
Recurrent neural network closure of parametric POD-Galerkin
reduced-order models based on the Mori-Zwanzig formalism

Qian Wang∗, Nicolò Ripamonti, Jan S. Hesthaven
Chair of Computational Mathematics and Simulation Science, École Polytechnique Fédérale de Lausanne, 1015

Lausanne, Switzerland

Abstract

Closure modeling based on the Mori-Zwanzig formalism has proven effective to improve the
stability and accuracy of projection-based model order reduction. However, closure models are often
expensive and infeasible for complex nonlinear systems. Towards efficient model reduction of general
problems, this paper presents a recurrent neural network (RNN) closure of parametric POD-Galerkin
reduced-order model. Based on the short time history of the reduced-order solutions, the RNN
predicts the memory integral which represents the impact of the unresolved scales on the resolved
scales. A conditioned long short term memory (LSTM) network is utilized as the regression model of
the memory integral, in which the POD coefficients at a number of time steps are fed into the LSTM
units, and the physical/geometrical parameters are fed into the initial hidden state of the LSTM. The
reduced-order model is integrated in time using an implicit-explicit (IMEX) Runge-Kutta scheme, in
which the memory term is integrated explicitly and the remaining right-hand-side term is integrated
implicitly to improve the computational efficiency. Numerical results demonstrate that the RNN
closure can significantly improve the accuracy and efficiency of the POD-Galerkin reduced-order
model of nonlinear problems. The POD-Galerkin reduced-order model with the RNN closure is also
shown to be capable of making accurate predictions, well beyond the time interval of the training
data.

Keywords: memory closure, POD-Galerkin, model reduction, conditioned long-short term memory,
implicit-explicit Runge-Kutta

1. Introduction

High-fidelity numerical simulation has become an important tool for investigation of complex
problems of scientific interest or of industrial value. However, high-fidelity simulations are often
expensive since a large number of degrees of freedoms (DOFs) are needed to achieve high space/time
accuracy. Therefore, high-fidelity simulation is usually not available for applications like design,
control, optimization and uncertainty quantification, all of which require repeated model evaluations
over a potentially large range of parameter values [6]. This has led to the development of reduced
order modeling (ROM) [41] which aims at building low-dimensional models that are fast to evaluate
while being able to accurately approximate the underlying high-fidelity solutions.

Projection-based model reduction is one of the well-known and widely-used ROM techniques,
generally implemented in an offline-online paradigm [44]. During the offline stage, a set of reduced
basis are extracted from a collection of high-fidelity solutions (snapshots). The reduced space,

∗Corresponding author.
Email addresses: qian.wang@epfl.ch (Qian Wang), nicolo.ripamonti@epfl.ch (Nicolò Ripamonti),

Jan.Hesthaven@epfl.ch (Jan S. Hesthaven)

Preprint submitted to Journal of Computational Physics August 18, 2019



spanned by a set of basis functions, represents the main dynamics of the full-order model. Proper
orthogonal decomposition (POD) is one of the most popular methods to construct the reduced basis.
During the online stage, the reduced basis solutions are recovered by evaluating the reduced-order
model, obtained as the projection of the full-order model onto the reduced space. Galerkin projection,
in which the reduced basis functions are used as the test functions, is the simplest and most popular
choice. The model reduction method, using the POD to generate the basis functions and the Galerkin
projection to generate the reduced-order model, is typically referred to as the POD-Galerkin method.

The POD-Galerkin method has been successfully applied to a variety of problems. However,
the POD-Galerkin lacks a priori guarantees of stability, accuracy and convergence [31, 33, 58]
for general time-dependent nonlinear problems. Extensive efforts have been made to improve
the stability and accuracy of the POD-Galerkin method, such as the structure-preservation [43],
supremizer enrichment [4, 59],basis adaption [9, 53], L1-norm minimization [2], and least-squares
Petrov-Galerkin (LSPG) technique [10].

Closure modeling is an alternative approach to improve the stability and accuracy of the reduced-
order model. The closure term is added to the reduced-order model to account for the effect of the
unresolved dynamics on the resolved dynamics, and plays the same role as the subgrid-scale stress
in large-eddy simulation (LES). The Mori-Zwanzig formalism, originally developed by Mori [46] and
Zwanzig [67] and reformulated by Chorin and co-workers [16, 17, 19], offers a framework for closure
modeling in model order reduction. For the POD-Galerkin, the basis functions represent the resolved
scales, and the truncated higher-order terms represent the unresolved scales. In the Mori-Zwanzig
formalism, the impact of the unresolved scales on the resolved scales is expressed as a memory term
in the exact dynamics of the resolved scales. The memory term is an integral of a function of the
resolved scales, which is called memory kernel, over the trajectory of the resolved scales. While the
memory term is helpful for accuracy and stability of the reduced-order model, it is very expensive
to compute, and thus does not offer a tool for practical problems. Towards cheaper memory effect
modeling, short-memory assumptions, such as the t-model [16] and the τ -model [50, 60], have been
developed and applied to model reduction for several nonlinear problems [52, 64]. However, these
models are not suitable for model reduction of general nonlinear problems, for a number of reasons.
First, the assumptions that are made to derive these first-order approximations of the memory, are
often not satisfied for general problems. Second, the model parameters determined by different
kinds of strategies using the training data, do not generalize to unseen test data with a guarantee of
accuracy.

Data-driven memory models, based on artificial neural networks (ANNs) have recently been
proposed for closure modeling of model reduction to overcome the shortcomings of the theoretical
memory models. In these models, the input of the network is a sequence of reduced coefficients, and
the output is the predicted memory integral. Two kinds of neural networks have been used in memory
effect modeling, including the feedforward neural network (FNN) [48] and recurrent neural network
(RNN) [42, 45, 63]. Pan and Duraisamy [48] utilized a FNN for memory effect modeling for model
reduction of ordinary differential equations (ODEs) in physical space and viscous Burgers equation in
Fourier space. Wan et al. [63] utilized the long-short term memory (LSTM) network [29] to predict
the memory term of the reduced-order models of incompressible flow in Fourier space. Ma et al. [42]
utilized an LSTM as a subgrid-scale stress model in large-eddy simulations (LES). More recently,
Maulik et al. [45] applied an LSTM memory approximation technique in [42] for non-intrusive
predictive modeling for accuracy improvement. It should be noted that, the aforementioned neural
network memory models can only be used in the model reduction without parametric dependence.
However, for parametric model reduction [7], physical/geometrical parameters need to be considered
in the memory model. Furthermore, as a network for processing sequential data [24], RNN is a more
suitable choice than FNN for memory effect modeling.

This paper proposes an framework for efficient parametric POD-Galerkin model order reduction
with a RNN memory closure. In this framework, the memory term of the POD-Galerkin reduced-

2



order model is predicted by a conditioned LSTM network. In the conditioned LSTM network, the
input is a sequence of reduced coefficients that is fed into the LSTM layer, the auxiliary input is the
physical/geometrical parameter vector that is transformed into the initial hidden state of the LSTM
through a fully-connected layer. The output is the predicted memory term obtained at the last time
step by passing the final hidden state through another fully-connected layer. The optimal length of
the input sequence is determined by selecting the network with the highest generalization accuracy,
among the trained networks of which the corresponding memory lengths lie in the estimated range.
A significant advantage of the proposed RNN memory model over existing FNN/RNN memory
models is the involvement of the physical/geometrical parameters, which is necessary in parametric
model reduction. The physical/geometrical parameter information can be maintained across the
LSTM cells and delivered to the final output, since the LSTM has the capability to keep long-term
memory due to its gated structure [24].

A bottleneck for closure modeling of model reduction is the efficiency problem, which arises
from the expensive evaluation of the memory model. Typically, the computational cost of the
reduced-order model with the memory closure is much higher than the original model. An efficient
implementation of the RNN memory model in the POD-Galerkin framework is proposed in this
paper to address the efficiency issue. An implicit-explicit Runge-Kutta (IMEX-RK) scheme is used
to integrate the reduced-order model with RNN memory closure in time. More specifically, the
memory term is integrated explicitly and the remaining term of the right-hand-side is integrated
implicitly. In each Runge-Kutta stage, an implicit algebraic equation system is obtained after the
computation of the memory term. For linear problems, the equation system is solved directly with a
computational cost much smaller than the evaluation of the RNN memory model. For nonlinear
problems, the equation system is solved iteratively with a computational cost much larger than
the evaluation of the RNN memory model. Hence, for model reduction of nonlinear problems, the
RNN closure can increase the accuracy of the reduced-order model drastically with an only slightly
increased computational cost, thus significantly improve the efficiency of the reduced-order model.

A nonlinear right-hand-side (RHS) term treatment strategy is used to obtain a reduced-order
model that is independent on the size of the full-order model. In this paper, we are interested in
the model reduction of fluid flows, for which the dynamics are restricted to quadratic polynomial
nonlinearity. The matrices in the RHS of the reduced-order model can be precomputed by expressing
the nonlinear terms in the form of polynomial expansions. By taking advantage of the polynomial
structure of the RHS, a reduced-order model independent of the full-order size is obtained without
impacting the accuracy.

The proposed method is demonstrated on 3D Stokes flow, 1D Kuramoto–Sivashinsky equation
and 2D Rayleigh-Bénard convection. Numerical results demonstrate that the conditioned LSTM
network can predict the memory term accurately. Numerical resutls demonstrate that the conditioned
LSTM memory model can significantly improve the accuracy and efficiency of the POD-Galerkin
reduced-order model of nonlinear problems. The LSTM memory closure can significantly improve
the stability and accuracy of the POD-Galerkin reduced-order model of the linear 3D Stokes problem.
Furthermore, the POD-Galerkin with the LSTM memory closure is capable of making accurate
predictions, in the sense that it can provide fast and accurate solutions beyond the time range of
the training data.

The remainder of this paper is organized as follows. Section 2 presents the background of model
reduction and Section 3 presents the memory modeling via the Mori-Zwanzig formalism. In Section
4, we introduce the structure and training of the conditioned LSTM network. Section 5 presents the
efficient implementation of the POD-Galerkin with conditioned LSTM memory closure using the
IMEX Runge-Kutta time integration. Section 6 presents the numerical results and Section 7 gathers
the relevant conclusions.

3



2. Model Order Reduction

2.1. Reduced Basis
Consider a parameterized, finite dimensional dynamical system, described by the following set of

first order ordinary differential equations (ODE)
d

dt
u(t;ω) = f(t, u;ω),

u(0;ω) = u0(ω).
(1)

Here u ∈ RN is the state vector, ω ∈ Γ is the vector containing all the parameters belonging to
a compact set Γ ⊂ Rd and f : R× RN × Γ 7→ RN is the right-hand-side of the system. Problems
described by (1) often arise from the semidiscrete formulation of systems of partial differential
equations (PDEs), using a suitable high-fidelity (HF) method (finite element [54], discontinuous
Galerkin [28], . . . ) for the treatment of the spatial derivatives. To achieve satisfactory results in terms
of accuracy of the numerical approximations, these HF methods rely on high-order approximations
or the use of a fine mesh, resulting in N being large and, hence, increasing the computational cost
of the simulation.

