Using immunofluorescence and quantitative-PCR (qPCR) analyses, we characterized 
the expression of neural development markers in PFSK-1 cells in vitro (Supplemental figure 5A and 
5D). mRNA expression and immunofluorescence protein expression analysis reveals that PFSK-1 cells 
exhibit lower expression of NESTIN, SYP, GFAP, PAX6, and SOX2 relative to NPCs in vitro, indicating 
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that these cells may represent a  different stage of neural differentiation. Nonetheless, given that these 
cells are derived from a primary CNS-PNET, we continued to use PFSK-1 cells as a second model of 
CNS-PNET pathogenesis. 

3.4.4 Growth Characteristics of CNS-NPCs and PFSK-1 in vivo
BLI imaging of NPCs and PFSK-1 cells in vivo reveals that the growth tendencies between the two 
models is highly varied (Figure 5E). CNS-NPCs show some cell death within the first two weeks of 
implantation, followed by consistent growth over a period of approximately 8-10 weeks (Figure 5D). 
Conversely, PFSK-1 cells grow more rapidly, exhibiting highly aggressive behavior, with animals 
showing significant weight loss and behavioral abnormalities within three weeks of injection of 
only 10,000 cells (Figure 5D). Once tumors reached a size equivalent to or larger than 2x104p/s/cm2 

(normalized to the start of the experiment), as measured by IVIS imaging, tissues were collected for 
downstream analysis of DNA methylation, mRNA expression, and histological profiles to assess the 
similarities of the CNS-NPC model and PFSK-1 cells with primary patient samples. 

3.4.5 Pathological Feature Analysis of CNS-NPCs and PFSK-1 in vivo
First, we assessed the molecular and physical characteristics relevant to CNS-PNET pathology through 
the histological analysis of CNS-NPC and PFSK-1 tumors. CNS-NPCs exhibit many of the typical 
physical characteristics of CNS-PNETs, including poorly differentiated small round cells, high nuclear-
to-cytoplasmic ratio, with some Homer-Wright rosettes present (Figure 5 Fi). In addition, CNS-NPCs 
robustly exhibit high expression of the neural development type VI intermediate filament protein 
(Nestin) and the glial fibrillary acidic protein (GFAP), which are used as diagnostic markers of CNS-
PNETs (Figure 5iii & 5iv, Figure 5G, Supplemental figure 5E). The proliferation index, as measured 
by Ki-67, is moderate, with approximately 40-60% of cells staining positive (Figure 5 Fii, figure 5G, 
supplemental figure 5E). Conversely, tumors originating from PFSK-1 cells exhibit a more uniform 
morphology, with a high nucleus-to-cytoplasm ratio, no Homer-Wright rosettes present, and large areas 
of vascularity as well as necrosis (Figure 5 Fi). In addition, PFSK-1 tumors exhibit moderate expression 
of Nestin (Figure 5 Fiii), are negative for GFAP (Figure 5 Fiv, figure 5G, supplemental figure 5E), and 
have a high proliferation index with 80-100% of cells showing active proliferation as measured by Ki-
67 (Figure 5 Fii and figure 5G, supplemental figure 5E). 

Next, we wanted to assess the impact of the neural microenvironment on the ability of NPCs to 
transform into CNS-NPC tumors.  To address this point, we injected NPCs (Flank-NPCs) and PFSK-
1 cells subcutaneously into the flank of immune-deficient NOD-SCID mice. Growth of flank-NPCs 
and flank-PFSK-1 was monitored by BLI-IVIS over a period of seven weeks. Growth of NPC and 
PFSK-1 cells were both impaired when injected into the flank, even considering the photon emission 
differences inherent to imaging through the brain and skull versus directly underneath the skin of the 
mice (Figure 5I). While PFSK-1 retained the same pathological features observed in the brain, flank-
NPCs exhibited markedly different molecular and physical characteristics. Flank-PFSK-1 retained their 
dense nuclear-to-cytoplasmic ratio, high proliferation rate, and Nestin positivity (Figure 5 Hi, Hii, and 
Hiii). However, flank-NPCs lost many of these features, including a reduction in Nestin expression and 
Ki-67 (Figure 5 Hii and 5 Hiii), as well as some of the distinct physical characteristics observed in their 
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cerebral counterparts, with more diffuse nuclear content and higher percentage of infiltrating stroma 
(Figure 5 Hi). Overall, the NPC flank tumors exhibited loss of neural development-specific markers 
and a reduction in Ki-67, as well as differences in morphology compared to CNS-NPCs. Thus, when 
NPCs are injected into an alternative location in the body, these cells no longer retain the same features 
observed in CNS-NPC tumors, indicating tissue-specific priming is required for tumor development in 
this model. 

In assessing morphological and physical characteristics, we identified both similar and distinct features 
of the CNS-NPC and PFSK-1 lesions that are associated with CNS-PNET pathogenesis. In the context 
of the CNS-NPC lesions, there is some brain specific priming that is required for development of 
CNS-PNET tumors. We conclude that both PFSK-1 and CNS-NPC models have distinct and relevant 
pathological features which can be exploited for further analyses of CNS-PNET tumor biology.
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Figure 5. An in vivo Model for Studying CNS-PNET Tumors
(A) Schematic of the generation CNS-NPC tumors (B) Bright field images of NPC and PFSK-1 cells in vitro; 4X mag. (C) Representative 
BLI imaging of CNS-NPC and PFSK1 tumor bearing NOD-SCID mice over time. (D) CNS-NPC and PFSK-1 growth over time measured 
as the average BLI radiance (p/s/cm2). (E) Representative growth curve of PFSK-1 and CNS-NPC tumors in vivo, measured as the average 
BLI radiance (p/s/cm2), normalized to day 1 of injection. (Fi-v.) Reprensentative bright field images of immunostaining for (i) Hematoxylin & 
Eosin (H&E), (ii) Ki-67, (iii) Nestin, (iv) GFAP, and (v) Caspase-3 in CNS-NPC and PFSK-1 tumors; 10X mag. (G) Quantification of percent 
(%) Ki-67 and GFAP positive cells observed in CNS-NPC or PFSK-1 tumors. (Hi-iii) Representative bright field images of immunostain for 
(i) Hematoxylin & Eosin (H&E), (ii) Ki-67, (iii) Nestin in NPC and PFSK-1 cells injected subcutaneously into NOD-SCID mice; 40X mag. (I) 
The average BLI radiance (p/s/cm2) observed in NOD-SCID mice subcutaneously injected into the flank with NPC or PFSK-1 cells.
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Supplemental Figure 5. An in vivo Model for Studying CNS-PNET Tumors
(A) Average mRNA expression of NEFM, NESTIN, GFAP, PAX6, SOX2 in IMR-90 hIPS, IMR-90 NPC, DSY-0100 hIPS, DSY-0100 NPC, 
and PFSK-1 cells in vitro. (B,C,D) Representative immunofluorescence images of (B) IMR-90-derived NPCs (C) DSY-0100-derived NPCs 
(D) PFSK-1 cells in vitro stained for Nestin (Green), Synaptophysin (SYP) (Red), GFAP (Green), and PAX6 (Green), and DAPI (Blue). (E) 
Representative image quantification counts for CNS-NPC and PFSK-1 tumors immunostained for Ki-67 and GFAP.
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3.5 Results: Epigenetic and Molecular Analysis of CNS-PNETs

3.5.1 Epigenetic Analysis of CNS-PNETs
To analyze the DNA methylation and RNA expression profiles in CNS-NPCs and PFSK-1 cells, we 
isolated lesions from the surrounding tissue by enzymatic digestion and negative depletion of human 
cells. Isolated human cells were then processed for isolation of either genomic DNA or RNA. To 
exclude the possibility of contaminating mouse cells, we analyzed the RNA isolated from each lesion 
using mouse or human specific primers and RT-PCR and confirmed efficient selection of human cells, 
with negligible or no contamination from mouse cells (Supplemental figure 6A). 

We performed bisulfite conversion on genomic DNA isolated from CNS-NPC or PFSK-1 cells and 
performed DNA methylation profiling using the HumanMethylation 850k BeadChip methylation 
microarray (Infinium). We performed a systematic comparison of the DNA methylation profiles of CNS-
NPCs and PFSK-1 cells in vivo with the DNA methylation profiles of 323 primary CNS-PNET samples 
and 8 normal human brain reference samples208. First, principal component analysis of PFSK-1 cells 
and hIPS, NPCs in vitro, and CNS-NPCs shows the two models have markedly different methylation 
profiles (Supplemental figure 6B). Comparing the most differentially methylated probes (n=15,000) in 
primary patient samples, unsupervised clustering revealed that CNS-NPC tumors cluster most similarly 
to two CNS-PNET molecular subtypes: ependemyoma with RELA overexpression (EPN-REL) and a 
subset of CNS-PNETs with no classifiable molecular signature (CNS-PNET-not other specified (-NOS)) 
(Figure 6A), indicating similar methylation profiles to a subset of primary CNS-PNET patient samples. 
PFSK-1 cells clustered most similarly to CNS-PNET samples with the high grade glioma-IDH mutant 
(HGG-IDH) molecular subtype (Figure 6A). We confirm that the PFSK-1 cells do not have the IDH 
mutation, however a closer look at the methylation profiles reveals that both cohorts exhibit an overall 
hyper-methylation phenotype compared to other tumor subtypes types, indicating that they may not be 
systematically or functionally similar at the DNA methylation level. Interestingly, the hIPS and NPC in 
vitro samples clustered separately from the CNS-NPC and PFSK-1 cells in vivo, exhibiting more similar 
methylation profiles to normal human brain tissue (Figure 6A, Supplemental figure 6C). In addition, a 
progressive methylation phenotype is observed with respect to the NPC-derived tumors, with NPCs in 
vitro exhibiting the most similar methylation patters and IPS cells showing the least similar methylation 
patterns to CNS-NPCs in vivo (Supplemental figure 6B) It is important to note that our clustering method 
recapitulated similar trends in CNS-PNET patient sample clustering to those that were previously 
reported, with previously defined molecular sub-types clustering together (Figure 6A)23, 208. In addition, 
t-distributed Stochastic Neighbor Embedding (t-SNE) revealed consistent clustering patterns between 
the CNS-NPC samples and the EPN-RELA subtypes, however the PFSK-1 samples clustered separately 
from any one subtype, confirming that the hierarchical clustering association between HGG-IDH and 
PFSK-1 tumors may indeed only be driven by a hyper-methylation phenotype, and are not necessarily 
pathologically similar (Figure 6B). 

3.5.2 Molecular Analysis of CNS-PNETs
Previous reports of CNS-PNET primary samples have indicated that specific expression signatures 
may indicate cell of origin and have predictive potential for tumor behavior and disease prognosis136. 
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Specifically, tumors could be classified into one of three potential subtypes that show distinct molecular 
and behavioral characteristics: primitive neural-like, oligoneural-like, or mesenchymal-like tumors. 

Encouraged by the similarities between the CNS-NPC tumors and primary CNS-PNETs at the methylation 
level, we wondered if the CNS-NPCs may also show the same degree of similarity to primary patient 
samples at the expression level with regard to their cell of origin. To this end, we performed RNA 
sequencing analysis on CNS-NPC and PFSK-1 tumors. To compare the expression microarray data 
of CNS-PNET patient samples from (Sturm et al., 2016) (n=52)208 with the RNA sequencing data of 
CNS-NPCs and PFSK-1, we applied the afore-mentioned expression signatures derived in Picard et al., 
2012136 to the primary CNS-PNET patient sample cohort as well as our two CNS-PNET models: CNS-
NPC and PFSK-1. 

First, hierarchical clustering of primary CNS-PNET patient samples reveals that, on average, patient 
samples tend to up-regulate the expression of one of the three signatures (Figure 6C). However, with the 
exception of the CNS-PNET-ETMR molecular subtype, no other molecular subtype showed significant 
correlation to one particular expression signature, indicating that the cell of origin may not be driving 
DNA methylation patterning in these tumors. 

Hierarchical clustering of CNS-NPC and PFSK-1 tumors reveals markedly different expression 
patterning between the two models. CNS-NPC tumors exhibit a significant up-regulation of the 
oligo-neural expression signature (signature 2), most notably characterized by high expression of 
the oligodendrocyte transcription factors, OLIG1/2 (Figure 6D). Conversely, PFSK-1 tumors exhibit 
expression patterns most closely related to the mesenchymal signature, characterized by high expression 
of the mesenchymal markers, like the twist basic helix-loop-helix transcription factor 2 (TWST1) and 
snail family transcriptional repressor 1 (SNAI2) (signature 3) (Figure 6D). We validated these expression 
patterns at the mRNA level by RT-PCR. Indeed, CNS-NPC tumors exhibited increased expression of 
OLIG1/2 relative to human IPS cells (figure 6E and 6F), and more variable expression relative to an 
mRNA of healthy adult brain tissue (Figure 6H and 6I). By histological analysis of OLIG2, indeed 
there is some heterogeneity observed in the protein expression of the CNS-NPC tumors, both within 
and between samples, with approximately 40-60% of cells staining positive (Supplemental figure 6D, 
6E and 6F). In addition, CNS-NPC tumors were negative for the mesenchymal marker, TWST1 (Figure 
6G and 6J), and were negative for LIN28 protein expression (Supplemental figure 6D, 6E, and 6F). 
Conversely, PFSK-1 tumors exhibit low mRNA expression of OLIG1/2 (Figure 6H and 6I), and high 
mRNA expression of the mesenchymal marker, TWST1 (Figure 6G and 6J). In addition, PFSK-1 tumors 
had no OLIG2 expression and low LIN28 expression at the protein level (Supplemental Figure 6D, 6E, 
and 6F). In conclusion, through mRNA and protein expression analysis, we identified clear distinctions 
between our two models, indicating PFSK-1 and CNS-NPCs recapitulate two distinct subtypes of CNS-
PNET tumors.

In conducting a thorough assessment and characterization of the methylation, expression patterns of 
both CNS-NPC and PFSK-1 tumors, we conclude that these models represent two distinct subtypes of 
CNS-PNET tumors, which recapitulate key features of clinical pathology and molecular biology. 
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Figure 6. Analysis of DNA Methylation and RNA Expression in CNS-PNETs
(A) Hierarchical clustering of methylation patterns observed in primary CNS-PNET patient samples (n=323), normal brain (n=8), and PFSK-1 
(n=5) and CNS-NPC tumors in vivo (n=6) and hIPS and NPCs in vitro (n=2) of the 15,000 most variable probes. (B) T-distributed Stochastic 
Neighbor Embedding (t-SNE) of methylation patterns observed in primary CNS-PNET patient samples, normal brain, and PFSK-1 and CNS-
NPC tumors in vivo and in vitro considering the 15,000 most variable probes. (C) Expression array of three neural cell of origin expression 
signatures applied to primary CNS-PNET patient samples (n=52) (D) RNA sequencing expression analysis of three neural cell of origin 
expression signatures applied to PFSK-1 (n=5) and CNS-NPC tumors in vivo (n=6), and PFSK-1, hIPS and NPCs in vitro (n=2), and normal 
brain tissue (n=2). (E-G) OLIG1, OLIG2, and TWIST1 mRNA expression observed in CNS-NPC and PFSK-1 tumors relative to mRNA 
expression of normal adult brain, and normalized to HPRT mRNA expression. (H-J) OLIG1, OLIG2, and TWIST1 mRNA expression observed 
in CNS-NPC and PFSK-1 tumors relative to mRNA expression of IMR-90 human IPS cells, and normalized to HPRT mRNA expression.
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Supplemental Figure 6. Analysis of DNA Methylation and RNA Expression in CNS-PNETs
(A) Cycle quantification (Cq) of GAPDH mRNA expression observed in CNS-NPC and PFSK-1 tumors following tissue dissociation and 
human cell isolation. (B) Pricipal component analysis (PCA) of DNA methylation patterns observed in PFSK-1, IMR-90-hIPS and IMR-
90-NPCs in vitro, as well as PFSK-1 and IMR-90-derived CNS-NPCs in vivo. (C) Multidimensional scaling (MDS) of methylation patterns 
observed in hIPS, NPC in vitro, and PFSK-1 and CNS-NPC in vivo compared with primary CNS-PNET tumor subtypes: CNS-PNET-EPN, 
CNS-PNET-HGG, and Normal Brain tissue. (D) Representative histology images (10X and 40X magnification) of CNS-NPC and PFSK-1 
tumors stained with antibodies targeting OLIG2 and LIN28a/b. (E) Histology quantification  of percent (%) of cells  positive for OLIG2 and 
LIN28 expression observed in CNS-NPC and PFSK-1 tumors. (F) Representative image quantification counts for CNS-NPC and PFSK-1 
tumors stained for OLIG2 and LIN28.
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3.6 Results: Metabolic Characterization of CNS-NPC and PFSK-1 CNS-
PNET Tumors

3.6.1 Targeted Mass Spectrometry
Tumor cells exhibit metabolic transformation to support demands of increased proliferation, survival, 
and growth65. Previous studies have shown that tumors with molecular and histological heterogeneity 
can have different metabolic profiles associated to cell of origin, cell differentiation, and tumor 
aggressiveness. Given the limitations in diagnosing and monitoring response to treatment using MRI, 
we wondered if would be possible to exploit differential metabolic signaling to aid in CNS-PNET 
diagnosis using the CNS-NPC and PFSK-1 tumor models.

Glucose is the key source of energy in the human body and is the primary energy source in the brain. 
During glycolysis, glucose is oxidized and broken down to produce energy in the form of adenosine 
triphosphate (ATP). Tumors exhibit hyperactive glucose metabolism to fuel the increased energy 
demands required to maintain increased proliferation, manage rapid cell turnover, and promote cell 
survival. To provide a global view of metabolic signaling dependencies in the context of increased 
energy production needs in CNS-PNETs, we performed an unbiased analysis of glucose metabolism 
in CNS-NPC and PFSK-1 tumors ex vivo. Briefly, brain tissue was isolated from the tumor-bearing 
hemisphere and the matched contralateral tumor-free hemisphere in NOD-SCID mice intracranially 
injected with either PFSK-1 of neural progenitor cells (CNS-NPCs) (n=4 for each group). Protein was 
subsequently purified and extracted for downstream analysis of glucose metabolism using hydrophilic 
interaction liquid chromatography coupled to tandem mass spectrometry (HILIC - MS/MS) in both 
positive and negative ionization modes as previously described186, 198 (Figure 7A). Raw LC-MS data was 
processed for signal intensity drift correction and noise filtering, where peaks detected at >30% were 
retained for further analysis. 

In an unbiased analysis of glucose metabolism, each tumor exhibited a number of altered metabolites 
compared to the matched normal contralateral brain tissue (Figure 7B). In a consensus list of 96 
metabolites measured by LC-MS, PFSK-1 tumors exhibited significant changes in 49 metabolites 
(p<0.05) (49/96; 51%), and CNS-NPC tumors exhibited significant changes in 43 metabolites (43/96; 
45%) (Table 4.4, and Table 4.5). Surprisingly, from the list of significantly altered metabolites, 34 
metabolites were shared between the two groups. We conducted a metabolite pathway enrichment 
analysis of the most significantly altered metabolites (p<0.05) in PFSK-1 and CNS-NPC tumors 
compared with the matched contralateral healthy tissue (Figure 7C and 7D). We identified a number 
of alterations in cancer-associated pathways, including nucleotide biosynthesis, glutamate metabolism, 
and CNS-related metabolic processes. 

3.6.1.1 Nucleotide Biosynthesis
Both PFSK-1 and CNS-NPC tumors showed the highest enrichment in purine metabolism (CNS-NPC 
p= 1.22e-5, FDR= 0.00119; PFSK-1 p= 0.00147 FDR= 0.17), as well as other pathways involved in 
nucleotide biosynthesis, including pyrimidine metabolism and metabolism of nucleotide sugars. 39.5% 
(17/43) and 26.5% (13/49) of the significantly altered metabolites measured in CNS-NPCs and PFSK-

48



1 tumors, respectively, are directly involved in nucleotide biosynthetic processes. Indeed, many of the 
critical metabolic intermediates of the purine and pyrimidine pathways were deregulated in both tumor 
models, including adenine, guanine, uridine, and cytidine, among others (Figure 7E; Table 4.4 and 
Table 4.5). 

Additional alterations were detected in metabolites that are linked to the increased energetic requirements 
of tumor cells to support nucleic acid, amino acid, protein biosynthesis, and subsequent cell growth. 
Aspartate and glycine can contribute to such anabolic processes. First, aspartate acts as a nitrogen donor 
in the synthesis of inosine, the precursor of purine bases. CNS-NPC and PFSK-1 tumors both exhibited 
significant decreases in aspartate (p=0.04 and p=0.012, respectively) (Figure 7E). Inosine was also 
significantly decreased in CNS-NPC tumors (p=0.04). A trend in decreasing levels of inosine was also 
observed in PFSK-1 tumors, although not significant (p=0.15) (Table 4.4 and Table 4.5). Glycine has 
been previously linked to nucleotide biosynthesis and DNA methylation and is frequently upregulated 
in cancer. Glycine is increased in both tumor models (p=0.06 in CNS-NPCs, and p=0.0002 in PFSK-1) 
(Figure 7E).

3.6.1.2 Glutatmate Metabolism and CNS-Neuraltransmitters
The second most altered metabolic pathway in both PFSK-1 and CNS-NPC tumors is glutamate 
metabolism. Glutamate metabolism plays a critical role in the central nervous system, synthesizing 
the excitatory neurotransmitter, N-acetyl-L-aspartyl-L-glutamate, and the inhibitory neuro-transmitter, 
γ-amino butyric acid (GABA)193. While glutamate was not detected in PFSK-1 tumors, glutamate levels 
were significantly decreased in CNS-NPC tumors (p=0.035) (Table 4.4). Interestingly, among other 
glutamate related metabolites, GABA was also consistently decreased in both CNS-NPCs and PFSK-1 
tumors (Figure 7F), consistent with previous observations in neuroblastoma and glioma tumors37. 

3.6.1.3 Glycolysis versus Oxidative Phosphorylation 
One hallmark of cancer cells is the up-regulation of metabolic processes to serve the energy requirements 
for high cellular proliferation and cell turnover65. Many, if not all, cancer cells exhibit altered glucose 
metabolism, where glucose is broken down to produce glucose-6-phosphate, which can be further 
metabolized to produce pyruvate or can be processed through the pentose phosphate pathway (PPP). 
Pyruvate supplies energy to the cell either by lactic acid fermentation (aerobic glycolysis) or by entering 
the mitochondria to begin the citric acid (TCA) cycle. To this end, we wondered which pathways 
CNS-NPC and PFSK-1 tumors use as their primary source of energy. For each tumor, the endogenous 
metabolite concentrations are compared to the matched contralateral healthy brain region within the 
same sample. All results are compiled into one illustrated schematic (Figure 8).

Both CNS-NPC and PFSK-1 tumors exhibited alterations in the metabolites involved in the initial steps 
of glycolysis, specifically the breakdown of glucose to produce pyruvate. Globally, both CNS-NPC and 
PFSK-1 tumors exhibit an increase in glycolysis-associated metabolites, including 2,3phopho-glycerate 
and phosphoenol-pyruvate. Next, while both tumors exhibited an increase in phosphoenol-pyruvate, 
the precursor of pyruvate, PFSK-1 tumors exhibited a significant increase in lactate (p=0.01), but was 
unchanged in CNS-NPC tumors. Pyruvate can be converted into lactate via lactate dehydrogenase. 
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Increased levels of lactate are thought to be a direct result of increased aerobic glycolysis in tumor 
cells73. An increase in lactate indicates that PFSK-1 tumors may use aerobic glycolysis for energy 
production, while CNS-NPC tumors do not. 

Alternatively, pyruvate can be transported to the mitochondria to fuel the TCA cycle, where pyruvate 
is converted to acetyl-CoA, a direct precursor to the TCA cycle. Glutamate and aspartate are also 
precursors of the TCA cycle, where glutamate is converted to alpha-keto glutarate, a key intermediate 
in the TCA cycle. Aspartate serves as an electron transporter in the mitochondria to feed the TCA 
cycle (known as the Malate-Aspartate shuttle), where malate and its intermediate, oxaloacetate, are 
also key intermediates in the TCA cycle. Interestingly, acetyl-CoA, glutamate, and aspartate were all 
significantly decreased in CNS-NPC tumors, however, no significant alterations were observed in the 
metabolic intermediates of the TCA cycle. 

Finally, glucose-6-phosphate can also be converted to ribose-5-phosphate (R5P) to be used in the 
synthesis of nucleotides and nucleic acids. Interestingly, CNS-NPC tumors exhibited a significant 
decrease in R5P, while PFSK-1 tumors exhibited a significant increase in R5P. These results indicate 
that there may be some reliance on PPP for nucleotide biosynthesis in PFSK-1 cells, but not CNS-NPC 
cells.
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Figure 7. Ex vivo analysis of Glucose Metabolism 
(A) Schematic of LC-MS procedure, concentration of metabolites are calculated by the abundance of total ion 
counts. (B) Hierarchical clustering of the Log2FC of all metabolites measured in both CNS-NPC and PFSK-1 
tumors compared with the matched contralateral healthy brain tissue. (C) Metabolic pathway enrichment analysis 
of significantly altered metabolites in CNS-NPC tumors (p<0.05). (D) Metabolic pathway enrichment analysis of 
significantly altered metabolites in PFSK-1 tumors (p<0.05). (E) Log2FC of metabolites involved in nucleotide 
biosynthesis pathways (F) Log2FC of metabolites involved in glutamate metabolism. Log2FC values were 
calculated relative to the matched contralateral healthy tissue.
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Figure 8. Glycolysis as measure in CNS-NPC and PFSK-1 Tumors
Schematic of glucose metabolism and metabolic alterations observed in CNS-NPC and PFSK-1 tumors compared 
to the matched contralateral normal brain tissue. Significantly high metabolite concentrations in either PFSK-1 or 
CNS-NPC tumors are highlighted in green. Significantly low metabolite concentrations in either PFSK-1 or CNS-
NPC tumors are highlighted in red. Unchanging metabolite concentrations are highlighted in yellow. Metabolites 
not measured using LC/MS are not highlighted.
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3.7 Results: In vivo metabolic analysis of CNS-NPC and PFSK-1 Tumors

Due to the high number of metabolic alterations observed by LC-MS and given the limitations in 
diagnosis and monitoring response to treatment implicit to the location of CNS-PNETs, as well as other 
CNS tumors, we wondered if we could exploit some of the unique metabolic signaling dependencies to 
identify potential metabolic biomarkers of CNS-PNETS for non-invasive imaging approaches. While 
some metabolic imaging platforms, like FDG-PET, are not feasible methods for pediatric brain imaging, 
two techniques have emerged in recent years as reliable methods for tumor detection in the brain: 1H 
Nuclear Magnetic Resonance and 13C Hyperpolarized Magnetic Resonance. 

3.7.1 1H Nuclear Magnetic Resonance
MRI and 1H neurochemical measurements were acquired in mice bearing CNS-NPC tumors (n=7), 
PFSK-1 tumors (n=10), as well as mice bearing no tumors, but were stereotaxically injected with buffer 
(termed: sham control) (n=5) (full spectral profiles of individual measurements are shown in Table 4.6, 
4.7, 4.8, and 4.9). Sham control experiments were performed to exclude the possibility of blood brain 
barrier (BBB) leakage and subsequent aberrant metabolic detection caused by the stereotaxic procedure 
itself.

First, tumors were detected in vivo using magnetic resonance imaging (MRI), which allows for precision 
mapping of tumor location and size approximation of each mouse evaluated (Supplemental figure 9A 
and 9F). Following tumor detection, T2W images guide the placement of the 1H-quadrature surface coil, 
allowing acquisition of two 2x2x2 mm voxels, one located in tumor area and the other located in the 
contralateral brain hemisphere. Neurochemical profiles were acquired for each voxel, each representing 
the endogenous metabolites located in the tumor and the contralateral normal brain tissue (Figure 9A). 

Analysis of the neurochemical profiles of each tumor revealed a number of alterations in endogenous 
metabolite concentrations. Of the 18 different metabolites measured, five metabolites were significantly 
altered in CNS-NPC tumors compared to the matched contralateral tissue, and four metabolites were 
significantly altered compared to the sham control tumors (Table 4.6 and 4.9). For PFSK-1 tumors, 
10 metabolites were significantly altered compared to the matched contralateral tissue, and eight 
metabolites were significantly altered compared to the sham control tumors (p<0.05) (Table 4.7, 4.8 
and 4.9). Measurements of high molecular weight macromolecules (MM) were applied to each image 
acquisition for baseline peak detection correction (MM-BS)72. Importantly, in some brain tumors, MM 
concentrations can be elevated due to high lipid droplet content128, however MM concentrations in our 
datasets were relatively consistent across all acquisition fields, with an average concentration of 1.943 
(+/-stdev=0.0409) (Supplemental figure 9C). For all individual metabolites analyzed, the standard error 
of the peak measured was taken into account. Any outlier values with a standard error of 30% or higher 
indicates unreliable peak detection, and was removed from further analysis. 

Of the significantly altered metabolites, γ-amino butyric acid (GABA) and N-acetyl aspartate (NAA), two 
important neural transmitters in the central nervous system, were significantly decreased in CNS-NPC 
and PFSK-1 tumors (Figure 9B and 9C). Measurements of both NAA and N-acetyl-aspartyl-glutamate 
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(NAAG) were acquired, where NAA was significantly decreased and NAAG was significantly increased 
in both tumor models (Figure 9C). NAAG is synthesized from glutamate and NAA, indicating that the 
loss of NAA may, at least in some part, be attributed to an increase in NAAG biosynthesis. Nonetheless, 
the total (t)NAA levels (NAA+NAAG) were significantly decreased in both models, indicating an 
overall loss in NAA-dependent glial-specific neurotransmission. In four out of the 10 PFSK-1 tumors 
measured, the GABA peak was close to the detection limit of the technology. Nonetheless, a closer 
look at each individual tumor sample showed a high degree of consistency across all PFSK-1 tumors. 
In addition, GABA peaks were reliably detected in all other conditions measured, indicating this is 
representative of the true biology of the tumor and not due to technical failures of the acquisition itself. 
Furthermore, the decrease in GABA observed in 1H MRS is consistent with observations in the LC-MS 
analysis (Figure 7E). Loss of NAA and GABA metabolites indicate loss of normal neuronal density. 
Decreases in both GABA and NAA are consistent with previous reports in primary pediatric and adult 
brain tumors, and have been proposed as biomarkers for detecting brain tumors in vivo7, 37. 

