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Abstract: 

A general constitutive equation was established using the theory of viscoelasticity in order to consider 

the interaction of the time- and cyclic-dependent mechanical properties of laminated composites. This 

equation was solved for two specific loading patterns, 1) stress unloading to zero stress level (recovery 

solution), and 2) load control sinusoidal loading (fatigue solution), and was subsequently imported to 

model tensile-tensile interrupted fatigue experiments (including recovery phases) of ±45° angle-ply 

glass/epoxy composite laminates at different stress levels. The viscoelastic parameters in the recovery 

solution were calibrated at different percentages of fatigue lifetime using the experimental recovery 

results. The estimated viscoelastic parameters were then imported into the fatigue solution to predict the 

fatigue stiffness, hysteresis loop area, cyclic creep, storage and loss moduli as well as tan(δ) under 

cyclic loading. The theoretical predictions compared well to the experimental data. 
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1. Introduction 

Fiber-reinforced polymer (FRP) composites are used in a wide range of applications such as wind 

turbine rotor blades, airplanes, and bridge decks and are subjected to different types of loading patterns 

during operation. The behavior of these materials is sensitive to the loading pattern due to their cyclic- 

and time-dependent mechanical properties [1,2]. The cyclic-dependent mechanical properties, such as 

fatigue stiffness and hysteresis loop area, are mainly linked to high frequency fatigue experiments at 

zero mean stress level in which the time-dependent deformation of the material does not have a 

significant effect. On the other hand, the time-dependent mechanical properties are related to the 

rheology of the material when it is subjected to a sustained load [2,3,4]. 

Constitutive equations to describe the time-dependent mechanical properties were established based on 

either physical or phenomenological approaches. Following the physical-based approach, the material 

behavior is studied on the microscopic scale in order to model, for instance, the uniaxial loading 

behavior of polymer-based materials including yielding, work-hardening, strain rate and temperature 

effects [5,6]. Hysteresis loops resulting from quasi-static uniaxial tensile loading-unloading cycles of 

viscoelastic materials were also simulated using a physical-based approach [7,8,9,10,11,12,13,14]. This 

was achieved by modeling the specimen’s nonlinear viscoelastic behavior during the loading and 

unloading phases where the challenge was to model the non-linear unloading phase since the material 

behaved differently during loading and unloading. To achieve this, new models, based on different 

approaches, were developed. For example, Colak [13] developed a model to describe the nonlinear rate-

dependent loading and nonlinear unloading behavior by introducing a variable into the elastic strain rate 

relationship. Krasnobrizha et al [14] developed a model to describe the evolution of the hysteresis 

behavior during loading and unloading of laminated composites taking into account the visco-

elastoplastic behavior of damaged material.  

Phenomenological approaches, studying the material on the macroscale, e.g. [15,16,17], were 

successfully applied to model the laminated composites’ creep, recovery, and relaxation in the linear 

viscoelastic domain amongst other things. Of the different techniques, the Boltzmann superposition 

formulation is the most commonly used to model the time-dependent behavior of laminated composites 

in the linear domain [18,19,20]. Although linear viscoelastic principles were useful for the description 

of the long-term properties, they were inadequate in cases where the stress levels applied were so high 

that non-linear creep was observed [15,20,21]. Efforts for modeling the non-linear creep behavior of 

polymers have concentrated on the modification of the Boltzmann superposition formulation. Schapery 

[22] modified the Boltzmann superposition formulation by adding four time-independent but stress- 
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dependent parameters, which expressed the degree of non-linearity in elastic, viscoelastic and 

permanent strains.  

Most constitutive equations used to model cyclic-dependent material behavior were based on 

phenomenological approaches [23,24,25,26,27,28,29,30,31]. Such models describe fatigue damage by 

using an evolutionary law to simulate the gradual degradation of the specimen’s properties. Damage 

mechanisms are not considered in these methods, although appropriate damage metrics (such as fatigue 

stiffness, fatigue strengths, residual strength etc.) are used for the assessment of damage. These damage 

metrics depend on many factors, including the applied cyclic stress, number of fatigue cycles, loading 

frequency and environmental conditions [27]. 

Most of the models in the literature describe the time- and cyclic-dependent mechanical properties 

separately. However, the time- and cyclic-dependent mechanical properties of laminated composites 

usually interact with each other, and the degree of interaction depends on the loading spectrum and the 

material configuration [32,33,34,35,36]. In continuous fatigue, the interaction between the time- and 

cyclic-dependent mechanical properties was studied by monitoring the evolution of fatigue hysteresis 

loops [33,34,36,37] attributing the shift of the fatigue hysteresis loops to creep effects and the slope of 

the loops to degradation of the fatigue stiffness due to damage [36]. The interaction between the time- 

and cyclic-dependent mechanical properties was also studied by applying more complicated loading 

patterns in which continuous-fatigue was interrupted in different ways [1,2,34,38]. Interruption of cyclic 

loading could also change the fatigue life depending on the applied stress level and material type, as 

presented in [1,2]. Vieille et al [34] showed that fatigue life could be extended with prior creep in an 

angle-ply carbon/PPS thermoplastic composite depending on the loading conditions at temperatures 

higher than Tg. Similarly, in an angle-ply thermoset graphite/epoxy composite, it was shown that 

sustained periods of static loads have significant retardation effects on damage propagation and 

extended fatigue life [38]. Recently, it was shown that the effect of creep on the fatigue life of angle-ply 

thermoset laminates could be positive or negative deepening on the applied stress level and the hold 

time [2]. 

According to the aforementioned studies, the time- and cyclic-dependent properties of composite 

systems affect each other when the mean stress is not zero and therefore both should be considered in 

the constitutive equation for an appropriate description of the fatigue behavior. Previous works 

described in the literature modeled the hysteresis loops during quasi-static tensile loading-unloading; 

however, the modeling of hysteresis loop behavior (including their shifting as a result of creep) during 

the fatigue loading has not yet been performed. To the authors’ best knowledge, models developed to 

link the time- and cyclic-dependent mechanical properties mainly focused on creep effects in continuous 
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fatigue to improve fatigue life predictions, e.g. in [32,20]. However, a general model to simulate the 

fatigue behavior (the evolution of fatigue stiffness, hysteresis loops, cyclic creep, Tan(δ), storage 

modulus, and loss modulus) of composite materials has not yet been developed. 

