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ABSTRACT
Online reputation mechanisms need honest feedback to func-
tion effectively. Self-interested agents report the truth
only when explicit rewards offset the potential gains ob-
tained from lying. Feedback payment schemes (monetary
rewards for submitted feedback) can make truth-telling ra-
tional based on the correlation between the reports of dif-
ferent buyers.

In this paper we investigate incentive-compatible payment
mechanisms that are also resistant to collusion: groups of
agents cannot collude on a lying strategy without suffer-
ing monetary losses. We analyze several scenarios, where,
for example, some or all of the agents collude. For each
scenario we investigate both existential and implementation
problems. Throughout the paper we use automated mecha-
nism design to compute the best possible mechanism for a
given setting.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Design, Economics

Keywords
reputation mechanisms, mechanism design, incentive com-
patibility, collusion resistance

1. INTRODUCTION
Users increasingly resort to online feedback forums (rep-

utation mechanisms) for obtaining information about the
products or services they intend to purchase. The testi-
monies of previous buyers disclose hidden, experience-related
[19], product attributes (e.g., quality, reliability, ease of use,
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etc.) that can only be observed after the purchase. This pre-
viously unavailable information allows the buyers to make
better, more efficient decisions.

A key ingredient for all reputation mechanisms is hon-
est feedback. Human users exhibit high levels of altruistic
(i.e., honest) reporting, despite empirical evidence that ly-
ing can bring external benefits [8, 21]. Nevertheless, the fu-
ture online economy may be dominated by rational, utility
maximizing software agents, that will exploit such misre-
porting opportunities. Hence the need for designing reputa-
tion mechanisms that are incentive-compatible: i.e., rational
agents find it in their best interest to report the truth.

Fundamental results in the mechanism design literature
[7, 5] show that side payments can be designed to create the
incentive for agents to report their private opinions truth-
fully. The best such payment schemes have been constructed
based on proper scoring rules [15, 12, 2], and exploit the cor-
relation between the observations of different buyers about
the same good.

Miller, Resnick and Zeckhauser [18] adapt these results to
online feedback forums. A central processing facility (the
reputation mechanism) scores every submitted feedback by
comparing it with another report (called the reference re-
port) about the same good. They prove the existence of
general incentive-compatible payment mechanisms that cre-
ate an equilibrium where the return when reporting honestly
is better by at least an arbitrary margin δ.

Jurca and Faltings [14] use an identical setting to apply
automated mechanism design [3, 20]. Incentive-compatible
payments are computed by solving an optimization prob-
lem with the objective of minimizing the required budget.
The simplicity of specifying payments through closed-form
scoring rules is sacrificed for significant gains in efficiency.

Intuitively, payment mechanisms encourage truth-telling
because reporters expect to get paid according to how well
their feedback improves the current predictor of the refer-
ence report. Every feedback report modifies the reputation
information, which acts as a predictor for future observa-
tions. The payment received by the reporter reflects the
quality of the updated predictor, tested against the refer-
ence report. Assuming that the reference report is honest,
every agent has the incentive to update the current reputa-
tion such that it mirrors her subjective beliefs. Agents thus
report honestly, and truth-telling is a Nash equilibrium.

For example, consider the owner (she) of a new house who
needs some plumbing work done. There are good and bad
plumbers; the one chosen by our owner has a fairly good
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reputation that predicts high quality work with probabil-
ity 75%. Once the work gets done, the owner will have a
new (private) belief regarding the reputation of the plumber.
If she is happy with the service, she believes the plumber
should have an even better reputation (that predicts, for ex-
ample, good service with probability 87%1). On the other
hand, if the owner is dissatisfied with the service, she be-
lieves that the plumber should have a lower reputation (the
probability of good service should only be 39%). An on-
line reputation mechanism asks the owner to share feedback
about the plumber, and proposes the following payment
rule: “the submitted report is paid only if it matches the
report submitted by another client about the same plumber.
A negative report will be paid $2.62, while a positive report
will be paid $1.54”. One can verify that honest reporting
maximizes the expected payment of the owner, regardless of
the actual experience2.

While honest reporting is a Nash Equilibrium (NEQ), so is
always reporting negative (or positive) feedback. Moreover,
the expected payoff from these constant reporting strategies
($2.62 or $1.54 respectively) are both higher than the ex-
pected payoff from the honest equilibrium. Unfortunately,
the existence of multiple equilibria is not an isolated problem
specific to our example. In previous work [13] we show that
all binary incentive-compatible payment mechanisms suffer
from the same drawback: there are lying equilibria that gen-
erate higher expected payoffs than the truthful equilibrium.

This brings forth the problem of collusion. Rational
agents have no reason to report truthfully, if they can do
better by coordinating on a lying equilibrium with higher
payoff. Hence the motivation of this paper: we investigate
incentive-compatible payment mechanisms that are also re-
sistant to collusion. The extent and the power of the coali-
tion influences the complexity and difficulty of the design
problem.

We will consider four collusion scenarios: First, we con-
sider complete coalitions (all agents may be part of the coali-
tion) where agents may not redistribute revenues, and may
only collude on symmetric strategies (all colluders report ac-
cording to the same strategy). We obtain a positive result
and show that by using several reference reports, it is possi-
ble to construct a payment mechanism with a unique honest
reporting symmetric equilibrium.

Second, we consider a close to worst case scenario, where
all agents may collude, and coordinate on different report-
ing strategies (every agent may report according to a dif-
ferent strategy). Unsurprisingly, the result we obtain here
is negative: regardless of the number of reference reports,
no incentive-compatible payment mechanism has a unique
honest reporting equilibrium.

1The rationale behind these numbers will become apparent
in Section 2
2If the owner experiences good service from the plumber, she
expects that some other client also gets good service with
probability 87%. Assuming that the other client reports
truthfully, the owner’s expected payment is: .87 · 1.54+ .13 ·
0 = 1.34 if she reports good service, or .87·0+.13·2.62 = 0.34
if she reports bad service; Likewise, if the owner experiences
bad service, she expects that the reference report will be
negative with probability 1 − .39 = .61. In this case, her
expected payment is: .39 · 1.54 + .61 · 0 = 0.6 if she reports
good service, or .39 · 0 + .61 · 2.62 = 1.6 if she reports bad
service. In both cases, honest reporting is better than lying
by $1.

