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Abstract. Online reputation mechanisms need honest feedback to func-
tion efiectively. Self interested agents report the truth only when explicit
rewards ofiset the cost of reporting and the potential gains that can be
obtained from lying. Payment schemes (monetary rewards for submit-
ted feedback) can make truth-telling rational based on the correlation
between the reports of difierent clients.
In this paper we use the idea of automated mechanism design to construct
the best (i.e., budget minimizing) incentive-compatible payments that
are also robust to some degree of private information.

1 Introduction

Online buyers increasingly resort to reputation forums for obtaining informa-
tion about the products or services they intend to purchase. The testimonies of
previous buyers disclose hidden, experience-related [13], product attributes (e.g.,
quality, reliability, ease of use, etc.) that can only be observed after the purchase.
This previously unavailable information allows buyers to take better decisions.

Quality-based difierentiation of products is also beneflcial for the sellers. High
quality, when recognizable by the buyers, brings higher revenues. Manufacturers
can therefore optimally plan the investment in their products, such that the
difierence between the higher revenues of a better product, and the higher cost
demanded by the improved quality, is maximized. Honest reputation feedback is
thus essential for establishing an e–cient market.

Human users exhibit high levels of honest behavior (and truthful sharing
of information) without explicit incentives. However, in a future e-commerce
environment dominated by rational agents acting to maximize their revenues,
reputation mechanism designers need to make sure that sharing truthful infor-
mation is in the best interest of the reporter.

Two factors make this task di–cult. First, feedback reporting is usually
costly. Users need to understand the rating scale, must flll in feedback forms
and supervise the submission of the report. All these require the time and the
conscious efiort of the reporters. As feedback reporting does not bring direct
beneflts (the information is valuable only to subsequent buyers), rational agents
are better ofi not to report at all.



Second, truth-telling is not always in the best interest of the reporter. In some
settings, for instance, false denigration decreases the reputation of a product and
allows the reporter to make a future purchase for a lower price. In other contexts,
providers can ofier monetary compensations in exchange for favorable feedback:
e.g., doctors get gifts for recommending new drugs, authors ask their friends
to write positive reviews about their latest book [6, 16]. One way or another,
external beneflts can be obtained from lying and selflsh agents will exploit them.

Both problems can be addressed by a payment scheme that explicitly rewards
honest feedback by a su–cient amount ¢ to ofiset both the cost of reporting and
the gains that could be obtained through lying. Seminal work in the mechanism
design literature [5, 4] shows that side payments can be designed to create the
incentive for agents to report their private opinions truthfully, a property called
incentive compatibility. The best such payment schemes have been constructed
based on \proper scoring rules" [11, 7, 2], and exploit the correlation between
the observations of difierent buyers about the same good.

Miller, Resnick and Zeckhauser [12] adapt these results to online feedback
forums. A central processing facility (the reputation mechanism) \scores" every
submitted feedback by comparing it with another report (called the reference
report) about the same good. They prove the existence of general incentive-
compatible payment mechanisms where the return when reporting honestly is
better by at least an arbitrary margin, ¢.

Jurca and Faltings [10] use an identical setting to apply automated mecha-
nism design [3, 15]. Incentive-compatible payments are computed by solving an
optimization problem with the objective of minimizing the required budget. The
simplicity of specifying payments through closed-form scoring rules is sacriflced
for signiflcant gains in e–ciency.

Intuitively, payment mechanisms encourage truth-telling because reporters
expect to get paid according to how well their feedback improves the current
predictor of the reference report. Every feedback report modifles the reputation
information, which acts as a predictor for future observations. The payment
received by the reporter re°ects the quality of the updated predictor, tested
against the reference report. Assuming that the reference report is truthful, every
agent naturally has the incentive to update the current reputation such that it
mirrors her subjective beliefs. Thus agents report honestly, and truth-telling is
a Nash equilibrium.