The objective of the present work is to derive a general constitutive equation to link and simulate the 

time- and cyclic-dependent mechanical properties of viscoelastic materials. For this purpose, a general 

constitutive equation was developed and solved for two specific loading patterns of 1) an unloading to 

zero stress level (recovery solution) and 2) load control cyclic loading (fatigue solution). To implement 

this equation, a loading pattern comprising a constant amplitude cyclic loading with repetitive 

interruptions at zero stress level was selected and applied on matrix-dominated ±45° angle-ply 

glass/epoxy composite laminates in which the time-dependent effect was significant. The viscoelastic 

parameters were estimated by fitting the recovery solution to the experimental recovery curves. The 

obtained viscoelastic parameters were imported into the fatigue solution to predict the fatigue behavior 

at different numbers of cycles and stress levels. The accuracy of prediction was evaluated by comparing 

the results with those obtained from relevant experiments performed in a previous work of the authors. 

 

2. General constitutive equation  

To model the behavior of a viscoelastic material, different arrangements of springs and dashpots can be 

used depending on the material behavior [7,10,11,44]. A linear spring with the elastic modulus E 

simulates the instantaneous elastic deformation (Eq. 1) while a linear dashpot element simulates the 

viscous deformation (Eq. 2) in which the constant η is the viscosity coefficient. 

𝜎𝜎 = 𝐸𝐸𝐸𝐸           (1) 

𝜎𝜎 = 𝜂𝜂 𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑

           (2) 

The Maxwell unit is a two-element model consisting of a linear spring element and a linear viscous 

dashpot element connected in series (Eq. 3) while the Kelvin unit is when the spring element and 

dashpot element are connected in parallel (Eq. 4). 

𝜀𝜀(𝑡𝑡) = �1
𝐸𝐸

+ 1

𝜂𝜂 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜎𝜎(𝑡𝑡)          (3) 

𝜀𝜀(𝑡𝑡) = � 1

𝐸𝐸1+𝜂𝜂1
𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜎𝜎(𝑡𝑡)          (4) 

In order to simulate the viscoelastic response of complex material systems under different loading 

patterns such as creep, relaxation, recovery or cyclic loading, combinations of springs and dashpots in 

series and/or in parallel configurations can be used. A generally assumed form of a system of springs 
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and dashpots is shown in Fig. 1. An independent spring is used to model the elastic strain, while Kelvin 

units are used to model the viscoelastic strain, and an independent dashpot is used to model the 

remaining strain after recovery. The corresponding general constitutive equation is shown below.  

𝜀𝜀(𝑡𝑡) = �1
𝐸𝐸

+ 1

𝐸𝐸1+𝜂𝜂1
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1

𝐸𝐸2+𝜂𝜂2
𝜕𝜕
𝜕𝜕𝜕𝜕

+ ⋯+ 1

𝐸𝐸𝑖𝑖+𝜂𝜂𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1

𝜂𝜂 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜎𝜎(𝑡𝑡)     (5) 

This general constitutive equation can be solved for different loading patterns, e.g. 1) for stress 

unloading from a mean to a zero stress level (a recovery solution), and 2) for load-control sinusoidal 

cyclic loading (a fatigue solution), as demonstrated using interrupted fatigue experiments, which 

comprised phases of cyclic loading and repetitive loading interruptions. The specimen recovery 

behavior during the loading interruptions was modeled using the recovery solution, and 

correspondingly, the evolution of the viscoelastic parameters was quantified as the number of loading 

blocks increased. The fatigue behavior at different numbers of cycles was then predicted by importing 

the estimated viscoelastic parameters into the fatigue solution. The flowchart of the different modeling 

stages is shown in Fig. 2.  

 

3. Recovery solution and application 

3.1 Experimental investigation and recovery results 

Interrupted fatigue tensile experiments were performed on rectangular fully-cured glass/epoxy [±45]2s 

specimens with  dimensions of 250×25×2.3 mm3 (length×width×thickness) and a fiber content of 62% 

by volume. Fig. 3 shows a schematic representation of the applied loading profile, comprising repetitive 

loading blocks of constant amplitude interrupted by unloading periods up to specimen failure. For each 

experiment, the load was increased until the mean value was reached, after 60 s. Subsequently, the 

constant amplitude fatigue was applied for a predetermined number of cycles (20% of the average 

continuous fatigue life), followed by a zero-load interval lasting two hours. The cyclic loading was 

performed in the range of maximum stress levels of 47 MPa–68 MPa. The stress ratio, R = σmin/σmax, was 

kept constant at 0.1 and a constant loading rate of 30.5 kN/s was used; the frequencies thus varied. The 

details of the fabrication process, experimental set-up and instrumentation are given in [1]. 

Figure 4 shows the strain response at the end of a cyclic loading and after the load removal of a selected 

specimen during one of the loading interruptions. While the cyclic stress instantly decreased to zero, the 

strain showed a gradual decrease, i.e. first a very sudden elastic strain reduction at the moment of 

unloading, followed by a viscoelastic strain reduction down to a remaining unrecovered strain after 2 h. 

It is well documented that specimen recovery, as a result of the viscoelastic nature of the polymeric 
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matrix, is responsible for the observed time-dependent decrease of strain [20]. It was shown that the 

viscoelastic recovery could be described as a three-stage time-dependent strain reduction. Stage I 

represented a rapid specimen viscoelastic recovery after the elastic strain reduction, and Stage III 

illustrated the long-term recovery behavior of the specimen in which the strain changed very slowly. 

Between these two stages, there was a transition region (Stage II), which linked the former and the 

latter. The remaining strain after a 2-h recovery was attributed to the unrecovered viscoelastic strain and 

also the accumulated permanent strain due to the fatigue damage.  

 

3.2 Recovery solution 

The elastic and remaining strains can be calculated by Eq. 6, based on the Maxwell unit, and the 

viscoelastic strain can be calculated by the Kelvin units, Eq. 7 [20,45].  

𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ 𝜎𝜎𝑚𝑚
 𝜂𝜂

(𝑡𝑡1 − 𝑡𝑡0)        (6) 

𝜀𝜀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸𝑖𝑖
�1 − 𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡−𝑡𝑡1)�        (7) 

where the mean stress is symbolized with σm, and 𝜆𝜆 is equal to 𝐸𝐸/𝜂𝜂 in the Kelvin unit, t0 is the point at 

which the specimen was subjected to the cyclic loading, and t1 is the stress removal time. The total 

strain after the load removal is the sum of all the aforementioned strain components of elastic strain, 

three stages of viscoelastic strain, and remaining strain (see Fig. 4) and is calculated by Eq. 8: 

𝜀𝜀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ 𝜎𝜎𝑚𝑚
𝐸𝐸1
�1 − 𝑒𝑒−𝜆𝜆1(𝑡𝑡−𝑡𝑡1)� + 𝜎𝜎𝑚𝑚

𝐸𝐸2
�1 − 𝑒𝑒−𝜆𝜆2(𝑡𝑡−𝑡𝑡1)� + 𝜎𝜎𝑚𝑚

𝐸𝐸3
�1 − 𝑒𝑒−𝜆𝜆3(𝑡𝑡−𝑡𝑡1)� + 𝜎𝜎𝑚𝑚

 𝜂𝜂
(𝑡𝑡1 − 𝑡𝑡0) (8) 

 

 

The viscoelastic parameters related to the independent spring and dashpot elements (E and η) are 

estimated directly by measuring the elastic and remaining strains. The parameters of the viscoelastic 

terms of Eq. 8 are calibrated using the experimental data in the three regions of the viscoelastic part of 

the recovery curves. The corroboration process was carried out using the Orthogonal Distance 

Regression (ODR) iteration algorithm [46], and a Chi-Square tolerance value of 10-9 was reached in all 

cases.  
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strain 

Time-dependent 
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Time-dependent 
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Remaining 
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3.3 Estimation of viscoelastic parameters  

Figures 5a and 5b show the recovery curves as the number of loading blocks increased at stress levels of 

58 MPa and 49 MPa, respectively. The recovery behavior was simulated using Eq. 8, as described 

above. The obtained recovery curves closely followed the experimental curves. The resulting 

viscoelastic parameters related to the elastic, viscoelastic, and remaining strains and those of three more 

stress levels are shown in Fig. 6. Each recovery curve is represented by one data point. The behavior of 

each viscoelastic parameter (VP) could be simulated by power law equations of the type VP=αNβ in 

which α and β are fitting parameters. All parameters, except η, gradually decreased with the number of 

cycles. An initial steep decrease during the first 10–15% of the lifetime was followed by a steady-state 

decreasing trend. Furthermore, with increasing stress levels, the values of the parameters generally 

decreased, except for E2 and η2, where no clear trend could be recognized, which was attributed to the 

fact that the second stage of recovery was a transition stage from short- to long-term recovery. The 

decreasing trends of the viscoelastic parameters were attributed to the fatigue damage accumulation as 

shown in [1]. In addition, according to [2], creep at these stress levels was non-linear, which contributed 

to the change in the viscoelastic parameters. Unlike the other parameters, the evolution of η, attributed 

to the remaining strain, showed a growing trend, which was attributed to the decreasing rate of 

remaining strain (Eq. 8), which subsequently became constant as the number of blocks increased.  

 

4. Fatigue solution, application and validation 

4.1 Fatigue solution 

The sinusoidal cyclic stress with a stress amplitude, σa, and a given fatigue frequency, f, was applied 

according to the following relationship: 

𝜎𝜎(𝑡𝑡) = 𝜎𝜎𝑚𝑚 + 𝜎𝜎𝑎𝑎sin (𝜔𝜔𝜔𝜔)            (9) 

where ω is equal to 2πf. By substituting the cyclic stress equation (Eq. 9) in the general constitutive 

equation (Eq. 5), the fatigue strain can be calculated as follows (see Annex I):  

𝜀𝜀 (𝑡𝑡) = 𝜀𝜀𝑐𝑐 (𝑡𝑡) + 𝜀𝜀𝑎𝑎 sin(𝜔𝜔𝜔𝜔 − 𝛿𝛿)                   (10) 

where 𝜀𝜀𝑐𝑐(𝑡𝑡) is the average cyclic strain, 𝜀𝜀𝑎𝑎 (𝑡𝑡) the strain amplitude, and 𝛿𝛿 the phase-lag. The strain 

calculated by Eq. 10, which is similar to the equation of applied stress (Eq. 9) except that the phase-lag, 

𝛿𝛿, appears in the sinus term. The terms introduced in Eq. 9 and Eq.10 are schematically shown in Fig. 7. 

The corresponding equations for the calculation of 𝜀𝜀𝑐𝑐(𝑡𝑡), 𝜀𝜀𝑎𝑎 (𝑡𝑡), and 𝛿𝛿 are shown in Eqs. 11-13, 

respectively (see Annex I).  
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𝜀𝜀𝑐𝑐(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ ∑ 𝜎𝜎𝑚𝑚
𝐸𝐸𝑖𝑖
�1 − 𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡−𝑡𝑡0)�𝑖𝑖=3

𝑖𝑖=1 + 𝜎𝜎𝑚𝑚
 𝜂𝜂

(𝑡𝑡 − 𝑡𝑡0)              (11) 

 

𝜀𝜀𝑎𝑎 = 𝜎𝜎𝑎𝑎��∑
1

 𝜂𝜂𝑖𝑖

𝜆𝜆𝑖𝑖
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1 �

2
+ �∑ 1

 𝜂𝜂𝑖𝑖

𝜔𝜔
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝜂𝜂𝜂𝜂
𝑖𝑖=3
𝑖𝑖=1 �

2
     (12) 

𝛿𝛿 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(
∑ 𝜔𝜔

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝜂𝜂𝜂𝜂

𝑖𝑖=3
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖
𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖

2+𝜔𝜔2)
+1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1

)         (13) 

4.2 Validation of implemented solutions 

In each experiment, the fatigue strain was simulated by importing the estimated viscoelastic parameters 

into Eqs. 11-13 to calculate the cyclic creep strain, cyclic strain amplitude, and phase-lag, respectively. 

