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ABSTRACT: We investigate the growth of an axisymmetric hydraulic fracture in an impermeable quasi-brittle material accounting
for the presence of a fluid lag. The process zone is simulated using a linear softening cohesive zone model and is characterized by
an increased resistance to the fluid flow due to fracture roughness. In the context of a partially-filled cohesive zone, the fracture
roughness decreases the tip permeability and further localizes the pressure drop inside the cohesive zone. As a result, a wider fracture
opening and higher net pressure are obtained, indicating an increase of the apparent fracture energy. Similar to the linear elastic case,
the fracture growth is closely related to a dimensionless parameter ψ which describes the transition nature from the lag-viscosity-
toughness regimes. The propagation also depends on the ratio between the in-situ minimum confining stress and the maximum
cohesive traction σo/σT and the type of fluid flow deviation in small rough apertures.

1. INTRODUCTION

Some rocks present a strong non-linear behavior where non-
elastic processes such as large plastic deformations or mi-
crocracking are no longer negligible. The growth of hy-
draulic fractures in such rocks may differ from the predic-
tions of linear elastic fracture mechanics (LEFM) theories.
Different approaches have been proposed in the literature to
account for the inelastic dissipation in the solid. Account-
ing for the plastic deformation around the fracture tip, Pa-
panastasiou, 1997, 1999; Sarris and Papanastasiou, 2011 re-
port an increase of the fracture apparent energy during the
growth of a plane-strain hydraulic fracture. Accounting for
the presence of a fluid lag and cohesive forces close to the
tip, Rubin, 1993 argues that the cavity in the fluid lag in-
creases with the fracture length and augments the fracture
apparent resistance by perturbating the stress field around
the tip. These studies show that the rock non-linearity is also
responsbile for the larger net propagation pressure (the dif-
ference between the fluid pressure and the minimum com-
pressive stress in-situ) in vertical wells of hydraulic fractur-
ing tests (Shlyapobersky, 1985; Shlyapobersky et al., 1988,
1998; Thallak et al., 1993), besides the fracture tortuos-
ity and the additional friction of the wellbore (Palmer and
Veatch Jr, 1990; Bunger and Lecampion, 2017). Further-
more, an intrinsical link between the solid non-linearity and
the fracture roughness has been revealed through analy-

sis of the fractured surfaces (Ponson, 2016). Elastic and
brittle materials present a roughness scaling exponent of
around 0.4, and such value is 0.8 for materials with a rel-
atively large process zone (i.e. porceline, silicate glass and
granite)(Bonamy and Bouchaud, 2011; Måløy et al., 1992;
Schmittbuhl et al., 1993). By increasing the length scale of
observation, the process zone size can be determined from
the transition of the fracture roughness exponent (Mourot
et al., 2005; Bonamy et al., 2006; Ponson et al., 2007; Morel
et al., 2008). The length scale at which the roughness expo-
nent transitions from 0.8 to 0.4 indicates the transition from
a local non-linear elastic behavior to a overall linear elastic
behavior.

Fracture roughness also influences the fluid flow inside
the fracture. The fluid flow in a small rough aperture
may deviate from the one inside a “smooth” channel, de-
scribed by Poiseuille’s law (cubic law). Such deivation ef-
fect is more pronounced in the tip region where the aper-
ture roughness (the difference between two fractured sur-
face roughness) is more significant compared with the frac-
ture opening (Lhomme, 2005; Van Dam and de Pater, 1999).
As a result, the hydraulic permeability of the fracture is
much reduced (Renshaw, 1995; Zimmerman and Bodvars-
son, 1996). The fracture roughness therefore relates the
length scale of the solid non-linearity to that of the fluid
flow deviation. Such relation has been recognized by Gara-
gash, 2015 when studying the multiphysical tip asymptote
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linearity and deviated fluid flow

of a hydraulic fracture in a quasi-brittle medium. The au-
thor accounts for a rough cohesive zone with an increased
resistance to the fluid flow and reports a higher net pres-
sure, a wider opening and an emergence of an intermedi-
ate tip asymptote. In this paper, we aim to understand how
such coupled physics affect the propagation of a finite fluid-
driven fracture. Based on a model who links the the length-
scale of the solid non-linearity to that of the fluid flow dei-
vation, we analyze the growth of a radial hydraulic fracture
accounting for the presence of a cohesive zone and fluid lag.