One key assumption behind such mechanisms is that the reputation mech-
anism and the reporters share the same prior information regarding the \rep-
utation" of the rated product. Only in this case the honest report aligns the
posterior reputation (as computed by the reputation mechanism) with the pri-
vate posterior beliefs of the agent. When reporters have private prior information
unknown to the reputation mechanism, it may be possible that some lying report
maximizes the expected gain.

In this paper, we investigate feedback payment mechanisms that are incentive
compatible even when reporters have some private information that is unknown
to the reputation mechanism. Section 2 formally describes our setting. Section 3



describes the algorithm for computing the optimal incentive compatible pay-
ments with public prior information. Section 4 exemplifles what can go wrong if
the reputation mechanism does not accurately know the beliefs of the reporters,
followed by an algorithm, in Section 5, for computing incentive-compatible pay-
ments that are robust against a range of private beliefs. Finally we present future
work and conclude.

2 The Setting

We consider an online market where a number of rational clients (or \agents")
purchase the same product. The quality of the product remains flxed, and deflnes
the product’s (unknown) type. Let £ be the flnite set of possible types, and µ 2 £
be a member of this set. £ is common knowledge, and we assume that all clients
share a common belief1 regarding the prior probability Pr[µ], that the product
is of type µ.

P
µ2£ P r[µ] = 1.

Having purchased the product, clients perceive a noisy signal about the qual-
ity (i.e., true type) of the product. Let Oi denote the random signal observed
by agent i, and let S = fs1; s2; : : : sM g denote the set of possible values for
Oi. The observations of difierent buyers are conditionally independent, given
the type of the product. Let f(sj jµ) = P r[Oi = sj jµ] be the probability that a
buyer observes the signal sj when the true type of the product is µ. f(¢j¢) is as-

sumed common knowledge, and
PM

j=1 f(sj jµ) = 1 for all µ 2 £. We assume that
difierent types generate difierent probability distributions for observable signals.

A central reputation mechanism asks each client to submit feedback. Let
ai = (ai

1; : : : ; ai
M ) denote the reporting strategy of agent i, such that the agent

will announce ai
j 2 S when her observed signal is sj . The honest reporting

strategy is denoted by „a = (s1; : : : ; sM ), when the agent truthfully announces
her observed signal.

The reputation mechanism pays clients for submitting feedback. The pay-
ment received by client i is computed by taking into account the signal an-
nounced by i, and the signal announced by another client, r(i), called the ref-

erence reporter of i. Let ¿(ai
j ; a

r(i)
k ) be the payment received by agent i when

she announces the signal ai
j and r(i) announces the signal a

r(i)
k . The expected

payment of agent i depends on the prior belief, on her observation Oi = sj , and
on the reporting strategies ai and ar(i):

V (ai; ar(i)jsj) = Esk2S
£
¿(ai

j ; a
r(i)
k )

⁄
=

MX

k=1

P r[Or(i) = skjOi = sj ]¿(ai
j ; a

r(i)
k ); (1)

The conditional probability distribution for the signal observed by the client
r(i) can be computed as:

P r[skjsj ] =
X

µ2£

f(skjµ)P r[µjsj ]; (2)

1 this assumption is relaxed in Section 4
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Fig. 1. Reporting feedback. Choices and Payofis.

where P r[µjsj ] is the posterior probability of the type µ given the observation
sj , as given by Bayes’ Law:

P r[µjsj ] =
f(sj jµ)P r[µ]

P r[sj ]
; P r[sj ] =

X

µ2£

f(sj jµ)P r[µ]; (3)

All agents, as well as the reputation mechanism, compute these conditional
probabilities in the same way.

Reporting feedback is expensive. Let Ci be the cost incurred by agent i for
acquiring and reporting the observed signal. This cost is assumed independent
of the beliefs and observations of the agent. Difierent agents can have difierent
reporting costs; however, the variations are su–ciently small such that the upper
bound, C = maxi Ci, is flnite and not \too far" from individual costs.

Agents can also obtain direct beneflts from lying. Let ¢i(sj ; ai
j) be the ex-

ternal beneflt agent i could obtain from reporting the signal ai
j instead of sj .

