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ABSTRACT
Prediction markets efficiently extract and aggregate the pri-
vate information held by individuals about events and facts
that can be publicly verified. However, facts such as the
effects of raising or lowering interest rates can never be pub-
licly verified, since only one option will be implemented.
Online opinion polls can still be used to extract and aggre-
gate private information about such questions. This paper
addresses incentives for truthful reporting in online opinion
polls. The challenge lies in designing reward schemes that
do not require a-priori knowledge of the participants’ beliefs.
We survey existing solutions, analyze their practicality and
propose a new mechanism that extracts accurate informa-
tion from rational participants.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Design, Economics

Keywords
opinion polls, mechanism design, incentive compatibility

1. INTRODUCTION
Prediction markets have become efficient tools for extract-

ing and aggregating the local private information detained
by different individual agents. They function like normal
markets where the security that is traded depends on the
realization of a specific future event. Typical prediction
markets trade securities related to the result of presidential
elections, to the the earnings of movies, or to the outcome
of sport competitions.

∗This work was done in the Artificial Intelligence Lab, EPFL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08, July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

The basic idea behind such information markets is that the
pricing scheme of the market encourages the participants to
buy or sell shares in accordance to their private informa-
tion. Consider, for example, the security which pays $1 if
the winner of the 2008 US presidential elections is democrat.
A rational agent will find it profitable to buy such securities
as long as the price she pays for one share is less than p, the
value of her private belief that the United States will be lead
by a democrat president after the 2008 election. When sev-
eral agents participate in the market, the final price of the
security will reflect an aggregate public value of the probabil-
ity of a democrat winner, despite the fact that information
has only been privately available before the trading.

Numerous experiments have shown that the price in pre-
diction markets converges to reflect the true information
available to the agents [2], [10], [3], [19], despite game theo-
retic negative results (e.g., the no trade theorem) [16] which
predict an equilibrium behavior where rational agents do
not trade. Moreover, prediction markets have been known
to consistently outperform other traditional prediction tools
[9], [23], [18], and are empirically hard to manipulate [25],
[22], [1], [20].

One important requirement to run a prediction market is
to be able to define a security related to information that can
be unambiguously and publicly verified on a precise moment
in the future. Even for the information that most trivially
satisfies this condition, the need for accuracy can generated
significant complications. For example, Foresight Exchange1

defined the security BUSH04 in the following way:
G. W. Bush, the president of the United States at the time
this claim started trading, will still be president on 2005-02-
01(after the inauguration after the election is usually sched-
uled). This claim will be TRUE even if elections are post-
poned or G.W. Bush remains in power by staging a coup. If
there are events which make it confusing who the US presi-
dent is, as of 2005-02-01, this claim is true if G.W. Bush is
leading a sovereign government in at least part of the terri-
tory of the Unites States of America(as of 2001-01-01) that
has recognition of at least one of the UN Security Coun-
cil permanent members(Britain, France,China and Russia)
other than the United States.

However, there are many other cases where it would be
invaluable to obtain private information about claims that
can not be verified. An example of such a question is the
effect of raising or lowering central bank interest rates on
economic growth and inflation. Since only one policy can
be implemented, a prediction market for different alterna-

1http://www.ideosphere.com/fx/index.html



tives will include many securities whose underlying event
cannot be publicly verified. An accurate picture of how the
economy, or even just the financial markets, would react to
different options would be extremely helpful to policymak-
ers. Other examples of such problems are predicting the
success of hypothetical products or fashion elements.

Private information about non-verifiable claims can be ob-
tained though opinion polls. Traditional polls conducted by
specialized interviewers are usually accurate, but very ex-
pensive. On the other hand, online opinion polls are trivial
to set up, but lack both verification methods and honest
participation incentives for the reporters. Without such in-
centives, (a) the altruistic reports will get diluted between an
ever increasing number of polls making most of the results
statistically insignificant, and (b) the few results that are
significant can not be guaranteed to be accurate. Further-
more, for questions such as interest rates there are incentives
for respondents to manipulate the outcome and get a certain
policy implemented, and these must also be overcome.

The goal of this paper is to address reporting incentives
for such online opinion polls. The basic idea is to encour-
age honest reporting by explicit rewards that depend on the
opinions of other peers. Intuitively, every report is bench-
marked against the opinion of the group, and rewarded such
that honesty, but not conformity, is optimal.

First we will briefly survey existing incentive schemes that
were initially designed for reputation mechanisms, but can
be easily adapted to online opinion polls. The main draw-
back, however, of these mechanisms is that they either cost
too much, or require unpractical prior knowledge in the de-
sign process. Second, we will investigate the mechanism
based on Bayesian Truth Serum [21] which rewards more the
opinions that turn out to be surprisingly common. Third, we
present a novel mechanism that (a) is more suitable for an
online process where present reporters can see the opinions
expressed by previous users, and (b) requires participants to
submit less information and, therefore, is easier to use.

2. THE SETTING
We assume a setting where a decision maker is organizing

an online opinion poll on a multiple choice question. For the
moment we restrict our attention to binary outcomes where
every participating agent can answer the poll question with
yes or no. These two answers will also be called the positive,
respectively the negative reports. For example, the poll can
be around questions like:

• “Are you afraid of global warming?”, or

• “Would you prefer white over red wine?”, or

• “Is the world economy going through a recession?”.

Whenever possible, we will give directions for extending our
results to the general case where the poll question can have
several possible answers.

Participating agents are rational, they have a private opin-
ion about the poll question, and are assumed not to collude:
i.e., every agent answers the poll at most once, and differ-
ent agents do not communicate among themselves before
reporting. The result of the poll is the (running) average of
all votes, computed as the fraction of the participants who
endorsed the positive alternative. Note that all opinions are
equally weighted in the final outcome of the poll.