We introduce the set of all solutions to (1) for different values of the parameter ω ∈ Γ as

M = {u(t;ω)|t ∈ R, ω ∈ Γ} ⊂ RN . (2)

In the following, we assume that it is possible to integrate (1) with arbitrary accuracy ∀ ω ∈ Γ, so
that the elements of M can be identified with the corresponding discrete solutions. A parametrized
PDE is said to be reducible if M can be well approximated by some m-dimensional subspace V.
The reducibility of the problem can be quantified by the Kolmogorov m-width [62], which represents
the smallest error that can be obtained by approximating M with a m-dimensional space. Define
the basis vectors {vi}mi=1 of the subspace V, known as the reduced basis, and consider the ansatz

u ≈ V α+ ū, (3)

where V ∈ RN×m is a matrix with the basis vectors as columns, α ∈ Rm are the coefficients of u
with respect to the reduced basis and ū ∈ RN is a reference value. The role of the reference value
is to reduce the study of the original field u to the study of fields fluctuating around a significant
value (average, initial condition, · · · ). This procedure prevents the first reduced coefficient from
containing the majority of the energy of the system and helps stabilize the reduced system. We
show in Section 3.2 that an appropriate choice of ū simplifies the form of the contribution of the
unresolved part of the simulation. Inserting (3) into (1), we obtain the overdetermined systemV

d

dt
α(t;ω) = f(t, V α+ ū;ω) + r(t;ω),

α(0;ω) = V T (u0(ω)− ū) .

The quantity r represents the residual due to (3). In the framework of a Petrov-Galerkin projection,
if we consider a basis W that is orthogonal to the residual and WTV is invertible, we recover the
reduced system of m equations

d

dt
α(t;ω) = (WTV )−1WT f(t, V α+ ū;ω),

α(0;ω) = V T (u0(ω)− ū) .
(4)

In this work we restrict ourselves to the Galerkin framework, reducing (4) to
d

dt
α(t;ω) = V T f(t, V α+ ū;ω),

α(0;ω) = V T (u0(ω)− ū) .
(5)

4



Several strategies have been developed to compute the reduced basis {vi}mi=1, each being optimal
with respect to a different error norm or suitable for specific problems. Among the most recognized,
we mention the Proper Generalized Decomposition [13], the Matrix Interpolation [49], the Piecewise
Tangential Interpolation [21], the Loewner framework and several greedy-based approaches for the
identification of sub-optimal subspaces [8, 38]. In the following we describe the most widely used
reduced basis technique, the Proper Orthogonal Decomposition (POD) [27, 56], which is used in
what remains.

2.1.1. Proper Orthogonal Decomposition
The Proper Orthogonal Decomposition (POD) method is a technique to compress data and retain

fundamental information in the form of an orthogonal basis matrix, optimal in the least-squares
sense. Consider {u(ti;ωj)− ū}i=1,...,p,j=1,...,q as a set of solution frames at different times and for
different values of the parameter ω minus the reference value ū. We define the snapshot matrix
S ∈ RN×pq as the matrix having the collected snapshots as columns. Therefore, the POD basis of
size m is the solution to the minimization problem

min
V ∈RN×m

‖S − V V TS‖F ,

subject to V TV = I,
(6)

where ‖ · ‖F is the Frobenius norm and I ∈ Rpq×pq is the identity matrix.
The Eckart-Young theorem guarantees that (6) has a solution, given by the first m left singular

vectors of the matrix S. In particular, if

S = USΣSV
∗
S , ΣS = diag(σi)

is the singular value decomposition (SVD) of S, we have

min
V ∈RN×m

‖S − V V TS‖2F =

min{N,pq}∑
i=m+1

σ2
i . (7)

Formula (7) states that the error in the POD basis is equal to the sum of the squares of the neglected
singular values. If the snapshot matrix S is computed using a sampling, rich enough to correctly
capture the dynamic of the parametrized problem, the decay of its singular values can be used as a
surrogate for the Kolmogorov m-width. Many problems exhibit an exponential decay of the singular
values and hence, using (7), there exists a low-dimensional linear reduced space that can be used to
approximate the HF solution with arbitrary accuracy.

For the time-dependent problems with many time steps, such as the Rayleigh-Bénard convection
in Section 6.3, the snapshot matrix is large, leading to an expensive SVD. To overcome this difficulty,
we use the randomized SVD algorithm [26] which only needs to perform SVD of small matrices, to
efficiently generate a reduced basis of the problem with large snapshot matrix.

2.2. Treatment of nonlinear term
The computational complexity of (5) still depends on N , even though we are solving a system of

ODEs of dimension m� N . Suppose that the RHS of (3) is of the form f(t, u;ω) = Lu+ g(t, u;ω),
where L ∈ RN×N represents the linear and affine part and g is nonaffine and parameter dependent.
The POD-Galerkin approximation of the original problem is

d

dt
α(t;ω) = V TLV︸ ︷︷ ︸

L̃

α+ V TLū︸ ︷︷ ︸
ũ

+V T g(t, V α+ ū;ω)︸ ︷︷ ︸
Q(V α+ū)

, (8)

5



where L̃ ∈ Rm×m and ũ ∈ Rm can be computed once. The computational bottleneck of the reduced
simulation is the assembly and evaluation of the nonaffine term Q(V α+ ū), the cost of which scales
with the dimension of the high-fidelity method. During the last decade, several hyper-reduction
approaches have been introduced to enable significant speedups for nonaffine problems. Most of
these techniques require the identification of a subset of components of the nonaffine function,
which is evaluated during the online stage and used to compute an approximation of the nonaffine
contribution to the dynamic of the system. The Empirical Interpolation method (EIM)[5], its
discrete variant (DEIM)[12], Gappy-POD [20] and Missing Point Estimation (MPE)[3] belong to
this class of hyper-reduction algorithms. In this work, we restrict ourselves to the case of quadratic
nonlinearities, for which the hyper-reduction is not required because it is possible to avoid the
aforementioned computational bottleneck [11]. Consider the following form for the nonaffine term

Q(V α+ ū) = V T g(V α+ ū) =
(
V T r(V α+ ū)

)
◦ (V α+ ū) ,

where ◦ is the element-wise product operator and r : RN 7→ RN is an affine function. We have
omitted the dependence on t and ω for all the terms involved for the sake of simplicity. Hence, the
nonaffine term can be rewritten as

Q(V α+ ū) =

m∑
i=1

m∑
j=1

Aijαiαj +

m∑
i=1

Biαi +D, (9)

with

Aij =

m∑
i=1

m∑
j=1

V Tdiag (r(vi)) vj ,

Bi =

m∑
i=1

V T (diag (r(vi)) ū+ diag (r(ū)) vi) ,

D = V Tdiag (r(ū)) ū.

Once A ∈ Rm×m, B ∈ Rm×m and D ∈ Rm have been assembled during the offline stage of the
reduction, the online evaluation of (9) requires a number of operations proportional to m2. A similar
strategy can be devised for higher order polynomial nonlinearities. However, the beneficial effects of
this direct approach in terms of computational cost decreases as the polynomial degree increases.
Even though not all the discretized PDE equations show a dynamic that depends on polynomials of
the state of the system, in [36], a lifting strategy via the introduction of auxiliary variables has been
proposed to reduce general problems to the considered setting.

3. Mori-Zwanzig formalism

3.1. Introductory example
We start by considering an illustrative example as an introduction to the Mori-Zwanzig formalism.

Consider the linear system of equations
d

dt
y1 = A11y

1 +A12y
2,

d

dt
y2 = A21y

1 +A22y
2,

(10)

with A11 ∈ Rm×m, A12 ∈ Rm×(N−m), A21 ∈ R(N−m)×m and A22 ∈ R(N−m)×(N−m). Suppose we
are interested in the dynamic described by the variable y1 ∈ Rm in time, representing the first m

6



POD coefficients. Solving the entire system (10) can be computationally expensive and if m is
assumed to be much smaller than N , subselecting entries from the full solution of (10) is not worth
the cost of the procedure.

Our goal is to write a reduced system that describes the evolution of y1 such that its RHS
depends only on y1, that is

d

dt
y1 = A11y

1 +M(t, y1). (11)

To computeM, assume that y1 is known and integrate the second equation in (10) to obtain

y2(t) = eA22ty2(0) +

∫ t

0

eA22(t−s)A21y
1(s) ds. (12)

If we insert (12) into the first equation, we recover

d

dt
y1 = A11y

1 +A12

∫ t

0

eA22(t−s)A21y
1(s) ds+A21e

A22ty2(0). (13)

Equation (13) is a generalized Langevin equation (GLE). This implies that the dynamic of the
problem is governed by a Markovian contribution, a memory integral term depending only on the
resolved y1, and a term describing the influence of the unresolved initial condition y2(0). Its main
property is that it is a closed equation in y1, because we neglected the dependence on y2. No
approximations have been introduced and (13) is exact.

Except for the linear case, it is not straightforward to derive the termM from (10), that represents
the impact that the unresolved y2 has on y1. In the nonlinear case, following the introduction of
projection operators, the Mori-Zwanzig (MZ) formalism allows to introduce a GLE describing the
evolution of the resolved part. Here we do not consider the original Zwanzig projector operator [66],
which could lead to a formulation of the problem in terms of a kinetic equation, but the projection
based Mori procedure [46], resulting in a GLE that is linear in the system variables. In particular
we use the generalization, introduced by Chorin [18], to non-Hamiltonian problems.

The major contribution of the Mori-Zwanzig theory is the potential to reduce a large set of
Markovian equations to a lower dimensional and non-Markovian set of equations for a subset of
variables of the original problem, maintaining the effect of the unresolved set. This is useful in
practice, since an exact solution of all the degrees of freedom is often unnecessary to understand
physical phenomena. As expected, this separation of contributions to the resolved dynamic comes
at a price.

First, the memory term depends on the so called projected dynamics, which is not the one
given by the solution of the reduced system and rarely can be written explicitly. Even in the linear
case, it requires the computation of the matrix-exponential of dimension N − m, i.e. eA22(t−s).
Second, it is difficult to use the resulting GLE equation as a direct computational tool given its
integral-differential nature, which in principle requires a number of operations comparable to that of
the solution of the full model (10).

More importantly, if our goal is to represent or study the additional term in the dynamical
system (13), certain properties are required of the basis used to describe the physical problem.
This question has a more profound physical implication related to the possibility of representing a
physical system using a macroscopic description obtained from a microscopic representation, which
introduces the concepts of fast and slow scales of the representation. Not all high-fidelity methods
provide a dynamical system of the required form, in which the degrees of freedom of the system are
hierarchically ordered and it is possible to identify slow/fast or large/small scales. On the other
hand, globally hierarchical methods such as Fourier and POD methods are formulated to extract
such a hierarchical set of structures. If the basis is chosen in an appropriate way, the dominating
contribution to the dynamic of the resolved part of the simulation is given by the resolved part itself,
while the additional terms in (13) can be neglected, simplified or modelled as noise, as discussed in
the following Section.

7



3.2. Mathematical foundations
Consider the generic system 

d

dt
y = f(t, y(t)), ∀t ∈ [0, T ]

y(0) = y0,
(14)

evolving on a smooth manifold S. We assume that f : RN 7→ RN is at least uniformly continuous, so
that system (14) is well posed and has a unique solution for a general initial condition. To provide
a context, consider the POD reduced system (4) . The general use of the formalism we describe
here is to study vector-valued observales g : S 7→ Rl. The only property required to g is to form a
Banach space, to give a proper meaning to the subspaces and projectors involved, in accordance
with [65], which we follow in the derivation of the Mori-Zwanzig system.