The hysteresis loops were simulated by plotting the applied cyclic stress (Eq. 9) against the fatigue 

strain (Eq. 10) for each cycle. The detailed evaluation of the obtained results was carried out by 

comparing the hysteresis loop area, fatigue stiffness, and average cyclic strain with the experimental 

results obtained from the cyclic phase of the loading pattern (see Fig. 3) at the different numbers of 

cycles and stress levels. 

The experimental fatigue hysteresis loops at 64 MPa and 49 MPa are indicated by dots in Fig. 8a and 

9b, respectively. The hysteresis loop area, fatigue stiffness, and average cyclic strain exhibited 

measureable changes as the number of fatigue cycles increased for both high and low cyclic stresses. 

The predicted hysteresis loops are also indicated in Fig. 8a and 8b by solid lines. The experimental and 

predicted hysteresis loop areas, fatigue stiffnesses and average cyclic strains are compared in detail in 

Figs. 9-11. 

The variations of the experimental and predicted hysteresis loop areas per cycle versus the normalized 

number of cycles are shown in Fig. 9 at high and low stress levels. The hysteresis area increased 

gradually with the number of cycles. At the high stress level, the experimental and predicted curves 

compared well. At the low stress level, the predicted curve however slightly underestimated the 

experimental results, which showed that the fatigue solution using the estimated viscoelastic parameters 

from the recovery curve could not fully simulate the hysteresis loop area.  

The variation of the experimental and predicted fatigue stiffness versus the normalized fatigue life is 

shown in Fig. 10 for high and low stress levels. In both cases, an initial steep decrease during the first 

10–15% of the lifetime, followed by a steady-state stiffness decrease up to specimen failure, was 

Viscoelastic strain Permanent 
strain 

Elastic 
strain 
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observed. Experimental and predicted results compared well at both stress levels, with the exception of 

the initial stage at the high stress level, where the former were slightly overestimated.  

The variation of the average cyclic strain (average of maximum and minimum strains in one cycle) 

versus the normalized number of cycles is shown in Fig. 11. Independent of the stress level, the strains 

showed an increasing trend in the form of a ternary curve. The first region was at the early stage of 

cyclic loading in which the average cyclic creep strain rapidly increased, however at a decreasing rate. 

During the second stage, the average cyclic strain increased at a steady rate, while, finally, a rapid 

increase was observed prior to failure. At the beginning of each loading block, a gradual increasing of 

the cyclic strain was observed due to specimen recovery during the cyclic stress interruption at zero 

stress level [1]. The predicted average cyclic strains versus number of cycles are also indicated in Fig. 

11 by green curves. The fatigue solution predicted well the general trend of the average cyclic strain as 

well as the initial increase in each loading block at both stress levels.   

In addition to the average cyclic strain, the evolution of the strain components, i.e., the elastic, 

viscoelastic, and remaining strains were also obtained and are shown in Fig. 11. As the number of cycles 

increased, all strain components increased as a result of the fatigue damage formation and accumulation. 

The rate of increase of the different strain components varied between the two stress levels. The 

remaining strain was observed to increase more rapidly than the elastic and viscoelastic strain 

components and was the main reason for the growth of the cyclic strain. Additionally, viscoelastic 

strains were composed of small segments attributed to each loading block; they exhibited an initial 

increase and then a steady-state stage. 

The storage and loss moduli of viscoelastic materials measure the stored energy, representing the elastic 

portion, and the dissipated energy, representing the viscous portion [47]. The derived constitutive 

equation is also capable of simulating the evolution of the storage and loss moduli and tan(δ) with the 

number of cycles. 

tan(δ) derived from experiments at each cycle was calculated using the following equation, as derived in 

[48]:  

𝑠𝑠𝑠𝑠𝑠𝑠 (𝛿𝛿) = 𝐸𝐸𝐸𝐸
𝜋𝜋𝜎𝜎𝑎𝑎2

            (14) 

where w is the hysteresis loop area of cycle N. E and w were obtained from the experiments at the 

applied stress amplitude σa. The magnitude of the storage and loss moduli in each cycle was then 

determined by solving the two following equations:  

https://www.sciencedirect.com/science/article/pii/S0142112317304620#f0065
https://www.sciencedirect.com/science/article/pii/S0142112317304620#f0065
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𝑡𝑡𝑡𝑡𝑡𝑡 (𝛿𝛿) =  𝐸𝐸
′′

𝐸𝐸′
           (15) 

𝐸𝐸 = �𝐸𝐸′2 + 𝐸𝐸′′2           (16) 

where 𝐸𝐸′ and 𝐸𝐸′′ are the storage modulus and loss modulus, respectively. The evolution of the resulting 

experimental storage modulus, loss modulus, and tan(δ) are shown in Fig. 12 for high and low stress 

levels, respectively. Accordingly, as the number of cycles increased, the storage modulus decreased, 

whereas loss modulus and tan(δ) gradually increased. As shown in [1], damage gradually formed and 

propagated as the number of cycles increased, which reduced the storage modulus, while it also caused 

more dissipation of energy due to the internal friction that augmented the magnitudes of the loss 

modulus and tan(δ). 

Based on the evolution of the viscoelastic parameters estimated at different numbers of cycles (Fig. 6), 

the storage and loss moduli as well as tan(δ) were simulated according to Eq. 17, Eq. 18, and Eq. 13 

respectively. The mathematical derivation of these equations is given in Annex II. The comparison of 

the predicted and experimentally derived storage modulus showed good agreement; however, the loss 

modulus and tan(δ) were generally slightly underestimated. The lack of accuracy in predicting the loss 

modulus and tan(δ) confirmed that the fatigue solution could not fully simulate the amount of energy 

dissipated at low stress levels.  