Third, we move to more realistic scenarios where only
a fraction of the agents may collude. Colluders may not
transfer money among themselves, but may fully coordinate
their reporting strategies. We show that honest reporting
can be made a dominant strategy when (a) the coalition
size is small enough, and (b) the non-colluders are reporting
honestly.

Finally, we consider what happens when a single strate-
gic entity controls a number of fake online identities. As
colluders can now transfer money among themselves, the
payment mechanism must ensure that the cumulative rev-
enue of the coalition is maximized by the honest reports.
The result is positive, and given that non-colluders report
honestly, appropriate payments elicit truthful information
from the coalition as a whole.

An important ingredient of our solution is to use sev-
eral reference reports when computing the feedback pay-
ments. This not only decreases the total cost of incentive-
compatibility (a contribution of our previous work [14]), but
also allows the design of mechanisms where honest reporting
is the unique equilibrium.

After mentioning related work, this paper proceeds as fol-
lows. Section 2 formally introduces our model, Section 3
introduces incentive-compatible payment mechanisms and
presents some of their properties. Sections 4 through 7 each
treat one collusion scenario. Finally we discuss future work
and conclude.

1.1 Related Work
Our work relates to the literature on (computational)

mechanism design, implementation theory, and incentive
contracts for principal-(multi)agent settings. The literature
on mechanism design (see [11] for a survey) and implemen-
tation theory (see [10] for a survey) addresses the design
of mechanisms and institutions that satisfy certain prop-
erties, given that the agents using the mechanism behave
strategically. The main difference between mechanism de-
sign and implementation theory is that of multiple equilib-
ria. In mechanism design literature, the goal of the designer
is to find the mechanism that has the desired outcome as
an equilibrium. In the implementation literature, on the
other hand, the mechanism is required to have only the de-
sired equilibria. From this perspective, our results are closer
to the implementation theory, since in our quest for collu-
sion resistance we look for payment mechanisms that induce
honest reporting as the only (or in some sense the best) equi-
librium.

Computational mechanism design [6] extends the classi-
cal literature by looking for equilibria that are also com-
putationally attractive. In the feedback reporting setting,
however, the main computational problem resides in com-
puting the mechanism itself (i.e., the payments), and not in
executing it. In this paper, we rely on automated mechanism
design [3] to compute the best mechanism for each context.
The objective of the designer is to minimize the budget re-
quired to pay for feedback, while enforcing the incentive-
compatibility constraints. The design problem is a linear
optimization problem and can be solved efficiently [14]. A
related method is incremental mechanism design [4] where
the mechanism is solved iteratively, by incrementally adding
new constraints.

A number of papers discuss incentive contracts that a
principal should offer to several agents whose effort levels are
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private. The reward received by each agent depends on the
output observed by the principal, and on the declarations of
other agents. [9], [17], and [16] show that efficient contracts
exist that are also incentive-compatible and collusion-proof.
While the feedback reporting problem is similar, it differs in
one major aspect: the mechanism designer (i.e., the princi-
pal) does not observe a direct signal which is correlated to
the reporters’ (i.e., agents’) private information.

2. THE MODEL
We consider an online market where a number of rational

buyers (or agents) experience the same product (or service).
The quality of the product remains fixed, and defines the
product’s (unknown) type. Θ is the finite set of possible
types, and θ denotes a member of this set. We assume that
all buyers share a common belief regarding the prior proba-
bility Pr[θ], that the product is of type θ.

∑
θ∈Θ Pr[θ] = 1.

After the purchase, every buyer perceives a binary signal
about the quality (i.e., true type) of the product. Quality
signals are denoted as 1 (high quality) and 0 (low quality),
meaning that the buyer was satisfied, respectively dissatis-
fied with the product. Every product type is characterized
by a different probability distribution over the signals per-
ceived by the buyers. Let Pr[1|θ] be the probability that the
agent buying a product of type θ is satisfied (i.e., observes
the quality signal 1). Pr[1|θ1] �= Pr[1|θ2] for all θ1 �= θ2 ∈ Θ,
and Pr[1|·] is assumed common knowledge.

A central reputation mechanism asks every buyer to sub-
mit feedback. Buyers are assumed rational, and not con-
strained to report the truth. The set of pure reporting
strategies of a buyer is A = {(a0, a1)|a0, a1 ∈ {0, 1}}, where
a = (a0, a1) denotes the strategy according to which the
buyer announces a0 ∈ {0, 1} when she observes low quality,
and a1 ∈ {0, 1} when she observes high quality. We will
often call the reports 0 and 1 as the negative, respectively
the positive report.

To ease the notation, we name the four members of the
set A as the h(onest), l(ie), all1 and all0 strategies:

• h = (0, 1) is the honest reporting strategy;

• l = (1, 0) is the strategy of always lying: the buyer
reports 1 instead of 0 and 0 instead of 1;

• all1 = (1, 1) is the strategy of always reporting 1;

• all0 = (0, 0) is the strategy of always reporting 0;

The reputation mechanism pays buyers for the submitted
reports. The amount received by buyer i can depend on any
information available to the reputation mechanism: namely,
the reports submitted by other buyers, and the common
knowledge regarding the environment (probability distribu-
tion over types, and conditional probability distributions of
quality signals). Let N be the total number of reports avail-
able to the reputation mechanism. N is finite, either because
the total number of buyers is finite, or because the repu-
tation mechanism cannot wait indefinitely to receive more
reports.

Note that the reputation mechanism (a) does not know
the true type of the product, and (b) cannot purchase the
product in order to get some first-hand experience regarding
its quality.

Discarding from the notation the dependence on the com-
mon knowledge, a payment mechanism (employed by the

reputation mechanism) is a function τ : {0, 1}×{0, 1}N−1 →
R

+, where τ (αi, α−i) ≥ 0 is the amount paid to buyer i when
she reports αi ∈ {0, 1} and the other N − 1 buyers report
α−i ∈ {0, 1}N−1. The reports α−i are also called the refer-
ence reports of agent i, since they constitute the reference
for computing the payment for agent i. Payments are non-
negative because most online forums do not have the means
to impose punishments on the reporters.

