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Annealing of silicon heterojunction solar cells:
Interplay of solar cell and Indium-Tin-Oxide

properties
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Abstract—We report on the evolution of silicon heterojunction
solar cell properties focusing in particular on the Indium-Tin-
Oxide (ITO) layers upon consecutive thermal annealing. We find
that the charge carrier density Ne of the ITO increases with
higher thermal budget while the carrier mobility stays constant.
For the solar cells, their series resistance at maximum power
point RMPP

S first decreases due to the reduction of the ITO’s
sheet resistance. With further annealing, RMPP

S increases again.
As all monitored RS components decrease, we attribute this
to an increase of the contact resistance. The implied VOC as
well as the implied fill-factor both slightly degrade for annealing
temperatures above 190 ◦C for our layers. This, as well as the
change in Ne of the ITO, must be carefully considered when
optimising the thermal budget needed e.g. for sputter damage or
screen-printing paste curing.

Index Terms—series resistance, loss analysis, refractive index,
ITO, sputter damage, selectivity, silicon heterojunction.

I. INTRODUCTION

IN two-side contacted silicon heterojunction (SHJ) solar
cells, a transparent conductive oxide (TCO) is usually ap-

plied at the front-side, as the sheet resistance of the amorphous
silicon layers is too high for low-loss lateral current transport
[1]. The TCO needs to be as transparent as possible in the UV-
vis-NIR range [2], and highly conductive to provide low lateral
resistivity. In SHJ solar cells, usually Indium-based TCOs and
in particular Indium-Tin-Oxide (ITO) [3] are used as standard
in industry. Besides tin and oxygen vacancies, hydrogen can
also act as a donor for Indium-based TCOs [4], [5] and provide
additional electrons, increasing the charge carrier density in the
ITO. It has been reported that annealing of ITO deposited on
amorphous silicon can drastically increase its carrier density
[6]. Also, with the emergence of screen-printing pastes that are
already sufficiently conductive after annealing at 130 ◦C, and
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the requirement for some of the non-Si selective contacts (like
MoOx, TiOx, [7]) to not be cured at too high temperatures, it
is relevant to know at which minimal temperature an SHJ cell
has to be annealed in order to perform optimally.

In this paper, we investigate the interplay of SHJ solar
cell properties with its ITO layers upon consecutive thermal
annealing between 130 ◦C and 210 ◦C. We analyse the series-
resistance components at each annealing step and link the
optical and electrical parameters of the ITO to the solar cell’s
JV parameters.

II. EXPERIMENTAL

Five two-side contacted 2x2 cm2 SHJ solar cells were
prepared on a two-side textured 180 µm 2 Ω cm n-type FZ-
wafer with (100) orientation. A schematic of the cell structure
is sketched in Fig. 1a. All silicon layers were deposited by
plasma enhanced chemical vapor deposition (PECVD) in a
parallel-plate plasmabox KAI-M system at 200 ◦C. The ITO
layers were deposited at room temperature via reactive DC
sputtering, with a process pressure of 8 mTorr, and a power
density of ≈2 W cm−2, in an MRC-II system. The target com-
position was In2O3(90):SnO2(10), and the O2/Ar ratio during
depostion 0.02 (ITO front), and 0.03 (ITO back), respectively.
The different thicknesses of ITO front (≈115 nm1), and ITO
back (≈230 nm1) were obtained by varying the speed of the
substrate holder moving in front of the vertical target during
deposition. Both systems feature large-area (>30 cm × 30 cm)
deposition. At the rear side, a Ag layer is sputtered, and on the
front side a Ag grid is screen-printed. Additionally, a specific
sample for the measurement of the minority charge carrier
lifetime was prepared, using the same processes as for the
solar cells, but omitting the Ag front and rear metallisation,
to allow for lifetime measurements. For Hall measurements
of the ITO, dedicated planar samples on glass were prepared,
using the same deposition conditions for silicon and ITO layers
as for the solar cells. The thickness of the a-Si:H(i/p), and
a-Si:H(i/n)/nc-Si:H(n) stacks on glass are 20 nm and 40 nm,
respectively. For the analysis of ITO front and back, two
samples have been prepared for each case. Measurements were
not performed after each annealing, but only for selected steps.
When data was available from two samples, the average value
and standard deviation were calculated.