Glycine is important for the biosynthesis of amino acids in the cell. Increasing levels of glycine have 
been found to be correlated poor prognosis in pediatric brain tumors6, and has been linked to aberrant 
DNA methylation patterning in cancer76. Indeed, both CNS-NPC and PFSK-1 tumors exhibited increases 
in glycine concentrations (Figure 9D), showing consistencies with the metabolite changes observed 
in the LC-MS analysis (Figure 7I). In both models, the concentration of endogenous glycine varied 
considerably between each mouse measurement, but cannot solely be accounted for by the volume of 
the tumor (Supplemental figure 9F).

Both tumors also exhibited consistent and significant increases in choline concentrations, with both 
phospho- and glycerophospho-choline contributing to the total choline (tCho) abundance (Figure 9E). 
This observation is also consistent with previous observations in primary patients, citing its important 
contribution to the synthesis of new phospholipids, indicating high cellular density and high cellular 
turnover7, 63. Taurine was also significantly decreased in PFSK-1 tumors (p=0.0027), but not CNS-
NPC tumors, although there appears to be a trending decrease in this cohort, even if not significant 
(p=0.1659) (Figure 9F).

In addition to consistencies observed between the two tumor models, there were two metabolites that 
were consistently different. As observed in the LC-MS analysis, PFSK-1 tumors showed a significant 
increase in lactate (p=0.0072), while CNS-NPC tumors showed a significant decrease in lactate 
(p=0.0298) (Figure 9G). Conversely, CNS-NPC tumors showed a notable increase in myo-inositol, 
although not reaching significance (p=0.0609). PFSK-1 tumors showed a significant decrease in myo-
inositol levels (p=0.0221) (Figure 4H). In a closer look at the variability observed in the myo-inositol 
levels in individual CNS-NPC tumors, the concentration of myo-inositol is highly correlated to tumor 
size (R2=0.8371) (Supplemental figure 9G). While both metabolites have been strongly linked to 
cancer metabolic phenotypes, these differences may indicate different metabolic signaling dependences 
associated with varying stages of tumor aggressiveness. 
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Analysis of the BBB in each tumor using a gadolinium-contrast agent showed that PFSK-1 tumors 
consistently disrupted the integrity of the BBB, while the BBB of mice bearing CNS-NPC tumors 
remained intact (Supplemental figure 9B). Analysis of the sham control also shows an intact BBB, 
indicating that the disruption observed in PFSK-1 mice was not due to the injection itself, but is inherent 
to the biology of the tumor. Blood brain barrier disruption can lead to dysregulation of molecules 
flowing in and out of the brain and may, in part, contribute to some of the metabolic alterations observed 
in these tumors, particularly myo-inositol and taurine, which both function in osmotic regulation.

3.7.2 13C Hyperpolarized Magnetic Resonance
Due to the alterations observed in lactate using LC/MS and 1H MRS, we employed 13C hyperpolarized 
magnetic resonance (HMR) imaging using thermally polarized 13C-pyruvate to measure the enzymatic 
conversion of pyruvate and lactate in vivo. 13C-pyruvate HMR measurements were acquired in CNS-
NPC mice (n=4) and PFSK-1 mice (n=3), with separate acquisitions for the tumor bearing hemisphere 
and the healthy contralateral hemisphere of the brain (Figure 9I). Using 13C-pyruvate HMR, we identified 
a high shift in the conversion of pyruvate to lactate in PFSK-1 tumors, that were not observed in the 
matched normal contralateral hemisphere, or in the CNS-NPC animals (Figure 9J). Indeed, CNS-NPC 
tumors on average exhibited a reduction in the enzymatic conversion from pyruvate to lactate. These 
results confirm that the increased lactate concentration measured in PFSK-1 tumors using LC/MS and 
1H MRS are directly related to the enzymatic activity of these substrates and directly contribute to the 
final step of aerobic glycolysis. In summary, based on 13C HMR experiments, combined with 1H NMR 
and mass spectrometry analysis, we conclude the PFSK-1 tumors rely on aerobic glycolysis as a main 
energy source for fuel in these tumors, while CNS-NPC tumors rely on alternatuve mechanisms (i.e. 
oxidative phosphorylation) for energy production.
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Figure 9. In vivo Metabolic Characterization of CNS-NPC and PFSK-1 Tumors
For all individual metabolites: CNS-NPC tumor measurements are in orange, PFSK-1 tumor measurements are 
in blue, and all control measurements are in black. (A) Schematic of 1H nuclear magnetic resonance imaging 
(NMR) acquisition. (B-H) Individual metabolite measurements using 1H NMR (n= 7 for CNS-NPC tumors and 
contralateral hemisphere; n= 10 for PFSK-1 tumors and contralateral hemisphere; n=4 for sham control injection) 
(I) Schematic of 13C hyperpolarized magnetic resonance (HMR) imaging acquisition. (J) Ratio of pyruvate to 
lactate peak intensity measured using 13C HMR (n= 4 for CNS-NPC tumors and contralateral hemisphere; n= 3 
for PFSK-1 tumors and contralateral hemisphere).
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Supplemental Figure 9. In vivo Metabolic Characterization of CNS-NPC and PFSK-1 Tumors
(A) Representative MRI images of the mouse brain bearing PFSK-1 and CNS-NPC tumors. (B) Representative 
T2W images + GD-contrast agent for blood brain barrier integrity assessment. (C) Measurement of macromolecules  
using 1H nuclear magnetic resonance (NMR) (n=7 for CNS-NPC tumors and contralateral hemisphere; n=10 for 
PFSK-1 tumors and contralateral hemisphere; n=4 for Sham control injection). (D) Representative 1H chemical 
shifts observed in the mouse brain bearing either CNS-NPC or PFSK-1 tumors. (E)  Representative 13C chemical 
shifts observed in the mouse brain bearing either CNS-NPC or PFSK-1 tumors. (F) Tumor volume of individual 
CNS-NPC and PFSK-1 mice. (G) Tumor volume versus myo-inositol conc. observed in CNS-NPC tumors. 
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3.8 Discussion

In this chapter, we explored the epigenetic, transcriptional, and metabolic signaling dependencies of 
CNS-PNETs using two models of CNS-PNET pathogenesis. In particular, we developed one model, the 
CNS-NPC model, based on neural progenitor cells derived from human induced pluripotent stem cells 
isolated and engrafted into immune-comprimised NOD-SCID mice. Using the CNS-NPC model, we 
demonstrate the ability to generate CNS-PNET tumors derived from a neural-progenitor oligodendrocyte 
cell of origin. The CNS-NPC model recapitulates many of the pathological, molecular, and metabolic 
features of a subset of CNS-PNET tumors. In parallel, we use a patient-derived cell line, PFSK-1, as a 
second model of CNS-PNETs, that also recapitulates features of CNS-PNET tumors, although distinct 
from the CNS-NPC model. PFSK-1 tumors are likely derived from a more differentiated neuronal cell 
of origin, and thus exhibit the pathological, molecular, and metabolic features of a more differentiated 
and aggressive subtype of CNS-PNET tumors. 

3.8.1 Development and characterization of two CNS-PNET models
Pediatric primitive neural ectodermal tumors are a rare but aggressive subtype of central nervous system 
tumor that originate from poorly differentiated or undifferentiated neuro-epithelial cells and often form 
in the cerebral cortex of the brain. CNS-PNETs are difficult to diagnose and treat due to high molecular 
heterogeneity and a paucity of defining pathological and genetic features that distinguish this disease. 
Furthermore, with the exception of one patient derived cell line (PFSK-1), few in vivo models exist used 
to study the unique biology and molecular drivers of these tumors. 

In our study, we present a novel in vivo model of CNS-PNETs, whereby tumors are generated from 
neural progenitor cells engrafted into immune compromised (NOD-SCID) mice. Alternative to other 
stem cell-based models that have been previously presented118, our model is derived from human induced 
pluripotent stem cells, which allows for a more accurate mimicry of human biology and disease. We 
demonstrate that upon engraftment of NPCs, tumor lesions are robustly formed in approximately 2-3 
months following stereotaxic injection, termed: CNS-NPC tumors. Histological analyses of CNS-NPC 
tumors reveal remarkable similarities to primary CNS-PNET tumors, with high expression of neural 
development and neural stem cell markers, including the neural development type VI intermediate 
filament protein, NESTIN, and the glial fibrillary acidic protein, GFAP. In addition, CNS-NPC tumor 
cells exhibit moderate proliferation (40-60%), as measured by Ki-67, and no apoptosis, as measured by 
the pro-apoptotic marker, CASPASE-III (C3). We demonstrate that the CNS-NPC model is primed by 
its environment, where subcutaneous engraftment into the flank leads to de-differentiated lesions with 
low cellular proliferation. 

In addition, we analyzed PFSK-1 tumor growth in vivo. Contrary to the CNS-NPC tumors, PFSK-
1 tumors exhibit highly aggressive behavior, with a three week experimental end-point following 
engraftment of 10,000 cells. In addition to aggressive growth behavior, PFSK-1 tumors have a high 
proliferative index (80-100% of cells), and large areas of tumor necrosis. In addition, PFSK-1 tumors 
had low expression of NESTIN, and do not express GFAP, indicating these tumors may originate from 
a more differentiated cell state. 
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Next, CNS-NPCs and PFSK-1 were analyzed at the molecular level through DNA methylation profiling 
and RNA expression analysis. Comparisons of the DNA methylation profiles and RNA expression 
profiles with primary CNS-PNET patients revealed that each tumor model exhibits characteristics 
of distinct subtypes of primary CNS-PNET tumors. At the DNA methylation level, CNS-NPCs 
share similarities with two molecular subtypes of CNS-PNETS: EPN-RELA, and CNS-PNET-NOS. 
Furthermore, t-distributed Stochastic Neighbor Embedding (t-SNE) further validated the similarities 
between CNS-NPC tumors and the EPN-RELA and CNS-NOS tumor subtypes. Interestingly, the 
methylation distribution observed by the t-SNE analysis shows a progressive methylation pattern that 
correlates with different stages of cell differentiation. The most notable changes in DNA methylation 
patterning are observed upon engraftment, whereby the parental IPS, Rosette, and neural progenitor 
cells in vitro retain DNA methylation features associated to normal brain tissue. Remarkably, however, 
CNS-NPCs lose methylation patterns associated to normal brain tissue, and gain tumor-associated 
methylation patterns, pinpointing a unique transformation that occurs in the brain microenvironment. 
The need for brain-specific priming in the CNS-NPC model is further evidenced by the inability to 
generate CNS-PNET tumors from NPCs subcutaneously injected into the flank, where proliferation was 
impaired and neural development markers were no longer retained. 

At the DNA methylation level, PFSK-1 tumors exhibit a hyper-methylation phenotype. By unsupervised 
hierarchical clustering, PFSK-1 tumors showed some similarity to the HGG-IDH molecular subtype, 
but a closer look at the t-distributed Stochastic Neighbor Embedding (t-SNE) of these tumors, PFSK-1 
tumors cluster separately from HGG-IDH. In addition, PFSK-1 cells do not harbor the IDH mutation. 
Taken together, it is likely that the similarities observed by unsupervised hierarchical clustering are 
driven by a more generalized hyper-methylation profile, rather than distinct functional methylation 
events. 

RNA expression analysis of early lineage and neural differentiation signatures established by Picard et 
al., 2012, reveals that the DNA methylation subtypes generally do not correlate to the cell of origin in 
CNS-PNET patient samples, with the exception of the CNS-PNET-ETMR subtype. CNS-PNET-ETMR 
tumors clustered exclusively together, exhibiting a high enrichment of genes relating to embryonic 
stem cells (i.e. the primitive neural signature, #1) compared to other subtypes. ETMR tumors have a 
hallmark C19MC amplification, which are a cluster of miRNAs that control stemness programs during 
development and are generally only expressed in undifferentiated or germinal tissues. C19M targets 
LIN28a, and C19M amplifications directly up-regulate LIN28a to promote tumorigenesis104, 162. With 
regard to the remaining CNS-PNET patient samples, some modest patterning arises with regard to the 
subtype and the expression of one of the three signatures. Interestingly, a large subset of HGG and 
unclassifiable CNS-PNET subtypes exhibit an up-regulation of the oligoneural signature (signature 2). 
While another large portion of unclassifiable CNS-PNETs exhibit an up-regulation of the mesenchymal 
signature (signature #3). 

By applying the same expression signatures to the CNS-NPC and PFSK-1 tumors, we identified 
distinct expression signatures associated to each of the two models. CNS-NPC tumors exhibit an up-
regulation of the oligoneural signature (signature #2), and PFSK-1 tumors exhibit an up-regulation 
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of the mesenchymal signature (signature 3). Interestingly, at the DNA methylation level, CNS-NPC 
tumors exhibited similar features to a subset of the HGG and unclassifiable CNS-PNET subtypes. The 
similarities observed at the DNA methylation level between the CNS-PNET model and patient samples 
are also observed at the expression level, with both subtypes exhibiting an oligoneural signature, most 
notably characterized by an increase in the oligoneural development markers: OLIG1/2, BCAN, and 
SOX8. Further analysis of CNS-NPC tumors confirmed the increased expression of OLIG1/2 by analysis 
of mRNA and protein expression, with 40-50% of tumor cells exhibiting elevated OLIG2 expression at 
the protein level.  

Patients with an mesenchymal signature have a high incidence of dissemination and metastasis and 
exhibit alterations in PTEN and TGF-β signaling136. Interestingly, PTEN is a direct target of p53, 
which is mutated in PFSK-1 cells. Furthermore, it has been shown that mutations in p53 attenuate 
TGF-β signaling to promote oncogenic programs35, 81, 83. Aberrant TGF-β signaling has been shown to 
regulate tissue interactions212 and has been linked to tumor cell metastasis130. PFSK-1 tumors exhibit 
rapid proliferation and remarkable tumor mass expansion within the brain.  While we did not observe 
spinal cord metastases in these tumors, the rapid expansion of tumor growth in this particular model 
(~three weeks) may not lend enough time to observe metastatic spreading and seeding. Further analysis 
of PFSK-1 tumors confirmed the increased expression of TWST1 by mRNA expression analysis, and 
were negative for LIN28 and OLIG2, signature 1 and 2 markers, respectively. While the cell of origin 
of signature 3 tumors is less clear, given the reduction in expression of genes associated with neural 
development, it is possible that these tumors arise at a later time during development. This is further 
evidenced by the age-dependent distribution of the three molecular sub-groups observed in patients, 
with signature 3 tumors developing more frequently in older children136. PFSK-1 tumors were isolated 
from a patient 10 years of age, which is indeed older than the average age of patients at tumor diagnosis 
(~5-7 years)42.

In summary, we developed and characterized a novel in vivo model of CNS-PNET pathogenesis based 
on human neural progenitor cells engrafted into NOD-SCID immune-compromised mice. The CNS-
NPC model was developed on the premise that CNS-PNET tumors arise from aberrations that occur 
during neural development. By isolating and transplanting neural progenitor cells at a precise stage 
of neuronal differentiation, we are able to mimic these neural development abnormalities in an vivo 
setting, thereby giving rise to malignant CNS-tumors.  Previous studies have shown that a subset of 
CNS-PNET primary tumors exhibit oligoneural expression signatures, indicating that these tumors may 
arise from an oligoneural cell of origin. In this study, we demonstrate that oligoneural progenitor cells 
can indeed give rise to CNS tumors that systematically exhibit features of oligoneural-like CNS-PNETs. 
The generation of these tumors are not linked to any driving genetic alterations, but are instead driven 
by the brain micro-environment and epigenetic alterations, specifically DNA methylation. 

In addition, by characterizing the CNS-PNET patient-derived cell line, PFSK-1, we performed 
systematic comparisons of the physiological and molecular features unique to each tumor type. Analysis 
of both models reveals remarkable heterogeneity between the two tumors at the DNA methylation, RNA 
expression, and protein level that contribute to the diverse physiological phenotypes observed. CNS-
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NPC tumors exhibit a slow onset of tumor development and growth, whereas PFSK-1 tumors are highly 
aggressive. CNS-NPC tumors exhibit expression patterns linked to early neural development, while 
PFSK-1 tumors exhibit expression patterns linked to a mesenchymal phenotype and lack expression 
of neural progenitor and stem cell markers. Finally, CNS-NPC and PFSK-1 tumors exhibit aberrant 
DNA methylation profiles that correlate to distinct subtypes of CNS tumors. In conclusion, while 
different from one another, each tumor model captures distinct features, each of which are relevant 
to CNS-PNET pathogenesis. Furthermore, given the remarkable heterogeneity observed in primary 
CNS-PNETs, future studies involving both the CNS-NPC and the PFSK-1 models will provide a more 
complete outlook in understanding the complexities underlying this disease. 

3.8.2 LC-MS ex vivo Analysis of Glucose Metabolism
To determine metabolic alterations associated to CNS-PNET pathogenesis, we performed an unbiased 
analysis of glucose metabolism in CNS-NPC and PFSK-1 tumors. Metabolite concentrations were 
measured as the total abundance of ion counts present in tissue samples extracted from tumors and 
the matched contralateral normal healthy brain using liquid chromatography coupled to tandem mass 
spectrometry. An unbiased analysis of glucose metabolism revealed remarkable similarities in the 
alterations observed in various metabolic pathways. Specifically, both CNS-NPC and PFSK-1 tumors 
exhibited alterations in pathways contributing (both directly and indirectly) to nucleotide biosynthesis, 
CNS neurotransmitters, and DNA methylation. Importantly, alterations in the metabolic processes 
relating to each of these pathways have been previously linked to cancer and cancer metabolism, 
particularly in adult and pediatric brain tumors.

PFSK-1 and CNS-NPC Tumors Exhibit Increased Glycolytic Activity
Both CNS-NPC and PFSK-1 tumors exhibited significant increases in the metabolic intermediates 
involved in the breakdown of glucose, including an increase in 2,3-phosphoglycerate, and phosphoenole 
pyruvate, the precursor to pyruvate. Increased glucose metabolism to fuel the increased energetic 
requirements required for rapid cellular proliferation and cell turnover is a hallmark of cancer. The 
increased concentrations of metabolic intermediates involved in glucose metabolism indicates that both 
CNS-NPC and PFSK-1 tumors retain this hallmark. 

Glycolysis in PFSK-1 tumors 
Analysis of all metabolites related to aerobic glycolysis, oxidative phosphorylation, and pentose 
phosphate pathway (PPP) indicates that PFSK-1 tumors likely rely heavily on aerobic glycolysis for 
energy production with some activity through PPP. This hypothesis is driven by the fact that PFSK-1 
tumors showed significantly high levels in lactate compared to normal tissue. While PFSK-1 tumors 
showed some alterations in metabolic intermediates of the TCA cycle, many of these metabolites were 
not detectable using LC/MS. For the few metabolites that were detected, there did not seem to be any 
consistent alterations to metabolites relating involved in mitochondria-driven oxidative phosphorylation. 
In addition to aerobic glycolysis, PFSK-1 tumors exhibited an increase in ribose-5-phosphate, a key 
metabolic intermediate in the PPP pathway, indicating that PFSK-1 tumors may have some reliance on 
on this pathway for energy production as well. 
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Glycolysis in CNS-NPC tumors
While there were signifcant alterations observed in early glycolytic intermediates, interestingly CNS-
NPC tumors exhibited no consistent alterations in any one of the three pathways analyzed. Specifically, 
CNS-NPC tumors exhibited no changes in ribose-5-phosphate, indicating limited use of the PPP 
pathway in this context. In addition, while phosphoenol-pyruvate, the precursor of pyruvate, was 
significantly increased, Acetyl-CoA and lactate, the two downstream metabolites of pyruvate relating 
to oxidative phosphorylation and aerobic glycolysis, respectively, were decreased in CNS-NPC tumors. 
Furthermore, the metabolic precursors of the TCA cycle, aspartate and glutamate, were also significantly 
decreased in CNS-NPCs, where a decrease in the metabolites feeding into the TCA cycle may indicate 
high utilization to feed the TCA cycle. However, while no significant alterations were observed TCA 
cycle intermediates in CNS-NPC tumors compared to the matched contralateral healthy tissue, more 
TCA-associated metabolites were detectable in CNS-NPC tumors that were not detectable in PFSK-1 
tumors. 

One critical point is that normal neural tissue was used as a baseline comparison for all metabolites 
and metabolic pathway analyses. However, it is known that normal neuronal cells sustain a high 
rate of oxidative phosphorylation to maintain the high energy requirements in the brain, consuming 
approximately 20% of the circulating glucose in the body221. Tumors that rely more heavily on aerobic 
glycolysis for energy production will have more abundant readout in this particular analysis because 
neurons don’t typically generate lactate for energy production. However, if neurons rely heavily on 
oxidative phosphorylation for energy production, then the baseline measurement used to compare the 
reliance on one particular pathway versus another is inherently flawed. Nonetheless, tumor cells that 
rely on oxidative phosphorylation in the brain still typically exhibit observable changes to metabolites 
relating to this pathway, so this cannot completely account for the discrepancy. 

One additional caveat is presented in the methodology used to extract the tumor tissues. It is likely that 
the extracted tumor tissues also contain contaminating normal tissue from the surrounding area, leading 
to an under-sampling of tumor cells in this analysis. As PFSK-1 tumors tend to be, on average, larger 
than the CNS-NPC tumors, it is likely that there is more contaminating normal tissue in the CNS-NPC 
tumors. In summary, while it is not possible to conclude reliance on any once single pathway in CNS-
NPC tumors from this analysis, there are some indications that CNS-NPC tumors utilize mitochondrial-
driven oxidative phosphorylation for energy production.

Taken together, in an unbiased analyses of glucose metabolism, we detected a number of metabolic 
alterations involved in multiple different pathways and cellular processes in both CNS-NPC and PFSK-
1 tumors. Many of these alterations are linked to tumor-associated functions, including nucleotide and 
amino acid biosynthesis relating to cellular proliferation and cellular turnover, as well as neural-specific 
programming and DNA methylation. 

3.8.3 In vivo Metabolic Analysis of PFSK-1 and CNS-NPC Tumors
Using 1H NMR, we further interrogated these metabolic alterations in CNS-PNETs and confirmed a 
number of alterations associated to tumor metabolism, including alterations metabolites associated to 
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neural-specific signaling, including γ-amino butyrate (GABA), N-acetylaspartate (NAA), and taurine. 
Importantly, low concentrations of these three neural metabolites have previously been observed that 
neuroblastoma, glioma, and meningioma cells131, and other tumor subtypes54, 55. In addition, alterations 
were observed in metabolites associated to nucleotide, amino acid and phospholipid biosynthesis, 
namely glycine and choline. Specifically, up-regulation of glycine has been reported in many tumors, 
including pediatric brain tumors6, and has also been linked to aberrant DNA methylation in cancer76. 
Choline is a major source of the methyl groups used in the synthesis of phosphatidylcholine and 
sphingomyelin, two important phospholipids for the generation of the cell membrane. Indeed, choline 
has been positively correlated with glioma tumor cell density, and has been proposed as a diagnostic 
marker for brain tumors as well as a for pharmacodynamic treatment response10, 63, 187. 

In addition to the consistencies observed between the two tumor models, some distinctions in metabolic 
signaling were also made. Namely, PFSK-1 tumors showed a remarkable increase in the endogenous 
concentration of lactate, whereas lactate was decreased in CNS-NPC tumors. Indeed, using 13C HMR-
DNP imaging, the metabolic conversion of pyruvate to lactate was enhanced in PFSK-1 tumors, but 
was unchanged in CNS-NPC tumors. These results confirm a reliance on aerobic glycolysis for energy 
production in PFSK-1 tumors, which is not the case in CNS-NPC tumors. 

Finally, CNS-NPC tumors exhibited a strong upregulation of myo-inositol, that was not observed in 
PFSK-1 tumors. Myo-inositol functions as an osmoregulator in the brain. Increases in myo-inositol 
have previously been linked to low-grade brain tumors, like low grade gliomas and astrocytomas, but 
is decreased in high grade gliomas and glioblastoma, which tent to exhibit increases in lactate164. The 
relative flux between myo-inositol pinpoints an attractive marker associated to tumor aggressiveness. 
CNS-NPC tumors can be categorized as a lower grade tumor compared to PFSK-1 tumors given their 
overall lower proliferative index (50% versus 90%, respectively), and the overall survival of the animals 
bearing tumors (2-3 months versus 3 weeks, respectively). Indeed, myo-inositol levels can be linked to 
damages to the blood brain barrier, where CNS-NPC tumors exhibited an in tact barrier and PFSK-1 
tumors exhibited barrier disruption. Nonetheless, damages to the blood brain barrier caused by tumor 
growth and invasion are also associated to tumor aggressiveness. 

In conclusion, we have identified a number of metabolic biomarkers associated to CNS-PNET 
pathogenesis that could serve as biomarkers for diagnosis and monitoring treatment response in patients. 
Importantly, these biomarkers have been observed in other brain and solid tumors, indicating these 
alterations are linked to a global mechanism of dysregulation in cancer. Furthermore, we identified two 
metabolites, lactate and myo-inositol that can be linked to discreet molecular features of two CNS-
PNET tumor subtypes, and may be used as a markers associated to tumor aggressiveness. 
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3.9 Future Directions and Further Considerations

3.9.1 Generation of CNS-NPC tumors using a second human-IPS cell line
In our CNS-NPC tumor model, we use one human IPS cell line derived from IMR-90 fetal lung 
fibroblasts (ATCC CCL-186). To exclude the possibility of a cell-line specific phenomenon, we 
have generated CNS-NPC tumors using a second hIPS cell line (ATCC-DYS0100; ATCC). Upon 
differentiation into NPCs, efficiency was assessed by RT-PCR and immunofluorescence to confirm 
efficient neural progenitor differentiation (Supplemental Figure 5B and 5B). We have intracranially 
transplanted the DYS0100-NPCs into immune-deficient NOD-SCID mice, as previously described, and 
will sacrifice these animals after 10 weeks for complete histological analysis of molecular and physical 
characteristics. Specifically, we plan to immuno-stain tissues with neural progenitor markers, Nestin 
and GFAP. In addition, we will asses proliferation and apoptosis using antibodies targeting Ki-67 and 
CC3, respectively. Finally, we will also stain tissues with hematoxylin and eosin (H&E) to asses the 
morphological features of the DYS0100-CNS-NPCs. In conclusion, by generating CNS-NPC lesions 
from two independent human IPS cell lines, we plan demonstrate that the ability to form a CNS-NPC 
lesion from neural progenitor cells in vitro is not a cell-line specific phenomenon, but is a consequence 
of a fundamental biological transformation that occurs during aberrant differentiation.

3.9.2 Using the premise of the CNS-NPC model to model additional subtypes of CNS-PNETs
In our study, we present a new model of CNS-PNET pathogenesis based on human cells derived 
from IPS cells. By isolating and engrafting neural progenitor cells into immune-comprimised NOD-
SCID mice, we demonstrate the ability to generate a subset of CNS-PNET tumors that arise from an 
oligodendrocyte cell of origin that is not dependent on oncogenic driving mutations. In future studies, 
it will be interesting to demonstrate additional CNS-PNET tumor subtypes that arise at other stages of 
neuronal differentiation or depend on geneitc mutations as oncogenic drivers in other contexts. 

For example, neural rosettes represent the one of the earliest stages of neuronal cell differentiation, 
whereby neural stem cells are engulfed in rosette niches to poise cells for further differentiation74, thus 
representing a primitive neural-like phenotype. One hallmark of embryonal tumors of multi-layered 
rosettes (ETMRs) is a primitive-neural signature, marked by high expression of LIN28a/b. Thus, we 
hypothesized that it could be possible to generate ETMR-like tumors using human neural rosettes as 
the cell of origin. In a preliminary experiment, we isolated rosettes and intracranially transplanted these 
cells into immune-compromised NOD-SCID mice. After 10 weeks, we isolated and analyzed tissues 
by histological and DNA methylation analyses. Interestingly, the CNS-Rosette tumors recapitulated 
some of the morpholoigcal and histological features of ETMRs, most notably characterized by a high 
abundance of embryonal rosettes, and high expression of LIN28a/b. However, by DNA methylation 
profiling, these tumors did not exhibit similar mathylation landscape observed in primary ETMR tumors. 
Thus, from this experiment we conclude that while the physical features of ETMR tumors are present, 
in this case the cell of origin is not sufficient to generate the unique epigenetic and molecular landscape 
of ETMR tumors. As mentioned previously, ETMR tumors retain a hallmark feature of the C19MC 
amplification, which targets a micro-cluster of miRNAs: miR-517c and 520g, and has been previously 
shown to be an important oncogenic target in ETMR tumors104. In future studies, it would be interesting 
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to constitutively express these two miRNAs in CNS-Rosettes in vivo. Results from this experiment 
would tell us if the overexpression of miR-517c and 520g would affect formation and proliferation 
of tumors in this context. If tumors form in vivo, in a similar fashion as the CNS-NPC tumors, the  
pathological epigenetic and molecular landscape would be compared with primary ETMR tumors for 
assesment of similarity between the model and primary samples. Based on previous studies, one might 
expect an even more elvated expression of primitive neural markers, like LIN28a/b162.  However, it 
is unclear how the amplification of miR-517c and 520g would alter the global DNA methylation and 
transcriptomic landscapes, and future experiments will help bring clarity to these unanswered questions.  

