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Abstract
In this thesis, we present Stainless, a verification system for an expressive subset of the Scala

language. Our system is based on a dependently-typed language and an algorithmic type

checking procedure which ensures total correctness. We rely on SMT solvers to automate

the verification process and to provide us with useful counterexamples when considered

properties are invalid. We then enable verification in the presence of high-level Scala language

features by encoding them into the dependently-typed language.

We introduce an SMT-backed counterexample finding procedure which can also prove that

no counterexample exists. The procedure incrementally unfolds function calls and applica-

tions in order to progressively explore the space of counterexamples. We present increasingly

expressive fragments of our dependently-typed language and establish soundness and com-

pleteness properties of the procedure for each fragment. We then describe an extension which

introduces support for quantifier reasoning. We discuss syntactic and semantic conditions

under which the extended procedure can produce valid counterexamples in the presence of

universal quantification.

We present a bidirectional type checking algorithm for our dependent type system. The

algorithm relies on our counterexample finding procedure to discharge verification conditions

which enables predictable and effective type checking. The type system features a unified

treatment of both recursive and corecursive definitions, and further admits mutual recursion

between type and function definitions. We establish normalization through a sized types

approach. We define a logical relation which associates a set of reducible values to each

type, and then show soundness of verification by proving that evaluation of a type checked

expression terminates with a reducible value.

We further discuss a set of transformations which encode high-level Scala constructs into

our dependently-typed language. These transformations allow our verification system to

support object-oriented features such as traits and classes with multiple inheritance, as well

as abstract and concrete methods with overriding. We further present a measure inference

transformation which enables automated termination checking in our system. In addition to

encoding language features, we discuss how Scala can be augmented with natural specification

constructs and annotations that empower verification.

Finally, we describe the system implementation and discuss certain practical considerations.

We show that the resulting system is effective by evaluating it on a set of benchmarks and

case studies comprising over 15K lines of Scala code. These benchmarks showcase both the

breadth and flexibility of the system.
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Résumé
Dans cette thèse, nous présentons Stainless, un système de vérification formelle pour un

sous-ensemble de Scala. Notre système est basé sur une théorie des types dépendants et un

algorithme de typage qui démontre la correction totale des programmes considérés. L’au-

tomatisation du processus de vérification est soutenue par un solveur SMT qui sert aussi

à générer des contre-exemples lorsque la propriété considérée est invalide. La vérification

de programmes Scala qui dépendent de fonctionnalités complexes du langage est rendue

possible par l’encodage desdites fonctionnalités dans notre langage à types dépendants.

Tout d’abord, nous présentons une procédure de génération de contre-exemples basée sur

un solveur SMT qui permet aussi de démontrer l’absence de contre-exemples. La procédure

déroule progressivement les appels de fonctions (nomées ou non) de manière à explorer

l’ensemble des contre-exemples. Nous présentons plusieurs fragments de notre language à

types dépendants et démontrons certaines propriétés de correction et de complétude de la

procédure pour chaque fragment. Nous décrivons ensuite une extension de notre théorie

des types qui y introduit des quantificateurs. Nous exposons des conditions syntactiques et

sémantiques en vertu desquelles la procédure étendue peut générer des contre-exemples

valides malgré la présence de quantificateurs universels.

Ensuite, nous présentons un algorithme de typage bidirectionnel pour notre théorie des types

dépendants. L’algorithme s’appuie sur notre procédure de génération de contre-exemples,

ce qui permet un processus de vérification prévisible et efficace. Notre système traite de

manière unifiée les définitions récursives et corécursives, et admet la récursion mutuelle

entre les définitions de types et de fonctions. La terminaison est établie par l’approche des

types indexés (sized types). Nous définissons une relation logique associant à chaque type un

ensemble de valeurs réducibles, puis prouvons la correction du processus de vérification en

démontrant que l’évaluation d’une expression bien typée termine avec une valeur réducible.

Afin de permettre la vérification de programmes Scala, nous exposons plusieurs transfor-

mations qui encodent certaines fonctionnalités de haut niveau de Scala dans notre langage

à types dépendants. Ces transformations permettent à notre système de vérifier des pro-

grammes Scala où figurent des éléments du paradigme orienté-objet tels que des traits et

classes avec de l’héritage multiple, ou encore des méthodes abstraites ou concrètes avec de

la redéfinition. Nous présentons également un procédé d’inférence de mesures qui permet

au système d’établir la terminaison de manière automatique. En sus des encodages, nous

décrivons quelques constructions qui permettent de définir naturellement des spécifications

et contrats en Scala.

vii



Acknowledgements

Finalement, nous décrivons l’implémentation du système et exposons quelques considé-

rations pratiques. Nous démontrons l’efficacité du système en vérifiant un ensemble de

programmes cumulant plus de 15 mille lignes de code Scala qui mettent en valeur l’envergure

et la flexibilité du système.

Mots-clefs : programmation fonctionnelle, vérification formelle, types dépendants, fonc-

tions d’ordre supérieur, génération de contre-exemples.
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Introduction

The amount of software on which the smooth functioning of modern society depends is

steadily growing. Software is increasingly appearing in safety-critical systems such as vehicles,

medical aparati, power plants, and weapons where the cost of failure can be massive. However,

writing bug-free software remains a challenging task. Even in the presence of strict coding

guidelines and extensive testing, critical bugs make their way into production software and

lead to potentially catastrophic failures.

Given the fundamental difficulty of writing bug-free code, industry has come up with various

mitigation techniques. These include improving engineering practices, introducing redun-

dancy in production systems, designing better programming languages and type systems,

automating relevant test generation, etc. One important point in this design space of code

quality improvement is formal software verification. Formal verification allows users to stati-

cally verify that software systems will never crash nor diverge, and will in addition satisfy given

functional correctness properties.

Formal verification provides strong guarantees regarding software reliability. However, these

guarantees come at the cost of a significantly longer development time [KAE+10]. Further-

more, the advances in industrial programming language design are often poorly supported

by verification frameworks which typically either 1) focus on simpler fragments with good

theoretical properties [BC04, NPW02, BDN09, VSJ14a], 2) rely on languages that are designed

specifically for verification and have low industry adoption [Lei10, SHK+16], or 3) support

older programming languages [LM08, CDMV11].

One approach to reducing the time spent building verified software consists in automating

the proof effort. Higher levels of automation will reduce the amount of annotation the user

must provide in order for the system to prove a property, but will come at the cost of greater

verification times. It is therefore important for automation techniques to fail early when given

statements that do not hold. In this thesis, we will present a powerful counterexample finding

procedure for a higher-order functional language that can furthermore automatically derive

proofs of counterexample inexistence. The procedure is backed by a Satisfiability Modulo

Theories (SMT) solver and relies on an embedding of relevant properties into a quantifier-free

fragment of First-Order Logic. We leverage this procedure in our system to provide both

automation and useful feedback to the user when the considered property is invalid.
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In general, the inexistence of counterexamples is not a sufficient guarantee when verifying

software as it does not preclude crashes or non-termination. In order to ensure these prop-

erties while allowing expressive specifications, we introduce a dependent type system with

refinement types and present a bidirectional type checking algorithm which establishes both

crash-freedom and normalization. In fact, type checking ensures an even stronger prop-

erty, namely reducibility [Tai67] of the considered programs. The concept of reducibility

allows us to extend the notion of termination to programs with higher-order functions where

normalization may prove too weak.

The language for which the type checking and counterexample finding procedures are defined

consists of a lambda calculus extended with recursive functions and recursive types. We

further extend this fragment with support for propositional quantifiers in order to increase

the expressivity of specifications and allow additional automation. The resulting verification

language is expressive while remaining fairly simple and amenable to automation.

We address the second limitation of formal verification given above, namely the lack of support

for modern programming languages, by presenting a verification system for an expressive

subset of Scala which includes both the object-oriented and functional aspects of the lan-

guage. Verification is enabled by encoding Scala programs into the verification language and

then performing type checking on the encoded programs. Thanks to the expressivity of our

verification language, the encoding is fairly shallow and allows both predictable and scalable

verification of Scala programs. Furthermore, counterexamples derived during type checking

will generally correspond to real errors at the Scala source level.

The Scala fragment supported by our verification system admits advanced language features

such as implicit resolution, multiple inheritance and declaration-site variance. This allows

users to write (and verify) idiomatic Scala programs. For example, consider the following

covariant List definition with similar methods to the Scala standard library List collection.

sealed abstract class List[+T] {

def ::[T1 >: T](h: T1): List[T1] = new ::(h, this)

def head: T = {
require(this != Nil)
this match { case x :: xs ⇒ x }

}

· · ·
}

case class ::[+T](h: T, t: List[T]) extends List[T]
case object Nil extends List[Nothing]

Note that our implementation of the head method introduces a require statement [Ode10]

which specifies that the list should not be Nil. This property will be statically checked at each

2



Contents

call site in order to ensure that it is never violated. Our system will further verify that the match

expression is exhaustive (and thus will not crash) which is guaranteed as the List is sealed and

the Nil case is excluded by the requirement.

Let us now showcase our Scala verifier by proving that an insertion sort implementation does

indeed produce a sorted list. Sorting an instance of the polymorphic type List[T] in Scala relies

on an instance of Ordering[T]. This ordering provides a compare method which, given two

values, returns an integer whose sign determines the ordering relation between the two values.

The Scala API of the Ordering type is therefore given as follows.

trait Ordering[T] { def compare(x: T, y: T): Int }

However, this interface does not fully specify the behavior expected of Ordering instances.

Indeed, the compare method must further satisfy the following constraints (where sign(x) is

either −1, 0 or 1 depending on the sign of x) in order for the Ordering instance to be valid1:

inverse : ∀x, y. sign(compare(x, y)) == − sign(compare(y, x)),

transitive : ∀x, y, z. compare(x, y) > 0∧compare(y, z) > 0 =⇒ compare(x, z) > 0, and

consistent : ∀x, y, z. compare(x, y) == 0 =⇒ sign(compare(x, z)) == sign(compare(y, z)).

Note that these constraints imply that compare(x, y) < 0 is a total ordering over the equivalence

classes given by compare(x, y) == 0. While these requirements are only informally specified

in the interface documentation, our system allows them to be made explicit. We rely on an

annotation @law which marks a boolean method as being part of the interface specification.

Given this annotation, we can precisely define the API of the Ordering type as follows.

trait Ordering[T] {
def compare(x: T, y: T): Int

@law def inverse(x: T, y: T): Boolean =
sign(compare(x, y)) == −sign(compare(y, x))

@law def transitive(x: T, y: T, z: T): Boolean =
(compare(x, y) > 0 && compare(y, z) > 0) =⇒ (compare(x, z) > 0)

@law def consistent(x: T, y: T, z: T): Boolean =
(compare(x, y) == 0) =⇒ (sign(compare(x, z)) == sign(compare(y, z)))

private �nal def sign(i: Int): Int = if (i > 0) 1 else if (i < 0) −1 else 0
}

Our system will then check that all (concrete) implementations of the Ordering trait satisfy the

specified laws. We can therefore rely on these laws when verifying code that depends on some

instance of the Ordering type.

Before moving on to the definition of insertion sort, let us consider the notion of list sortedness.

We define sortedness through the recursive isSorted function given below which compares the

1See https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

3
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adjacent list elements pairwise.

def isSorted[T](list: List[T])(implicit ord: Ordering[T]): Boolean = list match {
case x :: (xs @ (y :: ys)) ⇒ ord.compare(x, y) ≤ 0 && isSorted(xs)
case _ ⇒ true

}

Note that due to the transitivity of the compare method, this definition further implies that all

pairs of list elements (taken in the order of appearance in the list) are sorted.

The insertion sort algorithm is then defined as follows. Note that the sort method features an

ensuring statement which specifies a contract that the associated function must satisfy. In

this particular case, we want our system to verify that the output of the sort method is indeed

sorted (according to the isSorted predicate).

def insert[T](x: T, xs: List[T])(implicit ord: Ordering[T]): List[T] = xs match {
case y :: ys if ord.compare(x, y) ≤ 0 ⇒ x :: xs
case y :: ys ⇒ y :: insert(x, ys)
case Nil ⇒ x :: Nil

}

def sort[T](list: List[T])(implicit ord: Ordering[T]): List[T] = (list match {
case x :: xs ⇒ insert(x, sort(xs))
case Nil ⇒ Nil

}) ensuring (isSorted(_))

The above implementation is correct, yet the system will fail to verify the sort contract and will

timeout (or run forever). Note however that if we had introduced an error in the implementa-

tion due to which the contract did not hold, our system would report a counterexample.

In order for verification to succeed, the system needs to know that the insert function preserves

sortedness, which leads to the following revised implementation of insert.

def insert[T](x: T, xs: List[T])(implicit ord: Ordering[T]): List[T] = {
require(isSorted(xs))
xs match {
case y :: ys if ord.compare(x, y) ≤ 0 ⇒ x :: xs
case y :: ys ⇒ ord.inverse(x, y); y :: insert(x, ys)
case Nil ⇒ x :: Nil

}
} ensuring (isSorted(_))

Our verification procedure will consider each branch of the match expression and invoke the

counterexample finding procedure to derive a proof of output sortedness. Let us consider

the second branch which returns y :: insert(x, ys). The postcondition of insert ensures that
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the tail of the list is sorted, hence it remains to show that if insert(x, ys) is non-empty, then y
precedes the head of insert(x, ys) in the ordering. The system knows that

ord.compare(y, ys.head) ≤ 0 by sortedness of the xs list (if ys is non-empty),

ord.compare(y, x) > 0 by the path condition, and

ord.compare(x, y) ≤ 0 by invocation of the ord.inverse(x, y) law.

If one observes the definition of insert, it becomes clear that the head of insert(x, ys) will either

be x or the head of ys. Our counterexample finding procedure unfolds function definitions

and will become aware of this fact without needing an explicit specification. Our system can

therefore verify that the contracts of the revised insert implementation hold.

Contributions

In this thesis, we present a verifier for an expressive subset of the Scala language. We describe

the verifier from the ground up and discuss 1) SMT-based proof automation, 2) verification

through algorithmic dependent type checking, and 3) encodings of complex Scala features

into the verifiable dependently-typed language.

More concretely, we make the following contributions:

• We present a set of SMT-backed counterexample finding procedures for different func-

tional languages. The procedures rely on embeddings from the considered language

into a quantifier-free fragment of SMT. These embeddings under-approximate the

operational semantics of certain language constructs to preserve decidability of the em-

bedding target. In order to increase the precision of the approximation, the procedures

then perform incremental unfolding of the approximated constructs. We discuss how

the procedures can further determine counterexample inexistence and finally prove

certain important properties about the procedures.

– We first present counterexample finding for a first-order language with recursive

functions, datatypes and parametric polymorphism. The considered language is

Turing complete and features both stuck terms and divergence. We then show that

the procedure is sound and complete for counterexamples, as well as sound for

proofs of counterexample inexistence.

– We extend the first-order language with support for higher-order functions by

introducing lambdas, applications and function types. We further introduce a

notion of structural equality which is decidable for first-class functions. We then

extend the counterexample finding procedure to the higher-order setting and show

that the properties stated in the first-order case are preserved.

– We then introduce dependent types with refinements into the language and asso-

ciate a denotation (or set of admissible values) to each type. We further introduce a

notion of reducibility for counterexamples that satisfy the relevant denotations. We
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extend our embedding and unfolding procedures with support for the dependently-

typed language and show that the resulting counterexample finding procedure is

sound for proofs of reducible counterexample inexistence.

– Finally, we extend the dependently-typed language with impredicative universal

and existential quantifiers. We present a quantifier instantiation procedure in the

context of the counterexample finder which extends the approach described in

[GdM09]. We then discuss some syntactic and semantic fragments for which we

conjecture soundness and completeness for counterexamples.

• We present a bidirectional type checking algorithm for the dependently-typed language

without quantifiers mentioned above. The algorithm verifies that expressions evaluate

to values within the denotation of the expected type, and therefore guarantees both

normalization and functional correctness. The type checking procedure relies on the

counterexample finding procedure to generate proofs of reducible counterexample

inexistence, in particular when checking refinement types.

– Our system relies on the well-known sized types principle to show termination

of recursive functions. We present an algorithmic type generalization procedure

which allows sizes to be ignored during type checking under certain conditions.

This technique simplifies type checking by allowing irrelevant sizes to be omitted.

– We introduce sized datatypes in our language which ensure that the denotation

is well-formed in the presence of recursive datatype definitions. These further

allow verification of corecursive (or productive) function definitions. We assign a

denotation to intersection (or unsized) datatypes by taking the intersection over

all sizes. We then provide type checking rules which enable construction and de-

construction of strictly positive intersection datatypes, thus allowing more natural

programs involving recursive datatypes.

– Finally, we present program formation rules which ensure well-formedness of

datatype and function definitions. These rules allow mutual recursion between

type and function definitions. We then show that our type checking procedure is

sound with respect to the denotation and well-formedness relation. In order to

allow mutually recursive definitions, the intermediate lemmas on which the proof

relies require significant instrumentation.

• We describe a set of transformations which encode high-level Scala features into the

dependently-typed language (with quantifiers) for which verification is defined. (Han-

dling quantifiers during type checking can be left to the counterexample finding proce-

dure.) The transformations are organized in a pipeline which progressively encodes the

Scala constructs which are not supported in the dependently-typed language.

– We present a measure and refinement inference transformation which enables

automated termination checking. The transformation considers different candi-

date ranking functions for (unannotated) function definitions in the program and
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performs partial type checks in order to select a valid measure. The transforma-

tion further strengthens function signatures in order to allow the type checking

procedure to establish termination.

– We describe an encoding of Scala type system features including parametric nomi-

nal types with subtyping, type bounds, declaration-site variance, higher-kinded

types, top and bottom types, as well as union and intersection types. We rely on

dependent types and quantified propositions in order to allow a practical encoding

for which type checking can be effectively performed.

• Finally, we show that the procedures presented above are effective through a series

of benchmarks and case studies. We have evaluated our system on tasks including

verifying correctness of datastructure definitions, proving mathematical statements,

and checking algebraic laws. Our system has further been used as a backend to verify

smart contract implementations.

Thesis. Automated verification and counterexample finding in the presence of dependent

types is both feasible and practical. Furthermore, dependently-typed languages are sufficiently

expressive to encode high-level design patterns and language constructs featured in industrial

functional programming languages. These observations serve as foundations for building an

effective verification system for an expressive subset of the Scala language.
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1 Counterexamples for Polymorphic
Recursive Functions

In this chapter, we present a first-order functional language with parametric polymorphism

and describe how SMT solvers can be leveraged to produce proofs and counterexamples

for properties stated in this language. The operational semantics of our language and the

logical semantics of SMT formulas only differ in certain specific areas, namely in control-flow

constructs and recursive function calls. We show how these expressions can be precisely

encoded into a fragment of quantifier-free SMT terms, and describe an unfolding procedure

that enables counterexample-complete verification for our input language.

Example. Let us consider the following program which defines a generic List type along

with the recursive append function which takes two generic lists as arguments and returns

their concatenation. The program further defines a lemma rightUnit which states the right

unit monoid law on lists with concatenation. However, when stating the law, the programmer

inadvertently inserted a mistake and ended up with an invalid definition where the right-hand

side of the equality should be list.

type List[T] = Cons(head: T, tail: List[T]) | Nil

def append[T](l1: List[T], l2: List[T]): List[T] = l1 match {
case Cons(x, xs) ⇒ Cons[T](x, append[T](xs, l2))
case Nil ⇒ l2

}

def rightUnit[T](list: List[T]): Boolean = append[T](list, Nil[T]) ≈ Nil[T]

Let us now assume some verification procedure has generated the following verification

condition which corresponds to the inductive case of the right unit law.

rightUnit[T ](xs) =⇒ rightUnit[T ](Cons[T ](x,xs))

9



Chapter 1. Counterexamples for Polymorphic Recursive Functions

fdef ::= def id [ tdecls ]( id : type ) : type := expr

tdef ::= type id [ tdecls ] := id ( id : type ) 〈 | id ( id : type ) 〉∗
tdecls ::= ε | id 〈 , id 〉∗

tparams ::= ε | type 〈 , type 〉∗
expr ::= true | false | ( ) | id | expr ≈ expr | err[type ]

| expr match { 〈 id ( id ) ⇒ expr 〉+ }

| ( expr , expr ) | πi (expr )

| if ( expr ) expr else expr

| let id := expr in expr

| id [ tparams ]( expr )

type ::= Boolean | Unit | id | id [ tparams ] | ( type , type )

id ::= IDENT

Figure 1.1 – Syntax of our simple first-order language.

In the remainder of this chapter, we will describe how to build a counterexample-complete

procedure that is able to discharge such verification conditions, using this property as a

running example. Note that instead of directly showing that the property holds for all inputs

x, xs, our procedure will instead either 1) find a counterexample if one exists, or 2) show that

no such counterexample exists.

1.1 Language

We will start by considering a simple first-order language with recursive functions, pairs, alge-

braic datatypes, equality and parametric polymorphism whose syntax is defined in Figure 1.1.

We use the syntax a to denote a sequence a1, · · · , an of elements. We denote substitution of x

by b in a by a[x/b]. We write C[·] to denote an expression with a hole such that C[e] is an ex-

pression where the hole was filled by e. We write e1 v e2 to indicate structural inclusion of the

expression e1 in e2 (we extend this notation to types as well). In order to improve readability,

we will sometimes rely on a more Scala-like syntax (restricted to features supported by our

language) when presenting code snippets and examples.

We define a program P ⊆ fdef ∪ tdef as a set of function and type definitions. The various

judgements presented in Figures 1.3, 1.4 and 1.5 are given in the context of some combina-

tion of P a program, Θ a set of type variables T1, · · · ,Tn , and Γ a sequence of type bindings

x1 : τ1, · · · , xm : τm . We call the full triplet P ;Θ;Γ a typing environment and refer to the se-

quence of type bindings Γ as a typing context. The context formation judgement ` Γ context

presented in Figure 1.2 depends on P andΘ, the type formation judgement ` τ type presented

in Figure 1.3 also depends on P and Θ, the typing judgement ` e : τ presented in Figure 1.4

10



1.1. Language

EMPTY CONTEXT

P ;Θ` context

INCREASE CONTEXT

P ;Θ` τ type

P ;Θ` Γ, x : τ context

Figure 1.2 – Context formation rules.

depends on P , Θ and Γ, and finally the definition formation judgement ` d well-formed pre-

sented in Figure 1.5 depends only on P . When the environment under which the various

judgements are performed is clear, given the context, it may be omitted (we simply write e : τ,

for example). We generally assume the programs considered are well-formed according to

the rules presented in Figure 1.5, and typing environments P ;Θ;Γ consist of a well-formed

program P and well-formed typing context Γ (note that Θ is always well-formed).

The set of values of our language is defined with respect to some program P and is given by

the following grammar where C must correspond to some datatype constructor in P .

value ::= true | false | ( ) | (value , value ) | C [τ](value )

The call-by-value operational semantics of closed terms are defined in Figure 1.6 and are also

given in the context of a (generally omitted) program P . We use evaluation contexts E as an

expression with a hole that determines where evaluation will occur next. The expression E[e]

is obtained by substituting a type-compatible expression into the hole. Note that our type

system does not enforce progress as the well-typed err[τ] expression is stuck. However, we do

have preservation. Our type system therefore only imposes a certain structure on the programs

considered which allows them to be embedded into well-sorted SMT terms.

To each expression and type in our language, we associate a unique static label which we will

refer to as l : e. During evaluation, labels follow the expression to which they were originally

assigned, so an expression in a trace may end up having multiple labels. In the CALL rule, the

labels in the inlined function body are computed as a function of the original labels assigned

to expressions in the function definition and the label of the function call.

We let FV (e) denote the set of free variables in e and F T (e) the set of free types (i.e. type

variables). We define value substitutions as mappings γ : id 7→ value and type substitutions as

mappings θ : id 7→ {τ ∈ type | F T (τ) =;}. We consider all variables and identifiers to be fresh in

all expressions, and substitutions distribute over sub-expressions. Given a well-formed typing

environment P ;Θ;Γ, an expression e and a type τ such that P ;Θ;Γ` e : τ, we will generally be

interested in triplets of a program extension Pin, type substitution θ, and value substitution

γ such that for d ∈ Pin, we have P ∪Pin ` d well-formed, for T ∈ Θ, we have (T,τ) ∈ θ and

P ∪Pin;;` τ type, and for (x,τ) ∈ Γ, we have (x, v) ∈ γ and P ∪Pin;;;;` v : θ(τ). We say that

Pin,θ,γ are inputs for P ;Θ;Γ, and preservation ensures that P ∪Pin;;;;` γ(θ(e)) : θ(τ).
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Chapter 1. Counterexamples for Polymorphic Recursive Functions

BOOLEAN TYPE

P ;Θ`Boolean type
UNIT TYPE

P ;Θ`Unit type

PAIR TYPE

P ;Θ` τ1 type P ;Θ` τ2 type

P ;Θ` (τ1, τ2 ) type

TYPE VARIABLE

T ∈Θ
P ;Θ` T type

DATATYPE

(type d [τd ] := ·· · ) ∈ P |τd | = |τ| P ;Θ` τ type for τ ∈ τ
P ;Θ` d [τ] type

Figure 1.3 – Type formation rules.

TRUE

P ;Θ` Γ context

P ;Θ;Γ` true : Boolean

FALSE

P ;Θ` Γ context

P ;Θ;Γ` false : Boolean

UNIT

P ;Θ` Γ context

P ;Θ;Γ` ( ) : Unit

VAR

P ;Θ` Γ context (x,τ) ∈ Γ
P ;Θ;Γ` x : τ

EQUALS

P ;Θ;Γ` e1 : τ P ;Θ;Γ` e2 : τ

P ;Θ;Γ` e1 ≈ e2 : Boolean

LET

P ;Θ;Γ` e1 : τ1 P ;Θ;Γ, x : τ1 ` e2 : τ2

P ;Θ;Γ` let x := e1 in e2 : τ2

ERR

P ;Θ` Γ context P ;Θ` τ type

P ;Θ;Γ` err[τ] : τ

IF

P ;Θ;Γ` c : Boolean P ;Θ;Γ` e1 : τ P ;Θ;Γ` e2 : τ

P ;Θ;Γ` if (c) e1 else e2 : τ

PAIR

P ;Θ;Γ` e1 : τ1 P ;Θ;Γ` e2 : τ2

P ;Θ;Γ` (e1, e2 ) : (τ1, τ2 )

PROJECTION

P ;Θ;Γ` e : (τ1, τ2 ) 1 ≤ i ≤ 2

P ;Θ;Γ`πi (e ) : τi

CONSTRUCTOR

(type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P P ;Θ` d [τ] type P ;Θ;Γ` e : τi [τd /τ]

P ;Θ;Γ`Ci [τ](e) : d [τ]

MATCH

(type d [τd ] := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P
P ;Θ;Γ` e : d [τ] P ;Θ;Γ, yi : τi [τd /τ] ` ei : τ for 1 ≤ i ≤ n

P ;Θ;Γ` e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en } : τ

CALL

(def f [τ f ](x : τ1) : τ2 := e) ∈ P
|τ f | = |τ| P ;Θ` τ type for τ ∈ τ P ;Θ;Γ` e : τ1[τ f /τ]

P ;Θ;Γ` f [τ](e) : τ2[τ f /τ]

Figure 1.4 – Typing rules of our simple first-order language.
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1.1. Language

TYPE

P ;τd ` τi type for 1 ≤ i ≤ n P ;τd ` d [τd ] well-defined

P ` type d [τd ] := C1(x1 : τ1) | · · · | Cn(xn : τn) well-formed

FUNCTION

P ;τ f ` τ1 type P ;τ f ` τ2 type P ;τ f ; x : τ1 ` e : τ2

P ` def f [τ f ](x : τ1) : τ2 := e well-formed

Figure 1.5 – Program formation rules. The well-defined judgement used in the TYPE rule
follows from the definition of well-defined datatypes in the SMT theory of datatypes and
ensures that a corresponding SMT datatype sort exists for type d [τ].

E ::= [·] | if (E) expr else expr | E ≈ expr | value ≈ E | (E , expr ) | (value, E )

| πi (E ) | let id := E in expr | i d [τ](E) | E match { · · · id (id ) ⇒ expr · · · }

CONTEXT

e → e ′

E[e] → E[e ′]

IF-THEN

if (true) e1 else e2 → e1

IF-ELSE

if (false) e1 else e2 → e2

LET

v ∈ value

let x := v in e2 → e2[x/v]

EQUALS-TRUE

v1, v2 ∈ value v1 = v2

v1 ≈ v2 → true

EQUALS-FALSE

v1, v2 ∈ value v1 6= v2

v1 ≈ v2 → false

PROJECT

v1, v2 ∈ value 1 ≤ i ≤ 2

πi ( ( v1, v2 ) ) → vi

CALL

(def f [τ f ](x : τ1) : τ2 := e f ) ∈ P v ∈ value

f [τ](v) → e f [τ f /τ][x/v]

MATCH

(type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P v ∈ value

Ci [τ](v) match { · · · Ci (yi ) ⇒ ei · · · } → ei [yi /v]

Figure 1.6 – Operational semantics of our simple first-order language, given with respect to
some program P (see CALL and MATCH rules).
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Chapter 1. Counterexamples for Polymorphic Recursive Functions

1.2 Embedding the Language

We discuss in this section how our language can be embedded into a decidable fragment

of SMT formulas. The fragment on which we rely consists of the usual boolean terms and

operators, the theory of uninterpreted functions, the theory of uninterpreted sorts, and the

theory of algebraic datatypes. The main challenge here consists in lining up the operational

semantics of our language with the logical semantics of SMT. Most of our expressions have

straightforward embeddings into SMT terms (for example, datatype constructors, boolean

values and variables); however, our named function call semantics differ from those of unin-

terpreted functions. The precise encoding of our operational semantics is enabled by two key

features of our embedding:

1. The resulting SMT formulas are instrumented so that portions of the embedding for

which the semantics do not (yet) line up can be disregarded. This aspect is enabled by

the embedding of if - and match-expressions where the control flow of the expression is

encoded into special blocker instrumentation constant.

2. Function calls are gradually unfolded to increase the set of calls for which the embedding

is consistent with the operational semantics of our language.

Expressions from the language presented in Figure 1.1 are embedded into a fragment of

quantifier-free SMT terms. We define an embedding relation . for our types and expressions.

Given a type formation context P ;Θ and a well-formed type τ, our type embedding returns

an SMT sort σ. Notation wise, we write this as P ;Θ ` τ . σ. Our Boolean type is naturally

embedded into its SMT sort counterpart. Datatypes are embedded into the SMT theory of

datatypes where the sort is uniquely determined by the type d [τ]. Pair types are embedded into

SMT datatypes with a single constructor and a field for each projector. For type variables, we

use fresh uninterpreted sorts (again uniquely determined by the type variable). The complete

type embedding rules are presented in Figure 1.7.

Our expression embedding relies on a boolean-sorted instrumentation constant which en-

codes the path condition of the expression being embedded. We call these instrumenta-

tion constants blocker constants. Given a typing context P ;Θ;Γ, blocker constant b, and

well-typed expression e, our embedding returns an SMT term t and a set of SMT clauses Φ

under which the term corresponds to the input expression. Notation wise, we write this as

P ;Θ;Γ` (b, e) . (t ,Φ). Furthermore, the embedding is such that given P ;Θ;Γ` e : τ, the type

embedding P ;Θ` τ . σ corresponds to the sort of t . Some of our expressions have natural

embeddings, such as variables and algebraic datatype constructors, but others rely on the

clause set and blocker constants to ensure equivalent semantics. The embeddings of if - and

match-expressions introduce blocker constants for each branch, and the embedding of error

expressions negates the associated blocker constant (which disallows the relevant branch).

Similarly to the embedding of algebraic datatypes, function calls are embedded by introducing

uninterpreted function symbols that are uniquely determined by the function identifier and its

14



1.2. Embedding the Language

BOOLEAN TYPE

P ;Θ`Boolean . bool

UNIT TYPE

datatype δUnit = Unit algebraic datatype

P ;Θ`Unit . δUnit

TYPE VARIABLE

T ∈Θ σT uninterpreted sort

P ;Θ` T . σT

PAIR TYPE

P ;Θ` τ1 . σ1 P ;Θ` τ2 . σ2

datatype δ(τ1,τ2 ) = cons(τ1,τn )(π(τ1,τ2 ),1 : σ1, π(τ1,τ2 ),2 : σ2) algebraic datatype

P ;Θ` (τ1, τ2 ) . δ(τ1,τ2 )

DATATYPE

(type d [τd ] := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P P ;Θ` τi [τd /τ] . σi for 1 ≤ i ≤ n
datatype dτ = Cτ,1(xτ,1 :σ1) | · · · | Cτ,n(xτ,n :σn) algebraic datatype

P ;Θ` d [τ] . dτ

Figure 1.7 – Type embedding rules.

type parameters. The complete expression embedding rules are presented in Figure 1.8. Note

that in order to improve readability, we share certain identifiers between the initial expression

and the embedded SMT term.

Similarly to the typing judgement, the embedding environment P ;Θ;Γ is generally clear from

the context and we write (b, e). (te ,Φe ). Given some embedding (b, e). (te ,Φe ), we will often

want to discuss the embedding of sub-expressions of e that occurred during the embedding

of e. Given some l ′ : e ′ v e, we write Tl ′ : e ′Ut for the term resulting from the embedding of

l ′ : e ′, and Tl ′ : e ′Ub for the blocker constant under which it was embedded. It is clear given

the definition of . that T·Ut and T·Ub are defined for all sub-expressions of e. It is easy to see

that for values, the set of clauses obtained by embedding is empty. One should also note that

the embeddings of values do not depend on the provided blocker constant. We will therefore

generally omit the blocker constant and clause set when discussing the embeddings of values

and simply write v . tv for v ∈ value.

Recalling the right unit law for append stated previously, the embedding of the property is as

follows. Note that the implication is considered as an if -expression in the presented language.

P ;T ;x : T,xs : List[T ] ` (be ,rightUnit[T ](xs) =⇒ rightUnit[T ](Cons[T ](x,xs))) .

(r1, { (be ∧ rightUnitT (xs)) ⇐⇒ b1,

(be ∧¬rightUnitT (xs)) ⇐⇒ b2,

b1 =⇒ r1 ' rightUnitT (ConsT (x,xs)),

b2 =⇒ r1 ' false })
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P ;Θ;Γ` (b, true) . (true, ;) P ;Θ;Γ` (b, false) . (false, ;) P ;Θ;Γ` (b, ( )) . (Unit, ;)

(x,τ) ∈ Γ
P ;Θ;Γ` (b, x) . (x, ;)

P ;Θ;Γ` (b, e1) . (t1,Φ1) P ;Θ;Γ` (b, e2) . (t2,Φ2)

P ;Θ;Γ` (b, e1 ≈ e2) . (t1 ' t2,Φ1 ∪Φ2)

P ;Θ;Γ` (b, e1) . (t1,Φ1) P ;Θ;Γ` e1 : τ P ;Θ;Γ, x : τ` (b, e2) . (t2,Φ2)

P ;Θ;Γ` (b, let x := e1 in e2) . (t2,Φ1 ∪Φ2 ∪ {b =⇒ x ' t1})

r fresh constant

P ;Θ;Γ` (b, err[τ]) . (r, {¬b })

P ;Θ;Γ` e : (τ1, τ2 ) P ;Θ;Γ` (b, e) . (t ,Φ)

P ;Θ;Γ` (b, πi (e )) . (π(τ1,τ2 ),i ( t ),Φ)

P ;Θ;Γ` ei : τi for 1 ≤ i ≤ 2 P ;Θ;Γ` (b, ei ) . (ti ,Φi ) for 1 ≤ i ≤ 2

P ;Θ;Γ` (b, (e1, e2 )) . (cons(τ1,τ2 )(t1, t2),Φ1 ∪Φ2)

P ;Θ;Γ` (b, e) . (t ,Φ)

P ;Θ;Γ` (b, f [τ](e)) . ( fτ(t ),Φ)

P ;Θ;Γ` (b, e) . (t ,Φ)

P ;Θ;Γ` (b, Ci [τ](e)) . (Cτ,i (t ),Φ)

P ;Θ;Γ` (b, c) . (tc ,Φc )
b1,b2,r fresh constants P ;Θ;Γ` (b1, e1) . (t1,Φ1) P ;Θ;Γ` (b2, e2) . (t2,Φ2)

Φguard = { (b ∧ tc ) ⇐⇒ b1, (b ∧¬tc ) ⇐⇒ b2, b1 =⇒ r ' t1, b2 =⇒ r ' t2 }

P ;Θ;Γ` (b, if (c) e1 else e2) . (r,Φc ∪Φ1 ∪Φ2 ∪Φguard)

P ;Θ;Γ` (b, s) . (ts ,Φs)
P ;Θ;Γ` s : d [τ] (type d [τd ] := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P

b1, · · · ,bn ,r fresh constants P ;Θ;Γ, yi : τi [τd /τ] ` (bi , ei ) . (ti ,Φi ) for 1 ≤ i ≤ n
Φguard =⋃

1≤i≤n{ (b ∧ is-Cτ,i (ts)) ⇐⇒ bi , bi =⇒ yi ' xτ,i (ts), bi =⇒ r ' ti }

P ;Θ;Γ` (b, s match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en }) . (r,Φs ∪Φ1 ∪·· ·∪Φn ∪Φguard)

Figure 1.8 – Expression embedding rules. It is important to note that in the rules where
identifiers from the expression are used directly in the embedded terms to improve readability
(e.g. variable rule), the type embedding is leveraged to produce well-sorted terms. The same
goes for fresh constants that are introduced, for example in the error expression rule.

16



1.2. Embedding the Language

An important property of our embedding is that all clauses introduced into the Φe set are of

the shape b =⇒ c for some blocker constant b. Hence, by negating the blocker constants, the

clause set will always become satisfiable. In the following, given a model M such that M |= ¬b,

we will assume that M does not require interpretations for constants and function symbols

that occur in c to satisfy b =⇒ c. We also assume that models are minimal and contain no

spurious interpretations.

Lemma 1. For embedding P ;Θ;Γ ` (be , e) . (te ,Φe ) and model M, if M |= ¬Te ′Ub for e ′ v e,

then M |=Φe .

Proof. The proof follows by induction on e.

Finally, we want some means of extracting SMT models. Given a model M , we want to extract

some inputs to the original expression such that it can be evaluated. As the expression may

contain free variables for which no value exists (namely if they require values of parametric

type), we extract a program extension Pin that will contain type definitions corresponding to

the type variables in e. Based on these definitions, we construct a type substitution θ from type

variables in Θ to concrete types. We then extract a value substitution γ from variables in Γ to

values. We therefore want to define an extraction relation / such that P ;Θ;Γ` (Pin,θ,γ) / M .

We start by considering the extraction of type variables inΘ. Note that SMT solvers can produce

interpretations for constants of uninterpreted sort, and given a term with uninterpreted sort

σT , we let its interpretation have the shape Ti ∈ id for some i ∈N+. Given a type variable T ∈Θ
with uninterpreted sort embedding σT , we let M(σT ) = {T1, · · · ,Tn} be the set of values terms

with sort σT that exist in the interpretations of M . We then define an extraction relation /

between type variable T ∈Θ and the extracted type definition.

P ;Θ` T . σT M(σT ) = {T1, · · · ,Tn}

M ;P ;Θ` (type T := T1 | · · · | Tn) / T

We now define an extraction relation / between SMT value terms with expected types and

expressions. This extraction relation is quite natural for boolean values, the unit constructor,

pair constructors and algebraic datatype constructors. Values for type parameters are extracted

based on the extracted type definitions described above.

P ;Θ` true / (true, Boolean) P ;Θ` false / (false, Boolean) P ;Θ` ( ) / (Unit, Unit)

T ∈Θ
P ;Θ` Ti / (Ti , T )

P ;Θ` v1 / (t1, τ1) P ;Θ` v2 / (t2, τ2)

P ;Θ` ( v1, v2 ) / (cons(τ1,τ2 )(t1, t2), (τ1, τ2 ))

(type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P P ;Θ` v / (t , τi [τd /τ])

P ;Θ`Ci [τ](v) / (Cτ,i (t ), d [τ])
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Chapter 1. Counterexamples for Polymorphic Recursive Functions

As in the embedding, we will generally omit the extraction environment and expected type

when they are clear from the context and denote the extraction by e / t .

Based on the two extraction relations defined above, we define our extraction relation between

models and pairs of program extension and value substitution as follows.

Pin = {d | T ∈Θ, P ;Θ` T . σT , M ;P ;Θ` d / σT }

θ = {T 7→ T | T ∈Θ } γ= { x 7→ v | (x,τ) ∈ Γ, P ;Θ` v / (M(x), τ) }

P ;Θ;Γ` (Pin,θ,γ) / M

Again, we write (Pin,θ,γ) / M when P , Θ and Γ are clear from the context. In the following,

when evaluating expressions of the form γ(θ(e)), we will assume evaluation is performed

under program P ∪Pin.

The embedding presented above satisfies two important properties. Consider a (typed) expres-

sion e ∈ expr with embedding (be , e) . (te ,Φe ). Firstly, the embedding is sound with respect

to the operational semantics of our language modulo function calls (Lemma 3). In other

words, given a model for the embedding of e, we can extract a program extension and value

substitution under which e will evaluate to v , the extraction of te , as long as the model is

consisent with the function calls within e. Secondly, the embedding is complete with respect

to the operational semantics (Lemma 6). We mean by this that given a program extension,

type substitution, and value substitution under which e evaluates to v , we can construct a

model that satisfies the embedding and is consistent with the function calls in e.

Before moving on to stating these properties, we must clarify some notions. In the context of

a given trace, we use the terms encountered in the trace to describe expressions that simply

appear in the trace, and evaluated in the trace to designate expressions that fully reduce to a

value in the trace. We can define these notions in a more formal setting as follows.

Definition 1. Given a trace e1 →n e2 and some expression e ′, we say that

• e ′ is encountered in the trace iff e1 →m E[e ′] →n−m e2, and

• e ′ is evaluated in the trace iff e1 →m1 E[e ′] →m2 E[v ∈ value] →n−m1−m2 e2.

It is clear that being evaluated in a trace subsumes being encountered.

Let us now more precisely define the notion of consistency with calls employed above when

defining soundness and completeness (see Definition 2 below). This notion is always defined

in relation with a specific set of inputs, model and function call interpretation in the model. At a

high level, we say that the model is consistent with the call (interpretation) if the interpretation

corresponds to the operational semantics of the extracted call.

In order to consider the extraction of a function call interpretation, we need the ability to

extract SMT terms occurring in the embedding into values that may occur during evalua-
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1.2. Embedding the Language

tion. The term extraction procedure / given above will only allow a specific shape of values

to be extracted. However, we want to cover all values that may appear during evaluation.

Given a program P , set of type variables Θ and type substitution θ, we introduce a pair of

embedding/extraction procedures ext
. and ext

/ that can embed and extract values that will

appear in the trace given some expected type τ. For each (T,τ) ∈ θ, we are given an injection

IT : value →N+ from values with type τ into the (positive) natural numbers. Note that as val-

ues are defined as a least fixed point on syntax and are therefore countable, such an injection

is guaranteed to exist. We ensure that if τ corresponds to an extracted type definition of the

shape type T := T1 | · · · | Tn , then IT (Ti ) = i for 1 ≤ i ≤ n. We can then define the new value

embedding procedure as follows.

P ;Θ` (true, Boolean) ext
. true P ;Θ` (false, Boolean) ext

. false P ;Θ` (( ), Unit) ext
. Unit

T ∈Θ (v, i ) ∈ IT

P ;Θ` (v, T ) ext
. Ti

P ;Θ` (v1, τ1) ext
. t1 P ;Θ` (v2, τ2) ext

. t2

P ;Θ` (( v1, v2 ), (τ1, τ2 )) ext
. cons(τ1,τn )(t1, t2)

(type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P P ;Θ` (v, τi [τd /τ]) ext
. t

P ;Θ` (Ci [τ′](v), d [τ]) ext
. Cτ,i (t )

The value extraction procedure is then further defined as follows.