As the order of reports is not important, we can sim-
plify the payment mechanism by assuming that τ (αi, α−i) =
τ (αi, α

∗
−i) for all α−i and α∗

−i that contain the same num-
ber of positive reports. A more compact description of the
payment mechanism is thus given by the amounts τ (α,n)
where n ∈ {0, 1, . . . , N − 1} is the number of positive re-
ports submitted by the reference reporters.

The payoff expected by agent i depends on the distri-
bution of the reference reports. If the other agents report
honestly, the distribution of the reference reports can be
computed from the prior beliefs, and the true observation,
oi ∈ {0, 1} of agent i. The probability that exactly n posi-
tive reports were submitted by the other N − 1 agents is:

Pr[n|oi] =
∑
θ∈Θ

Pr[n|θ]Pr[θ|oi]; (1)

where Pr[n|θ] is given by the binomial distribution, and
Pr[θ|oi] can be computed from Bayes’ Law:

Pr[n|θ] =

(
N − 1

n

)
Pr[1|θ]n

(
1 − Pr[1|θ]

)N−1−n
;

P [θ|oi] =
Pr[oi|θ]Pr[θ]

Pr[oi]
; Pr[oi] =

∑
θ∈Θ

Pr[oi|θ]Pr[θ];

A strategy profile a is a vector (ai)i=1,...,N , prescribing
the reporting strategy ai ∈ A for each agent i. We will
sometimes use the notation a = (ai, a−i), where a−i is the
strategy profile for all agents except i; i.e., a−i = (aj), for
j = 1, . . . , i − 1, i + 1, . . . , N . Given the profile of reporting
strategies (ai, a−i), let π[n, a−i] describe the belief of agent
i regarding the distribution of the reference reports, when:

• n out of the other N−1 agents observe the high quality
signal, 1

• the other N − 1 agents are reporting according to the
strategy profile a−i;

Given n and a−i, agent i believes with probability
π[n, a−i](x) that x reference reports are positive. If ai(oi) ∈
{0, 1} is the value of the report prescribed by strategy ai

given the true observation oi, the expected payoff to agent
i is:

V (ai, a−i|oi) =

N−1∑
n=0

Pr[n|oi]

N−1∑
x=0

π[n, a−i](x)τ(ai(oi), x); (2)

Before moving to the next section, we can now justify the
numerical values chosen for the example presented in the
introduction. The two possible types of the plumber are
good (θG) and bad (θB), the good type being more likely
than the bad type: Pr[θG] = 0.8 and Pr[θB ] = 0.2. The
good plumber provides good service with high probability
Pr[1|θG] = 0.9; the bad plumber provides good service with
the lower probability, Pr[1|θB ] = 0.15. The prior reputa-
tion of the plumber predicts a good service with probability:
Pr[θG]Pr[1|θG]+Pr[θB ]Pr[1|θB ] = 0.75. However, the pos-
terior reputation depends on the agent’s actual experience.
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If the agent observes 1, the posterior belief regarding the
type of the plumber will be: Pr[θG|1] = 1−Pr[θB|1] = 0.96
(computed by Bayes’ Law), and the probability that the
plumber provides good service to another client is: Pr[1|1] =
Pr[1|θG]Pr[θG|1] + Pr[1|θB ]Pr[θB |1] = 0.87. Likewise, if
the agent observes 0, the posterior belief regarding the
type of the plumber is: Pr[θG|0] = 1 − Pr[θB |0] = 0.32,
and the probability that the plumber provides good ser-
vice to another client is: Pr[1|0] = Pr[1|θG]Pr[θG|0] +
Pr[1|θB ]Pr[θB |0] = 0.39.

3. INCENTIVE-COMPATIBLE PAYMENT
MECHANISMS

A payment mechanism is incentive-compatible when hon-
est reporting is a Nash Equilibrium (NEQ): i.e., no agent can
gain by lying when other agents report honestly. Formally,
let (hi, h−i) be the strategy profile where all agents report
honestly. It is optimal for agent i to report the truth if and
only if, for any observation oi, the honest report maximizes
the agent’s expected payoff:

V (hi, h−i|oi) > V (ai, h−i|oi)

for any reporting strategy ai ∈ A\{h}, and any observation
oi ∈ {0, 1}.

Since reference reports are truthful, the expected payoff
to agent i is:

V (hi, h−i|oi) =

N−1∑
n=0

Pr[n|oi]τ(oi, n);

and the incentive-compatibility constraints become:

N−1∑
n=0

Pr[n|oi]τ(oi, n) >

N−1∑
n=0

Pr[n|oi]τ(1 − oi, n); (3)

for oi = 0, 1.
Practical mechanisms require certain margins for truth-

telling [14]. Honest reporting must be better than lying by
at least some margin δ, chosen by the mechanism designer to
offset the external benefits an agent might obtain by lying.
Rewriting (3) to account for the margin δ, an incentive-
compatible payment mechanism satisfies the constraints:

N−1∑
n=0

Pr[n|1]
(
τ(1, n) − τ(0, n)

)
≥ δ;

N−1∑
n=0

Pr[n|0]
(
τ(0, n) − τ(1, n)

)
≥ δ;

(4)

formalizing the intuition that it is more profitable to report
positively (respectively negatively) when observing high (re-
spectively low) quality.

[15], and [18] show that it is possible to construct pay-
ment mechanisms that satisfy the constraints in (4), based
on scoring rules. Jurca and Faltings [14] build on this ex-
istence result and describe an algorithm that computes the
optimal (i.e., budget minimizing) payment mechanism. We
will use this latter approach in this paper, for the obvious
practical advantages of designing an incentive compatible
reputation mechanism as cheaply as possible.

The expected payment to an honest reporter (in the truth-
ful NEQ) is the weighted sum between the expected payment

to an agent that truthfully reports 1, and the expected pay-
ment to an agent that truthfully reports 0:

W = Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]

N−1∑
n=0

Pr[n|0]τ(0, n); (5)

where Pr[1] (respectively Pr[0]) are the prior probabilities
that the agent will perceive high (respectively low) quality,
and are defined as: Pr[oi] =

∑
θ∈Θ Pr[oi|θ]Pr[θ].

