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Abstract

Classical semantic segmentation methods, including the
recent deep learning ones, assume that all classes observed
at test time have been seen during training. In this paper, we
tackle the more realistic scenario where unexpected objects
of unknown classes can appear at test time. The main trends
in this area either leverage the notion of prediction uncer-
tainty to flag the regions with low confidence as unknown, or
rely on autoencoders and highlight poorly-decoded regions.
Having observed that, in both cases, the detected regions
typically do not correspond to unexpected objects, in this
paper, we introduce a drastically different strategy: It re-
lies on the intuition that the network will produce spurious
labels in regions depicting unexpected objects. Therefore,
resynthesizing the image from the resulting semantic map
will yield significant appearance differences with respect to
the input image. In other words, we translate the problem
of detecting unknown classes to one of identifying poorly-
resynthesized image regions. We show that this outperforms
both uncertainty- and autoencoder-based methods.

1. Introduction
Semantic segmentation has progressed tremendously in

recent years and state-of-the-art methods rely on deep learn-
ing [4, 5, 47, 45]. Therefore, they typically operate under
the assumption that all classes encountered at test time have
been seen at training time. In reality, however, guarantee-
ing that all classes that can ever be found are represented
in the database is impossible when dealing with complex
outdoors scenes. For instance, in an autonomous driving
scenario, one should expect to occasionally find the unex-
pected, in the form of animals, snow heaps, or lost cargo
on the road, as shown in Fig. 1. Note that the correspond-
ing labels are absent from standard segmentation training
datasets [7, 46, 15]. Nevertheless, a self-driving vehicle
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Figure 1: Detecting the unexpected. While uncertainty-
and autoencoder-based methods tend to be distracted by the
background, our approach focuses much more accurately
on the unknown objects.

should at least be able to detect that some image regions
cannot be labeled properly and warrant further attention.

Recent approaches to addressing this problem follow
two trends. The first one involves reasoning about the pre-
diction uncertainty of the deep networks used to perform
the segmentation [19, 25, 20, 12]. In the driving scenario,
we have observed that the uncertain regions tend not to co-
incide with unknown objects, and, as illustrated by Fig. 1,
these methods therefore fail to detect the unexpected. The
second trend consists of leveraging autoencoders to detect
anomalies [8, 33, 1], assuming that never-seen-before ob-
jects will be decoded poorly. We found, however, that au-
toencoders tend to learn to simply generate a lower-quality
version of the input image. As such, as shown in Fig. 1,
they also fail to find the unexpected objects.

In this paper, we therefore introduce a radically differ-
ent approach to detecting the unexpected. Fig. 2 depicts our
pipeline, built on the following intuition: In regions contain-
ing unknown classes, the segmentation network will make
spurious predictions. Therefore, if one tries to resynthesize
the input image from the semantic label map, the resynthe-
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Figure 2: Our Approach. (a) Input image from the Lost and
Found [35] dataset containing objects of a class the segmentation
algorithm has not been trained for. (b) In the resulting semantic
segmentation, these objects are lost. (c) In the image resynthesized
based on the segmentation labels, they are also lost. (d) Using a
specially trained discrepancy network to compare the original im-
age and the resynthesized one highlights the unexpected objects.

sized unknown regions will look significantly different from
the original ones. In other words, we reformulate the prob-
lem of segmenting unknown classes as one of identifying
the differences between the original input image and the one
resynthesized from the predicted semantic map. To this end,
we leverage a generative network [42] to learn a mapping
from semantic maps back to images. We then introduce a
discrepancy network that, given as input the original image,
the resynthesized one, and the predicted semantic map, pro-
duces a binary mask indicating unexpected objects. To train
this network without ever observing unexpected objects, we
simulate such objects by changing the semantic label of
known object instances to other, randomly chosen classes.
This process, described in Section 3.2, does not require see-
ing the unknown classes during training, which makes our
approach applicable to detecting never-seen-before classes
at test time.