P ;Θ` true ext
/ (true, Boolean) P ;Θ` false ext

/ (false, Boolean) P ;Θ` ( ) ext
/ (Unit, Unit)

T ∈Θ (v, i ) ∈ IT

P ;Θ` v ext
/ (Ti , T )

P ;Θ` v1
ext
/ (t1, τ1) P ;Θ` v2

ext
/ (t2, τ2)

P ;Θ` ( v1, v2 ) ext
/ (cons(τ1,τ2 )(t1, t2), (τ1, τ2 ))

(type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P P ;Θ` v ext
/ (t , τi [τd /τ])

P ;Θ`Ci [θ(τ)](v) ext
/ (Cτ,i (t ), d [τ])

As previously, we write (v, τ) ext
. tv and v ext

/ (tv , τ) when the environment P ;Θ is clear from

context. Note that the type τ on which we rely in the procedures is such that v : θ(τ). It is

clear by construction that ext
. and ext

/ are inverse to each other. One should also note that ext
.

is defined for all values encountered during evaluation, and ext
/ is defined for all value terms

such that the interpretations of σT are within the range of IT . This is in particular the case

when the inputs stem from a model extraction by construction of Pin.

Based on the new extraction procedures, we can define the notion of agreement between a

value substitution and a model as follows.

Definition 2. For well-typed expression P ;Θ;Γ` e : τ, model M and inputs Pin,θ,γ, we say M

agrees with γ if for (x,τ) ∈ Γ, we have γ(x) ext
/ (M(x), τ).

It is important to realize that the ext
. / ext

/ procedures differ from .// only when the expected

type does not match the actual type. This ensures that when θ is empty (or the identity), ext
. is

equivalent to . and ext
/ is equivalent to /, which leads to the following statement.
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Lemma 2. For embedding P ;Θ;Γ ` (be , e) . (te ,Φe ), model M |= Φe ∪ {be } and extraction

(Pin,θ,γ) / M, M agrees with γ.

Proof. This follows by induction on the term M(x) for each (x,τ) ∈ Γ.

Given the new embedding and extraction procedures, we can further define the notion of

consistency between models and function call interpretations as described above.

Definition 3. For program P, model M, inputs Pin,θ,γ and call interpretation ( fτ(t1) 7→ t2) ∈ M

with definition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P, we say M is consistent with the interpretation

if v1
ext
/ (t1, τ1[τ f /τ]), v2

ext
/ (t2, τ2[τ f /τ]) and f [θ(τ)](v1) →∗ v2 in P ∪Pin.

Note that if the model is consistent with some call interpretation, then the evaluation of the call

under the extracted argument must terminate. We will often be interested in knowing whether

a given model M is consistent with the interpretation of certain embedded calls. Given some

call l : f [τ](e1) with associated embedding Tl : f [τ](e1)Ut = fτ(t1), we say M is consistent

with the call if either M |= ¬Tl : f [τ](e1)Ub (the embedding appears on the right-hand side

of an implication with negated left-hand side), or M is consistent with the interpretation

( fτ(M(t1)) 7→ M( fτ(t1))) ∈ M .

The notion of consistency serves two main purposes in the following. First, it ensures that mod-

els including interpretations of function call embeddings are consistent with our operational

semantics. Second, as ext
. , ext

/ and our operational semantics are deterministic, consistency

ensures that models with consistent function call interpretations (and compatible constant

interpretations) can be unified into a single model that satisfies both original clause sets since

both models will agree on common constant and function symbol interpretations.

1.2.1 Soundness

We can now state the first property, namely soundness of the embedding.

Lemma 3. For embedding P ;Θ;Γ` (be , e) . (te ,Φe ), model M |=Φe ∪ {be } and inputs Pin,θ,γ,

if M agrees with γ and M is consistent with calls in e, then γ(θ(e)) →∗ v for some v ∈ value.

Moreover, given e : τ, we have v ext
/ (M(te ), τ).

Proof. We show this by induction on e.

Case e = x ∈ id : By definition of the embedding, we have te = x, by the operational semantics,

we have γ(x) = v , and by agreement of M with γ, we have γ(x) ext
/ (M(x), τ).

Case e = err[τ] : The embedding gives us Φe = {¬be } and no model M |= {¬be ,be } exists.
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Case e = f [τ](e1) : By definition of the embedding, we have te = fτ(t1). Consider the defi-

nition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P . By induction, we have γ(θ(e1)) →∗ v1 where

v1
ext
/ (M(t1), τ1[τ f /τ]). Given consistency of M with fτ(M(t1)), we have γ(θ(e)) →∗ v

and v ext
/ (M( fτ(t1)), τ2[τ f /τ]).

Case e = if (c) e1 else e2 : Let us assume that M |= tc . By M |= Φguard, we have M |= b1 and

by induction, we have γ(θ(c)) →∗ true and γ(θ(e1)) →∗ v1 where v1
ext
/ (M(t1), τ). The

embedding further ensures that M |= t1 ' te and therefore v = v1. The case where

M |= ¬tc follows by symmetry.

Case e = let x := e1 in e2 : Given the typing judgement P ;Θ;Γ` e1 : τ1, by induction we have

γ(θ(e1)) →∗ v1 where v1
ext
/ (M(Te1Ut ), τ1). Given the inputs Pin,θ,γ∪ {x 7→ v1}, we

further have v ext
/ (M(Te2Ut ), τ) by induction again. As te = Te2Ut by definition of the

embedding, we have v ext
/ (M(te ), τ).

The remaining cases follow using similar techniques.

Now let us consider some value v ∈ value with same type as e, as well as its embedding v . tv .

If we constrain the embedded term te to correspond to tv we can produce inputs under which

evaluation reaches v as long as the model is consistent with calls.

Corollary 1. For expression e, value v, embeddings P ;Θ;Γ` (be , e). (te ,Φe ) and v . tv , model

M |= Φe ∪ {be , te ' tv } and extraction (Pin,θ,γ) / M, if M is consistent with calls in e, then

γ(θ(e)) →∗ θ(v).

Based on the above result and the fact that M |= be , we can further complement this statement

by noting that the blocker constants associated to expressions that are encountered during

evaluation will hold. The blocker constants on which the embedding relies therefore constitute

the path condition under which evaluation reaches the associated expression. This property

will be the basis of the unfolding strategy which allows us to find inputs under which evaluation

can reach function calls.

Lemma 4. For embedding P ;Θ;Γ` (be , e) . (te ,Φe ), model M |=Φe ∪ {be }, inputs Pin,θ,γ and

sub-expression l1 : e1 v e, if γ(θ(e)) →n1 E[l1 : e ′1], M agrees with γ and M is consistent with

calls in e that are evaluated in the trace, then M |= Tl1 : e1Ub .

Proof. We show this by inverse structural induction on l1 : e1 v e (one can view this as induc-

tion on the depth of l1 : e1 in e). In the base case, we have Tl1 : eUb = be and M |= be .

We then show that for each direct child l2 : e2 v e1, if γ(θ(e)) →n2 E2[l2 : e ′2], then M |= Tl2 : e2Ub .

The interesting cases are the if and match expressions as they introduce new blocker constants.

Let us consider the case where e1 = if (lc : c) lt : et else le : ee . If l2 = lc , then by definition

of the embedding we have Tlc : cUb = Tl1 : e1Ub and therefore M |= Tl2 : e2Ub . If l2 = lt , then
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by the evaluation context and IF-THEN rule, we have γ(θ(e)) →n1 E1[l1 : if (c ′) e ′t else e ′e ] →nc

E1[if (true) e ′t else e ′e ] for some nc < n2−n1. By Lemma 3, we have M |= Tlc : cUt , and therefore

M |= Tl2 : e2Ub by definition of the embedding. The case where l2 = le follows by symmetry.

The match case goes through following similar techniques, and the remaining cases preserve

the blocker constant.

In the case where the full trace is given, we can further strengthen the above statement to also

include expressions that are not encountered during evaluation.

Lemma 5. For embedding P ;Θ;Γ` (be , e) . (te ,Φe ), model M |=Φe ∪ {be }, inputs Pin,θ,γ and

sub-expression l1 : e1 v e, if γ(θ(e)) →∗ v ∈ value, M agrees with γ and M is consistent with

calls in e, then γ(θ(e)) →∗ E[l1 : e ′1] iff M |= Tl1 : e1Ub .

Proof. As in the proof of Lemma 4, we proceed by inverse structural induction on l1 : e1 v e

and the base case is given by M |= be .

We then show that if γ(θ(e)) →∗ E1[l1 : e ′1], then for each direct child l2 : e2 v e1, we have

γ(θ(e)) →∗ E2[l2 : e ′2] iff M |= Tl2 : e2Ub . The interesting cases are again the if and match

expressions, and we consider the case where e1 = if (lc : c) lt : et else le : ee . We have seen that

if γ(θ(e)) →∗ E2[l2 : e ′2], then M |= Tl2 : e2Ub . Let us therefore consider the case where l2 = lt

and γ(θ(e)) →∗ E1[l1 : if (false) e ′t else e ′e ]. By Lemma 3, we have M |= ¬Tlc : cUt , and therefore

M |= ¬Tl2 : e2Ub by definition of the embedding. The remaining cases follow using analogous

arguments.

We finally consider the case where γ(θ(e)) 6→∗ E [l1 : e ′1]. By our operational semantics, it is clear

that for each direct child l2 : e2 v e1, we have γ(θ(e)) 6→∗ E [l2 : e ′2]. We must therefore show that

M |= ¬Tl2 : e2Ub . The interesting cases are again the if and match expressions. Consider the

case where e1 = if (lc : c) lt : et else le : ee . We have Tl1 : e1Ub = Tlc : cUb andΦguard ensures that

M |= ¬Tl1 : e1Ub implies both M |= ¬Tlt : etUb and M |= ¬Tle : eeUb . The match case follows a

similar argument and the other cases again preserve the blocker constant.

In addition to blocker constant interpretations agreeing with evaluation, the interpretations of

sub-expression embeddings agree with the values encountered during the trace.

Corollary 2. For embedding P ;Θ;Γ ` (be , e) . (te ,Φe ), model M |=Φe ∪ {be }, inputs Pin,θ,γ

and sub-expression l1 : e1 v e where e1 : τ1, if γ(θ(e)) →n E[l1 : v1], M agrees with γ and M is

consistent with calls in e that are evaluated in the trace, then v1
ext
/ (M(Tl1 : e1Ut ), τ1).

1.2.2 Completeness

We now establish the second property, namely completeness of the embedding.
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Lemma 6. For embedding P ;Θ;Γ` (be , e). (te ,Φe ) and inputs Pin,θ,γ, if γ(θ(e)) →∗ v ∈ value,

then there exists model M |=Φe ∪ {be } such that M agrees with γ, M is consistent with calls in e

and given e : τ, we have v ext
/ (M(te ), τ).

Proof. Our proof proceeds by induction on e. We rely on the fact that our language and

value embedding are deterministic to ensure that interpretations for function symbols and

constants agree between sub-models.

Case e = x ∈ id : Given the embedding (γ(x), Γ(x)) ext
. t , we let M = { x 7→ t , be 7→ true }. We

clearly have M |=Φe ∪ {be } and γ(x) ext
/ (M(x), τ) by embedding/extraction inverse. As

there are no calls in e, M is also consistent with all calls in e.

Case e = err[τ] : There exist no inputs such that γ(θ(e)) →∗ v , hence the statement holds.

Case e = f [τ](e1) : Consider value γ(θ(e1)) →∗ v1, embedding (be , e1) . (t1,Φ1) and associ-

ated definition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P . By induction, there exists model

M1 such that M1 |= Φ1 ∪ {be }, M1 agrees with γ, M1 is consistent with calls in e1 and

v1
ext
/ (M(t1), τ1[τ f /τ]). Now consider embeddings (v1, τ1[τ f /τ]) ext

. t ′1 and (v, τ) ext
. tv .

As all constants stemming from variables declared within e1 or introduced by the em-

bedding are fresh, the model M = M1∪{ fτ(t ′1) 7→ tv } is such that M |=Φe ∪{be }, M agrees

with γ, M is consistent with calls in e and v ext
/ (M(te ), τ).

Case e = if (c) e1 else e2 : Consider the case were γ(θ(c)) →∗ true, and thus γ(θ(e1)) →∗ v .

Further consider embeddings (be , c) . (tc ,Φc ), (b1, e1) . (t1,Φ1), and (b2, e2) . (t2,Φ2)

(recall b1,b2 and r from the embedding definition). By induction, there exist models

Mc , M1 such that Mc |= Φc ∪ {be }, M1 |= Φ1 ∪ {b1}, Mc , M1 agree with γ, Mc (respec-

tively M1) is consistent with calls in ec (respectively e1), true ext
/ (Mc (tc ), Boolean) and

v ext
/ (M1(t1), τ). By Lemma 1, we know there exists M2 |=Φ2 ∪ {¬b2}. As all constants in-

troduced in the embedding are again fresh, the model M = Mc ∪M1∪M2∪ {r 7→ M1(t1)}

satisfies our property.

Case e = let x1 := e1 in e2 : Consider type e1 : τ1 and value γ(θ(e1)) →∗ v1. Further consider

the embeddings (be , e1) . (t1,Φ1) and (be , e2) . (t2,Φ2). By the operational semantics,

we have (γ∪{x1 7→ v1})(θ(e2)) →∗ v and by induction there exist models M1, M2 such that

M1 |=Φ1 ∪ {be }, M2 |=Φ1 ∪ {be }, M1, M2 agree with γ, M1 (respectively M2) is consistent

with calls in e1 (respectively e2), v1
ext
/ (M1(t1), τ1) and v ext

/ (M2(t2), τ). We again have

freshness of all constants in the embedding, and we let M = M1 ∪M2 ∪ {x 7→ M1(t1)}.

The remaining cases follow using analogous techniques.

1.3 Blocking Calls

The soundness of our embedding modulo function calls, in conjunction with the blocker

constant instrumentation, suggests a procedure for finding generally sound inputs. In this
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section, we describe how we can produce inputs under which evaluation is guaranteed to

reach some expected value.

We saw above in Lemma 4 that M |= Tl : esUb corresponds to the condition under which

evaluation of γ(θ(e)) will reach label l . If we ensure that the blocker constant used during

the embedding of each function call l : f [τ](e1) within e does not hold, then only models

corresponding to inputs under which evaluation will result in the expected value will satisfy

our clause set.

Given an expression e ∈ expr with embedding (be , e) . (te ,Φe ), let F (e) = {l : f [τ](e1) v e },

the set of all function calls within e with their associated labels. Given a set of calls F , we

want to disallow all models for which the blocker constants associated to these labels hold,

so we further define block(F ) = {¬Tl : f [τ](e1)Ub | l : f [τ](e1) ∈ F }. Note that the set block(F ) is

defined with respect to some existing embedding of e. In general this embedding is clear from

the context and will be omitted.

Our goal here is to generate SMT formulas such that models satisfying these formulas will

correspond to inputs under which e evaluates to the expected value. Therefore, we are

interested in the clause set that corresponds to the negation of the blocker constants associated

to calls in F (e), namely block(F (e)). If there exists a model M |=Φe ∪block(F (e))∪ {be , te ' tv }

with extraction (Pin,θ,γ) / M , then Corollary 1 and Lemma 4 ensure that γ(θ(e)) →∗ v in

P ∪Pin. This observation forms the basis of our model finding procedure.

We will see in Theorems 1 and 2 that these blocker clauses are precise, in the sense that

satisfying models produce inputs under which evaluation will not reach the associated calls,

and if such inputs exist, then so does a satisfying model.

1.4 Unfolding Calls

In this section, we describe how our procedure incrementally extends the clause set to improve

the precision of the function call embeddings. The extension is performed by unfolding

function calls to allow value substitutions under which evaluation encounters incrementally

many function calls.

In this and the following sections, we will sometimes consider labels attached to sub-expressions

of inlined function bodies. These labels are considered to be computed as a function of the

label at the function call site as well as the label of the sub-expression within the function’s

body. For distinct call sites, inlining sub-expression labels are therefore assumed to be dis-

tinct. Note that this label assignment corresponds to the label assignment that occurs during

function call evaluation. Hence, if evaluation reaches a call site and a CALL evaluation step is

performed, the labels that will appear within the inlined function body are identical to those

that occur within the statically inlined body.
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The main insight behind this procedure is that function calls can be progressively inlined

within e in order to increase the set of allowed inputs by unblocking these inlined calls (and

blocking the newly introduced calls within their inlined bodies). Let us consider some function

call l : f [τ](e1) v e where (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P . We further consider the expression

ecall = e[l : f [τ](e1)/let x := e1 in e f [τ f /τ]]

obtained by replacing the function call in e by a semantically equivalent term that does not

contain that call. Note that in practice, some identifier freshening would be required here but

we will omit these from the formalism for clarity. Now by applying the procedure discussed

above, we can find inputs for ecall such that when evaluating e under those inputs, the function

call f [τ](e1) may be encountered.

While the inlining approach presented above does work in practice, we will present a slight

variation here that is better suited to certain later extensions. Instead of inlining the body of f

at its call site and then taking the embedding, we will instead embed e directly and extend the

clause set such that it becomes equisatisfiable with the one obtained from ecall.

In order to do this, we leverage the compositionality of our embedding and the determinism

of our language. This enables us to embed e and e f independently, and then consider the

union of their clause sets along with a few extra instrumentation clauses. This observation

already hints at the incremental nature of our procedure and its ability to explore the space of

inputs simply by progressively extending the set of clauses describing the expression.

Let us now concretize these high-level considerations in a more formal setting. Let us first

consider the blocker constant b f under which the call f [τ](e1) was embedded, namely

b f = T f [τ](e1)Ub . This blocker corresponds to the condition under which the clause set

corresponding to the inlining will be relevant. Recall the embedding (be , e) . (te ,Φe ) and

let (b f , e f [τ f /τ]) . (t f ,Φ f ). We know by definition of the embedding that T f [τ](e1)Ut corre-

sponds to fτ(t1) for some term t1. Let us now define the clause set

Φinl =Φ f ∪ {b f =⇒ fτ(t1) ' t f , b f =⇒ x1 ' t1 }

The Φinl clause set ensures that given a model M |= Φe ∪Φinl ∪ {be } and extracted inputs

(Pin,θ,γ) / M , the model M will be consistent with the interpretation of fτ(t1) in M (as long

as M is consistent with all other call interpretations in M). Note that we make sure to preserve

the b =⇒ c shape of all clauses in our clause set. We let unfold( f [τ](e1)) =Φinl.

If we consider the embedding of ecall, it is clear that embedding of the function call replace-

ment let x := e1 in e f [τ f /τ] is performed under the blocker constant b f . Hence, the em-

beddings of e1 and e f [τ f /τ] in ecall are exactly identical to those occurring in the clause set

Φe ∪Φinl ∪ {be , te ' tv }. The single distinguishing factors are that the term t f in the embedding

of ecall is replaced by the term fτ(t1) and the additional constraint that fτ(t1) ' t f is added to

the clause set.
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It remains to consider how a blocking clause set equivalent to block(ecall,F (ecall)) can be ob-

tained without explicitly generating ecall. Our goal here is to build a clause set that ensures that

the call f [τ](e1) is unblocked while all new calls introduced in e f [τ f /τ] are blocked. Based on

the above observations, it is clear that the clause set block(F (e)\{ f [τ](e1)})∪block(F (e f [τ f /τ]))

corresponds to the blocker clauses obtained for ecall.

1.5 Unfolding Procedure

Algorithm 1: Counterexample finding procedure.

input : a boolean expression e
output : a counterexample (Pin,θ,γ)

1 compute embedding (be , e) . (te ,Φe )
2 Φ0 ←Φe ∪ {be ,¬te }
3 F0 ← F (e)
4 for i ← 0,1,2, · · · do
5 if ∃M . M |=Φi ∪block(Fi ) then
6 extract inputs (Pin,θ,γ) / M
7 return (Pin,θ,γ)

8 else
9 select f [τ](e1)i ∈ Fi with associated (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P

10 Φi+1 ←Φi ∪unfold( f [τ](e1)i )
11 Fi+1 ← Fi \ { f [τ](e1)i }∪F (e f [τ f /τ])

12 end
13 end

Let us now bring the considerations from the previous sections together and describe the

full unfolding procedure. In order to incrementally explore the space of inputs, we keep

track of both a clause set Φi and the set Fi of known function calls that have not yet been

unfolded. Note that to each call f [τ](e1) ∈ Fi is associated a blocker constant T f [τ](e1)Ub and

an embedded function application T f [τ](e1)Ut . At each step, we select some call f [τ](e1)i ∈ Fi

that has yet to be unfolded and perform an unfolding step. This step consists of generating

the clauses corresponding to the function unfolding, as well as extending the set of known

functions that have yet to be unfolded (while removing the selected function).

We start by defining the sets Φ0 and F0 as Φ0 =Φe ∪ {be , te ' tv } and F0 = F (e). We will then

inductively define the sets Φi+1,Fi+1 given Φi ,Fi as well as some function call f [τ](e1)i ∈ Fi .

Let us start by considering the clause set extension. As described previously, the new clause

set is computed simply as the union of the current clause set and the clauses corresponding

to a call unfolding, namely Φi+1 =Φi ∪unfold( f [τ](e1)i ). This incremental extension of the

clause set enables us to incrementally constrain models to be consistent with relevant function

call interpretations. We keep track of the set of calls that have yet to be unfolded by letting

Fi+1 = Fi \ { f [τ](e1)i }∪F (e f [τ f /τ]). Finally, we define the set Ui = { f [τ](e1) j | j < i } of all
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calls that have been unfolded at step i . We will be interested in models which only contain

interpretations for calls in Ui as such models will be consistent with all call interpretations.

This unfolding procedure can be leveraged to produce inputs for properties of interest. At

each step i , we query the SMT solver to determine whether a model M |=Φi ∪block(Fi ) exists.

If such is the case, then we extract the inputs (Pin,θ,γ) / M . Evaluation of e under these

inputs is guaranteed to result in the value v , namely we have γ(θ(e)) →∗ v . The complete

pseudo-code definition of the counterexample finding procedure is given in Algorithm 1. The

given pseudo-code relies on the blocking procedure block(·) defined in Section 1.3 and on the

function call unfolding procedure unfold(·) defined in Section 1.4.

Example unfolding. Recalling the right unit law verification condition presented in this

chapter’s introduction, a possible unfolding sequence can be found in Figure 1.9. The clause

set Φ0 is constructed based on the embeddings of the verification condition and the value

false (since we want a counterexample to the given property). The clause sets Φi ∪block(Fi )

are unsatisfiable for 0 ≤ i ≤ 4, however there exists M |=Φ5 ∪block(F5) such that M(x) = T1

and M(xs) =NilT where T1 is a value of uninterpreted sort σT . Extraction will then produce

the following inputs under which evaluation leads to false.

Pin = {type T := T1 } θ = {T 7→ T } γ= {x 7→ T1, xs 7→Nil[T ] }

Example of input finding. In addition to the counterexample finding capabilities showcased

in the previous example, the unfolding procedure can generate inputs to properties of interest.

Let us consider the formulation of single-step evaluation in the untyped lambda calculus given

by the program below. Note that we consider here that variables are values and the small-step

operational semantics are given by the (partial) eval function.

type Nat := Succ(n: Nat) | Zero
type Term := Var(n: Nat) | App(caller: Term, arg: Term) | Abs(x: Nat, body: Term)

def isValue(term: Term): Boolean = term match {
case Var(_) ⇒ true case Abs(_, _) ⇒ true case App(_, _) ⇒ false

}

def subst(term: Term, n: Nat, v: Term): Term = term match {
case Var(x) ⇒ if (n ≈ x) v else term
case App(c, arg) ⇒ App(subst(c, n, v), subst(arg, n, v))
case Abs(x, body) ⇒ if (x == n) term else Abs(x, subst(body, n, v))

}

def eval(term: Term): Term = term match {
case App(c, arg) if !isValue(c) ⇒ App(eval(c), arg)
case App(c, arg) if !isValue(arg) ⇒ App(c, eval(arg))
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i Φi \Φi−1 Fi block(Fi )

0 { be , r1 ' false,
(be ∧ rightUnitT (xs)) ⇐⇒ b1,
(be ∧¬rightUnitT (xs)) ⇐⇒ b2,
b1 =⇒ r1 ' rightUnitT (ConsT (x,xs)),
b2 =⇒ r1 ' false }

{ rightUnit[T ](xs),
rightUnit[T ](Cons[T ](x,xs)) }

{¬be ,¬b1 }

Unfolding call rightUnit[T ](xs) ∈ F0
1 { be =⇒ rightUnitT (xs) ' (appendT (list1,NilT ) 'NilT ),

be =⇒ list1 ' xs }
{ rightUnit[T ](Cons[T ](x,xs)),
append[T ](list1,Nil[T ]) }

{¬be ,¬b1 }

Unfolding call rightUnit[T ](Cons[T ](x,xs)) ∈ F1
2 { b1 =⇒ rightUnitT (ConsT (x,xs)) ' (appendT (list2,NilT ) 'NilT ),

b1 =⇒ list2 'ConsT (x,xs) }
{append[T ](list1,Nil[T ]),
append[T ](list2,Nil[T ]) }

{¬be ,¬b1 }

Unfolding call append[T ](list1,Nil[T ]) ∈ F2
3 { be =⇒ appendT (list1,NilT ) ' r2,

be =⇒ l11 ' list1,
be =⇒ l21 'NilT ,
(be ∧ is-ConsT (l11)) ⇐⇒ b3,
(be ∧ is-NilT (l11)) ⇐⇒ b4,
b3 =⇒ x1 ' headT (l11),
b3 =⇒ xs1 ' tailT (l11),
b3 =⇒ r2 'ConsT (x1,appendT (xs1, l21)),
b4 =⇒ r2 ' l21 }

{append[T ](list2,Nil[T ]),
append[T ](xs1, l21) }

{¬b1,¬b3 }

Unfolding call append[T ](list2,Nil[T ]) ∈ F3
4 { b1 =⇒ appendT (list2,NilT ) ' r3,

b1 =⇒ l12 ' list2,
b1 =⇒ l22 'NilT ,
(b1 ∧ is-ConsT (l12)) ⇐⇒ b5,
(b1 ∧ is-NilT (l12)) ⇐⇒ b6,
b5 =⇒ x2 ' headT (l12),
b5 =⇒ xs2 ' tailT (l12),
b5 =⇒ r3 'ConsT (x2,appendT (xs2, l22)),
b6 =⇒ r3 ' l22 }

{append[T ](xs1, l21),
append[T ](xs2, l22) }

{¬b3,¬b5 }

Unfolding call append[T ](xs2, l22) ∈ F4
5 { b5 =⇒ appendT (xs2, l22) ' r4,

b5 =⇒ l13 ' xs2,
b5 =⇒ l23 ' l22,
(b5 ∧ is-ConsT (l13)) ⇐⇒ b7,
(b5 ∧ is-NilT (l13)) ⇐⇒ b8,
b7 =⇒ x3 ' headT (l13),
b7 =⇒ xs3 ' tailT (l13),
b7 =⇒ r4 'ConsT (x3,appendT (xs3, l23)),
b8 =⇒ r4 ' l23 }

{append[T ](xs1, l21),
append[T ](xs3, l23) }

{¬b3,¬b7 }

Figure 1.9 – A possible sequence of unfolding steps during counterexample search for the
inductive case of the right unit law rightUnit[T ](xs) =⇒ rightUnit[T ](Cons[T ](x,xs)). We
display at each step i the new clauses Φi \Φi−1 introduced at step i , the blocked calls Fi , and
the associated blocking clauses block(Fi ).
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1.5. Unfolding Procedure

case App(Abs(x, body), arg) ⇒ subst(body, x, arg)
case _ ⇒ err[Term]

}

It is well-known that evaluation in the untyped lambda calculus can lead to non-termination.

Let us consider the problem of finding inputs such that evaluation is idempotent. We can rely

on the unfolding procedure to find and assignment for the term free variable such that the

following expression evaluates to true.

eval(term) ≈ term

In other words, performing a step of evaluation on the generated term will result again in the

same term (and we therefore have non-termination of evaluation). The procedure will output

the following assignment for the term variable which corresponds to the familiar omega term

(λx. x x) (λx. x x) given within our formulation of the lambda calculus.

term 7→ App(Abs(Zero,App(Var(Zero),Var(Zero))),Abs(Zero,App(Var(Zero),Var(Zero))))

1.5.1 Soundness

We can now state (and prove) the first main result of Chapter 1. Our procedure is sound,

namely the models it produces correspond to valid inputs.

Theorem 1. For expression e, value v, unfolding step i ∈ N and model M |= Φi ∪block(Fi ),

given extraction (Pin,θ,γ) / M, we have γ(θ(e)) →∗ θ(v).

Proof. We will rely here on the notion of unfolding tree which we define as the tree where

nodes correspond to a root node e or a function call in Ui and edges exist between two nodes

l1 : e1, l2 : e2 iff e2 is a function call and either l1 : e1 is the root node and l2 : e2 v e1, or l1 : e1 is

a call node and l2 : e2 occurs within the unfolded body of e1. Nodes with a same parent are

partially ordered by the order in which they would be evaluated in a trace (this is statically

known in a language with call-by-value semantics).

For trace γ(θ(e)) →n1 e ′, we then show by bottom-up induction on the unfolding tree (and the

partial order between sibling nodes) that for each node l : et in the tree, if

1. γ(θ(e)) →n2 E[l : e ′t ] →n1−n2 e ′,

2. M |= Tl : etUb , and

3. whenever et = f [τ](e1) with associated definition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P and

γ(θ(e)) →n3 E[l : f [τ](v1)] for n3 ≤ n1, then we have v1
ext
/ (M(Te1Ut ), τ1[τ f /τ]),

then given the maximal trace e ′t →n4 ev for n4 ≤ n1−n2, M is consistent with all calls evaluated

in the trace, and all calls that are encountered in the trace belong to Ui .
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In the case where l : et is the root node, we can apply Lemmas 2, 4, Corollary 2 and the

inductive hypothesis to conclude consistency and inclusion in Ui . We therefore consider

the case where et = f [τ](e1). For the trace γ(θ(e)) →n2 E[l : f [τ](e ′1)], consistency is given

by induction on the partial ordering between siblings. Let us consider the interesting case

where γ(θ(e)) →n3 E[l : f [τ](v1)] → E[e f [τ f /τ][x/v1]] and n3 + 1 ≤ n1. By definition of Φi ,

we have M |= Tl : f [τ](e1)Ut ' Te f [τ f /τ]Ut and M |= x ' Te1Ut . Given the value substitution

γ′ = { x 7→ v1 }, M agrees with γ′ by condition 3. Let us now consider the calls that occur within

e f [τ f /τ] and are evaluated in the trace. We show by induction on the evaluation partial order

that M is consistent with each such call. If the call belongs to Ui , then condition 1 of the

inductive hypothesis is satisfied (as the call is evaluated), and the inductive hypothesis lets

us apply Lemma 4 and Corollary 2 to satisfy the remaining conditions, hence consistency

holds. If the call does not belong to Ui , then M |= block(Fi ) and Lemma 4 form a contradiction.

Finally, if E[ f [τ](v1)] →n4 E[v f ∈ value ] then γ′(θ(e f [τ f /τ])) →n4−1 v f and Lemma 3 ensures

that we have v f
ext
/ (M(Te f [τ f /τ]Ut ), τ2[τ f /τ]). The model M is therefore consistent with the

remaining call f [τ](v1) which was evaluated in the trace.

It is clear that all three conditions of the above statement hold for the root node e. It therefore

remains to show that no infinite trace exists. As all encountered calls belong to Ui and no label

can be encountered twice, we know evaluation must terminate. We can then apply Corollary 1

to conclude our proof.

1.5.2 Completeness

A perhaps more surprising result of this unfolding procedure is that in addition to producing

valid inputs, it is complete for such inputs. In other words, if a program extension Pin, type

substitution θ and value substitution γ exist such that γ(θ(e)) →∗ θ(v) in P ∪Pin, then the

procedure will eventually output a set of inputs. However, the condition for this result is that

the selection process for f [τ](e1)i at each step i is fair. Let us define more clearly what we

mean by fairness in this context.

Definition 4. The selection process for the call to unfold at each step is fair iff for each i and

f [τ](e1) ∈ Fi , there exists a j such that f [τ](e1) ∈U j .

In other words, fairness implies that any function call in the program will eventually be

unfolded by the procedure. Based on this definition, we can state the following completeness

result.

Theorem 2. For expression e and value v, if there exist inputs Pin,θ,γ such that γ(θ(e)) →∗ θ(v)

and the unfolding selection process is fair, then there exists a k ∈ N and model M such that

M |=Φk ∪block(Fk ).

Proof. First, select k such that for each call l : f [τ′](e ′1) that is encountered in γ(θ(e)) →∗ θ(v),

we have l : f [τ](e1) ∈Uk . Note that this k is guaranteed to exist. Indeed, for each call that is
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encountered in the trace, there exists a sequence of CALL evaluation steps that will reach it

and the unfolding selection process is fair, hence the relevant unfoldings will eventually occur.

We then show by induction on 0 ≤ i ≤ k that there exists a model Mi such that

1. Mi |=Φi ,

2. Mi agrees with γ,

3. for l : f [τ](e1) ∈ Fi ∪Ui we have γ(θ(e)) →∗ E[l : f [τ′](e ′1)] iff M |= Tl : f [τ](e1)Ub , and

4. for l : f [τ](e1) ∈ Fi ∪Ui with (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P , if γ(θ(e)) →∗ E [l : f [τ′](e ′1)],

then given evaluation results e ′1 →∗ v1 and f [τ′](e ′1) →∗ v f where v1, v f ∈ value, we have

v1
ext
/ (M(Te1Ut ), τ1[τ f /τ]) and v f

ext
/ (M(T f [τ](e1)Ut ), τ2[τ f /τ]).

Note that items 3 and 4 above imply consistency with all calls in Fi ∪Ui .

The base case is given by Lemmas 5, 6 and Corollary 2. For the inductive case, we can

assume a model Mi for which the hypothesis holds. Given the call l : f [τ](e1) selected at

step i to produce Φi+1,Fi+1, consider its definition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P and the

embeddings (Tl : f [τ](e1)Ub , e f [τ f /τ]). (t f ,Φ f ) and fτ(t1) = Tl : f [τ](e1)Ut . We then consider

the following two cases:

1. γ(θ(e)) →∗ E[l : f [θ(τ)](v1)] →∗ E[v f ]: We have Mi |= Tl : f [τ](e1)Ub by item 3 of the

inductive hypothesis. Given value substitution γ′ = { x 7→ v1 }, Lemma 6 ensures that a

model M f |=Φ f ∪ {Tl : f [τ](e1)Ub ,Tl : f [τ](e1)Ut ' t f } exists such that M f is consistent

with the calls in e f [τ f /τ]. Lemma 5 and Corollary 2 then give us items 3 and 4 of the

statement. Item 4 of the inductive hypothesis finally ensures that Mi and M f agree on

all common constant and function interpretations, hence they can be unified into Mi+1

which satisfies all four items.

2. γ(θ(e)) 6→∗ E[l : f [τ′](e ′1)]: By induction, we have Mi |= ¬Tl : f [τ](e1)Ub , and if we extend

Mi to Mi+1 by setting all blocker constants associated to sub-expressions of e f [τ f /τ] to

false, Lemma 1 ensures that Mi+1 |=Φi+1 and the remaining items are satisfied.

Finally, item 3 of the statement gives us Mk |= block(Fk ), thus concluding the proof.

1.5.3 Procedure Termination

In the case where no inputs Pin,θ,γ exist such that γ(θ(e)) →∗ θ(v) (and e calls at least one

recursive function), our unfolding procedure will never terminate. However, the incremental

nature of the Φi clause sets implies that if Φi is unsatisfiable, then for all j ≥ i , the clause set

Φ j ∪block(F j ) will be unsatisfiable. This observation leads to the following Theorem.
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Theorem 3. For expression e, value v and unfolding index i ∈N, if there exists no model M |=Φi ,

then there exist no inputs Pin,θ,γ such that γ(θ(e)) →∗ θ(v).

Proof. This follows from definition of Φi and Theorem 2.

The extended counterexample finding procedure including termination when a proof of

counterexample inexistence is produced can be found in Algorithm 2. It is important to realize

here that the inexistence of a counterexample does not imply that the property must evaluate

to true for all inputs. Indeed, our language contains both stuck and diverging expressions for

which evaluation will not terminate to a value. The notion of correctness of a program will be

explored in more details in Chapter 3.

Algorithm 2: Counterexample finding procedure with inexistence proofs.

input : a boolean expression e
output : a counterexample (Pin,θ,γ) or counterexample inexistence

1 compute embedding (be , e) . (te ,Φe )
2 Φ0 ←Φe ∪ {be ,¬te }
3 F0 ← F (e)
4 for i ← 0,1,2, · · · do
5 if ∃M . M |=Φi ∪block(Fi ) then
6 extract inputs (Pin,θ,γ) / M
7 return (Pin,θ,γ)

8 else if @M . M |=Φi then
9 return inexistence

10 else
11 select f [τ](e1)i ∈ Fi with associated (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P
12 Φi+1 ←Φi ∪unfold( f [τ](e1)i )
13 Fi+1 ← Fi \ { f [τ](e1)i }∪F (e f [τ f /τ])

14 end
15 end

Given the counterexample we obtained for our right unit law formulation, we can fix the

property statement as follows.

def rightUnit[T](list: List[T]): Boolean = append[T](list, Nil[T]) ≈ list

Given this new definition, the differences in the unfolding procedure with respect to the steps

listed in Figure 1.9 can be found in Figure 1.10. The clause set Φ4 thus obtained is already

unsatisfiable and the procedure can terminate as no counterexample exists.
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i Φi \Φi−1 Fi block(Fi )

Unfolding call rightUnit[T ](xs) ∈ F0
1 { be =⇒ rightUnitT (xs) ' (appendT (list1,NilT ) ' list1),

be =⇒ list1 ' xs }
{ rightUnit[T ](Cons[T ](x,xs)),
append[T ](list1,Nil[T ]) }

{¬be ,¬b1 }

Unfolding call rightUnit[T ](Cons[T ](x,xs)) ∈ F1
2 { b1 =⇒ rightUnitT (ConsT (x,xs)) ' (appendT (list2,NilT ) ' list2),

b1 =⇒ list2 'ConsT (x,xs) }
{append[T ](list1,Nil[T ]),
append[T ](list2,Nil[T ]) }

{¬be ,¬b1 }

Figure 1.10 – The changed steps that would result from applying the unfolding steps listed in
Figure 1.9 with the corrected rightUnit function definition.
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2 Counterexample Finding in the
Presence of Higher-Order Functions

In this chapter, we will discuss how our language can be extended with higher-order functions

(namely by introducing function types, lambdas and function applications). We will extend

both the embedding and unfolding procedure to handle these new language constructs in

order to allow counterexample finding in the presence of first-class functions. We do not

rely on a closed-world assumption and can produce counterexamples (and proofs of their

inexistence) which involve new lambdas which do not belong to the considered program.

We embed first-class functions (i.e. lambdas) into algebraic datatype constructors and rely

on special uninterpreted dispatch functions in order to embed applications. The unfolding

procedure is extended to handle applications through a form of dynamic dispatch. Since our

language supports parametric polymorphism, the set of (typed) lambdas observed during

unfolding is not necessarily bounded. Our procedure therefore incrementally extends the

set of constructors associated to the algebraic datatype used for lambda embeddings. By

relying on a datatype at the embedding level and progressively introducing constructors, our

approach can handle programs where even whole-program defunctionalization into records

(i.e. datatypes in our case) would fail [Rey98].

In order to handle open-world programs, we rely on a special Else(n : N) constructor in

the algebraic datatype associated to first-class functions which does not correspond to any

lambda observed during unfolding. Given an SMT value term Else(t ), we extract a first-class

function value by considering the interpretation of the special dispatch function symbol. The

function value is constructed by generating an if -expression based on the interpretations of

the dispatch symbol for each embedded application. This approach supposes some means

of differentiating between inputs in order to generate the if -expression conditions. In other

words, we need a notion of equality defined for all types in our language in order to extract

function-typed values. Although such a feature presented no issue in the language discussed

in Chapter 1, in the presence of first-class functions, it becomes a non-trivial requirement.

Extensional equality, which intuitively seems like a desirable notion of equality, is not well

suited to operationally defined languages as it is an undecidable property. Syntactic equal-
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ity also has its shortcomings as it allows some level of introspection into the definition

of a function. For example, it allows the language to differentiate between the functions

λ. plus(Zero,Zero) and λ. Zero, while no difference can be observed through only applications.

However, as expression enumeration is not possible in our language, the potential for intro-

spection remains quite limited and the decidability of syntactic equality led us to select it as

our notion of function equality.

We will show in this chapter that our embedding and unfolding procedure can be extended to

the higher-order setting while preserving soundness and completeness for counterexamples.

We will further show that the procedure may soundly terminate when no counterexample

exists, thus resulting in a proof of counterexample inexistence. Finally, we will present some

important optimizations which greatly improve the efficiency of our procedure.

Example. Let us consider an example program to demonstrate the new higher-order lan-

guage constructs. We again define a program containing a generic List type definition, as

well as the generic recursive higher-order exists and forall functions on List. The program

finally defines a lemma existsForall which states the correspondence between existential and

universal quantification in lists. However, the absent-minded programmer has again inserted

an error in the lemma definition, forgetting a negation.

type List[T] = Cons(head: T, tail: List[T]) | Nil

def exists[T](l: List[T], p: T → Boolean): Boolean = l match {
case Cons(x, xs) ⇒ p(x) || exists[T](xs, p)
case Nil ⇒ false

}

def forall[T](l: List[T], p: T → Boolean): Boolean = l match {
case Cons(x, xs) ⇒ p(x) && forall[T](xs, p)
case Nil ⇒ true

}

def existsForall[T](l: List[T], p: T → Boolean): Boolean =
exists[T](l, p) ≈ !forall[T](l, λ x: T. p(x))

Some verification procedure is then invoked and generates the following verification condition

corresponding to the inductive case of the exists-forall correspondance property.

existsForall[T ](xs,p) =⇒ existsForall[T ](Cons[T ](x,xs),p)

In the remainder of this chapter, we will see how our procedure can be used to generate

counterexamples for such property statements, as well as show their inexistence.
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FUNCTION TYPE

P ;Θ` τ1 type P ;Θ` τ2 type

P ;Θ` τ1 → τ2 type

APP

P ;Θ;Γ` e1 : τ2 → τ P ;Θ;Γ` e2 : τ2

P ;Θ;Γ` e1 e2 : τ

ABS

P ;Θ;Γ, x : τ1 ` e : τ2

P ;Θ;Γ`λx : τ1. e : τ1 → τ2

Figure 2.1 – Type formation and typing rules of the higher-order language extension.

E ::= ·· · | E expr | value E

APP

v ∈ value

(λx : τ. e) v → e[x/v]

Figure 2.2 – Operational semantics of the higher-order language extension.

2.1 Language

Let us now extend the language presented in Chapter 1 with higher-order functions. This is

done fairly simply at the syntax level by extending the expression, value, and type grammars

with the following rules:

expr ::= ·· · | λid : type. expr | expr expr

value ::= ·· · | (λx : τ. e) ∈ expr if FV (e) ⊆ { x }

type ::= ·· · | type → type

In order to improve readability, we will sometimes omit the type associated to the lambda

binding in the following and denote lambdas by λx. e.

When considering lambda values in the following, we will consider two values containing

lambdas to be equal if they are equivalent modulo alpha renaming. In other words, given

two lambdas λx1 : τ. e1 and λx2 : τ. e2, we either have λx1 : τ. e1 = λx2 : τ. e2 or there is no

identifier bijection θ such that λx1 : τ. e1 = θ(λx2 : τ. e2). Such a requirement can be efficiently

implemented using, for example, normalization through de Bruijn indices. The static and

operational semantics are then extended with the rules shown in Figure 2.1 and Figure 2.2.

2.1.1 Structural Equality

The operational semantics we attribute to our equality predicate rely on the structure of values

to determine whether they are equal. This may seem surprising at a first glance, however
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this approach allows for efficiently decidable equality which leads to completeness for model

finding in the presence of higher-order functions.