In a similar line of thinking, there are subtypes of CNS-PNET tumors harbor genetic driving events. 
For example, of subset of CNS-PNET tumors harbor a chromosomal copy number gain in 2p24.3, 
containing the MYC-N oncogene, where the presence of this alteration is associated to poor survival 
in these patients58. In future studies, it would also be possible to genetically modify CNS-NPCs in vivo 
to constitutively express MYC-N, or other oncogenic driving events, and assess the relationship such 
CNS-NPC-derived tumors and primary patient samples harboring such genetic alterations. While still 
speculative, if successful, further studies using genetic modifications based on the CNS-NPC model 
would lend the possibility to raciputulate additional CNS-PNET tumors subtypes and promp further 
investigative studies into the unique biology of CNS-PNETs. 
 
While such experiments would indeed be very informative, there are number of technical limitations 
that must be considered. First, if hIPS cell lines are genetically modified, the differentiation potentiation 
for these cells may be impaired due to the genetic manipulation itself. In addition, the selection of 
genetically modified cells is difficult because many of the chemical selection agents used (puromycin, 
for example), are toxic to hIPS cells. In addition, the introduction of genetic modifications with a stable 
fluorophore timed at the correct stage of neuronal differentiation in vitro, rosettes or NPCs for example, 
would also be technically challenging because a high degree of cell death is observed following FACs 
sorting, limiting the possibility to test multiple contructs in a timely manner. Furthermore, the biological 
features of rosettes would not longer be retained if cells were mechanically dissociated into the single cell 
suspension required for FACs sorting analysis. Therefore, the constructs used in genetic manipulation 
experiments of hIPS cells, and the timing of the genetic event must be carefully considered. 

One interesting approach would be to first validate all genetic constructs using the PFSK-1 cell line, 
which would allow for rapid testing in vitro. Next, unmanipulated cells (Rosettes or NPCs) would be 
injected in vivo (as previously described). Once cells start to expand (as monitored by IVIS imaging), 
a second injection with concentrated viral particles containing the genetic construct of interest into 
the tumor location would follow. The use of a stable fluorophore expression would allow for the 
assessment of genetically modified cells that contribute to tumor expansion, as well as the assessment 
of their relevance in downstream analyses. While this approach would offset the inherent problems 
associated with genetic manipulation of human IPS cells in vitro, there are still a number of technical 
considerations that would need to be considered. Most critically, the efficient delivery of the virus to 
the cells of interest, with minimal or no contact and effects on the surrounding mouse tissue. However, 
while still speculative, if successful, the expansion of the CNS-NPC model to other subtypes of CNS-
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PNETs using genetic manipulation would provide a valuable mechanism of studying the unique and 
heterogenous biology of CNS-PNET tumors.

3.9.3 Targeting Purine Metabolism in CNS-PNETs
The highest abundance of metabolic alterations observed in both tumors models are those directly 
involved in purine biosynthesis. Interestingly, purine anti-metabolites were one of the earliest 
chemotherapeutic agents used to treat cancer, many of which are still routinely used in the clinic today135, 

195. Methotextrate is a purine antimetabolite and is one of the five standard of care chemotherapeutic 
agents used for the treatment of CNS-PNETs today176. In the SKK-HIT’92 clinical trial, methotextrate 
treatment was introduced, in combination with clophosphamide, vincristine, carboplatin, and etoposide, 
as an alternative to radiotherapy. Results from this study showed favorable survival and helped prevent 
radiotherapy-induced cognitive defects148.  The abundance of alterations observed in purine metabolism 
in both tumor models provides a link to methotextrate efficacy in the clinic, as well as pinpointing the 
potential for additional purine antimetabolites for synergistic efficacy in treating CNS-PNET tumors. 
That being said, altered purine and nucleotide metabolism is a hallmark of many cancers, and is not 
unique to CNS-PNET alone, and further studies into the efficacy and mechanism of action of purine 
antimetabolites are needed, where both PFSK-1 and CNS-NPC tumor models would serve as appropriate 
platforms for preliminary studies in this context. 

3.9.4 Further studies of glycolysis in the CNS-NPC model
Finally, in an ex vivo metabolic analysis of CNS-NPC tumors, while signficant alterations were observed 
in the early steps of glycolysis, no signifcant alterations were observed in the two most abundant 
metabolic pathways contributing to energy production, specifically aerobic glycolysis and oxidative 
phosphorylation. Indeed, it is possible that technical limitations of the experimental design may be 
contributing to these confounding results. One alternative way to address this open-ended question 
experimentally would be to measure glucose metabolism in CNS-NPC tumors using 13C hyperpolarized 
magnetic resonance (HMR) using glucose as a metabolic tracer. Using 13C-tagged glucose HMR 
imaging would allow for the complete tracing of glucose breakdown in the CNS-NPC tumors in real 
time, where the contribution of the metabolic intermediates towards aerobic glycolysis or oxidative 
phosphorylation could, in theory, be discriminated. Given that the CNS-NPC tumors require the brain 
niche for transformation, similar metabolic tracing experiments in vitro are unlikely to produce results 
that can be translated to the in vivo setting. 13C-HMR analyses offer a unique way of monitoring metabolic 
processes in real time, in living tissue. While pyruvate tracers in 13C HMR experiments are informative 
for understanding metabolic dependencies on aerobic glycolysis, glucose as a metabolic tracer offers 
the opportunity to expand our understanding of the underlying processes responsible for glucose 
breakdown in different contexts, including both aerobic glycolysis and oxidative phosphorylation. 
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Chapter 4. Materials and Methods

Dissecting epigenetic, transcriptomic, and metabolic signaling dependencies using 
a novel model of central nervous system primitive neural ectodermal tumors (CNS-
PNETs)

Table 4.1: List of Critical Reagents Used in Chapter 3

Name Company Catalogue Number
pHAGE PGK-GFP-IRES-
LUC-W		 Addgene 46793

EZ DNA Methylation kit Zymo D500
RNAeasy Mini Kit Qiagen 74104
MACS brain tumor 
dissociation kit Miltenyi Biotec 130-095-942

MACS Mouse cell depletion 
kit Miltenyi Biotec 130-104-694

Matrigel Corning 356234
mTeSR™1 cell culture 
medium Stem Cell 85850

Matrigel basement membrane 
(hESC qualified) Corning 354227

Stemdiff™ Neural Progenitor 
Medium Stem Cell 5833

4.1 Cell culture 
PFSK-1 cells were purchased from ATCC (CRL-2060) and authenticated by STR (Microsynth, 
Switzerland). Cells are propagated in RPMI cell culture medium (Life Technologies) supplemented 
with 10% fetal bovine serum (Life Technologies) and 1% pen-strep.

Human-IPS (hIPS) cells were generated from IMR-90 fetal lung fibroblasts (ATCC CCL-186)  by viral 
transduction of a combination of OCT4, SOX2, MYC and KLF4 genes129. Neural progenitors were 
generated using a modified dual SMAD-inhibition protocol as previously described168, 93. 

ATCC-DYS0100 human-IPS (hIPS) cell line were purchased from ATCC (ACS-1019).
hIPS cell lines were maintained and propagated in mTeSR™1 cell culture medium (Stem Cell) 
and passaged onto matrigel basement membrane (hESC qualified) coated dishes (Corning). Neural 
progenitor cells were maintained and propagated in Stemdiff™ Neural Progenitor Medium (Stem Cell).

4.2 Lentiviral Infection
Lentiviral delivery of pHAGE PGK-GFP-IRES-LUC-W (Addgene) to generate cell lines stably 
expressing luciferase and GFP together. Cells containing the vector were selected based on GFP 
expression. 
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4.3 Stereotaxic Injection
Cells were intracranially transplanted into male or female immune-deficient NOD-SCID mice 4-8 
weeks of age (Jackson Laboratories). Briefly, cells are targeted into the right lateral ventricle of the 
cerebral cortex and injections are performed as follows: a 25-guage burr hole is made approximately 
+0.5 ventral, and 1.8mm right or left lateral from the bregma. A 26-gauge needle attached to a 10 μl 
Hamilton syringe is inserted into the depth of 3.2mm from the skull surface using stereotactic guidance. 
Two microliters of 1X PBS containing cells (10,000 cells for PFSK-1; 200,000 cells for IPS-derived 
rosettes or neural progenitor cells) are inoculated into the brain over a period of five minutes. Cells 
are left to settle for an additional three minutes prior to needle resection. Tumor growth is monitored 
weekly or bi-weekly using the IVIS system. 

4.4 Flank Injection
Cells were mixed in a 1:1 ratio of 1X PBS containing cells (10,000 cells for PFSK-1; 200,000 cells for 
IPS-derived rosettes or neural progenitor cells) and Matrigel (Corning). 100μl of the 1:1 mixture were 
injected subcutaneously into the flank of the mouse, under the skin overlying the upper thigh and lower 
part of the back. Tumor growth was monitored weekly or bi-weekly using the IVIS system. 

4.5 Immunohistochemistry
Tissues are fixed in 4% PFA solution for 4 hours, washed in 1X PBS, and submerged in 70% EtOH 
prior to paraffin embedding. Briefly, the general morphology of paraffin embedded tissues is assessed 
on slides stained with Haematoxylin-Eosine (H&E). Immunohistochemical detection was performed 
using the fully automated Ventana Discovery XT (Roche Diagnostics, Rotkreuz, Switzerland). All 
steps were performed on the machine with Ventana solutions. Briefly, dewaxed and rehydrated paraffin 
sections were pretreated with heat using standard condition (30 minutes) CC1. The primary antibodies 
were incubated 1 hour at 37°C. After incubation with rabbit OmniMap (Roche Diagnostics, Rotkreuz, 
Switzerland), chromogenic drevelation was performed with ChromoMap kit (Roche Diagnostics, 
Switzerland).

Table 4.2: List of Antibodies Used

Target Name Clone Species Company Catalogue 
Number

Dilution 
Factor

Nestin 10C2 Rabbit Abcam ab22035 1000
GFAP polyclonal Goat Sigma SAB25000462 400
Olig2 polyclonal Rabbit Abcam ab42453 200
CC3 ASP175 Rabbit Cell Signaling 9664 200
Ki67 SP6 Rabbit Abcam ab21700 200

4.6 Human cell isolation 
Animals were sacrificed following Swiss animal regulatory guidelines (Service de la consommation 
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et des affaires vétérinaires, Canton de Vaud, Suisse). Brain tissue was isolated and enzymatically and 
mechanically dissociated using the MACS brain tumor dissociation kit (Miltenyi Biotec) followed by 
human cell isolation using the MACS Mouse cell depletion kit (Miltenyi Biotec). RNA and/or DNA of 
isolated and purified viable human cells were further analyzed as follows:
DNA Extraction: Genomic DNA was extracted using phenyl/chloroform followed by ethanol (EtOH) 
precipitation
RNA Extraction: total RNA was extracted from cells by phase separation using tizol and chloroform 
followed by RNAeasy Mini Kit (Qiagen)

4.7 Quantitative PCR (RT-PCR) 
Reverse transcription was preformed using Superscript III first strand synthesis kit (ThermoFisher 
Scientific). Quantitative PCR (qPCR) is preformed using SYBR Green real time PCR master mix 
(ThermoFisher Scientific) and primers designed to specifically target genes of interest.

Table 4.3: List of Primers Used for RT-PCR
All oligonucleotides were synthesized by Microsynth, Switzerland

Target 
Name Forward Primer (5’-3’) Reverse Primer (5’-3’)

HPRT ACC CTT TCC AAA TCC TCA GC GTT ATG GCG ACC CGC AG

NESTIN CAG CGT TGG AAC AGA GGT TGG TGG CAC AGG TGT CTC AAG GGT AG

GFAP CAT TCC CGT GCA GAC CTT CT ACG GTC TTC ACC ACG ATG TT

NEFM AGG CCC TGA CAG CCA TTA C CTC TTC GGC TTG GTC TGA CTT

PAX6 TGG GCA GGT ATT ACG AGA CTG ACT CCC GCT TAT ACT GGG CTA

SOX2 TAC AGC ATG TCC TAC TCG CAG GAG GAA GAG GTA ACC ACA GGG

OLIG1 GAG GTC ATC CTG CCC TAC TC CGT GGC TAT CTT GGA GAG CTT

OLIG2 TTG AAG TCA TCC TCG TCC AGC TCGCGGCTGTTGATCTTGAG

LIN28B CAT CTC CAT GAT AAA CCG AGA GG GTT ACC CGT ATT GAC TCA AGG C

TWST1 ATT CAG ACC CTC AAG CTG GC TCC ATC CTC CAG ACC GAG AA

4.8 DNA Methylation Bisulfite Conversion
Genomic DNA was treated with bisulfite for subsequent DNA methylation profiling using the EZ DNA 
Methylation kit. DNA methylation profiling was performed using the HymanMethylation850 BeadChip 
methylation microarray (Infinium). 
4.9 DNA Methylation Analysis
The global DNA Methylation profiles of our samples were compared to the landscape of DNA
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methylation in CNS-PNET tumors208. The raw DNA methylation data for our samples 
(HymanMethylation850 BeadChip) were processed using the R package minfi (Biodirector, 10.18129/
B9.bioc.minfi). Methylation data from [Sturm et al., 2016] were downloaded from [GSE73801]. To 
remove any batch effect between the two datasets, we co-normalized their beta values matrices using
ComBat, after retaining the probes in common between the two datasets. Values rescaled outside the
range [0,1] were clipped.We compared the methylation status of our samples to the PNET dataset by 
means of hierarchical agglomerative clustering, PCA and t-SNE analysis. In the hierarchical clustering, 
in order to speed up computation and remove background noise, we only considered the 15,000 most 
variable probes. Additionally, we retained only the probes spanning a wide range of beta values, by 
removing all the probes without at least one beta value smaller than 0.2 and one greater than 0.8. Results 
were stable as we lowered the lower numbers of probes considered.

The t-SNE analysis was performed with the R package Rtsne. We checked the robustness of the results 
at different levels of perplexity and found them to be consistent within a wide range (from 10 to 50).
Results were also unchanged between considering the entire set of probes or only the variable ones (as 
done for the hierarchical clustering approach). In the final results we chose a perplexity of 30 for the 
embedding.

4.10 RNA expression analysis of patient samples

Purified RNA from CNS-NPC and PFSK-1 tumors were sequenced with the Illumina NextSeq500. 

Differential Expression analysis
Expression data from [Sturm et al., 2016] were downloaded from [GSE73038]. Differential expression 
was assessed using the limma package, P values were adjustedusing the Benjamini–Hochbergmethod 
and significance cut-offset at 0.01.

Gene Ontology (GO) Terms enrichment analysis
GO Terms enrichment analysis was performed using the online webservice based on the Molecular 
Signatures Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/annotate.jsp). Enriched 
GO terms were defined as GO biological process (BP) and molecular function (MF) terms obtaining a 
FDR-adjusted P value <0.01, retreiving a maximum of 100 terms.

Gene expression signature enrichment analysis 
Single sample Gene Set Enrichment analysis (Barbie et al., 2009) (ssGSEA), implemented in the R 
package GSVA, was used to calculate an expression score for each gene expression signature and each 
sample. The default parameters from the GSVA package were used.

4.11 Mass Spectrometry 
Metabolite extraction 
Tissue samples were pre-extracted and homogenized1,2 by the addition of 150 μL of MeOH:H2O (4:1) 
per 10 mg of frozen tissue weight, in the Cryolys Precellys 24 sample Homogenizer (2 x 20 seconds 
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at 10000 rpm, Bertin Technologies, Rockville, MD , US) with ceramic beads. The bead beater was air-
cooled down at a flow rate of 110 L/min at 6 bar. Homogenized extracts were centrifuged for 15 minutes 
at 4000 g at 4°C (Hermle, Gosheim, Germany). The resulting supernatant was collected and evaporated 
to dryness in a vacuum concentrator (LabConco, Missouri, US). 

Protein quantification 
The protein pellets were evaporated and lysed in 20 mM Tris-HCl (pH 7.5), 4M guanidine hydrochloride, 
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-
glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin using brief probe-sonication (5 pulses x 5 sec). 
BCA Protein Assay Kit (Thermo Scientific, Masschusetts, US) was used to measure (A562nm) total 
protein concentration (Hidex, Turku, Finland). 

Sample amount normalization 
The dry extracts were reconstituted using MeOH:H2O (4:1, v/v) and the volume of re-suspension was 
adjusted based on measured protein quantities in each pellet. 

Data Acquisition- LC-MS Analysis
Extracted samples were analyzed by Hydrophilic Interaction Liquid Chromatography coupled to 
tandem mass spectrometry (HILIC - MS/MS) in both positive and negative ionization modes using a 
6495 triple quadrupole system (QqQ) interfaced with 1290 UHPLC system (Agilent Technologies). In 
positive mode chromatographic separation was carried out using a BEH Amide, 1.7 μm, 100 mm × 2.1 
mm I.D. column (Waters, Massachusetts, US). Mobile phase was composed of A = 20 mM ammonium 
formate and 0.1 % FA in water and B = 0.1 % FA in ACN. The linear gradient elution from 95% B 
(0-1.5 min) down to 45% B was applied (1.5 min -17 min), and 45% B was held for 2 min. The initial 
chromatographic conditions were maintained as a post-run during 5 min for column re-equilibration. 
The flow rate was 400 μL/min, column temperature 25 °C and sample injection volume 2μl. ESI source 
conditions were set as follows: dry gas temperature 290 °C, nebulizer 35 psi and flow 14 L/min, sheath 
gas temperature 350 °C and flow 12 L/min, nozzle voltage 0 V, and capillary voltage 2000 V. Dynamic 
Multiple Reaction Monitoring (DMRM) was used as acquisition mode with a total cycle time of 600 
ms. Optimized collision energies for each metabolite were applied. 
In negative mode, a ZIC pHILIC (100 mm, 2.1 mm I.D. and 5 μm particle size) column was used. The 
mobile phase was composed of A = 20 mM ammonium Acetate and 20 mM NH4OH in water at pH 9.3 
and B = 100% ACN. The linear gradient elution from 90% B (0-1.5 min) down to 50% B was applied 
(1.5 min – 8 min), followed by an isocratic step (8 min – 11 min) and linear gradient down to 45% B 
(11 min – 12 min). These conditions were held 3 min. Finally, the initial chromatographic conditions 
were established as a post-run during 9 min for column re-equilibration. The flow rate was 300 μL/
min, column temperature 30 °C and sample injection volume 2μl. ESI source conditions were set as 
follows: dry gas temperature 290 °C and flow 14 L/min, sheath gas temperature 350 °C, nebulizer 45 
psi, and flow 12 L/min, nozzle voltage 0 V, and capillary voltage -2000 V. Dynamic Multiple Reaction 
Monitoring (DMRM) was used as acquisition mode with a total cycle time of 600 ms. Optimized 
collision energies for each metabolite were applied.
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Quality Control 
Pooled QC samples (representative of the entire sample set) were analyzed periodically (every 4 
samples) throughout the overall analytical run in order to assess the quality of the data, correct the 
signal intensity drift (attenuation in most cases, that is inherent to LC-MS technique and MS detector 
due to sample interaction with the instrument over time) and remove the peaks with poor reproducibility 
(CV > 30%).

Data (Pre) Processing
Raw LC-MS/MS data was processed using the Agilent QqQ-Quant software (version B.07.00, Agilent 
technologies). The relative quantification of metabolite features was based on EIC (Extracted Ion 
Chromatogram) areas for the MRM transitions monitored. The obtained metabolite table (containing 
peak areas of all detected metabolites features across all samples) was exported to “R” software http://
cran.r-project.org/ and signal intensity drift correction and noise filtering (CV (QC features) > 30%) was 
done within the “batchCorr” R package6.

Statistical Analyses (Univariate and Multivariate)
Parametric Student t-test* (or non-parametric Mann-Whitney) was applied to extract the significantly 
altered metabolite features between PFSK-1 / NPC tumor tissue and contralateral tissue with an arbitrary 
level of significance, p-value = 0.05 (and q-value as an adjusted p-value using an optimized False 
Discovery Rate approach). Data were log transformed prior to t-test application. Multivariate statistical 
analysis were achieved with SIMCA software (Version 14.1, Umetrics, Sweden) and used for data 
quality assessment and exploration. 

4.12 In vivo Metabolic Imaging
Magnetic resonance imaging
All measurements were performed on a Varian INOVA spectrometer (Varian, Palo Alto, CA, USA) 
interfaced to a 31-cm horizontal-bore actively shielded 9.4 T magnet (Magnex Scientific, Abingdon, 
UK).  

Animal preparation
All experimental procedures involving animals were conducted according to federal and local 
ethical guidelines and the protocols were approved by the local ethics committee of the Canton 
Vaud, Switzerland (Service de la consommation et des affaires vétérinaires, Canton de Vaud, Suisse). 
Tumor bearing or sham operated male or female NOD-SCID mice were anesthetized using 1.5 ± 05% 
isoflurane (Attane, Minrad, NY, USA) in 30% oxygen and air. A femoral vein was catheterized to 
deliver hyperpolarized pyruvate solution. After surgery, the animal was placed on the MRI bed, the 
head was fixed using stereotaxic system (RAPID Biomedical Inc., OH, USA). Body temperature was 
monitored by a nonmagnetic rectal probe and maintained at 37.0 ± 0.5 °C by warming the animal with 
temperature-controlled water circulation (SA instruments Inc. NY, USA), and their respiration rate was 
monitored using respiration from a small pneumatic pillow sensor (SA Instruments Ins. Stony Brook, 
NY, USA). Animal physiology was monitored during the entire duration of the experiment. 
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Proton MRS
Proton images and spectra were acquired using a home-built 1H-quadrature surface coil that was placed 
on top of the mouse head. T2W images were acquired using fast spin echo multi slice (FSEMS) protocol 
(FOV 18x18 mm2, TR = 4000 ms, effective TE = 52, 6 scans). B0 inhomogeneity was corrected using 
the FASTESTMAT algorithm62 in two a 2x2x2 mm voxels, one located at the tumor area and the other 
located at the contralateral hemisphere. To follow variations in the neurochemical profile single voxel 1H 
MRS measurements were acquired in those voxels using the SPECIAL pulse sequences117 (TR = 4000 
ms, TE = 2.8 ms, 200 ms acquisition time in 15 x 16 scans). Metabolite concentrations were calculated 
using LC Model-based fitting routine139. The integrity of the blood brain barrier (BBB) was assessed 
by T1 weighted (T1W) images acquired after injection of gadolinium-contrast agent (Gadovist® 5uL/gr 
body weight) images that were acquired after the completing of the HP 13C MRS measurements, using 
FSEMS protocol (FOV 18x18 mm2, TR = 350 ms, effective TE = 11 ms, 6 averages)

Hyperpolarized 13C MRS
HP [1-13C]pyruvate solutions were prepared as previously described196. Briefly, neat [1-13C] pyruvic acid 
(Sigma Aldrich, Basel Switzerland) was mixed with trytil radical OX63 (21 mM, Albeda, Denmark). 
10 uL of the solution was dynamically polarized for 2 hr using a custom-designed 7Tesla DNP polarizer 
operating at 197 GHz / 1.00±0.05K5, in order to balance the pH upon dissolution, an additional 13 uL 
frozen bead of 10 M NaOH solution was added to the sample cup. Once reaching maximal polarization 
the solution was rapidly dissolved with 5 mL of superheated deuterated phosphate buffer and transferred 
within 2s into the separator/infusion pump32, that was prepositioned inside the magnet bore at the vicinity 
of the animal. A bolus of the solution was automatically infused as previously described29. 
13C MR measurements were performed using a home-built 1H-quadrature/13C-single loop surface coil 
that was placed on top of the mouse head. B0 inhomogeneity was corrected using FASTESTMAP 
algorithm62 in a 3.6x6.9x4.5 mm voxel_ENREF_8. A 325 μL  of 25 mM HP [1-13C] pyruvate solution 
was injected by the automated protocol29. A series of slab excitation pulse sequence was then triggered 
using a slice selective sync pulse with an average flip angle of 30° every 1.5 s and alternating between 
two 3 mm slabs. The first was positioned at the tumorous hemisphere and the second at the contralateral 
one.  The area under the curve (AUC) of the metabolite was calculated using VNMRJ software by 
integrating the summed 13C MRS the spectra after phase and baseline correction. The peak areas of 
[1-13C]pyruvate (172 ppm), and [1-13C]lactate (183.5 ppm) were quantified, and used to compute the 
lactate-to-pyruvate (LPR) ratio. The HP 13C contrast between the two hemispheres was calculated from 
the LPR in the tumor slab to the LPR ratio at the contralateral slab.
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Table 4.4. List of metabolites measured in CNS-NPC tumors and contralateral tissue 
using LC/MS

Metabolite NPC Control 
Ave

NPC Tumor 
Ave

Fold 
Change

Log2 
FC Ttest NPC 

Tumor 1
NPC 

Tumor 2
NPC 

Tumor 3
NPC 

Tumor 4
NPC 

Contra 1
NPC 

Contra 2
NPC 

Contra 3
NPC 

Contra 4

ALANINE 1373664.77 1404360.19 1.02 0.03 0.36 1598457 1450892 1328892 1239200 1417451 1366985 1282882 1427341

ASPARAGINE 17702.66 35129.48 1.98 0.99 0.04 54323 41422 27737 17035 18378 17766 14636 20030

ASPARTATE 2712279.09 2532485.94 0.93 -0.10 0.04 2484361 2449520 2714818 2481245 2836221 2725710 2739265 2547920

GLUTAMATE 12729603.98 9959847.26 0.78 -0.35 0.03 9609747 9076225 9345957 11807460 12288443 10528706 12371879 15729387

GLUTAMINE 34381506.40 36004679.53 1.05 0.07 0.36 36138103 45085329 32278695 30516592 29667413 41266277 28762275 37830061

N-ALPHA-
ACETYLLYSINE 64746.84 75376.97 1.16 0.22 0.09 83596 82504 77612 57796 58831 68184 57887 74085

N,N-DIMETHYL
ARGININE 915215.99 1470688.22 1.61 0.68 0.03 1765589 1835923 1470022 811219 729632 1153040 818913 959279

N-ACETYL
NEURAMINATE 547994.64 418590.89 0.76 -0.39 0.03 421489 392402 318043 542430 538564 529325 494306 629784

URIDINE 
DIPHOSPHATE 
GLUCURONIC ACID

12724.62 35369.96 2.78 1.47 0.04 61633 42158 26721 10967 9528 10895 13514 16962

4-ACETAMIDO
BUTANOATE 30725.00 119263.51 3.88 1.96 0.00 139659 152201 134380 50814 33764 33976 28671 26488

4-GUANIDINO
BUTANOATE 7121448.48 9310834.77 1.31 0.39 0.03 9025068 11837899 9355800 7024571 7089974 7105486 7056220 7234114

4-HYDROXY-
PROLINE 1021572.00 1004445.78 0.98 -0.02 0.24 1039582 990142 1010678 977382 1028688 981586 1008912 1067101

CREATININE 8224004.27 9025166.76 1.10 0.13 0.18 8829732 10175478 8657542 8437914 6407424 7773658 9060590 9654345

GAMMA-
AMINOBUTYRATE 3041633.00 2628200.51 0.86 -0.21 0.04 2560209 2825419 2568269 2558904 3497051 3038329 3025975 2605178

N-ACETYL
PUTRESCINE 7521.00 217172.40 28.88 4.85 0.02 439438 231284 163322 34647 6864 8353 5462 9404

N-ACETYL
GLUTAMATE 3743.54 16365.63 4.37 2.13 0.03 29345 19945 9216 6955 3725 4278 2185 4787

BETA-ALANINE/
SARCOSINE 91671.91 74913.85 0.82 -0.29 0.06 80780 91893 63355 63628 108846 90706 88677 78459

ACETYL
CARNITINE 39181822.43 50011154.73 1.28 0.35 0.02 51785865 46817629 57671187 43769938 36715835 46930381 34507449 38573625

BUTYRYL
CARNITINE 10989190.86 22216590.40 2.02 1.02 0.04 23281029 34275288 20349287 10960758 6209266 15954557 10426047 11366893

CARNITINE 17380941.28 20010259.52 1.15 0.20 0.09 19353372 24317672 20443784 15926209 17614974 17707147 17482308 16719336

DECANOYL
CARNITINE 490883.36 548368.46 1.12 0.16 0.30 409669 631700 617537 534568 216392 532370 603411 611361

DEOXY
CARNITINE 9284299.12 12785918.10 1.38 0.46 0.05 12872972 16576548 13589899 8104253 9021978 9033336 9675447 9406436

GLUTARYL
CARNITINE 981704.54 1432798.71 1.46 0.55 0.21 2356550 441786 2074583 858276 1281448 231013 1191874 1222484

HEXANOYL
CARNITINE 552414.51 551980.84 1.00 0.00 0.50 536320 706744 563917 400942 293978 735529 652367 527783

ISOVALERYL
CARNITINE 5247868.13 6564920.51 1.25 0.32 0.15 5476777 9096963 5894643 5791299 3309798 6506605 4751733 6423336

LAUROYL
CARNITINE 3778620.13 3387789.32 0.90 -0.16 0.26 2913203 3313513 3251486 4072955 2862383 3663954 3326262 5261881

MYRISTOYL
CARNITINE 15479121.16 13597060.52 0.88 -0.19 0.25 11212345 13101460 12478222 17596215 11917678 13733081 14373969 21891757

OCTANOYL
CARNITINE 37207.04 48307.12 1.30 0.38 0.17 47228 64310 47805 33885 11812 42662 53838 40517

PALMITOYL
CARNITINE 32044085.82 26802463.01 0.84 -0.26 0.06 24699726 27758386 24298110 30453629 26480154 32047564 30627373 39021252