The potentially complex dynamic described by the observable g can be formally represented by
using a semigroup K(t, s) of operators acting on the Banach space of observables. In particular, we
have

g(y(t)) = [K(t, s)g] y(s),

where
K(t, s) = e(t−s)L, Lg(y) = f(y) · ∇g(y). (15)

In [18], it is shown that the nonlinear ordinary differential equation (14) is equivalent to the linear
partial differential equation 

∂

∂t
y = Ly,

y(0) = g(y0),
(16)

known as the Liouville equation, with L being the Liouville operator, if g is the identity operator.
The equivalence holds in the sense that (14) is the set of infinite characteristics equations for (16).
In particular, if g(y(t)) = yk(t), the solution to (16) is the k-th component of the solution to (14).

The Liouville operator L enjoys the following interesting property

etLg(y(t)) = g(etLy(t)), (17)

which has been used in [25] for the a priori approximation of the memory integral.
Consider the solution to (14), y(t) ∈ V′, and two spaces V and Ṽ such that V′ = V ⊕ Ṽ.

In particular we consider the case in which the elements of V are vectors with only the first m
components different from 0. Similarly, Ṽ contains elements with only the last N −m components
different from 0. This represents a common scenario in which a solution is represented in terms of
hierarchical coefficients, as for POD and Fourier approximations. The first m components denote
the resolved part of the simulation while the remaining degrees of freedom denote the unresolved
part.

The subspace V is described through an operator P having the subspace as its image, and acting
on the set of observables. We define the natural complementary projector as Q = I − P.

The first step to derive an exact equation for the dynamic of the observables is to apply Dyson’s
identity to the Koopman operator

etL = etQL +

∫ t

0

esLPLe(t−s)QLds. (18)

Starting from (18), we obtain the operator equation

∂

∂t
etL = etLPL+ etQLQL+

∫ t

0

esLPLe(t−s)QLQLds. (19)

8



The application of (19) to the initial state of the system gives the following Mori-Zwanzig identity
in phase space

∂

∂t
etLy0 = etLPLy0 + etQLQLy0 +

∫ t

0

esLPLe(t−s)QLQLy0ds

= etLPLy0 + F (t, y0) +

∫ t

0

K(t− s, esLy0)ds, (20)

where
F (t, x) = etQLQLx, K(t, x) = PLF (t, x).

Define y = (ŷ, ỹ) such that ŷ ∈ V and ỹ ∈ Ṽ, if we take as operator P the truncation Pg(ŷ, ỹ) = g(ŷ, 0),
(20) can be rewritten in terms of y(t) = (ŷ(t), ỹ(t)) as

d

dt
ŷ(t) = f(t, ŷ(t)) + F (t, y0) +

∫ t

0

K(t− s, ŷ(s))ds. (21)

We stress that (21) is not an approximation of (14), but an exact representation of the evolution
equation for the first m components, in which contributions from different sources are clearly
separated and recast in the context of a linear equation.

It is worth to discuss the role of each contribution in (21). The first term, depending only on the
resolved dynamic, represents the self-interaction of the resolved variables and it is the Markovian
contribution to the time derivative of the resolved coefficients. The last term, commonly known
as the memory, depends on the resolved part of the simulation at all time s between 0 and t, with
the integrand commonly known as the memory kernel. For the second term we have that F (t, y0)
satisfies the linear PDE

∂

∂t
F (t, y0) = QLF (t, y0),

F (0, y0) = QLy0 = Ly0 − PLy0 = f(0, y0)− f(0, ŷ0),
(22)

known as the orthogonal dynamics equation. Projecting (22) givesP
∂

∂t
F (t, y0) = PQLF (t, y0) = 0,

PF (0, y0) = Pf(0, y0)− Pf(0, ŷ0) = 0,

implying that F is orthogonal to the image of the projector P.
Hence, if the initial condition y0 belongs to the space of observables, this contribution, known

as the noise contribution, is null. A solution of (22) has been proved to exist, for Hamiltonian
systems, in a classic sense for finite rank projectors and in a weak sense for projectors in the form of
conditional expectations [22].

3.3. Application to reduced basis model reduction
The formalism described in the previous Section represents a valuable tool for the closure of

unresolved reduced-order models. To reproduce exactly the original HF problem (1) using the
reduced POD-Galerkin equation (5), according to the projection error formula (7), a POD basis
of size N � m should be used to obtain results with machine precision accuracy. Numerical
approximations of systems of that size are often not computationally practical. The long term
accuracy is sacrified for efficiency by considering only the first m� N elements of the POD basis,
representing the resolved part of the simulation, and the effect on the dynamic of the resolved part
of the remaining N −m POD coefficients, the unresolved part, is truncated. However, even though
unresolved POD coefficients are not relevant from a data compression point of view, they might

9



be vital for the dynamic of the resolved part of the simulation, in particular at late times. Since
POD is only a dimensionality-reduction technique, a possible correction is given by the Dynamic
Mode Decomposition (DMD), which introduces accurate decompositions of complex dynamics
into spatio-temporal coherent structures [37]. In our work we follow an approach based on the
Mori-Zwanzig formalism (21), introduced in the previous Section, which provides the exact form of
the truncated contribution. Previous work based on the application of Mori-Zwanzig formalism to
the spectral approximations of the solution of PDE systems makes the assumption that the noise
term F (t, α0), due to the unresolved part of the initial condition, is small enough to be neglected.
In case of a reduced basis approach, if the initial condition u0 is not affected by the parameter ω,
choosing the reference value ū = u0 guarantees that F (t, α0) = 0, ∀ t. Hence, the dynamical system
describing the exact evolution of the first m POD coefficients is given by

d

dt
α(t;ω) = V T f(t, V α+ ū;ω) +

∫ t

0

K(t− s, α(s;ω);ω) ds,

α(0;ω) = 0.

(23)

As previously stated, solving (23) directly might be as expensive as solving the original HF model
and a surrogate model is required. Gouasmi et al. [25] proposed an algorithm to estimate the
memory kernel K(t− s, α(s);ω), under the assumption that the composition property (17) holds for
the orthogonal dynamic operator etQL. Even though this algorithm is not practical for the online
stage of model order reduction, it provides a picture of the interaction between the unresolved and
the resolved part of the simulation. In Figure 1 (a) the normalized memory kernel K(t− s, α(s);ω)
is shown in case of model reduction of viscous Burgers’ equation for different values of m with a
fixed N = 68. The initial condition is a sinusoidal function. We notice that K(t− s, α(s);ω) decays
exponentially with the time distance t− s, suggesting that the unresolved POD coefficients have a
very fast decaying temporal correlations. Moreover, increasing m produces an increase in the rate
of decay of the kernel. We stress the fact that the short length of the unresolved correlation, and
the resulting short support of K(t− s, α(s);ω), depends on the choice of the modal representation
framework and on the definition of a resolved set of coefficients [57]. Numerical experiments suggest
that this property is satisfied by the hierarchical representation provided by POD and Fourier basis
[39, 52].

Defining τ ∈ R+ as the length of the memory kernel support, we have

M(t, α;ω) =

∫ t

0

K(t− s, α(s;ω);ω) ds
(a)≈
∫ t

t−τ
K(t− s, α(s;ω);ω) ds

(b)≈ 1

2
τK(0, α(t;ω);ω) (24)

where we have used the short memory assumption (a) and the trapezoidal rule (b) to approximate
the memory integral. Model (24) is known as the τ -model and represents an extension of the t-model
to short-memory systems of ODEs. This model can also be obtained, in relation to the observation
of the exponentially decaying memory kernel, by forcing the memory kernel to have an exponential
behaviour governed by the positive definite matrix A ∈ Rm×m, i.e.,∫ t

0

K(t− s, α(s;ω);ω) ds ≈
∫ t

0

e−A(t−s)K(0, α(t;ω);ω) ds.

The τ -model is obtained by setting A = −c(τ)I, where c(τ) is a function of τ and I ∈ Rm×m is the
identity matrix. From a modeling point of view, this implies that memory kernels, related to different
modes, decay independently from others and at the same rate. Even though this might be an
oversimplification of the physics behind the problem, this hypothesis is often satisfied. Consider the
previous example regarding the Burgers’ equation: in Figure 1 (b) we notice that the time-average
of the memory length is not strongly influenced by the mode considered once the size m of the
resolved part of the simulation is fixed.

10



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

t− s

K
(t
−
s
,α

(s
))
/|
K

(0
,α

(t
))
|

(a)

m = 12
m = 14
m = 16
m = 18
m = 20
m = 22

5 10 15 20 25

0.1

0.2

mode index

τ

(b)

Figure 1: (a) Normalized average of the memory kernel for the POD-Galerkin model for the Burgers equation over t
and over the entire set of resolved POD coefficients for different values of m. (b) Dashed lines - Average over t and
over the entire set of resolved POD coefficients of the memory length τ . Continuous lines - Average over t of the
memory length τ .

Estimates of the memory length τ are used in this work for the hyper-parameters selection
process. For problems that do not exhibit scale separation [51] , τ has been successfully modeled as
a linear function of the Jacobian of the RHS in (5). A different technique to dynamically update
the estimate of the memory length is based on the introduction of a sharp cutoff filter and on the
Germano identity [48], with the additional task of modeling the relation of τ at different scales m.
In our work we consider the least-squares solution, over the entire set of resolved POD coefficients
and time, to the over-determined system (24). We define

Mcol =


M(0, α;ω)
M(∆t, α;ω)

· · ·
M(T, α;ω)

 , Kcol =


K(0, α(0;ω);ω)
K(0, α(∆t;ω);ω)

· · ·
K(0, α(T ;ω);ω)

 ,
where ∆t is the step used for the time integration, and hence, an approximation τ̄ of the memory
length τ is given by

τ̄ ≈ 2KT
colMcol

KT
colKcol

. (25)

The scalar equation (25) is then solved for each value of the parameter ω in the training set.

4. Recurrent neural network memory model

This section presents the modeling of the memory effect using recurrent neural networks (RNNs).
A conditioned long short term memory (LSTM) network is used to predict the memory integral,
given a short history of the reduced basis solution. The structure and training of the network will
be presented in the remainder of this section.

11



4.1. Regression of the memory term
By the short memory assumption in Section 3.3, the memory integralM (t, α;ω) can be approx-

imated using a short history of the reduced basis solution as

M (tn, α;ω) =

∫ tn

0

K (tn − s, α(s;ω);ω) ds

≈
∫ tn

tn−τ
K (tn − s, α(s;ω);ω) ds

≈Mnum (αn−nts+1, · · · , αn−1, αn;ω) ,

where nts is the number of time steps, τ = nts∆t is the memory length andMnum is a numerical
memory model that serves as the approximation of the map

(αn−nts+1, · · · , αn−1, αn;ω) 7→ M (tn, α;ω) (26)

The construction of the map in (26) is a regression task. In this section, we use an artificial neural
network (ANN) as the regression model of the memory integral. The ANN seeks to predict the
memory integral, given a sequence of the reduced coefficients.