 

𝐸𝐸′ =
∑ 𝜆𝜆𝑖𝑖

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝐸𝐸

𝑖𝑖=3
𝑖𝑖=1

(∑ 𝜆𝜆𝑖𝑖

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝐸𝐸

𝑖𝑖=3
𝑖𝑖=1 )2+(∑ 𝜔𝜔

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝜂𝜂𝜂𝜂

𝑖𝑖=3
𝑖𝑖=1 )2

               (17) 

𝐸𝐸′′ =
∑ 𝜔𝜔

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝜂𝜂𝜂𝜂

𝑖𝑖=3
𝑖𝑖=1

(∑ 𝜆𝜆𝑖𝑖

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝐸𝐸

𝑖𝑖=3
𝑖𝑖=1 )2+(∑ 𝜔𝜔

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝜂𝜂𝜂𝜂

𝑖𝑖=3
𝑖𝑖=1 )2

               (18) 

 
5. Conclusions  

A general constitutive equation was derived to consider the interaction of the time- and cyclic-

dependent mechanical properties of viscoelastic materials, and solved for two specific loading patterns, 

1) stress unloading from mean to zero stress level (recovery solution), and 2) load control sinusoidal 

loading (fatigue solution). To implement and validate these solutions, a loading pattern comprising a 

constant amplitude cyclic loading with repetitive interruptions was selected and applied to ±45° angle-

ply glass/epoxy composite laminates. The evolution of the viscoelastic parameters was estimated at 

different percentages of fatigue life by adjusting the recovery solution to the experiments. In order to 
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evaluate the accuracy of the constitutive equation implemented, the predictions of the fatigue solution 

were then compared with the experimental results in cyclic phases of the loading pattern. The following 

conclusions were drawn: 

• As the number of cycles increased, the viscoelastic parameters decreased due to damage 

accumulation, except that corresponding to the remaining deformation that increased, as a result 

of the decreasing rate of the remaining strain. 

• With the viscoelastic parameters calibrated, the predicted results of the fatigue solution could 

simulate the fatigue hysteresis loops, fatigue stiffness, and cyclic creep. All were in good 

agreement with the results of the experiments with the exception of the hysteresis loop area 

which was slightly underestimated at low stress levels.  

• The fatigue solution enabled the average cyclic strain to be decomposed into the elastic, 

viscoelastic, and remaining strain components. As the number of cycles increased, all strain 

components increased as a result of fatigue damage formation and accumulation. It was 

observed that the elastic and viscoelastic strains increased gradually while the remaining strain 

increased more rapidly and was the main reason for the growth of the cyclic strain.  

• The proposed constitutive equation was also able to predict the evolution of the storage modulus 

well while the predicted loss modulus and tan(δ) were only slightly underestimated. It was 

observed that, as the number of cycles increased, the storage modulus decreased, while both the 

loss modulus and tan(δ) increased.  

• The proposed governing equation is applicable in cases where cyclic loading is interrupted for a 

sufficient length of time. Additionally, the constitutive equation is useable when there is an 

interaction between time- and cyclic-mechanical properties, and therefore it may not be used in 

fiber-dominated composites with negligible time-dependent mechanical properties. 

 

Acknowledgments 

The authors wish to acknowledge the support and funding of this research by the Swiss National 

Science Foundation (Grant No. 200021_156647/1). 

 

References:  

[1] Movahedi-Rad, A. V., Keller, T., & Vassilopoulos, A. P. (2018). Interrupted tension-tension fatigue 
behavior of angle-ply GFRP composite laminates. International Journal of Fatigue, 113, 377-388.  

https://www.sciencedirect.com/science/article/pii/S0142112318301737#gp005


12 
 

[2] Movahedi-Rad, A. V., Keller, T., & Vassilopoulos, A. P. (2019). Creep effects on tension-tension 
fatigue behavior of angle-ply GFRP composite laminates. International Journal of Fatigue, 123, 144-
156.  

[3] Tschoegl, N. W. (1998). Time-dependence in materials. In Progress and Trends in Rheology V (pp. 
1-3). Steinkopff, Heidelberg. 

[4] Mallick, P. K., & Zhou, Y. (2004). Effect of mean stress on the stress-controlled fatigue of a short E-
glass fiber reinforced polyamide-6, 6. International journal of fatigue, 26(9), 941-946. 

[5] Haward, R. N., & Thackray, G. 1. (1968). The use of a mathematical model to describe isothermal 
stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A, 302(1471), 453-472. 

[6] Boyce, M. C., Parks, D. M., & Argon, A. S. (1988). Large inelastic deformation of glassy polymers. 
Part I: rate dependent constitutive model. Mechanics of Materials, 7(1), 15-33. 

[7] Hizoum, K., Rémond, Y., Bahlouli, N., Oshmyan, V., Patlazhan, S., & Ahzi, S. (2006). Non linear 
strain rate dependency and unloading behavior of semi-crystalline polymers. Oil & Gas Science and 
Technology-Revue de l'IFP, 61(6), 743-749.  

[8] Yakimets, I., Lai, D., & Guigon, M. (2007). Model to predict the viscoelastic response of a semi-
crystalline polymer under complex cyclic mechanical loading and unloading conditions. Mechanics of 
Time-Dependent Materials, 11(1), 47-60. 

[9] Drozdov, A. D. (2009). Constitutive model for cyclic deformation of 
perfluoroelastomers. Mechanics of Time-Dependent Materials, 13(3), 275-299.  

[10] Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., & Gloaguen, J. M. (2010). Modelling large deformation 
behaviour under loading–unloading of semicrystalline polymers: application to a high density 
polyethylene. International Journal of Plasticity, 26(3), 329-347. 

[11] Vandenbroucke, A., Laurent, H., Hocine, N. A., & Rio, G. (2010). A Hyperelasto-Visco-Hysteresis 
model for an elastomeric behaviour: experimental and numerical investigations. Computational 
Materials Science, 48(3), 495-503. 

[12] Drozdov, A. D. (2012). Cyclic viscoelastoplasticity of polypropylene/nanoclay 
hybrids. Computational Materials Science, 53(1), 396-408. 

[13] Colak, O. U. (2005). Modeling deformation behavior of polymers with viscoplasticity theory based 
on overstress. International Journal of Plasticity, 21(1), 145-160. 

[14] Krasnobrizha, A., Rozycki, P., Cosson, P., & Gornet, L. (2015, July). Modelling the hysteresis 
composite behavior using an elasto-plasto-damage model with fractional derivatives. In 20th 
International Conference on Composite Materials-ICCM20. 