Our contribution is therefore a radically new approach
to identifying regions that have been misclassified by a
given semantic segmentation method, based on comparing
the original image with a resynthesized one. We demon-
strate the ability of our approach to detect unexpected ob-
jects using the Lost and Found dataset [35]. This dataset,
however, only depicts a limited set of unexpected objects
in a fairly constrained scenario. To palliate this lack of
data, we create a new dataset depicting unexpected objects,
such as animals, rocks, lost tires and construction equip-
ment, on roads. Our method outperforms uncertainty-based
baselines, as well as the state-of-the-art autoencoder-based
method specifically designed to detect road obstacles [8].

Furthermore, our approach to detecting anomalies by
comparing the original image with a resynthesized one is
generic and applies to other tasks than unexpected object
detection. For example, deep learning segmentation algo-
rithms are vulnerable to adversarial attacks [44, 6], that is,
maliciously crafted images that look normal to a human but
cause the segmentation algorithm to fail catastrophically.
As in the unexpected object detection case, re-synthesizing
the image using the erroneous labels results in a synthetic
image that looks nothing like the original one. Then, a
simple non-differentiable detector, thus less prone to at-
tacks, is sufficient to identify the attack. As shown by our
experiments, our approach outperforms the state-of-the-art
one of [43] for standard attacks, such as those introduced
in [44, 6].

The implementation of our algorithm1, our new Road
Anomaly dataset2, and the labeling tool3 used to process it
are publicly available.

2. Related Work

2.1. Uncertainty in Semantic Segmentation

Reasoning about uncertainty in neural networks can be
traced back to the early 90s and Bayesian neural net-
works [10, 29, 30]. Unfortunately, they are not easy to train
and, in practice, dropout [40] has often been used to ap-
proximate Bayesian inference [11]. An approach relying on
explicitly propagating activation uncertainties through the
network was recently proposed [12]. However, it has only
been studied for a restricted set of distributions, such as the
Gaussian one. Another alternative to modeling uncertainty
is to replace a single network by an ensemble [25].

For semantic segmentation specifically, the standard ap-
proach is to use dropout, as in the Bayesian SegNet [19], a
framework later extended in [20]. Leveraging such an ap-
proach to estimating label uncertainty then becomes an ap-
pealing way to detect unknown objects because one would
expect these objects to coincide with low confidence regions
in the predicted semantic map. This approach was pursued
in [16, 18, 17]. These methods build upon the Bayesian
SegNet and incorporate an uncertainty threshold to detect
potentially mislabeled regions, including unknown objects.
However, as shown in our experiments, uncertainty-based
methods, such as the Bayesian SegNet [19] and network
ensembles [25], yield many false positives in irrelevant re-
gions. By contrast, our resynthesis-based approach learns
to focus on the regions depicting unexpected objects.

1 Implementation: github.com/cvlab-epfl/detecting-the-unexpected
2 Road Anomaly dataset: cvlab.epfl.ch/data/road-anomaly/
3 Our labeling tool: github.com/cvlab-epfl/LabelGrab
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2.2. Anomaly Detection via Resynthesis

Image resynthesis and generation methods, such as au-
toencoder and GANs, have been used in the past for
anomaly detection. The existing methods, however, mostly
focus on finding behavioral anomalies in the temporal do-
main [36, 22]. For example, [36] predicts the optical flow
in a video, attempts to reconstruct the images from the flow,
and treats significant differences from the original images as
evidence for an anomaly. This method, however, was only
demonstrated in scenes with a static background. Further-
more, as it relies on flow, it does not apply to single images.

To handle individual images, some algorithms compare
the image to the output of a model trained to represent the
distribution of the original images. For example, in [1], the
image is passed through an adversarial autoencoder and the
feature loss between the output and input image is then mea-
sured. This can be used to classify whole images but not
localize anomalies within the images. Similarly, given a
GAN trained to represent an original distribution, the algo-
rithm of [38] searches for the latent vector that yields the
image most similar to the input, which is computationally
expensive and does not localize anomalies either.