As with the reporting cost, we assume there is an upper bound ¢(sj ; sk) =
maxi ¢i(sj ; sk) for the external beneflt any agent could obtain by falsely report-
ing the signal sk instead of sj . For all signals sj 6= sk 2 S, ¢(sj ; sj) = 0 and
¢(sj ; sk) ‚ 0.

3 Optimal Incentive Compatible Feedback Payments

Let us consider an agent i that purchases the product and observes the quality
signal Oi = sj . When asked by the reputation mechanism to submit feedback,
the agent can choose: (a) to honestly report sj , (b) to report another signal
ai

j 6= sj 2 S or (c) not to report at all. Figure 1 presents the agent’s expected
payofi for each of these cases, given the payment scheme ¿(¢; ¢) and the reporting
strategy ar(i) of the reference reporter.

Truthful reporting is a Nash equilibrium (NEQ) if agent i flnds it optimal
to announce the true signal when the reference reporter also reports the truth.
Formally, the honest reporting strategy „a is a NEQ if and only if:



V („a; „ajsj) ‚ V (a⁄; „ajsj) + ¢(sj ; a⁄
j );

V („a; „ajsj) ‚ C;

for all signals sj 2 S, and all reporting strategies a⁄ 6= „a. When the inequalities
are strict, honest reporting is a strict NEQ.

For any observed signal Oi = sj 2 S, there are M ¡ 1 difierent dishonest
reporting strategies a⁄ 6= „a that agent i can use: i.e., a⁄

j 2 S n fsjg. Using (1) to
expand the expected payment of a client, the NEQ conditions become:

MX

k=1

P r[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·

> ¢(sj ; sh); 8sj 6= sh 2 S

MX

k=1

P r[skjsj ]¿(sj ; sk) > C; 8sj 6= sh 2 S
(4)

Any payment scheme ¿(¢; ¢) satisfying the conditions in (4) is incentive-
compatible. [12] proves that such schemes exist.

Given the incentive-compatible payment scheme ¿(¢; ¢), the expected payment
to an honest reporter is:

W = Esj 2S
h
V („a; „ajsj)

i
=

MX
j=1

P r[sj ]
‡ MX

k=1

P r[skjsj ]¿(sj ; sk)
·

;

The optimal payment scheme minimizes the budget required by the reputa-
tion mechanism, and therefore solves the following linear program (i.e., linear
optimization problem):

LP 1

min W =
MX

j=1

P r[sj ]
‡ MX

k=1

P r[skjsj ]¿(sj ; sk)
·

s:t:

MX

k=1

P r[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·

> ¢(sj ; sh); 8sj 6= sh 2 S;

MX

k=1

P r[skjsj ]¿(sj ; sk) > C; 8sj 2 S

¿(sj ; sk) ‚ 0; 8sj ; sk 2 S

The payment scheme ¿(¢; ¢) solving LP 1 depends on the cost of reporting,
on the external beneflts from lying, and on the prior belief about the type of the
product. To illustrate these payments, let us consider a simple example.

Assume that the product purchased by the clients can be either Good (G)
or Bad (B) (i.e., £ = fG; Bg). The prior belief of the clients assigns the prob-
abilities 0.8 and 0.2 to the product being good, respectively bad (i.e., P r[G] =



0:8; P r[B] = 0:2.). Clients perceive a binary quality signal (either high or low
quality) once they purchase the product, such that f(hjG) = 1 ¡ f(ljG) = 0:9
and f(hjB) = 1¡f(ljB) = 0:2. The probability that the next buyer experiences a
high quality product is: Pr[h] = 1¡Pr[l] = f(hjG)Pr[G]+f(hjB)Pr[B] = 0:76.