We should recall here that the evaluation rules LET, MATCH, CALL and APP perform value

substitutions in the expression that is being evaluated, as well as the initial value substitution

needed to evaluate open expressions. This means that although the exact static structure of

two lambdas may differ, they may end up being equal during evaluation. Consider for example

the following closed expression

e = (let x := Zero in λy : τ. x) ≈λy : τ. Zero

It is clear that e →∗ true since let x := Zero in λy : τ. x → λy : τ. Zero. However, the static

structure of the two lambdas are clearly not equal.

To clarify the relation between static and operational equality, let us introduce the notion of

pseudo-value which can be defined using the following grammar:

pvalue ::= x | true | false | ( ) | (pvalue, pvalue ) | C [τ](pvalue ) | λx : τ. expr

One can see that value ⊆ pvalue and for any v ∈ pvalue and (partial) value substitution γ,

γ(v) ∈ pvalue. This also holds for pseudo-value substitutions, namely mappings from identi-

fiers to pseudo-values. We define normalize (λx : τ. e) = (λx : τ. e ′, γ) the normalization of the

lambda λx : τ. e such that the following three properties hold:

1. for all l1 : e1 v e ′ such that e1 ∈ pvalue, we either have

(a) e1 ∈ FV (λx : τ. e ′) and there exists no l2 : e1 v e ′ where l1 6= l2, or

(b) FV (e1) 6⊆ FV (λx : τ. e ′);

2. γ is a pseudo-value substitution such that dom(γ) = FV (λx : τ. e ′) and γ(e ′) = e;

3. the identifiers in γ are normalized, namely for any two lambdas λx : τ. e1 and λx : τ. e2

with normalize (λx : τ. e1) = (λx : τ. e ′1, γ1) and normalize (λx : τ. e2) = (λx : τ. e ′2, γ2),

if there exists an identifier bijection ρ such that λx : τ. e ′1 = ρ(λx : τ. e ′2), then we have

λx : τ. e ′1 =λx : τ. e ′2.

We say that λx : τ. e ′ is the structure of the lambda λx : τ. e, and we will refer to the expressions

in the domain of γ as its structural closures. Based on this normalization, we can determine

statically whether two lambdas may become equal during evaluation simply by considering

their structure.

Lemma 7. For lambdas λx1 : τ1. e1, λx2 : τ2. e2 with normalize (λxi : τi . ei ) = (λxi : τi . e ′i , γi )

for i ∈ {1,2}, and for inputs Pin,θ,γ, we have
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1. λx1 : τ1. e ′1 =λx2 : τ2. e ′2 and

2. for x ∈ FV (λx1 : τ1. e ′1), γ(θ(γ1(x) ≈ γ2(x))) → true

iff γ(θ(λx1 : τ1. e1 ≈λx2 : τ2. e2)) → true.

Proof. We start by showing that the left-hand side implies the right-hand side. For free

variable x ∈ FV (λx1 : τ1. e ′1), we have γ(θ(γ1(x))) = γ(θ(γ2(x))) by distributivity of θ and γ and

the EQUALS-TRUE evaluation rule. Hence, we have γ(θ(γ1(e1))) = γ(θ(γ2(e2))) and therefore

γ(θ(λx1 : τ1. e1)) = γ(θ(λx2 : τ2. e2)) and the EQUALS-TRUE evaluation rule applies.

For the other direction, we know by the EQUALS-TRUE rule and substitution distributivity that

γ(θ(λx1 : τ1. e1)) = γ(θ(λx2 : τ2. e2)). Now consider the following recursive transformation

function applied to e1 and e2:

def transform(n1: expr, n2: expr): (expr, i d 7→ pvalue, i d 7→ pvalue) =
if (n1 ∈ pvalue && FV (n1) ⊆ FV (e1)) (y ,{y 7→ n1},{y 7→ n2})
else merge(children(n1) zip children(n2) map transform)

In each recursive call, the invariant that γ(θ(n1)) = γ(θ(n2)) is maintained by distributivity

of substitutions. This implies both that n1 ∈ pvalue iff n2 ∈ pvalue and FV (n1) ⊆ FV (e1) iff

FV (n2) ⊆ FV (e2). We can then show by induction on γ(θ(e1)) that the result (n′,γ′1,γ′2) of the

call transform(n1,n2) is such that n′ satisfies condition 1 of normalization for both n1 and n2,

and γ′1 and γ′2 satisfy condition 2. It is also clear that each y can be chosen to satisfy condition

3, for example by using a shared counter in transform.

Given a normalization normalize (λx : τ. e) = (λx : τ. e ′, γ), it is useful to be able to refer

to some deterministic ordering of the sequence y1, · · · , yn of free variables within λx : τ. e ′.
Note that such an ordering can be defined by considering the order in which a deterministic

traversal of the body would encounter each free variable (for the first time). It is also useful to

be able to refer to the type τi associated to each yi , and we will therefore write yi : τi to signify

this. It is important to realize that the formulation of Lemma 7 ensures that the unification of

lambda structures is only relevant if the τi associated to each free variable agree (otherwise,

the equality on the structural closures cannot evaluate to true).

We have seen that equality between lambdas has two components, namely the lambda’s

structure which is statically known, and the structural closures of the lambda, which are

dynamic. We can therefore compile closures into tagged structures with an environment and

function pointer, where equality is determined through equality of the tags and environments.

Note however that structural equality requires type parameter equality as well, which can be

ensured either by specialization of named functions, or through runtime type information.
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2.2 Extending the Embedding

In this section, we discuss how the embedding and extraction procedures we presented in the

previous chapter can be extended to the higher-order language. We assume in this section the

existence of Λ the set of all known (and embedded) lambdas and A the set of all known (and

embedded) applications. We will see in the next section how these sets are computed and

assume for now that these contain exactly all lambdas and applications that appear in the set

of embedded expressions. Note that these sets contain labeled lambdas and applications and

may therefore contain multiple instances of syntactically identical elements. For readability,

we generally omit the label when discussing elements of these sets.

The considerations regarding first-class function equality discussed in the previous section

show that syntactic equality between lambdas reduces to some statically known component

(namely the normalized structure) and a dynamic one (namely the values that will fill the holes

in the normalized structure). These considerations hint at a natural embedding of lambdas

using algebraic datatypes where the lambda’s type determines which algebraic datatypes

should be used, the structure determines the constructor, and the pseudo-value substitution

determines the arguments to be passed to the constructor.

The algebraic datatype associated to the function type τ= τ1 → τ2 can be generated as follows.

Consider the set Nτ of lambda structures that correspond to lambdas in Λ with type τ. Note

that we drop the labels here and Nτ contains only syntactic expressions (hence no duplicates).

Nτ = {λx. e ′b | λx. eb ∈Λ, λx. eb : τ, normalize (λx. eb) = (λx. e ′b , γ) }

Now consider the elements · · · ,λx. e ′i , · · · of Nτ, the (typed) free variables · · · , yi , j : τi , j , · · · of

each λx. e ′i , and the type embeddings τi , j . σi , j . The algebraic datatype is then defined as

datatype δτ1→τ2 := ·· · | Cλx. e ′
i
(· · · , yi , j : σi , j , · · · ) | · · · | Else(n :N)

The Else(n :N) constructor allows for unknown lambdas whose structure does not fall within

the Nτ set. We rely here on some encoding of the natural numbers (either through algebraic

datatypes or native support by the SMT solver) to ensure an unbounded number of values are

admissible for the Else constructor.

Let us now extend our embedding to handle the new language features presented above.

Function types are embedded as the synthetic algebraic datatype presented above which gives

us the type embedding rule P ;Θ` τ1 → τ2 . δτ1→τ2 . Lambdas are then embedded as algebraic

datatype constructors and applications as dispatches through special dispatchτ functions that

are parametric in τ, the caller’s type.

40



2.2. Extending the Embedding

normalize (λx. e) = (λx. e ′, {y1 7→ e1, · · · , yn 7→ en})

P ;Θ;Γ` (b, ei ) . (ti ,Φi ) for 1 ≤ i ≤ n

P ;Θ;Γ` (b, λx. e) . (Cλx. e ′(t1, · · · , tn),Φ1 ∪·· ·∪Φn)

P ;Θ;Γ` (b, e1) . (t1,Φ1) P ;Θ;Γ` (b, e2) . (t2,Φ2) P ;Θ;Γ` e1 : τ

P ;Θ;Γ` (b, e1 e2) . (dispatchτ(t1, t2),Φ1 ∪Φ2)

Note that the term and clause set that result from embedding are only well-formed if all

embedded lambdas belong to the set Λ that is used to generate the δτ1→τ2 datatypes. We will

show later on that our unfolding procedure ensures that this is indeed always the case.

One should note at this point that at a purely structural level, the set of lambdas that exist

within a program P can be computed in advance and is finite. However, polymorphic types

allow for an unbounded number of typed structures, which compose Nτ. This property disal-

lows a program-wide defunctionalization approach which would encode the program into an

equivalent first-order program.

Extraction of a lambda value from the term t with expected type τ1 → τ2 is handled by

distinguishing the cases where 1) there exists a λx. e ∈ Λ such that the lambda has type

τ1 → τ2, M |= Tλx. eUb and M |= Tλx. eUt ' t , and 2) no such lambda expression exists. In the

first case, we have Tλx. eUt =Cλx. e ′
b
(t1, · · · , tn) and we extract t based on the structure λx. e ′b

and the extractions of t1, · · · , tn . In the second case, we extract t as a special value v such that

given another lambda term t ′ and extraction v ′ in the model, we have v = v ′ iff M |= t ' t ′. We

therefore introduce a set of embedded lambdas Λ as part of the extraction environment, and

handle the first case described above through the following extraction rule.

λx. e ∈Λ λx. e : τ1 → τ2

M |= Tλx. eUb M |= Tλx. eUt ' t Tλx. eUt =Cλx. e ′
b
(t1, · · · , tn)

FV (λx. e ′b) = { y1 : τ1, · · · , yn : τn } P ;Θ;Λ` vi / (ti , τi ) for 1 ≤ i ≤ n

P ;Θ;Λ`λx. e ′b[y1/v1, · · · , yn/vn] / (t , τ)

For the second case, we rely on the fact that terms within the model returned by the underlying

SMT solver are in normal form, namely given t1, t2 ∈ M , we have M |= t1 ' t2 iff t1 = t2.

Consider a term t to be extracted with expected type τ such that the previous extraction rule

does not apply. We introduce an identifier ft which will correspond to a synthetic function

definition constructed based on the model M . We can then handle the second case described

above through the following extraction rule.

@λx. e ∈Λ. λx. e : τ1 → τ2 ∧M |= Tλx. eUb ∧M |= Tλx. eUt ' t

P ;Θ;Λ`λx. ft (x) / (t , τ)

It is important to realize that, by construction, these extensions ensure that given any t1, t2 ∈ M

with sort δτ1→τ2 and extractions v1 / t1, v2 / t2, we have M |= t1 ' t2 iff v1 = v2.
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It remains to discuss the construction of the synthetic ft function obtained when extracting

a function-typed term with expected type τ = τ1 → τ2 that did not correspond to a known

lambda. Similarly to how extracting lambda values relies on the set of known lambdas Λ, we

rely here on the set A of known function applications. Based on this set and the interpretation

of dispatchτ in M , we construct the definition of ft . We compute the set of applications

corresponding to type τ for which the associated blocker constant holds, and extract the

interpretation of dispatchτ for each such application into the set It .

It = { v2 7→ v | (e1 e2) ∈ A, e1 : τ,

M |= Te1 e2Ub , M |= Te1Ut ' t ,

v2 / M(Te2Ut ), v / M(Te1 e2Ut ) }

Then, given the contents v2,1 7→ v1, · · · , v2,n 7→ vn of It , we can construct the function ft .

def ft (x : τ1) : τ2 := if (x ≈ v2,1) v1 else · · · else if (x ≈ v2,n) vn else ft (x)

Note that we have defined ft as a recursive (and potentially non-terminating) function. How-

ever, we will see below that this choice does not impact the validity of value substitutions

generated by our procedure. An alternative approach would be to simply use some well-typed

value instead of the recursive call ft (x). Given our current language, such a value is guaranteed

to exist for every type.

Based on the new extraction rules presented above, we extend the input extraction to pro-

duce program extensions that contain the synthetic ft function definitions. Note that input

extraction now depends on both a set Λ of known lambdas and a set A of known applications.

Ptype = {d | T ∈Θ, P ;Θ` T . σT , M ;P ;Θ` d / σT }

Pdef = { (def ft (x) : τ := ·· · ) | (x, v) ∈ γ, λx. ft (x) v v }

θ = {T 7→ T | T ∈Θ } γ= { x 7→ v | (x,τ) ∈ Γ, P ;Θ;Λ` v / (M(x), τ) }

P ;Θ;Γ;Λ; A ` (Ptype ∪Pdef ,θ,γ) / M

Example of lambda extraction. In order to demonstrate how lambdas are embedded and

extracted, let us consider the following expression that involves lambdas, function-typed

variables, as well as applications.

e = f 6≈λx : Nat. Succ(x) && f(x) ≈ Succ(x) && f(Zero) 6≈Zero

Further consider the following program P , set of type variables Θ and typing context Γ. Note

that the resulting typing environment P ;Θ;Γ is such that P ;Θ;Γ` e : Boolean.

P = {type Nat := Succ(n : Nat) | Zero } Θ=; Γ= x : Nat, f : Nat→Nat
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Consider the embedding P ;Θ;Γ` (be , e) . (te ,Φe ) and clause set Φ=Φe ∪ {be , te ' true }. The

clause set Φ is given as follows. Note that && is treated as syntactic sugar for an if -expression

and expression disequality is simply embedded as term disequality.

Φ= { (be ∧ f 6'Cλx : Nat. Succ(x)()) ⇐⇒ b1, (b1 ∧dispatchNat→Nat(f,x) ' Succ(x)) ⇐⇒ b3,

(be ∧ f 'Cλx : Nat. Succ(x)()) ⇐⇒ b2, (b1 ∧dispatchNat→Nat(f,x) 6' Succ(x)) ⇐⇒ b4,

b1 =⇒ te ' r2, b3 =⇒ r2 ' dispatchNat→Nat(f,Zero) 6'Zero,

b2 =⇒ te ' false, b4 =⇒ r2 ' false,

be , te ' true }

The sets of known lambdas and applications clearly correspond to Λ= {λx : Nat. Succ(x) } and

A = { f x, f Zero }. Based on the set of known lambdas, the sort δNat→Nat with respect to which

satisfiability of Φ will be considered is constructed as follows.

datatype δNat→Nat := Cλx : Nat. Succ(x)() | Else(n : Nat)

The following model M satisfies the clause set Φ.

M = { x 7→ Succ(Zero), be , b1, b3, te , r2 7→ true,

f 7→ Else(Zero), b2, b4 7→ false,

dispatchNat→Nat(Else(Zero),Succ(Zero)) 7→ Succ(Succ(Zero)),

dispatchNat→Nat(Else(Zero),Zero) 7→ Succ(Zero) }

Let us now consider input extraction from the model M . We clearly have Succ(Zero) / M(x).

For f, the second extraction rule applies as M 6|= f ' Tλx : Nat. Succ(x)Ut , and we therefore

have λx : Nat. fElse (Zero)(x) / M(f). The function fElse (Zero) is then extracted as follows based

on the known applications in A and the interpretation of dispatchNat→Nat in M .

def fElse (Zero)(x : Nat) : Nat :=
if (x ≈ Succ(Zero)) Succ(Succ(Zero))

else if (x ≈Zero) Succ(Zero)

else fElse (Zero)(x)

We will see later that inputs resulting from procedure are such that if evaluation under these

inputs encounters an application l : (e ′1 e ′2), then we have l : (e1 e2) ∈ A and the associated

blocker constant holds in M . As the body of fElse (Zero) is constructed so that a value will be

produced for each application in A whose blocker constant holds, it is clear that the final else

branch (namely the recursive call) will never be reached during evaluation.

Example with streams. An interesting feature of our lambda extraction through named

functions is that it allows for recursion under lambdas in the extracted function. Consider the

following generic Stream type definition.

type Stream[T ] := SCons(head : T, tail : Unit→ Stream[T ]) | SNil
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Given a program P which contains this Stream type definition, we consider the embedding

P ;T ;s : Stream[T ] ` (be , s match { SCons(h,t) ⇒ s≈ t SNil ⇒ false }) . (te ,Φe )

as well as the clause set Φ=Φe ∪ {be , te ' true } which is given as follows.

Φ= { (be ∧ is-SConsT (s)) ⇐⇒ b1, b1 =⇒ h1 ' headT (s),

(be ∧ is-SNilT (s)) ⇐⇒ b2, b1 =⇒ t1 ' tailT (s),

b1 =⇒ te ' (s' dispatchUnit→Stream[T ](t1,Unit )), b2 =⇒ te ' false,

be , te ' true }

The clause set Φ ensures that given model M |=Φ, we have M |= s' dispatchUnit→Stream[T ](t1).

As the set of known lambdas is empty, we have M(s) = SConsT (T1,Else(n)) for some T1 with

sort σT and n with sort Nat. Recall from Chapter 1 that the type variable T is extracted

into some datatype in the resulting program extension and is a concrete type in extraction

results. We therefore have SCons[T ](T1,λ. fElse(n)()) / M(s). The set of known applications

only contains the application t1 ( ) and extraction of fElse(n) results in the following definition.

def fElse(n)() : Stream[T ] := SCons[T ](T1, λu. fElse(n)())

Note that we have simplified the if -expression structure as the condition is simply true. The

stream extracted for s thus corresponds to an infinite stream of T1 values. However, it is clear

that evaluation under the extracted inputs will terminate to the value true and the function

fElse(n) will be invoked only once (when evaluating t ()).

It is interesting to note here that our embedding and extraction procedures remain applicable

when the SNil base case constructor is dropped from the Stream datatype definition, namely

type Stream[T ] := SCons(head : T, tail : Unit→ Stream[T ])

Indeed, the extraction of function-typed values into synthetic recursive functions allows us to

naturally handle infinite structures, as shown in the example above.

Example with negative datatypes. It is important to note at this point that we have imposed

no requirement on datatypes to be well-founded. In other words, we allow both non-strictly

positive datatypes (as seen above in the stream example) and negative datatypes in our

language, and model finding remains applicable.

Consider the program given in Figure 2.3 which defines the syntax of the lambda calculus in

the Expr datatype along with an eval function that implements call-by-value evaluation under

some given environment. Evaluation results in a Value which consists of a language-level first-

class function value. Note that this Value type is not well-founded as the FunVal constructor

introduces negative recursion in the type definition. However, this definition remains quite

useful since it allows a very natural implementation of lambda calculus evaluation.
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type Nat := Succ(n: Nat) | Zero
type Expr := Var(n: Nat) | App(caller: Expr, arg: Expr) | Abs(bound: Nat, body: Expr)
type Value := FunVal(f: Value → Value)

def update(env: Nat → Value, key: Nat, value: Value): Nat → Value =
if (env(key) ≈ value) env else λv: Nat. if (v ≈ key) value else env(v)

def eval(expr: Expr, env: Nat → Value): Value = expr match {
case Var(n) ⇒ env(n)
case App(c, arg) ⇒ eval(c, env) match {
case FunVal(f) ⇒ f(eval(arg, env))

}
case Abs(x, body) ⇒ FunVal(λn: Value. eval(body, update(env, x, n)))

}

Figure 2.3 – Implementation of lambda calculus evaluation with first-class function values.

Let us first consider some simple property defined in the context of the above program.

Consider the following boolean expression with free variables expr, env, v and f, as well as the

corresponding (simplified) embedded clause set Φ.

eval(expr, env) ≈ v && v ≈ FunVal(f) && f(v) ≈ v

Φ= {eval(expr,env) ≈ v, v ≈FunVal(f), dispatchValue→Value(f,v) ≈ v }

Since the property contains a function call, a certain number of unfolding steps will be required

in order to adequately constrain satisfying models. We will discuss unfolding in the higher-

order language later in the chapter and simply assume here that we are given some satisfying

model M |=Φ which contains the following interpretations.

M ⊇ { expr 7→ Var(Zero), env 7→ Else(Zero), v 7→ FunVal(Else(Zero)), f 7→ Else(Zero),

dispatchValue→Value(Else(Zero),FunVal(Else(Zero))) 7→ FunVal(Else(Zero)),

dispatchNat→Value(Else(Zero),Zero) 7→ FunVal(Else(Zero)) }

Extraction will then produce the following value substitutions and synthetic definitions.

expr 7→ Var(Zero) env 7→ λx. f2(x) v 7→ FunVal(λy. f1(y)) f 7→ λy. f1(y)

def f1(x : Value) : Value := if (x ≈FunVal(λy. f1(y))) FunVal(λy. f1(y)) else f1(x)

def f2(x : Nat) : Value := if (x ≈Zero) FunVal(λy. f1(y)) else f2(x)

Evaluation of the original boolean expression under the extracted inputs will terminate to

true, as expected. Clearly, our embedding and extraction procedures do not depend on the

well-foundedness of relevant datatype definitions. It is important to note here that allow-

ing negative recursion in datatypes is a non-trivial property that is only rarely featured by

counterexample finding and verification techniques.
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Let us now consider model finding in the context of a more interesting property. Say we are

(rightfully) worried about the termination of the eval function and are trying to find some

non-terminating inputs. In this endeavour, assume that following some static analysis, we

have generated the boolean-typed expression below based on which non-terminating inputs

for the eval function can be extracted.

env(x) ≈ FunVal(λn: Value. eval(App(Var(x), arg), update(env, x, n))) &&
env ≈ update(env, x, eval(arg, env))

Inputs for which this expression evaluates to true can be used to generate an infinite trace in-

volving the eval functions. Indeed, given inputs Pin,θ,γ such that the given property evaluates

to true, evaluation of the function call eval(App(Var(x),arg),env) under these inputs will lead

to a trace of the following shape where n > 0

γ(θ(eval(App(Var(x),arg),env))) →n γ(θ(eval(App(Var(x),arg),env))) →n · · ·

Similarly to the previous example, by applying the unfolding procedure we can obtain a

satisfying model which leads to the following extracted value substitution.

x 7→ Zero arg 7→ Var(Zero) env 7→ λx. fenv(x)

The extracted synthetic function definition associated to fenv is then such that

fenv(Zero) =FunVal(λn. eval(App(Var(Zero),Var(Zero)),update(λy. fenv(y),Zero,n)))

If we evaluate the substituted expression eval(App(Var(Zero),Var(Zero)),λx. fenv(x)), we will

obtain an infinite trace of the shape described above. It is interesting to note the resemblance

of the extracted inputs with the well-known omega term (modulo an evaluation context).

2.2.1 Soundness and Completeness

The embedding and extraction rules we presented for our extended language preserve the

soundness and completeness properties discussed in the previous Chapter. Similarly to the

first-order case, we need a notion of consistency for function application interpretations in

order to state these properties. Let us start by extending the ext
. embedding and ext

/ extraction

procedures to handle lambdas encountered during evaluation. These procedures are again

defined with respect to inputs Pin,θ,γ. As the / extraction procedure relies on the model M

and the set of known embedded lambdasΛ, we also rely on these in ext
/ to ensure that Lemma 2

is preserved. We start by introducing the rules dealing with embedding and extraction of

known lambdas.
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λx. eb ∈Λ M |= Tλx. ebUb

normalize (λx. eb) = (λx. e ′b , γ′) FV (λx. e ′b) = { y1 : τ1, · · · , yn : τn }

normalize (λx. ev ) = (θ(λx. e ′b), {y1 7→ v1, · · · , yn 7→ vn}) P ;Θ` (vi , τi ) ext
. ti for 1 ≤ i ≤ n

P ;Θ` (λx. ev , τ) ext
. Cλx. e ′

b
(t1, · · · , tn)

λx. eb ∈Λ M |= Tλx. ebUb normalize (λx. eb) = (λx. e ′b , γ′)
FV (λx. e ′b) = { y1 : τ1, · · · , yn : τn } P ;Θ` vi

ext
/ (ti , τi ) for 1 ≤ i ≤ n

P ;Θ` θ(λx. e ′b)[y1/v1, · · · , yn/vn] ext
/ (Cλx. e ′

b
(t1, · · · , tn), τ)

In order to ensure that ext
. and ext

/ correspond to . and /when dealing with model extractions,

we introduce the following rules that deal with lambdas extracted through /. We let these

rules take precedence over the ones given above when applicable.

P ;Θ;Λ`λx. ft (x) / (t , τ)

P ;Θ` (λx. ft (x), τ) ext
. t

P ;Θ;Λ`λx. ft (x) / (t , τ)

P ;Θ`λx. ft (x) ext
/ (t , τ)

Finally, we want to handle embedding and extraction of lambdas with unknown structure. We

again rely on an injection Iλ : value 7→N into the natural numbers. As with the IT injections

discussed in the previous chapter, such an injection is guaranteed to exist since the set of all

lambdas is defined as a syntactic least fixed point and is therefore enumerable. In order to

ensure that embeddings are distinct, we require that if we have an extracted function of the

shape fElse(i ) in Pin, then i 6∈ range(Iλ). Based on this injection, and if no other embedding or

extraction rule is applicable, we apply the following rules when dealing with lambdas with

unknown structure.

(λx. ev , i ) ∈ Iλ

P ;Θ` (λx. ev , τ) ext
. Elseτ(i )

(λx. ev , i ) ∈ Iλ

P ;Θ`λx. ev
ext
/ (Elseτ(i ), τ)

The extended embedding and extraction procedures ext
. /ext

/ remain inverse to each other.

Furthermore, Lemma 2 still holds and can again be shown by induction on the term being

extracted. The embedding and extraction procedures.// and ext
. / ext

/ are no longer equivalent

when θ =; as ext
. / ext

/ can handle unknown lambdas. Note however that once all lambdas that

occur during evaluation are known (i.e. either they correspond to some lambda in Λ or they

were extracted from the model), then equivalence is again given.

Agreement for value substitutions and consistency with function call interpretations remain

unchanged in their formulation and are given with respect to the extended ext
. /ext

/ procedures.

We now introduce a notion of consistency between models and function application interpre-

tations, which is now given with respect to a specific set of inputs, model, set of known lambdas

(as ext
. / ext

/ now depend on this set) and dispatch symbol interpretation in the model. Again,

consistency is given when the interpretation corresponds to the evaluation of the extracted

application.
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Definition 5. For program P, model M, inputs Pin,θ,γ, known lambdasΛ and dispatch symbol

interpretation (dispatchτ2→τ(t1, t2) 7→ t ′) ∈ M, we say M is consistent with the interpretation if

v1
ext
/ (t1, τ2 → τ), v2

ext
/ (t2, τ2), v ext

/ (t ′, τ) and v1 v2 →∗ v in P ∪Pin.

Similarly to the function call case, we are generally interested in establishing consistency

with the embeddings of function applications. Given a model M and function application

l : (e1 e2) with associated embedding Te1 e2Ut = dispatchτ(t1, t2), we say M is consistent with

the function application if either M |= ¬Te1 e2Ub or M is consistent with the interpretation

dispatchτ(M(t1), M(t2)) 7→ M(dispatchτ(t1, t2)).

The embedding of our higher-order language remains sound with respect to extracted inputs.

Based on the embedding and extraction extensions, as well as consistency with function appli-

cations, we can restate Lemmas 3, 4 and 5 for the extended language. As (most) expressions

within lambda bodies are not considered in our embedding, our formulations restrict certain

expressions to those that have been embedded and thus do not occur under a lambda.

Lemma 3. For embedding P ;Θ;Γ` (be , e) . (te ,Φe ), model M |=Φe ∪ {be }, inputs Pin,θ,γ and

known lambdasΛ, if M agrees with γ and M is consistent with embedded calls and applications

in e, then γ(θ(e)) →∗ v for some v ∈ value and given e : τ, we have v ext
/ (M(te ), τ).

Proof. We extend the inductive proof of Lemma 3 given in Chapter 1 with the new cases.

Case e = e1 e2 : Consider the embedding te = dispatchτ2→τ(t1, t2). Given γ(θ(e1)) →∗ λx. ev

and γ(θ(e2)) →∗ v2 where λx. ev , v2 ∈ value, we have λx. ev
ext
/ (M(t1), τ2 → τ) and

v2
ext
/ (M(t2), τ2) by induction. Consistency of M with dispatchτ2→τ(M(t1), M(t2)) then

ensures that γ(θ(e)) →∗ v and v ext
/ (M(dispatchτ2→τ(t1, t2)), τ).

Case e =λx. eb : We have normalize (λx. eb) = (λx. e ′b , {y1 7→ e1, · · · , yn 7→ en}) and given em-

beddings (be , ei ) . (ti ,Φi ) for 1 ≤ i ≤ n, we have te = Cλx. e ′
b
(t1, · · · , tn). By induction,

and given the type τi associated to yi , we have γ(θ(ei )) →∗ vi where vi
ext
/ (M(ti ), τi )

for 1 ≤ i ≤ n. By Lemma 7, we have γ(θ(λx. eb)) →∗ λx. e ′b[y1/v1, · · · , yn/vn]. As e

was embedded, we have e ∈ Λ, and by definition of extraction, we therefore have

λx. e ′b[y1/v1, · · · , yn/vn] ext
/ (M(te ), τ).

Lemma 4. For embedding P ;Θ;Γ ` (be , e) . (te ,Φe ), model M |= Φe ∪ {be }, inputs Pin,θ,γ,

known lambdas Λ and embedded sub-expression l1 : e1 v e, if γ(θ(e)) →n E[l1 : e ′1], M agrees

with γ and M is consistent with embedded calls and applications in e that are evaluated in the

trace, then M |= Tl1 : e1Ub .

Proof. The proof is analogous to the one given for Lemma 4 in Chapter 1.

Lemma 5. For embedding P ;Θ;Γ ` (be , e) . (te ,Φe ), model M |= Φe ∪ {be }, inputs Pin,θ,γ,

known lambdas Λ and embedded sub-expression l1 : e1 v e, if γ(θ(e)) →∗ v ∈ value, M agrees
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with γ and M is consistent with embedded calls and applications in e, then γ(θ(e)) →∗ E [l1 : e ′1]

iff M |= Tl1 : e1Ub .

Proof. The proof is again analogous to the one given for Lemma 5 in Chapter 1.

Finally, the extension to our higher-order language preserves the completeness property of

our embedding.

Lemma 6. For embedding P ;Θ;Γ` (be , e) . (te ,Φe ), inputs Pin,θ,γ and known lambdas Λ, if

γ(θ(e)) →∗ v ∈ value, then there exists model M |=Φe ∪ {be } such that M agrees with γ, M is

consistent with embedded calls and applications in e and given e : τ, we have v ext
/ (M(te ), τ).

Proof. As before, we follow the proof of Lemma 6 exposed in Chapter 1. The induction is

extended with the following new cases.

Case e = e1 e2 : Consider values γ(θ(e1)) →∗ λx. ev and γ(θ(e2)) →∗ v2. Further consider

embeddings (be , e1) . (t1,Φ1) and (be , e2) . (t2,Φ2). Given the type e1 : τ2 → τ, by in-

duction there exist models Mi |=Φi ∪{be } for 1 ≤ i ≤ 2 such that M1 and M2 agree with γ,

M1 (respectively M2) is consistent with embedded calls and applications in e1 (respec-

tively e2), λx. ev
ext
/ (M1(t1), τ2 → τ) and v2

ext
/ (M2(t2), τ2). Now consider embeddings

(λx. ev , τ2 → τ) ext
. t ′c , (v2, τ2) ext

. t ′2 and (v, τ) ext
. tv . As the models M1 and M2 agree on

common interpretations, the union of models M = M1∪M2∪{dispatchτ2→τ(t ′1, t ′2) 7→ tv }

is such that M |=Φe ∪ {be }, M agrees with γ, M is consistent with embedded calls and

applications in e, and we have v ext
/ (M(te ), τ).

Case e =λx. eb : Consider normalize (λx. eb) = (λx. e ′b , {y1 7→ e1, · · · , yn 7→ en}). Given the

type τi associated to yi and value γ(θ(ei )) →∗ vi , consider embeddings (be , ei ) . (ti ,Φi )

for 1 ≤ i ≤ n. By induction, there exists a model Mi |=Φi ∪ {be } such that Mi agrees with

γ, Mi is consistent with embedded calls and applications in ei and vi
ext
/ (Mi (ti ), τi ) for

1 ≤ i ≤ n. Again, all constants introduced during embedding are fresh and we can unify

M1, · · · , Mn into M . By definition of ext
/ for known lambdas, we have v ext

/ (M(te ), τ).

2.3 Unfolding Applications

We have already seen how to relax the constraint on function calls in our approach to gener-

ating value substitutions, and we shall now present a transformation that allows one to find

value substitutions in the presence of function applications as well. We will then show that

this procedure, in conjunction with the one presented in Section 1.4, remains complete for

finding value substitutions in the higher-order language.

Similarly to how labels within inlined function bodies are computed based on the call site label

and the original label in the function’s body, labels within inlined lambda bodies are computed

49



Chapter 2. Counterexample Finding in the Presence of Higher-Order Functions

based on the application label and original label in the lambda’s body. This again ensures

that labels which will occur during evaluation can be statically determined by considering the

application label and labels within some lambda expression’s body. If that particular lambda

ends up flowing into the caller position during evaluation, then the statically computed labels

will match up with those encountered during evaluation.

We discussed how function calls can be progressively inlined to increase the space of the

program that can be visited during evaluation under value substitutions. However, the same

technique cannot be directly applied to first-class function applications. Indeed, the callee

function is not statically known at application point and it’s body is therefore unknown. What

we do know statically is the set of all lambdas within the current expression. Let us consider

some application l : (e1 e2) v e and inputs Pin,θ,γ under which evaluation encounters l and

terminates, namely γ(θ(e)) →∗ E[l : (e ′1 e ′2)] →∗ v ∈ value. Given the context evaluation rules,

we therefore have E[e ′1 e ′2] →∗ E[(λx. ev ) e ′2], or, more precisely, e ′1 →∗ λx. ev . If evaluation of

γ(θ(e)) encounters no function call and no other function application, then clearly there must

exist either a lb :λx. eb v e such that γ(θ(e)) →∗ E [lb :λx. ev ], or a variable x ∈ FV (e) such that

λx. ev v γ(x). In other words, function applications can be correctly dispatched by considering

the existing lambdas in e and carefully extracting those within the value substitutions.

We will present the inlining procedure directly at the level of the SMT terms and formulas.

Recall Λ the set of known lambdas and A the set of lambda applications. Let us assume we

are given some lambda λx. eb ∈ Λ with type τ and some application (e1 e2) ∈ A where the

caller e1 has type τ as well. We then compute the structural normalization of the lambda

normalize (λx. eb) = (λx. e ′b , { y1 7→ e ′1, · · · , yn 7→ e ′n }), and given a fresh constant bb , we com-

pute the embedding of the normalized lambda’s body (bb , e ′b). (tb ,Φb). Note that the lambdas

and applications that occur within e ′b must be added to the sets Λ and A of known lambdas

and applications. The δτ datatype definitions will thus ensure that constructors for lambdas

in e ′b exist. Let us now define the clause set

Φdisp =Φb ∪ { bb ⇐⇒ (Tλx. ebUb ∧Te1 e2Ub ∧Tλx. ebUt ' Te1Ut ),

bb =⇒ Te1 e2Ut ' tb , bb =⇒ x ' Te2Ut ,

bb =⇒ y1 ' Te ′1Ut , · · · ,bb =⇒ yn ' Te ′nUt }

Similarly to Φinl defined in the previous chapter, this Φdisp clause set ensures that satisfying

models will be consistent with the function application e1 e2 (as long as M is consistent with

all other applications). We let unfold(e1 e2, λx. eb) =Φdisp.

It is important to note at this point that it is not possible to generalize this dispatch procedure

to all lambdas within Λ as each dispatch may increase Λ and a fixpoint does not necessarily

exist. It is therefore not possible to completely dispatch a given function application, which

motivates to the following section on blocking applications.
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2.4 Blocking Applications

As in the case of function calls, we would like to define a clause for which satisfying models

ensure that evaluation under the extracted value substitution will only encounter applications

with which the model is consistent. While the set of relevant applications is statically known,

it is impossible to statically determine when sufficient unfolding has occurred and the appli-

cation can be unblocked. Indeed, as seen above, the set Λ of potential targets keeps growing

as more unfoldings occur. We must therefore rely on a more dynamic property to determine

when a certain function application may be unblocked.

The key insight behind our application blocking approach is that the set of potential dispatch

targets is known. If the caller corresponds to some lambda within Λ which has not yet been

unfolded (for the given application), then the application should be blocked. Note that there

are in fact four possible cases to consider:

1. The right lambda has already been unfolded: in this case, there is no need to block

the application as we have already ensured potential models are consistent with the

application.

2. The right lambda is known but has not yet been unfolded: the application will be

blocked and evaluation under value substitutions extracted from satisfying models will

not encounter the application.

3. The right lambda is not yet known: if the lambda does not yet belong to the set of known

lambdas, then some function call or application must be unfolded for it to appear. There

must therefore exist some (blocked) call or application which disallows models that

would lead to evaluation of the application.

4. The caller corresponds to a free variable in the expression: if the caller does not corre-

spond to any known lambdas and will appear in the extracted value substitution, our

extraction procedure will produce a lambda for which the model is consistent with the

application.

In a more formal sense, given an application (e1 e2) ∈ A where the caller e1 has type τ and the

set Λu ⊆Λ of lambdas that have been unfolded for the application, consider the definition:

block(e1 e2,Λ,Λu) = ∨
λx. eb∈Λ, λx. eb : τ Tλx. ebUb ∧

Te1Ut ' Tλx. ebUt ∧∧
λy. eu∈Λu

¬(Tλy. euUb ∧Tλx. ebUt ' Tλy. euUt )

=⇒ ¬Te1 e2Ub

Conceptually, this clause ensures that (Te1Ut ∈ TΛUt \TΛuUt ) =⇒ ¬Te1 e2Ub . In other words,

the blocker constant for e1 e2 will be falsified as long as e1 corresponds to a known lambda

which we have not yet unfolded for the application. Given the sets A of known applications, Λ
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of known lambdas, and D ⊆ A ×Λ of lambda unfoldings that have occurred, we extend the

block function to the triplet A,Λ,D as follows:

block(A,Λ,D) =⋃
(e1 e2)∈A block(e1 e2,Λ, {eλ | (e1 e2,eλ) ∈ D })

2.5 Unfolding Procedure

At this point, we have set up all the necessary components of the complete unfolding pro-

cedure. As in the previous chapter, our procedure is incremental and relies on a clause set

and some instrumentation that is used to generate further clauses. We again keep track of

the clause set Φi and the set Fi of known function calls that have yet to be unfolded. We

additionally introduce the sets Ai of known function applications, Λi of known lambdas, and

Di ⊆ Ai ×Λi of function application - lambda pairs that have already been unfolded. Given a

function type τ, we will write Ai ,τ for the subset of Ai where the caller has type τ, and Λi ,τ for

the subset ofΛi where the lambda has type τ. Note that as with function calls in Fi , embedding

has been performed for each application in Ai and lambda in Λi , so T·Ub and T·Ut are well

defined on members of these sets.

The complete procedure alternates between unfolding function calls within Fi and function

application - lambda pairs within Ai ×Λi . This enables us to incrementally explore the space

of models that are consistent with an increasing number of calls and applications. At each

step i , we can construct a set of blocking clauses that ensures satisfying models will lead to the

expected evaluation trace.

For expression e, value v , and fresh constant b, consider the embedding (b, e ≈ v) . (t ,Φ).

We rely on the equality expression here to ensure that lambdas within v are known during

embedding and extraction. Similarly to the function F (·) defined in the previous chapter, we

define the following helper functions that respectively collect all embedded applications and

all embedded lambdas within a given expression:

Λ(e) = {λx. eb | λx. eb v e, Tλx. ebUt defined} A(e) = {e1 e2 | e1 e2 v e, Te1 e2Ut defined}

We then start by definingΦ0 =Φ∪{b, t }, F0 = F (e ≈ v), A0 = A(e ≈ v),Λ0 =Λ(e ≈ v), and D0 =;.

The sets Φi+1,Fi+1, Ai+1,Λi+1,Di+1 are then inductively defined given Φi ,Fi , Ai ,Λi ,Di by

either performing a function call or application unfolding step.

The call unfolding step is performed as discussed in the previous chapter. First, some

function call f [τ](e1)i ∈ Fi with corresponding definition (def f [τ](x : τ1) : τ2 := e f ) ∈ P

is selected. Second, the clause set is extended with the new unfolding clauses, namely

Φi+1 = Φi ∪unfold( f [τ](e1)i ). The unfolded call is then removed from the function call set

and the new calls in the body e f are added, giving us Fi+1 = Fi \ { f [τ](e1)i }∪F (e f [τ f /τ]). For

the sets Ai+1 and Λi+1, we simply record the new applications and lambdas that appeared in

e f , namely Ai+1 = Ai ∪ A(e f [τ f /τ]) and Λi+1 =Λi ∪Λ(e f [τ f /τ]). Finally, the set of unfolded
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application - lambda pairs remains unchanged as no application unfolding has occurred in

this step: Di+1 = Di .

For the alternative application unfolding step, we select a pair of application (e1 e2) ∈ Ai

and lambda λx. eb ∈Λi such that e1 : τ and λx. eb : τ for some function type τ. The clause

set is then extended with the application unfolding clauses, Φi+1 =Φi ∪unfold(e1 e2, λx. eb).

Recall that application unfolding proceeds by embedding the normalized body e ′b of λx. eb ,

and the known calls, applications, and lambdas are therefore updated accordingly, giving

us Fi+1 = Fi ∪F (e ′b), Ai+1 = Ai ∪ A(e ′b) and Λi+1 =Λi ∪Λ(e ′b). Finally, the new application -

lambda pair is added to the set of unfolded pairs: Di+1 = Di ∪ { (e1 e2, λx. eb) }.

It is important to note that the extended unfolding procedure preserves the structure presented

in Algorithm 1 of Section 1.5. Indeed, supporting higher-order functions only requires tracking

a little more state and alternating application unfolding steps with the previous call unfoldings.

Example unfolding. The exists-forall correspondance property stated in the beginning of

the chapter leads to the following embedding.

P ;T ;p : T →Boolean,x : T,xs : List[T ] `
(be ,existsForall[T ](xs,p) =⇒ existsForall[T ](Cons(x,xs),p)) .

(r1, { (be ∧existsForallT (xs,p)) ⇐⇒ b1,

(be ∧¬existsForallT (xs,p)) ⇐⇒ b2,

b1 =⇒ r1 ' existsForallT (ConsT (x,xs),p),

b2 =⇒ r1 ' false })

Note that the constant p which appears in the embedded clause set has sort δT→Boolean and

given that the initial set of known lambdas ΛT→Boolean is empty, the datatype is defined as

datatype δT→Boolean := Else(n :N)

A possible sequence of unfolding steps can then be found in Figure 2.4. After a few additional

unfoldings, a satisfying model will exist from which a counterexample can be extracted.

Similarly to the example given in Chapter 1, if we fix the existsForall property definition, then

the unfolding procedure will terminate and show that no counterexample exists.

2.5.1 Soundness

The unfolding procedure we presented for our higher-order language preserves soundness of

reported inputs. Indeed, the clause sets given by block(Ui ) and block(Ai ,Λi ,Di ) again ensure

that traces resulting from model extractions will evaluate to the expected value v . This leads

to the following re-formulation of Theorem 1.