In the context of road scenes, image resynthesis has been
employed to detect traffic obstacles. For example, [32] re-
lies on the previous frame to predict the non-anomalous ap-
pearance of the road in the current one. In [8, 33], input
patches are compared to the output of a shallow autoencoder
trained on the road texture, which makes it possible to local-
ize the obstacle. These methods, however, are very specific
to roads and lack generality. Furthermore, as shown in our
experiments, patch-based approaches such as the one of [8]
yield many false positives and our approach outperforms it.

Note that the approaches described above typically rely
on autoencoder for image resynthesis. We have observed
that autoencoders tend to learn to perform image compres-
sion, simply synthesizing a lower-quality version of the in-
put image, independently of its content. By contrast, we
resynthesize the image from the semantic label map, and
thus incorrect class predictions yield appearance variations
between the input and resynthesized image.

2.3. Adversarial Attacks in Semantic Segmentation

As mentioned before, we can also use the comparison
of an original image with a resynthesized one for adversar-
ial attack detection. The main focus of the adversarial at-
tack literature has been on image classification [13, 3, 31],
leading to several defense strategies [24, 41] and detec-
tion methods [14, 26, 28]. Nevertheless, in [44, 6], clas-
sification attack schemes were extended to semantic seg-
mentation networks. However, as far as defense schemes
are concerned, only [43] has proposed an attack detection
method in this scenario. This was achieved by analyzing
the spatial consistency of the predictions of overlapping im-
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Figure 3: Discrepancy network. Given the original image, the
predicted semantic labels and the resynthesized image as input,
our discrepancy network detects meaningful differences caused by
mislabeled objects. The VGG [39] network extracts features from
both images, which are correlated at all levels of the pyramid. Im-
age and label features are then fused using 1 × 1 convolutions.
Both the features and their correlations are then fed to a decoder
via skip connections to produce the final discrepancy map.

age patches. We will show that our approach outperforms
this technique.

3. Approach
Our goal is to handle unexpected objects at test time in

semantic segmentation and to predict the probability that a
pixel belongs to a never-seen-before class. This is in con-
trast to most of the semantic segmentation literature, which
focuses on assigning to each pixel a probability to belong to
classes it has seen in training, without explicit provision for
the unexpected.

Fig. 2 summarizes our approach. We first use a given se-
mantic segmentation algorithm, such as [2] and [47], to gen-
erate a semantic map. We then pass this map to a generative
network [42] that attempts to resynthesize the input image.
If the image contains objects belonging to a class that the
segmentation algorithm has not been trained for, the cor-
responding pixels will be mislabeled in the semantic map
and therefore poorly resynthesized. We then identify these
unexpected objects by detecting significant differences be-
tween the original image and the synthetic one. Below, we
introduce our approach to detecting these discrepancies and
assessing which differences are significant.

3.1. Discrepancy Network

Having synthesized a new image, we compare it to the
original one to detect the meaningful differences that de-
note unexpected objects not captured by the semantic map.
While the layout of the known objects is preserved in the
synthetic image, precise information about the scene’s ap-
pearance is lost and simply differencing the images would
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Figure 4: Creating training examples for the discrepancy detector. (a) Ground-truth semantic map. (b) We alter the
map by replacing some object instances with randomly chosen labels. (c) Original image with the overlaid outlines of the
altered objects. (d) Image re-synthesized using the altered map. We train the discrepancy detector to find the pixels within
the outlines of altered objects shown in (c).

not yield meaningful results. Instead, we train a second net-
work, which we refer to as the discrepancy network, to de-
tect the image discrepancies that are significant.

Fig. 3 depicts the architecture of our discrepancy net-
work. We drew our inspiration from the co-segmentation
network of [27] that uses feature correlations to detect ob-
jects co-occurring in two input images. Our network re-
lies on a three-stream architecture that first extracts features
from the inputs. We use a pre-trained VGG [39] network
for both the original and resynthesized image, and a custom
CNN to process the one-hot representation of the predicted
labels. At each level of the feature pyramid, the features of
all the streams are concatenated and passed through 1 × 1
convolution filters to reduce the number of channels. In par-
allel, pointwise correlations between the features of the real
image and the resynthesized one are computed and passed,
along with the reduced concatenated features, to an upcon-
volution pyramid that returns the final discrepancy score.
The details of this architecture are provided in the supple-
mentary material.