We model the private opinion of an agent as a private bi-
nary signal the agent receives from nature regarding the poll
question. Let si ∈ {0, 1} be the signal received by agent i,
where si = 0 indicates that agent i endorses the negative
answer, while si = 1 indicates that the agent endorses the
positive answer. Agents do not know the private signal of
other agents, however, they all share a common belief re-
garding the prior distribution of preferences in the popula-
tion. Let Ω be a random variable expressing the true distri-
bution of preferences of the agents. Let p(ω) = Pr[Ω = ω]
describe the common knowledge a priory belief that a frac-
tion ω ∈ [0, 1] of the population will endorse the positive
answer. All agents are rational and Bayesian, and therefore
their private signal influences their expectation regarding
the posterior distribution of preferences. For example,

• an agent endorsing the positive answer would believe
that the preferences of other agents are distributed ac-
cording to:

p(ω|1) =
p(1|ω)p(ω)∫ 1

ω′=0
p(1|ω′)p(ω′)dω′

=
ωp(ω)∫ 1

ω′=0
ω′p(ω′)dω′

;

(1)

• an agent endorsing the negative answer would believe
that the preferences of other agents are distributed ac-
cording to:

p(ω|0) =
p(0|ω)p(ω)∫ 1

ω′=0
p(0|ω′)p(ω′)dω′

=
(1− ω)p(ω)∫ 1

ω′=0
(1− ω′)p(ω′)dω′

;

(2)

The assumption that agents with different opinions assess
differently the frequency of their own answer is not only a
consequence of Bayesian theory. Numerous lab experiments
confirmed that people expect to be ”typical” and therefore
overestimate the popularity of their own choices [21].

The correlation between an agent’s private information
and private beliefs allows the design of incentive compatible
schemes that reward truthtelling. By conditioning the re-
ward of an agent on the reports of other peers, agents with
different private information will compute differently their
expected outcome, as the probability distribution for the re-
ports of the peers depends on the private information. This
difference can be just enough such that every agent believes
that she is maximizing her expected reward by declaring the
truth. An example of how this mechanism works will follow
in the next section.

We define a reward mechanism by a payment function
τ(·, ·) ∈ R+. Let τ(ri, r−i) be the reward to agent i when
her information submitted to the poll is ri and the infor-
mation submitted by all other participants is r−i (accord-
ing to standard notation, {−i} denotes the set of all other
agents except i). For now we are using a generic notation
for the information reported by an agent. In the simplest
case, ri ∈ {0, 1} is the binary answer to the poll question.
Nevertheless, ri might include additional information like
the user’s estimate for the outcome of the poll (e.g., used
by the Bayesian Truth Serum [21]). The rewards “paid” to
the agents need not be monetary, and can represent virtual



points, in kind services, or any other benefits online users
put value to.

The goal of the designer is to define the function τ such
that all agents find it rational to report truthfully. Formally,
given that ri(1) and ri(0) are the information reported by
agent i to reveal the positive, respectively the negative an-
swer to the poll question, the incentive compatibility con-
straints on the reward scheme τ are the following:

∑
r−i

Pr[r−i|0]
(
τ
(
ri(0), r−i

)− τ
(
ri(1), r−i

))
> 0;

∑
r−i

Pr[r−i|1]
(
τ
(
ri(1), r−i

)− τ
(
ri(0), r−i

))
> 0;

(3)

Pr[r−i|0] and Pr[r−i|1] are the probabilities that the infor-
mation reported by other agents is exactly r−i when agent
i privately endorses the positive, respectively the negative
answer to the poll question. These probabilities depend on
the conditional posterior beliefs p(ω|0) and p(ω|1) detailed
in Eq. (1) and (2) respectively. The two inequalities can
be satisfied simultaneously because the probability distribu-
tions Pr[r−i|0] and Pr[r−i|1] are different. Unfortunately,
the mechanism designer cannot exactly compute Pr[r−i|0]
and Pr[r−i|1] as the prior distribution p(ω) is not known.

One last clarification regards to use of the term online.
So far we have used it to indicate that the opinion poll is
hosted on the internet where agents can answer it from the
comfort of their home. From this point onwards, the term
online will be used exclusively to characterize the process
governing the poll. An online poll is updated in (almost)
real-time, and publicly displays some summary (typically
the fraction of positive answers) of the information reported
by the previous users. By contrast, an offline poll will dis-
play the results only at the end, after the submission process
has been ended.

3. INCENTIVE-COMPATIBLE REWARDS
FOR OPINION POLLS

Fundamental results in the mechanism design literature
[8, 7] show that side payments can be designed to create the
incentive for agents to reveal their private opinions truth-
fully. Such payment schemes have been constructed based
on proper scoring rules [15, 11, 4], and exploit the correla-
tion between the private signals and the private beliefs of
an agent. The first adaptation of these results to general
feedback reporting mechanisms is due to [17], and functions
as follows.

A central authority, the poll sponsor in our case, scores
every answer by comparing it with another report (called the
reference report) submitted by a different user. The score
reflects the value of a proper scoring rule, computed for the
values of the two reports. For example, if rref(i) denotes
the reference report of ri, the score of ri can be directly
proportional to log(Pr[rref(i)|ri]), the value of the logarith-
mic scoring rule for the point represented by the conditional
posterior probability of the reference report, given ri. All
proper scoring rules have the property that they maximize
the expected score when the report ri honestly reflects the
agent’s private information.

Jurca and Faltings modified the mechanism proposed by
Miller et al. in several important aspects. First, they used
the technique of automated mechanism design [6] to develop

novel adaptive scoring functions that have the property that
they minimize the budget required to pay the reports [12].
Second, they extended the scoring functions to include sev-
eral reference reports and a filtering mechanism that proba-
bilistically eliminates some of the false reports. Third, they
show that yet another family of scoring functions can gen-
erate robust mechanisms where honest reporting is the only
equilibrium [13].