The conditional probability distribution Pr[Or(i)jOi] for the reference report
follows from Bayes’ law: P r[hjh] = 1¡Pr[ljh] = 0:86 and Pr[hjl] = 1¡P r[ljl] =
0:43. We take the reporting cost C = 0:01 (i.e., 1% of the normalized cost of
the product) and the external beneflts from lying ¢(l; h) = ¢(h; l) = 0:05. The
optimization problem LP 1 is presented in Table 1, and deflnes the optimal
payments: ¿(h; h) = 0:083, ¿(l; l) = 0:15, ¿(h; l) = ¿(l; h) = 0. The expected
cost for the reputation mechanism (i.e., the expected payment to one agent) is
0:07 (i.e., 7% of the price of the product).

¿(h; h) ¿(h; l) ¿(l; h) ¿(l; l)

min 0.65 0.11 0.10 0.14

s.t. 0.86 0.14 -0.86 -0.14 > 0.05
0.86 0.14 > 0.01
-0.43 -0.57 0.43 0.57 > 0.05

0.43 0.57 > 0.01

‚ 0 ‚ 0 ‚ 0 ‚ 0

Sol. 0.083 0 0 0.15

Table 1. Example. P r[G] = 0:8, P r[hjh] = 0:86 and P r[hjl] = 0:43.

In [10] we show how to extend LP 1 in order to compute the optimal incentive
compatible payments when:

{ the available budget is flxed and the margins for truth-telling are maximized;
{ the reputation mechanism can use several reference reports;
{ the reputation mechanism may fllter out some of the reports.

All resulting optimization problems are linear, and can be solved by polyno-
mial2 time algorithms. The resulting payments may decrease the budget required
by the reputation mechanism up to one order of magnitude.

4 Honest Reporting with Unknown Beliefs

The optimal incentive-compatible payments computed in Section 3 rely on the
posterior beliefs (i.e., the probabilities Pr[skjsj ]) of the reporters regarding the
value of the reference reports. These can be computed by the reputation mech-
anism from:

{ the prior belief, Pr[µ], that the product is of type µ,

2 in the size of the payment mechanism



{ the conditional probabilities, f(sj jµ), that a product of type µ generates the
signal sj ,

using Bayes’ Law as shown in the Eq. (2) and (3).
However, when the reporters have difierent beliefs regarding the values of

the reference reports, the constraints in LP 1 do not accurately re°ect the de-
cision problem of the agents, and therefore, do not always guarantee an honest
equilibrium.

Let us reconsider the example from Section 3, and the corresponding pay-
ments from Table 1. Assume an agent whose prior belief difiers only slightly
from that of the reputation mechanism: e.g., P r[G], the probability that the
product is Good, is 0.82 instead of 0.8, while other values remain the same. If
the agent purchases a product of low quality, her private belief regarding the
quality observed by the next buyer is Pr⁄[hjl] = 1 ¡ P r⁄[ljl] = 0:45 (instead
of P r[hjl] = 0:43 considered by the reputation mechanism). Simple arithmetics
reveals that the agent is better ofi by reporting high instead of low quality: the
expected gain from lying is 0:45 ¢ 0:083 + 0:55 ¢ 0 + ¢(l; h) = 0:087, while honest
reporting brings only 0:45 ¢ 0 + 0:55 ¢ 0:15 = 0:082.

4.1 Declaration of private information

To eliminate lying incentives, Miller et al. suggest that reporters should also
declare their prior beliefs before submitting feedback [12]. The reputation mech-
anism could then use the extra information to compute the payments that makes
truth-telling rational for every agent.

Unfortunately, such a mechanism can be exploited by self-interested agents
when external beneflts from lying are positive. Consider the same example as
above: the agent has a prior belief which assigns probability 0:82 to the product
being Good.

If the agent truthfully declares her prior belief, the reputation mechanism
computes the optimal payments: ¿(h; h) = 0:0841, ¿(l; l) = 0:1598, ¿(h; l) =
¿(l; h) = 0, by solving LP 1. A truthful report following a negative experience
(i.e., the agent observes and declares the signal l), is rewarded by an expected
revenue equal to: 0:45 ¢ 0 + 0:55 ¢ 0:1598 = 0:0879.