3.2. Training

When training our discrepancy network, we cannot ob-
serve the unknown classes. To address this, we therefore
train it on synthetic data that mimics what happens in the
presence of unexpected objects. In practice, the semantic

segmentation network assigns incorrect class labels to the
regions belonging to unknown classes. To simulate this,
as illustrated in Fig. 4, we therefore replace the label of
randomly-chosen object instances with a different random
one, sampled uniformly from the set of Cityscapes evalu-
ation classes. We then resynthesize the input image from
this altered semantic map using the pix2pixHD [42] gener-
ator trained on the dataset of interest. This creates pairs of
real and synthesized images from which we can train our
discrepancy network. Note that this strategy does not re-
quire seeing unexpected objects during training.

3.3. Detecting Adversarial Attacks

As mentioned above, comparing an input image to a
resynthesized one also allows us to detect adversarial at-
tacks. To this end, we rely on the following strategy. As for
unexpected object detection, we first compute a semantic
map from the input image, adversarial or not, and resynthe-
size the scene from this map using the pix2pixHD genera-
tor. Here, unlike in the unexpected object case, the seman-
tic map predicted for an adversarial example is completely
wrong and the resynthesized image therefore completely
distorted. This makes attack detection a simpler problem
than unexpected object one. We can thus use a simple non-
differentiable heuristic to compare the input image with the
resynthesized one. Specifically, we use the L2 distance be-
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tween HOG [9] features computed on the input and resyn-
thesized image. We then train a logisitic regressor on these
distances to predict whether the input image is adversarial
or not. Note that this simple heuristic is much harder to
attack than a more sophisticated, deep learning based one.

4. Experiments
We first evaluate our approach on the task of detecting

unexpected objects, such as lost cargo, animals, and rocks,
in traffic scenes, which constitute our target application do-
main and the central evaluation domain for semantic seg-
mentation thanks to the availability of large datasets, such
as Cityscapes [7] and BDD100K [46]. For this application,
all tested methods output a per-pixel anomaly score, and we
compare the resulting maps with the ground-truth anomaly
annotations using ROC curves and the area under the ROC
curve (AUROC) metric. Then, we present our results on the
task of adversarial attack detection.

We perform evaluations using the Bayesian SegNet [19]
and the PSP Net [47], both trained using the BDD100K
dataset [46] (segmentation part) chosen for its large num-
ber of diverse frames, allowing the networks to generalize
to the anomaly datasets, whose images differ slightly and
cannot be used during training. To train the image synthe-
sizer and discrepancy detector, we used the training set of
Cityscapes [7], downscaled to a resolution of 1024 × 512
because of GPU memory constraints.

4.1. Baselines

As a first baseline, we rely on an uncertainty-based se-
mantic segmentation network. Specifically, we use the
Bayesian SegNet [19], which samples the distribution of the
network’s results using random dropouts — the uncertainty
measure is computed as the variance of the samples. We
will refer to this method as Uncertainty (Dropout).

It requires the semantic segmentation network to contain
dropout layers, which is not the case of most state-of-the-
art networks, such as PSP [47], which is based on a ResNet
backbone. To calculate the uncertainty of the PSP network,
we therefore use the ensemble-based method of [25]: We
trained the PSP model four times, yielding different weights
due to the random initialization. We then use the variance
of the outputs of these networks as a proxy for uncertainty.
We will refer to this method as Uncertainty (Ensemble).