1on planar reference glass
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Fig. 1. (a) Schematic of the device structure, (b) list of consecutive annealing steps, (c)-(f) JV parameter of five SHJ solar cells undergoing annealing,
(g) break-down of series resistance components, (h) external quantum efficiency and reflection. The slopes of the grey arrows are matching the slopes of the
average values, the grey numbers indicate the relative change with respect to the value at steps (0) and (3) respectively.

The lifetime measurements were performed on a Sinton
Instruments WCT-120TS [8] tool at the center of the wafer. To
estimate the deviation, the lifetime was measured at five posi-
tions on the wafer after annealing step (7). The five positions
correspond to the positions of the cells. The relative deviation
of iVOC and iFF towards the values at the center is shown as
y-error for step (7) and assumed to be similar for all annealing
steps. JV measurements of the solar cells were performed at
25 ◦C with a dual-lamp Wacom AM1.5g solar simulator with
AAA characteristics. Two JV measurements were performed,
at 100 mW cm−2, and 5.5 mW cm−2 intensity, and the series-
resistance-free fill-factor FF0, as well as the series resistance
at maximum power point RMPP

S were calculated following
the method of Bowden et al. [9]. From a transfer-length
(TLM) structure [10] on the same wafer as the solar cells,
the sheet resistance of the front ITO as well as the contact
resistance between ITO and the screen-printed Ag grid were
calculated. The line resistance of the grid fingers was obtained
measuring the resistance between the two external busbars and
dividing by the number of fingers. Spectroscopic ellipsometry
measurements for ITO on Si-coated glass were performed on
a HORIBA Jobin Yvon, UVISEL ellipsometer. From fitting
with a Tauc-Lorentz/Drude model, the thickness, the refractive
index n as well as the extinction coefficient k were obtained.
Hall measurements were performed with a HMS-5000 system
using the van der Pauw method.

The initial annealing of the samples (20 min at 130 ◦C)
was carried out in a belt furnace. Subsequent consecutive
annealings up to 210 ◦C were performed on a Präzitherm
hotplate in air. The list of annealing steps is shown in Fig. 1b.
After each annealing, the above mentioned measurements were
performed on the respective samples.

III. RESULTS & DISCUSSION

A. Solar cell parameters

In Figs. 1c-f we show boxplots of the JV parameters after
each of the consecutive annealing steps. The numbers in the
boxplot indicate the cell. The implied values for open-circuit
voltage and fill-factor, iVOC and iFF, are also included in
Figs. 1c and e respectively. For the implied values, we added
also the steps ”after PECVD”, ”after ITO front”, and ”after
ITO back”. Figs. 1c and e show that sputter-induced damage
[11], [12], is introduced with the deposition of the ITO at
the front, which can be seen in reduced iVOC and iFF values
”after ITO front”. With the deposition of the rear side ITO,
the sputter-induced damage is largely cured. Although no
intentional heating is applied during sputtering, the sample
heats up during the deposition, which could cause hydrogen
to become mobile and (re-)passivate dangling bonds. The a-
Si:H(i/n)/nc-Si:H(n) stack at the rear side seems to be thick
enough to prevent any sputter-induced damage during the
deposition of ”ITO back”. With further annealing, iVOC first
stays constant and then marginally increases up to step (3). The
average of the open-circuit voltage VOC also increases from
step (0) to step (3), but the increase is slightly higher than for
the iVOC. This means that the increase in VOC cannot be solely
attributed to improved passivation. Possibly, the activation
energy of the a-Si:H(p) layer is reduced upon annealing [13]
due to a reduction of the defect-density [14], [15] from (0)
to (3), which could lead to an increased selectivity and thus
higher VOC. With further annealing, VOC decreases due to a
loss in passivation as iVOC decreases as well. We attribute this
to out-diffusion of hydrogen from a-Si:H(i) and thus increased
dangling-bond density [16].

The short-circuit current density JSC decreases from step (2)
to (6) by about 0.8 mA cm−2. This decrease is mainly due to
reduced spectral response >800 nm, as was calculated from
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the external quantum efficiency (EQE), which are shown in
Fig. 1h. This is mainly due to increased parasitic absorption,
which is indicated by the decreased reflection at 1200 nm (cf.
Fig. 1h) [17], and the extinction coefficient k of the ITO which
increases with annealing for wavelengths >500 nm as can be
seen in Fig. 2d. This increase is due to the increase of Ne (cf.
next section), for both ITO front and back.