To get a practical feel of how these different mechanisms
work, let us consider a simple numerical example. The poll
asks the participants to assess whether or not without cuts
in interest rates, the US economy would enter a recession
this year. Such a question could be answered in a predic-
tion market by trading securities conditional on the interests
rates being lowered. Nevertheless, the security must define
precisely the meaning of recession, a task which we believe to
be complicated enough to justify the search for alternative
information elicitation mechanisms.

This poll closely follows the Davos World Economic Fo-
rum, where world leaders have already expressed their views
on this issue. These public declarations create a prior be-
lief regarding the frequency of the positive answer, which,
for simplicity, is assumed to follows a beta distribution:

p(ω) = ωα(1−ω)β

B(α,β)
. To reflect the divergence of opinions

slightly skewed towards the positive answer, let α = 6 and
β = 3.

A priory, the expected outcome of the poll is E[ω] =
α

α+β
= 2/3. An agent who is inclined to believe in an upcom-

ing economic recession will update accordingly her expecta-
tion of the final outcome of the poll. From her point of view
the frequency of the positive answer follows a beta distribu-
tion with parameters α = 7 and β = 3, so the pessimistic
agent expects the poll to close with 70% of the participants
endorsing the positive answer.

The optimistic agent, on the other hand, who believes the
economy suffers only from a temporary slowdown, will ex-
pect the frequency of the positive answer to follow a beta
distribution with α = 6 and β = 4. Consequently, she ex-
pects the output of the poll to be around 40%. Notice that
both agents expect their own opinion to be more popular,
although they both accept that the majority will endorse
the positive answer.

The following reward mechanisms can create honest re-
porting incentives:

• by using the logarithmic scoring rule as described by
Miller et al., τ(ri, rref(i)) = a · log(

Pr[rref(i)|ri]
)

+ b
where a and b are two appropriate constants. Given
that Pr[1|1] = 0.7 and Pr[1|0] = 0.6 the payments
could be:

τ(·, ·) rref = 0 rref = 1
r = 0 1.3 3.2
r = 1 0 3.9

and the incentive compatibility constraints are satis-
fied because:

0.4τ(0, 0) + 0.6τ(0, 1) = 2.44 > 0.4τ(1, 0) + 0.6τ(1, 1) = 2.34;

0.3τ(1, 0) + 0.7τ(1, 1) = 2.73 > 0.3τ(0, 0) + 0.7τ(0, 1) = 2.63;

• using adaptive scoring rules computed through auto-
mated mechanism design, much cheaper payments can
guarantee the same margins for reporting honestly. For
example, if:



τ(·, ·) rref = 0 rref = 1
r = 0 1.3 0
r = 1 0 0.7

reporting the truth is better than lying by 0.1 units,
while the expected payment to a reporter has gone
down to roughly 0.5:

0.4τ(0, 0) = 0.52 > 0.6τ(1, 1) = 0.42;

0.7τ(1, 1) = 0.49 > 0.3τ(0, 0) = 0.39;

Considering several reference reports can further de-
crease the cost of the rewards.

The mechanisms based on scoring rules work for both on-
line and offline process. In an offline setting, the poll oper-
ator computes the reward scheme once, keeps all submitted
reports secret, and distributes the payments after the close
of the poll, by choosing randomly the reference report(s). In
an online setting, the poll operator has two choices:

1. publish every report as soon as it gets submitted. The
reward mechanism has to be recomputed every time,
to reflect the new information gained through the last
submission. The immediately following report(s) are
used as reference to compute the payments.

2. publish batches of reports, and update the reward
mechanism offered to the next batch based on the re-
sults of the previous batch. Reference reports are al-
ways chosen from the same batch;

The second alternative establishes a compromise between
updating speed and computational complexity. With more
reports in a batch, the delay for releasing the information to
the public increases, but the frequency of recomputing the
reward mechanism decreases.

One big disadvantage of the mechanisms presented above
is that they require precise knowledge about the prior beliefs
of the agents. If the mechanism designer does not know the
prior distribution p(ω), the payments cannot be computed.
One possible workaround is to construct payment systems
that are incentive-compatible for a range of prior beliefs. For
example, assume that the mechanism designer does not have
precise estimates for Pr[1|1] and Pr[1|0], but believes they
must be in the ranges: (0.7 ± ε) and (0.6 ± ε) respectively.
The following payments guarantee a truthtelling margin of
0.1 even when the probabilities Pr[1|1] and Pr[1|0] take the
worst possible values for an uncertainty level characterized
by ε = 0.02:

τ(·, ·) rref = 0 rref = 1
r = 0 2.1 0
r = 1 0 1.1

For increasing levels of uncertainty, the rewards become
larger and larger, as shown in Figure 1. The general al-
gorithm for designing incentive compatible payments under
uncertainty is described in [14], and confirms the same dras-
tic increase in cost as the designer is less certain about the
private beliefs of the reporters.

3.1 The Bayesian Truth Serum
The Bayesian Truth Serum (BTS) [21] establishes an in-

centive compatible reward mechanism that does not depend
on knowledge about the prior beliefs. The agents are still
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Figure 1: Incentive compatible rewards for increased
uncertainty.

assumed to have common prior beliefs, but these beliefs are
not reflected in the design of the mechanism.

BTS works by asking reporters supplementary informa-
tion. Every agent submits her subjective answer to the poll
question, and also reports an estimate of the final distribu-
tion over the possible answers. The reward received by each
agent takes into account the given answer, the estimated
outcome of the poll, the final outcome of the poll, and an
average of the predicted outcomes of the poll.