[15] Schapery, R. A. (1984). Correspondence principles and a generalizedJ integral for large 
deformation and fracture analysis of viscoelastic media. International journal of fracture, 25(3), 195-
223. 

[16] Zhang, C., & Moore, I. D. (1997). Nonlinear mechanical response of high density polyethylene. 
Part II: Uniaxial constitutive modeling. Polymer Engineering & Science, 37(2), 414-420. 

[17] Khan, A., & Zhang, H. (2001). Finite deformation of a polymer: experiments and 
modeling. International Journal of Plasticity, 17(9), 1167-1188. 



13 
 

[18] Fiugge, W., Viscoelasticity. Blaisdell, Waltham, MA, 1964. 

[19] Ferry, J. D., Viscoelastic Properties of Polymers, 3rd edn. John Wiley and Sons, New York, 1980. 

[20] Guedes, Rui Miranda, ed. Creep and fatigue in polymer matrix composites. Elsevier, 2010. 

[21] Schapery, R. A. (1969). On the characterization of nonlinear viscoelastic materials. Polymer 
Engineering & Science, 9(4), 295-310. 

[22] Zaoutsos, S. P., Papanicolaou, G. C., & Cardon, A. H. (1998). On the non-linear viscoelastic 
behaviour of polymer-matrix composites. Composites Science and Technology, 58(6), 883-889. 

[23] Whitworth, H. A. (1997). A stiffness degradation model for composite laminates under fatigue 
loading. Composite structures, 40(2), 95-101. 

[24] Machado, R. D., Abdalla Filho, J. E., & da Silva, M. P. (2008). Stiffness loss of laminated 
composite plates with distributed damage by the modified local Green’s function method. Composite 
Structures, 84(3), 220-227. 

[25] Wu, F., & Yao, W. (2010). A fatigue damage model of composite materials. International Journal 
of Fatigue, 32(1), 134-138. 

[26] Zhang, Y., Vassilopoulos, A. P., & Keller, T. (2010). Fracture of adhesively-bonded pultruded 
GFRP joints under constant amplitude fatigue loading. International Journal of Fatigue, 32(7), 979-987. 

[27] Vassilopoulos AP, Keller T. Fatigue of fiber-reinforced composites. Springer Science & Business 
Media, 2011. 

[28] Sarfaraz, R., Vassilopoulos, A. P., & Keller, T. (2011). Experimental investigation of the fatigue 
behavior of adhesively-bonded pultruded GFRP joints under different load ratios. International Journal 
of Fatigue, 33(11), 1451-1460. 

[29] Shahverdi, M., Vassilopoulos, A. P., & Keller, T. (2012). A total fatigue life model for the 
prediction of the R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB 
joints. Composites Part A: Applied Science and Manufacturing, 43(10), 1783-1790. 

[30] Kennedy, C. R., Brádaigh, C. M. Ó., & Leen, S. B. (2013). A multiaxial fatigue damage model for 
fibre reinforced polymer composites. Composite Structures, 106, 201-210. 

[31] Mohammadi, B., Fazlali, B., & Salimi-Majd, D. (2017). Development of a continuum damage 
model for fatigue life prediction of laminated composites. Composites Part A: Applied Science and 
Manufacturing, 93, 163-176. 

[32] Miyano, Y., Nakada, M., McMurray, M. K., & Muki, R. (1997). Prediction of flexural fatigue 
strength of CRFP composites under arbitrary frequency, stress ratio and temperature. Journal of 
Composite Materials, 31(6), 619-638. 

[33] Petermann, J., & Schulte, K. (2002). The effects of creep and fatigue stress ratio on the long-term 
behaviour of angle-ply CFRP. Composite Structures, 57(1-4), 205-210. 

[34] Vieille, B., Albouy, W., & Taleb, L. (2014). About the creep-fatigue interaction on the fatigue 
behaviour of off-axis woven-ply thermoplastic laminates at temperatures higher than Tg. Composites 
Part B: Engineering, 58, 478-486. 



14 
 

[35] Sayyidmousavi, A., Bougherara, H., & Fawaz, Z. (2015). The role of viscoelasticity on the fatigue 
of angle-ply polymer matrix composites at high and room temperatures-a micromechanical 
approach. Applied Composite Materials, 22(3), 307-321. 

[36] Movahedi-Rad, A. V., Keller, T., & Vassilopoulos, A. P. (2018). Fatigue damage in angle-ply 
GFRP laminates under tension-tension fatigue. International Journal of Fatigue, 109, 60-69. 

[37] Savvilotidou, M., Keller, T., & Vassilopoulos, A. P. (2017). Fatigue performance of a cold-curing 
structural epoxy adhesive subjected to moist environments. International Journal of Fatigue, 103, 405-
414. 

[38] Sun, C. T., & Chim, E. S. (1981). Fatigue retardation due to creep in a fibrous composite. 
In Fatigue of Fibrous Composite Materials. ASTM International. 

[39] ASTM, D3171–99. Standard test methods for constituent content of composite materials. ASTM 
International; 2002. 

[40] ASTM D3039/D3039M-14 Standard Test Method for Tensile Properties of Polymer Matrix 
Composite Materials. ASTM International; 2014. 

[41] ASTM, D7791–17. Standard Test Method for Uniaxial Fatigue Properties of Plastics. ASTM 
International; 2017. 

[42] Krause O, Philippidis TP. General test specification Optimat report: OB_TC_R015 available on 
line from <https://www.wmc.eu/public_docs/10157_005.pdf>. 

[43] Kawai, M., & Masuko, Y. (2004). Creep behavior of unidirectional and angle-ply T800H/3631 
laminates at high temperature and simulations using a phenomenological viscoplasticity 
model. Composites Science and Technology, 64(15), 2373-2384. 

[44] Ascione, L., Berardi, V. P., & D’Aponte, A. (2011). A viscoelastic constitutive law for FRP 
materials. International Journal for Computational Methods in Engineering Science and 
Mechanics, 12(5), 225-232. 

[45] Xu, Y. (2009). Creep behavior of natural fiber reinforced polymer composites. 

[46] Boggs, P. T., & Rogers, J. E. (1990). Orthogonal distance regression. Contemporary 
Mathematics, 112, 183-194. 