2. PROBLEM DESCRIPTION

We investigate the growth of an axisymmetric fracture in an
infinite quasi-brittle impermeable medium. The fracture is
driven by an incompressible Newtonian fluid under a con-
stant injection rate Qo from a point source r = 0. Fluid
cavitation may occur in the viscous fluid flow and result in
a lag between the fluid front and the fracture front. The
process zone, associated with the rock non-linearity, is ac-
counted as a part of the fracture and is characterized with
an increased resistance to the fluid flow due to the fracture
roughness. Solutions of such problem are given by the net
fluid pressure p = pf −σo, (the difference between the fluid
pressure pf and the far-field minimum confining stress σo),
fracture opening w, fracture radius R, and fluid front radius
Rf , which are functions of the position r along the fracture,
time t, injection rate Qo, and other parameters K ′, E ′, µ′,
defined as

K ′ =

√
32

π
KIc, E ′ =

E
1 − ν2

, µ′ = 12µ (1)

where E is the solid elastic modulus, KIc fracture effective
toughness for quasi-brittle solid, ν Poisson’s ratio and µ the
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Fig. 2: Problem description

fluid viscosity.

2.1. Cohesive zone model

The process zone is simulated by a linear-softening cohesive
zone model. Cohesive tractions apply near the fracture tip
and vanish when the fracture opening goes beyond a critical
opening wc. For w < wc, the cohesive stress decreases
linearly with the fracture opening, as shown in Fig. 3.

σcoh (w) =



σT (1 − wc) 0 ≤ w < wc

0 w > wc

(2)

where σT is the maximum cohesive traction. Using Irwin’s
equation, the fracture energy thereby denotes

Gc =
1

2
σTwc =

K2
Ic

E ′
(3)

2.2. Lubrication deivation model

In small rough apertures, e.g. the tip region of a fluid-driven
fracture, the fluid flow deviates from Poiseuille’s law and re-
sults in a decreased permeability. We model such deviation
by introducing a friction factor f in Poiseuille’s law:

w3
h = w3/ f , f = 1 + (

wR

w
)α, α = 0, 1, 2 (4)

where wh is the hydraulic width of the fracture (for a smooth
aperture wh = w), wR the critical opening characterizes the
fluid flow deviation, as illustrated in Fig. 3, which is the
same order of magnitude as wc (Gérard et al., 1996; Gara-
gash, 2015).

For the sake of simplicity, we assume in the following:

wR = wc (5)

The cohesive zone is thereby characterized by a cohesive
stress σcoh and an increased resitance to the fluid flow.
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3. GOVERNING EQUATIONS

Elasticity Deformations of the solid are prescribed by lin-
ear elastic equations with the presence of cohesive forces.
For a Mode I fracture, the elasticity reduces to a boundary
integral equation relating the net pressure p = pf − σo ,
cohesive tractions σcoh to the fracture opening w (Zhang
et al., 2005; Gordeliy and Detournay, 2011)

−
E ′

4π

∫ R

0

[ 1

r ′ − r
E (k) +

1

r ′ + r
K (k)

]
∂w

∂r ′
dr ′ = (p−σcoh)

(6)
where r ∈ (0, R) represent the position along the fracture.
E(k) and K(k) denote the complete elliptic integrals, and
k = r/r ′.

Lubrication Under the assumption of zero leak-off and
a negligeble fluid compressibility, the width-averaged mass
conservation reduces to

∂w

∂t
+
1

r
∂

∂r
(
rq

)
= 0, 0 < r < Rf (7)

The local flux q is related to the local pressure gradient
under the lubrication approximation through a modified
Poiseuille law, considering the deviation effect due to the
fracture roughness

q = −
w3

µ′ f (w,wR)
∂pf

∂r
, 0 < r < Rf (8)

Boundary condition The injection of the fluid is ideal-
ized as a point source at the fracture center r = 0 with a
constant injection rate Qo. The fracture front r = R is char-
acterized by zero fracture opening.