The payment scheme that minimizes the budget required
to pay for one honest report therefore solves the linear op-
timization problem:

LP 1.

min W = Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]

N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N−1∑
n=0

Pr[n|1]
(
τ(1, n) − τ(0, n)

)
≥ δ;

N−1∑
n=0

Pr[n|0]
(
τ(0, n) − τ(1, n)

)
≥ δ;

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

Although numerical algorithms can efficiently solve LP 1,
the analytical solution helps us gain additional insights
about the structure of incentive-compatible payment mech-
anisms. It turns out that LP 1 has a simple solution (details
in Appendix A) where:

τ(0, n) = 0, ∀n �= n1; τ(1, n) = 0,∀n �= n2

τ(0, n1) = δ
Pr[n2|0] + Pr[n2|1]

Pr[n2|1]Pr[n1|0] − Pr[n2|0]Pr[n1|1]
;

τ(1, n2) = δ
Pr[n1|0] + Pr[n1|1]

Pr[n2|1]Pr[n1|0] − Pr[n2|0]Pr[n1|1]
;

n1 = arg min
n

Pr[n|1]
Pr[n|0] ; n2 = arg min

n

Pr[n|0]
Pr[n|1]

Intuitively, the optimal payment mechanism does not pay
the negative or positive report of an agent unless the ref-
erence reports contain exactly n1, respectively n2 positive
reports. The values n1 and n2 are chosen such that the pos-
terior belief of the reporter regarding the reference reports
changes the most:

• Pr[n1|0] increases the most with respect to Pr[n1|1]:
e.g., n1 = arg minn Pr[n|1]/Pr[n|0];

• Pr[n2|1] increases the most with respect to Pr[n2|0]:
e.g., n2 = arg minn Pr[n|0]/Pr[n|1];

The values of τ (0, n1) and τ (1, n2) are then computed to
guarantee the margin δ for honest reporting.

A similar property holds for all payment mechanisms3

that satisfy the incentive compatibility constraints: there
must be at least two values of the reference reports, n1 �= n2,
such that:

τ(0, n1) > τ(1, n2), P r[n1|0] > Pr[n1|1],
τ(1, n2) > τ(0, n2), P r[n2|1] > Pr[n2|0];

3One might wish, for example, to design a mechanism that
minimizes the expected budget paid to all N buyers. In
this case, the objective function of the problem LP 1 is:
W̄ =

∑N
n=0 Pr[n]

(
n · τ (1, n − 1) + (N − n) · τ (0, n)

)
, where

Pr[n] is the prior probability that n out of N buyers observe
high quality;
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When τ (0, n1), τ (1, n2), τ (1, n1) and τ (0, n2) are scaled ap-
propriately, a rational agent prefers the ‘bet’ on n1 when she
observes low quality, and the ‘bet’ on n2 when she observes
high quality.

It is exactly this property that makes it impossible to
design an incentive-compatible mechanism that has hon-
est reporting as the unique (or the most preferred) NEQ
with only one reference report. n1 and n2 are constrained
to take the values 0, respectively 1, since by Bayes’ Law,
Pr[0|0] > Pr[0|1] and Pr[1|1] > Pr[1|0]. This results in
positive payments τ (0, 0) > τ (0, 1) and τ (1, 1) > τ (1, 0) (as
pointed out in the example from the introduction), thus the
constant reporting strategies (always reporting 1 or always
reporting 0) are also Nash Equilibria. Honest reporting is
rewarded by a linear combination of τ (0, 0) and τ (1, 1), so at
least one of the constant reporting strategies is more attrac-
tive than truth-telling. [13] formally develops this result.

Using several reference reports decreases the budget re-
quired to pay the reporters [14], and sometimes allows to
design incentive-compatible payments where honesty is the
only (or the most attractive) NEQ. In the following sections
we explore some of the settings where such results apply.

4. NON-TRANSFERABLE UTILITIES, NO
COORDINATION

The simplest collusion scenario (from the perspective of
the mechanism designer) is to assume that agents (a) can
only coordinate once (before any of them purchases the
product) on the same (pure) reporting strategy, and (b) they
cannot transfer payments from one another. Intuitively, this
setting characterizes anonymous feedback forums where the
colluders do not have side-channels for exchanging informa-
tion. The absence of communication channels is not an un-
derlying assumption about the physical world, but rather a
contextual implication: most online buyers do not know who
is going to buy the same product in the immediate future,
and therefore cannot synchronize their reports.

Nevertheless, the agents collude in the sense that they
all have one access to a trusted oracle that gives them a
reporting strategy. For example, the role of the oracle might
be played by a trustworthy site that analyzes the reporting
strategies and recommends the best one.

The lack of coordination between colluders considerably
simplifies the problem of the mechanism designer. The only
supplementary constraint on the incentive-compatible pay-
ment mechanism is to ensure that none of the pure symmet-
ric strategy profiles is a NEQ.

The set of pure strategies is finite (and contains 3 ly-
ing strategies) therefore we can exhaustively enumerate the
constraints that prevent the corresponding symmetric lying
strategy profiles to be NEQ. Since agents cannot transfer
payments from one another, the constraints on the payments
should simply provide incentives for deviating from the col-
lusion strategy:

• all1 (always reporting 1) is not NEQ when a rational
agent would rather report 0 instead of 1 given that all
other agents follow all1:

τ(0, N − 1) > τ(1, N − 1); (6)

• all0 (always reporting 0) is not NEQ when a rational
agent would rather report 1 instead of 0 given that all
other agents follow all0;

τ(1, 0) > τ(0, 0); (7)

• l(ie) is not NEQ when at least one agent (either ob-
serving 1 or 0) would rather report the truth. Given
that other agents always lie, N − 1 − n reference re-
ports will be positive whenever n high quality signals
were actually observed:

either

N−1∑
n=0

Pr[n|0](τ(0, N − 1 − n) − τ(1, N − 1 − n)
)

> 0;

or

N−1∑
n=0

Pr[n|1](τ(1, N − 1 − n) − τ(0, N − 1 − n)
)

> 0;

(8)

The objective function (5), and the constraints (4), (6),
(7) and (8) define the optimal incentive-compatible payment
mechanism that is also collusion-resistant in the sense ex-
plained in the beginning of this section (i.e., honest reporting
is the unique pure-strategy symmetric NEQ). To compute
the payments, the mechanism designer must solve two linear
optimization problems, one corresponding to each branch of
the constraint (8).

A collusion-resistant mechanism is easier to find when the
number of reports available to the reputation mechanism
is higher. The minimum number of reference reports that
guarantee the existence of a collusion-proof payment mech-
anism depends on the distributions Pr[n|·], and on the con-
text.