4.2. Conditioned long short-term memory network
Recurrent neural networks (RNNs) are a class of neural networks suitable for sequential modeling

[24]. Hence, RNN is a natural choice for the memory integral regression which is a "many to one"
sequential modeling task. In our work, the long short-term memory (LSTM) [29], one of the most
popular gated RNNs that are developed to address the exploding/vanishing gradient issue that can
be encountered when training traditional RNNs [24], is selected as the basic RNN structure for
memory modeling.

A challenge in the design of the LSTM network for memory modeling is how to incorporate the
physical/geometrical parameters. During the online stage of the model reduction of a parametrized
system, we need to predict the memory term at arbitrary parameter location. Therefore, the LSTM
network needs to be conditioned by the non-temporal physical/geometrical parameters. There are
several existing works on feeding non-temporal data into the RNN. In the encoder-decoder network
for machine translation [14, 61], the final state of the encoder LSTM network is set as the initial state
of the decoder LSTM network. In the image caption network [34], the output of the convolutional
neural network (CNN) is feed into the hidden state of the first gated recurrent unit (GRU). Inspired
by these works, we condition the LSTM network by feeding the physical/geometrical parameters
into the initial hidden state. The architecture of the conditoned LSTM network is shown in Figure
2.

As shown in Figure 2, the conditioned LSTM network consists of one dense layer, one LSTM
layer and one another dense layer. If we denote the number of hidden units of the LSTM as nhu, the
first dense layer maps the parameter vector ω ∈ Rd to the initial hidden state h0 ∈ Rnhu , the LSTM
layer maps the input sequence {x1, x2, . . . , xnts} ∈ Rnts×m to the hidden states {h1, h2, . . . , hnts} ∈
Rnts×nhu and the second dense layer maps the final hidden state hnts

∈ Rnhu to the output y ∈ Rm.
The initial hidden state h0 is the output of the first dense layer, which has no bias and uses a

linear (identity) activation function, i.e.,

h0 = Wh0
ω. (27)

The initial cell state c0 is set as zero. The forward propagation of the conditioned LSTM network is

12



achieved by iterating the following recurrent relation for t = 1 to nts:

ft = σ (Wfxt + Ufht−1 + bf )

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

c̃t = σ (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh (ct)

where σ is the hard sigmoid activation function

σ(z) =


0, z < −2.5,

0.2z + 0.5, −2.5 ≤ z ≤ 2.5,

1, z > 2.5.

The final output of the network is obtained through the second dense layer with a linear (identity)
activation function, i.e.,

y = Wyhnts
+ by. (28)

The matrices

Wh0
∈ Rnhu×d,W =


Wf

Wi

Wo

Wc

 ∈ R4nhu×m, U =


Uf

Ui

Uo

Uc

 ∈ R4nhu×nhu ,Wy ∈ Rm×nhu ,

and vectors

b =


bf

bi

bo

bc

 ∈ R4nhu , by ∈ Rm,

are the trainable weights and biases that can be adjusted in the training process to achieve an
optimal network configuration.

For the conditioned LSTM network for memory modeling, the input is the sequence of the reduced
coefficients x = {αn−nts+1, · · · , αn}, the auxiliary input is the physical/geometrical parameter vector
ω, and the output is the predicted memory integralMLSTM (αn−nts+1, · · · , αn;ω). The conditioned
LSTM network is an approximation of the map in (26).

4.3. Training of the network
The training of the conditioned LSTM network is a supervised learning [24] task. In supervised

learning, labeled data is used to train the network. The goal of the training is to minimize the
difference between the predicted outputMLSTM and the desired outputM.

A training data setDtr = {((ω, x) ,M)i}1≤i≤Ntr and a validation data setDva = {((ω, x) ,M)i}1≤i≤Nva

are used in the training. Here (ω, x) is the input object, M is the desired output. The training
data is collected from high-fidelity simulations with uniformly sampled parameter values, and the
validation data is collected from high-fidelity simulations with randomly sampled parameter values.
The data generation process is described in Algorithm 1.

13



D
en
se

L
ay
er

1

h1

c1 cnts−1

hnts−1 hnts

cnts

Dense Layer 2

c0 = 0

σ σ

+×

σ

× ×
tanh

tanh σ σ

+×

σ

× ×
tanh

tanh

y

x1 xnts

ω h0

· · ·

· · ·

Figure 2: Conditioned LSTM network.

A component of the input pattern is called a feature. The feature scaling technique in which all
the features are scaled to the same range, can be applied to the data sets to accelerate the training
process [32]. In this paper, a feature χ is scaled by the mean normalization

χ̃ =
χ− χ̄
σχ

,

where χ̄ and σχ are the mean and standard deviation of χ, respectively.
The training of the network is implemented in Keras [15], with TensorFlow [1] as the backend.

The optimal weights and biases of the network are obtained using the Adam stochastic optimizer
[35], which uses mini-batches of size Nb < Ntr of the training data to take a single optimization step
by minimizing the loss function. More precisely, the full training data set with Ntr data-points is
shuffled, and Ntr/Nb mini-batches are extracted to take Ntr/Nb optimization steps. Once the entire
training data set is exhausted, the training is said to complete one training epoch. The training is
performed for a sufficient number of epochs to obtain a converged network. The convergence speed
of the training is controlled by the learning rate η.

For the training in this paper, the loss function is the mean absolute error (MAE). To avoid
possible overfitting, a weight regularization term that is the sum of the L2-norm penalties of
Wh0 , W, U and Wy, is added to the loss function. The weight regularization effect is controlled by
a hyper-parameter λ.

At the beginning of the training, the weights and biases of the network are randomly initialized
using normal distributions [23]. Therefore, the training needs to be performed several times, following
a multiple restarts approach [30], to prevent the training results from depending on the initialization
of the weights. In this paper, ten restarts are performed for the training of each network, and
the trained model with the best validation accuracy is selected as the final model. The validation
accuracy metric is the mean squared error (MSE).

4.4. Model selection
For a certain problem, the size of the conditioned LSTM mainly depends on the number of

hidden units nhu and number of time steps nts. Therefore, we need a strategy to select a trained
network with a proper combination of nhu and nts as the regression model for the memory integral.

Given enough training data, more hidden units requires a larger network, resulting in a higher
generalization accuracy. However, this is not the case for the number of time steps. As described in
Section 3, every problem has a certain range of memory lengths. The network with too small number
of time steps, corresponding to a too short memory length, does not have enough information to

14



Algorithm 1 Labeled data generation for the training of the conditioned LSTM RNN.

1: function D=Memory_Data_Generation(V,Γ, f, nts)
2: u(i, j)i=1,··· ,p,j=1,··· ,q ← High_Fidelity(f,Γ) . Generate snapshots with parameter set Γ
3: D = ∅
4: for j ← 1, q do
5: w ← Γ(j)
6: for i← 1, p do
7: t← i∆t
8: uh ← u (i, j)
9: α(i)← V T (uh − ū) . Project snapshot onto reduced space

10: M← V T f (t, uh;ω)− V T f (t, V α(i) + ū;ω) . Compute exact memory term
11: if i ≥ nts then
12: D ← D ∪ {ω, α(i− nts + 1), · · · , α(i),M} . Collect training data
13: end if
14: end for
15: end for
16: end function

accurately predict the memory integral; while the network with too many time steps, corresponding
to a too long memory length, also can not accurately predict the memory integral since the hidden
map between the input and output is too complicated and requires a larger network. Therefore, a
suitable pair of (nhu, nts) should be found to have a balance between the accuracy and cost.

In this paper, we train networks with different a number of time steps and hidden units. We
select the the most accurate model from the models of which the memory lengths lie between the
minimum and maximum values estimated by the method in (25).

5. Parametric POD-Galerkin with the RNN memory model

This section presents the implementation of the RNN memory model in the framework of
parametric POD-Galerkin model order reduction.

5.1. POD-Galerkin with memory
The POD-Galerkin reduced-order model is

d

dt
α(t;ω) = V T f(t, V α+ ū;ω) = f̃(t, α;ω), (29)

where α is the reduced coefficient vector and f̃ is the RHS term. A memory closure term M is
added to the RHS, which results in a reduced-order model

d

dt
α(t, ω) = f̃(t, α;ω) +M (t, α;ω) . (30)

The motivation for the introduction of the memory term into the reduced-order model is to account
for the effect of the unresolved POD modes on the resolved POD modes, which can improve the
accuracy and stability of the reduced-order model.

The mechanism of the memory effect for the POD-Galerkin reduced-order model is sketched
in Figure 3. By multiplying the reduced-order model of (30) by 2α(t;ω)T , we obtain the energy
evolution equation

d

dt
αTα(t, ω) = 2αT f̃(t, α;ω) + 2αTM (t, α;ω) , (31)

15



V
u

uPGL

uPGV V Tu

Figure 3: Solution u to the HF model; Projection on V of u; Solution uPG to the POD-Galerkin
reduced model; Solution uPGL to the POD-Galerkin reduced model with memory closure based on LSTM
network.

in which the second term in RHS describes the energy exchange between the resolved scales and
the unresolved scales, which plays the same role as the subgrid-scale-stress (SGS) in a large-eddy
simulation (LES). The introduction of the memory closure seeks to reduce the difference between
the reduced basis solution and the projection of the high-fidelity solution onto the reduced space,
by providing the missing dynamics, caused by omitting the unresolved POD modes, in the energy
exchange term. With the memory closure, the trajectory of the reduced basis solution can follow the
trajectory of the projection of the high-fidelity solution. The projection of the high-fidelity solution
is the upper limit of the reduced basis solution in terms of accuracy.

5.2. Implicit-explicit Runge-Kutta time integration
The POD-Galerkin model with memory closure suffers from a high computational cost, since

the evaluation of the memory model is expensive, which is true for the conditioned LSTM as well
as other existing memory models. In explicit or implicit time stepping, such as the Runge-Kutta
(RK) method, the memory model needs to be evaluated in each stage or inner iteration step, leading
to substantial additional computational cost. Therefore, the reduced-order model with the RNN
memory closure is usually more expensive than the original reduced-order model.

An efficient implementation of the conditioned LSTM memory model in the POD-Galerkin
framework is proposed in this paper to address this efficiency issue. The implicit-explicit Runge-Kutta
(IMEX-RK) scheme is used to advance the reduced-order model in time. More specifically, the RHS
f̃ is integrated using the diagonally implicit Runge-Kutta (DIRK) scheme and the memory term m
is integrated using the explicit Runge-Kutta (ERK) scheme.

The s-stage IMEX RK scheme is

α(i)
n = αn + ∆t

i∑
j=1

aij f̃
(
tn + cj∆t, α

(j)
n ;ω

)
+ ∆t

i−1∑
j=1

âijM
(
tn + ĉj∆t, α

(j);ω
)
, i = 1, · · · , s,

(32)

αn+1 = αn + ∆t

s∑
i=1

bif̃
(
tn + ci∆t, α

(i)
n ;ω

)
+ ∆t

s∑
i=1

b̂iM
(
tn + ĉi∆t, α

(i);ω
)
, (33)

where a,b, c are the coefficients for the DIRK and â, b̂, ĉ are the coefficients for the ERK, defined

16



by the following Butcher tableaux

0 0 0 · · · 0 0
c2 a21 a22 · · · 0 0
...