For the example in the previous section, BTS would gen-
erate the following rewards to agent i:

• log ω∗
ē

+ KL(ω∗, ei) if the agent endorses the positive
answer, and

• log 1−ω∗
1−ē

+ KL(ω∗, ei) if the agent endorses the nega-
tive answer;

ω∗ is the actual percentage of respondents endorsing the
positive answer, ei is the estimate of ω∗ reported by agent
i, ē is the geometric average of all e′is, and KL(ω∗, ei) =
ω∗ log ei

ω∗ +(1−ω∗) log 1−ei
1−ω∗ is the Kullback-Leibler distance

between the actual distribution of reports, and the distribu-
tion predicted by agent i. [21] proves that honest answering
is a pareto-optimal Nash Equilibrium of the mechanism.

3.2 A framework for improving BTS
Original incentive schemes based on proper scoring rules

were significantly improved by automated mechanism de-
sign, as explained in the beginning of this section. The basic
idea is to define adaptive scoring functions that are optimal
for a given context (i.e., given information structure). The
same idea can be applied to improve BTS.

Formally, BTS elicits from a poll participant (i.e., agent
i) the tuple ri = (oi, ei) where oi ∈ {0, 1} is the binary
answer to the question, and ei ∈ [0, 1] is an estimation of
the final outcome of the poll (i.e., fraction of the respondents
endorsing the positive answer). An agent reports truthfully
when oi equals her private signal si, and when the expected
outcome ei equals the posterior expected probability of the
positive answer:

ei = Pr[1|si] =

∫ 1

ω′=0

ω′p(ω′|si)dω′;



Not all agents are expected to accurately compute and
report ei. However, given that sufficient agents participate,
individual errors made in the reports ei will cancel out, and
some aggregate of the reports ei will be equal to the same
aggregate computed over the errorless reports. Let ē denote
this aggregate which, for example, could be the arithmetic
or the geometric average. When ē is the arithmetic average∑N

i=1 ei

N
, the assumption of canceling errors implies that:

ē = lim
N→∞

∑N
i=1 ei

N
= ω∗Pr[1|1] + (1− ω∗)Pr[1|0]

= ω∗
∫ 1

ω′=0

ω′p(ω′|1)dω′ + (1− ω∗)
∫ 1

ω′=0

ω′p(ω′|0)dω′

where ω∗ is the true frequency of the positive answer in the
population.

For large enough number of reporters, the information r−i

truthfully reported by all other agents except i can be sum-
marized by ω∗ ∈ [0, 1] and ē ∈ [0, 1], where again, ω∗ is
the true frequency of the positive answer, and ē is the aver-
age of the expected frequencies for the positive answer. The
payment mechanism can now be specified by the function

τ : {0, 1} × [0, 1]× [0, 1]× [0, 1] → R+

where τ(oi, ei, ω
∗, ē) is the payment received by the agent i

given that:

• she answers the question with oi ∈ {0, 1}
• she predicts the outcome of the poll (i.e., fraction of

positive answers) will be ei;

• the actual outcome of the poll is ω∗

• the average expected outcome of the poll is ē

A rational, risk-neutral agent has the incentive to report
honestly (given that all other agents report honestly) if and
only if her expected payment for reporting the truth is higher
than the expected payment for lying by some margin ∆:
∫ 1

ω=0

p(ω|si)
(
τ(si, P r[1|si], ω, ē)−τ(¬si, ei, ω, ē)

)
> ∆; (4)

where ¬si is the binary opposite of si and ei 6= Pr[1|si] is
a false report about the expected outcome of the poll. The
inequality must hold for all si ∈ {0, 1}, for all ei 6= Pr[1|si],
and for all prior probability distributions p(ω).

A slight relaxation of the constraints in (4) is to assume
that agents truthfully report their expected outcome of the
poll, ei

2. The payment function becomes τ(si, ω
∗, ē), and

without loss of generality we can make the notation:

g(ω∗, ē) = τ(1, ω∗, ē)− τ(0, ω∗, ē)

The constraints on honest reporting incentives thus be-
come:

∫ 1

ω=0

p(ω|1)g(ω, ē) > ∆;

∫ 1

ω=0

p(ω|0)g(ω, ē) < −∆;

(5)

Hence the design problem can be summarized by the fol-
lowing:
2This assumption can be easily replaced by an independent
payment that penalizes the distance between ei and the ac-
tual outcome of the poll. This is the approach taken in BTS

Problem 1. Find a function g : [0, 1] × [0, 1] → R such
that:

∫ 1

ω=0

p(ω|1)g(ω, ē(ω))dω > ∆

∫ 1

ω=0

p(ω|0)g(ω, ē(ω))dω < −∆

for all probability distributions p : [0, 1] → R+.

∆ is known and positive. p(ω|0) and p(ω|1) can be com-
puted by Eq. (1) and (2). The notation ē(ω) is meant to
show that the aggregate function on expected outcomes also
depends on the actual frequency of the positive answer.

The answer to Problem 1, while a valuable theoretical ex-
ercise, will inevitably suffer from the following two practical
shortcomings:

• first, the mechanism places a significant burden on the
poll participants who must compute and report the
estimates of the poll outcome;

• second, the mechanism may only work for an offline
process, where the poll owner stores all reports until
the end of the poll and does not disclose any partial
information to future participants. This can be seen
against the philosophy of internet systems and could
deter participation.

For these reasons, the next section pursues an alternative
mechanism that requires less information from the partic-
ipants and can be adapted to an online opinion reporting
process.