STEAROYL
CARNITINE 6525797.03 6020663.36 0.92 -0.12 0.00 5855506 6012325 6170557 6044265 6249662 6594223 6450664 6808639

HYDROXYPHENYL
LACTATE 130803.42 108857.41 0.83 -0.26 0.33 63829 208000 87565 76035 96655 229692 100163 96704

BIOTIN 36542.92 60117.31 1.65 0.72 0.03 76055 71768 56206 36441 35566 47213 33956 29436
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4-HYDROXY-3-
METHOXYPHENYL
GLYCOL

695.37 587.86 0.85 -0.24 0.15 620 785 430 517 627 858 595 701

CYSTINE 5659.06 7363.91 1.30 0.38 0.26 12520 10012 2357 4566 5118 6750 3535 7233

METHIONINE 42239.79 36129.59 0.86 -0.23 0.13 33983 46231 32960 31345 40835 52709 37737 37677

METHYLTHIO
ADENOSINE 6056444.56 6733480.57 1.11 0.15 0.21 6800888 8638983 6183367 5310685 5332519 6060471 5759853 7072936

N-FORMYL
METHIONINE 16584.27 34254.52 2.07 1.05 0.01 39693 44896 31087 21341 15552 18456 14368 17960

OPHTHALMATE 3709.99 8253.24 2.22 1.15 0.00 8395 9418 9050 6149 3685 3333 4139 3683

S-ADENOSYL
HOMOCYSTEINE 12010.59 8799.02 0.73 -0.45 0.10 12207 10709 6673 5608 15166 14201 9417 9259

S-ADENOSYL
METHIONINE 55222.81 55181.11 1.00 0.00 0.50 65423 62794 47462 45045 37135 61387 51906 70463

N-ACETYL
ASPARAGINE 1684.75 2263.46 1.34 0.43 0.16 2307 3671 1942 1135 1500 1967 1429 1843

GUANOSINE 
DIPHOSPHATE 
MANNOSE

16593.29 18864.19 1.14 0.19 0.27 25797 22223 16272 11164 14851 14846 16651 20025

HEXOSE 1-
PHOSPHATE 113215.54 245442.28 2.17 1.12 0.01 335430 244278 241999 160063 106752 117480 81595 147035

CDP-ETHANOLAMINE 24078.78 24033.75 1.00 0.00 0.49 28368 27581 21132 19055 19770 23557 23760 29229

CHOLINE 80043334.49 68587854.88 0.86 -0.22 0.01 74672020 68767490 64898536 66013373 88138276 79006551 79168544 73859966

ETHANOLAMINE 367715.85 268717.61 0.73 -0.45 0.00 273947 325051 210794 265079 363347 381603 345579 380334

GLYCEROL 3-
PHOSPHATE 219753.97 125338.79 0.57 -0.81 0.01 102814 72992 112146 213403 220511 191623 217629 249252

CREATINE 96401666.88 95545159.86 0.99 -0.01 0.32 97089555 97602674 95284663 92203747 97581732 95923719 93132660 98968556

CYSTATHIONINE 117070.86 265703.10 2.27 1.18 0.19 680148 265170 68222 49273 26039 75433 102835 263976

GLYCINE 22801.02 42474.16 1.86 0.90 0.06 72570 44297 29993 23037 21858 21372 22376 25598

HYDROXY
PYRUVATE 15432.33 18159.03 1.18 0.23 0.24 14006 11778 25568 21284 10827 18907 17842 14153

SERINE 375843.77 510662.61 1.36 0.44 0.06 673952 503484 501465 363750 344417 321094 357190 480675

THREONINE 74871.22 55277.42 0.74 -0.44 0.01 52978 42569 60775 64788 79418 69126 80716 70225

2-3 PHOSPHO
GLYCERATE 109759.70 163989.44 1.49 0.58 0.06 193886 150926 180627 130519 37795 96509 151009 153725

LACTATE 75785.13 74568.52 0.98 -0.02 0.34 77460 74103 74547 72164 76852 74304 69969 82016

ACETYL-COA 3278.63 1786.46 0.54 -0.88 0.01 1739 1239 1367 2800 2610 3850 3790 2865

FRUCTOSE 6-
PHOSPHATE 121082.45 253015.42 2.09 1.06 0.00 337782 246772 254500 173008 105834 122952 105345 150198

GLYCERALDEHYDE 
3-PHOSPHATE 10793.08 7960.89 0.74 -0.44 0.13 6969 5543 6646 12685 6999 14256 12659 9258

PHOSPHOENOL
PYRUVATE 38568.93 86765.71 2.25 1.17 0.03 136998 57631 84538 67896 11360 39321 52482 51112

4-IMIDAZOLE
ACETATE 9850.88 11938.21 1.21 0.28 0.15 11019 16708 10401 9625 7774 11813 10069 9748

ANSERINE 127485.18 230611.64 1.81 0.86 0.05 266379 353629 173225 129214 100579 144263 112621 152478

CARNOSINE 4401213.08 6151158.24 1.40 0.48 0.20 7153331 10328237 3713049 3410016 2226825 5722756 2862347 6792924

HISTAMINE 116727.32 85590.82 0.73 -0.45 0.14 66615 86323 87753 101672 102443 186314 115685 62468

HISTIDINE 12778959.81 15679125.47 1.23 0.30 0.23 16690999 23882086 11033036 11110380 8629854 14571131 10313200 17601654

AMINOADIPATE 91533.36 77551.66 0.85 -0.24 0.25 98329 42217 91408 78252 104222 46381 112772 102760

PIPECOLATE 63931.66 341952.84 5.35 2.42 0.01 577283 304616 342270 143642 60383 38984 74027 82333

LYSINE 1803027.60 1402987.79 0.78 -0.36 0.05 1693746 1304389 1260782 1353034 1421635 1747481 1773031 2269964

N,N,N-TRIMETHYL
LYSINE 16823604.08 11424182.32 0.68 -0.56 0.00 11514394 11121443 11374183 11686710 14736119 16953087 14989869 20615341

N-METHYL
GLUTAMATE 91533.36 77551.66 0.85 -0.24 0.25 98329 42217 91408 78252 104222 46381 112772 102760

TRIMETHYLAMINE 2448233.97 2023243.24 0.83 -0.28 0.01 2212355 2012117 1879693 1988809 2797643 2441865 2348375 2205052

METHYLGUANIDINE 4796.77 6143.87 1.28 0.36 0.10 7993 4386 7371 4826 4404 4459 5756 4568

THYROTROPIN 
RELEASING 
HORMONE

7075.26 12084.53 1.71 0.77 0.03 15747 12766 12374 7452 9468 3074 7665 8093

NAD 1029099.17 916187.63 0.89 -0.17 0.31 1095088 1124416 709634 735613 643637 976931 937340 1558488

NADP 11315.53 8418.74 0.74 -0.43 0.09 7231 9507 8071 8866 5875 13468 13320 12600

NADPH 121634.38 116048.41 0.95 -0.07 0.36 136447 142112 95140 90494 110271 112612 130842 132812
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NICOTINAMIDE 53132208.55 46599277.11 0.88 -0.19 0.02 45365337 46691177 42390753 51949842 57434455 51551741 50458856 53083783

NICOTINATE 791531.35 719657.37 0.91 -0.14 0.06 726271 741492 663376 747490 888545 727083 756823 793675

NICOTINIC ACID 
ADENINE 
DINUCLEOTIDE 
PHOSPHATE

21916.75 20561.80 0.94 -0.09 0.30 22721 24759 18545 16223 19124 19953 24024 24567

TRIGONELLINE 380212.79 623299.86 1.64 0.71 0.00 674723 587134 694535 536808 311322 291274 404577 513678

NADH 52222.90 22146.30 0.42 -1.24 0.00 19284 17957 19718 31626 72589 44548 51181 40573

AMP 1289181.48 1007651.96 0.78 -0.36 0.02 978358 1101948 852450 1097852 1037892 1342002 1342106 1434725

PANTOTHENATE 1510185.89 2409228.68 1.60 0.67 0.04 3001997 3097207 2149448 1388263 1454715 1838293 1342211 1405525

DEOXYRIBOSE 12373.86 11756.25 0.95 -0.07 0.32 9198 12151 11469 14207 12105 14495 11067 11828

GLUCONATE 68268.12 93900.00 1.38 0.46 0.07 122512 108536 87194 57358 64322 60208 71677 76865

GLYCERATE 169727.97 195051.93 1.15 0.20 0.16 228589 233197 162998 155424 165461 166147 150990 196314

RIBOSE 5-PHOSPHATE 74064.32 46523.69 0.63 -0.67 0.02 58810 38164 30886 58235 72413 83919 88647 51279

HIPPURATE 7401.61 10344.23 1.40 0.48 0.20 10720 5386 17027 8243 3956 5147 13559 6944

FRUCTOSE 1,6-
BISPHOSPHATE 15462.65 49340.85 3.19 1.67 0.01 73423 55337 48477 20126 7979 17252 17938 18681

KYNURENINE 1533.08 1920.69 1.25 0.33 0.24 1407 3219 1780 1276 881 1766 1504 1982

N-ACETYLPHENYL
ALANINE 24825.34 21660.91 0.87 -0.20 0.37 17826 38203 16388 14227 18343 47457 16171 17330

PHENYLALANINE 1266709.16 1238004.88 0.98 -0.03 0.47 1117766 1997075 974784 862395 1120560 1842666 1014161 1089450

TRYPTOPHAN 251188.28 223017.70 0.89 -0.17 0.34 197917 371314 175299 147540 221375 379702 196309 207367

TYROSINE 131575.16 121552.61 0.92 -0.11 0.43 92625 218987 90000 84598 92763 248534 91385 93620

O-PHOSPHO
ETHANOL AMINE 52637.82 106066.02 2.02 1.01 0.02 144029 110502 121977 47756 52064 52519 55049 50919

GLYCOCHENO
DEOXYCHOLATE 49621.59 59249.66 1.19 0.26 0.08 69304 56256 62563 48875 59112 52101 46498 40775

1-METHYL
ADENOSINE 213681.28 420094.12 1.97 0.98 0.04 542069 608066 346667 183574 204176 194609 241588 214352

5'-DEOXY
ADENOSINE 55582.13 51646.15 0.93 -0.11 0.23 55685 53986 53524 43390 66729 52188 47592 55819

ADENINE 2339463.26 1302758.45 0.56 -0.84 0.01 1689306 1161928 1134235 1225564 3035197 2213799 2323425 1785433

ADENOSINE 54069049.66 30173969.77 0.56 -0.84 0.01 39973288 28648531 25888629 26185431 68742644 50616086 56863714 40053754

ADENOSINE 3',5'-
CYCLIC PHOSPHATE 14047.31 14215.13 1.01 0.02 0.45 12344 16969 12414 15133 11839 15513 14076 14761

ADENOSINE 3',5'-
DIPHOSPHATE 530291.53 784852.53 1.48 0.57 0.02 834698 827313 826803 650597 291252 556424 589529 683961

ADENOSINE 
DIPHOSPHATE 
RIBOSE

404180.24 243499.16 0.60 -0.73 0.04 281379 211290 139805 341523 331723 399617 588883 296498

ALLANTOIN 15920.20 13620.29 0.86 -0.23 0.25 16140 6482 13517 18343 16763 10826 19736 16355

DEOXY
GUANOSINE 1308.00 17258.87 13.19 3.72 0.01 18234 26657 22067 2077 1618 1574 1096 944

DGDP 365305.71 506907.91 1.39 0.47 0.02 532008 533048 518567 444009 229113 400751 388182 443176

GUANINE 17309.23 66460.29 3.84 1.94 0.02 75193 99314 73977 17357 17421 20442 14862 16511

GUANOSINE 120098.27 66334.74 0.55 -0.86 0.04 92026 79566 53115 40632 180282 100672 124604 74835

GUANOSINE 
DIPHOSPHATE 33285.23 32200.91 0.97 -0.05 0.38 36797 35998 29969 26040 26953 32377 36427 37383

GUANOSINE 
MONOPHOSPHATE 235741.41 192332.86 0.82 -0.29 0.01 179432 212925 189582 187392 201202 253113 233191 255460

HYPOXANTHINE 495978.90 347615.67 0.70 -0.51 0.00 366180 363661 288116 372506 541407 493027 519218 430263

INOSINE 4070734.79 3180721.47 0.78 -0.36 0.04 4050237 3093037 2701045 2878567 4946050 3580159 4009055 3747675

INOSINE 
MONOPHOSPHATE 159783.13 109502.17 0.69 -0.55 0.00 89486 127856 97471 123195 164070 175151 138046 161866

OXALATE 3665258.80 3643834.45 0.99 -0.01 0.44 3904985 3688660 3519053 3462640 3756899 3408675 3725607 3769854

URATE 31182.76 35598.73 1.14 0.19 0.26 37702 46435 34214 24043 26788 41751 34968 21224

XANTHINE 17096.24 14339.97 0.84 -0.25 0.10 17409 16075 13603 10273 20423 15506 16190 16266

XANTHOSINE-
MONOPHOSPHATE 2907.07 1642.11 0.56 -0.82 0.00 2084 1905 1289 1290 3067 2931 3341 2290

CYTIDINE 37846.83 19864.91 0.52 -0.93 0.00 16118 19343 18081 25917 36452 34094 39862 40979

DEOXYURIDINE 19867.39 31843.61 1.60 0.68 0.02 37466 38872 30447 20589 16746 21910 20393 20420

THYMIDINE 1478.25 2751.86 1.86 0.90 0.03 3410 3352 3015 1231 1692 1695 1522 1005

URACIL 18641.27 12198.03 0.65 -0.61 0.01 12650 12928 11165 12049 24013 18167 17296 15089
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UREIDOPROPIONATE 786.46 1765.34 2.24 1.17 0.01 2119 2196 1785 961 668 943 732 803

URIDINE 51076.52 28911.37 0.57 -0.82 0.00 27968 28691 26019 32967 53816 47012 52444 51034

URIDINE 
5'-DIPHOSPHATE 23925.04 41919.21 1.75 0.81 0.09 64232 52880 34367 16198 15053 16598 27910 36140

URIDINE 
DIPHOSPHATE 
HEXOSE

2771010.15 3233394.17 1.17 0.22 0.17 3893516 3630399 3116601 2293061 2199116 2461013 3398853 3025058

URIDINE 
MONOPHOSPHATE 156306.81 163518.60 1.05 0.07 0.37 168229 146117 155237 184492 117676 150475 147331 209746

URIDINE 
TRIPHOSPHATE 1066.23 17716.99 16.62 4.05 0.01 28613 22073 16624 3558 0 1326 1352 1586

FAD 30704.49 22201.85 0.72 -0.47 0.01 24166 27848 16244 20550 28969 30861 28305 34683

HYPOTAURINE 1054.75 3745.35 3.55 1.83 0.04 6527 4753 2754 947 675 1821 767 956

TAURINE 1088928.95 1093569.38 1.00 0.01 0.48 1232780 1079862 1192234 869401 1146612 995155 1070941 1143008

CITRATE 23213583.84 24147004.87 1.04 0.06 0.31 26263727 27176237 22904138 20243918 21621713 22240977 23784181 25207464

ISOCITRATE 17951.04 15835.43 0.88 -0.18 0.12 18451 17868 13745 13278 19859 15314 18334 18297

MALATE 2366416.42 2274527.28 0.96 -0.06 0.22 2213051 2135220 2369731 2380107 2627258 2351513 2264930 2221964

SUCCINATE 159491.15 143628.13 0.90 -0.15 0.12 123084 131533 145133 174763 153701 173152 156601 154511

THIAMINE 150352.18 190794.75 1.27 0.34 0.19 155943 104408 286083 216745 188850 153327 102532 156700

SEROTONIN 206582.48 135302.02 0.65 -0.61 0.00 136252 145811 114117 145028 207162 223919 175352 219897

3-METHOXY
TYRAMINE 275919.49 135330.73 0.49 -1.03 0.02 218820 135268 118190 69045 356449 316217 292864 138149

3,4-DIHYDROXY
PHENYLGLYCOL 1425.12 1376.98 0.97 -0.05 0.43 1044 1543 930 1991 1371 1342 1513 1474

P-HYDROXY
PHENYLACETATE 26489.20 15649.06 0.59 -0.76 0.01 18196 15731 14207 14462 34147 23795 27772 20242

TYRAMINE 7905.45 3588.23 0.45 -1.14 0.09 3520 5021 4150 1663 7113 15885 5532 3091

ARGININE 19126204.34 13510927.22 0.71 -0.50 0.00 13244609 13355716 11797723 15645661 17036342 18467446 20626990 20374038

CITRULLINE 33658.35 48368.63 1.44 0.52 0.11 78440 45151 41081 28802 25376 37573 34399 37285

ISOLEUCINE 113249.84 96815.48 0.85 -0.23 0.07 97008 115348 78684 96222 116819 118533 94454 123194

LEUCINE 267217.32 237290.93 0.89 -0.17 0.12 213586 279844 219629 236104 245516 260349 245413 317592

N-ACETYLLEUCINE 88750.88 134644.01 1.52 0.60 0.03 134872 158757 141837 103110 95686 113116 39049 107152

VALINE 276674.54 236511.08 0.85 -0.23 0.00 234916 246748 231338 233042 269206 284327 277059 276106

RIBOFLAVIN 23205.17 19100.94 0.82 -0.28 0.11 20124 17326 20405 18548 31473 23557 18529 19261

PYRIDOXAL 11824.20 9736.44 0.82 -0.28 0.04 8636 9512 9018 11780 11605 13137 12546 10008
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Table 4.5. List of metabolites measured in PFSK-1 tumors and contralateral tissue using 
LC/MS

Metabolites PFSK1 
Contra Ave

PFSK-1 
Tumor Ave

Fold 
Change

Log2 
FC T-test PFSK-1 

Tumor 1
PFSK-1
Tumor 2

PFSK-1
Tumor 3

PFSK-1 
Tumor 4

PFSK-1 
Contra 1

PFSK-1 
Contra 2

PFSK-1
Contra 3

PFSK-1 
Contra 4

(2-aminoethyl)
phosphonate 10310.14 8857.78 0.86 -0.22 0.02 9362 8671 8658 8741 10182 11741 9359 9959

1-methyladenosine 5220.25 3050.25 0.58 -0.78 0.02 2074 3386 3783 2958 2905 5574 6344 6058

1-methylnicotinamide 19556.48 21453.61 1.10 0.13 0.18 17514 25726 22458 20117 17661 20100 19125 21340

1-methylnicotinamide 36162.94 357040.57 9.87 3.30 0.00 327878 566834 285652 247798 26033 34390 47070 37159

1,3-diaminopropane 2171.50 2644.00 1.22 0.28 0.07 2609 2404 2243 3320 1993 1964 2585 2144

10-hydroxydecanoate 160.57 130.75 0.81 -0.30 0.05 144 111 135 133 142 168 137 195

2-amino-2-methylpro-
panoate 411246.01 309768.90 0.75 -0.41 0.02 311548 242402 317748 367377 348620 424518 475950 395896

2-hydroxybutyric acid 6475.79 8271.03 1.28 0.35 0.37 20173 3415 4617 4879 15648 2677 3856 3722

2-hydroxypyridine 38949.11 31102.88 0.80 -0.32 0.15 31798 24518 42273 25823 53333 40530 34737 27196

2-oxobutanoate 1058.31 1369.35 1.29 0.37 0.07 1297 1821 1108 1251 825 1040 1075 1292

2'-deoxycytidine 
5'-monophosphate 347.35 410.98 1.18 0.24 0.19 429 364 399 452 303 217 354 516

2'-deoxyguanosine 
5'-monophosphate 615267.22 419903.69 0.68 -0.55 0.03 453703 256445 363890 605577 581764 535520 707686 636099

2'-deoxyuridine 5' 
triphosphate 10716.90 5534.45 0.52 -0.95 0.02 5084 3215 4645 9193 14092 7162 8825 12789

3-(4-hydroxyphenyl)
lactate 44727.65 48791.76 1.09 0.13 0.21 40170 49786 52438 52773 36387 40771 52814 48938

3-(4-hydroxyphenyl)
pyruvate 456.76 333.83 0.73 -0.45 0.06 362 237 228 508 485 422 461 459

3-aminoisobutanoate 7070.00 6085.50 0.86 -0.22 0.10 6732 4425 6117 7068 6815 7069 8064 6332

3-hydroxy-3-methyl-
glutarate 25662.77 28268.78 1.10 0.14 0.25 36045 26191 29642 21196 30772 26976 23173 21730

3-hydroxyanthranilate 2162.71 1984.69 0.92 -0.12 0.19 1766 2048 1953 2172 1918 2577 2282 1873

3-methoxytyramine 60975.00 34745.75 0.57 -0.81 0.07 30368 25297 47205 36113 17517 70163 71330 84890

3-methyglutaric acid 21436.07 18931.48 0.88 -0.18 0.15 17547 16702 20650 20826 26657 21813 18937 18338

3-methyl-2-oxindole 2739.15 3162.49 1.15 0.21 0.22 3120 2407 2735 4388 3444 2917 2500 2096

3,4-dihydroxy-l-
phenylalanine 4316.75 8278.00 1.92 0.94 0.05 14267 6213 5716 6916 4695 4330 4632 3610

3,4-dihydroxyphenyl 
glycol 796.87 704.86 0.88 -0.18 0.31 569 513 750 988 1167 468 843 709

3,4-dihydroxypheny-
lacetate 1572.39 2503.79 1.59 0.67 0.00 2422 2693 2312 2589 1544 1483 1415 1847

3',5'-cyclic amp 9467.75 6998.00 0.74 -0.44 0.10 8756 4180 6690 8366 6752 7831 12995 10293

4-aminobenzoate 1155247.97 3694018.44 3.20 1.68 0.04 525644 3716332 5595214 4938883 543762 1057643 1925099 1094488

4-aminobutanoate 
(GABA) 1781020.88 1445762.98 0.81 -0.30 0.03 1464177 1118035 1548311 1652530 1593468 1864470 1994189 1671957

4-guanidinobutanoate 1724346.25 1973120.25 1.14 0.19 0.10 2151353 1655114 1816063 2269951 1519767 1615933 1922226 1839459

4-imidazoleacetic acid 4590.16 3972.35 0.87 -0.21 0.03 4439 3313 3927 4210 4875 4500 4417 4568

4-pyridoxate 12255.75 25572.89 2.09 1.06 0.02 37787 22782 18610 23113 21932 7383 8806 10902

5-hydroxy
indoleacetate 3933.65 4151.32 1.06 0.08 0.42 2281 4111 5545 4669 6052 3690 4011 1982

5'-deoxyadenosine 4664.05 5593.72 1.20 0.26 0.22 2818 7326 7269 4961 5468 4823 4207 4159

5'-methylthioadenosine 1831122.00 2134306.50 1.17 0.22 0.15 1632175 2353931 2357067 2194053 1364417 1795138 2374725 1790208

acetoin 1682.05 1131.64 0.67 -0.57 0.04 1474 609 1086 1358 1525 1302 2166 1735

acetylcarnitine 19251401.94 38696504.64 2.01 1.01 0.00 32326446 48516253 40482308 33461012 25946250 18766428 14178618 18114312

acetylcholine 171581.00 87335.25 0.51 -0.97 0.00 108223 44341 96541 100236 175686 122092 202816 185730

adenine 2514512.00 1584364.25 0.63 -0.67 0.03 2069123 962845 1322741 1982748 1801590 3141171 2578739 2536548

adenosine 36998857.02 23761029.27 0.64 -0.64 0.03 28837494 13072156 20754111 32380356 28453670 44978166 38006854 36556738

adenosine 2',3'-cyclic 
monophosphate 30597.26 22714.16 0.74 -0.43 0.08 26254 13371 23037 28195 25700 25150 41087 30451
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adenosine 3',5'-cyclic 
monophosphate 12954.50 9892.00 0.76 -0.39 0.14 13492 5426 8119 12531 10195 10015 17357 14251

adenosine 3',5'-diphos-
phate 388784.15 387124.54 1.00 -0.01 0.49 399244 384231 403427 361597 331373 321115 541119 361530

adenosine 5'-diphos-
phoribose 112107.06 131068.73 1.17 0.23 0.26 184826 73073 149516 116859 143114 93219 126011 86084

adenosine 5'-mono-
phosphate 560491.33 416305.06 0.74 -0.43 0.06 408176 250860 388712 617473 555558 492694 573932 619781

adenosine 5'-triphos-
phate 1208.26 5221.32 4.32 2.11 0.00 4080 6983 6290 3532 1118 794 1883 1038

agmatine 274634.24 843285.86 3.07 1.62 0.00 1006877 854792 820341 691133 392017 197590 296562 212367

alanine 2457499.21 2572198.43 1.05 0.07 0.08 2588725 2478400 2574620 2647049 2385844 2370596 2639557 2434000

alpha-aminoadipate 130601.99 241151.62 1.85 0.88 0.00 258950 174152 284160 247343 149954 108385 138445 125624

alpha-d-glucose 1206.86 2749.52 2.28 1.19 0.12 603 5918 3136 1341 617 1250 1507 1453

anserine 116232.05 75309.57 0.65 -0.63 0.03 99162 50199 61622 90256 88196 99075 147049 130609

anthranilate 6081.10 5292.89 0.87 -0.20 0.19 3983 4648 5309 7231 6442 5725 7049 5108

arginine 15749940.75 17001873.00 1.08 0.11 0.39 13275339 11170671 15875524 27685958 13656190 12487111 20482836 16373626

asparagine 22412.25 20127.00 0.90 -0.16 0.31 29067 13913 16284 21244 14262 25368 28025 21994

aspartate 1213595.12 1039588.37 0.86 -0.22 0.01 953061 1009271 1101275 1094746 1076413 1264893 1239531 1273543

azelaic acid 12944.15 15753.41 1.22 0.28 0.19 19926 10056 12988 20044 17491 11532 12197 10556

benzaldehyde 466645.25 475323.00 1.02 0.03 0.42 533218 377604 528473 461997 500545 440196 439014 486826

benzoate 28273.70 24600.28 0.87 -0.20 0.28 27988 17537 19659 33217 23550 17234 35721 36590

beta-alanine 46346.02 36820.55 0.79 -0.33 0.14 35427 29620 40426 41810 29769 46193 65794 43627

beta-nicotinamide 
adenine dinucleotide 
phosphate

14228.87 13769.00 0.97 -0.05 0.41 13670 11199 14800 15407 9262 13876 17165 16612

betaine 7487130.86 32289506.80 4.31 2.11 0.00 26397313 32330154 39373788 31056772 10870202 5802463 6924567 6351292

bilirubin 57040.25 904807.50 15.86 3.99 0.00 1340083 460900 1009317 808930 60999 51289 50610 65263

biotin 11916.18 43755.19 3.67 1.88 0.02 30546 78325 40655 25495 19758 10161 8423 9322

butyrylcarnitine 9563607.50 32021501.32 3.35 1.74 0.00 28310074 38480923 38120363 23174645 13609847 6803074 10774892 7066617

cadaverine 6937.00 19952.50 2.88 1.52 0.01 31945 13596 16493 17776 7889 5233 8891 5735

carnitine 21234503.31 30770326.20 1.45 0.54 0.00 30593260 26866046 32820404 32801595 23819319 18845697 22254889 20018109

cdp-ethanolamine 18850.32 14020.98 0.74 -0.43 0.05 14741 10999 13158 17185 14764 16631 24864 19142

choline 50420718.40 50689096.67 1.01 0.01 0.43 47581010 51369357 53748306 50057714 52209893 48718789 51692601 49061590

cis-4-hydroxy-proline 1951148.99 3620789.56 1.86 0.89 0.01 3416647 4676476 3836534 2553502 2024994 1906638 2196994 1675970

citicoline 578.44 706.25 1.22 0.29 0.21 705 906 564 650 394 514 969 437

citrate 5603314.33 6671730.53 1.19 0.25 0.16 8114409 5137662 5787244 7647607 6866558 3848777 6526201 5171722

citrate 3905.50 3865.50 0.99 -0.01 0.44 3984 4317 3651 3510 3955 4007 4231 3429

citrulline 34022.52 122456.39 3.60 1.85 0.00 110132 137057 133708 108929 33474 31401 33468 37747

cmp 11374.20 10587.37 0.93 -0.10 0.26 11374 8978 9388 12609 12018 9013 12603 11863

CMP 116045.77 85956.93 0.74 -0.43 0.10 84328 60263 73638 125600 93639 95257 159165 116121

creatine 80021091.29 72781440.13 0.91 -0.14 0.05 76875844 64066483 71586604 78596830 78688331 76205226 83698911 81491897

creatinine 5238483.77 3801864.38 0.73 -0.46 0.00 3276703 3857456 3710166 4363133 4569981 5527714 5594487 5261753

cystathionine 35784.95 114917.61 3.21 1.68 0.01 170315 75096 75157 139102 38400 16214 57118 31407

cytidine 608551.57 393234.03 0.65 -0.63 0.02 442041 211917 376795 542184 463613 652958 685661 631973

cytidine 5'-triphos-
phate 497.62 262.72 0.53 -0.92 0.00 367 184 231 268 479 503 472 537

cytosine 186276.30 496053.01 2.66 1.41 0.01 352249 769259 555220 307483 173868 151002 169172 251064

d-(-)-3-phosphoglyc-
eric acid 44288.52 86418.66 1.95 0.96 0.04 140722 63812 70081 71061 32070 34635 70229 40220

d-glucosamine 
6-phosphate 56927.38 60003.41 1.05 0.08 0.43 77617 41873 39540 80984 44563 34676 58501 89970