2π lim
r→0

rq = Qo, w(R, t) = 0 (9)

In the fluid lag region, the caviation pressure is null and the
fluid front velocity is described by the Stefan equation.

pf (Rf ) = 0, Rf ≤ r < R, and Ṙf = −
w2

µ′ f
∂pf

∂r

�����r=R f

(10)

Global continuity equation By integrating the lubrica-
tion equation by considering the inlet condition, one gets
the global fluid balance,

2π

∫ R f

0
rwdr = Qot (11)

Propagation condition The propagation criteria evalu-
ates the stress component which is perpendicular to the
fracture plane σzz , since the propagation turns into a de-
cohesion process of the material.

σzz ≥ σT (12)

4. DIMENTIONAL ANALYSIS

We scale the sought quantities w(r, t), p(r, t), R(t) and
Rf (t) following the same procedures in (Bunger and De-
tournay, 2007) .

w = WΩ, p = PΠ, R = Lγ, Rf = ϑLγ f , q =
Qo

ϑL
Ψ (13)

We define respectively the normalized position along the
fracture ξ = r/R, the fluid front location ξ f = Rf /R, and
the cohesive zone length ξcoh = Rcoh/R. By using Irwin’s
equation (3) (i.e. K ′ = 4

√
E ′σTwc/π), we get different

characteristic scales in three different regimes, representing
fluid lag-(O), fluid viscosity-(M) and fracture toughness-
(K) dominated regimes respectively, as shown in Table 1

The evolution of a radial hydraulic fracture initiates from
a regime where the fluid lag is significant, transitions to the
viscosity-dominated regime as the fluid lag coalesces with
the fracture front, and reaches the toughness regime due to
the increse of geometry at large time. Such evolution de-
pends on the ratio ψ of the transition time from viscosity to
toughness regimes tmk and the transition time for the disap-
perance of the fluid lag tom.

ψ = tmk/tom =
E ′9/2Q3/2

o µ′3/2σ3
o

K ′9
(14)



Table 1: Characteristic scales in different scalings. The subscripts
o, m, k indicate respectively the lag-, viscosity-, and toughness-
dominated regime.

Scaling O M K

L Lm

(
t

tmk

)−2/9
Lm =

(
E′Q3

o t
4

µ′

)1/9
Lm

(
t

tmk

)−2/45
ϑ

(
t

tmk

)2/9
1 1

W Wm Wm =

(
µ′2Q3

o t

E′2

)1/9
Wm

(
t

tmk

)−4/45
P Pm Pm =

(
E′2µ′

t

)1/3
Pm

(
t

tmk

)2/15

tom =
E ′2µ′

σ3
o

, tmk =
E ′13/2Q3/2

o µ′5/2

K ′9
(15)

The dimensional analysis introduces another dimension-
less confining stress ratio σo/σT compared with the linear
elastic case. By defining a length scale wµ characterizing
the opening at the fluid front like in (Garagash, 2015), we
relate such dimensionless confining stress ratio to the di-
mensionless ratio ψ. We can also define the length scale of
the cohesive zone Lcooh and the fluid lag Lλ.

wµ =

(
Qoµ

′

σo

)1/3
,
wc

wµ
=
σo

σT
ψ−2/9 (16)

Lcoh =
E ′wc

σT
, Lλ =

E ′wµ

σo
=

(
E ′3Qoµ

′

σ4
o

)1/3
(17)

wc/wµ characterizes the relation between the fluid lag
and cohesive zone and describes the penetration degree of
the process zone by the fluid. Both a higher confining stress
σo/σT and a smaller ψ ratio result in a higher penetration
degree of the cohesive zone: a higher confining stress agrees
tends to push the fluid towards the fracture tip and a smaller
ψ refers to a faster disappearance of the fluid lag.