The agent can, however, declare the prior belief: P r[G] = 1 ¡ Pr[B] = 0:11.
In this case, the payment scheme computed by the reputation mechanism will
be: ¿(h; h) = 0:2792, ¿(l; l) = 0:1375, ¿(h; l) = ¿(l; h) = 0, and the optimal
strategy for the client is to declare the signal h. The client’s expected feedback
payment thus becomes : 0:45 ¢0:2792+0:55 ¢0+¢(l; h) = 0:1756 > 0:0879, where
¢(l; h) = 0:05 is the external revenue the agent can obtain by falsely declaring
h instead of l.

The example provided above is, unfortunately, not unique. Profltable lying is
possible because agents can flnd false prior beliefs that determine the reputation
mechanism to compute feedback payments that make lying optimal. Thus, the
agent obtains both the optimal feedback payment, and the external beneflt from
lying.



The false prior beliefs that make lying profltable can be easily computed
based on the following intuition. The payment scheme deflned by LP 1 makes
it optimal for the agents to reveal their true posterior belief regarding the type
of the product. When the prior belief is known, only the truly observed quality
signal \aligns" the posterior belief of the reputation mechanism with that of the
agent. However, when the prior belief must also be revealed, several combinations
of prior belief and reported signal, can lead to the same posterior belief. Hence,
the agent is free to chose the combination that brings the best external reward.

The false prior belief (Pr[µ])µ2£ and the false signal sh that lead to the same
posterior belief (Pr[µjsj ])µ2£, can be computed by solving the following system
of linear equations:

P r[µjsh] =
f(shjµ)P r[µ]P

t2£ f(shjt)P r[t]
=

f(sj jµ)P r[µ]P
t2£ f(sj jt)P r[t]

= P r[µjsj ]; 8µ 2 £; (5)

The system has j£j equations and j£j+1 variables (i.e., the probabilities P r[µ]
and the signal sh); therefore, there will generally be several solutions that make
lying profltable. The agent may choose the one that maximizes her expected
payment by solving the following nested linear problem:

max ¢(sj ; sh) +
MX

k=1

P r[skjsj ]¿(sh; sk)

s:t: P r[µjsh] = P r[µjsj ]; 8µ 2 £;

¿(¢; ¢) solves LP 1 for the prior beliefs P r[µ]

To enforce truth-telling, Prelec [14] suggests payments that also depend on
the declared priors. Agents are required to declare both the observed signal,
and a prediction of the signals observed by the other agents (which indirectly
re°ects the agent’s private information). The proposed \truth serum" consists
of two additive payments: an information payment that rewards the submitted
report, and a prediction payment that rewards the declared private information.
Prelec shows that honesty is the highest paying Nash equilibrium. Nonetheless,
his results rely on the assumption that a prior probability distribution over all
possible private beliefs (not the belief itself) is common knowledge.

Another solution has been suggested by Miler et al. in [12]. Miss-reporting
incentives can be eliminated if agents declare their prior beliefs before the actual
interaction takes place. As posteriors are not available yet, the agent cannot
manipulate the declared prior belief in order to avoid the penalty from lying.
However, such a process has several practical limitations.

First, the enforcement of prior belief declaration before the interaction can
only be done if a central authority acts as an intermediary between the buyer
and the seller. The central proxy may become a bottleneck and adds to the trans-
action cost. Second, the declaration of prior beliefs could signiflcantly delay the
access to the desired good. Finally, the reporting of priors adds to the report-
ing cost (reporting probability distributions is much more costly than reporting



observed signals) and greatly increases the budget required by an incentive-
compatible mechanism.

5 Robust Incentive Compatible Payments

In this paper we pursue an alternative solution for dealing with unknown beliefs.
We start from the assumption that the private beliefs of most rational agents
will not difier signiflcantly from those of the reputation mechanism. The beliefs
of the reputation mechanism, as re°ected in the publicly available reputation in-
formation, have been constructed by aggregating all feedback reports submitted
by all previous users. Assuming that agents trust the reputation mechanism to
publish truthful information, their private information will trigger only marginal
changes to the beliefs. Thus, rather than build a system that can accommodate
all private beliefs, we focus on mechanisms that are incentive-compatible for
most priors, i.e., the priors within certain bounds from those of the reputation
mechanism.