DAMP 50474.72 39294.79 0.78 -0.36 0.19 48610 26147 33109 49312 26743 42009 75668 57479

decanoylcarnitine 542729.60 1019438.78 1.88 0.91 0.04 1220431 821555 1020073 1015695 1147746 193773 482669 346730

dehydroascorbate 28242.45 30215.68 1.07 0.10 0.12 29388 28613 29678 33183 31427 27988 27252 26302

deoxycarnitine 8039111.01 9813492.29 1.22 0.29 0.04 10036340 7853832 9745082 11618715 7448761 7707023 9060559 7940101

deoxycytidine 121334.61 339807.08 2.80 1.49 0.01 256278 523245 375553 204152 114089 108168 111900 151181

deoxyribose 5381.00 5166.48 0.96 -0.06 0.23 4929 4700 5912 5126 5334 5375 5500 5314

deoxyuridine 5310.28 8861.80 1.67 0.74 0.00 8236 10156 9274 7781 4977 5108 5636 5520

diethanolamine 9602.39 6465.09 0.67 -0.57 0.03 7836 4560 4942 8522 10449 7676 8803 11481
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dihydroorotate 4797.13 12274.61 2.56 1.36 0.00 12403 12765 13003 10927 5748 4397 4936 4108

dihydrouracil 5719.00 4140.75 0.72 -0.47 0.07 4129 2373 4307 5754 4889 4490 6876 6621

epinephrine 12342.95 25572.89 2.07 1.05 0.02 37787 22782 18610 23113 21932 7383 8806 11251

ethanolamine 547501.66 486165.97 0.89 -0.17 0.28 597074 301880 414386 631324 488914 403119 666292 631681

ethanolamine
phosphate 74249.29 82813.83 1.12 0.16 0.13 92765 83900 85926 68663 59769 80623 77935 78670

ferulate 418405.00 388720.75 0.93 -0.11 0.32 518300 347508 380847 308228 449489 504459 397781 321891

flavin adenine dinu-
cleotide 45537.25 35827.00 0.79 -0.35 0.10 41245 24011 31871 46181 34220 44750 56412 46767

fructose 15565.46 17834.88 1.15 0.20 0.03 17592 16742 17886 19119 17193 14201 16836 14031

fumarate 59812.63 62691.38 1.05 0.07 0.22 68956 61659 65943 54207 61103 58193 62438 57515

galactarate 841.58 2274.14 2.70 1.43 0.00 1755 3233 2229 1880 633 791 998 944

galactose 1-phosphate 478591.93 297336.86 0.62 -0.69 0.01 308467 188695 268416 423769 486447 437372 519013 471535

glucono-1,5-lactone 4600.14 4421.85 0.96 -0.06 0.34 4645 3434 4530 5079 4517 4086 5138 4660

gluconolactone 4600.14 4421.85 0.96 -0.06 0.34 4645 3434 4530 5079 4517 4086 5138 4660

glucose 1-phosphate 478760.86 294444.12 0.62 -0.70 0.00 301688 190643 272106 413340 487261 434164 520600 473018

glucose or fructose 
6-phosphate 78673.11 61025.84 0.78 -0.37 0.05 65119 50099 53021 75864 82986 59482 92754 79470

glutamic acid 1220179.36 1251052.58 1.03 0.04 0.36 1145944 1426484 1294161 1137622 1143335 1156966 1280537 1299880

glutamic acid 17728254.32 14746156.03 0.83 -0.27 0.05 15473884 12531738 13722508 17256494 16033201 16316655 21035301 17527860

glutamine 25701059.61 22179708.48 0.86 -0.21 0.10 24575523 16882613 20951639 26309059 26705955 23656613 28892927 23548743

glutarylcarnitine 484376.31 684520.06 1.41 0.50 0.06 663939 488938 708203 877001 706679 367780 447538 415508

glutathione red 653647.74 692771.65 1.06 0.08 0.35 863180 487416 824869 595621 614050 647563 739023 613955

glycerate 2738.55 3345.65 1.22 0.29 0.11 3357 4101 2487 3438 1992 2531 3022 3409

glycerol 781.95 861.81 1.10 0.14 0.24 961 648 808 1030 800 595 846 888

glycerol 3-phosphate 203430.15 289289.37 1.42 0.51 0.04 217639 314974 280394 344151 147043 176984 287253 202441

glycine 17878.08 36197.83 2.02 1.02 0.00 42870 35012 32172 34738 20077 15503 19950 15983

glycochenodeoxy-
cholate 199862.63 400447.80 2.00 1.00 0.08 699921 242235 269043 390592 419369 101272 135127 143681

glycolate 26127.15 30327.55 1.16 0.22 0.09 34494 31320 24302 31194 23826 23375 26471 30836

guanine 45775.25 50545.00 1.10 0.14 0.32 59195 37012 45290 60683 27866 37081 54052 64102

guanosine 98077.00 56930.50 0.58 -0.78 0.02 79199 34632 46822 67069 66070 127266 97737 101235

guanosine 5'-diphos-
phate 13082.09 10660.99 0.81 -0.30 0.12 11823 7534 9740 13548 12310 10785 17105 12128

guanosine 5'-diphos-
pho-mannose 8331.01 6317.49 0.76 -0.40 0.08 5669 5144 6578 7879 5866 8176 11315 7967

guanosine 5'-mono-
phosphate 184672.96 119367.95 0.65 -0.63 0.02 120460 74835 107060 175117 161992 171413 215063 190224

hexanoylcarnitine 1810593.75 5430932.89 3.00 1.58 0.00 6474783 4390746 5605898 5252305 2760126 941741 2014493 1526015

hippurate 1711.16 13033.64 7.62 2.93 0.05 510 24275 20824 6526 321 2725 2124 1675

histamine 48892.50 27262.00 0.56 -0.84 0.11 22933 27894 30420 27801 74685 27338 17391 76156

homocysteine 4192.00 3503.25 0.84 -0.26 0.31 5603 1918 1749 4743 2359 3002 5868 5539

homoserine 584330.58 1175611.24 2.01 1.01 0.00 1346063 943254 1112787 1300341 650004 477568 618521 591228

hydroxykynurenine 123.72 194.57 1.57 0.65 0.04 153 261 185 179 188 106 116 85

hydroxypyruvate 23669.28 59135.18 2.50 1.32 0.27 211469 5011 8100 11961 78050 3950 5886 6791

hypotaurine 3273.78 31976.36 9.77 3.29 0.01 16916 51699 38746 20544 5000 2078 2708 3309

hypoxanthine 700732.25 538750.50 0.77 -0.38 0.09 496559 392885 443087 822471 622303 651957 817754 710915

inosine 10857187.79 9921842.29 0.91 -0.13 0.15 8495976 9849319 9622040 11720034 11669679 10919044 11336005 9504023

inosine 5'-diphosphate 20556.86 23258.15 1.13 0.18 0.19 24592 20760 23511 24169 14982 18432 27688 21125

inosine 5'-monophos-
phate 84824.83 58506.53 0.69 -0.54 0.04 70140 36745 44568 82574 85421 68168 88625 97085

isocitric acid 5510.65 5490.07 1.00 -0.01 0.49 6206 3430 4846 7479 6835 4200 6278 4729

isoleucine 118871.90 208103.92 1.75 0.81 0.01 228829 250200 220445 132941 140588 103384 136702 94814

isovalerylcarnitine 8117677.87 24341242.70 3.00 1.58 0.00 17380947 24512605 34603573 20867845 11853042 5702825 9416012 5498833

ketoleucine 8289.26 8008.32 0.97 -0.05 0.43 9875 4848 7304 10007 7690 5474 9682 10310

kynurenic acid 912.79 4356.33 4.77 2.25 0.00 3090 5659 3179 5499 482 1020 592 1558

kynurenine 1587.04 3017.26 1.90 0.93 0.00 3433 3295 2522 2819 2215 1362 1455 1316

L-DOPA 4469.25 9734.00 2.18 1.12 0.05 17607 6893 7234 7202 4502 4335 4611 4429

lactate 33842.61 37198.28 1.10 0.14 0.01 37730 35263 37849 37952 35155 32165 35795 32256
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lauroylcarnitine 3500054.43 4477028.15 1.28 0.36 0.27 6519389 3158268 3838880 4391575 7296892 1672141 2664326 2366859

leucine 209850.50 394880.50 1.88 0.91 0.01 383539 517231 435111 243641 209345 215546 228818 185693

lumichrome 3267.52 2777.43 0.85 -0.23 0.03 2796 2313 2960 3041 3030 3371 3635 3034

lumichrome 13620.15 13241.67 0.97 -0.04 0.45 14847 6467 17479 14174 11409 11862 18020 13190

malate 3648743.89 3826346.98 1.05 0.07 0.15 4190502 3586454 3781522 3746909 3881260 3597814 3667616 3448285

malonate 23673.45 59218.22 2.50 1.32 0.27 211469 5011 8432 11961 78050 3966 5886 6791

melatonin 7427.33 7404.28 1.00 0.00 0.49 8638 5145 6580 9254 7542 5023 9114 8030

meso-tartaric acid 105563.50 123920.00 1.17 0.23 0.05 128878 132313 123875 110614 92355 113006 124978 91915

methionine 157286.91 213996.11 1.36 0.44 0.07 160546 295123 194309 206006 106005 184761 160070 178311

methyl beta-D-galac-
toside 1060969.50 1087159.00 1.02 0.04 0.43 1440092 801419 1073972 1033153 1092000 1055115 1077491 1019272

methyl indole-3-ac-
etate 7792.07 7728.44 0.99 -0.01 0.49 4450 4945 12374 9144 6116 5612 11076 8364

methylmalonate 64046.03 68931.61 1.08 0.11 0.28 54213 74405 75500 71609 50923 59781 79793 65687

n-acetyl-dl-glutamic 
acid 180165.06 170630.32 0.95 -0.08 0.26 192526 161325 161172 167499 206498 163057 194658 156448

N-acetyl-glutamic acid 7869.20 7738.29 0.98 -0.02 0.48 4450 4945 12374 9184 6132 5617 11221 8507

n-acetyl-l-aspartic acid 4793461.63 4127575.00 0.86 -0.22 0.04 4513625 3463844 3938655 4594175 4401913 5079862 4728745 4963326

N-acetylputrescine 10326.40 309931.77 30.01 4.91 0.00 299380 462425 325372 152550 15208 9272 9895 6930

N-acetylserine 461359.58 522044.32 1.13 0.18 0.19 401040 554842 622582 509713 578326 378116 460293 428703

N-alpha-acetyl-lysine 14146522.19 11014292.59 0.78 -0.36 0.09 14266904 7407136 7480351 14902780 14178155 13151740 15083106 14173088

N-amidino-aspartate 
(guanidinosuccinic 
acid)

34022.52 122456.39 3.60 1.85 0.00 110132 137057 133708 108929 33474 31401 33468 37747

N-methyl-aspartic acid 182065.56 159718.09 0.88 -0.19 0.11 173969 124706 146855 193342 183072 168392 199883 176915

N,N-dimethyl-arginine 
(sdma or adma) 1136337.48 2171259.11 1.91 0.93 0.00 2330673 2519208 1905313 1929842 912374 1157049 1209819 1266108

nad 73446.91 59734.60 0.81 -0.30 0.12 53600 44588 62759 77991 54761 68039 83885 87103

NAD 1158240.50 704657.00 0.61 -0.72 0.10 825463 403956 546441 1042768 468040 917510 1757664 1489748

nepsilon,nepsilon,nep-
silon-trimethyllysine 14146522.19 11014292.59 0.78 -0.36 0.09 14266904 7407136 7480351 14902780 14178155 13151740 15083106 14173088

nicotinamide 23162293.50 17706011.75 0.76 -0.39 0.03 18155575 18000048 17509324 17159100 27593926 25187488 23391297 16476463

nicotinamide hypoxan-
thine dinucleotide 9345.86 7615.86 0.81 -0.30 0.09 6615 6781 7681 9387 9072 6823 11184 10305

nicotinamide mononu-
cleotide 1902.72 1334.69 0.70 -0.51 0.00 1182 1428 1335 1393 1581 2216 1938 1876

nicotinate 368586.50 285102.50 0.77 -0.37 0.04 321800 254770 270468 293372 439877 355629 405215 273625

nicotinic acid adenine 
dinucleotide phosphate 1424.75 1204.46 0.85 -0.24 0.30 1005 718 1151 1943 996 1041 2269 1393

norleucine 1951148.99 3620789.56 1.86 0.89 0.01 3416647 4676476 3836534 2553502 2024994 1906638 2196994 1675970

normetanephrine 12342.95 25572.89 2.07 1.05 0.02 37787 22782 18610 23113 21932 7383 8806 11251

norvaline 253439.50 481777.00 1.90 0.93 0.00 441614 617340 498798 369356 259715 233209 246677 274157

o-succinyl-homoserine 17774.90 13678.18 0.77 -0.38 0.22 17163 6578 7213 23759 17284 10316 24237 19263

octanoylcarnitine 60040.72 190753.33 3.18 1.67 0.00 191350 184606 237422 149635 110203 21598 61539 46823

octopamine 6550.99 2356.49 0.36 -1.48 0.05 4105 1250 2779 1292 712 7376 7756 10360

ophthalmic acid 18208.68 48793.93 2.68 1.42 0.20 148532 14418 17108 15117 42289 9236 11903 9407

orotic acid 18336.85 45127.95 2.46 1.30 0.00 37560 56213 56024 30715 17004 19693 21644 15006

oxaloacetate 486.53 2709.09 5.57 2.48 0.00 3308 3583 2724 1221 768 332 462 384

oxoadipate 839.22 724.36 0.86 -0.21 0.26 535 1016 654 693 855 1152 500 850

palmitoylcarnitine 18138466.00 25161638.00 1.39 0.47 0.05 28485519 20443095 25516186 26201752 27462422 11893624 17176763 16021055

pantothenic acid 2197704.75 4757795.25 2.16 1.11 0.00 6358219 4689392 4126839 3856731 3375253 1779134 1670175 1966257

phenylalanine 839348.00 1192792.25 1.42 0.51 0.00 1097666 1422787 1227564 1023152 917864 829526 831353 778649

phenylethanolamine 291680.87 278289.09 0.95 -0.07 0.29 242300 251309 285322 334226 299716 266462 308559 291987

phospho(enol)pyruvic 
acid 20462.74 44174.32 2.16 1.11 0.03 73000 38828 37681 27189 17417 19320 31354 13759

phosphocreatine 157.16 1814.78 11.55 3.53 0.02 2116 3364 1318 461 192 52 234 150

phosphoribosyl pyro-
phosphate 1105.88 910.72 0.82 -0.28 0.25 949 832 706 1156 709 954 1841 920

proline 2181579.70 5189700.08 2.38 1.25 0.01 3731130 7384704 5946589 3696377 1912869 2293815 2466574 2053061

propionylcarnitine 15658616.47 35214408.03 2.25 1.17 0.00 35796112 31565260 37540965 35955296 19125951 13433319 17278603 12796593

pterin 2217.28 2655.13 1.20 0.26 0.06 2227 3112 2945 2337 2356 2070 2376 2067
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putrescine 124729.83 541934.90 4.34 2.12 0.00 523421 542072 562222 540025 213049 79025 103979 102865

pyridoxamine 209588.52 212404.68 1.01 0.02 0.44 221266 184121 221125 223107 244342 204389 174764 214859

pyrimidine 58757.28 44802.28 0.76 -0.39 0.09 56333 36132 48575 38169 74605 63542 59015 37868

riboflavin 11058.54 11162.68 1.01 0.01 0.48 9525 9670 11357 14099 8639 13437 14341 7817

ribose 5-phosphate 32685.46 45763.27 1.40 0.49 0.04 57908 37913 51326 35906 38599 36408 23920 31815

s-(5'-adenosyl)-homo-
cysteine 16535.00 12641.50 0.76 -0.39 0.06 13515 9187 12361 15503 13674 17356 14270 20840

s-(5'-adenosyl)-l-ho-
mocysteine 53615.96 46742.42 0.87 -0.20 0.18 44692 34649 54105 53523 39729 54675 64605 55456

sarcosine 2457508.12 2560247.62 1.04 0.06 0.12 2597495 2425793 2572843 2644859 2390755 2362907 2638807 2437562

serine 365119.21 351812.64 0.96 -0.05 0.39 353366 267851 323606 462427 347952 327209 413104 372212

serotonin 104683.85 53952.53 0.52 -0.96 0.00 41510 54319 68721 51260 75732 110720 126859 105425

stearoylcarnitine 3810927.48 6038407.26 1.58 0.66 0.00 5816193 6668153 6456556 5212727 5091819 3038479 3790241 3323171

suberic acid 7494.68 6605.97 0.88 -0.18 0.15 8386 6566 5348 6124 6607 7277 7400 8695

taurine 1108070.20 1043734.16 0.94 -0.09 0.30 1080511 866428 1028548 1199449 874934 1103750 1333225 1120371

tetradecanoylcarnitine 11650349.50 13634152.50 1.17 0.23 0.29 19448022 10708709 12129428 12250451 19805802 6917550 10976500 8901546

thiamine 634045.25 1023039.75 1.61 0.69 0.06 565205 1501539 1170614 854801 415169 627077 799354 694581

thiamine pyrophos-
phate 363.95 472.05 1.30 0.38 0.01 503 401 480 504 430 331 380 316

threonine 584330.58 1175611.24 2.01 1.01 0.00 1346063 943254 1112787 1300341 650004 477568 618521 591228

thymidine 5'-mono-
phosphate 484.38 2167.95 4.48 2.16 0.00 2194 2773 2098 1608 431 377 611 518

thymine 3779.00 4217.50 1.12 0.16 0.16 3833 4204 4214 4619 4422 3096 3206 4392

thyrotropin releasing 
hormone 1547.00 556.00 0.36 -1.48 0.03 812 517 365 530 2389 2084 980 735

trans-4-hydroxy-
proline 1231193.31 2201128.76 1.79 0.84 0.00 2352869 2599851 2208203 1643591 1471552 1108482 1334025 1010714

trans-aconitate 48024.39 51804.71 1.08 0.11 0.33 67756 39258 42939 57266 60302 39122 51597 41075

trigonelline 1244933.75 4211355.25 3.38 1.76 0.03 626278 4840581 6794279 4584283 560062 1294509 1902684 1222480

tryptophan 163905.18 244474.26 1.49 0.58 0.01 196383 271628 253782 256104 184793 116113 172432 182282

tyrosine 75114.12 101819.11 1.36 0.44 0.02 76415 108280 107785 114796 60368 73285 78202 88601

uracil 12161.75 12249.43 1.01 0.01 0.47 10807 10744 12611 14835 10720 11027 14399 12501

urate 107833.81 175154.80 1.62 0.70 0.00 152064 193683 182980 171893 110152 94177 109877 117129

uridine 70982.00 44387.75 0.63 -0.68 0.01 52117 28919 33868 62647 58005 75476 81060 69387

uridine 5'-diphosphate 55060.45 77495.75 1.41 0.49 0.11 107997 44020 67590 90375 41322 43218 78648 57053

uridine 5'-diphospho-
glucuronic acid 6539.36 32944.77 5.04 2.33 0.00 35274 38456 34924 23125 5536 5697 8980 5945

uridine 5'-triphosphate 4489.57 2995.14 0.67 -0.58 0.03 2777 1814 2919 4471 3919 4043 5014 4982

uridine-5-monophos-
phate 65577.88 74348.69 1.13 0.18 0.22 87256 63215 63977 82947 61609 45692 87310 67701

valine 488469.37 933616.65 1.91 0.93 0.00 866370 1128166 999216 740714 531929 447982 482617 491351

xanthine 8866.00 7538.25 0.85 -0.23 0.18 7596 6849 6078 9630 7386 11834 9146 7098

xanthosine 1176.28 1028.33 0.87 -0.19 0.29 909 610 988 1607 949 1097 1622 1038

xanthosine-monophos-
phate 5203.85 3148.12 0.60 -0.73 0.00 3135 2070 3259 4128 4886 4947 5879 5104

xanthurenic acid 1343.37 2455.89 1.83 0.87 0.01 1820 3076 2266 2662 1090 1110 1459 1713
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Table 4.6. List of metabolites measured in CNS-NPC tumors and contralateral tissue 
using 1H NMR

Metabolite Name
Tumor Contralateral

1950 1951 1952 2474 2475 2658 2659 1950 1951 1952 2474 2475 2658 2659
Alanine 1.66 1.13 1.72 1.71 1.91 0.83 0.54 1.46 1.98 1.89 1.69 1.71 1.28 1.13
Phospho-Choline 1.31 0.91 0.67 0.34 0.75 0.71 0.52 0.79 0.15 0.66 0.36 0.57 0.18 0.26
Creatine 5.04 4.85 4.22 4.02 4.29 4.80 3.53 4.57 4.97 4.88 4.01 4.57 4.31 4.16
Phospho-Creatine 5.20 2.82 3.90 3.45 3.14 4.27 4.24 4.47 3.09 3.70 3.44 3.44 4.31 4.19
Gamma 
aminobutyric acid

2.78 0.57 0.36 1.68 2.16 2.58 1.72 1.78 1.34 1.58 1.69 1.79 2.55 2.54

Glutamine 3.93 3.13 3.63 2.52 2.96 2.75 3.28 2.70 2.59 1.94 2.48 2.66 2.26 3.76
Glutamate 7.07 5.60 4.70 6.24 5.91 6.31 6.90 7.57 6.75 6.24 6.25 6.57 5.81 6.75
Glutathione 2.09 1.26 1.54 1.25 1.08 0.92 0.80 1.73 1.40 1.51 1.26 1.33 1.35 1.19
Glycine 1.61 2.72 1.58 0.62 1.78 1.17 1.05 1.25 0.97 0.74 0.69 1.13 0.99 1.00
Inositol 20.36 24.73 25.21 8.29 8.72 9.52 5.64 7.97 7.39 8.06 8.27 7.47 8.12 5.51
Lactate 5.24 4.37 3.98 5.75 6.13 4.13 4.44 5.41 5.87 5.98 5.74 6.61 4.50 5.56
N-acetyl aspartate 5.05 1.64 2.35 5.77 5.41 6.14 5.56 6.44 7.22 6.83 5.75 7.27 7.01 6.86
Taurine 15.89 10.80 11.85 12.89 13.10 8.33 7.24 13.82 14.83 13.99 12.87 13.98 8.70 10.90
Ascorbate 
(vitamin C)

4.73 5.00 4.72 0.99 0.76 1.58 0.67 1.61 1.29 1.94 1.00 1.07 2.49 1.40

N-acetyl-
aspartyl-glutamate

0.75 1.16 1.98 0.56 0.36 0.42 0.60 0.00 0.40 0.31 0.59 0.05 0.26 0.29

Glycerophospho-
choline

0.94 1.05 1.03 0.65 0.33 0.58 0.75 0.24 0.89 0.27 0.64 0.00 0.55 0.53

phosphoethanol-
amine

6.26 8.49 8.70 3.21 3.11 2.61 1.74 3.71 3.40 3.65 3.16 3.27 2.05 2.20

Macromolecules 2.14 1.83 1.79 1.98 1.95 1.89 1.75 1.95 2.11 1.90 1.98 2.02 1.93 1.84
NAA + NAAG 5.80 2.80 4.33 6.33 5.77 6.56 6.15 6.44 7.62 7.13 6.33 7.32 7.27 7.15
Ratio of glu / glu 
+ gln

0.64 0.64 0.56 0.71 0.67 0.70 0.68 0.74 0.72 0.76 0.72 0.71 0.72 0.64

Total choline 2.25 1.96 1.70 0.99 1.09 1.29 1.26 1.03 1.04 0.93 1.00 0.57 0.73 0.79
Total creatine 10.23 7.67 8.12 7.47 7.43 9.07 7.76 9.04 8.06 8.57 7.45 8.01 8.62 8.34
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Table 4.7. List of metabolites measured in PFSK-1 tumors using 1H NMR

Metabolite Name
Tumor

M1 M2 M3 M4 M8 M9 3295 3323 3322 3324
Alanine 2.012 3.364 3.556 0.385 2.5 0.236 0.773 1.273 0.951 0.217
Phospho-Choline 0.826 1.086 3.29 1.093 2.645 3.642 2.163 0.464 0.72 1.922
Creatine 4.635 3.568 4.248 2.14 3.71 3.646 4.943 4.216 4.159 3.761

Phospho-Creatine 4.239 2.84 1.43 1.811 2.299 9.17E-02 0.31 3.298 3.389 0

Gamma 
aminobutyric acid 2.208 0.901 8.82E-02 0 7.90E-02 0 0.489 1.727 1.283 0.21

Glutamine 2.98 2.403 0.198 0.808 1.35 0.318 1.474 3.11 2.44 1.601
Glutamate 7.361 6.29 7.95 2.644 6.49 4.446 6.262 6.067 7.544 4.308
Glutathione 1.481 1.563 1.004 1.969 0.969 1.714 1.698 0.963 1.398 0.958
Glycine 1.183 2.944 5.594 3.157 4.062 5.391 4.494 1.737 1.426 2.909
Inositol 9.605 4.524 3.899 4.482 6.541 1.616 5.287 5.362 5.134 5.342
Lactate 6.05 13.835 27.316 9.981 14.346 15.936 8.025 7.462 4.988 6.169
N-acetyl aspartate 6.355 3.616 1.164 1.348 1.391 0.792 1.745 5.159 5.676 1.595
Taurine 15.143 9.898 5.555 7.48 6.681 6.433 9.031 12.016 11.232 6.801
Ascorbate (vitamin 
C) 1.757 0.845 1.512 2.147 1.517 3.077 3.141 1.364 1.673 0.802

N-acetyl-
aspartyl-glutamate 0.373 0 1.108 0.389 0.757 1.932 0.706 0.202 0.394 0.605

Glycerophospho-
choline 0.48 0.229 0 0.508 0 0.876 0.769 0.325 0.219 0

phosphoethanol-
amine 3.545 3.475 4.453 2.959 3.377 0.177 2.168 2.333 1.901 2.549

Macromolecules 1.987 2.029 2.472 1.464 2.049 1.941 1.671 1.924 1.854 1.599
NAA + NAAG 6.728 3.616 2.273 1.737 2.148 2.724 2.45 5.361 6.07 2.2
Ratio of glu / glu 
+ gln 10.341 8.693 8.147 3.452 7.84 4.764 7.735 9.177 9.984 5.909

Total choline 1.306 1.315 3.29 1.6 2.645 4.519 2.932 0.789 0.94 1.922
Total creatine 8.874 6.408 5.679 3.951 6.009 3.737 5.254 7.514 7.547 3.761
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Table 4.8. List of metabolites measured in PFSK-1 contralateral tissue using 1H NMR

Metabolite Name
Contralateral

M1 M2 M3 M4 M8 M9 3295 3323 3322 3324
Alanine 1.674 7.50E-02 1.475 1.223 1.786 0.854 1.072 1.568 1.786 1.137
Phospho-Choline 0.95 0.611 0 0.568 0.381 0 0.273 0 0.42 0
Creatine 4.859 3.257 3.693 2.973 3.672 4.21 4.192 4.865 4.111 4.956
Phospho-Creatine 4.777 4.239 4.807 5.444 3.953 3.355 4.208 2.798 4.309 2.932
Gamma aminobu-
tyric acid 2.613 1.714 2.86 1.356 1.592 0.752 2.858 2.755 1.189 1.728

Glutamine 2.78 2.655 2.481 2.738 2.556 3.298 3.384 3.294 3.221 3.522
Glutamate 8.272 9.573 7.651 8.409 8.036 4.813 7.406 6.686 9.113 7.443
Glutathione 1.612 1.635 1.036 1.433 1.118 0.645 1.386 1.224 1.076 1.345
Glycine 0.136 0.79 1.224 1.109 1.312 0 1.182 1.214 0.807 1.383
Inositol 8.779 6.852 6.86 6.616 7.587 5.368 5.545 5.237 4.878 7.527
Lactate 5.153 2.948 5.26 3.154 4.53 3.493 4.517 5.505 3.561 3.146
N-acetyl aspartate 8.302 8.235 7.192 7.852 7.497 4.822 6.709 6.862 7.632 7.143
Taurine 15.055 12.963 14.515 13.136 14.644 14.019 11.609 13.679 11.134 14.04
Ascorbate 
(vitamin C) 1.55 0.752 1.735 1.119 1.289 3.862 2.334 1.101 2.432 0

N-acetyl-
aspartyl-glutamate

7.35E-
03 0.569 0.421 0.102 0.442 0 0.311 0.365 0.429 0.712

Glycerophospho-
choline

8.42E-
02 0 1.001 5.46E-

03 0 0.97 0.599 0.546 0.298 0.929

phosphoethanol-
amine 2.379 2.555 2.635 2.863 4.854 0 1.664 2.598 2.058 1.321

Macromolecules 1.98 1.932 1.998 1.866 2.027 1.635 1.806 1.949 2.156 1.835
NAA + NAAG 8.31 8.804 7.613 7.954 7.938 4.822 7.02 7.226 8.061 7.855
Ratio of glu / glu 
+ gln 11.052 12.229 10.133 11.147 10.591 8.111 10.79 9.98 12.335 10.965

Total choline 1.034 0.611 1.001 0.573 0.381 0.97 0.872 0.546 0.717 0.929
Total creatine 9.636 7.496 8.5 8.417 7.625 7.565 8.4 7.663 8.42 7.888
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Table 4.9. List of metabolites measured in sham mice (left and right hemisphere) using 
1H NMR

Metabolite Name
Right Hemisphere Left Hemisphere

3401 3402 3928 3957 3927 3401 3402 3928 3957 3927
Alanine 1.412 1.016 1.543 1.907 2.339 1.790 1.799 2.293 2.255 2.584

Phospho-Choline 0.294 0 0.451 0 0.535 0.000 8.53E-
02 0 0.339 0.264

Creatine 3.835 3.671 3.715 2.999 4.07 4.709 4.351 3.883 3.549 3.35
Phospho-Creatine 4.957 3.939 4.808 4.359 3.4 3.830 3.556 3.372 3.547 3.395

Gamma 
aminobutyric acid 1.55 1.325 1.815 1.043 1.872 1.725 1.466 2.222 1.288 1.362

Glutamine 2.396 2.735 2.768 2.952 3.547 3.950 3.665 2.922 2.819 3.531
Glutamate 6.577 5.678 7.011 5.605 6.24 7.817 7.152 6.936 6.871 7.409

Glutathione 1.269 1.559 1.273 1.422 1.336 1.320 1.227 1.06 1.021 1.2
Glycine 2.412 0.805 0.695 1.021 1.686 1.882 1.305 1.634 1.415 1.513
Inositol 6.176 8.032 8.089 7.036 4.096 6.308 7.584 6.785 6.385 4.675
Lactate 5.06 4.832 5.076 5.692 5.54 7.046 6.887 6.441 5.494 5.26

N-acetyl aspartate 8.023 6.587 6.291 6.545 6.383 7.889 7.357 6.79 6.611 6.237
Taurine 15.887 13.886 13.518 13.569 14.638 15.891 14.014 13.037 13.03 13.368

Ascorbate 
(vitamin C) 3.206 1.815 1.219 1.706 0.231 1.802 1.04 0.378 1.224 0.806

N-acetyl-
aspartyl-glutamate 0 0.627 0.244 0.427 0.43 0.408 0.743 0.192 0.444 0.244

Glycerophospho-
choline 0 0.404 0 0.485 5.30E-05 0.480 0.164 0.388 0 0.342

phosphoethanol-
amine 2.974 3.37 3.627 3.652 3.907 3.157 4.422 3.45 3.269 3.515

Macromolecules 2.258 1.994 1.771 2.016 1.912 2.148 2.162 1.877 1.985 1.919
NAA + NAAG 8.023 7.214 6.535 6.972 6.813 8.297 8.1 6.982 7.055 6.481

Ratio of glu / glu 
+ gln 8.973 8.413 9.779 8.558 9.787 11.767 10.817 9.858 9.69 10.941

Total choline 0.294 0.404 0.451 0.485 0.535 0.480 0.249 0.388 0.339 0.605
Total creatine 8.792 7.61 8.523 7.358 7.47 8.539 7.908 7.255 7.095 6.745
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Table 4.10. Lactate to Pyruvate ratio measured using 13C pyruvate HMR

Sample Name Tumor Lac/Pyr Ratio Contralateral Lac/Pyr Ratio
EOR-2474 CNS-NPC 0.085955389 0.113691015
EOR-2475 CNS-NPC 0.126889249 0.143509972
EOR-2658 CNS-NPC 0.19061 0.256411478
EOR-2659 CNS-NPC 0.199927307 0.300660258
EOR-3323 PFSK-1 0.15814 0.12457
EOR-3322 PFSK-1 0.179813164 0.16611353
EOR-3324 PFSK-1 0.161851512 0.134261588
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Appendix 1

EZH2 Oncogenic Mutations Drive Epigenetic, Transcriptional, and 
Structural Changes within Chromatin Domains

Personal Contribution Statement
I contributed to the design of experiments, data analysis, and interpretation of results presented in the 
manuscript.