For the example provided in the introduction, it takes
N = 4 reports to design a collusion-resistant payment mech-
anism. The expected distribution over reference reports
is: Pr[0 . . . 3|0] = [0.4179, 0.2297, 0.1168, 0.2356] when the
plumber provides bad service, and Pr[0 . . . 3|1] = [0.0255,
0.0389, 0.2356, 0.7] when the plumber provides good service.
Both probability distributions are computed according to
Eq. (1). The incentive-compatible, collusion-resistant pay-
ments are the following: τ (0, 0) = τ (0, 2) = 0, τ (0, 1) =
12.37, τ (0, 3) = ε, τ (1, 0) = ε, τ (1, 1) = τ (1, 3) = 0, and
τ (1, 2) = 6.29. ε can take any value greater than 0, and the
guaranteed margin for truth-telling is δ = 1.

5. NON-TRANSFERABLE UTILITIES,
FULL COORDINATION

The next collusion scenario we are considering is when
the N agents can use side-channels to coordinate their re-
porting strategies, but they cannot transfer payments from
one another. Unlike the previous setting, here each of the
N agents can have a different reporting strategy. The col-
lusion strategy profile a = (ai), i = 1, . . . , N is no longer
symmetric, and prescribes that agent i reports according to
the strategy ai ∈ A.

We distinguish between two cases, where the communica-
tion (and therefore the coordination on the reporting strat-
egy profile) happens before or after the agents perceive the
quality signals from the product they purchase. In both
cases, however, we obtain negative results.
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Proposition 1. When agents communicate and coordi-
nate their reports after perceiving the quality signals, strict
incentive-compatible payment mechanisms do not exist.

Proof. Consider two settings, that are identical except
for the observation of agent i. In setting A, agent i ob-
serves oi = 0, in setting B, agent i observes oi = 1; in both
A and B, the other agents observe n high quality signals.
An incentive-compatible mechanism requires i to report 0
in setting A, and 1 in setting B. Assume all other agents
report truthfully; during the communication phase (happen-
ing after signals have been perceived) agent i learns in both
settings that the reference reports contain n positive reports.
An incentive-compatible payment mechanism requires that:

• τ (0, n) > τ (1, n) - honest reporting is strictly better
for i in setting A ;

• τ (1, n) > τ (0, n) - honest reporting is strictly better
for i in setting B;

Clearly this is impossible. �
The previous proposition formalizes the intuition that

truth-telling may only be an ex-ante Nash equilibrium. The
reference reports must be unknown to the agent in order to
allow the design of incentive-compatible payments. When
the communication takes place before the agents observe the
signals, incentive-compatible payments do exist, but they al-
ways accept lying equilibria as well:

Proposition 2. When agents communicate and coordi-
nate their reports before perceiving the quality signals, no
payment mechanism has a unique honest reporting Nash
equilibrium.

Proof. The proof shows that a full coalition can always
find a profile of constant reporting strategies, a = (ai), i =
1, . . . , N , ai ∈ {all0, all1} that is a NEQ.

We define the family of reporting strategy profiles a(n) =
(ai) where n out of N agents always report 1, and the other
N − n agents always report 0: i.e.,

ai = all1, ∀i ∈ S1; ai = all0, ∀i ∈ S0;

|S1| = n, |S2| = N − n;

S1 ∩ S0 = ∅; S1 ∪ S0 = {1, 2, . . . , N};
(9)

Assume that the payment mechanism defined by τ (·, ·)
accepts honest reporting as the unique NEQ. We have seen
in Section 3 that the incentive-compatible constraints (4)
imply the existence of n1 �= n2 ∈ {0, 1, . . . , N − 1} such
that Pr[n1|0] > Pr[n1|1], τ (0, n1) > τ (1, n1), Pr[n2|1] >
Pr[n2|0] and τ (1, n2) > τ (0, n2).

With non-transferable utilities, the strategy profile a(n2+
1) is not a NEQ if and only if one of the n2 + 1 agents that
should report 1 would rather report 0:

τ(0, n2) > τ(1, n2);

or one of the N − n2 − 1 agents that should report 0 would
rather report 1:

τ(1, n2 + 1) > τ(0, n2 + 1);

The first inequality cannot be true by the choice of n2;
therefore, it must be that τ (1, n2 + 1) > τ (0, n2 + 1).

Similarly, a(n2 + 2) is not a NEQ iff either τ (0, n2 + 1) >
τ (1, n2 +1) (impossible), or τ (1, n2 +2) > τ (0, n2 +2). Con-
tinuing this argument we find that τ (1, N −1) > τ (0, N −1)
which makes a(N) (i.e., all agents report 1) a Nash equilib-
rium. Hence the result of the proposition. �

Proposition 2 holds regardless of the number of reports,
N , available to the reputation mechanism. A full coalition
can always find a lying reporting strategy profile that is a
Nash equilibrium. By definition such a coalition is stable,
i.e., no colluder has the incentives to deviate from the col-
lusion strategy.

The obvious question is whether such coalitions are also
profitable. Unless the collusion strategy brings every agent
at least the payoff expected from the honest equilibrium,
there may be reasons to believe that the coalition will never
form. Profitable coalitions require lying Nash equilibria
that pareto-dominate the honest one. A payment mecha-
nism where such equilibria do not exist, is, in some sense,
collusion-resistant.

Take for example the incentive-compatible payment
scheme that solves LP 1, with the additional constraints
that n1 �= 0 and n2 �= N − 1. A stable coalition can form
on the strategy profile a(n2 + 1) (or a(n1)), where n2 + 1
(respectively n1) agents report 1 and the others report 0,
regardless of their observation. This equilibrium, however,
does not pareto-dominate the truthful one: the agents that
report 0 do not get any reward, whereas they do get re-
warded in the honest equilibrium.

The payment mechanism can be further improved by set-
ting τ (0, n1 − 1) = τ (1, n2 + 1) = ε, where ε is some small
value. This modification eliminates the equilibria a(n2 + 1)
and a(n1) and instead introduces the equilibria a(n2+2) and
a(n1 − 1). Both these equilibria are extremely unattractive
(some agents get paid ε, while others don’t get paid at all)
and are dominated by the honest one.