Under the assumption of wc = wR, the fracture roughness
will decrease the tip permeability only when the fluid front
enters into the cohesive zone. A larger value of wc/wµ (
larger penetration degree of the cohesive zone by the fluid)
indicates a possibly more pronounced viscous dissipation
due to the fracture roughness. When wµ ≫ wc (often the
case of magma flow), the cohesive zone tends to be embed-
ded in the fluid lag and the fracture roughness influences
little the fluid flow in the smooth fracture channel. When
wµ ≪ wc (often the case in hydraulic fracturing), it be-
comes much easier for fracturing fluid to penetrate the pro-
cess zone and results in larger energy dissipation in fractur-
ing. The ratio of wc/wµ gives an estimation of the interplay

between the fluid front and the coehsive zone, yet the pen-
etration degree of the cohesive zone also evolves with time.
The propagation initiates from a state where there is no vis-
cous flow in the fracture and the fluid front is embedded in
the cohesive zone. As the fracture propagates, the fracture
front detaches from the fluid front, and leads to an increase
of the fluid lag and a decrease of the penetration degree.
Such penetration degree increases again at large time when
the fluid lag tends to disappear. The evolution of the inter-
play between the cohesive zone and the fluid front results in
a varying viscous dissipation due to the fracture roughness.

5. NUMERICAL SCHEME

We adopt a fixed regular grid and discretize elasticity and
fluid mass conservation by using respectively displacement
discontinuity method with piecewise-constant elements and
finite volume method. The solution of the hydraulic fracture
propagation problem is obtained numerically via a fully im-
plicit scheme. We extend the scheme (CZMLAG) in (Liu
and Lecampion, 2019) to the axisymmetric geometry and
at the same time account for the roughness-deviated fluid
flow. The fluid lag is accounted for using the Elrod-Adams-
model at the early stage of the initiation and a level set type
algorithm afterwards.

The fluid caviatation is automatically accounted for in the
fluid lag initiation algorithm. There is not a clear boundary
between the fluid and caviation. A state variable θ charac-
terizes the fluid fraction of the element. Each element can
be empty (pf = 0, θ = 0), fully-filled (pf > 0, θ = 1) or
partially-filled (pf = 0, 0 < θ < 1) by the fluid, all fulfilling
Eq. (18).

pf (1 − θ) = 0 (18)

The level set algorithm instead tracks the evolution of the
fluid front position. The fracture is then divided into three
parts: the fluid channel where the elements are all fully
filled (pf > 0), the fluid lag where there is no fluid at all
(pf = 0) and one partially-filled element (pf = 0) where
locates the fluid front. The fluid front position is estimated
through Eq.(19).

Rf = Ro
f + Ṙf∆t (19)

where ∆t represents the time step and Ro
f

the fluid front at
the previous time step. The fluid front velocity Ṙf is ob-
tained from the Stefan equation (10). For a given fracture
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Fig. 4: Benchamark of the numerical scheme for lag-dominated
solutions in a linear elastic medium

front at time t, the numerical algorithm seeks the fluid front
position by using Eq. (10) and Eq.(19) iteratively.

Such fluid-front-tracking algorithm is much more com-
putationally efficient compared to the fluid-lag-intitation al-
gorithm however demands a more accurate estimation of the
fluid front position. It may however overestimate the fluid
front position and leads to negative fluid pressure near the
fluid front. As a result, Eq. (10) no longer captures cor-
rectly the fluid front advancing velocity, as pointed out by
Gordeliy et al., 2019. In order to better locate the fluid front,
we switch to a bi-section algoithm similar to the one in
(Gordeliy et al., 2019) when negative fluid pressure occurs.
Once the scheme detects a negative fluid pressure in the
channel elements (where the elements are fully-filled with
fluid) during the sth iteration at the current time step, we
utilizes the bi-section algorithm to estimate the fluid front
position. We set the fluid front position at the previous time
step as the lower bound Rf d = Ro

f
and the current posi-

tion R(s)
f

as the upper bound Rf u = R(s−1)
f

. As long as
the fluid front advances during the fracture growth, the trial
fluid front position for the next iteration becomes

R(s+1)
f

= (Rf u + Rf d)/2 (20)

We iterate on Rf until all fluid pressure in the channel
elements remain positive.