4. ONLINE INCENTIVE-COMPATIBLE
REWARDS

In an online mechanism the opinions submitted by the poll
respondents are immediately reflected in the (partial) result
of the poll. The main differences from the offline process is
that:

• agents can see the opinions submitted by the previous
users

• the users (and the poll operator) do not know how
many more opinions will be submitted in the future

• rewards have to be conditioned on a finite number of
future reports

Let Rt be the partial result of the poll, as known after
the answer of the tth participant. If n is the number of
positive answers among the t reports submitted so far, the
partial result Rt is defined as the fraction n

t
. We will use

the notation Rt+1 = Rt ⊕ rt+1 to denote the partial result

updated with the binary report rt+1: i.e., Rt+1 =
n+rt+1

t+1
,

The reward mechanism we propose is very simple:

1. Agents are paid only if their answer agrees with the
answer of another agent (the reference report).

2. By default, the report rt at time t is compared to the
report rt+1.
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Figure 2: Example of reports in an online opinion
poll.

3. The agents may choose to be scored against a future
reference report. If rt = 0, the agent may specify a
threshold θ < Rt−1, and she will be matched against
the first report submitted after the result of the poll
belongs to the interval [θ, Rt−1]. Likewise, if rt = 1 the
agent may specify a threshold θ > Rt−1, and she will
be matched against the first report submitted after the
result of the poll belongs to the interval [Rt−1, θ].

4. The payments for matching positive and negative re-
ports are τt(1) and τt(0) respectively. They are com-
puted based on the partial result of the poll available
so far:

τt(0) = c ·Rt

τt(1) = c · (1−Rt)
(6)

where c is a positive constant.

Consider the example from Section 3, and a sequence of
reports as in Figure 2. Let us analyze the second partici-
pant. The first reporter submitted a positive answer, and
since the starting value of the poll was set to R0 = 0.5,
the partial outcome of the poll before the report of the sec-
ond agent is R1 = 0.66. The second participant endorses
the positive answer and she reports truthfully r2 = s2 = 1.
This report takes the partial result of the poll up to 75%.
The second agent has two options. First, she can accept
to be scored against the default reference report, r3, under-
stating that she will get paid τ1(1) if r3 is positive, or 0 if
r4 is negative. In our example r3 is negative, so had the
agent chosen the default reference report, she wouldn’t have
received any reward. The second option of the agent is to
specify a threshold (e.g., θ = 0.7) such that she will be scored
against the first report submitted after the partial result was
in [0.66, 0.7]. If she took this option, the second report would
be scored against the 5th report, as R4 = 0.66 ∈ [0.66, 0.7].

The next result describes the equilibrium strategy of this
mechanism. The equilibrium is characterized by a more gen-
eral notion of incentive compatibility where the reports are
not necessarily truthful, but always act to decrease the dis-
tance between the updated partial result of the poll and the
subjective belief of the reporter regarding the outcome of
the poll. The typical case where the equilibrium strategy
will prescribe non-truthful reporting is when the prior in-
formation of the agents conflicts strongly with the publicly
available result of the poll. Coming back to the example
from Figure 2, the first agent reports positively regardless
of her private opinion. She lies about her private information
because by doing so she helps correct the inaccurate public
information available in the poll (i.e., the starting value in
this case).

Theorem 1. The following strategy is a Nash Equilib-

rium:

rt = arg min
r

∣∣(Rt−1 ⊕ r)− Pr[1|st]
∣∣

Proof. Recall that st is the private information of agent
t, and Pr[1|st] is the posterior private expectation of the
agent t regarding the outcome of the poll. The report rt

submitted to the poll attempts to approach as much as pos-
sible the updated result to the private opinion.

Depending on the value of Rt−1 and on the possible pri-
vate beliefs of an agent, we might be in one of the following
three cases:

• Rt−1 < Pr[1|0] < Pr[1|1] when both agent types (the
type endorsing the positive answer and the type en-
dorsing the negative answer) regard the partial result
of the poll as “lower” than what it should be;

• Pr[1|0] ≤ Rt−1 ≤ Pr[1|1] when the agent who en-
dorses the negative answer believes the partial result
is overestimating the final outcome, while the agent
who endorses the positive answer believes the partial
result is underestimating the final outcome.

• Pr[1|0] < Pr[1|1] < Rt−1 when again, regardless of
their opinion, all agents believe the partial result is
overestimating the final outcome.

In the first case, the strategy requires both agent types
(agents who believe in the positive alternative and agents
who believe in the negative alternative) to report positively.
In the last case, both agent types will report negatively,
while in the middle case the agents truthfully report their
private opinion.

It is simple to prove that all agents who are in the first
situation do not have the incentive to report negatively. If
they were to report negatively the value of Rt will be even
lower than Rt−1 and therefore agent t+1 will report pos-
itively. According to the definition of our reward scheme,
the reward to agent t is 0 in this case. Moreover, any future
report submitted when the partial result is smaller than Rt

will also be positive, so it does not help to choose a future
reference report instead of the next one. A positive report,
on the other hand, generates a positive reward with positive
probability.

Similarly, in the third case, all agents have the incentive
to report negatively as any deviation to a positive report
does not bring any payoffs.