Let (P r[µ])µ2£ characterize the prior belief of the reputation mechanism and
let (P r⁄[µ] = P r[µ]+"µ)µ2£ be the range of private beliefs the clients might have,
where:

P
µ2£ "µ = 0, and max(¡†; ¡Pr[µ]) • "µ • min(†; 1 ¡ P r[µ]), † > 0.

Replacing the private beliefs in (2) and (3), the conditional probabilities for
the reference rater’s signals become:

P r⁄[skjsj ] =

P
µ2£ f(skjµ)f(sj jµ)(P r[µ] + "µ)P

µ2£ f(sj jµ)(P r[µ] + "µ)
; (6)

Let Pr⁄
m[skjsj ] and Pr⁄

M [skjsj ] be the minimum, respectively the maximum
values of P r⁄[skjsj ] as the variables ("µ)µ2£ take values within the acceptable
bounds. If we modify LP 1 such that the constraints on the optimal payments
are satisfled for all acceptable values of Pr⁄[skjsj ], we obtain a payment scheme
that is incentive compatible for all private beliefs that are not too far from the
belief of the reputation mechanism.

Representing linear constraints for a continuous range of parameters is not
accepted by linear solvers. The constraint:

MX

k=1

P r⁄[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·

> ¢(sj ; sh); (7)

is satisfled for all possible values of Pr⁄[skjsj ] 2
h
Pr⁄

m[skjsj ]; P r⁄
M [skjsj ]

i
, only

when:

min
P r⁄[skjsj ]

ˆ
MX

k=1

P r⁄[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·!

> ¢(sj ; sh); (8)

If the probabilities Pr⁄[skjsj ] were independent3, the minimum would be
given by one of the combinations of extreme values: i.e., Pr⁄[skjsj ] equal either

3 they are not, because they are connected through the same variables ("µ)
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M CPU time [ms] Std. dev. [ms]

2 14.117 4.9307
3 38.386 4.1765
4 485.33 50.546
5 798.28 722.5

Table 2. Average CPU time (and stan-
dard deviation) for computing the opti-
mal payment scheme with private beliefs.

Pr⁄
m[skjsj ] or Pr⁄

M [skjsj ]. Therefore, by replacing every constraint (7), with 2M

linear constraints, one for every combination of extreme values of Pr⁄[skjsj ],
we impose stricter condition than (8). The optimization problem deflning the
payment scheme is similar to LP 1, where every constraint has been replaced by
2M linear constraints, one for every combination of extreme values of Pr⁄[skjsj ].

We evaluated experimentally the efiect of private beliefs on the expected
cost of the incentive-compatible mechanism. For that purpose, we generated
2000 random problems as described in Appendix A. For each problem, we took
difierent tolerance levels to private beliefs (i.e., † = f0; 0:02; 0:05; 0:07; 0:1g) and
solved the linear optimization problem that deflnes the robust, incentive com-
patible payments. We used average hardware (e.g., Pentium Centrino 1.6MHz,
1Gb RAM, WinXP) and the CPLEX4 linear solver. Table 2 presents the average
CPU time required for computing the payments. Due to the exponential number
of constraints, the time required to compute the optimal payments increases ex-
ponentially with the number of signals, M . For M = 6 signals, the computation
already takes more than one second.

Figure 2 presents the average cost of an incentive-compatible payment scheme
that tolerates private beliefs. We plot the average expected payment to one agent
for difierent number of signals, and difierent tolerance levels for private beliefs.
The cost of the mechanism increases quickly with †, the tolerated range of beliefs.
For beliefs within §10% of those of the reputation mechanism, the cost of the
mechanism increases one order of magnitude. Note, however, that the constraints
deflning the payment scheme are stricter than necessary. As future research,
we intend to deflne non-linear algorithms that can approach the truly optimal
payments.