...
...

. . .
...

...
cs−1 as−1,1 as−1,2 · · · as−1,s−1 0
cs as1 as2 · · · as,s−1 ass

b1 b2 · · · bs−1 bs

,

0 0 0 · · · 0 0
c2 â21 0 · · · 0 0
...

...
...

. . .
...

...
cs−1 âs−1,1 âs−1,2 · · · 0 0
cs âs1 âs2 · · · âs,s−1 0

b̂1 b̂2 · · · b̂s−1 b̂s

,

with the constraint

ci =

i∑
j=1

aij =

i−1∑
j=1

âij , i = 1, · · · , s.

The memory termM
(
tn + ĉj∆t, α

(j)
)
is computed as

M
(
tn + ĉj∆t, α

(j);ω
)

=MLSTM
(
α

(j)
n−nts+1, · · · , α(j)

n ;ω
)
. (34)

For linear systems, (32) is solved directly; while for nonlinear systems, (32) is solved iteratively,
e.g., through a Newton iteration. The detailed implementation of the POD-Galerkin with memory
closure is described in Algorithm 2.

For nonlinear problems, in each stage of the IMEX-RK, the memory term needs to be computed
only once, while the inner iteration needs to be performed until the residual reaches a certain
threshold. Therefore, most computational time is consumed by this inner iteration. Numerical
results for nonlinear problems demonstrate that the POD-Galerkin with memory is much more
efficient than the original POD-Galerkin, since the introduction of the memory closure into the
IMEX-RK leads to significant accuracy improvement and only small extra computational cost.

Algorithm 2 Implicit-Explicit Runge-Kutta time integration of POD-Galerkin with memory.

1: function α(n+ 1)=IMEX(α(n), f̃ ,MLSTM , nts, ω)
2: t← n∆t
3: αrk(1, n)← α(n)
4: for i← 2, s do
5: mem(i− 1)←MLSTM (αrk(i− 1, n− nts + 1), · · · , αrk(i− 1, n);ω) . Evaluate the

conditioned LSTM memory model
6: rhs← α(n) + ∆t

∑i−1
j=1 a(i, j)f̃ (t+ c(j)∆t, αh(j);ω) + ∆t

∑i−1
j=1 â(i, j)mem(j)

7: αrk(i, n)← Solve(αrk(i, n)− a(i, i)∆tf̃(t+ c(i)∆t, αrk(i, n);ω)− rhs = 0) . Inner
iteration

8: end for
9: end function

The IMEX-RK schemes used in the numerical experiments in Section 6 are:

(1) IMEX-Euler

αn+1 = αn + ∆tf(tn+1, αn+1;ω) +M(tn, α;ω) (35)

The corresponding Butcher tableaux are

0 0 0
1 0 1

0 1
,

0 0 0
1 1 0

1 0
.

17



The IMEX-Euler scheme is first-order accurate.

(2) IMEX-Trapezoidal

α̃n+1 = αn +
∆t

2
(f(tn, αn;ω) + f(tn+1, α̃n+1;ω)) + ∆tM(tn, α;ω), (36)

αn+1 = αn +
∆t

2
(f(tn, αn;ω) + f(tn+1, α̃n+1;ω)) +

∆t

2
(M(tn, α;ω) +M(tn+1, α̃;ω)) (37)

The corresponding Butcher tableaux are

0 0 0
1 1/2 1/2

1/2 1/2
,

0 0 0
1 1 0

1/2 1/2
.

The IMEX-Trapezoidal scheme is second-order accurate.

6. Numerical results

This section presents the numerical results of the POD-Galerkin with the RNN memory closure
for model reduction of a 3D Stokes flow, the 1D Kuramoto–Sivashinsky (KS) equation, and the 2D
Rayleigh-Bénard convection. The linear 3D Stokes flow problem is used to validate the method.
The 1D Kuramoto–Sivashinsky (KS) equation and 2D Rayleigh-Bénard convection problems are
used to test the accuracy and efficiency of the POD-Galerkin with the RNN memory closure for
nonlinear problems.

The following two metrics are used to measure the generalization accuracy of the trained network:

(1) the average relative error of the memory terms on the test data set:

ε1 =
1

Nte

Nte∑
i=1

||MLSTM
i −Mi||2
||Mi||2

,

(2) the relative error of the entire memory data set:

ε2 =

√√√√∑Nte

i=1 ||MLSTM
i −Mi||22∑Nte

i=1 ||Mi||22
,

where Nte is the size of the test data set.
The accuracy of the reduced basis solution is measured by the following L2 norm error [54]:

||ũ− u||L2(0,T ;L2) =

√∫ T

0

||ũ− u||22 dt

where ũ is the reduced basis solution and u is the high-fidelity solution.
The following notations are used in some plots to distinguish results for different methods:

(1) Full-Order : The high-fidelity (full-order) solution;

(2) Projection: Projection of the high-fidelity solution onto the reduced space;

(3) POD-Galerkin: Reduced basis solution of the POD-Galerkin method;

(4) LSTM : Reduced basis solution of the POD-Galerkin with the conditioned LSTM memory
closure.

18



6.1. 3D Stokes
The POD-Galerkin with the RNN memory closure is applied to the model reduction of the blood

flow in the human cardiovascular system [55]. The 3D Stokes equations

∂

∂t
u = ν∆u−∇p, t ∈ [0, 4]

∇ · u = 0,

u(∂Ωinlet, t) = f(t),

u(∂Ωwall, t) = 0,

u (Ω, 0) = 0,

(38)

are used to describe the blood flow. The computational domain Ω is shown in Figure 4. The velocity
is u = [ux, uy, uz]

>, where ux, uy and uz are velocity components and p is the pressure. The surface
of the domain Ω consists of one velocity inlet, two free outlets and the no-slip wall. The boundary
condition at the inlet is f (t) = [0, 0, fz(t)], where fz is the time-dependent boundary value of uz.
The function fz(t) is shown in Figure 5.

Following the Mori-Zwanzig formalism, each variable of interest needs to be evaluated using a
dynamical equation. Therefore, the continuity equation in (38)

∇ · u = 0,

is replaced by

β
∂

∂t
p+∇ · u = 0,

following the artificial compressibility method [47]. β is the compressibility parameter, and is set as
β = 106 in this test case.

The full-order model is discretized using the finite element method. The Taylor-Hood P2− P1
finite elements are used to satisfy the inf-sup condition, with 20,914 nodes for each velocity component.
To obtain a problem in the general dynamical system form in (1), we condense the mass matrix into
a diagonal matrix using mass lumping and multiply the resulting system by the inverse of the mass
matrix. The semi-discrete form of (38) is{

d
dtuh = A (µ)uh + b (t) , t ∈ [0, 4]

uh (0) = uh,0
(39)

The implicit Euler method is used to integrate (39) in time, using Nt = 1000 time steps.
The coefficient ν is the only physical/geometrical parameter of this problem. The range of ν is

[2, 6]. The snapshots for POD basis generation are collected from the high-fidelity simulations with
9 values of ν that are uniformly sampled. The leading 100 singular values of the snapshot matrix
are plotted in Figure 6. The first 16 left singular vectors of the snapshot matrix are selected as the
reduced basis functions.

The training, validation, and test data sets are generated from the high-fidelity simulation results,
with 50 uniformly, 25 randomly, and 25 randomly sampled parameter values, respectively.

To get an accurate memory model, we train the conditioned LSTMs with 32, 64 and 128 hidden
units and 2, 3, · · · , 8 time steps. Ten restarts are performed in each training, with 500 epochs in
each restart. In each epoch, the training data is shuffled and divided into mini-batches of size of
1000. The learning rate is 0.005. The coefficient of the L2 regularization is 10−9.

For model selection, we show the test errors of the trained networks with different number of time
steps and hidden units, and the estimated memory length in Figure 7. The accuracy comparison in
Figure 7 shows that the models with more hidden units are more accurate but also more costly. The
models with 4 time steps are the most accurate among the models of which the memory lengths

19



Figure 4: 3D carotid bifurcation geometry model and mesh.

are inside the estimated range. Therefore, the network with 128 hidden units and 4 time steps is
selected as the memory model for further test.

The POD-Galerkin with the memory model is tested with the 25 random values of ν of the test
data set. The simulations are performed using the IMEX-Euler time integration until t = 8, which
is beyond the range of the training data [0, 4], to test the prediction capability of the reduced-order
model.

The energy contribution of the closure to the reduced-order system is shown in Figure 8 to
provide a intuition of the accuracy of the memory model. It is observed in Figure 8 that the
conditioned LSTM network accurately models the memory closure.

The error between the reduced solutions of the original POD-Galerkin and the POD-Galerkin
with memory for 4 different parameter values are shown Figure 9. The results show that the error
of the POD-Galerkin with memory is 2 to 3 orders of magnitude smaller than the original POD-
Galerkin, which demonstrates that the LSTM memory model can significantly improve the accuracy
of the POD-Galerkin method. We highlight the fact that in the prediction interval, compared to the
original POD-Galerkin, the POD-Galerkin with memory closure also provides much more accurate
solutions.

It is also observed in the numerical test that, for some small values of ν, the POD-Galerkin
is unstable. The solutions of ν = 3 are shown in Figure 10 to give an example of instability of
POD-Galerkin. The results in Figure 10 show that the solution of the POD-Galerkin with memory
closure is quite close to the high-fidelity solution, while the solution of the original POD-Galerkin
diverges. Hence, the memory closure improves not only the accuracy, but also the stability of the
reduced-order model.

The error-cost plot of the reduced-order models is shown in Figure 11 for efficiency comparison.
We can observe that the original POD-Galerkin model can reach a certain accuracy level using
less computational time and is thus more efficient. As discussed in Section 5.2, we do not expect
efficiency improvement for linear problems, because of the cost of the memory model.

20



0 1 2 3 4
−200

0

200

400

t

f z
Training interval

4 5 6 7 8

t

Prediction interval

Figure 5: Time-dependent velocity in z-direction at the inlet boundary.

10 20 30 40
10−9

10−5

10−1

103

107

k

σ
k

Figure 6: Singular value decay of the snapshot matrix S in logarithmic scale. The spectrum shows a very fast decay,
which suggests that a reduced basis with less than 20 elements is enough to represent the high-fidelity solution with a
reasonable accuracy.

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

nts

ε 1

0.004 0.012 0.02 0.028 0.036

τ̄

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

nts

ε 2

nhu = 32
nhu = 64
nhu = 128

0.004 0.012 0.02 0.028 0.036

τ̄

Figure 7: Test error of the trained networks for the Stokes problem. The estimated mean (solid vertical line), minimum
and maximum (dashed vertical lines) of the memory length are also shown in the plot.

21



0 1 2 3 4
−50

0

50

100

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 2.4691

4 5 6 7 8
−50

0

50

100

t

Prediction interval, ν = 2.4691

0 1 2 3 4
−150
−100
−50

0

50

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 3.7932

4 5 6 7 8
−150
−100
−50

0

50

t

Prediction interval, ν = 3.7932

0 1 2 3 4
−100
−50

0

50

100

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 4.5561

4 5 6 7 8
−100
−50

0

50

100

t

Prediction interval, ν = 4.5561

0 1 2 3 4
−100

0

100

200

t

en
er

gy
ex

ch
an

ge

Trainig interval, ν = 5.6492

4 5 6 7 8
−100

0

100

200

t

Prediction interval, ν = 5.6492

Exact
LSTM

Figure 8: Evolution of the energy exchange term 2α>M of the reduced-order models of the Stokes problem.