For the second case when Pr[1|0] ≤ Rt−1 ≤ Pr[1|1],
take an agent t who endorses the negative answer, and
consequently believes the final outcome of the poll should
be Pr[1|0]. If agent t truthfully reports her opinion, she
may choose to be scored against a future reference report,
rj that has been submitted in the same conditions: i.e.,
Pr[1|0] < Rj−1 < Pr[1|1]. The report rj will therefore be
truthful, and agent t believes the probability of rj being neg-
ative is Pr[0|0] = 1 − Pr[1|0]. Her expected payoff in this
case is:

Pr[0|0]·τt−1(0) = (1−Pr[1|0])·τt−1(0) ≥ (1−Rt−1)·c·Rt−1;

On the other hand, if agent t were to lie and report pos-
itively, her best choice would be to choose a future refer-
ence report rj , that is also truthful. Since the probability of
rj = 1 is Pr[1|0] agent t expects the payoff:

Pr[1|0] · τt−1(1) = Pr[1|0] · τt−1(0) ≤ Rt−1 · c · (1−Rt−1);
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Figure 3: Example of the overshooting effect

As a consequence, if agent t endorses the negative an-
swer, she is better off reporting honestly. Similarly, if agent
t endorsed the positive answer, which makes the strategy
enounced in the theorem a Nash equilibrium. ¥

Note that the equilibrium strategy in Theorem 1 does not
specify when an agent would choose to be scored against
a report different from the next one. But the option has
to exist in order to ensure that there is always a profitable
reporting option. Consider the case from Figure 3 where al-
though the current result of the poll is bellow both Pr[1|0]
and Pr[1|1], the updated result Rt+1 = Rt⊕1 overshoots the
private beliefs of the agents, and the next participant, will
find an overestimated result. rt+1 would report negatively
in this case, and rt would not get paid. In our mechanism,
however, the agent can first choose the reference report to
optimize the rewards, and then follows the equilibrium strat-
egy to determine what to report. On the other hand, the
agent cannot choose any reference report, since there must
be some correlation between the binary answer to the poll
question and the choice of reference report. This correlation
is enforced by making sure the reference report is chosen
from a round where the public information was also lower
(respectively higher) than the private information.

An obvious choice for the value of the threshold θ is ex-
actly the private belief Pr[1|st]. Nevertheless, the proof in
Theorem 1 does not depend on this assumption.

The next important question is whether the final outcome
of the poll will converge to the true frequency of the positive
answer. In equilibrium, some agents will misreport their
opinion, however, the following theorem proves that after
sufficient reports, the outcome of the poll converges to the
true fraction of agents that endorse the positive answer.

Theorem 2. The poll converges to the correct outcome.

Proof. The proof of this result is based on two ob-
servations. First, according to the equilibrium, whenever
Pr[1|0] < Rt < Pr[1|1] agent t + 1 reports honestly her
opinion. This honest report allows all future agents to learn
something new (the private signal of agent t + 1) and can
use this information to update their own beliefs regarding
the distribution of opinions in the population. Given that
the partial outcome of the poll will be a sufficient num-
ber of times between the spread of private beliefs, the poll
will receive a sufficient number of honest opinions, which
by Bayesian updating, will converge all beliefs to the true
distribution of opinions.

What remains to be proven is that the equilibrium strat-
egy will push often enough the partial outcome of the poll
within the interval

[
Pr[1|0], P r[1|1]

]
. This result is straight

forward: for any values Pr[1|0] < Pr[1|1] ∈ [0, 1], and for
all Rt = n

t
not belonging to the interval (Pr[1|0] < Pr[1|1])

the strategy of Theorem 1 pushes the partial outcome be-
tween Pr[1|0] and Pr[1|1] within a finite number of steps.
Because the update to Rt is always smaller than 1

t
, once t

becomes larger than d 1
Pr[1|1]−Pr[1|0]e the partial result can-

not oscillate anymore from the left to the right of the interval
(Pr[1|0] < Pr[1|1]) without falling inside. ¥

The proof of Theorem 2 also gives an insight to the dy-
namic behavior of the equilibrium. As long as the public out-
come of the poll is far from the private belief of the agents,
users will submit opinions that decrease the gap between the
private and the public information. As soon as the public in-
formation becomes close enough to the private information,
the agents honestly report their opinions. The partial poll
result can be initialized with any value. The first reports
will make sure that within a finite number of rounds, the
publicly available information accurately reflects the private
(unknown to the designer) information of the agents.

Another consequence of Theorem 1 is that the agents who
report when the public information is significantly away
from the private information will generally expect higher
payments. When the partial result Rt is either below Pr[1|0]
or above Pr[1|1], the equilibrium entitles the reporters to
an expected payment of τt(1) and τt(0) respectively. On
the other hand, the agents reporting when Pr[1|0] < Rt <
Pr[1|1] only expect a fraction on the published payments.
This automatically creates strong participation incentives,
as the participants find it more profitable to submit their
opinion as early as possible.

5. COLLUSION
The equilibrium described by Theorem 1 is unfortunately

not unique. Agents get rewarded for matching reports,
therefore one simple strategy that is also a Nash equilib-
rium is to always report the same opinion (i.e., 0 or 1). The
existence of different equilibria brings forth the problem of
collusion, as agents may synchronize their reports to game
the reward mechanism.

Although a more general solution to address collusion is
part of our ongoing work, we believe the current mecha-
nism is resistant against some basic collusion strategies. For
example, always reporting the same opinion, although an
equilibrium, generates less revenues for the participants than
honest reporting. When every agent endorses the negative
answer, the partial result of the poll converges fast to 0. The
payments for matching negative reports are directly propor-
tional to the running average of the opinions submitted so
far, and therefore will also converge to 0. For all possible
distributions of opinions, the expected revenue of the hon-
est reporting strategy will at some point become higher than
the expected revenue of the lying strategy. The analysis for
the symmetric strategy of always reporting 1 gives the same
result.

Random reporting, if an equilibrium at all, is also less
profitable than honest reporting. A random strategy is char-
acterized by the fact that agents answer the poll using a
randomization device whose output does not depend on the
agent’s private information. First, fixed random reporting
strategies (i.e., the probability of an agent reporting 1 is
constant over time) are not in equilibrium. The payments
change depending on the partial outcome of the poll, there-
fore two agents reporting in different contexts will expect
different payoffs for a negative, respectively a positive re-
port. There is, however, an equilibrium random strategy
that depends on Rt, the partial outcome of the poll.