Theorem 1. For expression e, value v, unfolding step i ∈N and model M |=Φi ∪block(Fi )∪
block(Ai ,Λi ,Di ), given extraction (Pin,θ,γ) / M, we have γ(θ(e)) →∗ θ(v).
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i Φi \Φi−1 Fi Ai Λi

0 { be , r1 ' false,
(be ∧existsForallT (xs,p)) ⇐⇒ b1,
(be ∧¬existsForallT (xs),p) ⇐⇒ b2,
b1 =⇒ r1 ' existsForallT (ConsT (x,xs),p),
b2 =⇒ r1 ' false }

{existsForall[T ](xs,p),
existsForall[T ](Cons[T ](x,xs),p) }

; ;

Unfolding call existsForall[T ](xs,p) ∈ F0
1 { be =⇒ existsForallT (xs,p) '

(existsT (l1,p1) '¬forallT (l1,Cλ(p1))),
be =⇒ l1 ' xs,
be =⇒ p1 ' p }

{existsForall[T ](Cons[T ](x,xs),p),
exists[T ](l1,p1),
forall[T ](l1,λx : T. p1(x)) }

; {λx : T. p1(x) }

Unfolding call existsForall[T ](Cons[T ](x,xs),p) ∈ F1
2 { b1 =⇒ existsForallT (Cons[T ](x,xs),p) '

(existsT (l2,p2) '¬forallT (l2,Cλ(p2))),
b1 =⇒ l2 'ConsT (x,xs),
b1 =⇒ p2 ' p }

{exists[T ](l1,p1),
forall[T ](l1,λx : T. p1(x)),
exists[T ](l2,p2),
forall[T ](l2,λx : T. p2(x)) }

; {λx : T. p1(x),
λx : T. p2(x) }

Unfolding call forall[T ](l1,λx : T. p1(x)) ∈ F2
3 { be =⇒ forallT (l1,Cλ(p1)) ' r2,

be =⇒ l3 ' l1,
be =⇒ p3 'Cλ(p1),
(be ∧ is-ConsT (l3)) ⇐⇒ b3,
(be ∧ is-NilT (l3)) ⇐⇒ b4,
b3 =⇒ x1 ' headT (l3),
b3 =⇒ xs1 ' tailT (l3),
b3 =⇒ r2 ' r3,
b4 =⇒ r2 ' true,
(b3 ∧dispatchT→Boolean(p3,x1)) ⇐⇒ b5,
(b3 ∧¬dispatchT→Boolean(p3,x1)) ⇐⇒ b6,
b5 =⇒ r3 ' forallT (xs1,p3),
b6 =⇒ r3 ' false }

{exists[T ](l1,p1),
exists[T ](l2,p2),
forall[T ](l2,λx : T. p2(x)),
forall[T ](xs1,p3) }

{p3(x1) } {λx : T. p1(x),
λx : T. p2(x) }

Unfolding pair (p3(x), λx : T. p1(x)) ∈ A3 ×Λ3
4 { b7 ⇐⇒ (be ∧b3 ∧p3 'Cλ(p1)),

b7 =⇒ dispatchT→Boolean(p3,x1) '
dispatchT→Boolean(y1,x2),

b7 =⇒ y1 ' p1,
b7 =⇒ x2 ' x1 }

{exists[T ](l1,p1),
exists[T ](l2,p2),
forall[T ](l2,λx : T. p2(x)),
forall[T ](xs1,p3) }

{p3(x1),
y1(x2) }

{λx : T. p1(x),
λx : T. p2(x) }

Figure 2.4 – A possible sequence of unfolding steps during counterexample search for
existsForall[T ](xs,p) =⇒ existsForall[T ](Cons[T ](x,xs),p). Note that an extra constructor
Cλx. y(x)(y : δT→Boolean) will be introduced in the δT→Boolean algebraic datatype definition
from step 1 onwards since a new lambda structure appears in the set of known lambdas.
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Proof. The proof follows a similar structure to the proof of Theorem 1 in Chapter 1.

First, we extend our notion of unfolding tree to function applications. We start by adding the

function applications in Ai to the set of nodes. For function call nodes, we then introduce

edges between the call and the nodes which occur within the function’s unfolded body, for

application nodes, we introduce edges between the application and the nodes which occur

within the bodies of all lambdas that have been unfolded for that application, and for the root

node, we introduce edges between the root and all calls and applications that occur within e.

We again rely on the partial ordering of sibling nodes based on evaluation order.

For trace γ(θ(e)) →n1 e ′, we then show by bottom-up induction on the unfolding tree and on

the partial order between sibling nodes that for each node l : et in the tree, if

1. γ(θ(e)) →n2 E[l : e ′t ] →n1−n2 e ′,

2. M |= Tl : etUb ,

3. whenever et = f [τ](e1) with associated definition (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P and

γ(θ(e)) →n3 E[l : f [τ](v1)] →n1−n3 e ′, then v1
ext
/ (M(Te1Ut ), τ1[τ f /τ]), and

4. whenever et = e1 e2 and γ(θ(e)) →n3 E[l : (λx. ev ) v2] →n1−n3 e ′, then given the function

type e1 : τ2 → τ, we have λx. ev
ext
/ (M(Te1Ut ), τ2 → τ) and v2

ext
/ (M(Te2Ut ), τ2),

then given the maximal trace e ′t →n4 ev for n4 ≤ n1 −n2, M is consistent with all calls and

applications that are evaluated in the trace, each call that is encountered in the trace belongs

to Ui , and each application that is encountered in the trace belongs to Ai .

The cases for the root and call nodes follow as in the proof presented in Chapter 1. We

therefore consider the case where et = ec e2. For the trace γ(θ(e)) →n2 E[l : e ′1 e ′2], consistency

is again given by induction on the partial order. We then consider the interesting case where

γ(θ(e)) →n3 E[l : (λx. ev ) v2] → E[ev [x/v2]] and n3 < n1, separating the analysis into three

cases: 1) there exists λx. eb ∈ Λi such that M |= Tλx. ebUb ∧Tλx. ebUt ' Te1Ut , 2) we have

λx. ft (x) ext
/ (M(Te1Ut ), τ2 → τ), and 3) neither case 1) nor 2) holds.

Case 1) By M |= block(Ai ,Λi ,Di ), we have (e1 e2, λx. eb) ∈ Di . By definition of Φi , given

normalize (λx. eb) = (λx. e ′b , { y1 7→ e ′1, · · · , yn 7→ e ′n }), we have M |= Te1 e2Ut ' Te ′bUt ,

M |= x ' Te2Ut and M |= y j ' Te ′j Ut for 1 ≤ j ≤ n. Given FV (λx. e ′b) = { y1 : τ′1, · · · , yn : τ′n }

and v ′
j

ext
/ (M(Te ′j Ut ), τ′j ) for 1 ≤ j ≤ n, we have λx. ev = λx. e ′b[y1/v ′

1, · · · , yn/v ′
n] by

definition of ext
/ . Given the value substitution γ′ = { x 7→ v2 }∪ { y j 7→ v ′

j | 1 ≤ j ≤ n }, M

therefore agrees with γ′ by condition 4 and γ(θ(e)) →n3+1 E [γ′(θ(e ′b))] by the operational

semantics. Similarly to the proof in the previous chapter, we then rely on the sibling

partial order induction to apply Lemmas 3, 4 and Corollary 2 in order to ensure both

consistency and inclusion.
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Case 2) By construction of λx. ft (x), M is consistent with the application. As no call or

application exists within the extracted body of ft , we also have both consistency and

inclusion of all calls and applications in the trace.

Case 3) The remaining possibility is that λx. ev corresponds to a lambda that is defined within

the program but is not yet known. By definition of unfolding, all non-nested lambdas

which appear in the body of each call and application unfolding are known. If λx. ev

is defined as a non-nested lambda within a function body, then there must exist some

function call in the trace which has not been unfolded (i.e it does not belong to Ui )

which is in contradiction with the inductive hypothesis. A similar argument applies if

λx. ev is defined within another lambda’s body.

As before, we see that all four conditions of the above statement hold for the root node e.

Again, no infinite trace exists as Ui and Ai are finite, hence evaluation must terminate. We

then apply Corollary 1 to conclude the proof.

2.5.2 Completeness

Even in the higher-order setting, our model finding procedure remains complete. This prop-

erty again requires a fair unfolding strategy and we therefore extend the notion of fairness,

discussed in Chapter 1 in the context of call unfolding, to the situation with both function

calls and applications.

Definition 4. The selection process for the call or application - lambda pair to unfold at each

step is fair iff for each i , for each f [τ](e1) ∈ Fi , there exists a j such that f [τ](e1) ∈U j , and for

each (e1 e2) ∈ Ai and λx. eb ∈Λi , there exists a k such that (e1 e2, λx. eb) ∈ Dk .

Fairness in this setting thus implies that not only will any function call eventually be unfolded,

but also that for any application and any type-compatible lambda that is discovered during

unfolding, we will unfold the corresponding application-lambda pair. Based on this definition,

we can re-formulate the completeness theorem as follows.

Theorem 2. For expression e and value v, if there exist inputs Pin,θ,γ such that γ(θ(e)) →∗ θ(v)

and the unfolding selection process is fair, then there exists k ∈ N and a model M such that

M |=Φk ∪block(Uk )∪block(Ak ,Λk ,Dk ).

Proof. First, let us define the (potentially infinite) sets F =⋃
i Fi , A =⋃

i Ai and Λ=⋃
i Λi . We

then select k such that

1. for l : f [τ](e1) ∈ F , if γ(θ(e)) →∗ E[l : f [τ](e ′1)], then f [τ](e1) ∈Uk ,

2. for lb :λx. eb ∈Λ, if γ(θ(e)) →∗ E[lb :λx. e ′b], then λx. eb ∈Λk ,
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3. for l : (e1 e2) ∈ A, if γ(θ(e)) →∗ E[l : (e ′1 e ′2)], then (e1 e2) ∈ Ak , and given e ′1 →∗ λx. ev , if

there exists lb :λx. eb ∈Λ such that γ(θ(e)) →∗ E[lb :λx. ev ], then (e1 e2, λx. eb) ∈ Dk .

As the trace is finite and our unfolding selection strategy is fair, such a k is guaranteed to exist.

We then show by induction on 0 ≤ i ≤ k that there exists a model Mi such that

1. Mi |=Φi ,

2. Mi agrees with γ,

3. for ls : es ∈ Fi ∪Ui ∪ Ai ∪Λi we have γ(θ(e)) →∗ E[ls : e ′s] iff M |= Tls : esUb ,

4. for l : f [τ](e1) ∈ Fi ∪Ui with (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P , if γ(θ(e)) →∗ E [l : f [τ′](e ′1)],

then given evaluation results e ′1 →∗ v1 and f [τ′](e ′1) →∗ v f where v1, v f ∈ value, we have

v1
ext
/ (M(Te1Ut ), τ1[τ f /τ]) and v f

ext
/ (M(T f [τ](e1)Ut ), τ2[τ f /τ]), and

5. for l : (e1 e2) ∈ Ai , if γ(θ(e)) →∗ E[l : (e ′1 e ′2], then given typing judgement e1 : τ2 → τ and

evaluation results e ′1 →∗ λx. ev , e ′2 →∗ v2 and e ′1 e ′2 →∗ vc where λx. ev , v2, vc ∈ value,

we have λx. ev
ext
/ (M(Te1Ut ), τ2 → τ), v2

ext
/ (M(Te2Ut ), τ2) and vc

ext
/ (M(Te1 e2Ut ), τ).

Note that again, items 3, 4 and 5 above imply consistency with all calls in Fi ∪Ui and all

applications in Ai .

The base case is given by Lemmas 5, 6 and Corollary 2. For the inductive case, we can as-

sume a model Mi for which the hypothesis holds. If step i +1 is a call unfolding step, the

proof is analogous to the one presented in Chapter 1. If the step is an application unfolding

step, consider the pair (l : e1 e2, lb : λx. eb) ∈ Di+1 \ Di that was unfolded. Further con-

sider normalization normalize (λx. eb) = (λx. e ′b , {y1 7→ e ′1, · · · , yn 7→ e ′n}), (typed) free variables

FV (λx. e ′b) = { y1 : τ′1, · · · , yn : τ′n }, the blocker constant bb introduced when unfolding the

application-lambda pair, and embedding (bb , e ′b) . (tb ,Φb). We then consider the following

three cases:

γ(θ(e)) →∗ E[l : (λx. ev ) v2] and γ(θ(e)) →∗ Eb[lb :λx. ev ] : By item 3 of the inductive hypoth-

esis, we have Mi |= Te1 e2Ub and Mi |= Tλx. ebUb . As ext
. /ext

/ are deterministic and

inverse, we also have Mi |= Te1Ut ' Tλx. ebUt . By definition of ext
/ , given v ′

j
ext
/ (e ′j , τ′j )

for 1 ≤ j ≤ n, we have λx. ev = θ(λx. e ′b)[y1/v ′
1, · · · , yn/v ′

n]. Given the value substitu-

tion γ′ = { x 7→ v2 }∪ { y j 7→ v ′
j | 1 ≤ j ≤ n }, Lemma 6 ensures that there exists a model

Mb |=Φb ∪ {bb ,Te1 e2Ut ' tb} such that Mb is consistent with the calls and applications

in e ′b . Lemma 5 and Corollary 2 then ensure a valid Mi+1 exists by a similar argument to

the one presented in Chapter 1.

γ(θ(e)) →∗ E[l : (λx. ev ) v2] and γ(θ(e)) 6→∗ Eb[lb :λx. ev ] : There are two possibilities here.

If γ(θ(e)) 6→∗ E[lb : λx. e ′b], then we have Mi |= ¬Tλx. ebUb and thus Mi |= ¬bb . If
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γ(θ(e)) →∗ E[lb : λx. e ′v ] where λx. ev 6= λx. e ′v , then Mi |= Te1Ut 6' Tλx. ebUt as ext
. /ext

/

are deterministic and inverse, and therefore Mi |= ¬bb . If we extend Mi to Mi+1 by

setting all introduced blocker constants to false, Lemma 1 ensures Mi+1 |=Φi+1 and no

label within the unfolded e ′b can be encountered by evaluation, hence the remaining

items are satisfied.

γ(θ(e)) 6→∗ E[l : e ′1 e ′2] : By item 3 of the inductive hypothesis, we have M |= ¬Te1 e2Ub , and

if we extend Mi to Mi+1 by setting all introduced blocker constants to false, Lemma 1

ensures Mi+1 |=Φi+1 and the remaining items are satisfied.

We again have Mk |= block(Fk ) by item 3 of the statement. By the selection criterion of k and

items 3 and 5, we have Mk |= block(Ak ,Λk ,Dk ) which concludes our proof.

2.5.3 Procedure Termination

As in the first-order case, our unfolding procedure incrementally extends the Φi clause set

during model search. If at some point this clause set becomes unsatisfiable, then we would

again like to terminate the procedure and report a proof.

Although the high-level principle remains the same, it is important to note here that there exists

a subtle difference between the embeddings of the first-order and higher-order languages

which affects the proof of the termination property. Indeed, although we have Φi ⊆Φi+1 for

all i , the δτ datatype definitions can change at each step. Hence, satisfiability of the clause

sets is not quite as incremental as in the first-order case.

Theorem 3. For expression e, value v and unfolding index i ∈N, if there exists no model M |=Φi ,

then there exist no inputs Pin,θ,γ such that γ(θ(e)) →∗ θ(v).

Proof. We show this by contradiction. Let us assume that Φi is unsatisfiable (with respect to

Λi ), yet there exists a model M |=Φi+1 (with respect to Λi+1). For each Cλx. e ′
b
(t) value term

in M where the Cλx. e ′
b

is a new constructor, we can select some Else(n) value term that does

not exist in M . Given M ′ = M [Cλx. e ′
b
(t)/Else(n)], we have M ′ |=Φi (with respect to Λi+1) as

there exist no tester or selector applications on terms with a δτ sort in Φi by our embedding

definition. By repeatedly removing each new constructor term in M , we obtain a model

Mi |=Φi with respect to Λi , hence a contradiction.

It is clear that the structure of the procedure which can produce counterexample inexistence

proofs remains similar to the one given in Algorithm 2 of Section 1.5.

2.6 Optimizations

The embedding and unfolding procedures presented in this chapter feature strong theoretical

properties, however it is important to discuss certain practical considerations. In this section,
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we present two important optimizations which enable effective counterexample finding in the

presence of higher-order functions.

2.6.1 Incremental Embedding

Modern SMT solvers support incremental solving, a technique which improves performance

when multiple satisfiability checks are performed on an increasing clause set. It is clear that our

unfolding procedure follows such a schema. However, the embedding of first-class functions

into SMT terms and sorts requires knowing in advance the set of all lambda structures that

may occur during embedding, and the discussed staged embedding approach disallows

incremental solving. In this section, we present an incremental embedding strategy for first-

class functions which is compatible with incremental solving.

We propose an alternative embedding that preserves certain important properties that al-

gebraic datatypes give us but allows an unbounded set of typed structures. Consider two

lambdas λx. ei for i ∈ {1,2} with type λx. ei : τ. For 1 ≤ i ≤ 2, further consider normalizations

(λx. e ′i , {yi ,1 7→ ei ,1, · · · , yi ,ni 7→ ei ,ni }), and embeddings ti = Tλx. ei Ut and ti , j = Tei , j Ut for

1 ≤ j ≤ ni . The properties we want are:

Distinctness : t1 6' t2 if λx. e ′1 6=λx. e ′2.

Injectivity : if t1 ' t2, then n1 = n2 and t1,1 ' t2,1, · · · , t1,n1 ' t2,n2 .

Surjectivity : if λx. e ′1 =λx. e ′2 and t1,1 ' t2,1, · · · , t1,n1 ' t2,n2 , then t1 ' t2.

Inductiveness : value extraction cannot lead to cycles.

The embedding of function types into algebraic datatypes ensures all four properties are satis-

fied, along with the additional property of exhaustivity which limits the set of interpretations

to the exhaustively given constructors. Recall however that we introduced an Else constructor

explicitly to avoid this particular property.

We propose in our alternative embedding to embed the function type τ into an uninterpreted

sort στ. Lambdas are then embedded into fresh constants with sort στ. Recall that we already

track the set of known lambdas in Λ. We rely on this set to enforce the distinctness, injectivity

and surjectivity constraints described above. Given the two lambdas above and blocker

constants bi = Tλx. ei Ub for i ∈ {1,2}, we define the following clause set

Φeq =
{

{(b1 ∧b2) =⇒ (t1 ' t2 ⇐⇒ t1,1 ' t2,1 ∧·· ·∧ t1,n1 ' t2,n2 )} if λx. e ′1 =λx. e ′2
{(b1 ∧b2) =⇒ t1 6' t2} if λx. e ′1 6=λx. e ′2

which ensures distinctness, injectivity and surjectivity of our embedding. Such clauses must

be generated for all pairs of known lambdas in Λ.
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Ensuring inductiveness is slightly more involved. The high-level idea is to impose an ordering

on values such that closures within a lambda have strictly lower order than the lambda itself.

This restriction corresponds to the restriction imposed by inductiveness of algebraic datatypes

and can be viewed as a consequence of linear scopes as featured by our language. This

ordering can be imposed by introducing a new special function order with integer domain and

generating clauses that impose the correct ordering relation. We define the function isOrdered

which takes the type τ of the closure as argument:

def isOrdered(τ: type, ec : expr, eλ: expr): Boolean = τ match {
case τ1 → τ2 ⇒ order(ec ) < order(eλ)

case d [τ] where (type d [τd ] := ·· · | Ci (xi : τi ) | · · · ) ∈ P ⇒
ec match { · · · case Ci (yi ) ⇒ isOrdered(τi [τd /τ], yi , eλ) · · · }

case _ ⇒ true

}

It is clear that this function cannot be represented as such in our language as it takes a type

as argument. However, much like in the case of function type parameters, the set of instan-

tiations for τ in a given expression is finite and statically known. Hence, we can handle the

type-parametricity of isOrdered in the same way as type parameters by inlining the correct

body depending on τ during the unfolding procedure. Given a lambda λx. e ∈Λτ and its nor-

malization normalize (λx. e) = (λx. e ′, {y1 : τ1 7→ e1, · · · , yn : τn 7→ en}), consider the associated

blocking constant b = Tλx. eUb and embeddings t = Tλx. eUt , and ti = Tei Ut for 1 ≤ i ≤ n. We

can then define the clause set

Φorder = {b =⇒ ( isOrdered(τ1, t1, t )∧·· ·∧ isOrdered(τn , tn , t ))}

which ensures the inductiveness of our embedding. Note that the isOrdered(τi , ti , t ) function

calls must be handled in a similar manner to named functions in the expression, with static

blocking and term-level inlining.

It is interesting to note here that in addition to enforcing inductiveness, these ordering clauses

enable a useful optimization during unfolding. Given the pair (e1 e2, λx. eb) ∈ Ai ×Λi , if a

clause order(Te1Ut ) < order(Tλx. ebUt ) has been generated during embedding, then there is

no need to unfold the application - lambda pair, as the blocking condition of Te1Ut ' Tλx. ebUt

can never hold. This observation enables us to skip unfoldings in the presence of lambdas of

the shape λx. C[ f x] where f has same type as the lambda itself.

Value extraction from model interpretations of function-typed terms is performed similarly

to the setting with datatypes. If there exists a lambda in Λ which corresponds to the term

we’re extracting, we extract the embedding of each structural closure and substitute them in

the lambda’s normalized structure. If no such lambda exists, we apply the previously defined

extraction rule and introduce a synthetic named function.

Function types and lambdas can therefore be embedded in an incremental manner without

having to rely on a deferred datatype definition to allow for (as of yet) unknown lambdas. This
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incremental embedding produces the relevantΦeq andΦorder clauses whenever a new lambda

is embedded. While the number of generatedΦeq clauses is quadratic in the number of known

lambdas, this value remains quite tractable in practice.

2.6.2 Lambda Tracking

The unfolding procedure for function applications described in the previous sections shows

that a quadratic blowup of unfoldings occurs in terms of known applications and lambdas,

even when factoring in the optimization based on orderings described in the previous sec-

tion. However, the flow of lambdas through a program is generally less obscure than that of

arbitrary data, and it is often possible to determine which lambda exactly is being applied

during unfolding. We give a high-level description of a tracking procedure, and of how this

information can be leveraged during application unfolding.

Tracking is performed by a lightweight flow analysis during which we compute a global

mapping pointers : Pointers from embedded terms to lambdas, Pointers = term 7→ lambda.

This mapping is populated by establishing known lambda targets based on the identifiers in

let-expression embeddings, as well as call and application unfoldings. Given an embedded

receiving identifier, an expression, and the current global pointers mapping, an extension to

the mapping is computed by finding datatype selector chains from the identifier to known

lambdas (or known pointers) in the expression.

def getPointers(t : term, e: expr): Pointers = e match {
case Ci (e1) where e : d [τ] ⇒ getPointers(selectord [τ],i (t ), e1)
case (e1, e2 ) where e : (τ1, τ2 ) ⇒ ⋃

1≤i≤2 getPointers(π(τ1,τ2 ),i (t ), ei )
case x ∈ id if x ∈ pointers ⇒ {t 7→ pointers(x)}
case λx. eb ⇒ {t 7→λx. eb}
case _ ⇒ {}

}

Based on this target computation, the global pointers mapping is populated by recursively

traversing the embedded expressions that have occurred during unfolding until step i . Given

an embedded expression, the pointers mapping is constructed as follows.

Case λx. eb : the mapping Tλx. ebUt 7→λx. eb is added to pointers.

Case let x := e1 in e2 : the pointers obtained by getPointers(x,e1) are added to the mapping.

Note that we know that x is unique in the program, so any application where the caller

depends on x must correspond to this let binding.

Case f [τ](e1) ∈Ui : given (def f [τ f ](x : τ1) : τ2 := e f ) ∈ P , we register the pointers ob-

tained through getPointers(x,e1). We further consider returned lambdas and add

getPointers(T f [τ](e1)Ut ,e f [τ f /τ]) to pointers. We then recursively traverse e f [τ f /τ]

in order to register the lambda pointers that appear within the unfolded body.
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Case e1 e2 if Te1Ut ∈ pointers : given the target lambda pointers(Te1Ut ) =λx. eb , as well as nor-

malization normalize (λx. eb) = (λx. e ′b , {y1 7→ e ′1, · · · , yn 7→ e ′n}), we register the pointers

getPointers(x,e2) and getPointers(y j ,e ′j ) for 1 ≤ j ≤ n. We again further register the

pointers getPointers(Te1 e2Ut ,e ′b) and recursively traverse e ′b to locate pointers in the

unfolded body.

In all other cases, we recursively traverse the children of the given expression and continue

establishing pointers. It is important to realize that this lightweight flow analysis is efficiently

performed through a single top-down traversal of the initial expression and the unfolded

bodies. While there are many lambda targets that are not captured by this approach, it has

shown effective in practice.

Based on the term to lambda mapping resulting from the flow analysis, we can avoid certain

unnecessary application - lambda unfoldings. Indeed, given a pair (e1 e2, λx. eb) ∈ Ai ×Λi ,

if Te1Ut ∈ pointers and pointers(Te1Ut ) 6= λx. eb , then we know that this particular pair can

be skipped during unfolding. Indeed, even when there exists M |=Φi ∪ {Te1Ut ' Tλx. ebUt },

the clause set resulting from the unfolding of (e1 e2, λx. eb) will be made redundant by the

unfolding of the pair (e1 e2, pointers(Te1Ut )) for which M |= Te1Ut ' Tpointers(Te1Ut )Ut is

guaranteed to hold in any satisfying model.
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In this chapter, we will discuss how the counterexample finding procedures presented in the

previous two chapters can be leveraged to build a verification system based on dependent

types. We will first extend our language with dependent types such as dependent function

types, dependent pair types and refinement types. We will then define a denotation for all

types in a program, and extend our counterexample finding procedure to leverage these

denotations. Finally, we will present an algorithmic type checking procedure that relies on the

embedding and unfolding procedures we described.

Our approach to program verification is based on a type system which ensures that well-

typed expressions reduce to expected values. Our type system is loosely based on System

T [Gir90, Chapter 7]. We define a reducible logical relation that associates to each type a

denotation, namely a set of "good" values of the given types. We then show that our type

checking procedure only accepts expressions that, given well-formed inputs, will evaluate to a

value in the denotation of the expected type.

In collaboration with Dr. Jad Hamza, we have developed a fully mechanized proof in Coq of

a variant of the type system presented here which includes fixpoint operators, parametric

polymorphism (à la System F), sized recursive types and refinement types. Unlike the system

we present here, equality is not considered decidable in the mechanized system and we

therefore rely on equality types and judgements instead. Another important distinction is

that the mechanized system does not allow mutual recursion between function and type

definitions. We have found that formally defining and proving this type system variant was

invaluable in building a sound verification algorithm.

3.1 Language

We extend the language presented in Chapter 2 with dependent types and a stuck expression.

As mentioned above, we introduce dependent function types (pi-types), dependent pair types

(sigma-types) and refinement types. We further introduce dependent sized recursive types in
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order to ensure that our denotation is well-defined in the presence of algebraic datatypes. We

therefore extend the type grammar as follows:

type ::= ·· · | Π id : type. type | Σ id : type. type

| { id : type | expr } | id [ tparams ]( expr )

We consider τ1 → τ2 to be a special form of Πx : τ1. τ2 where τ2 does not depend on x. We

similarly consider (τ1, τ2 ) to be a special case of Σx : τ1. τ2. Given a typing context Γ and

boolean expression p, we denote the context Γ,u : {u : Unit | p } where u is fresh by Γ, p.

A sized datatype d [τ](em) relies on the well-order Nat to ensure it is well defined. We assume

hereafter that the type Nat and an associated ordering relation < are available in all considered

programs. Contrary to certain definitions of sized types which rely on ordinals, we restrict

ourselves to the natural numbers in order to simplify the inference of size expressions and

leverage the automation given by the theory of linear arithmetic in the underlying SMT solver.

We therefore modify the datatype definition grammar to include the size binding (given after

the type parameters) as follows:

tdef ::= type id [ tdecls ]( id ) := id ( id : type ) 〈 | id ( id : type ) 〉∗

We will see later that we rely on a syntactic constraint to ensure that references to mutually

recursive types in constructor parameters will decrease the size expression. The datatype

d [τ] will then correspond to the intersection over all n of d [τ](n), as we will see below when

defining the denotation.

In order to ensure our recursive function definitions are well-founded, we again rely on a size

binding which is shown to decrease during type checking. We do not restrict this binding to

the natural numbers but instead rely on some arbitrary well-order τm . We again assume the

existence of a < relation on the order τm in our language. We thus introduce a size parameter

given before the type parameters and modify the function definition grammar as follows:

fdef ::= def id ( id : type )[ tdecls ]( id : type ) : type := expr

We impose a syntactic restriction on sized function definitions which only allows the size

binding to appear within types or size expression positions. This will ensure that evaluation is

unaffected by the size expressions that appear in the program.

At the expression level, we extend function calls and datatype constructors with an extra size

expression parameter which is used during type checking. However, we also allow function

calls and datatype constructors without these size expressions in cases where they are not
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necessary to ensure well-foundedness. The expression grammar is thus extended as follows:

expr ::= ·· · | id ( expr )[ tparams ]( expr )

These language extensions will be leveraged to perform program verification. However, they

constitute annotations and should not influence the operational semantics of our language.

We therefore introduce the notion of erasure for types, expressions, and programs. Type

erasure drops refinements and size predicates. Expression erasure drops the size expressions

in function calls and datatype constructors, as well as erases all types within the expression.

Program erasure erases all types and expressions within the type and function definitions, as

well as the size binding for function definitions. Note that type erasure effectively drops pi-

and sigma-types as well since all dependencies will have been removed. It is clear that erased

types, expressions and programs belong to the language discussed in the previous chapter.

We will rely on an erase (·) function hereafter which computes the erasure of the given type,

expression or program.

We extend the simple typing judgement presented in the previous chapters to the dependently-

typed language by letting P ;Θ;Γ ` e : τ hold iff the judgement holds for the erased typing

environment, expression and type. Similarly, we rely on erasure to extend our operational

semantics to the dependently-typed language. We therefore say e → e ′ in P iff the erasure of e

evaluates to e ′ in the erasure of P .

For certain considerations about well-foundedness, it is useful to determine the dependencies

between definitions in this dependently-typed language. Given a program P , we assume the

existence of some total ordering relation ¹ ∈ P ×P such that given two definitions d1,d2 ∈ P ,

if the identifier of d1 appears in d2, then we have d1 ¹ d2. If d1 ¹ d2 and d2 ¹ d1, then both

definitions are in the same equivalence class and we write d1 ∼ d2. We say d1 ≺ d2 when

d1 ¹ d2 and d1 6∼ d2. Note that the definition of ¹ ensures that if the definitions of d1 and d2

are mutually recursive, then we have d1 ∼ d2. It is clear that ¹ always exists, as in the worst

case we have d1 ∼ d2 for all d1,d2 ∈ P .

Given the ∼ relation on definitions, we can describe the syntactic restriction we impose on

datatype definitions as mentioned above. Given some datatype definition

(type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P

we ensure that for 1 ≤ i ≤ n, for each intersection datatype d ′[τ′] v τi (namely d ′[τ′] occurs

within τi ), we have d 6∼ d ′, and for each sized datatype d ′[τ′](em) v τi , if d ∼ d ′, then em = m−1

(or m match { Succ(x) ⇒ x Zero ⇒ err[Nat] } in our language). Note that at the source level,

datatypes can be declared as usual and the size bindings can be automatically inserted.
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We introduce further syntactic restrictions on function definitions that are mutually recursive

with function or datatype definitions. Given some function definition

(def f (m : τm)[τ f ](x1 : τ1) : τ2 := e f ∈ P

we require that each other function definition f ′ ∈ P such that f ∼ f ′ be associated the same

well-order τm . If there exists a datatype definition d ∈ P such that f ∼ d , then we require τm

to be Nat. Furthermore, for 1 ≤ i ≤ 2, for intersection datatype d [τ] v τi we have f 6∼ d , and

for sized datatype d [τ]em v τi , we have em = n. Note that we do not enforce a size decrease

here but allow same-sized datatypes in the function signature.

3.2 Reducibility

In this section, we describe a logical relation that corresponds to expressions that will evaluate

to some value (i.e. expressions where evaluation neither gets stuck nor diverges). This relation

is inspired by the notion of reducibility (and other similar notions) described for example in

[Tai67, Gir90, Har16]. We will therefore say a value, closed or open expression, type or program

is reducible when it satisfies the relevant logical relation.

Reducibility for closed expressions. We start by defining the notion of reducibility for closed

values and expressions, i.e. values and expressions that contain no type or expression variable.

We define two mutually recursive relations. For each type τ, we define JτKv the set of reducible

values and JτKe the set of reducible expressions. Intuitively, the set JτKv contains the set of

values of type τ, and JτKe contains the set of expressions that evaluate to some value of type τ.

Both definitions can be found in Figure 3.1. We call the set JτKv the denotation of the type τ.

If a closed expression is reducible, i.e. belongs to some set JτKe , then by definition we know

that e will evaluate to some value in a finite number of steps. Furthermore, if τ is a function

type, for example Nat→Nat, then any application of e to a value in JNatKv will terminate.

Recursive types are known to introduce logical inconsistencies into type systems such as

Russell’s paradox, and to lead to non-termination. Sized types are a common approach to

resolving this issue. Our definition of Jd [τ](em)Kv corresponds to a variation of sized types

where sizes belong to Nat (as opposed to the more general ordinals [HPS96, Par98, Abe07]).

Note however that we allow arbitrary expressions in size positions.

During type checking, it will sometimes be useful to determine that an expression will reduce

to some (not necessarily reducible) value. This will namely be the case when type checking

a datatype constructor with size Zero. We therefore introduce the following special type

val[type ] with associated denotation Jval[τ]Kv = { v ∈ value | v : τ }. The erasure of val[τ] is

simply given as the erasure of τ. Note that this new type is internal to our type checking

algorithm and will never appear in our input programs.
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JUnitKv = { ( ) }
JBooleanKv = {true, false }
JNatKv = {Zero, Succ(Zero), Succ(Succ(Zero)), · · · }
Jd [τ](em)Kv = { v ∈ value | ∃vm ∈ JNatKv . v : d [τ] ∧ em →∗ vm ∧

vm >Zero =⇒ (∃v1 ∈ Jτi [m/vm][τd /τ]Kv . v =Ci [erase (τ)](v1)
where (type d [τd ](m) := ·· · | Ci (xi : τi ) | · · · ) ∈ P ) }

Jd [τ]Kv = { v ∈ value | ∀vm ∈ JNatKv . v ∈ Jd [τ](vm)Kv }
J{ x : τ | p }Kv = { v ∈ JτKv | p[x/v] →∗ true }
JΠx : τ1. τ2Kv = { v ∈ value | ∀v1 ∈ Jτ1Kv . v v1 ∈ Jτ2[x/v1]Ke }
JΣx : τ1. τ2Kv = { ( v1, v2 ) | v1 ∈ Jτ1Kv ∧ v2 ∈ Jτ2[x/v1]Kv }

JτKe = {e ∈ expr | e : τ ∧ ∃v ∈ JτKv . e →∗ v }

Figure 3.1 – Definition of reducibility for values and expressions for each type with respect
to some program P under which evaluation and (simple) typing is performed. Note that we
define a denotation for the Nat type in order to ensure that the denotation is well-formed.
However, we will generally assume hereafter that a Nat datatype is available in the program
and treat it similarly to any other datatype.

Reducibility for open expressions. We now describe reducibility in the context of open

expressions, namely expressions with free type or expression variables. Reducibility in the

context of open expressions denotes expressions which, when given a set of reducible inputs,

belong to the set of reducible closed expressions.

Given a typing environment P ;Θ;Γ, we say the inputs Pin,θ,γ are reducible (or reducible

inputs) for P ;Θ;Γ if for each (x,τ) ∈ Γ, we have γ(x) ∈ Jγ(θ(τ))Kv in program P ∪Pin. We denote

the set of reducible inputs for P ;Θ;Γ as JP ;Θ;ΓKv . We say an open expression e is reducible,

denoted by P ;Θ;Γ |= e ∈ JτK, if ∀ (Pin,θ,γ) ∈ JP ;Θ;ΓKv . γ(θ(e)) ∈ Jγ(θ(τ))Ke and P ;Θ;Γ` e : τ.

Reducibility for contexts, types and programs. Reducibility in this case becomes more of a

well-formedness relation and simply ensures that all expressions that appear within typing

contexts, types and program definitions are reducible. Given a program P , set of type variables

Θ and typing context Γ, we denote reducibility of Γ as P ;Θ |= Γ context, reducibility of type τ

as P ;Θ;Γ |= τ type and reducibility of type or function definition d as P |= d well-formed. Each

reducibility notion is then respectively defined in Figures 3.2, 3.3 and 3.4. For program P , we

define program reducibility |= P program as ∀d ∈ P. P |= d well-formed. It is important to note

that these notions of reducibility imply well-formedness as defined in the previous chapters.

Bounded reducibility. Before concluding our presentation of the different reducibility rela-

tions, let us touch upon the notion of bounded reducibility. The type checking procedure we

will present later in this chapter aims to establish reducibility for expressions, types, contexts
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EMPTY CONTEXT

P ;Θ |= context

INCREASE CONTEXT

P ;Θ;Γ |= τ type

P ;Θ |= Γ, x : τ context

Figure 3.2 – Context reducibility rules.

BOOLEAN TYPE

P ;Θ |= Γ context

P ;Θ;Γ |=Boolean type

UNIT TYPE

P ;Θ |= Γ context

P ;Θ;Γ |=Unit type

TYPE VARIABLE

P ;Θ |= Γ context T ∈Θ
P ;Θ;Γ |= T type

DATATYPE

P ;Θ |= Γ context (type d [τd ](m) := ·· · ) ∈ P
|τd | = |τ| P ;Θ;Γ |= τ type for τ ∈ τ P ;Θ;Γ |= em ∈ JNatK

PΘ;Γ |= d [τ](em) type

REFINEMENT TYPE

P ;Θ;Γ |= τ type P ;Θ;Γ, x : τ |= p ∈ JBooleanK

P ;Θ;Γ |= { x : τ | p } type

PI-TYPE

P ;Θ;Γ |= τ1 type P ;Θ;Γ, x : τ1 |= τ2 type

P ;Θ;Γ |=Πx : τ1. τ2 type

SIGMA-TYPE

P ;Θ;Γ |= τ1 type P ;Θ;Γ, x : τ1 |= τ2 type

P ;Θ;Γ |=Σx : τ1. τ2 type

Figure 3.3 – Type reducibility rules. The DATATYPE rule further allows a variant for d [τ] where
the P ;Θ;Γ |= em ∈ JNatK reducibility check is dropped.

TYPE

P ;τ f ;m : Nat,m >Zero |= τi type for 1 ≤ i ≤ n erase (P );τd ` d [τd ] well-defined

P |= type d [τ f ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn) well-formed

FUNCTION

P ;;;; |= τm type τm well-order
P ;τ f ;m : τm |= τ1 type P ;τ f ;m : τm , x : τ1 |= τ2 type P ;τ f ;m : τm , x : τ1 |= e f ∈ Jτ2K

P |= def f (m : τm)[τ f ](x : τ1) : τ2 := e f well-formed

Figure 3.4 – Program reducibility rules. Recall that the syntactic constraints discussed in the
context of both datatype and function definitions further apply.
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and programs. The proof of soundness for this procedure will proceed by induction over the

ordering ≺ between definitions and the well-order τm . The first induction over ≺ implies that

our type checking procedure will be defined in the context of a reducible program P1 and a set

of mutually recursive definitions P2 which are currently being checked. The second induction

will then give us some n ∈ JτmKv such that types and definitions in P2 are reducible "below" n.

Intuitively, this value n gives us a bound below which reducibility is known to hold.

We start by defining the notion of bounded reducibility for function definitions in P2. Consider

some definition (def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P2. We say that f is reducible below n

iff for n′ ∈ JτmKv such that n′ < n, we have

P1 ∪P2;τ f ;; |= τ1[m/n′] type ∧ P1 ∪P2;τ f ; x : τ1[m/n′] |= τ2[m/n′] type ∧
P1 ∪P2;τ f ; x : τ1[m/n′] |= e f [m/n′] ∈ Jτ2[m/n′]K

Note that reducibility below n is therefore weaker than reducibility. Furthermore, if f is

reducible below n for all n ∈ JτmKv (and τm is a reducible well-order), then f is reducible.

Next, consider the datatype definition (type d [τd ](m) := C1(x1 : τ1) | · · · | Cr (xr : τr )) ∈ P2.

Similarly to the function case, we say that d is reducible below n iff the type τm is Nat, and for

n′ ∈ JNatKv such that Zero< n′ < n, we have

erase (P1 ∪P2);τd ` d [τd ] well-defined ∧ ∀1 ≤ i ≤ r. P1 ∪P2;τd ;; |= τr [m/n′] type

Again, reducibility below n is a weaker notion than reducibility for datatype definitions, and if

d is reducible below n for all n ∈ JNatKv , then d must also be reducible.

In the remainder of this chapter, we will be dealing with a reducible program P1 and set of

mutually recursive definitions P2. In order to improve readability, we will generally write P

instead of P1 ∪P2 when the distinction is not relevant.

3.2.1 Type Parameter Polarity

When considering the relations between the denotations of datatypes with different type

parameter instantiations, it is useful to rely on the notions of type parameter polarity. We rely

on the following four different polarities:

◦ : arbitrary or mixed polarity, + : positive or covariant polarity,

• : constant or invariant polarity, − : negative or contravariant polarity.

These polarities form a lattice, and we further define a composition operation (p1 ∗p2) and a

negation operation (¬p) on the lattice elements.
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•

− +

◦

p1 ∗p2 ◦ + − •
◦ ◦ + − •
+ ◦ + − •
− ◦ − + •
• • • • •

¬p ◦ + − •
◦ − + •

The polarity lattice naturally implies the existence of least-upper-bound (p1up2) and greatest-

lower-bound (p1 tp2) operations. We further assume a ¹ operator such that given polarities

p1, p2, we have p1 ¹ p2 iff p1 up2 = p2.

We are interested in establishing a type parameter polarity assignment which associates some

polarity from the lattice to each type parameter of each datatype in a program. Moreover, we

restrict ourselves to valid assignments which can be defined as follows. It is clear based on

this definition that a valid type parameter polarity assignment can be leveraged to define a

subtyping relation on datatypes with same size.

Definition 6. We say a type parameter polarity assignment polT : id 7→ polarity is valid if for

(type d [τd ](m) := ·· · ) ∈ P, vm ∈ JNatKv and (P1,θ1), (P2,θ2) ∈ JP ;τd ;;Kv such that

∀Ti ∈ τd . +¹ polT (Ti ) =⇒ Jθ1(Ti )Kv ⊆ Jθ2(Ti )Kv ∧ −¹ polT (Ti ) =⇒ Jθ1(Ti )Kv ⊇ Jθ2(Ti )Kv

we have Jθ1(d [τd ](vm))Kv ⊆ Jθ2(d [τd ](vm))Kv .

In practice, a valid type parameter polarity assignment can be computed as a fixpoint based on

the erasure of datatype definitions in the program. The assignment polT : id 7→ polarity is first

initialized to the bottom of the lattice, namely pol(T ) = ◦ for each datatype type parameter in P .

For each (erased) datatype definition (type d [τd ] := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ erase (P ),

type parameter T ∈ τd and constructor index 1 ≤ i ≤ n, we then compute polarity (T, τi ) = pi

the polarity of T in τi given the current polarity assignment. Finally, we update the assignment

polT (T ) = polT (T ) u pi and iterate until a fixpoint has been reached. The computation of the

polarity of T in τi is performed according to the following rules given the current polT .

polarity (T, T ) =+
T 6v τ

polarity (T, τ) = ◦

polarity (T, τ1) = p1 polarity (T, τ2) = p2

polarity (T, (τ1, τ2 )) = p1 up2

polarity (T, τ1) = p1 polarity (T, τ2) = p2

polarity (T, τ1 → τ2) =¬p1 up2

(type d [T1, · · · ,Tr ] := ·· · ) ∈ P polarity (T, τi ) = pi for 1 ≤ i ≤ r

polarity (T, d [τ1, · · · ,τr ]) = polT (T1)∗p1 u·· ·upolT (Tr )∗pr

We will assume hereafter that a valid type parameter polarity assignment is available for every

program we consider.
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3.2.2 Datatype Polarity

In our system, we are interested in two polarities for datatypes, namely positive and strictly

positive. Positivity allows us to relate the denotations of datatypes with identical type parame-

ter instantiations but different size expressions. Strict positivity further enables construction

and deconstruction of intersection datatypes by dropping the size binding from constructor

field types. Similarly to the notion of type parameter polarity, we rely on semantic definitions

for datatype polarities. Indeed, precisely defining the polarity computations is fairly complex

in our fragment due to the size bindings in datatype definitions. However, we have defined

the computations in the variant formalized in Coq and shown that they imply the semantic

definitions given here.