22



0 1 2 3 4
10−5

10−2

101

t

||ũ
−
u
|| 2

Training interval, ν = 2.4691

4 5 6 7 8
10−5

10−2

101

t

Prediction interval, ν = 2.4691

0 1 2 3 4
10−4

10−1

102

t

||ũ
−

u
|| 2

Training interval, ν = 3.7932

4 5 6 7 8
10−4

10−1

102

t

Prediction interval, ν = 3.7932

0 1 2 3 4
10−6

10−2

102

t

||ũ
−

u
|| 2

Training interval, ν = 4.5561

4 5 6 7 8
10−6

10−2

102

t

Prediction interval, ν = 4.5561

0 1 2 3 4

10−3

10−1

101

t

||ũ
−
u
|| 2

Trainig interval, ν = 5.6492

4 5 6 7 8

10−3

10−1

101

t

Prediction interval, ν = 5.6492

LSTM
POD-Galerkin

Figure 9: Evolution of the errors of the reduced-order models of the Stokes problem.

23



(a) Full-Order (b) Projection

(c) POD-Galerkin (d) LSTM

Figure 10: A sectional view of the velocity magnitude contours of the reduced-order solutions at t = 2.4 for ν = 3.

24



0 0.2 0.4 0.6 0.8 1

·10−3

−2

0

m=16
m=16

m=16

m=16

m=20

m=24

m=28

m=32

t

lo
g
(‖
u
−

ũ
‖ L

2
(0

,T
;L

2
)
)

Training interval

LSTM nhu = 32
LSTM nhu = 64
LSTM nhu = 128
POD

0 0.2 0.4 0.6 0.8 1

·10−3

−2

0

m=16m=16

m=16

m=16

m=20

m=24

m=28

m=32

t

Prediction interval

Figure 11: Error-cost plot of the reduced-order models of the Stokes problem.

6.2. Kuramoto–Sivashinsky equation
The fourth-order one-dimensional Kuramoto–Sivashinsky (KS) equation is used to test the

memory modeling capability of the conditioned LSTM network for highly nonlinear problems. The
parametrized KS equation is 

∂
∂tu = − 1

2∇ · u2 −∆u− ν∆2u,

u(x+ L, t) = u(x, t),

u(x, 0) = g(x),

(40)

where L is the spatial period, g(x) is the initial datum, and ν is the parameter. In our test, we take
L = 22 and g(x) is obtained by the inverse Fourier transform from a series of Fourier modes of which
the first 4 mode coefficients are 0.06. The computational domain is partitioned into Nh = 1024
elements. The full-order solver utilizes a finite-element discretization and a second-order implicit
trapezoidal time integration. The solution is updated until t = 50 using a time step size ∆t = 0.025.

The coefficient ν of the fourth-order viscosity term is the only parameter in this problem.
Following Lu et al. [40], the dissipative term ∆2u provides damping at small scales. Therefore, the
smaller the ν, the less dissipative the system. In our test, we see that very small ν yields a chaotic
or quasi-chaotic system, making the model reduction difficult.

We set the range of the parameter ν as [0.3, 1.5]. The snapshots for the POD basis generation
are collected from the high-fidelity simulations with 25 values of ν that are uniformly distributed
in the log space, which means that more data points are sampled for small parameter values. The
basis is extracted from the snapshots via POD. We chose 25 left singular vectors of the snapshot
matrix as the reduced basis functions.

The training, validation, and test data sets are generated from high-fidelity simulation results,
with 124 uniformly, 62 randomly, and 61 randomly sampled parameter values in the log space,
respectively.

To get an accurate memory model, we train the conditioned LSTMs with 32, 64 and 128 hidden
units and 2, 3, 4, 5, 6, 10 time steps. Ten restarts are performed in each training, with 500 epochs in
each restart. In each epoch, the training data is shuffled and divided into mini-batches of size of
1000. The learning rate is 0.005. The coefficient of the L2 regularization is 10−9.

The relative errors of the trained networks on the test data set, and the estimated memory
length are shown in Figure 12. We observe that the networks with 128 hidden units are the most
accurate. The models with 3, 4 and 5 time steps are the most accurate among the models in which

25



1 2 3 4 5 6 7 8 9 10 11
0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

nts

ε 1
0.025 0.100 0.175 0.25

τ̄

1 2 3 4 5 6 7 8 9 10 11

0.12

0.16

0.2

0.24

0.28

nts

ε 2

nhu = 128
nhu = 64
nhu = 32

0.025 0.100 0.175 0.25

τ̄

Figure 12: Test error of the trained networks for the KS equation. The estimated mean (solid vertical line), minimum
and maximum (dashed vertical lines) of the memory length are also shown in the plot.

the memory length are inside the estimated range. However, we see in Figure 12 that the errors of
the networks are quite large. To understand the cause of this large error, we show the test errors of
the networks with 128 hidden units with respect to different parameter values in Figure 13. The
results in Figure 13 show that the networks are very accurate for ν ∈ [0.6, 1.5], while less accurate for
ν ∈ [0.3, 0.6], which is reasonable since the small values of ν correspond to quasi-chaotic dynamics
that are very difficult to accurately capture. Furthermore, for the well modeled parameter range,
the networks with different number of time steps have very similar accuracy. We chose the network
with 128 hidden units and 4 time steps as the memory model.

The POD-Galerkin with the selected memory model is tested using the physical parameter
sampling of the test data set which includes 61 random values of ν. The simulations are performed
using the IMEX-Trapezoidal time integration in (36) until t = 100, which is beyond the time range
of the training data [0, 50], to test the prediction capability of the reduced-order models.

The energy contribution of the closure to the reduced-order system is shown in Figure 14 to
provide a intuition of the accuracy of the memory model. It is observed in Figure 14 that the
conditioned LSTM network accurately models the memory closure.

The reduced solutions of the original POD-Galerkin and the POD-Galerkin with memory with 4
different parameter values are shown Figure 15-18. For the small parameter value (ν = 0.34756) case,
both the reduced-order models with/without memory models fails to follow the fast dynamics of the
high-fidelity model. For the cases with large parameter values, the results show that the reduced
basis solutions computed by the POD-Galerkin with memory are much closer to the high-fidelity
solutions than the original POD-Galerkin. We note that, for certain values of the parameter, the
POD-Galerkin reduced-order model is able to follow the high-fidelity solution only for a short time
interval, as shown in Figure 18. While the reduced-order model with memory closure remains
accurate for much longer time and make accurate predictions beyond the training time interval.

For a global view of the dynamics, the contours of solutions for ν = 0.64424 on the x − t
plane are shown in Figure 19. The results in Figure 19 show that the POD-Galerkin with memory
closure provides accurate solutions in both the training and prediction intervals, while the original
POD-Galerkin model loses the dynamics after a certain time.

We show the error-cost plot of the reduced-order models in Figure 20 for efficiency comparison.
We observe that, the POD-Galerkin model with memory has 10 to 100 times smaller error than the
original POD-Galerkin model, with only slightly more computational time, and is thus much more
efficient.

26



0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

ν

ε 1

0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ν

ε 2

nts = 2
nts = 3
nts = 4
nts = 5
nts = 6

Figure 13: Test error plots of the trained networks with 128 hidden units for different parameter values.

6.3. Rayleigh-Bénard convection
The two-dimensional Rayleigh-Bénard convection problem is used as the last case to test the

capability of memory modeling of the conditioned LSTM network for multi-dimensional nonlinear
problems. The non-dimensionalized governing equations are

∇ · u = 0,

∂
∂tu + u · ∇u = −∇p+

√
Pr
Ra∆u + Tey,

∂
∂tT + u · ∇T = 1√

PrRa
∆T,

(41)

where u, T and p are the dimensionless velocity, temperature and pressure, respectively. The
Rayleigh number (Ra) and the Prandtl number (Pr) are the dimensionless quantities that control
the flow. The simulation setup, including the computational domain and the boundary conditions,
is shown in Figure 21. The high-fidelity simulations are performed until t = 50 on a triangular
mesh with 152,888 nodes, using a finite-elment space discretization and the implicit trapezoidal time
integration with a time step size ∆t = 0.01. To make the problem reducible, the solution of a low
Rayleigh number case Ra = 33019.2725, P r = 0.85 at t = 50, starting from a stationary flow with
linear temperature distribution between the hot and cold plates, is used as the initial condition for
the high-fidelity simulations.

We select Ra and Pr as the two physical parameters for model reduction of this problem. The
parameter domain of the problem is (Ra, Pr) ∈ [5 × 106, 1.5 × 107] × [0.85, 0.95]. The snapshots
for POD basis generation are collected from the high-fidelity simulations with 36 parameter values
generated via the Latin hypercube sampling. The reduced basis functions are extracted from the
snapshots using the randomized SVD [26]. The singular value decay is shown in Figure 22 and it is
observed that the singular values decay slowly, implying that a large number of reduced bases is
necessary to recover the main dynamics, making the model reduction of this problem being difficult.
We select 24 left singular vectors of the snapshot matrix as the reduced basis functions.

The training data is generated using the same high-fidelity simulation results that are used for
reduced basis generation. Both the validation and test data sets are obtained from high-fidelity
simulations with 18 randomly sampled parameter values.

To obtain an accurate memory model, we train the conditioned LSTMs with 128 hidden units
and 2, 3, · · · , 8 time steps. Each network is optimized by 10 restarts, with 1200 epochs in each
restart. In each epoch, the training data is shuffled and divided into mini-batches of size 1000. The
learning rate is 0.005. The coefficient λ of the L2 regularization is 10−9.

The relative errors of the trained networks on the test data set, and the estimated memory
length are shown in Figure 23. It is shown in Figure 23 that the network with 3 time steps is the

27



0 10 20 30 40 50
0

1

2

3

4

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 0.34756

50 60 70 80 90 100
0

1

2

3

4

t

Prediction interval, ν = 0.34756

0 10 20 30 40 50

−3
−2
−1
0
·10−2

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 0.71166

50 60 70 80 90 100

−3
−2
−1
0
·10−2

t

Prediction interval, ν = 0.71166

0 10 20 30 40 50
−6

−4

−2

0
·10−2

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 1.0006

50 60 70 80 90 100
−6

−4

−2

0
·10−2

t

Prediction interval, ν = 1.0006

0 10 20 30 40 50
−8
−6
−4
−2
0
·10−2

t

en
er

gy
ex

ch
an

ge

Training interval, ν = 1.4399

50 60 70 80 90 100
−8
−6
−4
−2
0
·10−2

t

Prediction interval, ν = 1.4399

Exact
LSTM

Figure 14: Evolution of the energy exchange term 2α>M of the reduced-order models of the KS equation.