Figure 1: 
•	 I designed, optimized experiments and generated Hi-C libraries of all new data used for all analyses 

of chromatin interactions published throughout the manuscript
•	 I performed western blot experiments and immunoblot acquisition

Figure 2
•	 I performed ChIP-sequencing experiments for H3K27me3 
•	 I extracted mRNA from cell lines for RNA-sequencing

Figure 3
•	 I extracted mRNA from cell lines for qPCR validation of selected TADs

Figure 5
•	 I extracted mRNA from cell lines for qPCR validation and RNA sequencing of lymphoma cell lines 

treated with EZH2-inhibitors
•	 I performed western blot experiments and immunoblot acquisition

Figure 6
•	 I designed, optimized experiments and generated UMI-4C libraries 
•	 I optimized and performed DNA-fluorescent in situ hybridization (FISH) targeting TAD6.139
•	 I assisted in image acquisition of STORM super-resolution imaging

111



112



Articles
https://doi.org/10.1038/s41588-018-0338-y

1Swiss Institute for Experimental Cancer Research (ISREC), School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 
Switzerland. 2Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland. 3Swiss Institute of Bioinformatics (SIB), 
Lausanne, Switzerland. 4Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 5These authors contributed equally: 
Maria C. Donaldson-Collier, Stephanie Sungalee, Marie Zufferey, Daniele Tavernari. *e-mail: giovanni.ciriello@unil.ch; elisa.oricchio@epfl.ch

In eukaryotic cells, chromatin progressively folds into a hierarchi-
cal structure including loops made of relatively short sequences 
(~1–10 kb), medium-sized domains (100–1,000 kb), also known 

as topologically associating domains (TADs), and large chromatin 
compartments (> 1 Mb)1–3. In particular, TADs are highly conserved 
among species and cell types4. They are preferentially decorated 
by either active (H3K36me3) or inactive (H3K27me3) epigen-
etic marks, which can affect the transcriptional activity within 
the domains5–7, and have thus been proposed as functional units 
regulating gene expression in development and differentiation8,9. 
Interestingly, cancer cells can hijack these chromatin domains to 
drive oncogenic transformation, either through chromosomal aber-
rations10,11 or as a consequence of selected mutations affecting the 
cancer epigenome12,13.

Mutations of epigenetic modifiers have been detected in sev-
eral tumor types14, and alterations in these proteins vary the global 
epigenetic status of tumor cells. However, their effects on chroma-
tin organization remain unclear. Among recurrent alterations of 
chromatin remodeling factors, EZH2 gain-of-function mutations 
affecting Tyr646 (RefSeq isoform: NM_004456) are common in 
non-Hodgkin lymphoma15 and other tumor types16,17. EZH2 is the 
histone lysine methyltransferase regulating H3K27 methylation, 
and it is part of the Polycomb repressor complex 2 (ref. 18). EZH2Y646X 
aberrantly increases H3K27me3, promoting transcriptional repres-
sion19,20. This process has been implicated in stalling B-cell differen-
tiation21 and epigenetic silencing of tumor suppressors22. Given the 
associations among H3K27me3, chromatin subcompartments, and 
TADs23, we wondered whether oncogenic EZH2 mutations might 
lead to chromatin structural and/or functional modifications. Here, 
we show that epigenetic and transcriptional changes induced by 

EZH2 mutations are more concordant within TADs than expected 
and modulate intra-TAD interactions proximal to gene promoters. 
Intra-TAD structural changes are associated with transcriptional 
inactivation of entire domains. Our results illustrate how cancer-
associated epigenetic alterations can act beyond single genes and 
modify the activity of entire chromatin domains.

Results
Hi-C chromatin maps of EZH2WT and EZH2Y646X lymphomas. 
EZH2 p.Tyr646* gain-of-function alterations lead to a genome-
wide increase in H3K27me3 (Supplementary Fig. 1a). To estab-
lish whether this global accumulation of H3K27me3 modifies 
the genome topology on a similarly broad scale, we performed 
high-throughput chromatin conformation capture (Hi-C) in two 
lymphoma cell lines (Karpas422 and WSU-DLCL2) expressing 
the mutant form of EZH2 (EZH2Y646X) and a lymphoma cell line 
(OCI-Ly19) expressing the wild-type EZH2 (EZH2WT) protein 
(Supplementary Table 1 and Supplementary Note). Contact maps 
of EZH2Y646X and EZH2WT cells were binned in regions of 50 kb and 
compared with multiple metrics (Fig. 1). For each pair of maps, 
we compared the overall distribution of chromosomal contacts by 
using the stratum-adjusted correlation coefficient (SCC)24 (Fig. 1a); 
the fraction of 1-Mb regions assigned to the same compartment 
(A or B)3 (Fig. 1b); the similarity among TADs25–27 (Fig. 1c); and 
the fraction of bin interactions that were significant in both maps, 
also known as the cell interactome28,29 (Fig. 1d). To build a refer-
ence scale of values for each metric, we compared Hi-C maps of 
EZH2Y646X lymphoma cell lines with Hi-C maps of endothelial cells 
(HUVEC), fetal fibroblasts (IMR90), and normal lymphoblastoid 
cells (GM12878). Moreover, we used randomized contact maps or 

EZH2 oncogenic mutations drive epigenetic, 
transcriptional, and structural changes within 
chromatin domains
Maria C. Donaldson-Collier1,5, Stephanie Sungalee   1,5, Marie Zufferey2,3,5, Daniele Tavernari   2,3,5,  
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Chromatin is organized into topologically associating domains (TADs) enriched in distinct histone marks. In cancer, gain-of-
function mutations in the gene encoding the enhancer of zeste homolog 2 protein (EZH2) lead to a genome-wide increase in 
histone-3 Lys27 trimethylation (H3K27me3) associated with transcriptional repression. However, the effects of these epigen-
etic changes on the structure and function of chromatin domains have not been explored. Here, we found a functional interplay 
between TADs and epigenetic and transcriptional changes mediated by mutated EZH2. Altered EZH2 (p.Tyr646* (EZH2Y646X)) 
led to silencing of entire domains, synergistically inactivating multiple tumor suppressors. Intra-TAD gene silencing was cou-
pled with changes of interactions between gene promoter regions. Notably, gene expression and chromatin interactions were 
restored by pharmacological inhibition of EZH2Y646X. Our results indicate that EZH2Y646X alters the topology and function of 
chromatin domains to promote synergistic oncogenic programs.
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TADs and independent experimental replicates of EZH2Y646X lym-
phoma cell lines to provide the lowest and highest expected values 
for each metric, respectively. The similarity ranks obtained with all 
metrics were highly concordant and invariably showed that the con-
tact maps from EZH2Y646X lymphoma were on average more similar 
to those from EZH2WT cell lines than to any other cell model that 

we tested, except for their replicates (Fig. 1e–h and Supplementary 
Fig. 1b–e).

To validate this observation and allay nonspecific effects due to 
heterogeneity among samples, we generated a syngeneic lymphoma 
cell line (OCI-Ly19) expressing the altered protein EZH2Y646F 
(c.1937A> T, p.Tyr646Phe). We confirmed that expression of 
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Fig. 1 | Comparison of the genome 3D organization in EZH2WT and EZH2Y646X cells. a–d, Chromatin structural elements identifiable by Hi-C; representative 
images for Chr.6 of the GM12878 cell line: intrachromosomal contact map (a); correlation of observed/expected contact ratios for each pair of 1-Mb bins, 
with the plaid (blue/red) pattern showing chromatin compartments A or B (b); TADs (c); significant interactions determined by using HiC-DC, with all 
pairs of 50-kb bins within a 2-Mb window tested (d). e–h, Comparison between the intrachromosomal contact maps of EZH2Y646X cell lines (Karpas422 
and WSU-DLCL2) and of the indicated cell lines, based on the overall Hi-C matrix correlation using the SCC (e); fraction of 1-Mb bins assigned to the 
same compartment (f); TAD similarity measured by measure of concordance (MoC) (g); and fraction of shared significant interactions between 50-kb 
bins determined by HiC-DC (h). i–l, Comparison between intrachromosomal contact maps of OCI-Ly19-EZH2Y646F and of the indicated cell lines as 
described above, that is, based on SCC (i), compartment conservation (j), TAD similarity (k), and the fraction of shared significant interactions (l). For all 
comparisons, the number of compared intrachromosomal maps is indicated below the graphs (n), when not indicated n =  22; the dotd represent the mean 
values, and error bars are ± 1 standard deviation. P values were computed with two-tailed Wilcoxon test (Supplementary Table 1). *P <  0.05, **P <  0.01, 
***P <  0.001; n.s., not significant.
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EZH2Y646F increased H3K27me3 across the genome, as compared 
with both the parental cell line and OCI-Ly19 transduced with an 
empty vector, whereas expression of EZH2 remained similar in 
the three conditions (Supplementary Fig. 1f,g). Hi-C contact maps 
derived for OCI-Ly19-EZH2Y646F and OCI-Ly19 cells were as similar 
to or more similar than maps derived from independent replicates 
of the same cell line (Fig. 1i–l and Supplementary Fig. 1h). We con-
clude that although a certain diversity exists for a limited number 
of specific contacts and contact domains, on average, the genome 
topology of EZH2-mutated and wild-type lymphoma cells is  
highly similar.

EZH2Y646X inactivates selected TADs. Given the observed consis-
tency between the chromatin structures of EZH2Y646X and EZH2WT 
cell lines, we asked whether an association might exist between 
chromatin structural elements and the epigenetic and transcrip-
tional changes induced by EZH2 gain-of-function mutations. In 
particular, we focused on chromatin subcompartments and TADs, 
given that both have been associated with H3K27me3 (ref. 23).

To assess changes in H3K27me3 specifically induced by 
EZH2 mutations, we analyzed H3K27me3 levels in OCI-Ly19 
cells expressing either EZH2Y646F or EZH2WT. The distribution of 
H3K27me3 in chromatin subcompartments confirmed the previ-
ously reported enrichment in H3K27me3 within the B1 compart-
ment23 (Supplementary Fig. 2a). However, in OCI-Ly19-EZH2Y646F, 
we observed a significant but similar increase in H3K27me3 across 
all subcompartments (Supplementary Fig. 2a,b), thus suggest-
ing that EZH2Y646X does not induce epigenetic changes specifically 
within one subcompartment.

Next, we tested whether differences in H3K27me3 and gene 
expression were more concordant within TADs than expected and 
whether this association might lead to the activation or inactiva-
tion of specific domains (Fig. 2a). First, we extracted a consensus 
list of 2,038 TADs that comprised at least three expressed genes 
and were conserved among three EZH2Y646X cell lines (Karpas422, 
WSU-DLCL2, and OCI-Ly19-EZH2Y646F) and one EZH2WT cell 
line (OCI-Ly19) (Supplementary Table 2). H3K27me3 chromatin 
immunoprecipitation and high-throughput sequencing (ChIP-seq) 
data were compared both between OCI-Ly19-EZH2WT and OCI-
Ly19-EZH2Y646F and between OCI-Ly19-EZH2WT and two cell lines 
(Karpas422 and WSU-DLCL2) with endogenous EZH2 mutations. 
The TAD mean H3K27me3 values in OCI-Ly19-EZH2Y646F were 
highly correlated with those observed in Karpas422 and WSU-
DLCL2 (Supplementary Fig. 2c); thus, we decided to focus on the 
OCI-Ly19-EZH2WT and OCI-Ly19-EZH2Y646F ChIP-seq datasets, 
because they reflected H3K27me3 changes directly associated with 
the EZH2 mutation. The distribution of TAD mean H3K27me3 val-
ues exhibited a positive shift in EZH2Y646X compared with EZH2WT 

cells (Fig. 2b). H3K27me3 profiles of loci within the same TAD were 
more correlated than profiles of loci belonging to distinct adjacent 
domains in both cell lines (Supplementary Fig. 2d,e). Moreover, 
H3K27me3 fold changes between OCI-Ly19 mutated cells and 
wild-type cells were also more correlated within the same TAD 
than between adjacent TADs (Fig. 2c), and this trend was indepen-
dent of the distance between the genomic loci (Fig. 2d). Overall,  
these results indicate that the EZH2-mediated increase in 
H3K27me3 is associated with the compartmentalization of the 
chromatin in TADs.

Interestingly, the distribution of H3K27me3 fold changes 
(EZH2Y646X versus EZH2WT) within TADs exhibited a greater num-
ber of high fold changes than random distributions obtained by 
permuting 50-kb or 100-kb intervals of H3K27me3 ChIP-seq reads 
(Fig. 2e). This trend was independent of the subcompartment to 
which each TAD was assigned (Supplementary Fig. 2f) and of the 
interval size used in the permutations (Supplementary Fig. 2g). 
Moreover, by comparing matched TAD mean H3K27me3 values in 
EZH2WT and EZH2Y646F OCI-Ly19 cells, we found that H3K27me3 
did not proportionally increase in all domains, but fold changes were 
greater in domains that had low histone methylation in EZH2WT 
cells than in domains that were already enriched in H3K27me3 
(Fig. 2f). Therefore, the increase in H3K27me3 mediated by EZH2 
alterations within specific domains was not randomly distributed 
but were dependent on the initial level of H3K27me3 (Fig. 2g).

Next, we assessed the effects of H3K27me3 changes on transcrip-
tion, in OCI-Ly19-EZH2Y646F and OCI-Ly19-EZH2WT cell lines. In 
particular, we wondered whether the observed correlation between 
H3K27me3 changes within TADs might be reflected in concor-
dant mRNA expression changes in genes within the same TAD. 
For this purpose, we scored each TAD on the basis of the number 
and magnitude of concordant gene fold changes within the domain 
(mRNA fold-change concordance (FCC) scores; Supplementary 
Fig. 3a). For this analysis, we selected only TADs for which at least 
three genes had detectable mRNA expression in either OCI-Ly19-
EZH2Y646F or OCI-Ly19-EZH2WT. The observed FCC scores were 
compared with those obtained after randomly permuting gene-
to-TAD assignments. The observed FCC scores were higher than 
expected on the basis of random permutations, thus indicating that 
changes in gene expression in OCI-Ly19-EZH2Y646F compared with 
OCI-Ly19-EZH2WT were significantly concordant within TADs 
(Supplementary Fig. 3b).

To validate this finding in larger cohorts of B-cell lymphoma 
samples, we collected independent mRNA expression data for 
diffuse large B-cell lymphoma (DLBCL) cell lines30 including 
Karpas422 and WSU-DLCL2 (EZH2WT n =  2, EZH2Y646X n =  6; each 
sample was analyzed in duplicate, GSE40792), and primary samples 
from germinal center (GC) patients with DLBCL21 (EZH2WT n =  30, 

Fig. 2 | Epigenetic and transcriptional changes in EZH2Y646X cells occur within TaDs. a, Study design: H3K27me3 ChIP-seq, mRNA expression, and Hi-C 
data in EZH2Y646X and EZH2WT lymphomas were integrated to identify epigenetically and transcriptionally inactive, neutral, and active TADs. b, Distribution 
of mean H3K27me3 signal within TADs in OCI-Ly19-EZH2WT and OCI-Ly19-EZH2Y646F cells. c, Correlation across n =  2,038 TADs of H3K27me3 fold 
changes in loci within the same TAD and loci separated by one TAD boundary. d, Correlation (y axis) of H3K27me3 fold changes between all 25-kb bin 
pairs within the same TADs and bin pairs separated by one TAD boundary as a function of their distance (x axis). e, Distributions of mean H3K27me3 
fold changes for n =  2,038 TADs and of fold changes obtained by permuting H3K27me3 bins (50 kb and 100 kb). f, Correlation between TAD mean 
H3K27me3 (n =  2,038 TADs) in OCI-Ly19-EZH2WT (x axis) and OCI-Ly19-EZH2Y646F (y axis). g, TAD mean H3K27me3 fold changes (n =  2,038 TADs) 
between OCI-Ly19-EZH2Y646F and OCI-Ly19-EZH2WT; H3K27me3 values in OCI-Ly19-EZH2WT were binned (bini =  (i – 1,i)), and TAD mean H3K27me3 fold 
changes in each bin are reported. Expected values were determined by TAD permutation. h–j, Cumulative sum curves of mRNA FCC for EZH2Y646X (n =  12) 
versus EZH2WT cells (n =  4) in 2,038 TADs (h), GC-DLBCL EZH2Y646X (n =  7) versus EZH2WT (n =  30) patient samples in 2,038 TADs (i), and FL EZH2Y646X 
(n =  6) versus EZH2WT (n =  17) patient samples in 1,908 TADs (j). Observed curves are compared with random curves obtained after 10,000 gene-to-TAD 
assignment permutations (gray area delimits minimum and maximum values; dark line is the mean). k,l, TAD mean H3K27me3 fold changes between 
OCI-Ly19-EZH2Y646F and OCI-Ly19-EZH2WT cells (x axis) versus the TAD mRNA-expression fold changes in EZH2Y646X versus EZH2WT cell lines (y axis) for 
n =  2,038 TADs; in l, inactive TADs (log2(FCH3K27me3) > 1 and log2(FCmRNA) < –1) are highlighted. m, Gene-set enrichment analysis for n =  283 genes within 
inactive TADs according to Gene Ontology categories (n =  5,337) and experimentally derived gene sets (n =  3,409). Gene-set enrichment was tested by 
hypergeometric test (one-sided) and adjusted by false discovery rate.
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EZH2Y646X n =  7, GSE23501) and patients with follicular lymphoma 
(FL)31 (EZH2WT n =  17, EZH2Y646X n =  6, PRJNA278311). Across all 
datasets, we verified that mRNA expression was more correlated 
between genes in the same TAD than between genes in different 
TADs, independently of their genomic distance (Supplementary 
Fig. 3c–e). Furthermore, the FCC scores obtained by comparing 
EZH2Y646X and EZH2WT cases were always greater than random, 

with an overall increase ranging between 15% and 33% (increase in 
area under the curve; Fig. 2h–j and Supplementary Fig. 3b). Across 
all the expression datasets that we analyzed, expression changes 
associated with EZH2 mutations were more concordant within 
TADs than expected.

Next, we compared matched mean H3K27me3 and mRNA 
expression changes within TADs in OCI-Ly19-EZH2Y646F and  

–2 0 2 4 6

0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

 d
is

tr
ib

ut
io

n

Random H3K27me3
(bin = 50 kb)

Random H3K27me3
(bin = 100 kb)

Observed H3K27me3

0 5 10 15 20

0

0.05

0.10

0.15

0.20

D
en

si
ty

 d
is

tr
ib

ut
io

n

TAD mean H3K27me3

OCI-Ly19-EZH2WT

OCI-Ly19-EZH2Y646X

>2-fold increase

–10 bins TAD start TAD end +10 bins

+10
bins

TAD
end

TAD
start

–10
bins

0 1Spearman’s correlation coefficient:

H3K27me3 fold-change correlation
OCI-Ly19 EZH2Y646X vs. EZH2WT

0.3

0.4

0.5

0.6

0.7

0.8

Distance between pairs of loci (×100 kb)
S

pe
ar

m
an

's
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

0 1 2 3 4 5 6 7 8 9 10

Cross-boundary bins
Same domain bins

0 5 10 15

5

10

15

20

TAD mean H3K27me3 EZH2WT

T
A

D
 m

ea
n 

H
3K

27
m

e3
 E

Z
H

2Y
64

6X

0

0.5

1.0

1.5

2.0

T
A

D
 H

3K
27

m
e3

 fo
ld

-c
ha

ng
e 

(lo
g 2)

TAD mean H3K27me3 EZH2
WT

1 2 3 4 5 6 7 8 9 10

Observed
Expected 

Observed

500

600

400

300

200

100

0

F
C

C
 c

um
ul

at
iv

e 
su

m

700

TADs ranked by FCC

Observed

500

600

400

300

200

100

0

TADs ranked by FCC

F
C

C
 c

um
ul

at
iv

e 
su

m

500

600

400

300

200

100

0

F
C

C
 c

um
ul

at
iv

e 
su

m

Random
Random

TADs ranked by FCC

DLBCL cell lines GCB-DLBCL patients

–2 0 2 4 6

–4

–2

0

2

4

–1 1 3

–6

TAD H3K27me3 fold change (log2)
(OCI-Ly19 EZH2Y646X vs. EZH2WT)

–2 0 2 4 6–1 1 3
TAD H3K27me3 fold change (log2)

(OCI-Ly19 EZH2Y646X vs. EZH2WT)

Pearson’s corr = –0.23
P = 6.0 × 10–25

m
R

N
A

ex
pr

es
si

on

H3K27me3

Permissive (n = 40)
Stringent (n = 32)

Inactive TADs

Gene set enrichment
[–log10(q value)]

a

b c d

e f g

h i j

k l m

G
en

es

High

Low

mRNA expression

H
3K

27
m

e3
C

hI
P

Active Inactive

Neutral

Topologically associating
domains

Observed

Random

FL patients

700

23
%

 in
cr

ea
se

15
%

 in
cr

ea
se

30
%

 in
cr

ea
se

# TADs

# TADs

EZH2Y646X EZH2WT

EZH2WT

EZH2Y646X

TAD H3K27me3 fold change Log2(FC)

OCI-Ly19 EZH2Y646X vs. EZH2WT

EZH2WT EZH2Y646X

EZH2WT EZH2Y646X
EZH2WT EZH2Y646X

T
A

D
 m

R
N

A
 fo

ld
 c

ha
ng

e 
(lo

g 2)

(c
el

l l
in

es
 E

Z
H

2Y
64

6X
 v

s.
 E

Z
H

2W
T
)

–4

–2

0

2

4

–6

T
A

D
 m

R
N

A
 fo

ld
 c

ha
ng

e 
(lo

g 2)

(c
el

l l
in

es
 E

Z
H

2Y
64

6X
 v

s.
 E

Z
H

2W
T
)

0 2 4 8 10

Immune system
Cell death

Response to stress
Cell cycle

B-cell differentiation
Lymphocyte differentiation

EZH2 targets (M4196)
B-lymphocite progenitor (M939)

Gene ontology

Experimental signature

q = 0.01

Other TADs (n = 1,966)

NaTuRE GENETICS | www.nature.com/naturegenetics

116



ArticlesNATurE GENETICs

OCI-Ly19-EZH2WT cells. TAD expression fold changes were 
moderately yet significantly anticorrelated with TAD H3K27me3 
fold changes (Pearson’s correlation =  –0.31, P =  3.2 ×  10−21, 
Supplementary Fig. 3f). Moreover, TADs exhibiting an H3K27me3 
fold change greater than two and an mRNA expression fold 
change less than negative two represented the majority (77%) of 
TADs exhibiting at least a twofold difference in both molecular 
features (Supplementary Fig. 3f), a result consistent with EZH2 
mutations increasing H3K27me3 and repressing transcription. 
Within the cell-line cohort including Karpas422 and WSU-DLCL2 
(GSE40792), we confirmed a significant anticorrelation between 
TAD mRNA and H3K27me3 fold changes (Pearson’s correla-
tion =  –0.23, P =  6 ×  10−25, Fig. 2k), and TADs exhibiting H3K27me3 
fold changes greater than two and mRNA expression fold changes 
less than negative two  represented 86% of the TADs exhibiting at 
least a twofold difference in both molecular features. This anticorre-
lation was even more pronounced when only TADs comprising the 

most differentially expressed genes were considered (Supplementary 
Fig. 3g,h). Overall, EZH2Y646X-driven epigenetic and transcriptional 
changes within TADs were found to be significantly anticorrelated.

The interdependency between gene regulation and TAD struc-
ture prompted us to investigate TADs that exhibited a strong 
increase in H3K27me3 and a strong decrease in gene expression. 
Within the full set of conserved TADs, we identified 72 ‘inac-
tive’ TADs characterized by a greater than twofold increase in 
H3K27me3 and a greater-than-twofold decrease in mRNA expres-
sion (Fig. 2l). Notably, largely overlapping results were obtained 
when we considered OCI-Ly19 expression differences (EZH2Y646F 
versus EZH2WT) or Karpas422 and WSU-DLCL2 H3K27me3 
profiles (Supplementary Fig. 3i). Inactive TADs were enriched 
in genes that were significantly downregulated in EZH2Y646X cell 
lines (Fisher’s exact test P =  2.8 ×  10−37, odds ratio (OR) =  12.4). 
Moreover, in 32 of these 72 domains, more than 80% of the genes 
within the domain exhibited concordant negative fold changes.  
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(n =  6) versus EZH2WT (n =  1 7) FL patient samples. Fold changes corresponding to the inactive TAD are highlighted in red.
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We defined these TADs as ‘stringent inactive’ (Fig. 2l) and the 
remaining 40 TADs as ‘permissive inactive’ (Fig. 2l). In primary 
patient samples, the mRNA fold changes in inactive TADs were sig-
nificantly lower than those in other TADs (GC–DLBCL, two-tailed  
t test P =  2.3 ×  10−5 and FL, two-tailed t test P =  1.7 ×  10−8), and inac-
tive TADs were enriched among TADs with concordant negative 
fold changes in more than 80% of the genes within their boundar-
ies (Fisher’s exact test: −PGC DLBCL =  0.0006, −ORGC DLBCL =  3.2, and 
PFL 2.9 ×  10−5, ORFL =  3.6).

To explore the functional relevance of inactive TADs, we per-
formed a gene-set enrichment analysis on all genes within these 
domains. Multiple Gene Ontology categories scored as significant 
(Supplementary Table 3), including cancer and lymphoma-specific 
categories (Fig. 2m). Notably, most significantly enriched gene sets 
contained EZH2 targets previously identified in prostate cancer32 
and genes differentially expressed in B-lymphocyte progenitors 
(Fig. 2m and Supplementary Table 3). These findings are consistent 
with EZH2Y646X locking in an inactive state genes that are transiently 
repressed in the GC during B-cell differentiation21. To determine 
whether inactive TADs are also repressed in normal GC cells, we 
compared the mRNA expression of their genes in normal centroblasts 
and centrocytes versus differentiated memory B cells33. Across all 72 
inactive TADs, we identified seven domains that exhibited signifi-
cant downregulation in centrocytes and centroblasts compared with 
memory B cells (Supplementary Fig. 3j). Transcriptionally repressed 
domains included genes regulating B-cell proliferation (for example 
SESN1)22, DNA repair (DTX3L and PARP9)34, and lymphocyte migra-
tion and trafficking (for example S1PR1)35 (Supplementary Fig. 3k).

Overall, these results suggest that genes within inactive TADs are 
bona fide targets of EZH2 and that inactivation of TADs containing 
genes involved in B-cell differentiation and proliferation is poten-
tially selected in EZH2-mutated tumors.