Finally, we also evaluate the road-specific approach
of [8], which relies on training a shallow Restricted Boltz-
mann Machine autoencoder to resynthesize patches of road
texture corrupted by Gaussian noise. The regions whose ap-
pearance differs from the road are expected not to be recon-
structed properly, and thus an anomaly score for each patch
can be obtained using the difference between the autoen-
coder’s input and output. As the original implementation
was not publicly available, we re-implemented it and make

the code available1 for future comparisons. As in the origi-
nal article, we use 8× 8 patches with stride 6 and a hidden
layer of size 20. We extract the empty road patches required
by this method for training from the Cityscapes images us-
ing the ground-truth labels to determine the road area. We
will refer to this approach as RBM.

The full version of our discrepancy detector takes as in-
put the original image, the resynthesized one and the pre-
dicted semantic labels. To study the importance of using
both of these information sources as input, we also report
the results of variants of our approach that have access to
only one of them. We will refer to these variants as Ours
(Resynthesis only) and Ours (Labels only).

4.2. Anomaly Detection Results

We evaluate our method’s ability to detect unexpected
objects using two separate datasets described below. We
did not use any portion of these datasets during training,
because we tackle the task of finding never-seen-before ob-
jects.

4.2.1 Lost and Found

The Lost And Found [35] dataset contains images of small
items, such as cargo and toys, left on the street, with per-
pixel annotations of the obstacle and the free-space in front
of the car. We perform our evaluation using the test set,
excluding 17 frames for which the annotations are miss-
ing. We downscaled the images to 1024× 512 to match the
size of our training images and selected a region of inter-
est which excludes the ego-vehicle and recording artifacts
at the image boundaries. We do not compare our results
against the stereo-based ones introduced in [35] because our
study focuses on monocular approaches.

The ROC curves of our approach and of the baselines
are shown in the left column of Fig. 5. Our method out-
performs the baselines in both cases. The Labels-only and
Resynthesis-only variants of our approach show lower accu-
racy but remain competitive. By contrast, the uncertainty-
based methods prove to be ill-suited for this task. Qualita-
tive examples are provided in Fig. 6. Note that, while our
method still produces false positives, albeit much fewer than
the baselines, some of them are valid unexpected objects,
such as the garbage bin in the first image. These objects,
however, were not annotated as obstacles in the dataset.

Since the RBM method of [8] is specifically trained to
reconstruct the road, we further restricted the evaluation to
the road area. To this end, we defined the region of interest
as the union of the obstacle and freespace annotations of
Lost And Found. The resulting ROC curves are shown in the
middle column of Fig. 5. The globally-higher scores in this
scenario show that distinguishing anomalies from only the
road is easier than finding them in the entire scene. While

5



Lost and Found Lost and Found Road Anomaly
ROI: all except ego-vehicle ROI: road only

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.82
Ours (Labels only)  0.77
Ours (Resynthesis only)  0.76
RBM  0.74
Uncertainty (Bayesian)  0.67

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.92
RBM  0.86
Ours (Resynthesis only)  0.85
Ours (Labels only)  0.82
Uncertainty (Bayesian)  0.70

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.79
Ours (Labels only)  0.78
Ours (Resynthesis only)  0.78
Uncertainty (Bayesian)  0.70
RBM  0.59

Bayesian SegNet Bayesian SegNet Bayesian SegNet

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.82
Ours (Labels only)  0.79
Ours (Resynthesis only)  0.76
RBM  0.74
Uncertainty (Ensemble)  0.67

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.93
RBM  0.86
Ours (Resynthesis only)  0.86
Ours (Labels only)  0.83
Uncertainty (Ensemble)  0.57

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Ours  0.83
Ours (Resynthesis only)  0.80
Ours (Labels only)  0.78
Uncertainty (Ensemble)  0.67
RBM  0.59

PSP Net PSP Net PSP Net

Figure 5: ROC curves for unexpected object detection. The first two columns show results for the Lost and Found [35]
dataset: The curves on the left were computed over the entire images, excluding only the ego-vehicle. Those in the middle
were obtained by restricting evaluation to the road, as defined by the ground-truth annotations. The right column depicts the
results on our Road Anomaly dataset. The top and bottom rows depict the results of the Bayesian SegNet and the PSP Net,
respectively. The methods are ordered according to their AUROC scores, provided on the right of the methods’ name.

the RBM approach significantly improves in this scenario,
our method still outperforms it.