[47] Chawla, K. K., & Meyers, M. A. (1999). Mechanical behavior of materials (p. 217). Upper Saddle 
River: Prentice Hall.  

[48] Brinson, H. F., & Brinson, L. C. (2008). Polymer engineering science and viscoelasticity. New 
York: Springer, 66, 79. 

 

 

 

 

 

 



15 
 

Figures: 
Fig. 1. Basis of constitutive equation to describe behavior of viscoelastic materials 
Fig. 2. Flowchart of proposed modeling method. 

Fig. 3. Schematic representation of loading pattern in interrupted fatigue experiments. 

Fig. 4. Elastic, three-stage viscoelastic recovery, and remaining strains of specimen Intf-0.1-58-a after third 

loading block. 

Fig. 5. Experimental and modeled recovery curves for different loading blocks and stress levels, (a) Intf-0.1-58-a, 

and (b) Intf-0.1-49-a. 

Fig. 6. Variation of viscoelastic parameters (a) E, (b) E1, (c) η1, (d) E2, (e) η2, (f) E3, (g) η3, and (h) η versus 

normalized number of cycles at different stress levels. 

Fig. 7. Applied sinusoidal stress and strain response in viscoelastic material. 

Fig. 8. Experimental (dots) and predicted fatigue (solid line) hysteresis loops at different number of cycles (N) at 

two stress levels, (a) Intf-0.1-64-b, and (b) Intf-0.1-49-a. 

Fig. 9. Hysteresis loop area versus normalized number of cycles at different stress levels (a) Intf-0.1-64-b, and (b) 

Intf-0.1-49-a. 

Fig. 10. Fatigue stiffness versus normalized number of cycles at different stress levels (a) Intf-0.1-64-b, and (b) 

Intf-0.1-49-a. 

Fig. 11. Evolution of average (a) cyclic, (b) elastic, (c) viscoelastic, and (d) remaining strain at different stress 

levels.  

Fig. 12. Variation of storage modulus, loss modulus, and tan(δ) during fatigue loading  at different stress levels (a) 

Intf-0.1-64-b, and (b) Intf-0.1-49-a. 
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Fig. 1. Basis of constitutive equation to describe behavior of viscoelastic materials 

 

 

Fig. 2. Flowchart of implementation of constitutive equation. 
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Fig. 3. Schematic representation of loading pattern in interrupted fatigue experiments. 

 

 

Fig. 4. Elastic, three-stage viscoelastic recovery, and remaining strains of specimen Intf-0.1-58-a after third 

loading block. 
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Fig. 5. Experimental and modeled recovery curves for different loading blocks and stress levels, (a) Intf-0.1-58-a, 

and (b) Intf-0.1-49-a. 
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Fig. 6. Variation of viscoelastic parameters (a) E, (b) E1, (c) η1, (d) E2, (e) η2, (f) E3, (g) η3, and (h) η versus 

normalized number of cycles at different stress levels. 
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Fig. 7. Applied sinusoidal stress and strain response in viscoelastic material. 
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Fig. 8. Experimental (dots) and predicted fatigue (solid line) hysteresis loops at different number of cycles (N) at 

two stress levels, (a) Intf-0.1-64-b, and (b) Intf-0.1-49-a. 
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Fig. 9. Hysteresis loop area versus normalized number of cycles at different stress levels (a) Intf-0.1-64-b, and (b) 

Intf-0.1-49-a. 
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  Fig. 10. Fatigue stiffness versus normalized number of cycles at different stress levels (a) Intf-0.1-64-b, and (b) 

Intf-0.1-49-a. 
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Fig. 11. Evolution of average cyclic, elastic, viscoelastic, and remaining strain at different stress levels (a) Intf-0.1-

64-c, and (b) Intf-0.1-49-a. 
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Fig. 12. Variation of storage modulus, loss modulus, and tan(δ) during fatigue loading at different stress levels (a) 

Intf-0.1-64-b, and (b) Intf-0.1-49-a. 
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Annex I: 

The applied loading pattern in sinusoidal cyclic loading is; 

𝜎𝜎(𝑡𝑡) = 𝜎𝜎𝑚𝑚 + 𝜎𝜎𝑎𝑎sin (𝜔𝜔𝜔𝜔)                           (I-1) 

The response of Maxwell and Kelvin units to this loading pattern is as follows:  

Solution for one Maxwell unit: 

The constitutive equation for a Maxwell unit consisting of a series of a spring and a dashpot is:  

𝜎𝜎(𝑡𝑡) + 𝜂𝜂
𝐸𝐸

 𝜎̇𝜎(𝑡𝑡) = 𝜂𝜂𝜀𝜀̇(𝑡𝑡)            (I-2) 

By inserting Eq. I-1 into Eq. I-2 and rearranging, the following equation is obtained: 

𝜀𝜀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝜂𝜂
𝑡𝑡 + 𝜎𝜎𝑎𝑎

𝜂𝜂𝜂𝜂
cos(𝜔𝜔𝜔𝜔) − 𝜎𝜎𝑎𝑎

𝐸𝐸
sin(𝜔𝜔𝜔𝜔) + 𝐶𝐶1      (I-3) 

Solution for one Kelvin unit: 

The constitutive equation for a Kelvin unit consisting of a parallel pair of a spring and a dashpot is:  

𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝜂𝜂𝜀𝜀̇(𝑡𝑡)            (I-4) 

By inserting Eq. I-1 into Eq. I-4 and rearranging, the obtained equation is:  

𝜀𝜀̇(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝜂𝜂

+ 𝜎𝜎𝑎𝑎
𝜂𝜂

sin(𝜔𝜔𝜔𝜔)        (I-5) 

By multiplying the integral factor of 𝑒𝑒𝜆𝜆𝜆𝜆 to both sides of Eq. I-5, rearranging, and integrating the 

resulting equation, the following relationship is obtained: 

𝜀𝜀(𝑡𝑡)𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜎𝜎𝑚𝑚
𝜂𝜂𝜂𝜂
𝑒𝑒𝜆𝜆𝜆𝜆 + 𝜎𝜎𝑎𝑎