Let us start by considering the notion of positive polarity. This notion enables a second

dimension of subtyping for datatypes in addition to the one given by type parameter polarity

by relating sized datatypes with distinct size expressions.

Definition 7. We say a datatype (type d [τd ](m) := ·· · ) ∈ P is positive if for each v1, v2 ∈ JNatKv

such that v1 < v2 and (Pin,θ) ∈ JP ;τd ;;Kv , we have Jθ(d [τd ](v1))Kv ⊆ Jθ(d [τd ](v2))Kv .

We then consider the notion of strictly positive polarity. Strict positivity ensures that the

datatype intersection can be pushed down into the constructor field types. Given a datatype

definition (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P , we introduce a helper

function intersectd : type → type which takes a type τ and returns a type τ′ obtained by re-

placing all occurrences in τ of sized datatypes which are mutually recursive with d by the

corresponding intersection datatypes, namely τ′ = τ[d ′[τ′](em) s.t. d ∼ d ′/d ′[τ′]]. Given an

intersection datatype d [τ], the type intersectd (τi )[τd /τ] effectively corresponds to pushing the

intersection down to the (mutually) recursive occurrences of the datatype in the constructor

field type. Strict positivity then ensures that the denotation of the intersection datatype can be

equivalently computed by ignoring the quantification on JNatKv and considering instead the

type intersectd (τi )[τd /τ] associated to each field type τi .

Definition 8. We say a datatype (type d [τd ](m) := C1(x1 : τ1) | · · · | Cr (xr : τr )) ∈ P is strictly

positive if for 1 ≤ i ≤ n, the type intersectd (τi ) is reducible, and for value Ci [τ](v), we have

Ci [τ](v) ∈ Jd [τ]Kv iff v ∈ Jintersectd (τi )[τd /τ]Kv .

For datatypes where the size binding has been automatically injected, (strict) positivity can be

computed through a recursive traversal of the constructor field types defined by similar rules

to ones exposed in the case of type parameter polarity. We will again assume hereafter that

datatypes are validly marked as (strictly) positive (or not) in every considered program.

3.2.3 Type Generalization

In order to show reducibility of recursive functions, we rely on the size binding in the functions

definition. However, once reducibility has been shown, the size expression that appears within
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the function parameter and return types often becomes an unnecessary burden. We will

therefore be interested in generalizing such types to allow omitting the size expression.

Let us consider the reducible function definition (def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P . It

is clear by definition of reducibility that we have

∀ (Pin,θ,γ) ∈ JP ;τ f ;m : τm , x : τ1Kv . γ(θ( f (m)[τ f ](x))) ∈ Jγ(θ(τ2))Kv

As the well-order τm does not depend on τ f and evaluation of a reducible function call is

independent of the size expression, this property holds iff

∀vm ∈ JτmKv . ∀ (Pin,θ,γ) ∈ JP ;τ f ; x : τ1[m/vm]Kv . γ(θ( f [τ f ](x))) ∈ Jγ(θ(τ2[m/vm]))Kv

Let us consider a type parameter substitution θ, a value substitution γ, and a set S ⊆ JτmKv

of values from the well-order τm such that for vs ∈ S, we have γ(x) ∈ Jγ(θ(τ1[m/vs]))Kv . If it is

the case that for vm ∈ JτmKv , we have Jγ(θ(τ2[m/vm]))Kv ⊆⋂
vs∈SJγ(θ(τ2[m/vs]))Kv , then the

call f [θ(τ f )](γ(x)) is such that for vm ∈ JτmKv , we have f [θ(τ f )](γ(x)) ∈ Jγ(θ(τ2[m/vm]))Ke . If

we had τ2 = d [τ](m), we could thus successfully generalize the type inferred for the call to the

intersection datatype d [τ] following the definition of Jd [τ]Kv .

Let us now clarify these considerations with a concrete procedure to establish sound type

generalizations. Our generalization approach is specialized to removing measure annotations

which appear as refinements of the shape { x : τ | e ≤ m } and size expressions in datatypes.

We introduce the following generalization relations ` (τ, m) gen⊆ τ′ and ` (τ, m) gen⊇ τ′

which generalize type τ by removing references to the size binding m. We rely on two distinct

generalization relations in order to handle contra-variance in function parameters. In order to

allow dropping measure annotations, generalization relates the resulting type with a union of

intersections. Namely, if ` (τ, m) gen⊆/⊇ τ′, then the set
⋃

n1∈JNatKv

⋂
n2∈JNatKv ,n1≤n2

Jτ[m/n2]Kv

will be a subset, respectively superset of Jτ′Kv (modulo some type and value substitutions).

Similarly to intersectd , the generalization procedures therefore eliminate the size binding from

the given type, but have a different consequence on the denotation of the generalized type.

We can then define the two generalization procedures as follows.

m 6∈ FV (τ)

` (τ, m) gen⊆/⊇ τ

` (τ1, m) gen⊆/⊇ τ′1 ` (τ2, m) gen⊆/⊇ τ′2
` (Σx : τ1. τ2, m) gen⊆/⊇ Σx : τ′1. τ′2

m 6∈ FV (e) ` (τ, m) gen⊆/⊇ τ′

` ({ x : τ | e ≤ m }, m) gen⊆/⊇ τ′
m 6∈ FV (p) ` (τ, m) gen⊆/⊇ τ′

` ({ x : τ | p }, m) gen⊆/⊇ { x : τ′ | p }

` (τ1, m) gen⊇ τ′1 ` (τ2, m) gen⊆ τ′2
` (Πx : τ1. τ2, m) gen⊆ Πx : τ′1. τ′2

m 6∈ FV (τi ) for τi ∈ τ
` (d [τ](em), m) gen⊇ d [τ]

m 6∈ FV (τi ) for τi ∈ τ
⋃

n1∈JNatKv

⋂
n2∈JNatKv ,n1≤n2

Jd [τ](em[m/n2])Kv ⊆ Jd [τ]Kv

` (d [τ](em), m) gen⊆ d [τ]

72



3.3. Embedding Reducibility

Note that the two relations only differ for pi-types and sized datatypes. Further note that gen⊇
is not defined for pi-types which depend on m and therefore ` (τ, m) gen⊆ τ′ will only hold

when m appears in strictly positive positions in τ.

Lemma 8. For typing environment P ;Θ;Γ, size binding m : τm , reducible type τ1, type τ2 and

reducible inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv , if we have ` (τ1, m) gen⊆/⊇ τ2, then⋃
n1∈JNatKv

⋂
n2∈JNatKv ,n1≤n2

Jγ(θ(τ1[m/n2]))Kv ⊆ / ⊇ Jγ(θ(τ2))Kv

Proof. The proof proceeds by induction on the derivation of ` (τ1, m) gen⊆/⊇ τ2.

The condition on sized datatype generalization in gen⊆ is hard to show in practice. However,

in the case of positive datatypes, we have Jd [τ](Succ(em))Kv ⊆ Jd [τ](em)Kv . Hence, it suffices

to show that ∀n1 ∈ JNatKv . ∃n2 ∈ JNatKv . em[m/n2] ≥ n1 →∗ true, which is a much simpler

property. This property is again implied by monotonicity of em . In practice, one can therefore

rely on a template-based approach that allows generalization when em is a polynomial in n

with positive greatest degree factor.

3.3 Embedding Reducibility

In this section, we will define an embedding procedure for the reducibility relation. In the

context of verification, we are mostly interested in proofs, namely in showing that there exist

no (reducible) inputs such that evaluation can reach some value. Indeed, if we can show

that some expression is reducible in JBooleanKv and that there exist no reducible inputs such

that the expression evaluates to false, then we know it will evaluate to true for all reducible

inputs. The main purpose of the reducibility relation embedding will therefore be to restrict

considered inputs to only those that are reducible. As we are interested here in showing input

inexistence, we will focus on the completeness property of the embedding.

Let us first consider the embedding, extraction and model finding procedures presented in the

previous chapters. Similarly to the erased typing judgement, we extend these to the dependent

type setting embedding erasures. We therefore write P ;Θ;Γ` (b, e) . (t ,Φ) when the erasure

of e is embedded into t under the erasure of P ;Θ;Γ (and similarly for / , ext
. and ext

/ ). It is

important to realize here that reducible inputs are a subset of the general inputs considered in

the previous chapters as the erased typing judgement holds for reducible values by definition

of J·Kv . As our model finding procedures are rooted in the operational semantics, they remain

applicable in the presence of dependent types and can therefore be used directly to show the

inexistence of reducible inputs. However, such an approach would completely disregard the

constraints that dependent types impose on valid inputs. We therefore want to leverage these

types in order to improve the precision of model finding with respect to reducible inputs.

Similarly to the lambda embedding presented in the previous chapter, we rely on a type

normalization procedure for the reducibility relation embedding. However, we require weaker
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conditions on the normalization as it will not participate in equality evaluation. We therefore

define normalize (τ) = (τ′, γ′) the normalization of type τ such that

1. γ′ is a pseudo-value substitution such that dom(γ′) = FV (τ′),

2. for inputs Pin,θ,γ, we have Jγ(θ(τ))Kv = Jγ(θ(γ′(τ′)))Kv , and

3. the identifiers in γ′ are normalized as defined in the previous chapter.

Note that the second condition above is satisfied when γ′(τ′) = τ, but more aggressive nor-

malizations are also possible. Based on this normalization procedure, the embedding of the

reducibility relation then relies on a special reducibleτ′ predicate that is parametric in τ′, the

normalized structure of τ.

P ;Θ;Γ` (b, t , Boolean) red. (true, ;) P ;Θ;Γ` (b, t , Unit) red. (true, ;)

P ;Θ;Γ` (b, t , val[τ]) red. (true, ;)

P ;Θ;Γ` (b, t , τ) red. (tτ,Φτ) P ;Θ;Γ, x : τ` (b, p) . (tp ,Φp )

P ;Θ;Γ` (b, t , { x : τ | p }) red. (tτ∧ tp ,Φτ∪Φp ∪ {b =⇒ x ' t })

P ;Θ;Γ` (b, x, τ1) red. (t1,Φ1) P ;Θ;Γ, x : τ1 ` (b, π(erase (τ1),erase (τ2) ),2( t ), τ2) red. (t2,Φ2)
Φproj = {b =⇒ x 'π(erase (τ1),erase (τ2) ),1( t ) }

P ;Θ;Γ` (b, t , Σx : τ1. τ2) red. (t1 ∧ t2,Φ1 ∪Φ2 ∪Φproj)

normalize (τ) = (τ′, { y1 7→ e1, · · · , yn 7→ en }) P ;Θ;Γ` (b, ei ) . (ti ,Φi ) for 1 ≤ i ≤ n

P ;Θ;Γ` (b, t , τ) red. (reducibleτ′(t , t1, · · · , tn)),Φ1 ∪·· ·∪Φn)

Figure 3.5 – Reducibility relation embedding rules. Note that the final rule which relies on the
type normalization only applies if no other rules does.

Let us now define the embedding of the reducibility relation P ;Θ;Γ |= e ∈ JτK into SMT terms

and clauses. Given a blocker constant bτ and the embedding te of expression e, the reducibility

relation embedding will produce an SMT term tτ and set of SMT clauses Φτ such that tτ
and Φτ constrain te to be in the denotation of τ. Notation wise, we write this embedding

as P ;Θ;Γ ` (bτ, te , τ) red. (tτ,Φτ). The reducibility relation embedding rules are presented

in Figure 3.5. Certain types, namely booleans, refinement types and sigma-types imply

straightforward constraints on the given term. The constraints stemming from the remaining

types are approximated through the use of the reducibleτ′ predicates described above. Note

that we preserve the b =⇒ c shape of the generated clauses and Lemma 1 holds for this

embedding procedure as well. Given an embedding (bτ, te , τ) red. (tτ,Φτ), we will want to

discuss the embedding of sub-expressions and reducibility relations associated to sub-types

in τ. We therefore extend the notations T·Ut and T·Ub to each embedded l ′ : e ′/τ′ v τ. Note
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that similarly to how the blocker constant is uniquely determined by the sub-expression, both

the associated term and blocker constant under which the reducibility relation embedding

occurs are uniquely given by the sub-type.

This embedding will not precisely encode the reducibility relation. Indeed, as pi-types can

encode arbitrary functional dependencies, model finding in this context becomes as hard as

recursive function synthesis over unbounded domains. Instead, the embedding will constitute

a sound under-approximation of the reducibility relation which has shown effective in practice.

More precisely, if P ;Θ;Γ |= e ∈ JτK and P ;Θ;Γ` (bτ, te , τ) red. (tτ,Φτ), then the clause set Φτ∪
{bτ, tτ} should be satisfiable.

We are interested in showing completeness of the reducibility relation embedding. Similarly to

model consistency with function call interpretations and function application interpretations,

we need a notion of consistency for reducible predicates. Note that as the set of values has not

changed since the previous chapter, we extend the ext
. and ext

/ procedures to the dependently-

typed language simply by embedding erased programs, types and values. We can therefore

introduce a notion of consistency between models and reducible predicate interpretations.

Definition 9. For program P, model M, inputs Pin,θ,γ, known lambdas Λ and reducibility

symbol interpretation (reducibleτ′(t , t1, · · · , tn) 7→ t ′) ∈ M, given the set of (typed) free variables

FV (τ′) = { y1 : τ1, · · · , yn : τn }, we say M is consistent with the interpretation if v ext
/ (M(t), τ′),

vi
ext
/ (M(ti ), τi ) for 1 ≤ i ≤ n, the substituted type θ(τ′)[y1/v1, · · · , yn/vn] is reducible, and we

have |= t ′ iff v ∈ Jθ(τ′)[y1/v1, · · · , yn/vn]Kv .

Similarly to function calls and applications, we are generally interested in establishing con-

sistency with embedding results. Given a model M and embedded reducibility relation as-

sociated to l : τ such that TτUt = reducibleτ′(t , t1, · · · , tn), we say M is consistent with the

reducibility relation embedding if M |= ¬TτUb or M is consistent with the interpretation

reducibleτ′(M(t ), M(t1), · · · , M(tn)) 7→ M(reducibleτ′(t , t1, · · · , tn)). Given these considerations,

we can now state completeness of our reducibility relation embedding.

Lemma 9. For embedded expression e, typing environment P ;Θ;Γ, reducible type τ such that

P ;Θ;Γ ` e : τ, reducibility relation embedding P ;Θ;Γ ` (bτ, TeUt , τ) red. (tτ,Φτ), reducible

inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv and known lambdas Λ, if γ(θ(e)) →∗ v where v ∈ value, then

there exists model M |=Φτ∪ {bτ} such that M agrees with γ, M is consistent with embedded

calls and applications in e, M is consistent with embedded calls, applications and types in τ,

v ext
/ (M(TeUt ), τ), and M |= tτ iff v ∈ Jγ(θ(τ))Kv .

Proof. Given the clause set Φe generated when embedding e, Lemma 6 gives us an initial

model Me |=Φe ∪ {TeUb} such that Me agrees with γ, Me is consistent with all embedded calls

and applications in e, and v ext
/ (Me (TeUt ), τ). We then show that M exists by induction on τ.

Case τ=Boolean, τ=Unit or τ= val[τ′] : By preservation, we have v ∈ JτKv and M = Me .
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Case τ= { x : τ′ | p } : Consider embeddings (bτ, TeUt , τ′) red. (t ′τ,Φ′
τ) and (bτ, p) . (tp ,Φp ).

By reducibility of τ, induction and Lemma 6, there exist models M ′ |= Φ′
τ∪ {bτ} and

Mp |=Φp∪{bτ}. As all models agree on common interpretations, we let M = Me∪M ′∪M .

If v ∈ Jγ(θ(τ))Kv , then by definition of J·Kv , we have M ′ |= t ′τ, Mp |= tp and therefore

M |= tτ. If v 6∈ Jγ(θ(τ))Kv , then either M ′ |= ¬t ′τ or Mp |= ¬tp , and we have M |= ¬tτ.

Case τ=Σx : τ1. τ2 : This case follows by induction on τ1 and τ2.

Case τ ∈Θ, τ= d [τ], τ= d [τ](em) or τ=Πx : τ1. τ2 : Consider normalization normalize (τ) =
(τ′, { y1 7→ e1, · · · , yn 7→ en }), (typed) free variables FV (τ′) = { y1 : τ1, · · · , yn : τn } and

embeddings (bτ, ei ) . (ti ,Φi ) for 1 ≤ i ≤ n. We know by definition of normalization that

each ei ∈ pvalue, and therefore γ(θ(ei )) ∈ value. By Lemma 6, for 1 ≤ i ≤ n there exists

Mi |=Φi ∪ {bτ} such that γ(θ(ei )) ext
/ (Mi (ti ), τi ). Now consider embeddings (v, τ) ext

. tv

and (γ(θ(ei )), τi ) ext
. t ′i for 1 ≤ i ≤ n. As each Mi agrees withγ and ei contains no function

call or application, we let tb = true if v ∈ Jγ(θ(τ))Kv and tb = false otherwise, and have

M = Me ∪ M1 ∪ ·· · ∪ Mn ∪ {reducibleτ′(tv , t ′1, · · · , t ′n) 7→ tb }. Finally, as P ;Θ;Γ |= τ type

and τ = τ′[y1/e1, · · · , yn/en], we have θ(τ′)[y1/γ(θ(e1)), · · · , yn/γ(θ(en))] reducible by

distributivity of substitutions and definition of reducibility for types.

3.4 Unfolding Procedure

In this section, we will discuss how the reducibility relation embedding can be integrated into

the general unfolding procedure we presented in the previous chapters. We will then show

that the extended model finding procedure remains sound for proofs.

The model finding procedure will take as input a program P = P1 ∪P2 where P1 is a reducible

program and P2 is a set of mutually recursive definitions, as discussed in the context of

bounded reducibility. Recall that the set P2 will have an associated well-order τm . Now assume

we are further given some vn ∈ JτmKv such that all datatype definitions in P2 are reducible

below vn . (Note that if there is at least one datatype definition in P2, then we have τm =Nat.)

It is important to note here that although we consider the value vn to be given, our procedure

will not rely on this bound in any way, and it simply constitutes an instrumentation on which

our statements about the procedure will depend.

Let us now introduce a notion of bounded types. Consider an inclusion relation vτ such

that for τ1,τ2 ∈ type, we have τ1 vτ τ2 iff τ1 v τ2 and there exists no eτ ∈ expr such that

τ1 v eτ v τ2. We say a type τ is bounded by vn iff for d [τ](em) vτ τ where d ∈ P2, we have

em ∈ J{n′ : Nat | n′ < vn }Ke , and for d [τ] vτ τ, we have d ∈ P1. Similarly to consistency, we

extend this notion to embedded reducibility relations as follows.

Definition 10. For reducible program P1, set of mutually recursive definitions P2, model M,

inputs Pin,θ,γ, known lambdas Λ and type τ with embedding TτUt = reducibleτ′(t , t1, · · · , tr ),

given the set of (typed) free variables FV (τ′) = { y1 : τ1, · · · , yr : τr }, we say M bounds τ by vn if

vi
ext
/ (M(ti ), τi ) for 1 ≤ i ≤ r and the type θ(τ′)[y1/v1, · · · , yr /vr ] is bounded by vn .
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We then introduce bounded typing contexts and say that Γ is bounded by vn iff for (x,τ) ∈ Γ,

the type τ is bounded by vn . The model finding procedure will take as further input a reducible

typing context Γ= m : τm ,Γ′ and a value v ′
n ∈ JτmKv such that the substituted context Γ′[m/v ′

n]

is bounded by vn . Again, this value v ′
n corresponds to a proof instrumentation.

In addition to the program P , bounds vn , v ′
n and typing context Γ described above, the model

finding procedure is finally given a set of type variables Θ, an expression e and a value v . The

unfolding procedure again tracks a clause set Φi , a set Fi of known function calls that have

yet to be unfolded, a set Ai of known applications, a set Λi of known lambdas and a set Di

of application - lambda pairs that have already been dispatched. We further track the set

Ri of types associated to reducibility predicates that have yet to be unfolded. We define the

following helper function that collects all sub-types which have an associated reducibility

predicate embedding within a given type:

R(τ) = {τ′ | τ′ v τ, (τ′ ∈Θ∨τ′ = d [τ]∨τ′ = d [τ](em)∨τ′ =Πx : τ1. τ2), Tτ′Ut defined}

We also extend the helper functions F (·), A(·) and Λ(·) to operate on types as well. In the

following, due to similarities between how calls yet to be unfolded, known applications and

known lambdas are handled, we will sometimes use a placehoder S instead of F , A, orΛwhen

some procedure or definition is identical for all three sets.

Before moving on to the procedure itself, let us discuss the main property we want it to satisfy.

Our end goal is to ensure that if there exist reducible inputs to the original expression, then the

clause set Φi is satisfiable. However, in order to enable induction, we want a slightly stronger

property. Based on the notions of agreement and consistency in relation with call, application

and reducibility relation interpretations, we introduce a general notion of consistency with

inputs at unfolding step i .

Definition 11. For reducible program P1, set of mutually recursive definitions P2, model Mi ,

inputs Pin,θ,γ and unfolding step i , we say Mi is consistent with Pin,θ,γ at step i iff 1) Mi |=Φi ,

2) Mi agrees with γ, 3) Mi is consistent with calls in Fi ∪Ui , applications in Ai and reducibility

relations associated to types in Ri , and 4) for τ ∈ Ri , Mi bounds τ by vn .

We say an unfolding step from state i to state i +1 preserves consistency when given inputs

Pin,θ,γ and model Mi , if Mi is consistent with the inputs at step i , then there exists some

Mi+1 that is consistent with the inputs at step i +1.

Let us start by defining the initial unfolding state at step i = 0. We first introduce a fresh

boolean constant b and compute the expression embedding (b, e ≈ v) . (t ,Φ). Given the

typing context bindings Γ = m : τm , x1 : τ1, · · · , xl : τl , we further compute the reducibility

relation embeddings (b, x j , τ j ) red. (t ′j ,Φ′
j ) for 1 ≤ j ≤ l . We then define the state as follows.

Φ0 =Φ∪ {b, t , t ′1, · · · , t ′l }∪Φ′
1 ∪·· ·∪Φ′

l S0 = S(e ≈ v)∪S(τ1)∪·· ·∪S(τl ) D0 =;
R0 = R(τ1)∪·· ·∪R(τl )
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The state at step i +1 is then inductively defined given the state at step i by either performing

a call unfolding, an application unfolding, or a reducibility predicate unfolding. The call and

application unfolding steps follow the same approach as presented in the previous chapters.

Note that the call in Fi that was selected to be unfolded may present a size expression argument.

As this argument is erased both during evaluation and embedding, we ignore it as well during

unfolding. The set Ri+1 of unfolded reducibility relations remains equal to Ri during call and

application unfolding steps.

Let us now describe how the reducible predicates introduced during embedding can be

unfolded to increase the precision of the reducibility relation embedding. Consider some

type τi ∈ Ri with associated embedded reducible predicate Tτi Ut = reducibleτ′(t , t1, · · · , tr ).

Considering the reducibility relation embedding given in the previous section, we know that τ′

is either 1) a sized datatype d [τ′](e ′m), 2) an intersection datatype d [τ′], 3) a pi-typeΠx : τ′1. τ′2,

or 4) a type variables T ∈ Θ. For the type variable T ∈ Θ, the reducible predicate is already

a precise embedding of the reducibility relation and no unfolding needs to be performed.

Unfolding a reducible predicate therefore consists of three distinct procedures depending on

the shape of τ′. We will rely in the following on the typing environment P ;Θ;Γi and blocker

constant b under which the reducibility relation associated to τi was embedded, as well as the

typed free variables FV (τ′) = { y1 : τy1 , · · · , yr : τyr }.

It is important to realize here that given the denotations of intersection datatypes and pi-types,

a precise unfolding which exactly captures the reducibility relation would need to rely on

some form of universal quantification. This necessity of quantification is what disallows

sound and complete model finding in the presence of dependent types. We have opted for

an unfolding strategy that avoids generating quantified formulas. While this strategy leads

to an under-approximation of the reducibility relation, it increases the predictability of the

procedure as the generated clause sets remains within a decidable fragment.

Sized datatype. Given that τ′ corresponds to a sized datatype d [τ′](e ′m), consider the as-

sociated definition (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P . The denotation

of d [τ′](e ′m) tells us that for reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γi , y1 : τy1 , · · · , yr : τyr Kv , some

value v : d [τ′] belongs to Jγ(θ(d [τ′](e ′m)))Kv iff γ(θ(e ′m)) →∗ vm ∈ JNatKv and if vm > Zero,

then there exists some constructor C j (x j : τ j ) of d such that v =C j [erase (γ(θ(τ′)))](v1) and

v1 ∈ Jγ(θ(τ j [m/vm][τd /τ′]))Kv . Our unfolding of the reducible predicate will therefore rely on

embedding the size expression e ′m and the reducibility relation associated to each τ j .

Let us start by computing the embedding P ;Θ;Γi , y1 : τy1 , · · · , yr : τyr ` (b, e ′m) . (tm ,Φm).

Similarly to the match expression embedding presented in Chapter 1, we then embed the

reducibility relation by splitting on the constructor cases. We start by introducing fresh boolean

constants b1, · · · ,bn . For 1 ≤ j ≤ n, we then compute the reducibility relation embeddings

P ;Θ;Γi , y1 : τy1 , · · · , yr : τyr ,m : Nat` (b j , x j , τ j [τd /τ′]) red. (tτ j ,Φτ j )
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Based on these considerations, we can define the unfolding result as follows.

Φi+1 =Φi ∪ Φm ∪ (
⋃

1≤ j≤nΦτ j ) ∪ {b =⇒ m ' tm } ∪ {b =⇒ y j ' t j | 1 ≤ j ≤ r }

∪ { (b ∧m >Zero) =⇒ (reducibleτ′(t , t1, · · · , tr ) ⇐⇒ ∧
1≤ j≤n(b j =⇒ tτ j )) }

∪ { (b ∧m >Zero∧ is-Cerase (τ′),j(t )) ⇐⇒ b j | 1 ≤ j ≤ n }

∪ {b j =⇒ x j ' xerase (τ′), j (t ) | 1 ≤ j ≤ n }

Si+1 = Si ∪S(e ′m)∪⋃
1≤ j≤n S(τ j [τd /τ′]) Di+1 = Di

Ri+1 = Ri \ {τi }∪⋃
1≤ j≤n R(τ j [τd /τ′])

Lemma 10. The sized datatype unfolding step preserves consistency.

Proof. We consider inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv and model Mi that is consistent with the

inputs at step i . If Mi |= ¬b, then we extend Mi to Mi+1 by setting all introduced blocker

constants to false by Lemma 1. Let us consider the case where Mi |= b. Consistency of Mi

with the reducibility relation associated to τi ensures that extractions v ext
/ (Mi (t), τ) and

v j
ext
/ (Mi (t j ), τ j ) for 1 ≤ j ≤ r are defined. We let γ′ = { y j 7→ v j | 1 ≤ j ≤ r } and consistency

further ensures that γ′(θ(d [τ′](e ′m))) is reducible and Mi |= Tτi Ut iff v ∈ Jγ′(θ(d [τ′](e ′m)))Kv .

By reducibility of γ′(θ(d [τ′](e ′m))), we have γ′(θ(e ′m)) →∗ vm ∈ JNatKv . Consider embedding

(b, e ′m) . (tm ,Φm). By Lemma 6, there exists Mm |=Φm ∪ {b } such that vm
ext
/ (Mm(tm), Nat).

If vm =Zero, then we have Mm |= ¬(tm >Zero) and we can again extend Mi to Mi+1 by setting

blockers to false by Lemma 1. If vm >Zero, then we have Mm |= tm >Zero. By definition of the

denotation, we have v ∈ Jγ′(θ(d [τ′](e ′m)))Kv iff v =C j [erase (γ′(θ(τ)))](v ′
1) for some 1 ≤ j ≤ n

and v ′
1 ∈ Jτ j [m/vm][τd /γ′(θ(τ′))]Kv . Consider value substitution γ′j = γ′∪ {m 7→ vm , x j 7→ v ′

1 }.

By distributivity of substitutions, we have Jτ j [m/vm][τd /γ′(θ(τ′))]Kv = Jγ′j (θ(τ j [τd /τ′]))Kv . By

bounded reducibility and types, as well as the syntactic constraint on datatype definitions, we

know that the type τ j [m/vm][τd /τ′] is reducible. Hence, by Lemma 9, there exists a model

Mτ j |=Φτ j ∪ {b j } such that Mτ j |= tτ j iff v ′
1 ∈ Jγ′j (θ(τ j [τd /τ′]))Kv . This implies in turn that we

have Mτ j |= tτ j iff v ∈ Jγ′(d [τ′](e ′m)))Kv . For 1 ≤ k ≤ n where k 6= j we define model M¬k where

bk and all blockers introduced by the embedding of the reducibility relation associated to

each τk [τd /τ′] are set to false. By Lemma 1, we have M¬k |=Φτk . Finally, we define the union

Mi+1 = Mi ∪Mτ j ∪
⋃

1≤k≤n,k 6= j M¬k which is consistent at step i +1.

Intersection datatype. Let us now consider the case where τ′ is an intersection datatype

d [τ′]. Unfortunately, the denotation of the intersection datatype does not directly translate

to a denotation on datatype’s constructor fields in the general case. Indeed, the definition

of reducibility tells us that for reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γi , y1 : τy1 , · · · , yr : τyr Kv , a

value v : d [τ′] belongs to Jγ(θ(d [τ′]))Kv iff for all vm ∈ JNatKv , we have v ∈ Jγ(θ(d [τ′](vm)))Kv .

This quantification over n cannot be precisely embedded into our quantifier-free fragment in

the general case. However, if the datatype is strictly positive, then the unfolding procedure

becomes straightforward.
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Consider the datatype definition (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P , and

consider some value v : d [τ′] where we have v = C j [erase (τ′)](v1) for some 1 ≤ j ≤ n. Now,

let us assume that d is strictly positive, and further consider the type τ′j = intersectd (τ j ). By

definition of strict positivity, we have v ∈ Jγ(θ(d [τ′]))Kv iff v1 ∈ Jγ(θ(τ′j [τd /τ′]))Kv . Based on

these considerations, it is clear that the reducible predicate can be unfolded by relying on the

intersected constructor field types.

It is interesting to note here that instead of relying on strict positivity, we could define the

unfolding through the gen⊇ generalization procedure when the datatype is simply positive.

This variant would allow generalizing measure annotations but would disallow datatype

recursion under pi-types. In practice, we have found that relying on strict positivity when

unfolding covered a larger set of use cases.

We will now define the unfolding result. If the datatype d does not have strictly positive

polarity, then the unfolding maintains the current under-approximation and the unfolding

step i +1 is defined as follows.

Φi+1 =Φi Si+1 = Si Di+1 = Di Ri+1 = Ri \ {τi }

However, if the datatype is strictly positive, then we consider the constructor field types where

the intersection has been pushed down into the (mutually) recursive datatype occurrences.

For each 1 ≤ j ≤ n, we again introduce a fresh boolean constant b j and compute the following

reducibility relation embedding

P ;Θ;Γi , y1 : τy1 , · · · , yr : τyr ` (b j , x j , intersectd (τ j )[τd /τ′]) red. (tτ j ,Φτ j )

The reducibility relation unfolding is then given similarly to the sized datatype case.

Φi+1 =Φi ∪ (
⋃

j∈gend
Φτ j ) ∪ {b =⇒ y j ' t j | 1 ≤ j ≤ r }

∪ {b =⇒ (reducibleτ′(t , t1, · · · , tr ) ⇐⇒ ∧
1≤ j≤n(b j =⇒ tτ j )) }

∪ { (b ∧ is-Cerase (τ′),j(t )) ⇐⇒ b j | 1 ≤ j ≤ n }

∪ {b j =⇒ x j ' xerase (τ′), j (t ) | 1 ≤ j ≤ n }

Si+1 = Si ∪⋃
1≤ j≤n S(τ′j [τd /τ′]) Di+1 = Di Ri+1 = Ri \ {τi }∪⋃

1≤ j≤n R(τ′j [τd /τ′])

Lemma 11. The intersection datatype unfolding step preserves consistency.

Proof. We consider inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv and model Mi that is consistent with the in-

puts at step i . We again focus on the case where Mi |= b and consider extractions v ext
/ (Mi (t ), τ)

and v j
ext
/ (Mi (t j ), τ j ) for 1 ≤ j ≤ r . We also let γ′ = { y j 7→ v j | 1 ≤ j ≤ r } and have γ′(θ(d [τ′]))

reducible and Mi |= Tτi Ut iff v ∈ Jγ′(θ(d [τ′]))Kv . If d is not strictly positive, the case is trivial.

We therefore consider the case where d is strictly positive.

Consider the definition (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P . We have

v : d [θ(τ)], and therefore v =C j [erase (θ(τ))](v ′
1) for some 1 ≤ j ≤ n. Consider the value substi-
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tution γ′j = γ′∪ { x j 7→ v ′
1 }. For each constructor index 1 ≤ k ≤ n where k 6= j we construct a

model M¬k by setting all blocker constants to false similarly to the sized datatype case. Then,

by definition of strict positivity, we have v ∈ Jγ′(θ(d [τ′]))Kv iff v ′
1 ∈ Jγ′(θ(intersectd (τ j )[τd /τ′]))Kv .

We can therefore apply Lemma 9 to obtain a model Mτ j |=Φτ j ∪ {b j } such that Mτ j |= tτ j iff

v ∈ Jγ′(θ(d [τ′]))Kv . We then let Mi+1 = Mi ∪Mτ j ∪
⋃

k∈gend ,k 6= j M¬k and apply a similar argu-

ment to the sized datatype unfolding to conclude the proof.

Pi-type. Finally, we consider the case where τ′ =Πx : τ′1. τ′2. The denotation of pi-types tells

us that for reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γi , y1 : τy1 , · · · , yr : τyr Kv , a value v : Πx : τ′1. τ′2
belongs to Jγ(θ(Πx : τ′1. τ′2))Kv iff for v ′

1 ∈ Jγ(θ(τ′1))Kv , we have v v ′
1 ∈ Jγ(θ(τ′2[x/v ′

1]))Ke . Note

again the offending quantification which disallows a precise unfolding of the relation.

Although we will not precisely unfold the reducible predicate for pi-types, we can still con-

strain satisfying inputs in a useful way. Recall the expression e and typing environment

P ;Θ;Γ which were given to the unfolding procedure. Consider inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv

and model Mi that is consistent with the inputs at step i . Further consider the extractions

λx. ev
ext
/ (M(t),Πx : τ′1. τ′2) and v j

ext
/ (M(t j ), τy j ) for 1 ≤ j ≤ r . Finally, consider some

application which is encountered during evaluation γ(θ(e)) →∗ E[(λx. ev ) v ′
1]. If the en-

countered application is such that we have λx. ev ∈ Jθ(Πx : τ′1. τ′2)[y1/v1, · · · , yr /vr ]Kv and

v ′
1 ∈ Jθ(τ′1)[y1/v1, · · · , yr /vr ]Kv , then we have (λx. ev ) v ′

1 ∈ Jθ(τ′2)[y1/v1, · · · , yr /vr ]Ke by defini-

tion of the denotation.

Our model finding procedure tracks the set of known applications during unfolding. Let us

therefore consider some application l : e1 e2 ∈ Ai such that e1 : Πx : τ′1. τ′2. We introduce a

fresh boolean constant b1 which holds if the callers match and the reducibility predicate holds.

We further introduce a fresh boolean constants b2 that encodes the fact that the embedded

parameter e2 satisfies its denotation. We then compute the embedding of the reducibility

relation between the embedded parameter e2 and parameter type τ′1 under blocker b1

P ;Θ;Γi , y1 : τy1 , · · · , yr : τyr ` (b1, Te2Ut , τ′1) red. (t ′1,Φ′
1)

We then further compute the reducibility relation embedding between the embedding of the

application e1 e2 and the result type τ′2 under blocker b2

P ;Θ;Γi , y1 : τy1 , · · · , yr : τyr , x : τ′1 ` (b2, Te1 e2Ut , τ′2) red. (t ′2,Φ′
2)

Given these embeddings, we can finally define the unfolding result as follows.

Φi+1 =Φi ∪ Φ′
1 ∪ Φ′

2 ∪ {b1 =⇒ y j ' t j | 1 ≤ j ≤ r }

∪ {b1 ⇐⇒ (b ∧Te1 e2Ub ∧Te1Ut ' t ∧ reducibleτ′(t , t1, · · · , tr )) }

∪ { (b1 ∧ t ′1) ⇐⇒ b2, b2 =⇒ x ' Te2Ut , b2 =⇒ t ′2 }

Si+1 = Si ∪S(τ′1)∪S(τ′2) Di+1 = Di Ri+1 = Ri ∪R(τ′1)∪R(τ′2)
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One could be tempted in the above to rely on a single blocker constant instead of b1 and b2.

However, this would imply that the embedding of the reducibility relation associated to τ′1
would occur under blocker b. This in turn could force b to be invalidly falsified, for example

if the callers do not match and we have τ′1 = { x : τ? | err[Boolean] }. Relying on two blocker

constants thus allows us to precisely encode the dependencies between the embeddings.

It is important to realize that the clause set given above only ensures that satisfying models

are consistent with the reducible predicate for this particular argument, whereas a precise

unfolding would require this for all values in the parameter type’s denotation.

Lemma 12. The pi-type unfolding step preserves consistency.

Proof. We consider inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv and model Mi that is consistent with the

inputs at step i . We again assume that Mi |= b as the statement is trivially given otherwise.

Similarly to the application-lambda pair unfolding case, if we have either Mi |= ¬Te1 e2Ub ,

Mi |= Te1Ut 6' t , or Mi |= ¬TτUt , then we have Mi |= ¬b1 and can extend Mi to Mi+1 by

Lemma 1. Let us consider the case where Mi |= b1.

Consider extractions v ext
/ (Mi (t), τ), v j

ext
/ (Mi (t j ), τ j ) for 1 ≤ j ≤ r , v ′ ext

/ (Mi (Te1 e2Ut ), τ′2)

and v ′
1

ext
/ (Mi (Te2Ut ), τ′1). Further consider value substitution γ′ = { y j 7→ v j | 1 ≤ j ≤ r }. Note

that we have v ∈ Jγ′(θ(τ′))Kv . By definition of the pi-type denotation, if v ′
1 ∈ Jγ′(θ(τ′1))Kv , then

we have v ′ ∈ Jγ′(θ(τ′2[x/v ′
1]))Kv .

We first consider the case where v ′
1 ∈ Jγ′(θ(τ′1))Kv . By Lemma 9, there exist models M1 and M2

such that M1 |=Φ′
1∪{b1, t ′1} and M2 |=Φ′

2∪{b2, t ′2}. We then let Mi+1 = Mi ∪M1∪M2 and Mi+1

is consistent with the inputs at step i +1. We then consider the case where v ′
1 6∈ Jγ′(θ(τ′1))Kv . By

Lemma 9, there exists M1 |=Φ′
1 ∪ {b1,¬t ′1}. Lemma 1 further gives us model M2 |=Φ′

2 ∪ {¬b2}

and we again have Mi+1 = Mi ∪M1 ∪M2 consistent with the inputs at step i +1.

We have discussed how the reducibility relation unfoldings for intersection datatypes and pi-

types are imprecise. However, they preserve soundness for proofs which is the main property

of interest in this context.

Theorem 3. For reducible program P1, set of mutually recursive definitions P2 with associated

well-order τm , values vn , v ′
n ∈ JτmKv such that datatype definitions in P2 are reducible below vn ,

type variables Θ, reducible context m : τm ,Γ such that Γ[m/v ′
n] is bounded by vn , expression e

such that m 6∈ FV (erase (e)), value v and unfolding step i , if there exists no model M |=Φi , then

there exist no reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γ[m/v ′
n]Kv such that γ(θ(e)) →∗ erase (θ(v)).

Proof. We first show by induction on i ∈N that if there exist inputs (Pin,θ,γ) ∈ JP ;Θ;m : τm ,ΓKv

such that γ(m) = v ′
n and γ(θ(e ≈ v)) →∗ true, then there exists a model Mi that is consistent

with the inputs Pin,θ,γ at step i .
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The base case i = 0 is given by Lemmas 6 and 9. For the inductive case, we assume a model Mi

for which the hypothesis holds. We consider the following cases depending on what kind of

unfolding step was performed:

Unfolding of call f [τ](e1)i ∈ Fi (or similarly f (em)[τ](e1)i ∈ Fi ) : Consider associated blocker

constant b f = T f [τ](e)Ub . If Mi |= ¬b f , then we can simply extend Mi to Mi+1 by setting

all introduced blocker constants to false by Lemma 1. If Mi |= b f , then consistency of Mi

with the call tells us that given the embedding T f [τ](e1)Ut = fτ(t1), associated definition

(def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P and extractions v f
ext
/ (Mi ( fτ(t1)), τ2[τ f /τ])

and v1
ext
/ (Mi (t1), τ1[τ f /τ]), we have f [θ(τ)](v1) →∗ v f ∈ value. Given the embedding

(b f , e f [τ f /τ]) . (t f ,Φ f ), Lemma 6 then gives us a model M f |=Φ f ∪ {b f } which we can

unify with Mi to obtain Mi+1 that satisfies the inductive hypothesis.

Unfolding of application-lambda pair (e1 e2, λx. eb) ∈ Ai ×Λi : Consider blocker constant bb

introduced during unfolding. If we have either Mi |= ¬Te1 e2Ub , Mi |= ¬Tλx. ebUb or

Mi |= Te1Ut 6' Tλx. ebUt , then we have Mi |= ¬bb and can again extend Mi to Mi+1 by

Lemma 1. We therefore consider the case where Mi |= bb . Further consider embeddings

Te1 e2Ut = dispatchτ2→τ(tλ, t2) and Tλx. ebUt = Cλx. e ′
b
(t ′1, · · · , t ′r ), as well as the typed

free variables FV (λx. e ′b) = { y1 : τ′1, · · · , yr : τ′r }. Consistency of Mi with e1 e2 ensures

extractions λx. ev
ext
/ (Mi (tλ), τ2 → τ) and v2

ext
/ (Mi (t2), τ2) are defined. By definition

of ext
/ , we have λx. ev = θ(λx. e ′b)[y1/v ′

1, · · · , yr /v ′
r ] where v ′

j
ext
/ (Mi (t ′j ), τ′j ) for 1 ≤ j ≤ r .

Given the embedding (bb , e ′b). (tb ,Φb), Lemma 6 again gives us a model Mb |=Φb∪{bb}

that we can unify with Mi to obtain Mi+1 which is consistent at step i +1.

Unfolding of reducibility relation associated to τ ∈ Ri : Given by Lemmas 10, 11 and 12.

If there exists no model Mi |=Φi , then by contradiction there can exist no reducible inputs

(Pin,θ,γ) ∈ JP ;Θ;m : τm ,ΓKv such that γ(m) = v ′
n and γ(θ(e ≈ v)) →∗ true. By definition of

input and typing context reducibility, we have (Pin,θ,γ) ∈ JP ;Θ;m : τm ,ΓKv where γ(m) = vm

iff (Pin,θ,γ′) ∈ JP ;Θ;Γ[m/v ′
n]Kv where γ= γ′∪{m 7→ v ′

n}. As evaluation is performed on erased

expressions and m 6∈ FV (erase (e)), the expressions γ(θ(e ≈ v)) and γ′(θ(e ≈ v)) will evaluate

to the same value. Finally, the operational semantics ensure that γ′(θ(e ≈ v)) →∗ true iff

γ′(θ(e)) →∗ erase (θ(v)), which concludes our proof.

Most of the technical details in the above statement relate to the induction through which

reducibility of P2 is shown. When the set P2 is empty (namely when we are in the context of a

reducible program), then the following much cleaner Corollary holds.

Corollary 3. For reducible program P type variables Θ, reducible context Γ expression e, value

v and unfolding step i , if there exists no model M |=Φi , then there exist no reducible inputs

(Pin,θ,γ) ∈ JP ;Θ;ΓKv such that γ(θ(e)) →∗ erase (θ(v)).
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3.5 Type Checking

In this section, we describe how expression, type and program reducibility can be established.