4 www.ilog.com



5.1 General tolerance intervals for private information

Instead of modeling private information as small perturbations to the prior belief
regarding the true type of the product, we consider in this section a more general
case, where the conditional probabilities P r[skjsj ] that parameterize LP 1 are
allowed to vary within certain limits. Such variations can account for various
sources of private information: e.g., private beliefs regarding the true type of the
product, private information regarding the conditional distribution of signals, or
even small changes to the true type of the product. This approach is similar to
the work of Zohar and Rosenschein [17].

Without modeling the real source of private information, we assume that the
conditional probability distributions Pr⁄[¢jsj ] (for all sj) are not too far from
the probability distributions Pr[¢jsj ] computed by the reputation mechanism.
We will use the L2 norm for computing the distance, and assume that:

MX

k=1

‡
P r⁄[skjsj ] ¡ P r[skjsj ]

·2

• "2; 8sj 2 S; (9)

for some positive bound ". The incentive-compatibility constraints must enforce
that for any value of the probabilities Pr⁄[¢j¢], honesty gives the highest payofi.
Formally,

min
P r⁄[¢j¢]

ˆ
MX

k=1

P r⁄[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·!

> ¢(sj ; sh); 8sj 6= sh 2 S;

s:t:

MX

k=1

‡
P r⁄[skjsj ] ¡ P r[skjsj ]

·2

• "2;

This optimization problem can be solved analytically by writing the Lagrangian
and enforcing the flrst order optimality conditions. We thus obtain:

min

ˆ
MX

k=1

P r⁄[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·!

=

MX

k=1

P r[skjsj ]
‡

¿(sj ; sk) ¡ ¿(sh; sk)
·

¡ "

vuut
MX

k=1

‡
¿(sj ; sk) ¡ ¿(sh; sk)

·2

;

and the best (i.e., cheapest) incentive compatible payments that are robust to
private information (i.e., have robustness level "2) are obtained by solving the
conic optimization problem:
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M CPU time [ms] Std. dev. [ms]

2 3.46 24.40
3 7.31 9.04
4 16.05 8.07
5 44.89 15.74

Table 3. Average CPU time (and stan-
dard deviation) for computing the opti-
mal payment scheme with general private
information.

CP 1

min W =
MX

j=1

P r[sj ]
‡ MX

k=1

P r[skjsj ]¿(sj ; sk)
·

s:t:

MX

k=1
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where Pr[¢j¢] are the probabilities computed by the reputation mechanism. Such
problems can be solved by polynomial time algorithms.

We evaluated experimentally the cost of general private information as re-
°ected on the expected payment to one reporter. As in the previous section,
we generated 2000 random problems (details in Appendix A) and for difierent
levels of robustness, we solved CP 1 to obtain the robust incentive compati-
ble payments. Table 3 presents the average CPU time required to compute the
payments. As expected, the values are much smaller than those of Table 2.

Figure 3 plots the average expected payment to one agent for difierent number
of signals, and difierent tolerance levels to private information. Like in Figure 2,
the cost of the mechanism increases exponentially with the robustness level, "2.

One important remark about the results of this section is that agents trust
the reputation mechanism to publish truthful information. Only in this case
agents are likely to adopt (with marginal changes) the beliefs of the reputation
mechanism, and have incentives to report honestly. While the trustworthy of
the reputation mechanism is an interesting topic on its own, let us note that



agents can verify5 whether or not the payments advertised by the reputation
mechanism actually \match" the beliefs and the robustness bound published by
the reputation mechanism. On the other hand, the payments that match the true
beliefs of the reputation mechanism are the smallest possible, as guaranteed by
the corresponding optimization problems.

However, understanding exactly what the reputation mechanism can do in
order to manipulate reputation information without being detected, while still
providing decent honest reporting incentives requires further work.