5.1. LEFM O-regime benchmark

We benchmark our numerical scheme (CZMLAG) with the
semi-analytical solutions of O-regime for a radial fracture
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Fig. 5: Comparision of the opening and net pressure. “+” indi-
cates the boundary of the cohesive zone and the vertical dashed
lines indicate the fluid front position.

Bunger (2005). We assume that the fracture grows in a lin-
ear elastic medium with a toughness of KIc. The pressure
and fracture opening profile at t/tom = 10−25 are shown in
Fig.4, where Wo and Po are characteristic scales listed in
Table 1.

6. RESULTS

In this section, we first discuss the effect of a smooth cohe-
sive zone and then analyze the effect of the roughness.
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Fig. 6: Comparision of the tip asymptote. Different asymptotes
result from the fracture toughness (k-asymptote), viscous fluid
flow (m-asymptote), fluid lag (o-asymptote) and cohesive forces
(c-asymptote) respectively. “+” indicates the boundary of the co-
hesive zone and the vertical dashed lines indicate the fluid front
position.
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6.1. A smooth cohesive zone

Under the assumption of a smooth coheisve zone, a nega-
tive net pressure is formed in the fluid lag region and clamps
the fracture tip together with cohesive forces. For a cohe-
sive zone which is partially filled with the injection fluid,
such clamping effect pushes the fluid front towards the frac-
ture center and the drop of the net pressure localizes inside
the cohesive zone. As a result, a more uniform distribution
with a higher value of the net pressure and a wider fracture
opening are obatined towards the fracture center compared
with the linear elastic case. Such clamping effect in the
smooth coheisve zone can be very small as shown in Fig.
5. However, the extent of the fluid lag is much larger thant
the predictions of LEFM, as illustrated in Fig. 7 and Fig.
8. More interestingly, the fracture width shows diffrent be-
haviors in the tip region: the k-asymptote, a tip-asymptote
typically for a linear elastic fracture, may be covered by
other asymptotes due to the clamping effect as shown in
Fig. 6. Such observation agrees with the findings in (Gara-
gash, 2018), where the author reports that the emergence of
the k-asymptote would be covered by other asymptotes (o-
asymptote representing the fluid lag, c-asymptote the cohe-
sion near the tip, m-asymptote the fluid viscosity) especially
for the cases with a relatively large dimensionless confining
stress ratio σo/σT .

The growh of a cohesive hydraulic fracture with time
t/tom is closely related to the interplay between the fluid
front and the cohesive zone. Such interplay presents an in-
creasing penetration degree at large time and is mainly de-
termined by two parameters: σo/σT and ψ. A larger di-
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Fig. 8: Effect of σo/σT on the evolution of the fluid lag with
time (dotted lines- σo/σT = 2.0, solid lines-σo/σT = 1.0 ).
“×” indicates the time when the fracture radius goes beyond the
cohesive zone.
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Fig. 9: Effect of σo/σT on the evolution of the non-cohesive
fracture radius with time (dotted lines- σo/σT = 2.0, solid lines-
σo/σT = 1.0 ).

mensionless ratio σo/σT or a smaller ψ often result in a
larger penetration degree of the cohesive zone, as demon-
strated in Fig. 11 and Fig. 12. As the fracture grows,
the cohesive zone takes up less fraction of the fracture as
shown in Fig. 7. σo/σT ratio also determines the time
t/tom when the non-cohesive fracture radius begins to de-
velop, as demonstrated in Fig. 9. When the cohesive zone
is fully developped at large time, a wider fracture opening
is obtained with a higher confining stress ratio σo/σT , as
shown in Fig.10.
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Fig. 11: Effect of σo/σT on the evolution of the dimensionless
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(dotted lines- σo/σT = 2.0, solid lines-σo/σT = 1.0 )

6.2. A rough cohesive zone

The fracture roughness decreases the permeability of the
fracture tip and makes it more difficult for the fluid to enter
into the cohesive zone. As a result, the clamping effect due
to cohesive forces in the process zone and the negative net
pressure in the fluid lag is further strengthened. The frac-
ture growth presents an increased fracture resistance with
a pressure drop localization, a higher net pressure, a wider
fracture opening (Fig. 5 and Fig. 10); an enlarged fluid lag
(Fig. 7 and Fig. 8), and a lower penetration degree of the
cohesive zone (Fig. .11 and Fig. 12).