The procedures we have discussed up to this point allow us to either find a set of inputs such

that evaluation reaches some expected value, or show that no such inputs exist. However, we

have not considered the question of showing that evaluation reaches some expected value (or

set of values) for all inputs. We first present a bidirectional type checking algorithm which

establishes reducibility. We then show that the algorithm is sound, namely if the type checking

succeeds, then the relevant expression, type or program is reducible.

Our bidirectional type checking procedure is defined through the following five mutually

recursive judgements where P1 is a program, P2 is a set of mutually recursive definitions,Θ is a

set of type variables, Γ is a typing context, e is an expression and τ is a type. The program P1 in

the environment corresponds to a reducible program whereas the set P2 consists of definitions

currently being checked for reducibility. When the distinction between the program P1 and

the set of mutually recursive definitions P2 is irrelevant, we write P to signify P1;P2 (or P1 ∪P2

depending on the context).

Context formation P1;P2;Θ` Γ context : This judgement ensures that the context Γ is re-

ducible with respect to P1∪P2 andΘ. The context formation rules are given in Figure 3.6.

Note that the context formation rules are similar to those presented in Chapter 1, with

the addition of Γ in the type formation judgement environment.

Type formation P1;P2;Θ;Γ` τ type : This judgement ensures that the type τ is reducible in

the typing environment P1 ∪P2;Θ;Γ. The type formation rules are given in Figure 3.7.

Note that this judgement implies the type formation judgement given in the previous

chapters for program P1 ∪P2 and type variables Θ.

Type inference P1;P2;Θ;Γ` e ⇑ τ and type checking P1;P2;Θ;Γ` e ⇓ τ : Both the type infer-

ence and type checking judgements ensure the expression e is reducible at type τ given

P1 ∪P2, Θ and Γ. We will present the type inference and checking rules below.

Validity P1;P2;Θ;Γ` e holds : This judgement ensures that the expression e will evaluate

to true for all reducible inputs. We call the judgements of this form that arise during

bidirectional type checking verification conditions. We rely here on the model finding

procedure described above and the judgement is given through the following rule.

HOLDS

P ;Θ` Γ context P ;Θ;Γ` e ⇓Boolean

Γ= m : τm ,Γ′ m 6∈ FV (erase (e)) ∃ i ∈N.@M . M |=Φi

P ;Θ;Γ` e holds
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EMPTY CONTEXT

P ;Θ` context

INCREASE CONTEXT

P ;Θ;Γ` τ type

P ;Θ` Γ, x : τ context

Figure 3.6 – Context formation rules.

BOOLEAN TYPE

P ;Θ` Γ context

P ;Θ;Γ`Boolean type

UNIT TYPE

P ;Θ` Γ context

P ;Θ;Γ`Unit type

TYPE VARIABLE

P ;Θ` Γ context T ∈Θ
P ;Θ;Γ` T type

DATATYPE

(type d [τd ](m) := ·· · ) ∈ P
|τd | = |τ| P ;Θ` Γ context P ;Θ;Γ` τ type for τ ∈ τ P ;Θ;Γ` em ⇓Nat

P ;Θ;Γ` d [τ](em) type

REFINEMENT TYPE

P ;Θ;Γ` τ type P ;Θ;Γ, x : τ` p ⇓Boolean

P ;Θ;Γ` { x : τ | p } type

PI-TYPE

P ;Θ;Γ` τ1 type P ;Θ;Γ, x : τ1 ` τ2 type

P ;Θ;Γ`Πx : τ1. τ2 type

SIGMA-TYPE

P ;Θ;Γ` τ1 type P ;Θ;Γ, x : τ1 ` τ2 type

P ;Θ;Γ`Σx : τ1. τ2 type

Figure 3.7 – Type formation rules. The DATATYPE rule further allows a variant for the recursive
type intersection d [τ] where the type check on em is dropped.

if (c) τ else τ = τ

if (c) d [τ1](m1) else d [τ2](m2) = d [if (c) τ1 else τ2](if (c) m1 else m2)
if (c) Πx : τ1,1. τ1,2 else Πx : τ2,1. τ2,2 = Πx : if (c) τ1,1 else τ2,1. if (c) τ2,1 else τ2,2

if (c) Σx : τ1,1. τ1,2 else Σx : τ2,1. τ2,2 = Σx : if (c) τ1,1 else τ2,1. if (c) τ2,1 else τ2,2

if (c) { x : τ1 | p1 } else { x : τ2 | p2 } = { x : if (c) τ1 else τ2 | if (c) p1 else p2 }
if (c) { x : τ1 | p1 } else τ2 = { x : if (c) τ1 else τ2 | if (c) p1 else true }
if (c) τ1 else { x : τ2 | p2 } = { x : if (c) τ1 else τ2 | if (c) true else p2 }

Figure 3.8 – Recursive definition of the type computed from if (c) τ1 else τ2. The shorthand
if (c) τ1 else τ2 is defined as expected by calling the type computation on each type in the
sequence. Note that the refinement type, datatype and pi/sigma-type rules assume some
identifier normalization which is ommitted for readability.
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3.5.1 Type Inference

We now present the type inference rules that define P1;P2;Θ;Γ` e ⇑ τ. Type inference relies

on the shape of the given expression e to determine which inference rule should be applied.

The rule selection is a deterministic process and can be efficiently implemented as a pattern

matching on expression trees.

It is important to note that our language does not feature dependent if or match types

which would seem necessary to infer a precise type for the corresponding expressions. Fur-

thermore, our structural equality contradicts extensional equality and we therefore cannot

substitute free variables in types by expressions (only values). This seems to further imply

the necessity of a let type in our language. However, we can avoid introducing these extra

types by introducing type simplifications of the shape let x := e in τ, if (c) τ1 else τ2 and

e match { C1(y1) ⇒ τ1 · · · Cn(yn) ⇒ τn }. These simplifications push the relevant expression

down into the sub-expressions of each type (namely refinement type predicates or datatype

size expressions). We have seen that our definition of reducibility imposes a certain structure

on reducible expressions through the simple typing judgement. Hence, we are guaranteed

that when multiple types must be unified, they share a same structure. The simplification

associated to the notation if (c) τ1 else τ2 is given in Figure 3.8. Simplifications for let-bindings

and match-expressions are similarly defined.

Lemma 13. For typing environment P ;Θ;Γ and reducible inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv ,

• for expression e and type τ,

(γ(θ(e)) →∗ v ∧ v ∈ value) =⇒ Jγ(θ(τ[x/v]))Kv = Jγ(θ(let x := e in τ))Kv

• for expression c and types τ1,τ2 such that erase (τ1) = erase (τ2),

γ(θ(c)) →∗ true =⇒ Jγ(θ(τ1))Kv = Jγ(θ(if (c) τ1 else τ2))Kv ∧
γ(θ(c)) →∗ false =⇒ Jγ(θ(τ2))Kv = Jγ(θ(if (c) τ1 else τ2))Kv

• for expression e and types τ1, · · · ,τn such that erase (τi ) = erase (τ j ) for 1 ≤ i , j ≤ n,

∀1 ≤ i ≤ n.
(
γ(θ(e)) →∗ Ci [τ](v1)∧ v1 ∈ value

) =⇒
Jγ(θ(τi [yi /v1]))Kv = Jγ(θ(e match { C1(y1) ⇒ τ1 · · · Cn(yn) ⇒ τn }))Kv

Proof. The proof follows by induction on the set of given types.

Function calls. We start by presenting the inference rules for function calls. The relevant

rule is selected based on whether the associated function definition belongs to P1 (i.e. it is

known to be reducible) or to P2 (i.e. it is currently being checked). The following CALL P1 rule

corresponds to a call to some function in the reducible program P1 where the size expression

was provided.
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CALL P1

(def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P1

|τ f | = |τ| P1;P2;Θ;Γ` em ⇓ τm P1;P2;Θ;Γ,m : τm ,m ≈ em ` e1 ⇓ τ1[τ f /τ]

P1;P2;Θ;Γ` f (em)[τ](e1) ⇑ let m := em in let x := e1 in τ2[τ f /τ]

It is clear that the CALL P1 rule does not rely on the size expression em to establish reducibility

of the call. However, as τ1 and τ2 may depend on the size binding m, we cannot simply forget

about the size expression in either the parameter type checks or inferred result type. However,

if the generalization procedures discussed previously can be applied to the parameter and

result types, then we can type check a call without providing a size expression. This observation

leads to the following rule.

CALL GENERALIZATION

(def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P1

|τ f | = |τ| ` (τ1, m) gen⊇ τ′1 ` (τ2, m) gen⊆ τ′2 P1;P2;Θ;Γ` e1 ⇓ τ′1[τ f /τ]

P1;P2;Θ;Γ` f [τ](e1) ⇑ let x := e1 in τ′2[τ f /τ]

Finally, the CALL P2 rule given below corresponds to a call to some function currently being

checked for reducibility. As we will see shortly, in order to ensure program reducibility, we type

check the body of each function in P2 under a context including the function’s size binding

(m′ : τm in the rule given below). In order to ensure well-founded induction and co-induction,

this rule checks that the provided size expression decreases in the (mutually) recursive calls.

CALL P2

(def f (m : τm)[τ f ](x : τ1) : τ2 := e f ) ∈ P2 |τ f | = |τ|
P1;P2;Θ;m′ : τm ,Γ` em ⇓ τm P1;P2;Θ;m′ : τm ,Γ` em < m′ holds

P1;P2;Θ;m′ : τm ,Γ,m : τm ,m ≈ em ` e1 ⇓ τ1[τ f /τ]

P1;P2;Θ;m′ : τm ,Γ` f (em)[τ](e1) ⇑ let m := em in let x := e1 in τ2[τ f /τ]

Recursive datatypes. We now present the type inference rules which are relevant to recursive

datatypes, namely the rules for match and constructor expressions. In order to destruct a

datatype in a match expression, we must show that its fields are in some denotation, i.e.

the datatype must be in the denotation of d [τ](em) for some em > Zero. The rule selection

depends on the shape of the inferred type of the scrutinee. If the inferred type was a sized

datatype, we can directly check that the size expression was indeed greater than Zero, leading

to the following rule.
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MATCH

P ;Θ;Γ` e ⇑ d [τ](em)

P ;Θ;Γ` em >Zero holds (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P

P ;Θ;Γ, yi : let m := em in τi [τd /τ],e ≈Ci [τ](yi ) ` ei ⇑ τr,i for 1 ≤ i ≤ n

erase (τr,i ) = erase (τr, j ) for 1 ≤ i , j ≤ n

P ;Θ;Γ` e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en } ⇑
e match { C1(y1) ⇒ τr,1 · · · Cn(yn) ⇒ τr,n }

We also want to allow datatype deconstruction when a datatype intersection is inferred for the

match scrutinee. Similarly to the reducibility relation unfolding of intersection datatypes, this

is possible when the datatype has strictly positive polarity, giving us the following rule.

MATCH INTERSECTION

P ;Θ;Γ` e ⇑ d [τ]

(type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P d strictly positive

P ;Θ;Γ, yi : intersectd (τi )[τd /τ],e ≈Ci [τ](yi ) ` ei ⇑ τr,i for 1 ≤ i ≤ n

erase (τr,i ) = erase (τr, j ) for 1 ≤ i , j ≤ n

P ;Θ;Γ` e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en } ⇑
e match { C1(y1) ⇒ τr,1 · · · Cn(yn) ⇒ τr,n }

Let us now consider datatype constructor expressions. When inferring the type of a constructor

with annotated size expression em , it suffices to show that the constructor arguments have

size em −1. However, as em can be Zero, and em −1 is therefore not defined, we case split

the inference rule into a case where em ≈ Zero and one where em > Zero. In the first case, it

then suffices to show that the constructor arguments will reduce to values according to the

denotation. We leverage our special type val[τ] here as P ;Θ;Γ` e ⇓ val[τ] implies that e will

evaluate to some value for all inputs in JP ;Θ;ΓKv . Note that only the erasure of the type τ in

val[τ] needs to be well-formed since the denotation relies on the simple typing judgement

which operates on erased types. Hence, the size binding m does not need to be in the typing

context for the case where em ≈Zero.

CONSTRUCTOR

(type d [τd ](m) := ·· · | Ci (xi : τi ) | · · · ) ∈ P |τd | = |τ|
P ;Θ;Γ` τ type for τ ∈ τ P ;Θ;Γ` em ⇓Nat P ;Θ;Γ,em ≈Zero` e1 ⇓ val[τi [τd /τ]]

P ;Θ;Γ,em >Zero,m : Nat,m ≈ em ` e1 ⇓ τi [τd /τ]

P ;Θ;Γ`Ci (em)[τ](e1) ⇑ d [τ](em)

Conversely to match expressions, constructor expressions can omit the size expression when

the datatype is strictly positive and an intersection datatype will be inferred.

CONSTRUCTOR INTERSECTION

(type d [τd ](m) := ·· · | Ci (xi : τi ) | · · · ) ∈ P d strictly positive

|τd | = |τ| P ;Θ;Γ` τ type for τ ∈ τ P ;Θ;Γ` e1 ⇓ intersectd (τi )[τd /τ]

P ;Θ;Γ`Ci [τ](e1) ⇑ d [τ]
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One should note here that similarly to the reducibility relation unfolding, one could also

define the MATCH INTERSECTION and CONSTRUCTOR INTERSECTION rules in terms of the

type generalization procedures. However, as previously mentioned, we have found that strict

positivity was a better condition in practice.

Remaining rules. The remaining type inference rules are given in Figure 3.9. The DROP

REFINEMENT rule is applied with low priority and ensures that the expected shape of types can

be obtained in rules such as MATCH, PROJECTION and APPLICATION. Note that we only apply

the rule (and thus widen the refinement type) under these specific conditions.

3.5.2 Type Checking

We present here the type checking rules that give the relation P1;P2;Θ;Γ` e ⇓ τ. Type checking

relies both on the shape of the given expression e and the shape of the expected type τ for rule

selection. The selection procedure is again deterministic and can be efficiently implemented.

Pushing the check down. A first set of type checking rules rely on the expression syntax to

produce sub-expression type checks. These rules allow the syntax to help the type checking

procedure by producing simpler and more controlled verification conditions for if-expressions

and let-bindings. Note that the applicable rule can be selected solely based on the given

expression shape.
CHECK LET

P ;Θ;Γ` e1 ⇑ τ1 P ;Θ;Γ, x : τ1, x ≈ e1 ` e2 ⇓ τ
P ;Θ;Γ` let x := e1 in e2 ⇓ τ

CHECK IF

P ;Θ;Γ` c ⇓Boolean P ;Θ;Γ,c ` e1 ⇓ τ P ;Θ;Γ,¬c ` e2 ⇓ τ
P ;Θ;Γ` if (c) e1 else e2 ⇓ τ

We also want to push checks down in match-expressions. However, as seen in the inference

case, the type checking condition depends on the type of the scrutinee. We therefore rely on

two match type checking rules, depending on what type the scrutinee is inferred to be.
CHECK MATCH

P ;Θ;Γ` e ⇑ d [τ](em)

P ;Θ;Γ` em >Zero holds (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P

P ;Θ;Γ, let m := em in τi [τd /τ],e ≈Ci [τ](yi ) ` ei ⇓ τ for 1 ≤ i ≤ n

P ;Θ;Γ` e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en } ⇓ τ
CHECK MATCH INTERSECTION

P ;Θ;Γ` e ⇑ d [τ] (type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P

d strictly positive P ;Θ;Γ, yi : intersectd (τi )[τd /τ],e ≈Ci [τ](yi ) ` ei ⇓ τ for 1 ≤ i ≤ n

P ;Θ;Γ` e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en } ⇓ τ
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TRUE

P ;Θ` Γ context

P ;Θ;Γ` true ⇑Boolean

FALSE

P ;Θ` Γ context

P ;Θ;Γ` false ⇑Boolean

UNIT

P ;Θ` Γ context

P ;Θ;Γ` ( ) ⇑Unit

VAR

P ;Θ` Γ context (x,τ) ∈ Γ
P ;Θ;Γ` x ⇑ τ

LET

P ;Θ;Γ` e1 ⇑ τ1 P ;Θ;Γ, x : τ1, x ≈ e1 ` e2 ⇑ τ2

P ;Θ;Γ` let x := e1 in e2 ⇑ let x := e1 in τ2

IF

P ;Θ;Γ` c ⇓Boolean P ;Θ;Γ,c ` e1 ⇑ τ1 P ;Θ;Γ,¬c ` e2 ⇑ τ2 erase (τ1) = erase (τ2)

P ;Θ;Γ` if (c) e1 else e2 ⇑ if (c) τ1 else τ2

EQUALS

P ;Θ;Γ` e1 ⇑ τ1 P ;Θ;Γ` e2 ⇑ τ2 erase (τ1) = erase (τ2)

P ;Θ;Γ` e1 ≈ e2 ⇑Boolean

ERR

P ;Θ;Γ` τ type P ;Θ;Γ` false holds

P ;Θ;Γ` err[τ] ⇑ τ

PAIR

P ;Θ;Γ` e1 ⇑ τ1 P ;Θ;Γ` e2 ⇑ τ2

P ;Θ;Γ` (e1, e2 ) ⇑Σx : τ1. τ2

PROJECTION 1
P ;Θ;Γ` e ⇑Σx : τ1. τ2

P ;Θ;Γ`π1(e ) ⇑ τ1

PROJECTION 2
P ;Θ;Γ` e ⇑Σx : τ1. τ2

P ;Θ;Γ`π2(e ) ⇑ let x := π1(e ) in τ2

LAMBDA

P ;Θ;Γ, x : τ1 ` e ⇑ τ2

P ;Θ;Γ`λx : τ1. e ⇑Πx : τ1. τ2

APPLICATION

P ;Θ;Γ` e1 ⇑Πx : τ2. τ P ;Θ;Γ` e2 ⇓ τ2

P ;Θ;Γ` e1 e2 ⇑ let x := e2 in τ

DROP REFINEMENT

P ;Θ;Γ` e ⇑ { x : τ | p }

P ;Θ;Γ` e ⇑ τ

Figure 3.9 – Remaining type inference rules.
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Checking the denotation. These type checking rules are selected based on the shape of the

expected type and are directly derived from the denotation of the type. The type checking

rules for boolean types, refinement types, pi- and sigma-types are straightforward and defined

as follows. Note that the DROP REFINEMENT inference rule defined above may be leveraged

when inferring the expected Boolean type in the CHECK BOOLEAN rule.

CHECK BOOLEAN

P ;Θ;Γ` e ⇑Boolean

P ;Θ;Γ` e ⇓Boolean

CHECK UNIT

P ;Θ;Γ` e ⇑Unit

P ;Θ;Γ` e ⇓Unit

CHECK REFINEMENT

P ;Θ;Γ` e ⇓ τ P ;Θ;Γ, x : τ, x ≈ e ` p holds

P ;Θ;Γ` e ⇓ { x : τ | p }

CHECK PI

P ;Θ;Γ, x : τ1 ` e x ⇓ τ2

P ;Θ;Γ` e ⇓Πx : τ1. τ2

CHECK SIGMA

P ;Θ;Γ`π1(e ) ⇓ τ1 P ;Θ;Γ, x : τ1, x ≈π1(e ) `π2(e ) ⇓ τ2

P ;Θ;Γ` e ⇓Σx : τ1. τ2

Datatype subtyping rules. Given our definitions of valid type parameter and datatype po-

larity assignments, we can derive a subtyping relation between datatypes based on their

type parameter instantiations and size expressions. We rely on the shape of the inferred and

expected types to determine which datatype subtyping rule to apply. Note that the CHECK

DATATYPE 2 and 3 both reduce to some instance of the CHECK DATATYPE rule. We again rely

on the DROP REFINEMENT rule in CHECK DATATYPE and CHECK DATATYPE 2.

CHECK DATATYPE

(type d [T1, · · · ,Tn](m) := ·· · ) ∈ P

P ;Θ;Γ` τi type for 1 ≤ i ≤ n P ;Θ;Γ` em ⇓Nat P ;Θ;Γ` e ⇑ d [τ′1, · · · ,τ′n](e ′m)

+¹ polT (Ti ) =⇒ P ;Θ;Γ, x : τ′i ` x ⇓ τi ∧ −¹ polT (Ti ) =⇒ P ;Θ;Γ, x : τi ` x ⇓ τ′i for 1 ≤ i ≤ n

d positive =⇒ P ;Θ;Γ` em ≤ e ′m holds ¬(d positive) =⇒ P ;Θ;Γ` em ≈ e ′m holds

P ;Θ;Γ` e ⇓ d [τ1, · · · ,τn](em)

CHECK DATATYPE 2
P ;Θ;Γ` em ⇓Nat

P ;Θ;Γ` e ⇑ d [τ′] x fresh variable P ;Θ;Γ, x : d [τ′](em) ` x ⇓ d [τ](em)

P ;Θ;Γ` e ⇓ d [τ](em)

CHECK DATATYPE 3
n fresh variable P ;Θ;Γ,n : Nat` e ⇓ d [τ](n)

P ;Θ;Γ` e ⇓ d [τ]

Value-type rules. Finally, we present a pair of rules for checking against the val[τ] types that

are introduced by the CONSTRUCTOR inference rule. To be of type val[τ], it suffices to reduce

to some value which satisfies the erased typing judgement. This observation leads to the

following typing rules.
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CHECK VALUE

v ∈ pvalue P ;Θ;Γ` v : τ

P ;Θ;Γ` v ⇓ val[τ]

CHECK TYPED

P ;Θ;Γ` e ⇑ τ1 erase (τ1) = erase (τ)

P ;Θ;Γ` e ⇓ val[τ]

Note that the conditions under which the CHECK VALUE rule holds are efficiently decidable

and the rule therefore has higher priority than the CHECK TYPED rule in the algorithm.

3.5.3 Soundness

The aim of the bidirectional type checking algorithm presented above is to establish reducibil-

ity. For each of the five judgements we introduced, if the existence of a derivation implies that

the corresponding reducibility relation holds, then the procedure is sound. These observations

lead to the following statement of soundness for the different judgements.

Lemma 14. For reducible program P1, set of mutually recursive definitions P2, well-order τm ,

values vn , v ′
n ∈ JτmKv , type variables Θ, typing context Γ, expression e and type τ, if all datatype

definitions in P2 are reducible below vn , all function definitions in P2 are reducible below v ′
n , Γ

is of the form Γ= m : τm ,Γ′ and both Γ′[m/v ′
n] and τ[m/v ′

n] are bounded by vn , then

• if P1;P2;Θ` Γ context, then P1 ∪P2;Θ |= Γ′[m/v ′
n] context,

• if P1;P2;Θ;Γ` τ type, then P1 ∪P2;Θ;Γ′[m/v ′
n] |= τ[m/v ′

n] type,

• if P1;P2;Θ;Γ` e ⇑ / ⇓ τ then P1 ∪P2;Θ;Γ′[m/v ′
n] |= e[m/v ′

n] ∈ Jτ[m/v ′
n]K, and

• if P1;P2;Θ;Γ` e holds, then for reducible inputs (Pin,γ,θ) ∈ JP1 ∪P2;Θ;Γ′[m/v ′
n]Kv , we

have γ(θ(e)) →∗ true.

Proof. We show this by induction on the judgement derivation. In the following, when we

consider value substitutions for a typing context with unnamed evidence bindings, we assume

there exists a mapping to the unit literal for each such binding in the substitution.

Rules EMPTY CONTEXT and INCREASE CONTEXT : These follow immediately by induction.

Rules BOOLEAN TYPE, UNIT TYPE, TYPE VARIABLE, DATATYPE, REFINEMENT TYPE, PI-TYPE and

SIGMA-TYPE : The type formation rules also follow immediately by induction.

Rules CALL P1 and P2 : Consider the size binding m′ : τm′ associated to the call. By induction,

for inputs (Pin,θ,γ) ∈ JP1;P2;τ f ;Γ′[m/v ′
n]Kv , we have γ(θ(em)) →∗ vm ∈ Jτm′Kv and

γ(θ(e1)) →∗ v1 ∈ Jγ(θ(τ1[m′/vm][τ f /τ]))Kv . Let θ′ = {τ f 7→ γ(θ(τ))} and γ′ = {x 7→ v1}.

If f ∈ P1, then reducibility of P1 tells us that γ′(θ′(e f [m′/vm])) ∈ Jγ′(θ′(τ2[m′/vm]))Ke .

If f ∈ P2, we have vm < v ′
n by induction and reducibility below v ′

n of definitions in

P2 tells us the same. As evaluation of e f does not depend on the size binding vm , we
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have γ′(θ′(e f )) ∈ Jγ′(θ′(τ[m′/vm]))Ke . As γ(θ(em)) and γ(θ(e1)) terminate to values and θ

distributes over types and expressions, we have the following equivalence by Lemma 13

Jγ′(θ′(τ2[m′/vm]))Ke = Jγ(θ(let m′ := em in let x := e1 in τ2[τ f /τ]))Ke

The operational semantics finally tell us that γ(θ( f (em)[τ](e1))) →∗ γ′(θ′(e f )) and as J·Ke

is closed under evaluation by definition, this concludes the case.

Rule CALL GENERALIZATION : By induction, for inputs (Pin,θ,γ) ∈ JP ;τ f ;Γ′[m/v ′
n]Kv , we have

γ(θ(e1)) →∗ v1 where v1 ∈ Jγ(θ(τ′1[τ f /τ]))Kv . By Lemma 8, there exists some n1 ∈ JτmKv

such that for n2 ∈ JτmKv where n1 ≤ n2, we have v1 ∈ Jγ(θ(τ1[m/n2][τ f /τ]))Kv . As f ∈ P1,

for n2 ∈ JτmKv where n1 ≤ n2, we have γ(θ( f [τ](e1))) ∈ Jγ(θ(τ2[m/n2, x/v1][τ f /τ]))Ke by

reducibility of P1. We therefore have γ(θ( f [τ](e1))) ∈ Jγ(θ(τ′2[x/v1][τ f /τ]))Ke , again by

Lemma 8. We can then conclude by applying a similar argument to the previous case.

Rule MATCH : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , we have γ(θ(e)) ∈ Jγ(θ(d [τ](em)))Ke

and γ(θ(em)) →∗ vm where vm ∈ JNatKv and vm 6= Zero by induction. By definition

of the denotation, we have γ(θ(e)) →∗ Ci [τ′](v1) where v1 ∈ Jγ(θ(τi [m/vm][τd /τ))]Kv .

Let us now consider the value substitution γ′ = γ∪ {yi 7→ v1}. By induction, we have

γ′(θ(ei )) ∈ Jγ′(θ(τi ))Ke and we can apply Lemma 13 to conclude the case.

Rule MATCH INTERSECTION : For reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , we have

γ(θ(e)) ∈ Jγ(θ(d [τ]))Ke by induction. By definition of reducibility for open expressions,

we therefore have γ(θ(e)) →∗ Ci [τ′](v1) where Ci [τ′](v1) ∈ Jγ(θ(d [τ]))Kv . By definition

of strict positivity for datatypes, we have v1 ∈ Jγ(θ(intersectd (τi )[τd /τ]))Kv and we can

conclude this case by applying a similar argument to the previous one.

Rule CONSTRUCTOR : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , we have γ(θ(em)) ∈ JNatKe by

induction. We first consider the case where γ(θ(em)) →∗ Zero. We need to show that

γ(θ(Ci (em)[τ](e1))) ∈ Jγ(θ(d [τ](Zero)))Ke , and by definition of J·Ke , this requires that

γ(θ(e1)) →∗ v1 where v1 ∈ value and v1 : γ(θ(τi [τd /τ])). This is given by induction

and definition of Jγ(θ(val[τi [τd /τ]]))Kv . The case where γ(θ(em)) →∗ Succ(v ′
m) is then

simply given by induction.

Rule CONSTRUCTOR INTERSECTION : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , by induction

we have γ(θ(e1)) →∗ v1 where v1 ∈ Jγ(θ(intersectd (τi )[τd /τ]))Kv . By strict positivity and

distributivity of substitutions, we have Ci [erase (γ(θ(τ)))](v1) ∈ Jγ(θ(d [τ]))Kv . Finally,

by the operational semantics, we have γ(θ(Ci [τ](e1))) →∗ Ci [erase (γ(θ(τ)))](v1) which

concludes the case.

Rules TRUE and FALSE : The rules follow by definition of JBooleanKv .

Rule UNIT : The rule follow by definition of JUnitKv .

Rules VAR, EQUALS, PAIR, PROJECTION 1, LAMBDA and DROP REFINEMENT : These rules fol-

low by application of the inductive hypothesis.
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Rules IF, LET, PROJECTION 2 and APPLICATION : The rules follow by induction and Lemma 13.

Rule ERR : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , we have γ(θ(false)) →∗ true by induction.

Hence, by contradiction, no reducible inputs exist and the case holds.

Rules CHECK LET and CHECK IF : The rules follow by induction.

Rules CHECK MATCH and CHECK MATCH INTERSECTION : The rules follow by similar argu-

ments to those presented for rules MATCH and MATCH INTERSECTION.

Rules CHECK BOOLEAN, CHECK UNIT, CHECK REFINEMENT, CHECK SIGMA and CHECK PI : The

rules follow immediately by induction.

Rule CHECK DATATYPE : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , the inductive hypothesis

tells us that γ(θ(e)) ∈ Jγ(θ(d [τ′1, · · · ,τ′n](e ′m)))Ke . By definition of the denotation, we

therefore have γ(θ(e ′m)) →∗ v ′
m ∈ JNatKv . Let us consider some type parameter index

1 ≤ i ≤ n. If + ¹ polT (Ti ), then for v ∈ Jτ′i Kv , we have v ∈ Jτi Kv by induction. In other

words, we have Jτ′i Kv ⊆ Jτi Kv . Similarly, if −¹ polT (Ti ), then we have Jτ′i Kv ⊇ Jτi Kv . By

definition of validity for the type parameter polarity assignment, we therefore have

Jγ(θ(d [τ′1, · · · ,τ′n](vm)))Kv ⊆ Jγ(θ(d [τ1, · · · ,τn](vm)))Kv .

By induction, we have γ(θ(em)) →∗ vm ∈ JNatKv , if d is positive, then again by in-

duction we have vm ≤ v ′
m . By definition of the datatype positivity property, we thus

have Jγ(θ(d [τ′1, · · · ,τ′n](v ′
m)))Kv ⊆ Jγ(θ(d [τ′1, · · · ,τ′n](vm)))Kv . If d is not positive, then

we know that vm = v ′
m and thus Jγ(θ(d [τ′1, · · · ,τ′n](v ′

m)))Kv = Jγ(θ(d [τ′1, · · · ,τ′n](vm)))Kv .

Therefore, we have γ(θ(e)) ∈ Jγ(θ(d [τ1, · · · ,τn](em)))Kv .

Rule CHECK DATATYPE 2 : For reducible inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , the inductive

hypothesis gives us γ(θ(e)) →∗ v ∈ Jγ(θ(d [τ]))Ke and γ(θ(em)) →∗ vm ∈ JNatKv . By defi-

nition of the denotation, we have Jγ(θ(d [τ]))Kv ⊆ Jγ(θ(d [τ](vm)))Kv = Jγ(θ(d [τ](em)))Kv ,

hence v ∈ Jγ(θ(d [τ](em)))Kv . Finally, we have v ∈ Jγ(θ(d [τ′](em)))Kv by induction and

freshness of the variable x.

Rule CHECK DATATYPE 3 : For inputs (Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv and for vm ∈ JNatKv , we

have γ(θ(e)) ∈ J(γ∪ {n 7→ vm})(θ(d [τ](n)))Ke by induction and freshness of n. Hence, by

definition of the denotation, we have γ(θ(e)) ∈ Jγ(θ(d [τ]))Ke .

Rules CHECK VALUE and CHECK TYPED : Follow from the definition of the denotation.

Rule HOLDS : By induction, we have P ;Θ |= Γ′[m/v ′
n] context, and for reducible inputs

(Pin,θ,γ) ∈ JP ;Θ;Γ′[m/v ′
n]Kv , we have γ(θ(e)) →∗ v for some v ∈ JBooleanKv . By Theo-

rem 3, if there exists no model M |=Φi , then we know that v 6= false. By definition of

JBooleanKv , we therefore have v = true.

In the previous soundness statement, we assumed the given program P1 was already known to

be reducible. It therefore remains to consider how to show program reducibility. As mentioned
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earlier, reducibility for programs is established by considering strongly connected sets of type

and function definitions in the order given by the ≺ relation on definitions. We therefore

consider a reducible program P1 and show reducibility of some set of mutually recursive

definitions P2. These considerations lead to the following program formation judgement.

EMPTY PROGRAM

`; program

INCREASE PROGRAM

` P1 program ∀d ∈ P2. P1;P2 ` d well-formed

` P1 ∪P2 program

TYPE

∀1 ≤ i ≤ n. P1;P2;τd ;m : Nat` τi type erase (P1 ∪P2;τd ) ` d [τd ] well-defined

P1;P2 ` type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn) well-formed

FUNCTION

P1;P2;τ f ;m : τm ` τ1 type

P1;P2;τ f ;m : τm , x : τ1 ` τ2 type P1;P2;τ f ;m : τm , x : τ1 ` e f ⇓ τ2

P1;P2 ` def f (m : τm)[τ f ](x : τ1) : τ2 := e f well-formed

Given the program formation judgement, we can now state the main property of our bidirec-

tional type checking algorithm, namely soundness with respect to the denotation.

Theorem 4. For program P if ` P program, then |= P program.

Proof. We show this by induction on the derivation.

Rule EMPTY PROGRAM : The statement trivially holds.

Rule INCREASE PROGRAM : By induction, we have |= P1 program. Consider the well-order τm

associated to P2. We show by strong induction on JτmKv that for n ∈ JτmKv , the datatype

definitions in P2 are reducible below Succ(n) and the function definitions in P2 are

reducible below n. Note that this property then implies reducibility of P1 ∪P2.

First, we show that all type definitions in P2 are reducible below Succ(n) (TYPE rule)

by invoking Lemma 14 with v ′
n = n and vn = n. Note that the syntactic restriction on

datatype definitions ensures that for each constructor field type τi , we have τi [m/v ′
n]

bounded by vn . Next, we show that all function definitions in P2 are reducible below

n (FUNCTION rule) by invoking Lemma 14 with v ′
n = n and vn = Succ(n). Again, the

syntactic restriction on function definitions which are mutually recursive with datatype

definitions ensures that both τ1[m/v ′
n] and τ2[m/v ′

n] are bounded by vn .

Similarly to Theorem 3 about the model finding procedure, when the set P2 is empty, we can

state the following cleaner variant of Lemma 14.

Corollary 4. For reducible program P, set of type variables Θ, reducible typing context Γ,

expression e and type τ, we have
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• if P ;Θ` Γ context, then P ;Θ |= Γ context,

• if P ;Θ;Γ` τ type, then P ;Θ;Γ |= τ type,

• if P ;Θ;Γ` e ⇑ / ⇓ τ then P ;Θ;Γ |= e ∈ JτK, and

• if P ;Θ;Γ` e holds, then for (Pin,γ,θ) ∈ JP ;Θ;ΓKv , we have γ(θ(e)) →∗ true.

3.6 Typing Derivations and the Unfolding Procedure

We have presented a sound unfolding procedure that leverages the dependent types that

appear within the original typing context. However, those are generally not the only reducibility

relations that are known when the unfolding procedure is invoked in the HOLDS rule. Indeed,

the type checking algorithm will derive reducibility relations for most sub-expressions of the

expression e given to the unfolding procedure. Furthermore, reducibility relations are also

derived for expressions in function bodies when the program reducibility is checked.

Consider a reducible program P1, set of mutually recursive function definition P2, set of type

variables Θ, context Γ, expression e and value v such that the expression e ≈ v has been type

checked to Boolean. Further consider some embedded sub-expression l : e ′ v e such that the

type checking included derivations P1;P2;Θ;Γ,Γ′ ` τ′ type and P1;P2;Θ;Γ,Γ′ ` e ′ ⇑ / ⇓ τ′. We

have seen that such derivations imply the corresponding reducibility relations. Let us now

consider a set of reducible inputs (Pin,θ,γ) ∈ JP1 ∪P2;Θ;ΓKv such that γ(θ(e)) →∗ E[l : e ′2].

Finally, consider the value substitution γ′ ⊇ γ that contains all substitutions that occur during

the evaluation γ(θ(e)) →∗ E[l : e ′2]. We therefore have γ(θ(e)) →∗ E[l : γ′(θ(e ′))].

One could expect given our type checking procedure that we have γ′(θ(e ′)) ∈ Jγ′(θ(τ′))Ke .

However, this is not the case. Let us consider the following instantiation of program P1, set of

definitions P2, type variables Θ, context Γ and expression e.

P1 = {def f (x : { y : Nat | y ≈Zero }) : { y : Nat | y ≈Zero } := x } P2 = ; Θ = ;
Γ = g : Nat→Nat, eq : {u : Unit | g ≈ (λn : { y : Nat | y ≈Zero }. f(n)) }

e = g(Succ(Zero)) ≈Zero

We have |= P1 ∪P2 program, P1 ∪P2;Θ |= Γ context and P1 ∪P2;Θ;Γ |= e ∈ JBooleanK. We

further have P1 ∪P2;Θ;g : Nat → Nat,n : { y : Nat | y ≈ Zero } ` f(n) ⇑ { y : Nat | y ≈ Zero }

derived during type checking of e. Now let us consider the reducible inputs Pin = ;, θ = ;
and γ= {g 7→λn : Nat. f(n), eq 7→Unit }. It is clear that we have γ(θ(e)) →∗ f(Succ(Zero)). If we

consider the value substitution γ′ = γ∪ {n 7→ Succ(Zero) } under which the sub-expression f(n)

is evaluated, we have γ′(θ(f(n))) 6∈ Jγ′(θ({ y : Nat | y ≈Zero }))Ke as γ′(θ(f(n))) →∗ Succ(Zero).

We therefore cannot directly assume that e ′ is reducible at type τ′.
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The above finding is a consequence of our erased operational semantics. Let us consider the

following slightly modified program P1.

P1 = {def f (x : { y : Nat | y ≈Zero }) : Nat := if (x ≈Zero) x else err[Nat] }

This version of P1 remains reducible, however the lambda λn : Nat. f(n) is no longer reducible

at type Nat → Nat as it only takes Zero to Zero. In this case, it is therefore sound to assume

that the output of f(n) will be Zero regardless of the value substituted for n. We see here that

although programs can have specifications that are semantically similar, their impact or not

on the operational semantics can make a significant difference during unfolding.

Although it is unsound to simply assume that sub-expressions present in the derivations

are reducible at their annotated types, these types can still be leveraged during unfolding.

Indeed, while γ′(θ(e ′)) ∈ Jγ′(θ(τ′))Ke may not hold in general, by definition of reducibility we

know that it holds as long as (Pin,θ,γ′) ∈ JP1 ∪P2;Θ;Γ,Γ′Kv . In other words, if for each binding

x : τ ∈ Γ,Γ′ we have γ′(x) ∈ Jγ′(θ(τ))Kv , then e ′ is reducible at type τ′. It is clear by definition

of input reducibility that this property holds for all bindings in Γ. By considering the type

checking procedure, we can further observe that most bindings in the Γ′ typing context are

also guaranteed to satisfy this property. Indeed, only the bindings which stem from lambda

parameters may lead to a mismatch between the value substitution γ′ and the context Γ′.

We now present a procedure to soundly leverage the type formation and type inferece/checking

judgements. Consider the bindings Γ′ = x1 : τ1, · · · , xn : τn and indices 0 ≤ l1 < ·· · < lm ≤ n in

the context Γ′ which correspond to lambda parameters. We introduce fresh boolean constants

b1, · · · ,bm+1 which will serve a similar purpose to the constant b1 introduced in the pi-type

unfolding. We then compute the following reducibility relation embeddings

P1 ∪P2;Θ;Γ, x1 : τ1, · · · , xli−1 : τli−1 ` (bli , xli , τli ) red. (ti ,Φi ) for 1 ≤ i ≤ m

P1 ∪P2;Θ;Γ,Γ′ ` (bm+1, Te ′Ut , τ′) red. (tτ,Φτ)

It is important to realize that when m > 0, the embedded constants xli are not fresh but

correspond to the constants introduced during some unfolding of the lambda containing e ′.
We finally introduce the following general clause set which corresponds to the reducibility

relation P1 ∪P2;Θ;Γ,Γ′ |= e ′ ∈ Jτ′K.

Φred = (
⋃

1≤i≤mΦi )∪Φτ∪ {bi ∧ ti ⇐⇒ bi+1 | 1 ≤ i ≤ m }∪ {Te ′Ub =⇒ b1, bm+1 =⇒ tτ }

We can then extend the unfolding procedure we presented above by including unfoldings of

reducibility relations from the reducibility assignment. Lemmas 9 and 6 will ensure that these

steps preserve consistency.

As our type checking procedure traverses the whole program, we also have derivations associ-

ated to expressions within function bodies. Even for function definitions in P2, by splitting

the HOLDS rule into verification condition generation and deferred verification condition
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checking, we obtain derivations that are valid for all calls that decrease the size expression. We

can leverage these derivations by unfolding them for expression embeddings that occur after

function call unfolding. Note that the extra condition on the size decrease is also guaranteed

by the type checking algorithm and can be safely assumed when unfolding the derivations for

expressions within the function’s body.

In practice, to improve scalability of the unfolding procedure, we have found it useful to

unfold only derivations associated to function call expressions. Furthermore, by introducing

let-expressions with (checked) type annotations, we allow the user to (somewhat) control

the reducibility relations on which the unfolding procedure will depend. Given the function

definition def check[T ](x : T ) : T = x, consider the following expressions:

let x := check[τ](e1) in e2 let x : τ := e1 in e2

Although both expressions are semantically equivalent, the unfolding procedure will only

assume that e1 is reducible at type τ in the first case. One can therefore syntactically control

which reducibility relations will be assumed by the procedure. Note that the e2 expression will

be type checked under (practically) identical typing environments in both case.

3.7 Finding Reducible Counterexamples

We focused in this chapter on proofs and put aside the counterexample finding capabilities of

our unfolding procedure. We also saw that synthesizing reducible inputs is a hard task in the

general case. We discuss in this section how sound counterexamples can be reported even in

the presence of dependent types.

Firstly, our unfolding procedure is precise in the absence of pi-types with dependent result

types and intersection datatypes which cannot be generalized. Our model finding procedure

can therefore be extended to produce reducible inputs within this limited fragment. Similarly

to how function calls are blocked through the block(Fi ) clause set, we define the clause set

block(Ri ) which imposes input reducibility as follows:

block(Ri ) = {¬TτUb | τ ∈ Ri , τ= d [τ]∨τ= d [τ](em) }

The unfolding procedure can then extract reducible inputs from models satisfying the clause

set Φi ∪block(Fi )∪block(Ai ,Λi ,Di )∪block(Ri ). As the set of values has not changed, the

extraction procedure presented in the previous chapter remains applicable. Note however

that the final else branch in the synthetic functions extracted for lambdas now must be some

default value as a recursive call would contradict reducibility.

Secondly, counterexamples that are not correct by construction can be type checked against

the context. Given the typing environment P ;Θ;Γ under which unfolding was performed

and a model Mi |=Φi ∪block(Fi )∪block(Ai ,Λi ,Di )∪block(Ri ), consider the extracted inputs
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(Pin,θ,γ) / Mi . We can leverage our algorithmic type checking procedure to verify that

1) ` P ∪Pin program, and 2) for each (x,τ) ∈ Γ, we have P ∪Pin;;;;` γ(x) ⇓ γ(θ(τ)). Hence,

we have a sound (but incomplete) procedure that can produce reducible counterexamples.