Let σRt be a random strategy depending on the partial
outcome Rt. If Rt = n

t
, where n out of the t previous



respondents endorsed the positive answer, let σ(n, t) be the
probability that the next agent reports 1:

σ(n, t) = Pr[rt+1 = 1|n, t]

Assume that σ(n, t) = n−1
t−2

for all n, t ∈ N, σ(0, t) = 0 and

σ(t, t) = 1 for all t ∈ N. It is easy to verify that σRt is a
Nash equilibrium:

• if agent t+1 reports 0, the agent t+2 will also report 0
with probability 1−σ(n, t+1) = t−n

t−1
and her expected

payoff is:

τt(0) · t− n

t− 1
= c

n(t− n)

t(t− 1)
;

Moreover, agent t + 1 cannot increase her expected
payment by choosing to be scored against another ref-
erence report: the probability of a negative report fol-
lowing a partial outcome that is higher than θ > n

t+1

is always lower than 1− σ(n, t + 1).

• if agent t+1 reports 1, the agent t+2 will also report 1
with probability σ(n+1, t+1) = n

t−1
and her expected

payoff is:

τt(1) · n

t− 1
= c

n(t− n)

t(t− 1)
;

Moreover, agent t + 1 cannot increase her expected
payment by choosing to be scored against another ref-
erence report: the probability of a positive report fol-
lowing a partial outcome that is lower than θ < n+1

t+1

is always lower than σ(n + 1, t + 1).

Besides the complexity involved in taking random deci-
sions that depend on the current outcome of the poll, the
equilibrium brought by σRt is also unattractive. In the hon-
est equilibrium the expected payment is at least τt(0)τt(1)/c
(see the proof of Theorem 1, which is greater than the out-
come of σrt .

In practical settings it is quite reasonable to assume that
the majority of the agents will not attempt to become part of
a lying coalition. If the fraction of colluders is small enough,
we claim that no symmetric lying strategy (i.e., all colluders
use the same strategy) can be profitable for the colluders.
The restriction to symmetric strategies is justified by practi-
cal considerations: asymmetrical collusion strategies require
the synchronization of reports and side communication chan-
nels among colluders.

Assume there is a collusion strategy σ such that for some
prior beliefs and some value of the partial outcome Rt, the
colluder would report the value that increases the distance
between Rt+1 and the private information. Assume that up
to γ percent of the agents can become part of the coalition
on σ, and that the remaining 1−γ fraction reports honestly.
As in the proof of Theorem 1, we can consider the following
three cases:

• Rt < Pr[1|0] < Pr[1|1],

• Pr[1|0] ≤ Rt ≤ Pr[1|1]

• Pr[1|0] < Pr[1|1] < Rt

In the first case, the colluder (agent t + 1) is assumed to
report 0 according to σ. Assuming that colluders cannot
control the sequence of reports (a reasonable assumption in

most real applications) the reference report used to score
rt+1 is honest with probability 1− γ, and part of the coali-
tion with the remaining probability γ. Any honest report
submitted when the partial outcome of the poll is lower than
Rt will be positive, hence the best case payment expected
by the colluder is:

γ · τt(0) = γ · c ·Rt;

On the other hand, the payment expected by an honest
reporter is τt(1) = c · (1 − Rt). Therefore the colluder is
worse off than the honest reporter as long as:

γ <
1−Rt

Rt
; (7)

The same analysis for the third case sets an upper bound
for the maximum coalition fraction to:

γ <
Rt

1−Rt
; (8)

For the second case, assume the private signal of the col-
luder is negative: i.e., st+1 = 0. According to σ the colluder
should report 1. In the best case, the colluder can expect a
matching report from a fallow colluder with probability 1,
and a matching report from an honest reporter with proba-
bility Pr[1|0]. The colluder’s expected payoff is therefore:

γτt(1) + (1− γ)
(
Pr[1|0]τt(1)

)

while an honest reporter in the same circumstances expects:
(1− Pr[1|0])τt(0). The honest reporter is better off as long
as:

γ <
Rt − Pr[1|0]

(1−Rt)(1− Pr[1|0])
(9)

Similarly, if the private signal of the colluder were positive,
the upper bound on the colluding fraction is:

γ <
Pr[1|1]−Rt

RtPr[1|1])
(10)

Conditions (7) and (8) show that it is tempting to col-
lude when the partial result is very close to 0 or very close
to 1. For example, when the participants have a clear
preference for the positive answer, the reward for a nega-
tive report becomes so great that even a small probabil-
ity of being matched against a fellow colluder makes lying
worth while. One possible solution is to force some mini-
mum payments for a report: e.g., τt(0) = c ·max(Rt, b) and
τt(1) = c·max(1−Rt, b), where b is some constant set by the
designer. This guarantees that the mechanism is resistant to
a collusion fraction of at least b. Nevertheless, the minimum
payments also create supplementary inconveniences:

• the strategies of always reporting 0 or always reporting
1 become more interesting equilibria, and

• in some extreme cases where the private beliefs of the
agents are either well below b or well above 1−b, honest
reporting is not always the best strategy.

Conditions (9) and (10) emphasize another context where
collusion becomes attractive, mainly when the public out-
come of the poll is very close to the agent’s private beliefs
(i.e., Rt ' Pr[1|0] or Rt ' Pr[1|1]). Intuitively, a report
submitted when Rt matches the private information does
not bring an information gain, and therefore the reward of



the honest equilibrium is not substantial enough to prevent
collusion. This case, however, does not pose a real threat
to the mechanism, since only a limited number of colluders
will actually be in a situation to have their private beliefs
aligned to the public information.

There seems to be an inherent tradeoff between the re-
sistance to collusion and the range of settings where this
mechanism can be used. Whether this tradeoff is a short-
coming of our present reward scheme, or a more general trait
of online information elicitation mechanisms remains to be
addressed in our future work.

