Context-Tree Recommendation vs Matrix-Factorization: Algorithm Selection and Live Users Evaluation

We describe the selection, implementation and online evaluation of two e-commerce recommender systems developed with our partner company, Prediggo. The first one is based on the novel method of Bayesian Variable-order Markov Modeling (BVMM). The second, SSAGD, is a novel variant of the Matrix-Factorization technique (MF), which is considered state-of-the-art in the recommender literature. We discuss the offline tests we carried out to select the best MF variant, and present the results of two A/B tests performed on live ecommerce websites after the deployment of the new algorithms. Comparing the new recommenders and Prediggo’s proprietary algorithm of Ontology Filtering, we show that the BVMM significantly outperforms the two others in terms of CTR and prediction speed, and leads to a strong increase in recommendation-mediated sales. Although MF exhibits reasonably good accuracy, the BVMM is still significantly more accurate and avoids the high memory requirements of MF. This scalability is essential for its application in online businesses.


Editor(s):
,
Published in:
Proceedings of the 31st AAAI Conference on Innovative Applications of AI
Year:
2019
Publisher:
AAAI
Laboratories:




 Record created 2019-08-14, last modified 2019-08-19

NA:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)