Such strenghened deviation due to the fracture roughness
only takes place when the fluid penetrates into the cohe-
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Fig. 12: Effect of ψ on the evolution of the dimensionless co-
hesive length and the penetration condition of the cohesive zone
(dotted lines- ψ = 2.91 × 10−2, dashed lines-ψ = 0.92

sive zone (under the assumption of wc = wR). The effect
fracture roughness is closely related to the state of the pen-
etration of the fluid into the cohesive zone. The interplay
between the fluid front and the rough cohesive zone evolves
with time and depends on three parameters: σo/σT , ψ and
α. For a given α, at a certain dimensionless time t/tom, a
higher σo/σT ratio results in a larger penetration degree of
the cohesive zone, as shown in Fig.11, therefore leading to
a larger deviation from the linear elastic case. A higher ψ
value instead results in a smaller penetration degree, since it
indicates a more pronouced effect of the fluid lag at the early
stage of the fracture growth where the fluid front probably
stays outside the cohesive zone. Fig.13 and Fig.14 presents
the effect of roughness on the evolution of the opening pro-
file at different dimensionless time t/tom for the cases with
different ψ values. For a larger ψ, the fluid penetration de-
gree is smaller and the influence of the roughness on fluid
flow remains very limited. A smaller deviation (smaller in-
crease of inlet fracture opening and smaller change of the
fracture opening profile) is obtained compared with the case
of a smooth cohesive zone.

7. CONCLUSION

We study the growth of a radial hydraulic fracture in the
context of a smooth and a rough cohesive zone, accounting
for the presence of a fluid lag. For a smooth cohesive zone,
the partial invasion of the cohesive zone results in a local-
ization of the pressure drop within the cohesive zone and a
more uniform distribution elsewhere. A higher net pressure
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Fig. 13: Evolution of the fracture opening profile with dimen-
sionless time for ψ = 0.92 and σo/σT = 2.0. “+” indicates the
boundary of the cohesive zone and “×” indicates the fluid front
position.
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Fig. 14: Evolution of the fracture opening profile with dimen-
sionless time for ψ = 29.1 and σo/σT = 2.0. “+” indicates the
boundary of the cohesive zone and “×” indicates the fluid front
position.

and wider inlet fracture opening are obtained, though such
deviation from the linear elastic case can be very limited.
The fracture width near the tip may present quite different
behaviors: the classical k-asymptote, which is always ob-
tained in LEFM may be covered by other asymptotes in
some cases due to the existence of a process zone. The
growth of such a smooth cohesive fracture is closely re-
lated to the penetration condition of the coehsive zone by the
fluid, which is characterized by two dimensionless parame-
ters, ψ and the dimensionless confining stress ratio σo/σT .
A higher value of t/tom , σo/σT or a lower value of ψ often
indicates a higher penetration degree of the cohesive zone.

Difference between a rough and a smooth cohesive frac-
ture appears only when the fluid front enters into the cohe-
sive zone. The penetration degree significantly determines
the increased resistance to the fluid flow due to the frac-
ture roughness. In the context of a partially-filled cohesive
zone, the fracture roughness reduces the local permeability
near the tip and presents an increased resistance for fracture
propagation. The fracture growth with time t/tom depends
not only on ψ, σo/σT but also on the deviation parameter α.
For a given rock and injection fluid, the fracture growth then
depends on the in-situ minimum confining stress σo/σT .
The viscous dissipation associated with the fluid flow in the
rough coheisve zone is of course related to σo/σT . Its evo-
lution with time needs further investigation.
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