6 Discussion

We have assumed in our paper that the true quality of the product (i.e., the
true type) is flxed. In real settings, however, quality does change either because
the technology evolves, or because initial defects get identifled and corrected.
Under such circumstances, it becomes even more important to design payments
that are robust to a wide range of private beliefs: incremental changes in the
true quality will fall within the tolerance levels of the payment scheme and do
not shift reporting incentives. However, smarter payments may be capable of
modeling quality change, and factor it appropriately in reporting incentives.
This remains as future work.

The reporting and honesty costs enclose a powerful framework for treating
the collusion between buyers an product manufacturers. Dishonest feedback from
clients usually creates advantages for product manufacturers (false positive feed-
back is beneflcial for the product’s owner, false negative feedback beneflts the
competitors). The collusion between clients and providers becomes interesting
when the beneflt obtained by providers from a false report ofisets the payment
returned to the client in exchange for lying. The feedback payments presented
in this paper make sure that no provider can afiord to buy false reports; the
collusion thus becomes irrational.

The honest reporting Nash Equilibrium is unfortunately not unique. Other
lying equilibria exist, and some of them generate higher expected payofis for
reporters than the truthful one. In a previous result, [8] we show that a small
number of trusted reports (i.e., feedback reports that are true with high prob-
ability) can eliminate (or render unattractive) lying Nash equilibria. As future
work, we intend to extend the presented framework to also account for multiple
equilibria.

Collusion between clients remains a problem for this class of incentive com-
patible mechanisms. Agents can synchronize their possibly false reports in order
to increase their revenue. Choosing randomly the reference report for every sub-
mitted feedback can help eliminate small coalitions: only large coalitions are
rational, such that the probability of having a reference report from the same
coalition is big enough. Another safeguard against reporting coalitions is to use
trusted reports. In some settings [9], a small number of trusted reports can make
collusion irrational.

5 by checking that the payments ¿(¢; ¢) solve the optimization problems LP 1 or CP 1



One interesting direction for future research is to design mechanisms that
can better tolerate private beliefs. As discussed in Section 4, our algorithms gen-
erate payments that increase exponentially with the range of tolerated private
information. However, using a combination of difierent techniques (e.g., the pay-
ments also depend on declared priors, priors may be discounted as they diverge
from the belief of the reputation mechanism) may result in cheaper mechanism.

7 Conclusion

Honest feedback is essential for the efiectiveness of online reputation mechanisms.
When feedback reporters are self-interested, explicit payments can make truthful
reporting rational. Most of the existing incentive-compatible payment schemes
are constructed based on proper scoring rules. Lately, computational techniques
based on the idea of automated mechanism design have made it possible to
signiflcantly decrease the cost of incentive-compatibility by computing the best
payment scheme for each context.

In the current paper we extent this line of research, by studying incentive-
compatible payments that are also robust to some degree of private information.
We show how the smallest amount of private information (possessed by the
agents, and unknown to the reputation mechanism) can disrupt the truth-telling
incentives provided by traditional payment mechanisms. As a consequence, we
suggest the automated design of robust payments that are incentive-compatible
for a range of beliefs. The resulting optimization problems are more complex,
but can still be solved e–ciently for practical settings.
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A Generating random settings

We consider settings where M possible product types are characterized each by
one quality signal: i.e., the sets S and £ have the same number of elements, and
every type µj 2 £ is characterized by one quality signal sj 2 S. The conditional
probability distribution for the signals observed by the buyers is computed as:

f(skjµj) =

‰
1 ¡ † if k = j;
†=(M ¡ 1) if k 6= j;

where † is the probability that a client misinterprets the true quality of the
product (all mistakes are equally likely). We take † = 10%.

The prior belief is randomly generated in the following way: for every µj 2 £,
p(µj) is a random number, uniformly distributed between 0 and 1. The prob-
ability distribution over types is then computed by normalizing these random

numbers: Pr[µj ] =
p(µj)P

µ2£ p(µ) ; The external beneflts from lying are randomly

uniformly distributed between 0 and 1.