The fill-factor FF increases until step (4) and then slightly
decreases. These changes are essentially driven by a change
of the devices’ RMPP

S , as FF0 decreases only marginally.
The iFF decreases slightly stronger. This could be due to
process variations (lifetime sample and cells were processed
on different wafer batches, and in different deposition runs),
due to inaccuracy of the FF0 determination, or an impact of
the metallisation (Ag grid & rear side) of the solar cells.
RMPP

S is shown in Fig. 1g, together with a breakdown of
the RS components:

• lateral transport in the ITO RITO
S,lat,

• transport in the front-grid fingers Rf
S, and

• the contact resistance between ITO and the screen-printed
Ag RITO/Ag

S .
RITO

S,lat and Rf
S are obtained as described in the appendix in

equations (1) and (2). RITO
S,lat decreases until step (4) and stays

constant for further annealing. The finger resistance Rf
S is

not affected by the annealing. RITO/Ag
S was obtained from

the TLM measurements/equation (3), and becomes negligible
after step (3). The share of all components is shown in grey
scales in Fig. 1g. The decrease of RITO

S,lat i.e. RITO
sheet is driven

by the increase of the free carrier concentration Ne in the ITO
(cf. next section), and responsible for the reduction of RMPP

S

from step (0) to (3). Subtracting RITO
S,lat, R

f
S, and R

ITO/Ag
S

from the median of RMPP
S , gives the residual RS (Rres

S ).
It increases after its minimum at step (2), and amounts to
roughly half of the RMPP

S at step (7). Rres
S includes the

unknown RS components contact resistance at the front (c-
Si(n)/a-Si:H(i/p)/ITO), and at the back (c-Si(n)/a-Si:H(i/n)/nc-
Si:H(n)/ITO). Its increase from step (3) to step (7) is thus likely
indicating a change in contact resistance. It has to be noted
though that the increase of Rres

S might not be as pronounced as
derived from our analysis. Besides the ITO, also the wafer is
providing lateral conductance at MPP [18], which we did not
take into account here2. As this becomes more important with
higher sheet resistance of the ITO, it would lower the RS for
lateral conduction especially for the steps (0)-(3) where the
sheet resistance of the ITO is comparably high (cf. Fig 2c),
leading to a lower increase of Rres

S .
Nevertheless, RMPP

S increases from (4) to (7), indicating
that an increase in contact resistance is still happening. As
contact properties are a result of an interplay of all layers (a-
Si:H(i), doped a-Si:H, ITO), the exact determination of what is
causing the increase is challenging. A change in workfunction
of the ITO could play a role [20]–[23], a reduction of the
conductivity of the doped layer, possibly due to annealing [24],
or a combination, as both are linked [23], [25]. We expect

2The resistance due to vertical transport is also injection-dependent [19]
and could thus further complicate the analysis. However, we estimate it to be
below 0.1Ω cm2 and thus did not consider it.

the deterioration to happen at the p-contact and not at the n-
contact, as generally nc-Si:H(n) features lower Ea compared
with a-Si:H(p).

The observed phenomena occur with our a-Si:H-layers.
Different processes for the deposition of a-Si:H might be more
or less affected by thermal annealing [26].

To summarise, from step (0) to step (3), the increase of
the efficiency η is mainly driven by the increase in FF, the
increase in VOC is compensated by the decrease in JSC. From
step (3) to step (7) all parameters decrease, with the JSC being
the main driver.

B. ITO parameters

In Fig. 2 we show how the ITO properties change with
annealing. The charge carrier concentration NHall

e and the
mobility µHall

e were obtained from Hall measurements of the
planar layers on glass/Si and are shown in Figs. 2a and b
respectively. Ne increases with annealing for both ITO front
and ITO back. The increase is more pronounced for ITO back
which also starts from a lower value due to the higher O2/Ar
ratio during the deposition. The mobility stays constant for
both ITO front and back (cf. Fig. 2b). From Fig. 2c it can
be seen that RITO

sheet of the front ITO is mainly driven by
Ne as it decreases with annealing, especially until step (4)
and then saturates, similarly to Ne. In the figure, we show
two values for RITO

sheet, one directly measured on the wafer
via TLM, and the other calculated from NHall

e and µHall
e

using equation (4) in the appendix. Within the experimental
uncertainties, both values are in good agreement, indicating
that the samples on glass represent well the situation on
wafer. Fig. 2d shows the refractive index n and the extinction
coefficient k of the ITO front. The refractive index n decreases
with subsequent annealing. The extinction coefficient k, shown
in Fig. 2d, indicates a Burstein-Moss-shift and increased free
carrier absorption, both as a result of the increasing Ne with
annealing.