Another frequent type of collusion is when the same agent
controls several online identities (or sybils) and coordinates
the reports submitted under different identities to manip-
ulate the mechanism. For some domains (e.g., some com-
binatorial auctions), it is possible to construct false-name-
proof mechanisms [26] where self-interested agents cannot
profit from creating multiple identities. For many other do-
mains, on the other hand, false-name-proof mechanisms are
known to be impossible (e.g., simple voting mechanisms).
We conjecture a similar impossibility result for the setting
described in this paper. Intuitively, false-name-proofness
implies that an agent who elicits a second report from a
different identity should not expect any payment. How-
ever, when two separate agents submit each one report, the
incentive-compatibility constraints require that they both
expect positive rewards. Since the mechanism has no exter-
nal source of information to distinguish between the two set-
tings, we believe that no incentive-compatible reward mech-
anism can also be false-name-proof in this domain.

An interesting alternative is proposed by Conitzer [5], who
shows that many domains accept false-name-proof mecha-
nisms with limited verification of online identity. As future
work, we plan to find the minimum assumptions on an iden-
tity verification device that could help deter sybil attacks.

6. DISCUSSION
Prediction markets guarantee that the subsidies to the

traders are bounded by an upper limit. This is very conve-
nient for market owners as they know the worst case price
they have to pay for the information provided through the
market. The BTS method provides even stronger guarantees
by ensuring that the payments to the poll participants break
even. However, we believe that budget-balance is not a de-
sirable property for opinion polls. The total payments break
even only when some agents lose money. The same would
be true for prediction markets, despite the subsidy of the
market owner. While both prediction markets and the BTS
mechanism are ex-ante individually rational (i.e., agents do
not expect to lose money by entering the mechanism), they
are not ex-post individually rational (IR).

We see two problems with reward mechanisms that are not
ex-post IR. First, the negative payoffs require some mecha-
nism to collect payments from the participants. The collec-
tion should happen before participation, because the nature
of the internet makes it impossible to later track down agents
and extract payments. While entry fees might seem reason-
able for a market, we cannot imagine an opinion poll where
agents pay to submit their opinion.

Second, the possibility of losing money may also deter par-
ticipation. Opinion polls depend on a large number of agents
expressing their opinions, so we strongly believe that every
participant should leave the poll with some reward. Under

these conditions, budget balance (or even finite bounds on
the budget) are not feasible. Instead, the mechanism can en-
sure that there is an upper bound on the expected payment
per participant. It is only fair that the increased informa-
tion accuracy obtained through a supplementary report be
reflected in the total cost. The maximum subsidy per par-
ticipant is automatically obtained through the definition of
the reward mechanism from Section 4.

We have treated here binary opinion polls, but the results
can be easily extended to n-ary poll questions. The private
beliefs of the agents will reflect a probability distribution
over a vector of possible answer frequencies. Conceptually,
the agents would still report to decrease the gap between
the public and the private information, however, different
metrics used to assess the distance between two probabil-
ity distributions might affect the final results. A complete
characterization of n-ary polls remains for future work.

Another extension is to consider a group of peer reports
when paying for an opinion. This allows for more grad-
ual payments where partial agreement is also rewarded. In
general, the use of several reference reports is expected to
decrease the overall payments that provide honest reporting
incentives [12].

The mechanism can be improved by using smarter updat-
ing functions for the partial result of the poll. For example,
the desire of an agent to be scored against a future reference
report may be seen as an indication of overshooting, and
should trigger a finer grained update of the Rt. Moreover,
for polls that run over long periods of time one might wish
to weigh less the reports from the distant past. However,
changes to the updating process, (especially due to infor-
mation reported by agents) also affect the behavior of the
participants, and will be analyzed in more depth in future
work.

One last point we would like to stress is that the rewards
need not be monetary payments. These rewards can be con-
verted into bonus points, preferential QoS, lottery tickets or
any other assets that users value. Effective micro-payment
systems are still hard to implement, but fortunately, users
care enough about virtual points and currencies [24] to make
the implementation of such reward mechanisms feasible.

7. CONCLUSION
Obtaining and aggregating the private information of in-

dividual agents has the potential to greatly improve the
decision process across a wide range of domains. Markets
proved very efficient for extracting predictions about claims
and facts that can be precisely verified in the near future.
All other non-verifiable information, such as implications of
alternative policies, long term effects, subjective or artistic
impressions can only be elicited through opinion polls. This
paper addresses the design of incentives for online opinion
polls. We survey existing solutions and propose a new mech-
anism that is simple and effective.
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[20] A. Poteshman. Unusual Option Market Activity and
the Terrorist Attacks of September 11, 2001. Journal
of Business, 79:1703–1726, 2006.

[21] D. Prelec. A bayesian truth serum for subjective data.
Science, 306(5695):462–466, 2004.

[22] P. Rhode and K. Strumpf. Manipulating Political
Stock Markets: A Field Experiment and a Century of
Observational Data. Working paper, 2007.

[23] R. Roll. Orange juice and weather. The American
Economic Review, 74(5):861–880, 1984.

[24] E. Servan-Schreiber, J. Wolfers, D. Pennock, and
B. Galebach. Prediction markets: Does money matter.
Electronic Markets, 14(3), 2004.

[25] J. Wolfers and A. Leigh. Three Tools for Forecasting
Federal Elections: Lessons from 2001. Australian
Journal of Politics Science, 37(2):223–240, 2002.

[26] M. Yokoo, Y. Sakurai, and S. Matsubara. The effect of
false-name bids in combinatorial auctions: New fraud
in internet auctions. Games and Economic Behavior,
46(1):174–188, 2004.