𝜂𝜂 ∫ 𝑒𝑒
𝜆𝜆𝜆𝜆 sin(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑        (I-6) 

By using the theorem of partial integration twice, the following relationship results: 

𝜀𝜀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ 𝐶𝐶2
𝜎𝜎𝑚𝑚
𝜂𝜂
𝑒𝑒𝜆𝜆𝜆𝜆 + �𝜎𝜎𝑎𝑎

𝜂𝜂𝑖𝑖

𝜆𝜆
𝜆𝜆2+𝜔𝜔2 sin(𝜔𝜔𝜔𝜔) − 𝜎𝜎𝑎𝑎

𝜂𝜂
𝜔𝜔

𝜆𝜆2+𝜔𝜔2 cos(𝜔𝜔𝜔𝜔)�    (I-7) 

 

Solution for one Maxwell and three Kelvin units: 

The general solution for one Maxwell and three Kelvin units is the summation of Eq. I-3 and Eq. I-7 as 
follows: 
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𝜀𝜀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ ∑ 𝜎𝜎𝑚𝑚
𝐸𝐸𝑖𝑖
�1 − 𝑒𝑒

−
𝐸𝐸𝑖𝑖
𝜂𝜂𝑖𝑖

(𝑡𝑡−𝑡𝑡0)
�𝑖𝑖=3

𝑖𝑖=1 + 𝜎𝜎𝑚𝑚
 𝜂𝜂

(𝑡𝑡 − 𝑡𝑡0) + ∑ �𝜎𝜎𝑎𝑎
𝜂𝜂𝑖𝑖

𝜆𝜆𝑖𝑖
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 𝜎𝜎𝑎𝑎

𝐸𝐸
� 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔) −𝑖𝑖=3

𝑖𝑖=1

�𝜎𝜎𝑎𝑎
𝜂𝜂𝑖𝑖

𝜔𝜔
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 𝜎𝜎𝑎𝑎

𝜂𝜂𝜂𝜂
� 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)          (I-8) 

which can also be written as: 

𝜀𝜀(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ ∑ 𝜎𝜎𝑚𝑚
𝐸𝐸𝑖𝑖
�1 − 𝑒𝑒

−
𝐸𝐸𝑖𝑖
𝜂𝜂𝑖𝑖

(𝑡𝑡−𝑡𝑡0)
�𝑖𝑖=3

𝑖𝑖=1 + 𝜎𝜎𝑚𝑚
 𝜂𝜂

(𝑡𝑡 − 𝑡𝑡0) +

𝜎𝜎𝑎𝑎��∑
1

 𝜂𝜂𝑖𝑖

𝜆𝜆
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1 �

2
+ �∑ 1

 𝜂𝜂𝑖𝑖

𝜔𝜔
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝜂𝜂𝜂𝜂
𝑖𝑖=3
𝑖𝑖=1 �

2
sin�𝜔𝜔𝜔𝜔 + 𝑡𝑡𝑡𝑡𝑡𝑡−1(

∑ 𝜔𝜔
𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖

2+𝜔𝜔2)
+ 1

 𝜂𝜂𝜂𝜂
𝑖𝑖=3
𝑖𝑖=1

∑ 𝜆𝜆
𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖

2+𝜔𝜔2)
+1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1

)�    

      (I-9) 

The previous equation can be simplified to the following form: 

𝜀𝜀 (𝑡𝑡) = 𝜀𝜀𝑐𝑐 (𝑡𝑡) + 𝜀𝜀𝑎𝑎 sin(𝜔𝜔𝜔𝜔 − 𝛿𝛿)         (I-10) 

where 

𝜀𝜀𝑐𝑐(𝑡𝑡) = 𝜎𝜎𝑚𝑚
𝐸𝐸

+ ∑ 𝜎𝜎𝑚𝑚
𝐸𝐸𝑖𝑖
�1 − 𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡−𝑡𝑡0)�𝑖𝑖=3

𝑖𝑖=1 + 𝜎𝜎𝑚𝑚
 𝜂𝜂

(𝑡𝑡 − 𝑡𝑡0)              (I-11) 

𝜀𝜀𝑎𝑎 = 𝜎𝜎𝑎𝑎��∑
1

 𝜂𝜂𝑖𝑖

𝜆𝜆𝑖𝑖
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1 �

2
+ �∑ 1

 𝜂𝜂𝑖𝑖

𝜔𝜔
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝜂𝜂𝜂𝜂
𝑖𝑖=3
𝑖𝑖=1 �

2
     (I-12) 

𝛿𝛿 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(
∑ 𝜔𝜔

𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖
2+𝜔𝜔2)

+ 1
 𝜂𝜂𝜂𝜂

𝑖𝑖=3
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖
𝜂𝜂𝑖𝑖(𝜆𝜆𝑖𝑖

2+𝜔𝜔2)
+1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1

)         (I-13) 

Annex II:  

The evolution of the storage and loss moduli during the fatigue loading can be calculated as follows. By 

considering:   

𝑏𝑏 =  ∑ 1
 𝜂𝜂𝑖𝑖

𝜔𝜔
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝜂𝜂𝜂𝜂
𝑖𝑖=3
𝑖𝑖=1          (II-1) 

𝑎𝑎 =  ∑ 1
 𝜂𝜂𝑖𝑖

𝜆𝜆
𝜆𝜆𝑖𝑖
2+𝜔𝜔2 + 1

 𝐸𝐸
𝑖𝑖=3
𝑖𝑖=1          (II-2) 

the following equations are valid: 

𝐸𝐸∗ = �𝐸𝐸′2 + 𝐸𝐸′′2 = 1

�𝑎𝑎2+𝑏𝑏2
         (II-3) 
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𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿) =  𝐸𝐸
′′

𝐸𝐸′
= 𝑏𝑏

𝑎𝑎
          (II-4) 

By considering both Eq. II-3 and Eq. II-4, the magnitude of storage and loss moduli were calculated 

according to Eq. II-5 and Eq. II-6; 

𝐸𝐸′ = 𝑎𝑎
𝑎𝑎2+𝑏𝑏2

           (II-5) 

𝐸𝐸′′ = 𝑏𝑏
𝑎𝑎2+𝑏𝑏2

           (II-6) 