For any given strategy profile, a, either of the following
linear constraints makes the payment mechanism resistant
against a coalition on a:

V (ai, a−i|oi) < V (a∗
i , a−i|oi) for some i, oi and a∗

i ;

V (ai, a−i|oi) < V (hi, h−i|oi) for some i and oi;

The first constraint ensures that a is not NEQ, the sec-
ond that a does not pareto-dominate the honest equilibrium.
Unfortunately, considering all strategy profiles is computa-
tionally infeasible. For this reason, we advocate an iterative
solution, where the mechanism designer first solves LP 1
(with the additional constraints discussed in the previous
paragraph), and then iteratively adds the constraints that
eliminate lying pareto-optimal equilibria. This algorithm
resembles the incremental mechanism design described by
Conitzer and Sandholm [4] for social choice problems. As
part of future research we plan to look for heuristics that
help a designer select a small set of strategies that generate
enough constraints to make honest reporting pareto optimal.

6. NON-TRANSFERABLE UTILITIES,
PARTIAL COORDINATION

The setting described in Section 5 is very close to the
worst-case collusion scenario that may be observed in on-
line reputation mechanisms. The coalition comprises all re-
porters, and the coordination mechanisms are perfect.
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In most practical applications, not all agents can collude.
Some agents are altruistic in nature and report honestly for
moral or social reasons. Other agents may not be contacted
by a coalition. Social or legal condemnation of collusion may
furthermore create prejudices that deter some agents from
entering the coalition.

It is therefore reasonable to assume that a mechanism that
prevents a fraction of the agents from colluding (while re-
lying on the remaining fraction to report honestly) is good
enough for most practical applications. The remaining ques-
tion is whether the negative result of Proposition 3 still holds
when some of the agents are unconditionally reporting the
truth. As in the previous sections, agents may not transfer
utilities from one another.

The existence of honest reports should help the reputa-
tion mechanism provide stronger truth-telling incentives.
Indeed, trusted reports (reports generated by specialized,
trusted reviewers that are hired to rate the product) help de-
ter lying coalitions [13]. In this section we extend our previ-
ous work, by assuming that honest information comes from
altruistic reporters, instead of being explicitly purchased.
The main difference is that the reputation mechanism can-
not identify the honest reports which get diluted in the group
of all feedback reports.

When designing collusion-resistant, incentive-compatible
payments we only consider the reporting strategy of a frac-
tion containing k colluding agents. As the other N − k
agents report honestly, we can use stronger solution con-
cepts than Nash equilibrium. When k is small enough, the
honest reporting strategy (Nash equilibrium for the over-
all set of agents) may becomes a dominant strategy for the
members of the coalition. Regardless of what the other k−1
agents report, truth-telling pays better than lying by some
margin δ.

When n is the number of positive reports submitted by
the N − k honest reporters, and c is the number of positive
reports submitted by the other k−1 colluders, the payments
τ (·, ·) satisfy the following constraints:

N−k∑
n=0

Pr[n|0](τ(0, n + c) − τ(1, n + c)
) ≥ δ;

N−k∑
n=0

Pr[n|1](τ(1, n + c) − τ(0, n + c)
) ≥ δ;

(10)

for all integers c ∈ {0, . . . , k − 1}.
The objective function 5, and the set of constraints

(10) form a linear optimization problem that defines the
incentive-compatible payments that are resistant to a coali-
tion of size k.

The remaining question is how large may the collud-
ing fraction be, such that collusion-resistant, incentive-
compatible mechanisms exist.

Proposition 3. When more than k agents collude, with
2k > N , no incentive-compatible payment mechanism can
make truth-telling the dominant strategy for the colluders.

Proof. The intuition behind the proof is the following:
When 2k > N , the k − 1 colluders submit at least as many
reports as the remaining N −k honest reporters. Therefore,
any sequence of honest reports, can be ‘corrected’ by a care-
fully chosen sequence of colluding reports, such that lying is
profitable.

Formally, let us take the subset c = {0, . . . , N − k} (this
subset exists because N − k < k − 1) from the system of
inequalities defined by (10), and form the following opti-
mization problem:

min W = Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]

N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N−k∑
n=0

Pr[n|0](τ(0, n + c) − τ(1, n + c)
) ≥ δ;

N−k∑
n=0

Pr[n|1](τ(1, n + c) − τ(0, n + c)
) ≥ δ;

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

Let y0
c and y1

c be the dual variables corresponding to
the constraints where the colluding agents report c posi-
tive signals, and the agent observes 0, respectively 1; One
can easily verify that the dual problem accepts as solutions
y1

c = Pr[c|1] · C, y0
c = Pr[c|0] · C, for all positive values C.

The dual problem is therefore unbounded, which makes the
primal infeasible. �

The bound from Proposition 3 is also tight. Consider
the example presented in the introduction, and assume the
reputation mechanism has N = 4 reports. The following
payments are resistant to the collusion of k = 2 agents:
τ (0, 0) = 1.575, τ (0, 1) = 3.575, τ (0, 2) = τ (0, 3) = 0,
τ (1, 0) = τ (1, 1) = 0, τ (1, 2) = 2.203, τ (1, 3) = 0.943. For
example, if the client observes 1, reporting 1 is better than
reporting 0 for any report of the other colluder:

Pr[0|1]τ(1,0) + Pr[1|1]τ(1, 1) + Pr[2|1]τ(1, 2) = 1.715;

Pr[0|1]τ(0,0) + Pr[1|1]τ(0, 1) + Pr[2|1]τ(0, 2) = 0.715;

Pr[0|1]τ(1,1) + Pr[1|1]τ(1, 2) + Pr[2|1]τ(1, 3) = 1.138;

Pr[0|1]τ(0,1) + Pr[1|1]τ(0, 2) + Pr[2|1]τ(0, 3) = 0.138;

where Pr[0 . . . 2|1] = [0.0385, 0.1830, 0.7785] are the proba-
bilities that 0, 1, or 2 out of 2 honest reports are positive,
given that the client observed high quality.

6.1 The marginal cost of collusion resistance
Incentive-compatible payments that are resistant to coali-

tions of size k, must satisfy the constraints in (10). As k in-
creases, the design problem becomes more constrained, and
therefore, the budget required by the reputation mechanism
is likely to grow. In this section we study the dependence of
the expected budget on the size of the maximum tolerated
coalition.