Silencing multiple tumor suppressors in inactive TADs. One 
of the top stringent inactive TADs included the genes SESN1, 
FOXO3, and ARMC2 (TAD6.139 at chromosome (Chr.) 6 108850− 
109450 kb; Fig. 3a,b). Recently, we reported that SESN1 is a direct 
target of mutated EZH2 and that it acts as a tumor suppressor in FL22. 
FOXO3 has been described as bona fide tumor-suppressor gene con-
trolling multiple signalings36. Moreover, genes within this locus are 
frequently co-deleted in non-Hodgkin lymphoma, and these dele-
tions are largely mutually exclusive with EZH2 mutations22,37,38. The 
inactive TAD6.139 exhibited a significant increase in H3K27me3 
encompassing the entire domain in OCI-Ly19 cells overexpressing 
EZH2Y646F, whereas H3K27me3 was detected only in specific regions 
in OCI-Ly19-EZH2WT cells (Fig. 3c,e). Similarly, an independent 
comparison of H3K27me3 levels in EZH2-mutated and wild-type 
cells confirmed a clear increase in H3K27me3 within the entire 
inactive TAD (Fig. 3d,f). Consistently, all genes within TAD6.139 
exhibited lower mRNA expression in OCI-Ly19-EZH2Y646F  

and in EZH2-mutated lymphoma cells (Fig. 3g), as well as in 
GC-DLBCL and FL patient samples with EZH2Y646X mutations 
(Fig. 3h) compared with EZH2WT lymphomas. Enrichment in 
H3K27me3 was confirmed by targeted ChIP (Supplementary  
Fig. 4a), and changes in expression in OCI-Ly19-EZH2Y646F cells were 
confirmed by quantitative PCR (Supplementary Fig. 4b). Notably, 
additional genes with previously described tumor-suppressive func-
tion were found within inactive TADs (Supplementary Table 2). For 
example, similar patterns of H3K27me3 and gene downregulation 
were confirmed in TAD3.47 (Chr.3 33150− 33450 kb), encompass-
ing the tumor-suppressor gene FBXL2 (refs. 39,40) and silenced targets 
in lymphoma, CRTAP41, and SUSD542 (Supplementary Fig. 4c− e). In 
particular, FBXL2 mediates degradation of cyclin-D3, which is the 
most expressed and mutated cyclin-D protein in B-cell lymphoma43.

Together, these results indicate that mutated EZH2 promotes 
concordant downregulation of multiple tumor suppressors within 
the same TAD, thus suggesting that these domains may function as 
tumor-suppressive units.

TAD inactivation accelerates lymphomagenesis. To assess the 
functional consequences of simultaneous downregulation of mul-
tiple tumor-suppressor genes within the same chromatin domain, 
we knocked down, alone and in combination, the expression of 
FOXO3, ARMC2, and SESN1, which are included in the candidate 
tumor-suppressive TAD6.139. We used IL3-dependent pro-B FL5-
12 cells as a surrogate model to measure the effects of gene down-
regulation on B-cell proliferation38,44. We knocked down Foxo3, 
Sesn1, and Armc2 by using short hairpin RNAs (shRNAs, denoted 
by ‘sh’prefix) coupled with a fluorescent marker22,44 (Supplementary  
Fig. 5a− c). The number of cells expressing either shFoxo3 or 
shSesn1 increased two to threefold after four cycles of IL3 with-
drawal (12 days). Notably, in the same time frame, cells with the dual 
knockdown of Foxo3 and Sesn1 increased 7- to 12-fold (Fig. 4a,b,  
Supplementary Fig. 5d, and Supplementary Table 4). We observed a 
similar enrichment in double-positive cells in normal growth condi-
tions (Supplementary Table 4), whereas a synergistic effect was not 
observed with concurrent knockdown of Armc2 and either Foxo3 
or Sesn1 (Supplementary Fig. 5e,f), thus suggesting a specific func-
tional synergy between loss of Foxo3 and Sesn1 to enhance pro-B 
cell proliferation.

Next, to test the oncogenic potential of the dual loss of Foxo3 
and Sesn1 in tumor development and progression, we transduced 
hematopoietic progenitor cells (HPCs) isolated from an Eμ -myc 
mouse model45,46 with shRNAs targeting Foxo3, Sesn1, or both 
(Fig. 4c). Animals harboring tumors expressing shFoxo3 (n =  16), 
shSesn1 (n =  17), or both (n =  21) had shorter overall survival than 
those expressing vector (n =  14, shFoxo3 versus vector P =  0.04, 
shSesn1 versus vector P =  0.03, and shFoxo3 and shSesn1 versus 
vector P =  0.02) (Supplementary Fig. 5g). Tumors that originated 
from HPCs transduced with single shRNAs were enriched in either 

Fig. 4 | Concurrent downregulation of genes within tumor-suppressive TaDs accelerates B-cell proliferation and lymphoma progression. a, 
Representative flow cytometry analysis of FL5-12 cells expressing empty vectors coupled with dsRed or GFP, or the sh1-Foxo3-dsRed and the sh2-Sesn1-
GFP at days 0 and 12. Numbers indicate the percentages of cells in each subpopulation (n =  3 independent experiments). b, Percentages of cells in 
each subpopulation at days 4, 8, and 12, relative to day 0. Bars indicate mean values, and error bars correspond to one standard deviation over three 
independent experiments. P values were calculated by two-way analysis of variance (independent variables are shRNA and day of measurement). c, Study 
design of in vivo experiments: HPCs were isolated from Eμ -myc embryos, retrovirally modified with the indicated plasmids, and transplanted into recipient 
animals. d, Representative flow cytometry analysis of HPC before transplantation (left column) and of isolated tumor cells (right column). Numbers 
indicate the percentages of cells in each subpopulation (sh2-Sesn1 n =  3, sh1-Foxo3 n =  4, sh2-Sesn1 +  sh1-Foxo3 n =  4, independent animals). e, Quantitative 
expression analysis of tumors expressing vector (n =  4 independent animals and two technical replicates), sh2-Sesn1 (n =  5 independent animals),  
sh1-Foxo3 (n =  4 independent animals), and sh2-Sesn1 and sh1-Foxo3 (n =  6 independent animals). Bars indicate mean values, and error bars correspond to 
one standard deviation. P values were calculated with two-tailed t test. f, Hematoxylin and eosin (H&E) cellular staining and Ki-67 immunohistochemistry 
of tumor and liver tissue biopsies of Eμ -myc mice expressing the indicated shRNAs or vector (n =  2 independent experiments). Scale bar, 200 μ m.  
g, Overall survival of secondary recipient animals transplanted with Eμ -myc tumor cells expressing vector (n =  5), sh1-Foxo3 (n =  5), sh2-Sesn1 (n =  5) or  
sh2-Sesn1 and sh1-Foxo3 (n =  5). P value was calculated with log-rank test.
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GFP-positive (shSesn1) or dsRed-positive (shFoxo3) cells (Fig. 4d). 
Notably, even though HPCs transduced with both shRNAs showed 
a low percentage of double-positive cells in the initial population 
(5–8%), tumors originating from these HPCs were almost exclu-
sively composed of double-positive cells (Fig. 4d), thus suggesting 
that cells expressing both shRNAs expanded more rapidly than cells 
with a single shRNA. We confirmed that tumors expressing single 
or double shRNAs efficiently downregulated the expression of  

targeted genes (Fig. 4e), and all of the animals exhibited character-
istic features of aggressive lymphoma (Fig. 4f and Supplementary 
Fig. 5h,i). To determine whether dual loss of Foxo3 and Sesn1 boosts 
tumor aggressiveness, we transplanted purified tumor cells with 
single and double knockdown into secondary recipient animals. 
Here, we observed a significant acceleration of tumor development 
(P =  0.001) (Fig. 4g) in animals receiving cells with double knock-
down compared with those with a single shRNA. These results  
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demonstrate that the inactivation of the tumor-suppressive 
TAD6.139 by mutated EZH2 synergistically downregulates multiple 
tumor suppressors to drive tumor development and progression.

EZH2Y646X inhibition reactivates transcription within TAD. 
Next, we explored the potential of blocking EZH2 methyltrans-
ferase activity by using two pharmacological inhibitors (GSK126 
and EPZ6438) to reactivate inactive TADs. Pharmacological 
inhibition of EZH2 with either GSK126 or EPZ6438 efficiently 

depleted H3K27me3 in lymphoma cells (Fig. 5a). However, loss of 
H3K27me3 did not significantly modify the chromatin compart-
mentalization into TADs. Indeed, TADs derived from intrachromo-
somal maps of treated and untreated cells exhibited conservation 
scores similar to those observed for independent replicates of the 
same cell line (Fig. 5b). Nevertheless, EZH2Y646X cell lines treated 
with the EZH2 inhibitors GSK126 and EPZ6438 (n =  12 treated and 
n =  12 DMSO) exhibited multiple transcriptional changes, although 
not as extreme as those observed between EZH2Y646X and EZH2WT 
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Fig. 5 | Inhibition of EZH2 abrogates H3K27me3 and reactivates inactive TaDs. a, Immunoblot for H3K27me3 in EZH2Y646X cell lines treated with 2 μ M  
of GSK126 or 1 μ M of EPZ6438 or vehicle (DMSO) for 72 h. Total histone H3 was used as a loading control, and the experiment was repeated twice.  
b, Ratio of TAD concordance (MoC) between WSU-DLCL2 and Karpas422 treated with DMSO or GSK126 and TAD concordance between independent 
replicates of each cell line (DMSO). Dots indicate the means of 22 intrachromosomal-map comparisons, and error bars are ± 1 standard deviation.  
c,d, TAD mRNA expression fold changes in EZH2Y646X (n =  12) versus EZH2WT (n =  4) cell lines (x axis) versus TAD mRNA expression fold changes in 
EZH2Y646X cells treated with GSK126 (n =  12) versus DMSO (n =  12) (c) or treated with EPZ6438 (n =  12) versus DMSO (n =  12) (y axis) (d). e, TAD mRNA 
expression fold changes of OCI-Ly19-EZH2Y646F versus OCI-Ly19-EZH2WT (x axis) and in OCI-Ly19-EZH2Y646F treated with GSK126 versus DMSO (y axis). 
f, Intersection of inactive TADs obtaining a log2(FCmRNA) >  0 (reactivated) in EZH2Y646X cell lines treated with GSK126 or EPZ6438, or OCI-Ly19-EZH2Y646F 
cells treated with GSK126. g, mRNA expression fold changes of individual genes in Chr.6 108.3–109.8 Mb obtained by comparing EZH2Y646X cell lines 
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changes corresponding to the inactive TAD are highlighted in green; P values were computed with limma two-sided t test. h, Graphical summary of the 
results: treatment with EZH2 inhibitors act as a switch turning tumor-suppressive TADs from transcriptionally inactive to active domains. *P <  0.05,  
**P <  0.01, • P <  0.1.

NaTuRE GENETICS | www.nature.com/naturegenetics

120



ArticlesNATurE GENETICs

cells (Supplementary Fig. 6a,b). By mapping differentially expressed 
genes to our list of conserved TADs, we found that the TAD mRNA 
expression changes induced by the two inhibitors were positively 
correlated (Supplementary Fig. 6c) and mostly corresponded to 
upregulation (positive fold changes) of TADs that were downregu-
lated (negative fold changes) in EZH2Y646X compared with EZH2WT 
cells (Supplementary Fig. 6d,e). Importantly, most inactive TADs 
(64/72 with GSK126 and 56/72 with EPZ6438) exhibited positive 
fold changes, and these reactivated TADs were enriched in signifi-
cantly upregulated genes (adjusted P value <  0.01) from both experi-
ments (Fig. 5c,d) (DMSO versus GSK126: Fisher’s exact test P =  10−4, 
OR =  2.74, DMSO versus EPZ6438: Fisher’s exact test P =  6.8 ×  10−8, 
OR =  3.17). A similar reactivation (54/72 inactive TADs) was veri-
fied in OCI-Ly19-EZH2Y646F cells treated with the GSK126 inhibi-
tor (Fig. 5e and Supplementary Fig. 6f). Reactivated TADs had a 
high degree of overlap among the three experiments (Fig. 5f). In 
particular, after treatment with both EZH2 inhibitors, genes within 
the tumor-suppressive TAD6.139 exhibited positive fold changes 
in all three models, results consistent with a stringent inactive-to-
active switch of the domain, in which all genes are concordantly 
regulated (Fig. 5g). Conversely, TADs flanking TAD6.139 showed 
no pattern of co-regulation. These results were validated through 
quantitative PCR (Supplementary Fig. 6g). Notably, treatment with 
EZH2 inhibitors increased FOXO3, SESN1, and ARMC2 expression 
exclusively in OCI-Ly19-EZH2Y646F cells, whereas no significant 
expression changes were observed in the OCI-Ly19-EZH2WT cells 
(Supplementary Fig. 6h). Reactivation of the tumor-suppressive 
TAD6.139 is thus a direct effect of inhibiting the mutated form 
of EZH2. Together, these results indicate that pharmacological  
depletion of H3K27me3 is sufficient to restore the transcrip-
tional activity in previously silenced tumor-suppressive chromatin 
domains (Fig. 5h).

EZH2Y646X modulates intra-TAD chromatin interactions. Changes 
in transcriptional activity are frequently associated with novel or 
missing interactions among regulatory elements10,12,47. Although 
TADs in EZH2Y646X, untreated or treated with EZH2 inhibitors,  
and EZH2WT cells were highly conserved (Supplementary Fig. 7a), 
we asked whether transcriptional changes in tumor-suppressive 
TADs were associated with rewiring of specific interactions within 
the domains.

To address this question within the TAD6.139, we compared 
20-kb-resolution Hi-C maps for Karpas422 treated with vehicle 
(Karpas422-DMSO, Fig. 6a) and with GSK126 (Karpas422-GSK126, 
Fig. 6a). Significant interactions between the 5' ends of the domain 
(Chr.6 108860–108880 kb) and a region spanning ~100 kb in the 
middle part of the TAD (Chr.6 109100–109220 kb) were detected 
in treated and untreated cells (Supplementary Table 5). However, 
only Karpas422 treated with GSK126 exhibited a highly significant 

interaction between genomic regions near the 5' and 3' ends of the 
domain (Chr.6 108860–108880 kb and 109380–109400 kb) (Fig. 6b).  
Next, we systematically compared significant interactions in 
Karpas422-DMSO and/or Karpas422-GSK126 to identify signifi-
cant differences between these conditions (empirical q value <  0.1) 
(Fig. 6c). Notably, top-scoring differential interactions (empirical 
q value =  0.025) highlighted a stronger interaction between the 5' 
end and the middle region of the domain in Karpas422-DMSO than 
Karpas422-GSK126, whereas Karpas422-GSK126 exhibited a signif-
icantly stronger interaction between the 5' and 3' ends of the domain 
than Karpas422-DMSO (Fig. 6c,d and Supplementary Table 5). This 
observation was confirmed by quantification of the number of nor-
malized reads between the 20-kb regions Chr.6 108860–108880 kb 
and Chr.6 109380–109400 kb (P =  0.02) (Supplementary Fig. 7b), 
and the same significantly different interactions were found in 
WSU-DLCL2 cells treated with vehicle or GSK126 (Supplementary 
Fig. 7c–e). To corroborate the observed changes in interaction fre-
quency at higher resolution, we performed UMI-4C in Karpas422, 
either untreated or treated with GSK126, by using two independent 
sets of primers (Supplementary Table 6). We observed an enrich-
ment in interactions between the Chr.6 108861–108863 kb and 
Chr.6 109370–109400 kb regions in cells treated with GSK126 com-
pared with untreated cells (DMSO) with both primers (Fig. 6e,f and 
Supplementary Fig. 7f,g).

By mapping significantly differential interactions to functionally 
annotated regions in the genome, we found that these interactions 
linked genomic regions proximal to gene promoters that are recog-
nizable by H3K4me3 peaks (Fig. 6g and Supplementary Fig. 7h).  
Notably, chromatin contacts were stronger between genomic 
regions proximal to FOXO3 and SESN1 promoters in EZH2Y646X cells 
treated with GSK126 than in untreated cells (Fig. 6g). Concordant 
with the inactive status of TAD6.139 in EZH2Y646X cells, the pro-
moters of FOXO3, ARMC2, and SESN1 exhibited lower H3K4me3 
and higher H3K27me3 in EZH2Y646X than in EZH2WT cells (Fig. 6g 
and Supplementary Fig. 7h). Moreover, a peak of H3K27ac and 
H3K4me1 was detected at the SESN1 promoter only in OCI-Ly7 
EZH2WT cells, thus suggesting that in these cells, this promoter 
might have distal enhancer function48 (Supplementary Fig. 7h).

To determine whether treatment with EZH2 inhibitor restored 
intra-TAD interactions that were modified by the increase of 
H3K27me3 in EZH2 mutated tumors, we performed the same dif-
ferential-interaction comparison between syngeneic EZH2Y646F and 
EZH2WT OCI-Ly19 cells as well as between Karpas422 (EZH2Y646N) 
and OCI-Ly19 (EZH2WT). OCI-Ly19-EZH2WT showed stronger 
interactions between FOXO3 and SESN1 promoter regions than 
OCI-Ly19 cells expressing EZH2Y646F (Fig. 6h). The same differ-
ence in interaction between these loci was detected between OCI-
Ly19-EZH2WT and Karpas422-EZH2Y646N (Supplementary Fig. 7i). 
Conversely, both OCI-Ly19-EZH2Y646F and Karpas422-EZH2Y646N 

Fig. 6 | Intra-TaD structural changes in EZH2WT and EZH2Y646X cells. a, Hi-C contact maps of TAD6.139 at 20-kb resolution (Chr.6 108.84–109.44 Mb) 
in Karpas422 treated with DMSO (top) or 2 μ M GSK126 for 72 h (bottom). b, Significant interactions in Karpas422-DMSO (top) or Karpas422-GSK126 
(bottom) determined by HiC-DC. Bin pairs within 2-Mb windows were tested. c, Significantly different interactions (q value <  0.1) between Karpas422-
DMSO and Karpas422-GSK126 (n =  435 tested interactions). Empirical q values were determined as described in Methods. d, Most significantly different 
interactions between Karpas422-DMSO and Karpas422-GSK126. e, UMI-4C domainogram: mean number of contacts (percentage of the maximum) 
in the Chr.6 108.80–109.45 kb region. f, Normalized number of UMI-4C reads in Karpas422-DMSO and Karpas422-GSK126. g, Significantly stronger 
interaction (compare to c) in Karpas422-GSK126 than Karpas422-DMSO connecting Chr.6 108.85–108.81 Mb and Chr.6 109.39–109.45 Mb. H3K4me3 and 
H3K27me3 ChIP-seq tracks in Karpas422 and OCI-Ly7 (n =  3 experiments) within the same genomic coordinates. h, Left, Hi-C contact maps of TAD6.139 
at 20-kb resolution in OCI-Ly19-EZH2Y646F (top) and OCI-Ly19-EZH2WT (bottom). Center, significant interactions in OCI-Ly19-EZH2Y646F (top) or OCI-Ly19-
EZH2WT (bottom) determined by HiC-DC. Top right, significantly different interactions (q value <  0.1) between OCI-Ly19-EZH2Y646F and OCI-Ly19-EZH2WT 
(n =  435 tested interactions). Empirical q values were determined as described in Methods. Bottom right, most significantly different interactions between 
OCI-Ly19-EZH2Y646F and OCI-Ly19-EZH2WT. i, FISH library design for TAD6.139 and representative images acquired in wide field (left) and by STORM 
(right). j, Eccentricity of TAD6.139 (neighborhood radius =  40) in WSU-DLCL2 treated with 2 μ M GSK126 or DMSO for 72 h (n =  4 experiments), and OCI-
Ly19-EZH2WT and OCI-Ly19-EZH2Y646F (n =  3 experiments). Dots are means of multiple measurements of independent cells (Supplementary Table 7), and 
error bars are standard errors.
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exhibited stronger interactions between promoter regions of FOXO3 
and ARMC2 than OCI-Ly19-EZH2WT (Fig. 6h and Supplementary 
Fig. 7i). To verify whether changes in promoter proximity also 
occurred in other inactive TADs, we performed a differential 
interactome analysis within the complete set of 72 inactive TADs, 
as well as within 100 sets of 72 randomly sampled neutral TADs. 
By comparing Karpas422-EZH2Y646N and OCI-Ly19-EZH2WT cells, 

we found 34 interactions that were significantly different within 
inactive TADs, but only 19 on average in neutral TADs (P =  0.04, 
Supplementary Fig. 7j). Furthermore, significant different interac-
tions between EZH2WT and EZH2Y646X cells were highly overlapping 
with those observed between cells treated with the EZH2 inhibi-
tor GSK126 and untreated cells (17 out of 34, Fisher’s exact test 
P =  6 ×  10−20, OR =  130) (Supplementary Fig. 7k). In summary, we 
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confirmed in multiple conditions, that the increase in H3K27me3 
in EZH2-mutated tumors modulates promoter–promoter interac-
tions within inactive TADs, which are coupled with silencing of 
gene transcription.

To investigate the degree of observable physical changes of the 
intra-TAD structure, we used a super-resolution imaging technique 
(stochastic optical reconstruction microscopy, or STORM)49,50 
and analyzed WSU-DLCL2 (DMSO versus GSK126, n =  4 experi-
ments) and OCI-Ly19 cells (EZH2Y646F versus EZH2WT, n =  3 experi-
ments). To image the TAD structure by STORM, we designed a 
fluorescence in situ hybridization (FISH) library painting the entire 
TAD6.139 (Fig. 6i, Supplementary Fig. 8a, and Supplementary 
Note). TAD6.139 did not change significantly in size (as estimated 
by radius of gyration, Rg) between the two conditions in all experi-
ments (Supplementary Table 7). However, we observed consistent 
changes in shape, as evidenced by higher eccentricity values in 
EZH2WT and EZH2Y646X-GSK126 cells than in EZH2Y646X cells (Fig. 6j  
and Supplementary Fig. 8b–e). This increase in eccentricity was not 
observed in a neutral TAD of similar size (TAD1.54, Chr.1: 28650–
29100 kb), exhibiting neither transcriptional nor epigenetic changes 
(Supplementary Fig. 8f,g).

Overall, our results indicate that the increase in H3K27me3 asso-
ciated with EZH2 gain-of-function mutations can modify the archi-
tecture and transcriptional activity within TADs.

Discussion
The recent advent of chromatin-conformation-capture techniques 
provides new opportunities and perspectives to unravel the effects 
of chromatin remodeling in cancer. EZH2Y646X increases H3K27me3 
across the genome, thus leading to transcriptional repression. Here, 
we found that these epigenetic and transcriptional changes were 
not randomly distributed but were enriched and concordant within 
specific TADs, termed inactive TADs. Although future work will 
be needed to explore whether this specificity is predetermined or 
emerges through selection of oncogenic traits, inactive TADs were 
enriched in both EZH2 targets and B-cell differentiation programs, 
thus suggesting that both scenarios are likely and play a role in 
implementing EZH2Y646X oncogenic potential.

H3K27me3 determines changes in nucleosome proximity and is 
a marker of closed chromatin. Using multiple models, we showed 
that H3K27me3 modulates the proximity of gene promoters in 
association with gene expression changes. In particular, concordant 
expression changes of FOXO3 and SESN1 suggest co-regulated tran-
scription. Interestingly, both genes are direct transcriptional targets 
of p53 (refs. 51,52), thus prompting the hypothesis that promoter 
proximity may favor coordinated transcription of genes controlled 
by the same transcription factor.

Coordinated epigenetic and transcriptional reprogramming 
within TADs led to the synergistic inactivation of multiple tumor 
suppressors, enhancing B-cell proliferation and tumor growth. 
On the basis of these results, we introduced the concept of tumor-
suppressive TADs. Importantly, analysis of expression changes in 
individual genes, rather than TADs, would probably have missed 
this synergistic effect. Moreover, although relatively small mRNA 
expression changes for individual genes are typically dismissed as 
random variations, the unexpected concordance of these variations 
within TADs could identify functionally relevant gene modules.

Chromatin domains can therefore provide a new lens through 
which to study oncogenic alterations, especially in the context of 
cancer epigenetic reprogramming.

URLs. ENCODE, https://www.encodeproject.org/; GEO, https://
www.ncbi.nlm.nih.gov/geo/; GitHub custom scripts, https://github.
com/CSOgroup/Donaldson-et-al-scripts/; Zenodo, https://zenodo.
org/; NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/; 
Bioconductor, https://bioconductor.org/; R, https://www.r-project.

org/; Cufflinks, http://cole-trapnell-lab.github.io/cufflinks/; STAR, 
https://github.com/alexdobin/STAR/; Bowtie, http://bowtie-bio.
sourceforge.net/bowtie2/manual.shtml; MACS2, https://github.
com/taoliu/MACS/; Picard, http://broadinstitute.github.io/picard/; 
LIMMA, http://bioconductor.org/packages/release/bioc/html/
limma.html; Bedtools, https://bedtools.readthedocs.io/en/latest/; 
HiC-DC, https://bitbucket.org/leslielab/hic-dc/; TopDom, http://
zhoulab.usc.edu/TopDom/; mSIGdb, http://software.broadinstitute.
org/gsea/msigdb/index.jsp; hg19 mappability file, http://hgdown-
load.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapa-
bility/wgEncodeCrgMapabilityAlign36mer.bigWig.
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Methods
Data generation and models. Lymphoma cell lines used in this study (OCI-
Ly19, DoHH2, SU-DHL-10, WSU-DLCL2, Toledo, SU-DHL-6, and Karpas422) 
were authenticated within the past year by short tandem repeat (STR) cell-line 
authentication analysis (MicroArray, Switzerland) and cultured as described in 
the Supplementary Note. OCI-Ly19 cells were transduced with lentiviral particles 
to express EZH2Y646F in tandem with GFP or the empty vector (OCI-Ly19-
EZH2Y646F). After the initial transduction, 3–5% of the GFP-positive cells were 
sorted to obtain a pure population of GFP-positive cells. We confirmed by RNA-
sequencing (RNA-seq) analysis that only one copy of mutated EZH2 was integrated 
in the genome.

Hi-C experiments were performed on Karpas422, WSU-DLCL2, OCI-Ly19-
EZH2WT, and OCI-Ly19-EZH2Y646F, treated with 2 μ M GSK-126 or DMSO for 72 h. 
Data generation and analysis are detailed in the Supplementary Note. Targeted 
chromosome conformation capture using unique molecular identifiers (UMI-4C) 
was performed in Karpas-422 treated with 2 μ M GSK126 or DMSO for 72 h, as 
described in ref. 53. Hi-C and UMI-4C library preparation, contact-map generation, 
and data normalization were performed as described in the Supplementary Note.  
A list of the primers used in this study is provided in Supplementary Table 8.

mRNA expression was assessed by means of RNA-seq in OCI-LY19-EZH2WT, 
OCI-Ly19-EZH2Y646F, and OCI-Ly19-EZH2Y646F after treatment with the EZH2 
inhibitor GSK126 for 72 h. ChIP-seq was performed in OCI-Ly19-EZH2WT and 
OCI-Ly19-EZH2Y646F, Toledo, and WSU-DLCL2 cells by using a monoclonal 
antibody to H3K27me3 (Cell Signaling, 9733). H3K27me3 ChIP-seq data for 
OCI-Ly7, DOHH2, and Karpas422 were obtained from ENCODE, whereas 
for WSU-DLCL2, data were obtained from the GEO Database (GSE40792). 
Targeted ChIP validation was performed for FOXO3 and SESN1 on Toledo and 
WSU-DLCL2 cell lines. All data generation and analyses are detailed in the 
Supplementary Note.

STORM was used to compare the structure of TAD6.139 between WSU-
DLCL2 treated with either 2 μ M GSK126 or DMSO (four independent 
experiments), and between OCI-Ly19-EZH2WT and OCI-Ly19-EZH2Y646X  
(three independent experiments). The structure of the neutral TAD1.54 was 
compared between WSU-DLCL2 treated with either 2 μ M GSK126 or DMSO  
(two independent experiments). STORM data were generated and analyzed as 
described in the Supplementary Note.

Mouse model. We isolated Eμ -myc transgenic fetal liver cells from embryos at 
embryonic day 13.5. The HPCs were grown for 4 d in a specially adapted growth 
medium (DMEM, IMDM, l-glutamine, pen/strep, FBS, and SCS-stem cell 
supplement (Whei, IL3, IL6, SCF, and polybrene) and retrovirally transduced 
with either the vector MLS-GFP containing shRNA for Sesn1 or Foxo3 or the 
empty vectors. We inoculated genetically modified HPCs into lethally irradiated, 
syngeneic wild-type recipient animals. Disease onset was monitored by palpation 
and blood smears. Data were analyzed in Kaplan–Meier format by using the 
log-rank (Mantel–Cox) test for statistical significance. Transgenic animals were 
maintained in EPFL SPF animal facility, and all animal studies were approved by 
Swiss Cantonal authorities (animal license VD2932 and VD2932.1).

Comparison of intrachromosomal Hi-C contact maps. All pairwise comparisons 
between intrachromosomal contact maps (or matrices) were based on four 
different metrics: overall matrix correlation by SCC, fraction of corresponding 
bins assigned to the same compartment (A or B), conservation of TADs, and 
conservation of significant interactions between bins.

Matrix correlation (stratum-adjusted correlation coefficient). To compare the 
overall distribution of contacts across intrachromosomal Hi-C maps, we used the 
SCC, as implemented in the hicrep R package24 in Bioconductor (get.scc function, 
after having trained the smoothing parameter with the htrain function for the 
range 0:20). After smoothing Hi-C matrices with a 2D mean filter to reduce 
noise and bias effects, we stratified chromatin contacts according to the genomic 
distance between interacting loci. The number of strata K is given by the maximal 
interaction distance divided by the bin size (for example K =  3,840, for a 192-Mb  
chromosome binned at 50 kb; here, we chose the chromosome size as the maximal 
interaction distance). The SCC was then computed as a weighted average of 
stratum-specific Pearson’s correlation coefficients, and it can be interpreted 
as a classical correlation coefficient with values ranging from –1, for perfect 
anticorrelation, to + 1, for perfect correlation.