28



0 10 20 30 40 50

−4
−2
0

2

4

t

u

Training interval, x = 4.4

50 60 70 80 90 100

−4
−2
0

2

4

t

Prediction interval, x = 4.4

0 10 20 30 40 50

−4
−2
0

2

4

t

u

Training interval, x = 8.8

50 60 70 80 90 100

−4
−2
0

2

4

t

Prediction interval, x = 8.8

0 10 20 30 40 50

−4
−2
0

2

4

t

u

Training interval, x = 13.2

50 60 70 80 90 100

−4
−2
0

2

4

t

Prediction interval, x = 13.2

0 10 20 30 40 50

−4
−2
0

2

4

t

u

Training interval, x = 17.6

50 60 70 80 90 100

−4
−2
0

2

4

t

Prediction interval, x = 17.6

Figure 15: Numerical solutions for parameter ν = 0.34756. High-fidelity; Projection of high-fidelity;
POD-Galerkin; POD-Galerkin with memory.

29



0 10 20 30 40 50
0

1

2

3

t

u

Training interval, x = 4.4

50 60 70 80 90 100
0

1

2

3

t

Prediction interval, x = 4.4

0 10 20 30 40 50
−1.5
−1
−0.5

0

0.5

t

u

Training interval, x = 8.8

50 60 70 80 90 100
−1.5
−1
−0.5

0

0.5

t

Prediction interval, x = 8.8

0 10 20 30 40 50

−2

0

2

t

u

Training interval, x = 13.2

50 60 70 80 90 100

−2

0

2

t

Prediction interval, x = 13.2

0 10 20 30 40 50

0

1

2

t

u

Training interval, x = 17.6

50 60 70 80 90 100

0

1

2

t

Prediction interval, x = 17.6

Figure 16: Numerical solutions for parameter ν = 0.71166. High-fidelity; Projection of high-fidelity;
POD-Galerkin; POD-Galerkin with memory.

30



0 10 20 30 40 50
−2
−1
0

1

2

t

u

Training interval, x = 4.4

50 60 70 80 90 100
−2
−1
0

1

2

t

Prediction interval, x = 4.4

0 10 20 30 40 50
−2

0

2

t

u

Training interval, x = 8.8

50 60 70 80 90 100
−2

0

2

t

Prediction interval, x = 8.8

0 10 20 30 40 50
−2

0

2

t

u

Training interval, x = 13.2

50 60 70 80 90 100
−2

0

2

t

Prediction interval, x = 13.2

0 10 20 30 40 50

−2

0

2

t

u

Training interval, x = 17.6

50 60 70 80 90 100

−2

0

2

t

Prediction interval, x = 17.6

Figure 17: Numerical solutions for parameter ν = 1.0006. High-fidelity; Projection of high-fidelity;
POD-Galerkin; POD-Galerkin with memory.

31



0 10 20 30 40 50

−1
0

1

2

t

u

Training interval, x = 4.4

50 60 70 80 90 100

−1
0

1

2

t

Prediction interval, x = 4.4

0 10 20 30 40 50
−1

0

1

2

t

u

Training interval, x = 8.8

50 60 70 80 90 100
−1

0

1

2

t

Prediction interval, x = 8.8

0 10 20 30 40 50
−2
−1
0

1

2

t

u

Training interval, x = 13.2

50 60 70 80 90 100
−2
−1
0

1

2

t

Prediction interval, x = 13.2

0 10 20 30 40 50
−2
−1
0

1

2

t

u

Training interval, x = 17.6

50 60 70 80 90 100
−2
−1
0

1

2

t

Prediction interval, x = 17.6

Figure 18: Numerical solutions for parameter ν = 1.4399. High-fidelity; Projection of high-fidelity;
POD-Galerkin; POD-Galerkin with memory.

32



0 10 20 30 40 50
0

5

10

15

20

t

x
Training interval, Full-Order

50 60 70 80 90 100
0

5

10

15

20

t

Prediction interval, Full-Order

0 10 20 30 40 50
0

5

10

15

20

t

x

Training interval, Projection

50 60 70 80 90 100
0

5

10

15

20

t

Prediction interval, Projection

0 10 20 30 40 50
0

5

10

15

20

t

x

Training interval, POD-Galerkin

50 60 70 80 90 100
0

5

10

15

20

t

Prediction interval, POD-Galerkin

0 10 20 30 40 50
0

5

10

15

20

t

x

Training interval, LSTM

50 60 70 80 90 100
0

5

10

15

20

t

Prediction interval, LSTM

−3

−2

−1

0

1

2

3

Figure 19: Evolution of the numerical solutions of the KS equation with ν = 0.64424.

33



0 0.5 1 1.5

·10−2

−2

−1

0

m=25
m=25
m=25

m=25

m=30

m=40

m=50

m=60

t

lo
g
(‖
u
−

ũ
‖ L

2
(0

,T
;L

2
)
)

Training interval

LSTM nhu = 32
LSTM nhu = 64
LSTM nhu = 128
POD

0 0.5 1 1.5

·10−2

−2

−1

0

m=25m=25

m=25

m=25

m=30

m=40

m=50

m=60

t

Prediction interval

Figure 20: Error-cost plot of the reduced-order models of the KS equation. The dashed horizontal line represents the
projection error.

most accurate among the models of which the memory length are inside the estimated range, and is
thus selected as the memory model.

The POD-Galerkin with the selected memory model is tested using the physical parameter
sampling of the test data set that includes 61 random values of ν. The simulations are performed
using the IMEX-Trapezoidal time integration until t = 100, which is beyond the time range of the
training data [0, 50], to test the prediction capability of the reduced-order model.

The energy contribution of the closure to the reduced-order system is shown in Figure 24 to
provide a intuition of the accuracy of the memory model. It is observed in Figure 24 that the
conditioned LSTM network accurately captures the memory closure.

The reduced solutions of the original POD-Galerkin and the POD-Galerkin with memory for
(Ra, Pr) = (14024512.0002, 0.86976) are shown Figure 25. The results show that the reduced
solutions computed by the POD-Galerkin with memory are much closer to the high-fidelity solutions.
Furthermore, the results also show that the POD-Galerkin model with memory closure can make
accurate predictions, even in the case that the reduced basis can not accurately represent the
dynamics of the high-fidelity solution.

For a global view of the dynamics, the contours of solutions for (Ra, Pr) = (14024512.0002, 0.86976)
are shown in Figure 26-29. The results show that the POD-Galerkin with memory closure can
provide much more accurate solutions in both the training and prediction intervals than the original
POD-Galerkin model.

We show the error-cost plot of the reduced-order models in Figure 30 for efficiency comparison.
We can see from Figure 30 that, the POD-Galerkin model with memory has 5 to 10 times smaller
error than the original POD-Galerkin model, at only slightly more computational cost, and is thus
much more efficient. We highlight the fact that the error of the POD-Galerkin model with memory
is very close to the projection error, which means that the conditioned LSTM memory model is very
accurate and the reduced basis solution evolves with almost exact dynamics.

7. Conclusions

This paper proposes a RNN closure for parametric POD-Galerkin reduced-order model. A
conditioned LSTM network is used to predict the memory integral that accounts for the impact of
the unresolved scales on the resolved scales, given the physical/geometrical parameter values and
the short time history of the resolved scales. The RNN closure is embedded into the POD-Galerkin

34



x

y

0

1

2

T = 0

T = 1

∂T
∂x = 0∂T

∂x = 0

Figure 21: Simulation setup of the Rayleigh-Bénard convection.

0 1,000 2,000 3,000 4,000
10−4

10−1

102

105

k

σ
k

Figure 22: Singular values of the Rayleigh-Bénard convection problem.

1 2 3 4 5 6 7 8 9
0.01

0.02

0.03

0.04

0.05

nts

ε 1

0.01 0.03 0.05 0.07 0.09

τ̄

1 2 3 4 5 6 7 8 9
0.01

0.02

0.03

0.04

0.05

nts

ε 2

nhu = 128

0.01 0.03 0.05 0.07 0.09

τ̄

Figure 23: Test error of the trained networks for the Rayleigh-Bénard convection. The estimated mean (solid vertical
line), minimum and maximum (dashed vertical lines) of the memory length are also shown in the plot.

35



0 10 20 30 40 50

−0.1
0

0.1

t

en
er

gy
ex

ch
an

ge

Training interval

50 60 70 80 90 100

−0.1
0

0.1

t

Prediction interval

0 10 20 30 40 50

−0.1
0

0.1

t

en
er

gy
ex

ch
an

ge

50 60 70 80 90 100

−0.1
0

0.1

t

0 10 20 30 40 50

−0.1
0

0.1

t

en
er

gy
ex

ch
an

ge

50 60 70 80 90 100

−0.1
0

0.1

t

0 10 20 30 40 50

−0.1
0

0.1

t

en
er

gy
ex

ch
an

ge

50 60 70 80 90 100

−0.1
0

0.1

t

Exact
LSTM

Figure 24: Evolution of the energy exchange term 2α>M of the reduced-order models of the Rayleigh-Bénard convec-
tion. From top to bottom: (Ra, Pr) = (10315866.3651, 0.85392), (12317729.8502, 0.86391), (5793019.4994, 0.92232),
(14024512.0002, 0.86976).

36



0 10 20 30 40 50
0.2

0.4

0.6

0.8

t

T

Training interval, x = 0.25, y = 0.25

50 60 70 80 90 100
0.2

0.4

0.6

0.8

t

Prediction interval, x = 0.25, y = 0.25

0 10 20 30 40 50
0.2

0.4

0.6

0.8

t

T

Training interval, x = 0.75, y = 0.25

50 60 70 80 90 100
0.2

0.4

0.6

0.8

t

Prediction interval, x = 0.75, y = 0.25

0 10 20 30 40 50
0.2

0.4

0.6

0.8

t

T

Training interval, x = 0.75, y = 0.75

50 60 70 80 90 100
0.2

0.4

0.6

0.8

t

Prediction interval, x = 0.75, y = 0.75

0 10 20 30 40 50
0.2

0.4

0.6

0.8

t

T

Training interval, x = 0.25, y = 0.75

50 60 70 80 90 100
0.2

0.4

0.6

0.8

t

Prediction interval, x = 0.25, y = 0.75

Figure 25: Temperature evolution of Rayleigh-Bénard convection problem at four points, for Ra = 14024512.0002,
Pr = 0.86976. High-fidelity; Projection of high-fidelity; POD-Galerkin; POD-Galerkin with
memory.

37



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Full-Order

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

POD-Galerkin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

LSTM

0

0.2

0.4

0.6

0.8

1

Figure 26: Contour of Rayleigh-Bénard convection problem at t = 10, for Ra = 14024512.0002, Pr = 0.86976.

38



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Full-Order

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

POD-Galerkin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

LSTM

0

0.2

0.4

0.6

0.8

1

Figure 27: Contour of Rayleigh-Bénard convection problem at t = 25, for Ra = 14024512.0002, Pr = 0.86976.

39



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Full-Order

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

POD-Galerkin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

LSTM

0

0.2

0.4

0.6

0.8

1

Figure 28: Contour of Rayleigh-Bénard convection problem at t = 70, for Ra = 14024512.0002, Pr = 0.86976.

40



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Full-Order

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

POD-Galerkin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

LSTM

0

0.2

0.4

0.6

0.8

1

Figure 29: Contour of Rayleigh-Bénard convection problem at t = 85, for Ra = 14024512.0002, Pr = 0.86976.