4.2.2 Our Road Anomaly Dataset

Motivated by the scarcity of available data for unexpected
object detection, we collected online images depicting
anomalous objects, such as animals, rocks, lost tires, trash
cans, and construction equipment, located on or near the
road. We then produced per-pixel annotations of these
unexpected objects manually, using the Grab Cut algo-
rithm [37] to speed up the process. The dataset contains
60 images rescaled to a uniform size of 1280 × 720. We
make this dataset2 and the labeling tool3 publicly available.

The results on this dataset are shown in the right column

of Fig. 5, with example images in Fig. 7. Our approach out-
performs the baselines, demonstrating its ability to general-
ize to new environments. By contrast, the RBM method’s
performance is strongly affected by the presence of road
textures that differ significantly from the Cityscapes ones.

4.3. Adversarial Attack Detection

We now evaluate our approach to detecting attacks using
the two types of attack that have been used in the context of
semantic segmentation.
Adversarial Attacks: For semantic segmentation, the two
state-of-the-art attack strategies are Dense Adversary Gen-
eration (DAG) [44] and Houdini [6]. While DAG is an it-
erative gradient-based method, Houdini combines the stan-
dard task loss with an additional stochastic margin factor
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 6: Lost and Found results. The top images depict algorithmic steps and the bottom ones our results along with those
of the baselines. Our detector finds not only the obstacles on the road but also other unusual objects like the trash container
on the right side of the road. By contrast Uncertainty (Dropout) reports high uncertainty in irrelevant regions and fails to
localize the obstacles. RBM finds only the edges of the obstacles. Our approach detects the unexpected objects correctly.

between the score of the actual and predicted semantic maps
to yield less perturbed images. Following [43], we gener-
ate adversarial examples with two different target semantic
maps. In the first case (Shift), we shift the predicted label
at each pixel by a constant offset and use the resulting label
as target. In the second case (Pure), a single random label is
chosen as target for all pixels, thus generating a pure seman-
tic map. We generate adversarial samples on the validation
sets of the Cityscapes and BDD100K datasets, yielding 500
and 1000 images, respectively, with every normal sample
having an attacked counterpart.
Results: We compare our method with the state-of-the-art
spatial consistency (SC) work of [43], which crops random
overlapping patches and computes the mean Intersection
over Union (mIoU) of the overlapping regions. The results
of this comparison are provided in Table 1. Our approach
outperforms SC on Cityscapes and performs on par with it
on BDD100K despite our use of a Cityscapes-trained gen-
erator to resynthesize the images. Note that, in contrast with
SC, which requires comparing 50 pairs of patches to detect
the attack, our approach only requires a single forward pass
through the segmentation and generator networks. In Fig. 8,
we show the resynthesized images produced when using ad-
versarial samples. Note that they massively differ from the
input one. More examples are provided in the supplemen-
tary material.

5. Conclusion

In this paper, we have introduced a drastically new ap-
proach to detecting the unexpected in images. Our method
is built on the intuition that, because unexpected objects
have not been seen during training, typical semantic seg-

Dataset Model Method
Detection

DAG Houdini
Pure Shift Pure Shift

Cityscapes
BSeg SC 99% 98% 100% 98%

Ours 100% 100% 100% 98%

PSP SC 98% 90% 98% 100%
Ours 100% 99% 99% 100%

BDD
BSeg SC 100% 100% 98% 100%

Ours 98% 98% 100% 90%

PSP SC 92% 100% 96% 100%
Ours 100% 96% 98% 95%

Table 1: Attack detection on Cityscapes and BDD100K. Our
method achieves higher AUROC on Cityscapes than SC and com-
parable ones on BDD100K, despite the fact that we rely on a gen-
erator trained on Cityscapes.