The above considerations imply a syntactically defined fragment for which counterexample

finding remains sound and complete. Furthermore, even when we fall outside this fragment,

we can still report sound counterexamples. We have found that these alternative proce-

dures are relevant in practice and many verification conditions generated during (idiomatic)

program verification will satisfy one of the soundness conditions. Finally, even when our

type checking procedure fails to show that some extracted set of inputs are reducible, the

(potentially spurious) counterexample has shown to be valuable feedback to the user.
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4 Proofs and Counterexamples with
Impredicative Quantifiers

Many properties of interest can be expressed (and proved) in the dependently-typed language

presented in the previous chapter. However, it is sometimes practical to specify certain

properties through universal or existential quantifiers. Furthermore, quantifier support can

prove to be crucial when considering encodings of complex features into a language for which

verification can be performed, as we will see in Chapter 5. In this chapter, we will discuss how

our language can be extended with impredicative quantifiers through the use of a Prop type.

The focus of this chapter is on quantifier support in our model finding procedure. In order

to give some context, we will start by outlining how our language can be extended with

quantified propositions. We introduce a propositional type whose inhabitants consist of

(ground) propositional formulas. Note that we employ the term propositional here to denote

structured logical propositions (i.e. boolean connectives and quantified propositions) as

opposed to propositional logic. We extend the denotation to include this type and present

a new logical relation that corresponds to true propositions. We then adapt our refinement

types to expect propositional refinements instead of the previously given boolean predicates

and let their denotation refer to the new logical relation. Type checking in the presence of

propositional refinements then simply relies on the model finding procedure.

In order to provide automation in the presence of quantified propositions, we extend our

model finding procedure to embed the new logical relation associated to propositional for-

mulas. The embedding follows a similar approach to the higher-order function embedding

presented in Chapter 2: propositions are embedded into synthetic datatype constructors

based on the proposition’s structure, and the logical relation is embedded into special predi-

cates which are then incrementally unfolded. We finally describe how reducible inputs can

sometimes be extracted even in the presence of universal quantification.

In this chapter, we will only outline the relevant reducibility relations and give some intuition

about the properties of the extended model finding procedure. A full formalization is outside

the scope of this thesis and left for future work.
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4.1 Language and Semantics

We extend the language from Chapter 3 with a propositional type Prop. We further introduce a

set of propositional expressions (or propositional formulas) given by the prop grammar below.

These expressions consist of universally and existentially quantified propositions, conjunction,

disjunction and negation propositions, as well as a truth proposition which specifies that a

given boolean expression evaluates to true. Similarly to lambdas, propositional expressions

do not reduce during evaluation and ground propositional expressions therefore correspond

to values. These considerations then lead to the following grammar extensions.

type ::= ·· · | Prop

expr ::= ·· · | prop

value ::= ·· · | p ∈ prop if FV (p) =;
prop ::= ∀ id : type . expr | ∃ id : type . expr

| expr ∧ expr | expr ∨ expr | ¬ expr | True( expr )

Note that propositional expressions are constructed from the expr non-terminal and may

therefore involve function calls or if-expressions returning Prop-typed values. The erased type

formation and typing judgements are extended as expected.

An important difference between propositional expressions and lambdas is that dependent

types must not be erased within the types of quantified variables during evaluation. Indeed,

the propositions ∃x : Nat. x >Zero and ∃x : { y : Nat | y ≈Zero }. x >Zero are not equivalent

even though the types Nat and { y : Nat | y ≈ Zero } share the same erasure. In order to

correctly evaluate Prop-typed expressions, our operational semantics would therefore have to

maintain the full runtime type information and only perform specific erasures when necessary

(such as during equality evaluation). In practice, however, our system will ensure that Prop-

typed expressions only appear in erased positions (such as type refinements) and can therefore

never occur during evaluation. Hence, only the logical semantics of propositions are relevant.

Let us now consider the denotation of the Prop type. In order to ensure that propositional

values contain well-formed types, we would like to define the denotation by induction on the

propositional values and rely on the reducibility relation for types. However, as the Prop type

is impredicative, such a definition is not necessarily well-formed. We must therefore rely on a

notion of reducibility candidates as described in [Gir90] in order to handle propositions that

quantify over the Prop type. The technical details of such a definition are outside the scope of

this thesis and we simply illustrate the denotation of Prop through the rules given in Figure 4.1.

The reducibility relation for types is then extended with the rule P ;Θ;Γ |=Prop type.

Let us now discuss the semantics of propositional truth. We want to define a logical relation

J·Kp such that given a propositionally-typed value v , we have JvKp iff the proposition v is true.

The truth of a propositional value corresponds to the mathematical property specified by the
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FORALL

|= τ type ∀v ∈ JτKv . e[x/v] ∈ JPropKe

(∀x : τ. e) ∈ JPropKv

EXISTS

|= τ type ∀v ∈ JτKv . e[x/v] ∈ JPropKe

(∃x : τ. e) ∈ JPropKv

CONJUNCTION

e1 ∈ JPropKe e2 ∈ JPropKe

e1 ∧e2 ∈ JPropKv

DISJUNCTION

e1 ∈ JPropKe e2 ∈ JPropKe

e1 ∨e2 ∈ JPropKv

NEGATION

e ∈ JPropKe

¬e ∈ JPropKv

TRUTH

e ∈ JBooleanKe

True(e) ∈ JPropKv

Figure 4.1 – Denotation of the Prop type given with respect to some program P . As the deno-
tation is defined for ground expressions without type variables, we rely on type reducibility
judgements of the shape P ;;;; |= τ type. For readability, we denote these by |= τ type. These
rules are given for illustrative purposes as a well-formed definition would require the intro-
duction of reducibility candidates.

proposition. For example, a conjunction proposition e1 ∧e2 is true iff both sub-expressions

e1 and e2 correspond to true propositions. The special leaf proposition True(e) then allows

the logical propositions to interact with the operational semantics by providing an evaluation

constraint on the boolean expression e, namely that e →∗ true.

A natural (yet naive) approach to assigning truth semantics would be to define a logical relation

on propositional values which relies on evaluation to produce values for sub-propositions.

However, such a definition would not be well-formed as the size of an expression may increase

during evaluation. It is therefore necessary to rely on a more complex logical relation J·Kp for

ground expressions which is well-founded on the lexicographic ordering of 1) the multiset

ordering of size bindings present in the expression, and 2) the structure of the expression. The

full well-formed definition of this relation is outside the scope of this thesis but should follow

similar principles to those exposed in [Wer94, p. 71] (but for truth instead of proofs).

In order to nonetheless provide some intuition into the propositional truth relation, we present

the following (incomplete) definition of J·Kp for propositional expressions. It is important

to realize that these rules are only illustrative and do not feature all the technical details on

which a well-formed definition would depend. Note that we assume that the propositional

expression is in the denotation of Prop in the following.

J∀x : τ. eKp ⇐⇒ ∀v ∈ JτKv . Je[x/v]Kp Je1 ∧e2Kp ⇐⇒ Je1Kp ∧ Je2Kp

J∃x : τ. eKp ⇐⇒ ∃v ∈ JτKv . Je[x/v]Kp Je1 ∨e2Kp ⇐⇒ Je1Kp ∨ Je2Kp

JTrue(e)Kp ⇐⇒ e →∗ true J¬eKp ⇐⇒ ¬JeKp
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Finally, we adapt our denotation of refinement types to take propositional refinements (instead

of booleans). This allows our system to refer to propositional truth through refinements. These

considerations lead to a refinement type denotation of J{ x : τ | p }Kv = { v ∈ JτKv | Jp[x/v]Kp }

and the REFINEMENT TYPE rule in the reducibility relation for types is given as follows.

REFINEMENT TYPE

P ;Θ;Γ |= τ type P,Θ;Γ, x : τ |= p ∈ JPropK

P ;Θ;Γ |= { x : τ | p } type

Note that boolean refinements can be specified through the True( · ) proposition, namely the

boolean-refined type { x : τ | p } becomes { x : τ | True(p) }.

4.2 Embedding Propositions

In this section, we describe how the propositional expressions introduced above can be em-

bedded into SMT terms. Similarly to the function type and lambda embeddings presented

in Chapter 2, we rely on a synthetic Prop datatype to embed the Prop type and propositional

expressions. As in the lambda case, we track the set Q of known embedded propositional

expressions. We then rely on the normalization procedure for lambdas introduced in Chapter 2

to extract the structure and structural closures of propositions. Note however that, unlike

lambdas, proposition will not be erased before computing their structure and it may therefore

contain (un-erased) dependent types. Based on the known propositional structures, we gener-

ate a set of constructors which are used to define the Prop datatype and perform propositional

expression embedding.

We start by presenting the Prop algebraic datatype generation procedure. Consider the normal-

ized proposition structures associated to propositions in Q. Given the (unlabelled) normalized

structures · · · ,e ′i , · · · of the propositions in Q, the typed free variables · · · , yi , j : τi , j , · · · of each e ′i
and the type embedding τi , j .σi , j of each free variable type, we define the Prop SMT algebraic

datatype as follows. Note that we (again) rely on an Else constructor to allow an unbounded

number of unknown propositions.

datatype Prop := ·· · | Ce ′
i
(· · · , yi , j : σi , j , · · · ) | · · · | Else(n :N)

This datatype definition naturally leads to the type embedding rule P ;Θ` Prop . Prop and

the following expression embedding rule for propositional expressions.

e ∈ prop

normalize (e) = (e ′, { y1 7→ e1, · · · , yn 7→ en }) P ;Θ;Γ` (b, ei ) . (ti ,Φi ) for 1 ≤ i ≤ n

P ;Θ;Γ` (b, e) . (Ce ′(t1, · · · , tn),Φ1 ∪·· ·∪Φn)

In order to embed the propositional truth relation, we rely on a special true-prop predicate

which takes a single parameter with sort Prop. Note that our language only relies on the propo-
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sitional truth relation in refinement types. Hence, only the reducibility relation embedding

rule associated to refinement types needs to be adapted to rely on the true-prop predicate.

P ;Θ;Γ` (b, t , τ) red. (tτ,Φτ) P ;Θ;Γ, x : τ` (b, p) . (tp ,Φp )

P ;Θ;Γ` (b, t , { x : τ | p }) red. (tτ∧ true-prop(tp ),Φτ∪Φp ∪ {b =⇒ x ' t })

Similarly to how reducibleτ′ predicates are used in the reducibility relation embedding, the

propositional truth relation is under-approximated by the true-prop predicate. We will rely on

a notion of consistency of true-prop interpretations with the associated propositional truth

relation embeddings which is given as expected based on previous consistency definitions.

4.3 Unfolding Propositions

We will now discuss how the precision of the approximation given by the propositional truth

relation embedding can be incrementally increased by unfolding the relation associated to

the embeddings. In this section, we will therefore extend the unfolding procedure presented

in the previous chapters with support for the propositional truth relation embedding.

Our approach to truth relation unfolding features two distinct procedures: 1) a propositional

expression unfolding procedure, and 2) a quantifier instantiation procedure. Propositional

expression unfolding proceeds by considering propositional expression and truth relation

embedding pairs similarly to the application - lambda pair unfolding procedure. The conjunc-

tion, disjunction, negation and True( · ) propositions are unfolded in a straightforward manner

by relying on the truth relation embedding and expression embeddings. When unfolding a

universally or existentially quantified proposition, we rely on the instantiation procedure. The

quantifier instantiation procedure will track the set of quantified propositions for which the

propositional expression unfolding has occurred. The procedure will then instantiate the

quantified variables with likely candidates based on the quantifier polarity.

4.3.1 Unfolding Propositional Expressions

We will first present the propositional expression unfolding procedure. Recall from Chapter 3

that the unfolding procedure takes a typing environment P ;Θ;Γ, an expression e and a value v

and then produces a sequence of state tuples (Φi ,Fi , Ai ,Λi ,Di ,Ri ). In order to unfold the truth

relation, we extend the state tuple with the sets Ti of known (embedded) expressions for which

the propositional truth relation was embedded and Qi of known (embedded) propositional

expressions. In other words, for e ∈ Ti , the term true-prop(TeUt ) will belong to the set of

generated SMT terms, and for p ∈Qi , we will have p ∈ prop. We further track a set Ei ⊆ Ti ×Qi

of expression - proposition pairs for which the truth relation has been unfolded.
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In order to compute the sets Qi and Ti during unfolding, we introduce the following helper

functions Q(·) to collect propositional expressions and T (·) to collect truth relations.

Q(e) = {ep ∈ prop | ep v e, TepUt defined} T (τ) = { p | { x : τp | p } v τ, TpUt defined}

The Q(·) function is defined for both expressions and types whereas the T (·) function is defined

exclusively for types as the truth relation only affects refinements. The initial set T0 and the set

Ti+1 obtained by unfolding a call, application or reducibility relation are defined similarly to

the sets of embedded reducibility relations R0 and Ri+1. (It is however clear that the reducibility

relation embeddings which are removed from Ri when computing Ri+1 do not belong to Ti

and the removal step is ignored.) The sets Q0 and Qi+1 are similarly obtained by analogy with

the lambda sets Λ0 and Λi+1. Finally, we have E0 =; and Ei+1 = Ei for the call, application

and reducibility relation unfolding steps.

Let us now consider the propositional truth relation unfolding step for propositional expres-

sions. Consider some expression et ∈ Ti and propositional formula ep ∈Qi . Consider a fresh

boolean blocker bt which serves a similar purpose to the bb introduced in application unfold-

ing. We therefore introduce the clause set Φt = {bt ⇐⇒ (TepUb ∧TetUb ∧TepUt ' TetUt ) } on

which the extended clause setΦi+1 will rely. The unfolding procedure will extend the set Ei

with the unfolded pair et ,ep , which gives us Ei+1 = Ei ∪ { (et , ep ) }. The set Ti will be extended

with each expression e ′t for which the embedded truth relation predicate true-prop(Te ′tUt )

appears inΦi+1 \Φi . Finally, the remaining sets are extended by leveraging the relevant associ-

ated helper functions. We now present the clause set Φi+1 which results from unfolding. The

unfolding strategy will depend on the shape of the proposition ep .

Conjunction proposition. We start by considering the case where ep = e1 ∧e2. Consider the

embeddings (bt , e1) . (t1,Φ1) and (bt , e2) . (t2,Φ2). We then define Φi+1 as follows.

Φi+1 =Φi ∪Φt ∪Φ1 ∪Φ2 ∪ {bt =⇒ true-prop (TetUt ) ⇐⇒ (true-prop (t1)∧ true-prop (t2)) }

Disjunction proposition. The unfolding when ep = e1∨e2 is given similarly to the conjunction

case. We again rely on the embeddings (bt , e1) . (t1,Φ1) and (bt , e2) . (t2,Φ2), and extend the

clause set as follows.

Φi+1 =Φi ∪Φt ∪Φ1 ∪Φ2 ∪ {bt =⇒ true-prop (TetUt ) ⇐⇒ (true-prop (t1)∨ true-prop (t2)) }

Negation proposition. Let us now consider the case where ep =¬e1. As in the previous cases,

the unfolding is given simply by translating the logical connective into its corresponding SMT

term. Given the embedding (bt , e1) . (t1,Φ1), we perform the following set extensions.

Φi+1 =Φi ∪Φt ∪Φ1 ∪ {bt =⇒ true-prop (TetUt ) ⇐⇒ ¬true-prop (t1) }
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It is important to note here that this unfolding of the propositional truth relation associated

to the negation proposition implies that our system admits double negation (and therefore

the law of excluded middle as well). It is clear that this property is consistent with the partial

definition of the propositional truth relation J·Kp given above. Our system thus allows impred-

icative polymorphism as well as the law of excluded middle. However, as we do not support

values of type Type, our system does not admit large elimination and therefore avoids the

corresponding well-known paradox.

Truth proposition. Next, let us consider the unfolding when ep = True(e1). The unfolding

here simply relies on the underlying boolean expression embedding. Given the embedding

(bt , e1) . (t1,Φ1), we therefore extend the clause set as follows.

Φi+1 =Φi ∪Φt ∪Φ1 ∪ {bt =⇒ true-prop (TetUt ) ⇐⇒ t1 }

Note that in this case, no new propositional truth relation embedding will appear in the

resulting clause set and we have Ti+1 = Ti .

Existentially quantified proposition. We now consider the case where ep = ∃x : τ. p. As

our system admits double negation elimination, we have the following correspondance

J∃x : τ. pKp ⇐⇒ J¬∀x : τ. ¬pKp . In order to simplify the handling of quantified propo-

sitions, we unfold existentially quantified propositions into equivalent universals. Consider

the embedding (bt , ∀x : τ. ¬p) . (t∀,Φ∀). The unfolding then proceeds as follows.

Φi+1 =Φi ∪Φt ∪Φ∀∪ {bt =⇒ true-prop (TetUt ) ⇐⇒ ¬true-prop (t∀) }

Universally quantified proposition. Finally, we consider universally quantified propositions,

namely the case where ep =∀x : τ. p. Unlike the unfolding procedures given above for the

remaining propositional expressions, the truth relation associated to universally quantified

propositions is not precisely unfolded. Instead, we rely on a quantifier instantiation procedure

to incrementally increase the precision of the under-approximation given by true-prop (TetUt ).

As this procedure will rely on the bt blocker constant, we let Φi+1 =Φi ∪Φt .

4.3.2 Instantiating Quantified Propositions

In this sub-section, we will discuss how given a universally quantified proposition unfolding

(et , ∀x : τ. p) ∈ Ei and the associated boolean constant bt , the precision of the propositional

truth relation embedding true-prop(TetUt ) can be improved by extending the Φi clause set

through quantifier instantiation.

Although we are only considering universally quantified propositions, their polarity deter-

mines whether they correspond to universal or existential quantifications. Indeed, due to the

correspondance between universal and existential quantifications, if ¬true-prop (T∀x : τ. pUt )
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holds, then the quantification is in fact existential. Our instantiation procedure depends on

whether the proposition corresponds to a universal or existential quantification.

Similarly to the propositional truth relation unfolding procedure, our quantifier instantiation

procedure corresponds to a step in the global unfolding procedure. We are therefore given

an unfolding state at step i and will generate the state at step i +1. We again focus on the

generation of the clause set Φi+1 and the remaining sets are obtained by applying the relevant

helper functions to embedded expressions and reducibility relations.

Let us start by considering the existential case. We introduce a fresh boolean constant bp

and then compute the reducibility relation embedding (bp , x, τ) red. (tτ,Φτ) and expression

embedding (bp , p) . (tp ,Φp ). The clause set is then extended as follows.

Φi+1 =Φi ∪Φτ∪Φp ∪ { (bt ∧¬true-prop (TetUt )) ⇐⇒ bp , bp =⇒ (tτ∧ tp ) }

Note that in the above, the blocker constant bp holds iff the expected quantified proposition is

being unfolded (i.e. the blocker constant bt introduced in the previous sub-section holds) and

the quantification corresponds to an existential (i.e. ¬true-prop (TetUt ) holds).

We now consider the universal case. We rely on function calls and applications in order to find

likely instantiations for the quantified variable. For each call, respectively application in p

that takes a quantified argument (namely x), we consider each corresponding call in Fi ∪Ui ,

respectively application in Ai and instantiate the quantifier with the associated argument.

More concretely, given f [τ](x) v p and f [τ′](e1) ∈ Fi ∪Ui where erase (τ) = erase (τ′), we will

instantiate x with e1. The matching will also be performed when either one or both calls

feature a size expression. For function applications, given e1 x v p and e ′1 e2 ∈ Ai , if we have

e1 : τ1 and e ′1 : τ1, then we will instantiate x with e2.

Given an expression e with which we want to instantiate x, let us now discuss the resulting

clause set. We again introduce a fresh boolean constant bp and compute the reducibility

relation embedding (bp , x, τ) red. (tτ,Φτ). The constant bp will serve a similar purpose to the

constant introduced in the existential case, with the additional constraint that bp only holds

if TeUb holds as well. In this case, the reducibility relation will imply the propositional truth

relation and we therefore introduce a second fresh boolean constant bτ that holds when

both bp and the reducibility relation embedding hold. Finally, we compute the expression

embedding (bτ, p) . (tp ,Φp ) and define the clause set extension as follows.

Φi+1 =Φi ∪Φτ∪Φp ∪ { (bt ∧ true-prop (TetUt )∧TeUb) ⇐⇒ bp ,

bp =⇒ x ' TeUt , (bp ∧ tτ) ⇐⇒ bτ, bτ =⇒ tp }

Note that the use of two blocker constants bp and bτ is required for similar reasons to those

exposed when defining the reducibility relation unfolding associated to pi-types in Chapter 3.

It is important to note here that quantifier instantiations will introduce new calls and appli-

cations in Fi+1 ∪Ui+1 and Ai+1 for which instantiation can be performed. This may lead to
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an exponential blowup of instantiation targets. We have found that a useful heuristic which

avoids (or delays) the exponential blowup is to defer instantiation of introduced calls and

applications where the size of the argument is greater than the size of the given expression.

For example, given a proposition ∀x : τ. True( f x ≈ g x)∧True( f x ≈ f ( f x)) instantiated

with some application f e1 ∈ Ai , further instantiations involving the introduced application

f ( f e1) will be deferred (whereas instantiations based on g e1 will proceed as normal).

In order to ensure that all universally quantified propositions are instantiated at least once,

we introduce an instantiation of x with a fresh constant. We have found that in practice, this

instantiation is only rarely necessary for the model finding procedure to terminate and we

therefore only perform this instantiation with low priority.

In our implementation, we allow quantification over multiple variables, as well as multi-

argument calls and applications. Our procedure therefore follows a similar approach to the

one outlined in [GdM09] generalized to our setting. We maintain sets of potential instantia-

tions associated to each quantified variable determined by the arguments which appear in

compatible concrete calls and applications. Instantiation is then performed by selecting an

assignment for each quantified variable among the associated instantiation candidates.

In the above, we saw that the instantiation of a quantified proposition depends on its polarity.

We saw that polarity of the proposition is determined by the polarity of the true-prop (TetUt )

propositional truth embedding. This would seem to imply that quantifiers must be instanti-

ated for both polarities as the property is dynamic. However, this is not the case. Indeed, the

polarity of propositions can be statically tracked during the propositional expression unfolding

if the initial polarity is known. The initial propositional truth embedding will always occur in

a reducibility relation embedding associated to a refinement type. These either occur with

positive polarity when embedding the reducibility relation associated to the typing context,

or with negative polarity when they occur on the left-hand side of an implication (either

during pi-type unfolding or universal quantifier instantiation). The polarity of quantified

propositions is therefore statically known and only one of the existential or universal variants

of instantiation need be performed.

4.4 Finding Counterexamples with Universal Quantifiers

In the previous section, we described how the under-approximation given by the proposi-

tional truth relation embedding can be refined incrementally refined through unfolding and

instantiation. This allows our model finding procedure to show that no reducible inputs exist,

even in the presence of impredicative quantifiers. In this section, we discuss how reducible

counterexamples can also be generated by the unfolding procedure.

Let us start by considering how propositional unfoldings that have not yet occurred can be

blocked. We follow a similar approach to application blocking presented in Chapter 2. Based
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on the sets Ti , Qi and Ei , we define the following clause set

block(Ti ,Qi ,Ei ) = ⋃
et∈Ti

{
∨

ep∈Qi
TepUb ∧ TetUt ' TepUt ∧∧

(et ,e ′
p )∈Ei

¬(Te ′pUb ∧TepUt ' Te ′pUt )

=⇒ ¬TetUb }

We are interested in finding models such that all relevant unfoldings have occurred. We

therefore define the set blocki of all call, application, reducibility relation and propositional

truth relation blocking clauses as follows.

blocki = block(Fi )∪block(Ai ,Λi ,Di )∪block(Ri )∪block(Ti ,Qi ,Ei )

Consider a model Mi |=Φi ∪blocki . We will assume in the following that the set Ri contains

no unblocked reducibility relation for which the unfolding is imprecise (namely pi-types and

non-generalizable datatypes). The unfolding of conjunction, disjunction, negation and truth

propositions, as well as the instantiation of quantifiers with negative polarity (i.e. existentials),

are all precise. Furthermore, the clause set block(Ti ,Qi ,Ei ) is such that all relevant proposition

unfoldings have occurred. In other words, as long as the set Ei contains no unblocked universal

quantifier unfolding, then the extracted inputs (Pin,θ,γ) / Mi will be reducible.

The condition on unblocked universal quantifications given above is very strict. It will typically

be violated as soon as a universally quantified proposition appears in the typing context Γ

under which model finding is performed. For certain propositional fragments, it is however

possible to extend our model finding procedure to report reducible inputs.

We define a fragment of essentially uninterpreted propositions which is an adaptation of the

essentially uninterpreted formulas defined in [GdM09]. This fragment is selected such that

for essentially uninterpreted universally quantified proposition ∀x : τ. p, the propositional

truth relation J∀x : τ. pKp is consistent with the First-Order Logic semantics of the universally

quantified truth relation embedding ∀x : στ. true-prop(TpUt ) (modulo some unfoldings).

A proposition is considered essentially uninterpreted iff 1) universally quantified variables

appear only in function application argument positions, 2) the caller functions (which take

a quantified argument) correspond to variables bound in the typing context, and 3) the

reducibility relation embedding and unfolding procedures are precise for the quantified

variable types. It has been shown in [GdM09] that by compactness, our universal quantifier

instantiation procedure is a semi-decision procedure for essentially uninterpreted formulas

(with a restriction on intended structures, which we adapt to our setting as well). These

considerations imply that our quantifier instantiation procedure is a semi-decision procedure

for essentially uninterpreted propositions (as long as the instantiation selection process is fair).

In the following, we will focus on universal quantifier instantiations and assume existential

instantiations are part of the propositional truth relation unfolding procedure.

Consider some model Mi |=Φi ∪blocki such that all unblocked reducibility relation embed-

dings are precise, as well as the extracted inputs (Pin,θ,γ) / Mi . We know that these inputs
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are reducible as long as the relevant propositional truth relations are consistent with their

embeddings. Let us now further consider that all universally quantified propositions for which

the embedded propositional truth relation is unblocked are essentially uninterpreted. Finally,

we assume that all unfolding steps after i correspond to quantifier instantiations. As the

instantiation procedure is a semi-decision procedure, if we can show that for all j > i , there

exists some M j |=Φ j such that (Pin,θ,γ) / M j , then the inputs are reducible.

Let us now define a clause set such that satisfying models correspond to reducible inputs.

First, let EUQi ⊆ Ei the set of unfolded essentially uninterpreted universally quantified propo-

sitions with positive polarity. Then, for each (et , ∀x : τ. p) ∈ EUQi , let Ii (et , ∀x : τ. p) the set of

expressions with which the quantified variable x has been instantiated at unfolding step i , and

Ki (et , ∀x : τ. p) = {e2 | f x v p, e1 e2 ∈ Ai , f : τ1, e1 : τ1 } the set of known potential instanti-

ations for x. Note that past instantiations are included in the set of potential instantiations,

namely Ii (et , ∀x : τ. p) ⊆ Ki (et , ∀x : τ. p). For each unfolded proposition (et , ep ) ∈ Ei , we

construct a clause set model(et , ep ) which ensures that satisfying models are consistent with

the associated propositional truth relation. Recall the blocker constant bp that was introduced

when unfolding the proposition. The model(et , ep ) clause set is then defined as follows.

• If ep does not correspond to a universally quantified proposition with positive polarity,

then we let model(et , ep ) =;.

• If ep =∀x : τ. p, has positive polarity and is not an essentially uninterpreted proposition,

then we let model(et , ep ) = {¬bp }.

• If (et ,ep ) ∈ EUQi , then set define the model(et , ep ) clause set as follows.

model(et , ep ) = { (bp ∧Te1Ub) =⇒ ∨
e2∈Ii (et ,ep ) Te2Ub∧Te1Ut ' Te2Ut | e1 ∈ Ki (et ,ep ) }

Note that we ensure that the set Ii (et , ep ) is non-empty by instantiating the quantified

variable with a fresh constant, as previously mentioned.

We then define the clause set union modeli =⋃
(et ,ep )∈Ei

model(et , ep ). Now consider a model

Mi |=Φi ∪blocki ∪modeli . By definition of modeli , we know that all (unblocked) truth relation

embeddings associated to universally quantified propositions are such that the proposition

must be essentially uninterpreted. Given a set of embedded expressions S, we define its

unblocked interpretation as Mi (S) = { Mi (TeUt ) | e ∈ S, Mi |= TeUb }. The clause set modeli
then further ensures that for (et , ep ) ∈ EUQi , we have Mi (Ki (et , ep )) = Mi (Ii (et , ep )).

4.4.1 Soundness

We now discuss why models that satisfy the modeli clause set correspond to reducible in-

puts. We argue by induction on j ≥ i that given Mi |= Φi ∪ blocki ∪modeli and extracted

inputs (Pin,θ,γ) / Mi , there exists a model M j |=Φ j such that (Pin,θ,γ) / M j and for each
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unfolded essentially uninterpreted universally quantified proposition (et , ep ) ∈ EUQi , we have

M j (K j (et , ep )) = M j (I j (et , ep )). Recall that this implies that the inputs Pin,θ,γ are reducible.

We start by considering the cases where unfolding is performed behind a negated blocker

constant. For such unfoldings, we can extend M j to M j+1 by setting all introduced blocker

constants to false and we have M j+1 |=Φ j+1 ∪block j+1 ∪model j+1 with (Pin,θ,γ) / M j+1. It

is clear that call, application, (precise) reducibility relation and propositional truth relation

unfoldings fall into this category by construction of block j . This is also the case for quantifier

instantiations associated to propositional truth relation unfoldings which do not belong

to EUQ j by construction of model j . Finally, an instantiation of some (et , ep ) ∈ EUQ j by

expression e also occurs behind a negated blocker constant when either M j |= ¬TetUb , M j |=
¬TepUb , M j |= TetUt 6' TepUt , M j |= ¬true-prop (TetUt ) or M j |= ¬TeUb .

It remains to consider the unblocked instantiation of an essentially uninterpreted universally

quantified proposition (et , ep ) ∈ EUQ j where ep = ∀x : τ. p with some expression e. First,

recall that the reducibility relation embedding and unfolding associated to type τ must be

precise, hence no quantified propositional truth relation may be introduced by instantiation

and we have EUQ j+1 = EUQ j . By definition of the quantifier instantiation procedure, we have

e ∈ K j (et , ep ), and the inductive hypothesis ensures that there exists e ′ ∈ I j (et , ep ) such that

M j |= Te ′Ub and M j |= TeUt ' Te ′Ut . In other words, this instantiation is equivalent to some

previous instantiation of x and for each term t introduced by the instantiation with e, there

exists a corresponding t ′ introduced by the instantiation with e ′. We can therefore extend

M j to M j+1 by letting M j+1(t) = M j (t ′) for each term pair t , t ′. This extension ensures that

we have M j+1 |= Φ j+1. It is clear that we further have M j+1(I j+1(et , ep )) = M j+1(I j (et , ep )).

Let us now consider the set of potential instantiations K j+1(e ′t , e ′p ) for some (e ′t , e ′p ) ∈ EUQ j+1

where e ′p = ∀y : τ′. p ′. By definition of K j+1, there must exist applications g y v p ′ and

e1 e2 v p such that g : τ1 and e1 : τ1. If we consider the embeddings t2, respectively t ′2 of

e2 obtained when instantiating x with e, respectively e ′, we have M j+1(t2) = M j+1(t ′2) by

construction of M j+1. Hence, we have M j+1(K j+1(e ′t , e ′p )) = M j+1(K j (e ′t , e ′p )) and therefore

M j+1(K j+1(e ′t , e ′p )) = M j+1(I j+1(e ′t , e ′p ), which concludes the induction.

4.4.2 Completeness

We now discuss a (somewhat weak) completeness guarantee of our model finding procedure

in the presence of universally quantified propositions. In [GdM09], the authors present a

heuristic to select likely candidate instantiations based on satisfying models. We adapt the

approach to our setting, improve the candidate selection process when aiming for satisfiability,

and discuss completeness guarantees for a semantically defined class of inputs.

We start by introducing the notion of finite range. Given some lambda value λx : τ. eb , we say

λx : τ. eb has finite range iff the set { vb | v ∈ JτKv , eb[x/vb] →∗ vb , vb ∈ value } is finite. Let us

now consider reducible inputs Pin,θ,γ and an essentially uninterpreted universally quantified

proposition ∀x : τ. p. We say the proposition is finitely reducible iff for each application
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f x v p, the lambda γ( f ) has finite range. It is important to realize that finite reducibility

allows the propositional truth relation to be checked by only considering finitely many values.

Indeed, consider the set of function-typed variables f1, · · · , fn such that fi x v p for 1 ≤ i ≤ n.

Further consider the associated (finite) ranges ri = range(γ( fi )) for 1 ≤ i ≤ n. We then have the

correspondance Jγ(θ(∀x : τ. p))Kp ⇐⇒ ∧
v1∈r1

· · · ∧vn∈rn
Jγ(θ(p[ f1 x/v1, · · · , fn x/vn]))Kp .

Recall that our unfolding procedure takes as input a typing environment P ;Θ;Γ, expression e

and value v . Consider reducible inputs (Pin,θ,γ) ∈ JP ;Θ;ΓKv such that γ(θ(e)) →∗ erase (θ(v)).

Let us assume that all relevant reducibility relations are precisely handled by the model finding

procedure, and all universally quantified propositions for which the truth relation is relevant

are essentially uninterpreted and finitely reducible.

We now present an adaptation of our unfolding procedure that is guaranteed to find reducible

inputs in this restricted setting. The adaptation simply imposes a restriction on the ordering

of unfolding steps, and is given as follows. We start by performing a sequence of unfolding

steps with no quantifier instantiations until some unfolding step i is reached where there

exists Mi |= Φi ∪ blocki . Let us assume that there exists no M ′
i |= Φi ∪ blocki ∪modeli (as

we can simply return the extracted reducible inputs otherwise). There must therefore exist

some set of blocker clauses in modeli that disallows satisfiability of the full clause set. Let

us now consider an unblocked quantified proposition unfolding (et , ep ) ∈ EUQi such that

Mi (Ki (et , ep )) 6= Mi (Ii (et , ep )). As Ii is always a subset of Ki by construction, there must

therefore exist some e1 ∈ Ki (et , ep ) such that Mi |= Te1Ub and Mi (Te1Ut ) 6∈ Mi (Ii (et , ep )). Our

procedure then instantiates the proposition ep with the expression e1 and resumes the non-

instantiation unfolding until a model M j |=Φ j ∪block j is found for some j > i , and so forth.

The intuition behind the completeness of the given procedure is that the set Mi (Ii (et , ep ))

increases with each instantiation, yet the set S =⋃
j≥i M j (I j (et , ep )) is finite. Indeed, since we

have Mi |= blocki and Mi is consistent with the inputs, all call, application and reducibility

relation unfoldings which do not stem from quantifier instantiations and occur after step i

will be blocked in subsequent models. Hence, all candidate instantiations which appear after

these unfoldings will not belong to S. It remains to consider the candidate instantiations that

stem from instantiation unfolding steps. Consider (e ′t , ∀y : τ′. p ′) ∈ EUQi and e1 ∈ S such that

e1 appeared in S after instantiating ∀y : τ′. p ′. Given the restrictions imposed on essentially

uninterpreted propositions, and given ep = ∀x : τ. p, there must exist some f x v p and

e1 C[g y] v p ′ where f : τ1 and e1 : τ1. As γ(g ) has finite range, only finitely many candidate

instantiations which stem from instantiation unfoldings can belong to S.
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The verification procedure presented in Chapter 3 operates on a simple functional language

with dependent types (which we hereafter call the verification language). Our main goal is

to allow verification of programs written in a useful subset of the Scala language. Hence,

many features supported in the input Scala fragment are not present in our verification

language. These features are handled through encodings that eliminate the unsupported

language constructs from the program. These encodings are given as a transformation pipeline

that takes a Scala program and produces a program in the verification language that under-

approximates the original program. Verification of the encoded program should then imply

correctness of the original Scala program.

The transformation pipeline consists in a sequence of transformations defined over a hierarchy

of intermediate representations rooted in the verification language. Our system relies on a

variant of the verification language which allows multi-parameter and multi-field definitions,

however, for clarity, we will consider (unless specified otherwise) that definitions only allow a

single parameter or field. Each intermediate representation extends the one below with some

set of language features. The transformation(s) associated to the intermediate representation

will then encode these features into constructs of the lower intermediate representations (or

fail if some feature cannot be encoded).

The hierarchy of intermediate representations (referred to as trees in our system) and the

transformations that eliminate the constructs introduced by each tree definition are given in

Figure 5.1. In the remainder of this chapter, we will discuss the tree definitions and associated

encoding transformations in the pipeline. We present the trees and transformations in reverse

order in order to clarify which language constructs are present in the encoding target. The

target therefore always corresponds to the previously discussed transformation’s input.

Certain transformations presented in this chapter were inspired by corresponding transfor-

mation phases in the Leon verification system [SKK11, BKKS13]. This is in particular the

case of the method and inner function lifting transformations, as well as all transformations

defined on imperative trees. Dr. Jad Hamza contributed to the development of the trait sealing
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Scala Compiler

specification trees (5.8)

Partial Functions Contract Desugaring
5.8.2 5.8.1

inner class trees (5.7)

Inner Class Lifting

method trees (5.6)

Laws Class Invariants Super Calls Trait Sealing Method Lifting
5.6.5 5.6.4 5.6.3 5.6.2 5.6.1

imperative trees (5.5)

Anti-Aliasing Imperative Elimination Imperative Cleanup

class trees (5.4)

Datatype Specialization Type Encoding
5.4.1 5.4.2

inner function trees (5.3)

Inner Function Lifting

termination trees (5.2)

Measure Inference Decreases Elimination
5.2.2 5.2.1

inlining trees (5.1)

Call Inlining Partial Evaluation
5.1.2 5.1.1

Type Checker

Figure 5.1 – Transformation pipeline from the Scala compiler’s internal AST into the verifi-
cation language presented in Chapters 1 through 4. The pipeline is based on a hierarchy of
(abstract syntax) trees where each AST definition extends the one below it with new types,
expressions and definitions. The encoding transformations are then grouped according to the
trees on which they operate. Once all transformations have been completed for a given tree,
the resulting program will belong to the tree definition below.
For each AST definition, respectively encoding transformation, the relevant section, respec-
tively sub-section is indicated when applicable.
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transformation, and Romain Ruetschi was heavily involved in (or led) the development of the

inner class lifting, laws, super calls, call inlining and partial evaluation transformations.

5.1 Inlining Trees

As mentioned above, our transformation pipeline’s final target is the verification language.

The inlining trees extend the verification language with function annotations that allow the

user to require call inlining (@inline and @inlineOnce) and partial evaluation (@partialEval).

The grammar of the verification language is therefore extended as follows.

fdef ::= 〈 fannot 〉∗ def id ( id : type )[ tdecls ]( id : type ) : type := expr

fannot ::= @partialEval | @inline | @inlineOnce

5.1.1 Partial Evaluation

This transformation partially evaluates calls to functions marked with the @partialEval an-

notation. Our partial evaluator performs semantic-preserving simplifications such as dead

branch pruning, function call unfolding, lambda application inlining, constant folding, etc.

These simplifications allow the model finder to scale in the presence of functions with a large

branching factor that lead to an exponential blowup of the clause set.

Statically unfolding recursive function calls is a potentially endless task. Furthermore, even

when unfolding terminates, the resulting expression may be harder for the model finder to

handle if no simplifications could be applied. Our partial evaluator therefore only unfolds a

function call under the following conditions.

1. The size expression (see Chapter 3) associated with the call decreases. The partial

evaluator tracks the current size binding and only unfolds recursive calls if it can show

that the size expression will evaluate to some value which is smaller than the binding.

For example, consider the size binding m : Nat and size expression m−1 (which is given

as m match { Succ(m′) ⇒ m′ Zero ⇒ err[Nat] } in the verification language). As m −1

will get stuck when m is Zero, the size expression does not decrease. However, if we have

m >Zero in our context, then the size expression is decreasing.

2. Progress is made by unfolding the call. In order to avoid unfolding calls that simply inline

the whole body, unfoldings are only performed if some branch containing a (mutually)

recursive function call could be eliminated in the unfolded body.

It is interesting to note here that an alternative approach to the dead branch elimination

performed by the partial evaluator is to prioritize unfolding of function calls whose blockers

belong to the unsatisfiable core reported by the SMT solver during model finding. We have
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found that in practice, both approaches are complementary. The pruning performed during

partial evaluation is more precise but slower, while the prioritized unfolding approach may

ignore important unfoldings when multiple unsatisfiable cores exist, as well as delay proof

finding by focusing on irrelevant branches.

5.1.2 Call Inlining

Our system allows the user to mark certain functions with an @inline annotation which indi-

cates that calls to this function must be inlined. Inlining therefore allows the user to somewhat

control the order in which call unfoldings occur in the model finder. Inlining proceeds recur-

sively and this annotation is only allowed on non-recursive functions to ensure termination of

the transformation. As our system will type check the marked function and type checking is

modular, we can avoid type checking the inlined body and simply check the argument types.

We further support an @inlineOnce annotation for which inlining is not recursively performed.

This annotation can therefore be attached to recursive functions as well and provides control

over whether inlining should be transitive or not.

5.2 Termination Trees

The termination trees introduce a decreases(·) construct which enables specification of the

ranking function by which termination is given. We also perform measure inference which

allows the system to automatically show program termination. These considerations result in

the following fdef grammar extension.

fdef ::= ·· · | 〈 fannot 〉∗ def id [ tdecls ]( id : type ) : type := fbody

fbody ::= { decreases( expr ); expr } | expr

Note that we admit function definitions which feature neither size binding nor decreases(·)
construct. Such definitions will trigger the automated measure inference procedure.

5.2.1 Decreases Elimination

It is clear that the size binding and expressions syntax presented in Chapter 3 is not compat-

ible with the source Scala syntax. In order to allow users to manually specify termination

arguments, we provide the decreases language construct which corresponds to a traditionnal

ranking function specification. The translation into the verification language is straightfor-

wardly given as follows.

def f [τ f ](x : τ1) : τ2 := { decreases(em); C[ f [τ](e) ] }  
def f (m : τm)[τ f ](x : { x : τ1 | em ≤ m }) : τ2 := C[ f (let x := e in em)[τ](e) ]
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The well-order τm is obtained by computing the type of the expression em . Note that the

expression em is then used both as a refinement in the function parameter type and to compute

the size expressions for recursive calls.

All calls to mutually recursive functions in the body of the annotated function definition will

be translated into sized calls. The corresponding size expression is computed based on the

callee’s associated decreases construct, hence all mutually recursive functions that do not

have a size binding must feature a decreases statement. We saw in Chapter 3 that the type

{ x : τ1 | em ≤ m } generalizes to τ1 and the CALL P1 GENERALIZATION type inference rule

allows calls outside the strongly connected component to feature no size expression, hence

such calls are preserved during the translation.

Given our encoding of the decreases construct and the type checking algorithm presented in

Chapter 3, this translation phase enables the user to provide inductive termination arguments.

However, although our verification procedure can handle coinductive definitions, we have

not found any satisfactory syntax to specify sized datatypes in the Scala source. Hence, users

cannot provide termination arguments for function definitions that rely on coinduction. We

have recently begun exploring an extension to the Scala compiler which will allow source-level

specification of sized types, so this limitation should disappear in the near future.

5.2.2 Measure Inference

In order to avoid having to annotate each (inductive) Scala function with the required decreases

construct, our system attempts to infer ranking functions when no annotation is given. Fur-

thermore, we also infer certain likely refinements on function result types and first-class

function parameter types to improve the automation featured by our inference procedure.

In order to uniformly consider ranking functions over arbitrary types, we define an embedding

of values into the natural numbers. We will refer to this embedding as the size of a value. This

embedding is defined by matching on the erased type of the given expression.

def size(e: expr, τ: type): expr = τ match {
case Nat ⇒ e

case Unit | Boolean | T | τ1 → τ2 ⇒ 0
case (τ1, τ2 ) ⇒ size(π1(e ), τ1) + size(π2(e ), τ2)
case d [τ] ⇒ size-d [τ](e) + 1

}

Note that in the above embedding, we relied on a size-d function when computing the size of

a datatype expression. Given the definition type d [τd ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn),

we synthesize a (potentially recursive) function size-d as follows.

def size-d [τd ](x : d [τ1]) : Nat := x match { C1(y1) ⇒ size(y1, τ1) · · · Cn(yn) ⇒ size(yn , τn) }

119



Chapter 5. Encoding Scala Programs

The termination of these functions is given through a meta-theoretic argument based on the

datatype structure and will not be checked by our system.