For a given context, the optimization problem that defines
the payments τk(·, ·) that are resistant to coalitions of size
k is:

LP 2.

min Pr[1]

N−1∑
n=0

Pr[n|1]τk(1, n) + Pr[0]

N−1∑
n=0

Pr[n|0]τk(0, n);

s.t.

N−k∑
n=0

Pr[n|0](τk(0, n + c) − τk(1, n + c)
) ≥ δ;

N−k∑
n=0

Pr[n|1](τk(1, n + c) − τk(0, n + c)
) ≥ δ;

∀c ∈ {0, . . . k − 1},
τk(0, n), τk(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};
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Table 1: Distribution of the maximum coalition
bound. k̂ = �N/2� is the theoretical bound.

Distribution of max coalition size (in %) over
[k̂, k̂ − 1, . . . , 1]

N = 6, k̂ = 3 [99.9, 0.08, 0.02]
N = 11, k̂ = 5 [99.42, 0.44, 0.1, 0.04, 0]
N = 16, k̂ = 8 [98.14, 0.68, 0.5, 0.36, 0.22, 0.06, 0.04, 0]

N = 21, k̂ = 10 [97.32, 0.82, 0.52, 0.44, 0.4, 0.3, 0.1, 0.06, 0.04, 0]
N = 26, k̂ = 13 [94.96, 1.48, 0.98, 0.62, 0.46, 0.44, 0.3, 0.28, 0.32,

0.06, 0.06, 0.04, 0]
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Figure 1: The relative cost of the mechanism as we
increase the resistance to colluding fraction.

We numerically solved the optimal payment mechanism
for 5000 problems, generated randomly in the following way:

• the set of possible types is randomly chosen between
2 and 20;

• for each type, θ, the probability, p(θ), that the buyers
observe high quality is randomly chosen between 0 and
1;

We considered mechanisms for 6, 11, 16, 21 and 26 reports.
As further evidence that the bound set by Proposition 3 is
tight, Table 1 shows the distribution of the maximum col-
lusion threshold among the problems we have solved. For
example, when N = 26 reports, approximately 95% of the
problems accept the theoretical bound described by Propo-
sition 3.

Figure 1 plots the relative cost of the collusion-resistant
mechanism (i.e., divided by the cost of the mechanism that is
not collusion-resistant) as we increase the colluding fraction.
It can be seen that the cost starts increasing exponentially
when the payment mechanism must deter coalitions of more
than one third of the agent population. This suggests that
the practical bound on the coalition size should be around
one third of the number N of reporters.

7. TRANSFERABLE UTILITIES, PARTIAL
COORDINATION

As a last scenario we assume that colluding agents can
redistribute the revenues among themselves. This will typ-
ically be the case when the same strategic agent controls

a number of fake online identities (or sybils [1]). From
the agent’s perspective, the individual revenues obtained by
each sybil is irrelevant; the objective of the agent is to max-
imize the cumulated revenue obtained by all sybils.

The fact that utilities are transferable, makes the prob-
lem of the mechanism designer significantly harder. In all
previous scenarios, the constraints that made an incentive-
compatible mechanism collusion-resistant ensured that lying
coalitions are unstable: at least one of the colluders is bet-
ter off by deviating from the colluding strategy. However, in
this context the agents that suffer from following the collud-
ing strategy may be rewarded by the others. The necessary
(and sufficient) condition for collusion resistance requires
that the cumulated revenue of the coalition is maximized
when reporting the truth.

Another difference from the settings in Sections 5 and 6 is
that colluders coordinate their reporting strategy after ob-
serving the quality signals. This assumption is supported by
the interpretation that one strategic entity controls several
fake online identities.

Concretely, we are looking for a payment mechanism with
the following property: whenever k colluding agents observe
c high quality signals, their cumulated revenue is maximized
when reporting c positive reports. An underlying assump-
tion is that non-colluders (the other N − k agents) are re-
porting honestly. The revenue of the coalition that reports r
(out of k) can be computed as follows. The r colluders that
report positively are rewarded τ (1, r−1+n), while the k−r
colluders that report negatively are rewarded τ (0, r + n); n
is the number of positive reports submitted by the (hon-
est) non-colluders. The expected revenue of the coalition is
therefore:

V (r|c) =

N−k∑
n=0

Pr[n|c]
(
r · τ(1, r − 1 + n) + (k − r) · τ(0, r + n)

)
;

where Pr[n|c] is the probability that n out of N − k agents
observe high quality signals, given that c out of k positive
signals have already been observed.

Honest reporting is the best strategy for the coalition,
when for all c ∈ {0, . . . k}, arg maxr V (r|c) = c:

N−k∑
n=0

Pr[n|c]
(
c · τ(1, c − 1 + n) + (k − c) · τ(0, c + n)

−r · τ(1, r − 1 + n) − (k − r) · τ(0, r + n)
)
≥ δ;

(11)

The cheapest incentive-compatible, collusion-resistant
payment mechanism minimizes the objective function (5)
under the linear constraints (11):

LP 3.

min W = Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]

N−1∑
n=0

Pr[n|0]τ(0, n);

s.t. (11) is true, ∀c, r ∈ {0, . . . k}, c �= r

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

We used numerical simulations to evaluate (a) the maxi-
mum size of the tolerated coalitions, and (b) the marginal
cost of increasing collusion resistance. As in Section 6, we
generated 5000 random problems and computed the optimal
payments for N = 6,11,16,21 and 26 reports. For each case,
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Table 2: Distribution of the maximum tolerable
coalition size.

Distribution of max coalition size
N = 6 [5 : 100%]

N = 11 [10 : 99.14%, 9 : 0.36%, 8 : 0.28%, 7 : 0.14%]
N = 16 [15 : 97.56%, 14 : 0.44%, 13 : 0.32%, 12 : 0.52%]
N = 21 [20 : 96.04%, 19 : 0.52%, 18 : 0.36%, 17 : 0.42%]
N = 26 [25 : 94.24%, 24 : 0.66%, 23 : 0.58%, 22 : 0.46%]
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Figure 2: The relative cost of the mechanism as we
increase the colluding fraction (setting with trans-
ferable utilities).

we gradually increased the coalition size (i.e., k) from 1 to
N − 1.