mentation networks will produce spurious labels in the cor-
responding regions. Therefore, resynthesizing an image
from the semantic map will yield discrepancies with re-
spect to the input image, and we introduced a network
that learns to detect the meaningful ones. Our experiments
have shown that our approach detects the unexpected ob-
jects much more reliably than uncertainty- and autoencoder-
based techniques. We have also contributed a new dataset
with annotated road anomalies, which we believe will fa-
cilitate research in this relatively unexplored field. Our ap-
proach still suffers from the presence of some false posi-
tives, which, in a real autonomous driving scenario would
create a source of distraction. Reducing this false positive
rate will therefore be the focus of our future research.
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 7: Road anomaly results. As in Fig. 6, in each pairs of rows, the consecutive images at the top depict algorithmic
steps and the ones at the bottom our results along with those of the baselines.

(a) Ground truth map

(b) Input image (normal)

(c) Predicted map (normal)

(d) Resynthesized (normal)

(e) Predicted map (Shift)

(f) Resynthesized image (Shift)

(g) Predicted map (Pure)

(h) Resynthesized image (Pure)

Figure 8: Visualizing adversarial attacks. Without attacks, the resynthesized image (d), obtained from (c), looks similar to
the input one (b). By contrast, resynthesized images ((f) and (h)) obtained from the semantic maps ((e) and (g)) computed
from an attacked input differ massively from the original one.
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Appendices
A. Detecting Unexpected Objects

The legend for the semantic class colors used throughout
the article is given in Fig. 9. We present additional examples
of the anomaly detection task in Fig. 10.

The synthetic training process alters only foreground ob-
jects. A potential failure mode could therefore be for the
network to detect all foreground objects as anomalies, thus
finding not only the true obstacles but also everything else.
In Fig. 11, we show that this does not happen and that ob-
jects correctly labeled in the semantic segmentation are not
detected as discrepancies.

In Fig. 12, we illustrate the fact that, sometimes, objects
of known classes differ strongly in appearance from the in-
stances of this class present in the training data, resulting in
them being marked as unexpected.

We present a failure case of our method in Fig. 13:
Anomalies similar to an existing semantic class are some-
times not detected as discrepancies if the semantic segmen-
tation marks them as this similar class. For example, an
animal is assigned to the person class and missed by the
discrepancy network. In that case, however, the system as a
whole is still aware of the obstacle because of its presence
in the semantic map.

A.1. Discrepancy Network

Our discrepancy network relies on the implementations
of PSP Net [47] and SegNet [2] kindly provided by Zijun
Deng. The detailed architecture of the discrepancy network
is shown in Fig. 14. We utilize a pre-trained VGG16 [39]
to extract features from images and calculate their point-
wise correlation, inspired by the co-segmentation network
of [27]. The up-convolution part of the network contains
SELU activation functions [23]. The discrepancy network
was trained for 50 epochs using the Cityscapes [7] training
set with synthetically changed labels as described in Sec-
tion 3.2 of the main paper. We used the Adam [21] opti-
mizer with a learning rate of 0.0001 and the per-pixel cross-
entropy loss. We utilized the class weighting scheme in-
troduced in [34] to offset the unbalanced numbers of pixels
belonging to each class.

Supervised Discrepancy Network. To get an upper
bound on its accuracy, we test the discrepancy network in
a supervised setting. To this end, we use the ground-truth
anomaly labels of the Lost and Found training set, with se-
mantics predicted by PSP Net. The AUROC scores, mea-
sured on the test set, are shown in Table 2.

bicyclebuilding

bus

car

fence

motorcycle

person

pole

rider

road

sidewalk

sky

terrain

traffic light

traffic sign

train

truck

vegetation

wall

Figure 9: Semantic map legend. The colors used in se-
mantic maps throughout this article correspond to the object
classes listed above.

Full Labels only Resynthesis only

Supervised 0.94 0.93 0.96
Unsupervised 0.82 0.79 0.76

Table 2: Performance of the discrepancy network in a super-
vised setting. AUROC scores measured on the Lost and Found
dataset.