0 0.5 1 1.5 2

·10−2

−3

−2.5

−2

m=24

m=24
m=36

m=48

m=60

m=90

t

lo
g
(||
T
−
T̃
|| L

2
(0

,T
;L

2
)
)

Training interval

LSTM nhu = 128
POD

0 0.5 1 1.5 2

·10−2

−3

−2.5

−2

m=24

m=24
m=36

m=48

m=60

m=90

t

Prediction interval

Figure 30: Error-cost plot of the reduced-order models of the Rayleigh-Bénard convection. The horizontal line
represents the projection error.

41



model in the framework of implicit-explicit (IMEX) Runge-Kutta time integration, in which the
RNN memory term is computed only once in each time step or inner iteration step, resulting in an
efficient reduced-order model. Numerical results demonstrate that the POD-Galerkin reduced-order
model with the RNN closure is much more efficient than its original scheme for nonlinear problems.
The POD-Galerkin reduced-order model with the RNN closure is demonstrated to have strong
prediction capability.

Acknowledgements

This work was partially supported by AFOSR under grant FA9550-17-1-9241.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
and G. Research. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. Technical report, 2015.

[2] R. Abgrall and R. Crisovan. Model reduction using L 1-norm minimization as an application
to nonlinear hyperbolic problems. International Journal for Numerical Methods in Fluids,
87(12):628–651, 2018.

[3] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models described
by proper orthogonal decomposition. IEEE Transactions on Automatic Control, 2008.

[4] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza. Supremizer stabilization of POD–Galerkin
approximation of parametrized steady incompressible Navier–Stokes equations. International
Journal for Numerical Methods in Engineering, 102(5):1136–1161, 2015.

[5] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations. Comptes
Rendus Mathematique, 2004.

[6] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM review, 57(4):483–531, 2015.

[7] P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban. Model Reduction of Parametrized
Systems. Springer, 2017.

[8] M. Billaud-Friess and A. Nouy. Dynamical model reduction method for solving parameter-
dependent dynamical systems. SIAM Journal on Scientific Computing, 39(4):A1766–A1792,
2017.

[9] K. Carlberg. Adaptive h-refinement for reduced-order models. International Journal for
Numerical Methods in Engineering, 102(5):1192–1210, 2015.

[10] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via a least-
squares Petrov–Galerkin projection and compressive tensor approximations. International
Journal for Numerical Methods in Engineering, 86(2):155–181, 2011.

42



[11] W. Cazemier, R. W. Verstappen, and A. E. Veldman. Proper orthogonal decomposition and
low-dimensional models for driven cavity flows. Physics of Fluids, 1998.

[12] S. Chaturantabut and D. C. Sorensen. Nonlinear Model Reduction via Discrete Empirical
Interpolation. SIAM Journal on Scientific Computing, 2010.

[13] F. Chinesta, P. Ladeveze, and E. Cueto. A Short Review on Model Order Reduction Based
on Proper Generalized Decomposition. Archives of Computational Methods in Engineering,
18(4):395–404, 2011.

[14] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[15] F. Chollet. Keras, 2015.

[16] A. Chorin and P. Stinis. Problem reduction, renormalization, and memory. Communications
in Applied Mathematics and Computational Science, 1(1):1–27, 2007.

[17] A. J. Chorin and O. H. Hald. Stochastic tools in mathematics and science, volume 3. Springer,
2009.

[18] A. J. Chorin, O. H. Hald, and R. Kupferman. Optimal prediction and the Mori-Zwanzig
representation of irreversible processes. Proceedings of the National Academy of Sciences,
97(7):2968–2973, 2000.

[19] A. J. Chorin, O. H. Hald, and R. Kupferman. Optimal prediction with memory. Physica D:
Nonlinear Phenomena, 166(3-4):239–257, 2002.

[20] R. Everson and L. Sirovich. Karhunen–Loève procedure for gappy data. Journal of the Optical
Society of America A, 1995.

[21] K. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction via tangential interpolation.
Technical report, 2002.

[22] D. Givon, R. Kupferman, and O. H. Hald. Existence proof for orthogonal dynamics and the
Mori-Zwanzig formalism. Israel Journal of Mathematics, 145(1):221–241, 2005.

[23] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

[24] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[25] A. Gouasmi, E. J. Parish, and K. Duraisamy. A priori estimation of memory effects in reduced-
order models of nonlinear systems using the Mori–Zwanzig formalism. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 473(2205):20170385, 2017.

[26] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, 53:217–288,
2011.

[27] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized
Partial Differential Equations. Springer, 2015.

[28] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods, volume 54. Springer,
2008.

43



[29] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[30] K. Hsu, H. V. Gupta, and S. Sorooshian. Artificial neural network modeling of the rainfall-runoff
process. Water resources research, 31(10):2517–2530, 1995.

[31] C. Huang, K. Duraisamy, and C. Merkle. Challenges in Reduced Order Modeling of Reacting
Flows. In 2018 Joint Propulsion Conference, page 4675, 2018.

[32] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[33] A. Iollo, S. Lanteri, and J.-A. Désidéri. Stability properties of POD–Galerkin approximations
for the compressible Navier–Stokes equations. Theoretical and Computational Fluid Dynamics,
13(6):377–396, 2000.

[34] A. Karpathy and L. Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descrip-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[35] D. P. Kingma and J. Ba Adam. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[36] B. Kramer and K. E. Willcox. Nonlinear model order reduction via lifting transformations and
proper orthogonal decomposition. AIAA Journal, 57(6):2297–2307, 2019.

[37] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decomposition :
data-driven modeling of complex systems. SIAM, 2016.

[38] E. Lappano, F. Naets, W. Desmet, D. Mundo, and E. Nijman. A greedy sampling approach for
the projection basis construction in parametric model order reduction for structural dynamics
models. Technical report, KU Leuven, 2018.

[39] J. Li and P. Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of
Computational Dynamics, 0(0):1–30, 2018.

[40] F. Lu, K. K. Lin, and A. J. Chorin. Data-based stochastic model reduction for the Ku-
ramoto–Sivashinsky equation. Physica D: Nonlinear Phenomena, 340:46–57, 2017.

[41] D. J. Lucia, P. S. Beran, and W. A. Silva. Reduced-order modeling: new approaches for
computational physics. Progress in aerospace sciences, 40(1-2):51–117, 2004.

[42] C. Ma, J. Wang, and W. E. Model Reduction with Memory and the Machine Learning of
Dynamical Systems. Commun. Comput. Phys, 25(4):947–962, 2019.

[43] B. Maboudi Afkham, N. Ripamonti, Q. Wang, and J. S. Hesthaven. Conservative Model Order
Reduction for Fluid Flow. Technical report, Ecole Polytechnique Fédérale de Lausanne, 2018.

[44] Y. Maday. Reduced basis method for the rapid and reliable solution of partial differential
equations. In Proceedings of the International Congress of Mathematicians Madrid, August
22–30, 2006, pages 1255–1270. European Mathematical Society, 2009.

[45] R. Maulik, A. Mohan, B. Lusch, S. Madireddy, and P. Balaprakash. Time-series learning of
latent-space dynamics for reduced-order model closure. arXiv preprint arXiv:1906.07815, 2019.

[46] H. Mori. Transport, collective motion, and Brownian motion. Progress of theoretical physics,
33(3):423–455, 1965.

44



[47] T. Ohwada and P. Asinari. Artificial compressibility method revisited: asymptotic numeri-
cal method for incompressible Navier–Stokes equations. Journal of Computational Physics,
229(5):1698–1723, 2010.

[48] S. Pan and K. Duraisamy. Data-Driven Discovery of Closure Models. SIAM Journal on Applied
Dynamical Systems, 17(4):2381–2413, 2018.

[49] H. Panzer and J. Mohring. Parametric Model Order Reduction by Matrix Interpolation.
Automatisierungstechnik, 58(8):475–484, 2010.

[50] E. J. Parish and K. Duraisamy. A dynamic subgrid scale model for large eddy simulations
based on the Mori–Zwanzig formalism. Journal of Computational Physics, 349:154–175, 2017.

[51] E. J. Parish and K. Duraisamy. Non-Markovian closure models for large eddy simulations using
the Mori-Zwanzig formalism. Physical Review Fluids, 2(1):14604, 2017.

[52] E. J. Parish, C. Wentland, and K. Duraisamy. A Residual-Based Petrov-Galerkin Reduced-Order
Model with Memory Effects. arXiv preprint arXiv:1810.03455, 2018.

[53] B. Peherstorfer and K. Willcox. Online adaptive model reduction for nonlinear systems via
low-rank updates. SIAM Journal on Scientific Computing, 37(4):A2123–A2150, 2015.

[54] A. Quarteroni. Numerical Models for Differential Problems. Springer Milan, Milano, 2009.

[55] A. Quarteroni and L. Formaggia. Mathematical modelling and numerical simulation of the
cardiovascular system. Handbook of numerical analysis, 12:3–127, 2004.

[56] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential
equations: An introduction. Springer, 2015.

[57] C. Rohilla Shalizi and C. Moore. What Is a Macrostate? Subjective Observations and Objective
Dynamics. Technical report, 2000.

[58] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows using
POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189(1-2):115–129, 2004.

[59] G. Rozza and K. Veroy. On the stability of the reduced basis method for Stokes equations in
parametrized domains. Computer methods in applied mechanics and engineering, 196(7):1244–
1260, 2007.

[60] P. Stinis. Renormalized Mori–Zwanzig-reduced models for systems without scale separa-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471(2176):20140446, 2015.

[61] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[62] B. Unger and S. Gugercin. Kolmogorov n-widths for linear dynamical systems. Advances in
Computational Mathematics, pages 1–14, may 2019.

[63] Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis. Data-assisted reduced-order modeling
of extreme events in complex dynamical systems. PloS one, 13(5):e0197704, 2018.

[64] C. R. Wentland, C. Huang, and K. Duraisamy. Closure of Reacting Flow Reduced-Order Models
via the Adjoint Petrov-Galerkin Method. In AIAA Aviation 2019 Forum, page 3531, 2019.

45



[65] Y. Zhu, J. M. Dominy, and D. Venturi. On the estimation of the Mori-Zwanzig memory integral.
arXiv:1708.02235v3 [math.NA], 2018.

[66] R. Zwanzig. Memory effects in irreversible thermodynamics. Physical Review, 124(4):983–992,
1961.

[67] R. Zwanzig. Nonlinear generalized Langevin equations. Journal of Statistical Physics, 9(3):215–
220, 1973.

46


	Introduction
	Model Order Reduction
	Reduced Basis
	Proper Orthogonal Decomposition

	Treatment of nonlinear term

	Mori-Zwanzig formalism
	Introductory example
	Mathematical foundations
	Application to reduced basis model reduction

	Recurrent neural network memory model
	Regression of the memory term
	Conditioned long short-term memory network
	Training of the network
	Model selection

	Parametric POD-Galerkin with the RNN memory model
	POD-Galerkin with memory
	Implicit-explicit Runge-Kutta time integration

	Numerical results
	3D Stokes
	Kuramoto–Sivashinsky equation
	Rayleigh-Bénard convection

	Conclusions
	Acknowledgements
	References