Table 2 shows the distribution of the maximum coalition
size that can be deterred by the payment mechanism. This
threshold is most of the time equal to N − 1, meaning that
one anonymous honest report is enough to design incentive-
compatible, collusion-resistant payments. The result might
be surprising when related to the bound of Proposition 3: an
apparently more difficult collusion scenario allows the design
of payments that are resistant to bigger coalition fractions.
The explanation resides in the choice of the solution con-
cept for the scenario in Section 6. There, honest reporting
is the dominant strategy, so that each colluder reports the
truth regardless of the reports of the other colluders. In
the present scenario, on the other hand, individual collud-
ers are allowed to lie, if the coalition as a whole reports the
truth. The constraints of LP 3 are therefore feasible for
higher coalition fractions.

The marginal cost of collusion resistance is however higher
than in Section 6. Figure 2 plots the relative cost of the
collusion-resistant mechanism (i.e., divided by the cost of
the mechanism that is not collusion-resistant) as we increase
the tolerated coalition fraction. The cost grows linearly for
coalitions that span up to one half of the population; for
larger coalitions, the cost grows exponentially. Nonetheless,
by comparing Figures 2 and 1, we see that for the same
coalition size, the collusion-resistant payments are cheaper
if we assume a setting with non-transferable utilities.

One last thing we would like to point out is that realistic
collusion scenarios are most likely a combination between
the settings presented in Sections 6 and 7: several strategic

agents, each controlling several fake identities, try to manip-
ulate the reporting mechanism. It is encouraging to see that
separately, in each scenario we can achieve relatively high
collusion resistance at acceptable costs. As future work, we
plan to use a combination of the two techniques to make the
mechanisms even better.

8. CONCLUSION AND FUTURE WORK
As feedback forums and reputation mechanisms become

increasingly important sources of information, explicit mea-
sures must guarantee that honest reporting is in the best
interest of the participants. Previous work shows that it is
possible to construct payment mechanisms that reward hon-
est reports higher (in expectation) than false ones. Truth-
telling thus becomes a Nash equilibrium.

Unfortunately, such mechanisms also have other equilib-
ria where reporters lie. This creates collusion opportunities,
since several agents can coordinate their lies in order to im-
prove their revenues. In this paper we addressed the design
of incentive-compatible payments that are also resistant to
collusion. For each of the four considered collusion scenario,
we defined a linear optimization problem that allows the
automated design of the cheapest payment mechanism.

In Section 4 we showed that incentive-compatible pay-
ments can be efficiently constructed such that honest re-
porting is the unique pure strategy symmetric equilibrium.
The results can be easily extended so that honest reporting
becomes the pareto-optimal equilibrium. However, we only
treated pure strategies. Preventing mixed -strategy symmet-
ric equilibria from becoming NEQ requires non-linear con-
straints, that make the design problem computationally dif-
ficult. Since reputation mechanisms need to compute such
payments for every context, we believe that the design prob-
lem should be kept simple, on the expense of precision. An
interesting question, therefore, is if we can find simple (e.g.,
linear constraints), heuristic extensions to the linear pro-
gram of Section 4 that (a) make unlikely the existence of
mixed strategy symmetric equilibria, or (b) make unlikely
the existence of mixed strategy symmetric equilibria that
pareto-dominate the honest equilibrium.

For the scenario in Section 5, we proved that any
incentive-compatible payment mechanism also accepts ly-
ing equilibria, and suggested an iterative approach for find-
ing the payments where truth-telling is not dominated by
any of the lying equilibria. As future work, we plan to de-
scribe practical algorithms that guide mechanism designers
in choosing the best direction for incrementally improving
the mechanism.

In Section 6 we took advantage of the assumption that
some agents will inherently report the truth, and con-
structed an incentive-compatible mechanism with much
stronger collusion guarantees. When less than half of the
population colludes, it is theoretically possible to construct
payments that make honest reporting the dominant strat-
egy for the colluders. Numerical simulations show, however,
that the practical bound is closer to one third of the popu-
lation: preventing coalition fractions greater than one third
requires exponentially higher budget. An interesting open
question is if we can increase the theoretical (and practi-
cal) bound by requiring honest reporting to be the unique
(or pareto-optimal) Nash equilibrium. The constraints that
define the corresponding mechanisms lead to non-linear op-
timization problems that do not scale well. We plan to use
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approximations and heuristic methods to further investigate
this question.

Finally, Section 7 described incentive-compatible pay-
ments that are resistant to sybil attacks: i.e., the same
strategic agents creates several fake identities in order to
manipulate the payment mechanism. The designer can en-
sure that the set of reports submitted by the coalition re-
flects the aggregated experience of the coalitions. Individual
colluders do not necessarily report the truth, but overall, the
reputation mechanism obtains correct information.
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APPENDIX

A. ANALYTICAL SOLUTION
FOR INCENTIVE-COMPATIBLE
PAYMENT MECHANISMS

For solving LP 1, let us write the corresponding dual prob-
lem:

max δy0 + δy1;

s.t. P r[n|0]y0 − Pr[n|1]y1 ≤ Pr[0]Pr[n|0]
Pr[n|1]y1 − Pr[n|0]y0 ≤ Pr[1]Pr[n|1]
∀n ∈ {0, . . . , N − 1};

where y0 (respectively y1) is the dual variable corresponding
to the constraint where the agent observes 0 (respectively 1).
By dividing the first set of constraints with Pr[n|0] and the
second set of constraints with Pr[n|1], we have:

y0 − y1Pr[n|1]/Pr[n|0] ≤ Pr[0],∀n ∈ {0, . . . , N − 1};
y1 − y0Pr[n|0]/Pr[n|1] ≤ Pr[1],∀n ∈ {0, . . . , N − 1};

Clearly, among the 2(N−1) constraints of the dual problem,

only two are active, corresponding to: n1 = arg minn
Pr[n|1]
Pr[n|0] ,

and n2 = arg minn
Pr[n|0]
Pr[n|1] . It follows that only two of the

variables of LP 1 (i.e., τ (0, n1) and τ (1, n2)) have positive
values. These values can be computed by solving the system
of linear equations:

Pr[n1|0]τ(0, n1) − Pr[n2|0]τ(1, n2) = δ;

− Pr[n1|1]τ(0, n1) + Pr[n2|1]τ(1, n2) = δ;
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