As shown in literature [27], for ITOs deposited with differ-
ent O2/Ar ratios, n decreases with increasing Ne. Our results
confirm that this change is also observed for other mechanisms
that increase Ne (in our case most probably doping with
hydrogen from the underlying a-Si:H layers or oxygen effusion
[3], [6], [28]). The increase in n is the reason for the slightly
increased reflection of the solar cells in the visible range, as
shown in Fig. 1h, and verified with OPAL2 simulations (not
shown).

IV. CONCLUSIONS

We presented the interplay between ITO and silicon hetero-
junction (SHJ) solar cell properties upon thermal annealing.
The main driver behind the observed changes is the increase of
the free carrier concentration in the ITO that impacts mainly
the short-circuit current density of the device, but also the
fill-factor as a result of the change in sheet-resistance of
the front-side ITO RITO

sheet. Depending on the thermal budget
required by the SHJ solar cell device for e.g. curing of
sputter damage or the screen-printing paste, the ITO properties
have to be carefully tuned accordingly. We found that with
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Fig. 2. (a) Charge carrier density and (b) mobility of planar ITO layers deposited on silicon on glass. (c) Sheet resistance of ITO front as measured by
TLM on the same wafer as the solar cells, and calculated from the Hall measurements of the planar samples (cf. equation (4) in the appendix). (d) Refractive
index n, and extinction coefficient k of ITO front. ITO front refers to an O2/Ar ratio of 0.02, deposited on a stack of a-Si:H(i)/a-Si:H(p), and a thickness of
112-114 nm on the planar glass sample. ITO back refers to an O2/Ar ratio of 0.03, deposited on a stack of a-Si:H(i)/a-Si:H(n)/nc-Si:H(n), and a thickness of
237 nm on the planar glass sample. The numbers refer to the same annealing steps as listed in Fig. 1b. The grey lines are B-splines as guide to the eye.

annealing, the series resistance at the maximum power point
first decreases due to a reduction in RITO

sheet, but increases again
with prolonged annealing. This has not been fully understood
yet and requires further examination. As annealing above
190 ◦C lead to a slight decrease in passivation (seen from a
reduction of implied VOC and fill-factor), it should ideally be
avoided for our SHJ solar cells.

APPENDIX

CALCULATION OF RS COMPONENTS

In Fig. 3 we illustrate the unit cell of our SHJ solar cell. We
also show the parameters used to calculate the series resistant
components shown in Fig. 1g with the equations (1)-(3), which
we define below.

From the sheet resistance of the ITO RITO
sheet, obtained from

TLM as described above, and the distance between two fingers
p, the RS component (normalised to the area, [RS]=Ω cm2)
due to lateral current conduction in the ITO can be calculated
with

RITO
S,lat =

1

12
p2RITO

sheet . (1)

From the resistance between the two external busbars and
equation 2, the finger resistance can be calculated with the line
resistance of a finger Rf

line in Ω cm−1, and the finger length lf

Rf
S =

1

3
p l2f R

f
line . (2)

From the specific contact resistance between the screen-
printed Ag and the ITO ρ

ITO/Ag
C , as well as the ratio of front-

grid area (Agrid) and cell area (Acell), the contact resistance
between front-grid and ITO front can be calulated with

R
ITO/Ag
S = ρ

ITO/Ag
C · Agrid

Acell
, with

Agrid

Acell
= 0.025. (3)

The RITO∗

sheet was calculated from the Hall measurements
(layers on planar glass samples) using the charge carrier
density NHall

e , the mobility µHall
e , the thickness tITO, and the

elementary charge q with the following equation

RITO∗

sheet =
1

qNHall
e µHall

e

1

tITO
· 1.7 . (4)

The geometry factor of 1.7 accounts for the lower thickness
of the ITO on wafer compared with the layers on planar glass,

Fig. 3. Unit cell sketch of the SHJ solar cell investigated in this study. The
parameters used to calculate the different series resistance components are
indicated. Rres

S (cf. Fig. 1g) includes ρfrontC , ρbackC , and other resistances.

to establish comparability with the RITO
sheet obtained from the

TLM on wafer.
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