Fraction of corresponding bins assigned to the same compartment. Compartments 
were calculated as previously described3: Hi-C contact matrices were binned at 
1 Mb by using the pca.hic function from the HiTC R package in Bioconductor, and 
compartments A and B were defined according to the signs of the values of the first 
eigenvector retrieved from principal component analysis of the Pearson correlation 
matrix of the observed over expected Hi-C matrix (when the first eigenvector 
separated the two chromosome arms, the second eigenvector was used). To 
compare the compartments between two intrachromosomal matrices, we defined 
the sign (positive or negative) associated with a specific compartment (A or B) 
as the one achieving the highest correlation between the eigenvectors of the two 

datasets. For each pair of 1,000-kb bins corresponding to the same genomic region 
in the two Hi-C contact matrices, we compared the sign of the corresponding 
eigenvalue: concordant signs corresponded to bins assigned to the same 
compartment, opposite signs corresponded to bins in different compartments. 
A similarity score for each pair of intrachromosomal maps was defined as the 
fraction of bins that were assigned to the same compartment.

Conservation of TADs. First, TADs were called at 50-kb resolution by using the 
TopDom26 (TopDom function from the TopDom R package with a window size 
w = 5).

Next, we compared the set of TADs identified in two intrachromosomal 
matrices by computing the concordance of the two corresponding chromosome 
partitions. For this purpose, we used the measure of concordance (MoC) 
previously introduced to compare clustering assignments25. MoC is defined  
as follows:
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where P and Q are the sets of TADs being compared, including NP and NQ numbers 
of TADs, respectively. Pi and Qj are two individual TADs within P and Q having 
size ||Pi|| and ||Qj||, respectively, measured in base pairs. Finally, ||Fij|| corresponds 
to the size (number of base pairs) of the overlap between the two TADs Pi and Qj.

Conservation of significant interactions. The statistical significance of chromatin 
interactions at the bin level was estimated with HiC-DC28 in ‘fixed bin’ mode. The 
bin size was set to 50 kb, with degrees of freedom (df) =  6 and size =  1.0. The hg19 
mappability file was retrieved by following the link provided in the URLs section. 
Interactions were called significant if the HiC-DC q value was smaller than 0.05. 
Conservation of significant interactions between two given cell lines c1 and c2 was 
computed as the overlap between their set of significant interactions as follows:

= . .
. . . .

overlap
of common s i

of s i in c of s i in c
#

min{(# 1), (# 2)}

Generation of Hi-C contact maps for replicates and randomized maps for 
comparison. To build a reference scale of values for the different metrics, we 
included comparisons between our Hi-C maps and randomized Hi-C maps, as well 
as comparisons between independent replicates of the same cell line.

In the comparisons based on the SCC measure and on the fraction of 
conserved significant interactions, we generated randomized Hi-C maps by 
shuffling count values within each diagonal of the Hi-C matrix, that is by 
permuting the number of contacts among bins located at the same genomic 
distance. For the comparison of TAD by MoC, random TAD partitions were 
generated by shuffling the original set of TADs in a way that preserved the number 
and the size of the TADs. The resulting random maps were used to estimate the 
expected similarity score between Hi-C experiments performed without any 
expected structural similarity.

Additionally, for each cell line, we selected and aggregated independent 
replicates in two groups with similar total number of reads and generated separate 
contact maps and the list of contacts (interactomes) for each group. The maps and 
the interactomes were used to estimate the expected similarity score between Hi-C 
experiments performed on the same cell line (that is, expected highest similarity).

Concordance analyses of H3K27me3 and transcriptional changes within TADs. 
A consensus list of TADs conserved among Karpas422, OCI-Ly19-EZH2WT, OCI-
Ly19-EZH2Y646F, and WSU-DLCL2 cell lines was determined by using an approach 
based on weighted interval scheduling (WIS) efficiently solved with a dynamic 
programming (DP) approach54. Briefly, each interval/TAD received a weight 
according to how conserved it was across cell lines (allowing a tolerance radius of 
two bins or 100 kb), and the goal was to identify a set of nonoverlapping intervals 
of maximum total weight (details in Supplementary Note). Using this approach,  
we identified a total of n =  3,773 consensus TADs.

H3K27me3 comparison among subcompartments. Chromosome subcompartments 
derived in GM12878 were downloaded from the GEO database (GSE63525). 
Subcompartment calls were used to partition contact maps generated by our 
experiments, given the high concordance between A and B compartments derived 
in GM12878 and in our cell lines (Fig. 1c,d). Moreover, subcompartments have 
been called only in GM12878, given that the procedure requires an extremely 
high number of reads (documentation in GSE63525). To compare H3K27me3 
across subcompartments, we considered the mean H3K27me3 levels within 
each continuous DNA sequence that was assigned to the same subcompartment 
(sc region) and compared the distribution of mean H3K27me3 values among 
sc regions annotated for the same compartment. Unannotated sc regions were 
excluded from this analysis. H3K27me3 fold changes were computed for each sc 
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region through comparing the mean H3K27me3 values in OCI-Ly19-EZH2Y646F 
versus OCI-Ly19-EZHWT cells.

Intra-TAD and inter-TAD correlation between H3K27me3 fold changes and levels. 
Correlations between normalized H3K27me3 profiles of OCI-Ly19-EZH2Y646F and 
OCI-Ly19-EZH2WT cells were investigated as previously described23. Briefly, each 
TAD was divided into ten equally spaced bins, as well as two flanking regions of 
the same size of the TAD. Mean H3K27me3 levels and the fold changes of mean 
H3K27me3 levels in mutated versus wild-type samples within each of these 30 
bins were then stored as a row of an N ×  30 matrix, where N is the number of 
TADs. Finally, Spearman correlation coefficients were computed between each 
pair of columns of this matrix, thus constructing a 30 ×  30 symmetric pairwise 
correlation matrix, whose columns 11–20 corresponded to bins within a TAD, 
whereas columns 1–10 and 21–30 corresponded to bins within upstream and 
downstream regions, respectively. The central 10 × 10 block represented intra-TAD 
correlations, whereas the 10 ×  10 blocks above (or below) it and on its right (or 
left) corresponded to inter-TAD correlations. The correlation of H3K27me3 fold 
changes as a function of distance for intra-TAD and inter-TAD pairs of loci  
(Fig. 2d) was performed as follows:

 1. Each TAD was divided into bins of 25 kb, as well as its two flanking regions 
(of the same size as the TAD) upstream and downstream; fold changes in 
each bin were computed as explained above.

 2. A distance vector was constructed as a sequence of distances ranging from 
25 kb to 1 Mb, each of them separated by 25 kb.

 3. For each element i of the distance vector, we extracted all pairs of loci that 
were separated by a distance equal to i; next, we derived an N ×  2 matrix 
storing the N pairs for which both loci were in the same TAD, and we com-
puted the Spearman correlation coefficient between the two columns, which 
represented the intra-TAD correlation at distance i; analogously, we derived 
an M ×  2 matrix storing the M pairs for which one locus was in the TAD, and 
the other was in one of the two flanking regions and computed the inter-TAD 
correlation for distance i in the same way.

 4. Finally, we plotted the intra-TAD and inter-TAD correlation versus distance 
in two different lines.

Concordance between H3K27me3 changes and TADs. H3K27me3 ChIP-seq levels 
in OCI-Ly19-EZH2Y646F cells and in OCI-Ly19-EZH2WT were jointly normalized 
across the two cell lines, as described in the Supplementary Note. Normalized 
H3K27me3 levels were averaged within each conserved TAD, and the log2 fold 
change was computed between the two conditions (mutated versus wild type). 
Density distributions of log2 fold change values were visualized by using the 
‘density’ R function.

Random distributions of H3K27me3 TAD fold changes were generated by 
permutation of intervals (bins) of H3K27me3 read counts. Specifically, for a given 
size S, each chromosome was partitioned into bins of S base pairs, and read counts 
within each bin were summed. Corresponding bins in EZH2Y646F and EZH2 wild-type 
OCI-Ly19 cells were permuted together to preserve the H3K27me3 ratio between the 
two conditions for each bin. Bins within each chromosome were permuted separately. 
TAD fold changes were recalculated as described above. Random distributions were 
generated with bin sizes ranging from 1 kb to 2 Mb. The number of TADs obtaining 
a fold change greater than two was compared when using the observed H3K27me3 
distribution and distributions generated with bin size ranging from 50 kb to 2 Mb.

Concordance between transcriptional changes and TADs. For each mRNA 
expression dataset, genes with detectable expression were assigned to the TADs 
with the highest overlap, and genes nonoverlapping with a TAD were discarded. 
TADs containing fewer than three genes or more than the 0.99-quantile of the 
number of genes by TAD distribution were excluded. With these filters, we 
retained n =  2,038 TADs for the comparison between EZH2Y646X and EZH2WT 
DLBCL primary samples and cell lines, n =  1,923 TADs for the comparison of 
follicular lymphoma primary samples, and n =  900 TADs for the comparison 
of OCI-Ly19 EZH2Y646F and OCI-Ly19-EZH2WT. For the latter comparison, we 
retained considerably fewer TADs, a result consistent with the RNA-seq dataset 
including only three replicates for OCI-Ly19-EZH2Y646F and three replicates for 
OCI-Ly19-EZH2WT; thus, fewer genes had detectable expression in both conditions 
than in the other datasets.

To test whether the mRNA expression changes were more concordant within TADs 
than expected, we first defined TAD mRNA expression fold changes as the mean of 
the fold changes of each gene within the TAD. Gene fold changes were determined for 
both microarray and RNA-seq datasets as described above. Next, we defined a measure 
of concordance for fold changes within a TAD and compared the observed cumulative 
sum distribution of concordance values obtained by our set of conserved TADs with 
the expected cumulative sum distribution under random permutation of the gene-to-
TAD assignments. Briefly, an FCC score was computed for each TAD as:
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where #FC is the number of genes within the TAD, #FC− is the number of genes with 
a negative fold change within the TAD, |FC| are absolute fold-change values, and |FC−| 
are absolute values of negative fold changes (log2 fold changes were used). TADs were 
ranked from highest to lowest FCC, and the cumulative sum curve was calculated. 
For each test, we compared the observed cumulative sum curve against curves 
obtained after random permutation of gene-to-TAD assignments. Intuitively, the more 
concordant the gene expression changes within TADs, the steeper the increase in the 
cumulative sum. We considered the observed concordance to be greater than expected 
when the observed curve was higher than all random curves. To permute gene-to-
TAD assignments, we divided genes in five classes according to their overall levels of 
expression and shuffled TAD labels within each class. For each test, we performed 
10,000 permutations and reported the range comprising all random curves.

Pearson’s correlation of mRNA expression between genes located in the same 
TAD or different TADs were compared as a function of their genomic distance 
(maximum 500 Kb). Microarray data were normalized by using the median 
absolute deviation method, whereas RNA-seq data was transformed by using 
quantile normalization. Curves were fitted by using the R loess function (from the 
stats package, with default parameters).

Genes within inactive TADs were analyzed by gene-set enrichment analysis, 
and their expression was assessed in centrocytes, centroblasts, and memory B-cells, 
as described in the Supplementary Note.

Differential intra-TAD interactome analysis for TAD6.139. For each pair of cell 
lines/conditions, significantly different interactions between 20-kb bins within the 
TAD 6.139 were determined as follows:

 1. HiC-DC was run on Hi-C read pairs of Chr.6 with a bin size of 20 kb, and the 
q values obtained for each pair of bins within the entire chromosome were 
retained;

 2. For each pair of bins i and j (with is > js), the interaction differ-
ence d between condition A and condition B was computed as 

= − +−d q qlog ( ) log ( )i j
A B

i j
A

i j
B

, 10 , 10 ,
;

 3. Distributions of −di j
A B
,  values were determined for pairs of bins at the same 

genomic distance;
 4. For each pair of bins is and js in TAD6.139, the significance of the correspond-

ing interaction difference was tested by computing its empirical P value 
against the distribution of interaction differences computed between bins at 
the same distance, namely 

−
∣ − = −
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;

 5. Empirical P values obtained for all pairs of bins within TAD 6.139 were cor-
rected for multiple testing by using the Benjamini–Hochberg procedure;

 6. Finally, interactions were called significantly stronger in condition A than in 
condition B if they satisfied both the following conditions: 

 a. The q value computed by HiC-DC was smaller than 0.1,
 b. The q value resulting from step (5) was smaller than 0.1.

Differential-interaction analysis for intra-TAD promoter-proximal regions. 
For each pair of cell lines/conditions A and B, significantly different interactions 
between 50-kb bins mapping to gene promoters located in a set of TADs were 
determined as follows:

 1. HiC-DC was run on Hi-C read pairs of all chromosomes with a bin size of 
50 kb, and the q values obtained for each pair of bins were retained;

 2. Bin-level promoter-promoter interactions (PPIs) between genes x and y were 
identified as = −PPI qlog ( )x y i j, 10 ,

, where i and j are 50-kb bins overlapping 
the transcription start sites of genes x and y, respectively. Only PPIs between 
genes in the same TAD and less than 2 Mb apart were retained;

 3. Significantly different PPIs between conditions A and B were determined 
as described in steps 2–6 described in ‘Differential intra-TAD interactome 
analysis’, with a cutoff of 0.25 for q values computed in step 5

Random sets of neutral TADs were sampled from our consensus list of 2,038 
TADs such that:

 1. Only TADs with |log2(H3K27me3 fold changeOCI − Ly19 EZH2 − Y646F vs EZH2 − wt)| < 0.5 
and |log2(mRNA fold changeCell lines EZH2 − Y646X vs EZH2 − wt)| < 0.5 were sampled;

 2. The distributions of the numbers of genes per TAD in the random sets were 
the same as in the set of 72 inactive TADs

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
In this study, we used the following mRNA expression datasets: GSE23501 for wild-
type and EZH2-mutated GCB-DLBCL primary human samples, PRJNA278311 
(NCBI-BioProject) for wild-type and EZH2-mutated FL primary human samples, 
GSE40792 for wild-type and EZH2-mutated cell lines before and after treatment 
with GSK126, GSE49284 for EZH2-mutated cell lines before and after treatment 
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with EPZ6438, and GSE12195 for centrocytes, centroblasts, and memory B cells. 
ChIP-seq data for H3K27me3 in OCI-Ly7, DOHH-2, and Karpas-422 were 
downloaded from ENCODE; H3K27me3 in WSU-DLCL2 was downloaded 
from GSE40970; H3K4me3 in OCI-Ly7 and Karpas-422 were downloaded from 
ENCODE. ChIP-seq data for H3K27me3 and RNA-seq data for OCI-Ly19 and 
OCI-Ly19-EZH2Y646F were generated as described in the manuscript and have been 
deposited at GSE114270. HiC matrices and UMI-4C data have been deposited at 
Zenodo: https://doi.org/10.5281/zenodo.1244182. Custom scripts are available 

through a public GitHub repository at: https://github.com/CSOgroup/Donaldson-
et-al-scripts/.

References
 53. Schwartzman, O. et al. UMI-4C for quantitative and targeted chromosomal 

contact profiling. Nat. Methods 13, 685–691 (2016).
 54. Kleinberg, J. & Tardos, É. Algorithm Design (Pearson, Boston, 2005).

NaTuRE GENETICS | www.nature.com/naturegenetics

127



1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Elisa Oricchio, Giovanni Ciriello

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Data collected from public repository (e.g. ENCODE) was directly retrieved from the associated website without the use of custom 
software as described in the Methods section. 
Flow cytomentry data were acquired using LSR II (BD). 
qPCR data were acquired using AB Applied STEPOne PLUS. 
sequencing was performed using Illumina HI-seq and NexSeq500. 
Histology and immunofluorescence picture were acquired with Leica DM4000 B-LED with Leica application suite v2.0. 
Western blot were acquired with LICOR and Image Studio light program v3.1.4  
STORM imaging were acquired using a custom build microscope (Douglass et al. Nat.Photonics 2016) but with a photometrics prime 
sCMOS camera. 
 

Data analysis Publicly available computational tools to derive TADs, compute the interactome, and process Hi-C data matrices were used as described 
in the Methods section and they include: 
Bowtie2-2.2.9 
SAMtools (v1.3.1 and v1.6) 
Picard tools (v2.5.0) 
bwa mem (v0.7.12) 
STAR 2.5.3a 
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Cufflinks 2.2.1 
SRAtools 
R package Rsubread 1.28.1 
R package limma 3.34.8 
SICERpy (wrapper for SICER_V1.1) 
IGV genome browser 
bedGraphToBigWig v4 
R package hicrep v1.0.0 
TopDom v0.0.2 
R package HiC-DC v1.0 
mSigDB 
PRISM 6  
FlowJo 10.4.1 
Custom scripts have been implemented in bash, R (v3.4.3) and Python (v2.7.5) and are made available through a public GitHub repository 
at: https://github.com/CSOgroup/Donaldson-et-al-scripts 
Finally, standard statistical analyses and related figures were generated using standard R functions as described in the Methods section.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

In this study, we used the following mRNA expression datasets: GSE23501 for wild type and EZH2 mutated GC-DLBCL primary human samples and PRJNA278311 for 
follicular lymphoma primary human samples (Fig. 2), GSE40972 for wild type and EZH2 mutated cell lines before and after treatment with GSK126 (Fig. 2 and Fig. 5), 
and GSE49284 for EZH2 mutated cell lines before and after treatment with EPZ6438 (Fig. 5). GSE12195 for normal centroblast, centrocytes and memory B-cells 
mRNA expression (Suppl. Figure 3).

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Analyses of publicly available datasets used all available samples and multiple independent datasets were used to corroborate the 
reproducibility of the findings. 
The number of animals used for HPC cells experiments (n > 13) were in accordance with power analyses done based on previous experiment 
were n = 10 was deemed sufficient. 

Data exclusions Differential expression analysis performed only on cell lines from GSE40972 exhibiting hotspot mutations for EZH2 or EZH2 and UTX wild-type.  
HT cells were excluded as they harbor a mutation in UTX  gene. UTX can in part mimic the effect of EZH2 mutations, thus we couldn't include 
these cells either in the wild-type or in the EZH2 mutant group. Pfeiffer cells were excluded because they harbor a different mutation in EZH2 
(A677).Both of these cell lines were per-excluded from the analysis. 
In the STORM data analysis, we excluded measurements with extreme numbers of localizations (low or high) which were associated with 
inflation or deflation of Rg and E values due to technical reasons related to the STORM acquisitions. The detailed procedure is reported in the 
supplementary note. All measurements are reported in Supplementary Table 7 along with flag indicating whether they were retained or 
excluded from subsequent analyses.

Replication Results presented in this study have been confirmed on independent datasets.  
The replication number for each experiment is reported in each figure legend and individual data 

Randomization The experimental design did not included a randomization of the samples in different group, however experimental observations have been 
compared to analytically and empirically derived random models to assess their statistical significance as described in the corresponding 
method sections.

Blinding For the animal experiments, we measured survival and cell composition. In the initial experimental design we did not include blinding, as we 
wanted to match cell composition before and after the injection 
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Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary Antibodies 

Tri-methyl histone H3 (Lys 27) (H3K27me3), Rabbit monoclonal antibody (clone C36B11), Cell Signaling 9733; 1:1000 dilution for 
western blots, 1:1600 dilution for immunofluorescence, and 1:50 for ChIP 
 
Di-methyl histone H3 (Lys 27) (H3K27me2), Rabbit polyclonal antibody Abcam 194690; 1:500 dilution for western blot  
 
Histone H3, XP Rabbit monoclonal antibody (clone D1H2), Cell Signaling 4499; 1:1000 dilution for western blot 
 
Histone H3 (D2B12) XP® Rabbit mAb (ChIP Formulated), Cell Signaling 4620; 1:50 dilution for ChIP  
 
Normal Rabbit IgG, Rabbit polyclonal antibody, Cell Signaling 2729; 1:500 dilution, or 1ug for ChIP 
 
EZH2, Mouse monoclonal antibody (clone AC22), Cell Signaling 3147; 1:1000 dilution for western blots 
 
β-Actin, Mouse monoclonal antibody (clone 8H10D10), Cell Signaling 3700; 1:1000 dilution for western blot 
  
Ki67, Rabbit monoclonal antibody (clone SP6), Abcam Ab16667; 1:200 dilution 
 
CD3 α-rat APC (clone 17A2), lot 6224663, BD Farmingen 565643; 1:100 dilution  
 
CD45R/B220 α-rat PE-Cy7 (RA3-6B2), lot 6105665, BD Farmingen 552772; 1:100 dilution 
 
 
Secondary Antibodies 
Streptavidin Alexa Fluor-647 conjugate, α-biotin, ThermoFischer S21374 (1:500 dilution) 
 
IRDye 800CW Goat anti-Mouse IgG (H + L), 0.1 mg (1:10000 dilution) 
 
IRDye 680RD Goat anti-Mouse IgG (H + L), 0.1 mg (1:10000 dilution) 
 
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488, Invitrogen (A-11034) (1:500 dilution) 
 
4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) Invitrogen D1306 (1:5000 dilution)

Validation 1. CD45R/B220 α-PE-Cy7 and CD3 α-APC were used for flow cytometry analyses. Internal negative (unstained) controls were 
used for all samples.  
 
2. Rabbit α-Ki67 (SP6) was used for histological analysis of tumors. Internal negative control (secondary only) stained slides were 
used for all samples 
 
3. Tri-methyl histone H3 (Lys 27) (H3K27me3), Rabbit IgG (2729) and Histone H3 (4620) were used for ChIP qPCR/ChIP 
sequencing experiments. These antibodies were used a part of a kit offered by Cell Signaling Technologies (#9003). The kit 
contains a positive control Histone H3 Antibody, a negative control Normal Rabbit IgG Antibody and primer sets for PCR 
detection of the human and mouse ribosomal protein L30 (RPL30) genes. This kit has been extensively used and cited in a 
number of papers ((1) Orlando, V. (2000) Trends Biochem Sci 25, 99–104., (2) Kuo, M.H. and Allis, C.D. (1999) Methods 19, 425–
33., (3) Agalioti, T. et al. (2000) Cell 103, 667–78., (4) Soutoglou, E. and Talianidis, I. (2002) Science 295,1901–4., (5) Mikkelsen, 
T.S. et al. (2007) Nature 448, 553–60., (6) Lee, T.I. et al. (2006) Cell 125, 301–13., (7) Weinmann, A.S. and Farnham, P.J. (2002) 
Methods 26, 37–47., (8) Wells, J. and Farnham, P.J. (2002) Methods 26, 48–56.).  
 
4. Tri-methyl histone H3 (Lys 27) (H3K27me3) (9733), Di-methyl histone H3 (Lys 27) (H3K27me2) (194690), Histone H3 (4499), 
EZH2 (3147) and β-Actin (3700) were used as primary antibodies for western blot analyses. IRDye 800CW Goat anti-Mouse IgG 
and CD45R/B220 α-rat PE-Cy7 were used as secondary antibodies for western blot analyses.  
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Histone H3 (4499) has been cited in over 200 peer reviewed journals. Cell Signaling Technology cites no cross reactivity with 
other histones, and provides a sample western blot for the endogenous detection of Histone H3 in of four separate cells lines 
(HeLa, C6, COS, and NIH/3T3). 
 
H3K27me2 (194690) has been cited in 2 peer reviewed journals. Abcam provides a sample western blot for the endogenous 
detection of H3K27me2 in HeLa cells with no detection observed detection of H3K27me2 in E.coli.  
 
H3K27me3 (9733) has been cited in over 200 peer reviewed journals. Cell Signaling Technology states “Tri-Methyl-Histone H3 
(Lys27) (C36B11) Rabbit mAb detects endogenous levels of histone H3 only when tri-methylated on Lys27. The antibody does 
not cross-react with non-methylated, mono-methylated or di-methylated Lys27. In addition, the antibody does not cross-react 
with mono-methylated, di-methylated or tri-methylated histone H3 at Lys4, Lys9, Lys36 or Histone H4 at Lys20.” Cell signaling 
provides a sample western blot for the endogenous detection of H3K27me3 in four separate cell lines (HeLa, C6, COS, and 
NIH/3T3). 
 
EZH2 (3147) has been cited in over 70 peer reviewed journals. Cell signaling provides a sample western blot for the endogenous 
detection of EZH2 in four separate cell lines (T47D, MCF7, SEM, MDA-MB134).  
 
β-Actin (3700) has been cited in over 650 peer reviewed journals. Cell signaling provides a sample western blot for the 
endogenous detection of β-Actin in five separate cell lines (COS, HeLa, C2C12, C6, CHO).  
 
5. Tri-methyl histone H3 (Lys 27) (H3K27me3) (9733) was used as a primary antibody for immunofluorescence staining (1:1600). 
Goat anti-Rabbit IgG Alexa Fluor 488 (1:500) (A-11034) and DAPI (D1306) (D1306) (1:5000) were used as secondary antibodies 
for immunofluorescence stain.  
 
Internal positive and negative (secondary only) control stained slides were used for validation. In addition, Cell Signaling cites 
over 200 peer reviewed journals where H3K27me3 (9733) has been used, and states that “Tri-Methyl-Histone H3 (Lys27) 
(C36B11) Rabbit mAb detects endogenous levels of histone H3 only when tri-methylated on Lys27. The antibody does not cross-
react with non-methylated, mono-methylated or di-methylated Lys27. In addition, the antibody does not cross-react with mono-
methylated, di-methylated or tri-methylated histone H3 at Lys4, Lys9, Lys36 or Histone H4 at Lys20.” Cell signaling provides an 
example image of HeLa cells immunolabeled with the (H3K27me3) (9733) antibody. Goat anti-Rabbit IgG Alexa Fluor 488 
(A-11034) has been cited in over 500 peer reviewed journals, and uses a process of cross-absorption to remove antibodies that 
potentially cross react with other species, which increases specificity and reduces background.  
 
6. Streptavidin α-biotin Alexa Fluor-647 (1:500) (S21374) and custom designed oligo probes (MYcroarray) were used for DNA 
FISH and STORM imaging experiments. Internal negative control (secondary only) stained slides were used for validation of the 
secondary antibody.  

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) DoHH2 (ACC-47) DSMZ, WSU-DLCL2 (ACC-575) DSMZ, SU-DHL-10 (ACC-576) DSMZ, OCI-LY19 (ACC-528) DSMZ,  Karpas-422 
and Toledo and Fl-5-12 cells were obtained from Wendel lab (MSKCC)

Authentication All human cell lines were authenticated by short tandem repeat (STR) profiling, performed by Microsynth, CH.

Mycoplasma contamination cells obtained for Wendel lab were tested and were negative for mycoplasma contamination, cell bought from DSMZ have  
not been tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals mus musculus, C57BL6, females, 8-10 weeks old, HPC were isolated from embryo at 13.5-14.5 days.

Wild animals This study did not involve wild animals

Field-collected samples This study did not involve field-collected samples

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
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H3K27me3 for OCI-Ly7, DOHH-2 and Karpas-422 were downloaded from ENCODE 
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Data access links 
May remain private before publication.

H3K27me3 for WSU-DLCL2 were downloaded from GSE40970 
H3K4me3 for OCI-Ly7 and Karpas-422 were downloaded from ENCODE 
H3K27me3 and RNAseq for OCI-Ly19-WT and OCI-Ly19-EZH2 Y646F were generated as described in the manuscript and 
deposited in GSE114270, the token for reviewer access is admhsguudlkldwv 
HiC matrices that can be visualized with Juicebox have been deposited in Zenodo in a private link 
https://zenodo.org/record/1244183?
token=eyJhbGciOiJIUzI1NiIsImV4cCI6MTUyODU4MTU5OSwiaWF0IjoxNTI1OTQ1Mjg0fQ.eyJkYXRhIjp7InJlY2lkIjoxMjQ0MTgzf
SwiaWQiOjUzOSwicm5kIjoiYTJhNTIzMjIifQ.3lznpUuQFO-Nkbu895VkhvmUhNieYFFsZ0ZCqedFuHw 
 

Files in database submission FASTQ and .bam alignment files for H3K27me3 and input (OCI-Ly19-WT and OCI-Ly19-Y646F) 
.bed peak lists for H3K27me3 (OCI-Ly19-WT and OCI-Ly19-Y646F)

Genome browser session 
(e.g. UCSC)

N/A

Methodology

Replicates OCI-LY19-WT and OCI-LY19-Y646F: 3 replicates per condition

Sequencing depth OCI-LY19-WT: 149102952 mapped (MAPQ>0) reads for H3K27me3 ChIP and 48538036 for the input 
OCI-LY19-Y646F: 122262552 mapped (MAPQ>0) reads for H3K27me3 ChIP and 46698494 for the input

Antibodies H3K27me3: Cell Signaling 9733

Peak calling parameters Peaks were called with SICER_V1.1, using hg19,  fragment size 250 bp; effective genome size fraction 0.86; window size 750 
bp; gap size 3; redundancy threshold 1; FDR 0.001

Data quality - Mapping quality filtering to exclude secondary alignments and reads aligning to multiple locations (MAPQ>0) 
- Strict FDR threshold to retain SICER peaks (FDR<0.001) 
- Visual inspection of ChIP, input and peak tracks on IGV 

Software - Bowtie2-2.2.9 for the alignment 
- Samtools-1.6 for removing PCR duplicates, sorting and filtering 
- SICERpy (wrapper for SICER_V1.1) for peak calling 
- bedGraphToBigWig v 4 was used to convert bedGraph to bigWig file 
- IGV genome browser for visualization 
- Custom scripts under https://github.com/CSOgroup/Donaldson-et-al-scripts for downstream analyses

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cells were retrovirally transduced with either shRNA for Sesn1, Foxo3, or MSCV-IRES-GFP or MSCV-IRES-DsRed vectors. Cells 
were acquired in the indicated days

Instrument The number of fluorescent cells were monitored by FACS (Guava Millipore EasyCyte HT System or LSRII Snoopy , Becton 
Dickinson).

Software The data were analyzed using FlowJo.

Cell population abundance All cells were considered in the analyses.

Gating strategy In the initial gating FSC/SCC we only excluded debris or dead cells that in general accounted for less than 10% of the population, 
all living cells were considered in the analyses.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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