B. Detecting Adversarial Samples
We show additional results on adversarial example de-

tection on the Cityscapes and BDD datasets using the Hou-
dini and DAG attack schemes in Figs. 15 and 16. To obtain
these results, we set the maximal number of iterations to
200 in all settings and L∞ perturbation of 0.05 across each
iteration of the attack. We randomly choose 80% of the
original validation samples to train the logistic detectors and
the rest of the samples are used for evaluation. While eval-
uating the state-of-the-art Scale Consistency method [43],
we found by cross-validation that a patch size of 256× 256
resulted in the best performance for an input image of size
1024× 512.

C. Image Attribution
We used Wikimedia Commons images kindly provided

under the Creative Commons Attribution license by the
following authors: Thomas R Machnitzki [link], Megan
Beckett [link], Infrogmation [link], Kyah [link], PIXNIO
[link], Matt Buck [link], Luca Canepa [link], Jonas Buch-
holz [link] and Kelvin JM [link].

11

https://commons.wikimedia.org/wiki/File:Goose_on_the_road_Memphis_TN_2013-03-17_001.jpg
https://commons.wikimedia.org/wiki/File:Rhino_crossing_road.JPG
https://commons.wikimedia.org/wiki/File:Broadmoor9JanConesSkidloader.jpg
https://commons.wikimedia.org/wiki/File:Federation_chantier_aout_2006_-_5.JPG
https://commons.wikimedia.org/wiki/File:Bovine_catle_beside_road.jpg
https://commons.wikimedia.org/wiki/File:Beeston_MMB_A6_Middle_Street.jpg
https://commons.wikimedia.org/wiki/File:Zebra_Crossing_Abbey_Road_Style_(63894353).jpeg
https://commons.wikimedia.org/wiki/File:Aihole-Pattadakal_road.JPG
https://commons.wikimedia.org/wiki/File:A_man_carrying_dry_grass_on_bicycle_for_domestic_animal_like_cows.jpg


Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 10: Additional examples of the anomaly detection task
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Input image Predicted semantic map - Baysesian Seg Net

Resynthesized image (labels from Baysesian Seg Net) Anomaly score - Ours

Input image Predicted semantic map - PSP Net

Resynthesized image (labels from PSP Net) Anomaly score - Ours

Figure 11: The synthetic training process alters only foreground objects, but that does not mean our discrepancy network
learns to blindly mark all such objects. In the top row, we show an example where the Bayesian SegNet failed to correctly label
some of the people present, and this discrepancy is detected by our network. However, our detector reports no discrepancy
when the PSP Net correctly labels the people in the image (third row).
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Figure 12: Unusual versions of known objects. Objects of known classes are marked as anomalies because their appearance
differs from the examples of this class present in the training data, for example the fence in the first row (fence class) and
the dark sky in the third row. Note that the RBM patch-based method [8] is especially sensitive to edges and so it detects the
zebras very well.
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 13: Failure cases. Our approach sometimes fails when the anomaly bears resemblance to an existing class: For
example, animals classified as people in the first row or transported hay classified as vegetation in the third row. The system
as a whole is nonetheless still aware of the obstacle because of its presence in the semantic map.
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Figure 14: Architecture of our discrepancy network.
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(a) Input image (normal) (b) Predicted map
(normal)

(c) Predicted map (Shift) (d) Resynthesized image
(normal)

(e) Resynthesized image
(Shift)

Figure 15: Detecting Houdini adversarial attacks on Cityscapes. Without attack, the re-synthesized image (d) obtained
from (b) looks similar to it. By contrast, the resynthesized image (e) obtained from the semantic maps (c) computed from a
Houdini-compromised input differs massively from the original one.
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(a) Input image (normal) (b) Predicted map
(normal)

(c) Predicted map (Shift) (d) Resynthesized image
(normal)

(e) Resynthesized image
(Shift)

Figure 16: Detecting DAG adversarial attacks on the BDD dataset. Without attack, the re-synthesized image (d) obtained
from (b) looks similar to it. By contrast, the resynthesized image (e) obtained from the semantic maps (c) computed from a
DAG-compromised input differs massively from the original one.
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