Ranking function inference. We synthesize decreases statements by selecting likely candi-

date ranking functions and performing partial type checking to validate them. Partial type

checking follows the same principles as our bidirectional type checking algorithm but only

checks verification conditions that are related to size expression decrease. Considered ranking

functions consist of the total parameter size, the size of a single projection (for parameters

with nested pair type), as well as the lexicographic orderings of projection sizes. We have

found these to cover a wide range of termination arguments in our experiments while keeping

the ranking function candidate exploration tractable.

In order to handle ranking functions that only transitively decrease, we further consider

inlinings of recursive function calls. The resulting ranking function can then be constructed as

a lexicographic ordering of the candidate function and an index which is computed based on

the considered inlinings. For example, consider the following mutually recursive definitions.

def isEven(n: Nat): Boolean = if (n ≈ 0) true else if (n ≈ 1) false else isOdd(n − 1)
def isOdd(n: Nat): Boolean = !isEven(n)

After establishing that n transitively decreases in isOdd after inlining the call to isEven, our

system will synthesize a ranking function of (n, 0) for isEven and (n, 1) for isOdd.

Refinement inference. Our system further improves the likelihood of successful ranking

function inference by automatically strengthening refinement types that will participate in the

relevant partial type checks. This is again performed by considering candidate strengthenings

and performing (a different set of) partial type checks to confirm them.

Candidate refinements are introduced in function result types in order to relate input and

output sizes. Given a function definition with signature def f [τ f ](x : τ1) : τ2, we will attempt

to replace τ2 by a refinement type { x : τ2 | size(x) ≤ size(x) }. Such refinements are particu-

larly useful in cases where some recursive function relies on a function outside the strongly

connected component which is itself recursive.

We further consider candidate refinements in the input type of pi-types that occur within

a sigma-typed parameter. Here, we want to relate the size of the pi-type input with the

size of the previous sigma-type projection. In other words, given the function signature

def f [τ f ](x : Σ y : τ1. Πz : τ2. τ3) : τ4, we will attempt to replace the type τ2 by a refinement

type { z : τ2 | size(x) ≤ size(y) }. These refinements are useful when dealing with recursion

within lambda arguments to higher-order functions such as map or fold.

Let us now consider the following program which defines a substitution function over a (very

simple) abstract syntax tree given by the Expr datatype.
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type Option[A] := Some(value: A) | None
type List[A] := Cons(head: A, tail: List[A]) | Nil
type Expr := Var(id: Nat) | App(caller: Expr, args: List[Expr])

def map[A,B](l: List[A], f: A → B): List[B] = l match {
case Cons(x, xs) ⇒ Cons[B](f(x), map[A,B](xs, f))
case Nil ⇒ Nil[B]

}

def subst(e: Expr, f: Expr → Option[Expr]): Expr = f(e) match {
case Some(v) ⇒ v
case None ⇒ e match {
case Var(_) ⇒ e
case App(c, args) ⇒ App(subst(c, f), map[Expr,Expr](args, λx. subst(x, f)))

}
}

The two refinement inference procedures described above will then establish the following

signature for the given map function by inferring both result type and pi-type refinements.

def map[A,B ](l : List[A], f : { x : A | size(x) ≤ size(l ) } → B) : {r : List[B ] | size(r ) ≤ size(( l , f )) }

It is important to realize here that without the inferred pi-type refinement, our type checking

procedure would not be able to show that the size expression decreases in the recursive call to

subst within the lambda λx. subst(x, f).

5.3 Inner Function Trees

These trees extend the verification trees with support for inner function definitions that may

close over local variables. The inner function lifting transformation lifts all inner functions

into top-level definitions. In order to preserve the context under which the inner function was

defined, we extend the (type) parameters of the inner function with all (type) variables that

appear in the typing context under which the inner function was defined.

5.4 Class Trees

The class trees and associated transformations bridge the gap between algebraic datatypes

and Scala trait and class definitions. The datatype syntax on which we have relied up to this

point is incompatible with Scala syntax. However, there exist type hierarchies in Scala that are

semantically equivalent to our datatypes.

In this section, we present a datatype specialization transformation which translates certain

scala type hierarchies into datatypes, and a type encoding transformation which eliminates
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the remaining Scala definitions. We will present these transformations in this order (instead of

the usual reverse pipeline order) so as to clarify which type definitions will be handled by the

more general type encoding. When discussing each encoding, we will present the relevant

grammar extensions which are given by the class trees.

5.4.1 Datatype Specialization

We start by introducing the new Scala type definitions with which the class trees extend our

supported language. The fragment we consider features sealed traits and final case class

definitions with multiple inheritance. Case classes feature a single (public) constructor field.

Trait and class bodies must be empty, and we will discuss further in the pipeline how methods

and trait fields can be handled. The fragment further admits case class constructors and trait

and class type deconstruction through match-expressions. These considerations lead to the

following extension of the type definition grammar tdef . Note that the syntax for class and

trait types, case class constructors and match-expressions coincides with the corresponding

syntax for datatypes, hence no further grammar extensions are required.

tdef ::= ·· · | sealed trait id [ tdecls ] extensions

| final case class id [ tdecls ] ( id : type ) extensions

extensions ::= ε | extends id [ tparams ] 〈 with id [ tparams ] 〉∗

We will rely hereafter on the general form trait t [τt ] extends τp to denote sealed trait defini-

tions, and class c[τc ](x : τ1) extends τp to denote final case class definitions. We denote the

generalization over trait and class definitions by n[τn] extends τp .

The datatype specialization transformation will encode certain Scala trait and class definitions

into datatype definitions. For example, consider the following Scala List type hierarchy.

sealed trait List[T]
�nal case class Cons[T](head: T, tail: List[T]) extends List[T]
�nal case class Nil[T]() extends List[T]

These three Scala type definitions can be encoded into the single datatype

type List[T](m) := Cons(head: T, tail: List[T](m − 1)) | Nil

Let us now consider the conditions under which encoding Scala type definitions into datatypes

is possible. We say the trait or class definition n[τn] extends τp is a datatype candidate iff it

has at least one child, each child definition c[τc ] extends · · · with n[τ′n] with · · · is a datatype

candidate and we have τ′n = τc . In other words, for each descendant definition d of n, the type

d [τ] is a subtype of n[τ] according to Scala static semantics. We say that n[τn] extends τp is a

root datatype candidate iff it is a datatype candidate, it has no parents (i.e. τp =;), and for each

descendant d [τd ] extends τ′p , for each parent type τ ∈ τp , τ is a subtype of n[τd ]. Intuitively,
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the Scala type hierarchy given by a root datatype candidate corresponds to a datatype with

some additional internal subtyping relations.

Each root datatype candidate, along with all its descendant definitions, will be encoded into a

single datatype definition. Given a root datatype candidate n[τn], we will construct a datatype

definition where each descendant case class of n will correspond to a datatype constructor. As

our encoding of the Scala type hierarchy flattens it into a single datatype definition, trait and

class types which are (strict) subtype of the root datatype candidate will have no corresponding

datatype in the target language. However, we will see that these types can be encoded through

adequately chosen root datatype refinements.

We introduce a type encoding procedure encode : type → type which encodes subtypes of root

datatype candidates into refinement types. Consider a root datatype candidate n[τn] and trait

or class type d [τ] such that d [τ] is a strict subtype of n[τ]. As the type hierarchy is sealed, we

can determine whether some value has type d [τ] by considering the set of constructors which

are below d in the hierarchy. Given the set c1, · · · ,cr of class definitions for which ci [τ] is a

subtype of d [τ], these considerations lead to the following encoding rule.

encode(d [τ]) = { x : n[encode(τ)] | x match { c1(y1) ⇒ true · · · cr (yr ) ⇒ true _ ⇒ false } }

The remaining type encodings are performed recursively on the type structure. Based on

this type encoding, and given the case class definitions · · · ,class c j [τ j ](x j : τ j ) extends τp , · · ·
which are descendants of the root datatype candidate n[τn], we can construct the encoded

datatype definitions as follows.

type n[τn](m) := ·· · | c j (x j : encode(τ j [τ j /τn])) | · · ·

Note that the size expressions based on the binding m can be automatically assigned to the

recursive datatype occurrences in each encode(τ j [τ j /τn]). Finally, the transformation will

need to adapt match-expressions by introducing (potential) extra error branches when the

scrutinee has a non-root trait or class type.

5.4.2 Type Encoding

We now discuss how more complex Scala type hierarchies which were not handled by the

datatype specialization transformation described above can be encoded into the target lan-

guage. Consider the following simplified definition of the List type in the Scala standard library.

We use the identifier Cons here instead of :: for readability.

sealed abstract class List[+A]
�nal case class Cons[+B](head: B, tail: List[B]) extends List[B]
�nal case object Nil extends List[Nothing]

We want an encoding that allows us to represent constructor types (e.g. Cons[B] and Nil.type),
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the top type Any and the bottom type Nothing. We further want the encoding to be consis-

tent with the subtyping relations given by Scala’s type system (e.g. List[Nat] <: List[Any] and

List[Any] <: Any). Finally, we want the encoding to be compatible with features from the

verification language such as refinement types and datatypes in order to allow verification

of annotated Scala programs. In this sub-section, we will present a procedure that encodes

(sealed non-datatype) type hierarchies with multiple inheritance, the top and bottom types, as

well as union and intersection types. We will then discuss how the procedure can be extended

to handle other features of the Scala type system such as declaration-site variance.

The fragment we consider here features trait and class definitions as given above, as well

as the top type Any, the bottom type Nothing, union types and intersection types. These

considerations lead to the following type grammar extension.

type ::= ·· · | Any | Nothing | type ∪ type | type ∩ type

Note that the current version of Scala only features a limited form of intersection types (i.e.

through the with keyword) and no union types. However, Scala 3 will introduce support for

general union and intersection types, hence we include them in our considered fragment.

In the following, we will rely on a helper function tpe : expr → type that computes the most

precise type of a given Scala expression. We will further rely on the least-upper-bound u and

greatest-lower-bound t operations on the type lattice given by the Scala subtyping relation.

The main insight in our encoding procedure is that the Scala type hierarchy can be flattened

into a single datatype in the verification language, and refinement types can then be leveraged

to ensure that type encodings are sufficiently precise. Given the known Scala type definitions,

we will synthesize a (monomorphic) datatype definition based on the final case classes in

the hierarchy. The type parameters which appear in the Scala trait or class definitions will be

erased similarly to how type erasure is performed during compilation to bytecode. We will

then generate (mutually) recursive predicate functions that encode the constraints imposed

by the Scala type definitions on the erased datatype definition.

Let us consider a value v which has Scala type List[τ] for some concrete type τ. Scala’s type

system ensures that v must be of the shape Cons(v1, · · · Cons(vn , Nil) · · · ) where vi has type τ

for 1 ≤ i ≤ n. Given some predicate pτ which determines whether a value has type τ, we can

therefore recursively traverse the value v in order to determine whether it is indeed a value of

type List[τ]. Given a Scala program which contains the single List type hierarchy (and some

number of function definitions), consider the following datatype definition.

type Object := Cons(head : Object, tail : Object) | Nil | Other(n : Nat)

This datatype ensures that the Scala definition of case class equality is preserved in the en-

coding. The Other constructor allows open programs analogously to how the Else constructor

was used in the lambda datatype. Let us now consider the following mutually recursive propo-
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sitional function definitions. Note that we rely here and in the following on the shorthands

True and False to denote the propositions True(true) and True(false).

def isList(obj: Object, A: Object ⇒ Prop): Prop = isCons(obj, A) ∨ isNil(obj)

def isCons(obj: Object, B: Object ⇒ Prop): Prop = x match {
case Cons(x, xs) ⇒ B(x) ∧ isList(xs, B)
case _ ⇒ False

}

def isNil(obj: Object): Prop = obj match {
case Nil ⇒ True
case _ ⇒ False

}

These definitions correspond to the constraints on the Object datatype given by the Scala List
type hierarchy. In other words, the propositional function call isList(v, pτ) will hold whenever

Scala’s type system assigns the type List[τ] to the value v . We can therefore leverage refine-

ment types to precisely encode the constraints given by Scala’s type system. Based on these

functions, it is clear that the type encoding of List[τ] is { x : Object | isList(x, pτ) }.

Recall that we want our encoding to be consistent with the subtyping relations that hold in

Scala’s type system. Let us consider the following type encodings.

Any  Object

List[Any]  { x : Object | isList(x, λy. True) }

List[Nil.type]  { x : Object | isList(x, λy. isNil(y)) }

Cons[Nil.type]  { x : Object | isCons(x, λy. isNil(y)) }

According to Scala’s type system, these types are connected by the following chain of sub-

typing relations Cons[Nil.type] <: List[Nil.type] <: List[Any] <: Any. Given the denotations

defined in Chapter 3, we see that the subset relation between the denotations of the encodings

is consistent with the given relations.

In the remainder of this sub-section, we will define our type encoding procedure and discuss

some potential extensions to handle type parameter bounds, declaration-site variance, higher-

kinded types, as well as instance checks, cast expressions and field accesses.

Encoding Scala Programs

We will now present our procedure that encodes programs with Scala types into the target

language. At a high level, this encoding is enabled by the mutually recursive type encoding,

expression encoding, typing relation encoding and conversion procedures. We will start by

describing how (non-datatype) trait and class definitions are encoded into datatypes, then
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present the type and expression encoding procedures, and finally define the more involved

typing relation encoding and conversion procedures.

We encode Scala types through refinements of a unique monomorphic Object datatype. This

datatype will feature multiple constructors that are generated based on case class definitions

and types which exist in the target language (called native types hereafter). In order to model

open programs, we introduce a special Open(x : Nat) constructor in the Object datatype that

does not correspond to any type definition in the Scala program. The refinements on which

our type encoding relies are obtained through an encoding of the typing relation, namely an

encoding of what it means for value v to have type τ.

As the considered Scala fragment allows subtyping, our encoding will rely on a conversion

procedure that can convert an expression between different compatible Scala types. Con-

version is necessary, for example, when passing a boolean-typed expression into a position

that expects a value of type Any. Indeed, as Any is encoded into the Object datatype, our type

checking procedure will fail when trying to prove that the boolean expression has type Object.

Similarly to how boxing is leveraged by the Java and Scala compilers, we rely on boxing and

unboxing when converting between native types and compatible Scala types.

Since the Object datatype is monomorphic, type parameters that appear in Scala types will

be erased to the Object datatype during encoding. For function definitions, we replace the

erased type parameters by typing predicate parameters with type Object → Prop which are

leveraged to precisely encode the typing relation. In datatype and case class definitions, the

type parameters are completely erased in order to preserve Scala equality semantics. We will

again rely on the conversion procedure in order to box and unbox expressions that flow in and

out of type parameter positions.

Our aim is to embed code with Scala types into our target language. Hence, if a datatype or

function definition already belongs to the target language, no encoding should be necessary.

We go even further by having our encoding procedure operate at the granularity of type

parameters. Type parameters are partitioned into a subset that should be maintained and

another that will be erased. As an example of this partitioning, let us consider a foldLeft
implementation over the List type previously defined.

def foldLeft[A,B](list: List[A], zero: B, op: (B, A) ⇒ B): B = list match {
case Cons(x, xs) ⇒ foldLeft[A,B](xs, op(zero, x), op)
case Nil ⇒ zero

}

Our encoding procedure will replace the A type parameter by a typing predicate parameter

with type Object→Prop. However, the second type parameter does not appear in a position

that requires a typing predicate and can therefore be maintained, resulting in the following

function definition encoding.
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def foldLeft[B](A: Object ⇒ Prop, list: { x : Object | isList(x, A) },
zero: B, op: (B, { x : Object | A(x) }) ⇒ B): B = list match {

case Cons(x, xs) ⇒ foldLeft[B](A, xs, op(zero, x), op)
case Nil ⇒ zero

}

We have found that this granularity of the encoding procedure allows for Scala code and the

verification language to co-exist in a same program without sacrificing predictability and

scalability of verification. In our presentation of the encoding procedure, we will restrict our

discussion to complete program encodings where all type parameters are erased.

In order to improve readability of the procedures, we will consider that all function and

type definitions feature a single type parameter. One can then extrapolate the procedures

to handle an arbitrary number of type parameters. Furthermore, we allow multi-parameter

variants of function definitions and calls in the target language resulting from encoding. It is

clear that these can be transformed into single-parameter versions through adequate use of

nested sigma-types, pair constructions and pair projections. Finally, we will ignore language

constructs that were introduced in the verification and inner function trees as their encodings

can be straightforwardly derived from the presented procedures.

The various encoding and conversion procedures are given in the context of some program P

in the fragment described above. We define the following four mutually recursive procedures:

1. The type encoding encode : type → type takes a Scala type τ and encodes it into a

corresponding type encode(τ) in the target language.

2. The expression encoding encode : (expr, type, type ) → expr takes a Scala expression e, its

Scala type τ, an expected Scala type τ′ and encodes it into a corresponding expression

encode(e, τ, τ′) which has type encode(τ′). In the following, to improve readability we

denote the encoding encode(e, tpe(e), tpe(e)) by encode(e).

3. The typing relation encoding typed : (expr, type, type ) → expr takes an encoded expres-

sion e (with erased type Object), its Scala type τ, and a Scala type τ′ against which the

expression is being checked, and produces a Prop-typed expression typed(e, τ, τ′) in the

target language that holds when e evaluates to some value with type τ′.

4. The conversion procedure convert : (expr, type, type ) → expr takes an encoded expres-

sion e, its Scala type τ, and a Scala type τ′ to which e should be converted, and produces

an expression convert(e, τ, τ′) whose type corresponds to the encoding of τ′. The conver-

sion procedure is inverse to itself, namely convert(convert(e, τ, τ′), τ′, τ) should produce

an expression that is equivalent to e.

Before defining the encoding and conversion procedures described above, we discuss how

function, datatype, trait and class definitions are encoded. As previously mentioned, the
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function definition type parameter is replaced by a typing predicate parameter. Given the

function type parameter T in the Scala program, the corresponding function definition in the

encoded program will take a typing predicate parameter T : Object→Prop. The type T which

appears within the function signature and body is then precisely encoded into the refinement

type { x : Object | T x }. Given the type and expression encoding procedures described above,

these considerations lead to the following function definition encoding.

encode(def f (m : τm)[T ](x : τ1) : τ2 := e f ) =
def f (m : encode(τm))(T : Object→Prop, x : encode(τ1) ) : encode(τ2) := encode(e f )

It is important to note that the Scala operational semantics are defined for programs where

type parameters have been erased. Hence, the introduced typing predicate parameter will not

affect the result of evaluation. We integrate this insight in our model finding procedure by

omitting the typing predicate parameter in our embedding of function calls. This allows the

underlying SMT solver to ignore the typing predicate when applying the congruence rule for

uninterpreted function symbols.

We avoid introducing typing predicates in the encodings of datatype, trait and class definitions

in order to ensure that equality does not depend on type parameter instantiations and is

consistent with the Scala semantics. We therefore introduce a special type ? which corresponds

to a type erasure. This type will be encoded into the (unrefined) Object type. The encoding of

datatype definitions is then given as follows.

encode(type d [T ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) =
type d(m) := C1(x1 : encode(τ1[T /?])) | · · · | Cn(xn : encode(τn[T /?]))

Trait and class definitions do not lead to corresponding type definitions in the encoded

program. Instead, for each (class c[T ](x : τ1) extends τp ) ∈ P , we generate a constructor

c(x : encode(τ1[T /?])) for the Object datatype. We will see when discussing the typing relation

encoding and conversion procedures that in addition to the encodings given here, these

procedures will rely on synthetic function definitions that are generated based on trait, class

and datatype definitions in the original program.

Type and Expression Encodings

We now present the type encoding procedure. The type encoding distinguishes "native" types

which exist in the target language and Scala types which were introduced in the extended

fragment. The encoding of native types proceeds by recursion while the encoding of Scala

types (as well as type parameters) takes place through a refinement of the Object type.

Native types, namely the unit and boolean types, datatypes, pi- and sigma-types, are handled

by recursively encoding their component types, leading to the following encoding rules.
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encode(Unit) = Unit encode(Boolean) = Boolean encode(d [τ]) = d

encode(d [τ](em)) = d(encode(em)) encode(Σx : τ1. τ2) = Σx : encode(τ1). encode(τ2)

encode(Πx : τ1. τ2) = Πx : encode(τ1). encode(τ2)

The newly introduced Scala types are encoded into the Object type refined by the typing

relation encoding, leading to the following encoding rule.

encode(τ) = { x : Object | typed(x, ?, τ) }

This rule is applied when τ is either a trait type, a class type, the top type, the bottom type, an

intersection type, a union type or a type parameter. The rule further applies to the special

erasure type ? introduced above (we will see that typed(x, ?, ?) always holds).

Let us now consider the expression encoding procedure. The main task of this encoding is

to perform boxing and unboxing of expressions when necessary. It is clear that boxing must

occur when an expression with native type flows into a position that expects the Any type.

Furthermore, as type parameters are erased, boxing and unboxing must occur when data flows

into and out of positions with parametric type.

We first present a set of expression encoding rules that rely solely on the expression shape

to determine which rule should be applied. Similarly to the shape-directed type checking

judgement rules given in Chapter 3, the encoding is pushed down into let-expression bodies

and if- and match-expression branches.

encode(let x := e1 in e2, τ, τ′) =
let x := encode(e1) in encode(e2, τ, τ′)

encode(if (c) e1 else e2, τ, τ′) =
if (encode(c)) encode(e1, τ, τ′) else encode(e2, τ, τ′)

encode(e match { C1(y1) ⇒ e1 · · · Cn(yn) ⇒ en }, τ, τ′) =
encode(e) match { C1(y1) ⇒ encode(e1, τ, τ′) · · · Cn(yn) ⇒ encode(en , τ, τ′) }

We next present a set of encoding rules where the given and expected type exactly match the

type of e (computed through tpe(e)). In other words, these rules are defined for encodings

of the shape encode(e, tpe(e), tpe(e)) (denoted by encode(e)). The rule is then selected by

examining the shape of the given expression.

We start with the function call encoding rules. Recall that type parameters are erased and

typing predicate parameters are introduced in their stead. We therefore generate a typing

predicate lambda by leveraging the typing relation encoding and convert the call argument

to an expression with boxed type parameters. Then the call result is converted back to an

expression with unboxed type parameters. The (omitted) generalized call encoding is similarly

defined by relying on the generalized version of the parameter type τ1.
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(def f (m : τm)[T ](x : τ1) : τ2 := e f ) ∈ P

encode( f (em)[τ](e1)) = convert( f (encode(em))(

λx : Object. typed(x, ?, τ), encode(e1, τ1[T /τ], τ1[T /?])), τ2[T /?], τ2[T /τ])

We then present the case class and datatype constructor encoding rules. Type parameters are

again erased but no typing predicate is introduced in these cases. The constructor argument

is simply converted into an expression with boxed type parameters. Again, the (omitted)

generalized datatype constructor encoding is defined by relying on the generalization of τi .

(class c[T ](x : τ1) extends τp ) ∈ P

encode(c[τ](e1)) = c(encode(e1, τ1[T /τ], τ1[T /?]))

(type d [T ](m) := ·· · | Ci (xi : τi ) | · · · ) ∈ P

encode(Ci (em)[τ](e1)) = Ci (encode(em))(encode(e1, τi [T /τ], τi [T /?]))

The remaining encoding rules with matching type are given below. Note that the encoding

rules for function applications and equalities are slightly more involved as they must ensure

that the expected type is correctly propagated.

encode(x) = x encode(( )) = ( ) encode(true) = true encode(false) = false

encode(πi (e )) = πi (encode(e) ) encode((e1, e2 )) = (encode(e1), encode(e2) )

encode(err[τ]) = err[encode(τ)] encode(λx : τ1. e) = λx : encode(τ1). encode(e)

tpe(e1) = τ2 → τ

encode(e1 e2) = encode(e1) encode(e2, tpe(e2), τ2)

τlub = tpe(e1)u tpe(e2)

encode(e1 ≈ e2) = encode(e1, tpe(e1), τlub) ≈ encode(e2, tpe(e2), τlub)

Finally, we give the encoding rule that performs conversion between the given and expected

types. This rule only applies if no other expression encoding rule does. In particular, the

expression is neither a let-, if- nor match-expression and the types τ and τ′ do not both match

the computed type tpe(e).

encode(e, τ, τ′) = convert(encode(e), τ, τ′)

Typing Relation and Conversions

We now present the typing relation encoding and conversion procedures. For each type, we

discuss the potential synthetic function definitions on which the typing relation encoding and

conversion rules rely, as well as the Object datatype constructors that are necessary for boxing.
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We will start by presenting the typing relation encoding and conversion rules for native types.

As previously mentioned, expressions with native type allow both boxed and unboxed variants.

Given a native type τ, we will generally define an erased version τ? of τ and add a constructor

Box(x : τ?) to the Object datatype. Based on this constructor and the erasure τ? of τ, we can

define the following typing relation encoding and conversion rules.

typed(e, ?, τ) = e match { Box(y) ⇒ typed(y, τ?, τ) _ ⇒ False }

convert(e, ?, τ) = e match { Box(y) ⇒ convert(y, τ?, τ) _ ⇒ err[encode(τ)] }

typed(e, τ, ?) = True convert(e, τ, ?) = Box(convert(e, τ, τ?))

For most native types, we will therefore simply present the corresponding boxing constructor

and rely on the rules given above. Note that the rule for typed(e, τ, ?) does not require a boxing

constructor and applies to any type τ (including Scala types).

For Scala types and type parameters, no unboxed variant exists. Hence, the conversion

procedure between given and erased types is simply the identity function. We therefore have

the following conversion rules when τ is either the erased type ?, a trait type, a class type, the

top type, the bottom type, a union type, an intersection type or a type parameter.

convert(e, τ, ?) = e convert(e, ?, τ) = e

Boolean and unit types. The typing relation encoding and conversion rules for unboxed

boolean expressions are given as follows.

typed(e, Boolean, Boolean) = True convert(e, Boolean, Boolean) = e

The boxed variant of boolean expressions then relies on a Bool(x : Boolean) constructor of the

Object datatype where the erased type corresponding to Boolean remains Boolean.

For the unit type, the typing and conversion rules for unboxed expressions are given similarly to

the boolean case. For boxing, we introduce a Unit(x : Unit) constructor in the Object datatype.

As there exists only a single unit value, there is no need to box it and we can directly convert

between the Unit constructor and () value. The typing relation encoding and conversion rules

for unit expressions are then given as follows.

typed(e, Unit, Unit) = True typed(e, ?, Unit) = e ≈Unit(( ))

convert(e, Unit, Unit) = e convert(e, ?, Unit) = ( ) convert(e, Unit, ?) = Unit(( ))

Sigma-types. The encoding and conversion rules for unboxed expressions are given by re-

cursing down into the pair. Note that special care must be taken to correctly propagate the
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bindings that occur within dependent types.

typed(e, Σx : τ1. τ2, Σx : τ′1. τ′2) =
let x := π1(e ) in typed(x, τ1, τ′1) ∧

let x ′ := convert(x, τ1, τ′1) in typed(π2(e ), τ2, τ′2[x/x ′])

convert(e, Σx : τ1. τ2, Σx : τ′1. τ′2) =
let x := π1(e ) in let x ′ := convert(x, τ1, τ′1) in ( x ′, convert(π2(e ), τ2, τ′2[x/x ′]) )

Boxing of sigma-types relies on a Pair(x : (Object, Object )) constructor and the erased version

of sigma-type Σx : τ1. τ2 is therefore (?, ? ) (recall that ? is encoded into the Object type).

Pi-types. The typing relation encoding for unboxed pi-types relies on universal quantifiers

to precisely encode the relation. A first quantified proposition ensures that the expected

parameter type is a subtype of the given one (by contravariance). A second proposition then

ensures that the result of the function application has the expected result type (by covariance).

These considerations lead to the following encoding rule.

typed(e,Πx : τ1. τ2,Πx : τ′1. τ′2) =
∀x : encode(τ′1). typed(x, τ′1, τ1) ∧
∀x : encode(τ1). typed(x, τ1, τ′1) =⇒

let x ′ := convert(x, τ1, τ′1) in typed(e x, τ2, τ′2[x/x ′])

One should note that these quantifiers significantly limit the scalability of verification. How-

ever, we have found in our experiments that this typing relation encoding rule is only rarely

necessary during verification of Scala programs.

The conversion between unboxed pi-types wraps the expression into a lambda with the

expected parameter type, applies the expression to the converted parameter, and converts the

application back to the expected result type.

convert(e,Πx : τ1. τ2,Πx : τ′1. τ′2) =
λx : encode(τ′1). let x ′ := convert(x, τ′1, τ1) in convert(e x ′, τ2[x/x ′], τ′2)

Note that this conversion rule breaks the function equality semantics presented in Chapter 2.

Indeed, the wrapping operations modify the structure of the encoded lambda. However,

the reference equality semantics which Scala employs for function-typed values are already

inconsistent with our structural equality. We must therefore ensure that no equality checks

occur between function-typed expressions during verification, regardless of the boxing and

unboxing strategy used during type encoding.

Similarly to how sigma-types were boxed, we rely on a Function(x : Object→Object) construc-

tor here and the erased version of Πx : τ1. τ2 is therefore ? → ?.
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Refinement types. The typing relation encoding ignores refinements in the expression type τ,

and when given a refined expected type, the encoding takes the conjunction of the underlying

typing relation and the refinement’s encoding.

typed(e, { x : τ | p }, τ′) = typed(e, τ, τ′)

typed(e, τ, { x : τ′ | p }) = typed(e, τ, τ′) ∧ let x := convert(e, τ, τ′) in encode(p)

Refinement types disapear completely in the simple type system, so conversions can be simply

deferred to the underlying type. Hence, no boxing constructor is required here and conversion

is given by the following rules.

convert(e, { x : τ | p }, τ′) = convert(e, τ, τ′) convert(e, τ, { x : τ′ | p }) = convert(e, τ, τ′)

Datatypes. Consider the definition (type d [T ](m) := C1(x1 : τ1) | · · · | Cn(xn : τn)) ∈ P .

In order to encode the typing relations associated to datatypes, we generate the following

(potentially recursive) function based on the datatype definition. This definition follows from

the denotation of sized datatypes presented in Chapter 3.

def is-d(m : Nat, x : d(m), T : Object→Prop) : Prop :=
m >Zero =⇒ x match { C1(y1) ⇒ typed(y1, τ1, τ1) · · · Cn(yn) ⇒ typed(yn , τn , τn) }

The typing relation encoding for the unboxed sized datatypes that will appear within the field

types τ1 to τn is then given as follows.

typed(e, d [τ](em), d [τ′](e ′m)) = is-d(encode(e ′m), e, λx : Object. typed(x, ?, τ′))

Recall that the syntactic restriction we imposed on datatype definitions in Chapter 3 ensures

that the size expression will decrease in recursive datatypes. Hence, the size parameter m will

also decrease in recursive calls of the is-d function and the function is therefore terminating.

For the intersection datatype, we rely on a quantified proposition, again in accordance with

the denotation presented in Chapter 3, giving us the following encoding rule.

typed(e, d [τ], d [τ′]) = ∀m : Nat. is-d(m, e, λx : Object. typed(x, ?, τ′))

If the datatype definition is inductive (and generalizes), we can instead generate a is-d function

for the intersection datatype which uses the datatype structure as its measure. This allows us

to avoid relying on the expensive quantifier to encode the typing relation.

Let us now discuss the conversion procedures for datatypes. Similarly to boolean expressions,

conversion between unboxed datatypes simply returns the same expression.

convert(e, d [τ], d [τ′]) = e convert(e, d [τ](em), d [τ′](e ′m)) = e
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Now consider the following boxing constructors Box-dm(x :Σm : Nat. d(m)) for sized datatypes

and Box-d(x : d) for intersection datatypes. It is clear that one can define boxing and unboxing

procedures for both sized and intersection datatypes through these constructors. However,

this implies that equality of boxed values will depend on whether the datatype was sized or

not, which is not consistent with the operational semantics. We avoid the issue of sized versus

intersection datatype boxing by providing no boxing and unboxing conversion procedures for

sized datatypes. If the program encoding encounters rules of the shape convert(e, ?, d [τ′](e ′m))

or convert(e, d [τ](em), ?), the encoding simply fails. Recall that definitions which fall within

the verification language require no encoding, so one can write useful programs with sized

datatypes that satisfy this restriction. Boxing of intersection datatypes then relies on the Box-d

constructor given above and the erased version of d [τ] is d [?].

Type parameters. Recall that type parameters are erased in favor of typing predicates. Hence,

for each expected type parameter T that appears in the typing relation encoding, the function

definition encoding will ensure that we have a corresponding variable T in scope with type

Object→Prop. We also define an identity conversion rule when the expected and given types

are both T . These considerations lead to the following encoding and conversion rules.

typed(e, τ, T ) = T e convert(e, T, T ) = e

Trait and class types. Similarly to how the typing relation encoding associated to datatypes

relied on a synthetic function definition, we generate function definitions to encode the typing

relation associated to both trait and class types. Consider some nominal type n[τ′] where

n corresponds to either a trait or class definition. We will generate a (potentially recursive)

function definition with the following signature.

def is-n(x : Object, T : Object→Prop) : Prop

The typing relation associated to the nominal type is then encoded as follows.

typed(e, τ, n[τ′]) = is-n(e, λx : Object. typed(x, ?, τ′))

Note that we rely here on the structure of the Object parameter as the function’s measure. If

the trait or class definition is not inductive, then the is-n function may be non-terminating.

In such cases, we introduce an extra Nat parameter which we make sure decreases in the

recursive calls. We then encode the typing relation through a universal quantifier as in the

case of non-inductive datatype intersections.

Let us now define the body of the is-n function. First consider the case where n corre-

sponds to a trait definition (trait n[T ] extends τp ) ∈ P . Further consider each child definition

ci [Ti ] extends · · · with n[τi ] with · · · in P . Note that ci may correspond to either a trait or

class definition. For each child, we compute the type ci [τ′i ] where τ′i = T if τi = Ti else ?. The
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is-n function is then defined as follows.

def is-n(x : Object, T : Object→Prop) : Prop := ·· · ∨ typed(x, ?, ci [τ′i ]) ∨ ·· ·

Note that although we "forget" certain typing constraints here by replacing them with unkowns,

this definition of is-n actually precisely encodes the typing relation. Indeed, since our traits

have no members, only type parameters that are shared with descendant case classes may

constrain values of nominal trait types.

Now consider the case where we have (class n[T ](x : τ) extends τp ) ∈ P . Recall that the Object

datatype features a constructor n(x : encode(τ[T /?])). The body of the generated is-n function

is then given as follows.

def is-n(x : Object, T : Object→Prop) : Prop :=
x match { n(y) ⇒ typed(y, τ[T /?], τ) _ ⇒ False }

Finally, we introduce a conversion rule for trait and class types. As expressions with trait or

class type are always boxed, conversion is given by the identity function.

convert(e, n[τ], n[τ′]) = e

Top and bottom types. Encoding the typing relation associated to the top and bottom types

is straightforward. Indeed, all values have type Any whereas no value has type Nothing. We

further provide a conversion rule that allows any expression to be widened to the Any type.

This widening of expressions is equivalent to the boxing procedure described above and uses

the conversion rules associated to the erased ? type.

typed(e, τ, Any) = True typed(e, τ, Nothing) = False

convert(e, τ, Any) = convert(e, τ, ?)

Union and intersection types. The typing relation associated to an expected union or inter-

section type is handled through the relevant propositional connective between the underlying

typing relations, leading to the following encoding rules.

typed(e, τ, τ1 ∪τ2) = typed(e, τ, τ1) ∨ typed(e, τ, τ2)

typed(e, τ, τ1 ∩τ2) = typed(e, τ, τ1) ∧ typed(e, τ, τ2)

If the given expression type τ is a union type τ1 ∪τ2 (respectively intersection type τ1 ∩τ2),

then we know by definition of the type encoding that e is a boxed expression, even when both

τ1 and τ2 are native. In order to ensure that the typing relation encoding produces well-formed

expressions, we therefore rely on the erased type ? to signify that we were given some boxed
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expression of unknown type. These considerations lead to the following encoding rules.

typed(e, τ1 ∪τ2, τ′) = typed(e, ?, τ′) typed(e, τ1 ∩τ2, τ′) = typed(e, ?, τ′)

We further introduce conversion rules that box and unbox the given expression when convert-

ing to and from a union or intersection type.

convert(e, τ1 ∪τ2, τ′) = convert(e, ?, τ′) convert(e, τ1 ∩τ2, τ′) = convert(e, ?, τ′)

convert(e, τ, τ1 ∪τ2) = convert(e, τ, ?) convert(e, τ, τ1 ∩τ2) = convert(e, τ, ?)

Extending the Fragment

Let us now discuss certain extensions to the supported Scala fragment and how the encoding

procedures described above can be adapted to handle them. We describe here the addition of

type parameter bounds, declaration-site variance, higher-kinded types, instance checks, casts

and field accesses. We have not yet found a satisfactory encoding strategy for type members

and therefore omit them from the discussion.

Type parameter bounds. Let us assume that each type parameter T has a lower bound τ1

and an upper bound τ2, denoted by T >: τ1 <: τ2. We can assume that all type parameters

are annotated with such bounds as omitted lower, respectively upper bounds can be filled

with the Nothing, respectively Any type. We extend our erased type ? to include bounds as

well, denoted by ? >: τ1 <: τ2. All type parameter erasures (replacing T by ?) that occur in our

encoding and conversion rules will propagate the bounds into the erased type. If a bound was

recursive (namely T v τ1 or T v τ2), we substitute the type parameter by the widened erased

type ? >: Nothing <: Any within the bound to ensure the encoding terminates.

The conversion procedure is unaffected by the type parameter bounds. However, the typing

relation encoding will need to check that the given expression satisfies the upper bound of an

expected erased type, leading to the following rule.

typed(e, τ, ? :> τ1 <: τ2) = typed(e, τ, τ2)

The typing predicate parameters introduced during function definition encoding are also

affected by the bounds as they no longer correspond to unconstrained propositional functions.

Instead, we introduce a refinement on the predicate result type that encodes the type bounds

constraint. The typing predicate parameter then has the following type

{T : Object→Prop | ∀x : Object. typed(x, ?, τ1) =⇒ (T x) ∧ (T x) =⇒ typed(x, ?, τ2) }

Note that this encoding allows for recursive type bounds where T occurs within τ1 or τ2. If

the type bounds are not recursive, then we can avoid the quantifier by refining the Prop result

type instead of the full function type.
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Recall that our encoding procedure can preserve certain datatype and function type param-

eters. We have seen how type bounds can be handled for erased type parameters, and it is

clear that we could simply erase all type parameters with non-trivial bounds in our encoding.

However, the existence of non-trivial bounds alone does not require type parameter erasure.

Indeed, bounds can be encoded into extra parameters T:> : τ1 → T and T<: : T → τ2 which are

then used in the conversion procedure. Similarly to the typing predicate parameters, these

parameters can later be ignored in the model finding procedure.

Declaration-site variance. It turns out that our encoding procedure is (almost) entirely agnos-

tic to declaration-site variance. Indeed, the relation between denotations in the verification

language encoding is consistent with the Scala subtyping relation between traits and classes

with well-formed type parameter variance annotations. In order to extend our procedure with

support for declaration-site variance, it therefore suffices to take into account the variance

annotations in the precise type tpe(·) and typing lattice meet and join computations.

Although the denotation of encoded types is consistent with the Scala subtyping relation, our

type checking procedure is not always able to show this. Consider for example the following

encodings of the List[Any] and List[Boolean] types.

List[Any] → { x : Object | isList(x, λx. True) }

List[Boolean] → { x : Object | isList(x, λx. x match { Bool(y) ⇒ True _ ⇒ False }) }

A type check of the form x : encode(List[Boolean]) ` x ⇓ encode(List[Any]), which is simply

given by the subtyping rule between nominal types in Scala, will need the model finding

procedure to show that the following implication holds

isList(x, λx. x match { Bool(y) ⇒ True _ ⇒ False }) =⇒ isList(x, λx. True)

Such a proof cannot be automatically discharged by our system as it lacks an inductive

invariant. However, the relevant inductive principle can be established based on the definition

of the List type. We can therefore synthesize and encode the following recursive Scala function.

def asList[T1, T2 >: T1](list: List[T1]): List[T2] = list match {
case Cons(x, xs) ⇒ Cons[T2](x, asList[T1, T2](xs))
case Nil ⇒ Nil

}

This definition provides the necessary inductive principle to show subtyping between list

types. The encoding of this definition can be verified by our algorithmic type checker. Let us

now consider the derivation of the following type checking judgement

x : encode(List[Boolean]) ` encode(asList[Boolean,Any](x)) ⇓ encode(List[Any])

The derivation will only rely on the model finding procedure to automatically show that

x match { Bool(y) ⇒ True _ ⇒ False } =⇒ True holds, namely the typing relation associated
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to Boolean implies the relation associated to Any. The type check is thus lifted into the type

parameters similarly to how the Scala subtyping relation handles variance.

Conversion function can be synthesized based on the Scala trait and class definitions that

feature declaration-site variance. During expression encoding, if the given type is subtype of

the expected type and the subtyping relation relies on variance, we can then insert a call to the

corresponding synthesized conversion function. This allows our type checking procedure to

verify the encodings of programs that feature subtyping with variance.

Higher-kinded types. We saw that type parameters (with kind ∗) are encoded into typing

predicates, namely expressions with type Object → Prop. Higher-kinded type parameters

naturally translate to higher-order function types. Hence, a type parameter with kind ∗→∗
will correspond to a typing predicate with type (Object → Prop) → Object → Prop. More

generally, each ∗ kind translates to the type Object→Prop in the kind’s structure.

It is clear that the approach to higher-kinded types given above will rely on boxed higher-

kinded type applications. Let us consider the higher-kinded type application F [τ′]. Our

encoding of function definitions will ensure that we have a higher-order typing predicate F in

our scope. The typing relation encoding is then given by the following rule.

typed(e, τ, F [τ′]) = (F λx : Object. typed(x, ?, τ′)) e

Conversion between higher-kinded type applications is then given by the identity function.

Instance checks. Based on the typing relation encoding, we can further encode instance

checks, namely e.isInstanceOf[τ] expressions. The encoding depends on whether we are in a

propositional context or not. Propositional instance checks, on which specifications can rely,

are encoded through the typing relation encoding. Outside the propositional context, we only

allow instance checks on erased (or compatible) types which are encoded into boolean-typed

expressions based on the set of relevant datatype constructors. Note that this restriction in the

non-propositional context is coherent with Scala’s erased runtime semantics.

Type casts. Let us now consider type casts, namely e.asInstanceOf[τ] expressions. Casts are

encoded through the conversion procedure. In order to ensure that casts are safe, we introduce

a type checking constraint which requires the typing relation encoding to hold between the

expression (before conversion) and the expected target type.

Field accesses. Finally, field accesses can be encoded into match-expressions where the error

term is inserted into all branches which do not correspond to the constructor associated to the

accessed field. Note that this approach can also be applied to fields of specialized datatypes.
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5.5 Imperative Trees

The next level in the tree hierarchy introduces imperative features such as mutable fields,

mutable local variables, as well as while loops. In order to eliminate imperative features, the

transformations rely on an effect system for variable and field mutation. The introduced

imperative constructs and transformations into functional code are described extensively in

[BKKS13, Bla17] and will be omitted here.

In addition to imperative features, these trees introduce a ghost effect system which allows

users to specify portions of the program that will be erased at runtime. The effect system will

ensure that definitions marked with @ghost can only influence the evaluation of other @ghost

definitions. Our system provides a Scala compiler plugin which erases these ghost definitions

in the generated bytecode.

5.6 Method Trees

In this section, we extend our trees with method definitions and calls, as well as open type

hierarchies. We will present transformations which respectively eliminate method definitions

and calls, unsealed traits, super calls to overridden methods, and finally two special specifica-

tion constructs which we respectively call class invariants and laws. As each transformation

eliminates a clearly defined set of trees, we will present the relevant language extensions when

describing the encoding procedure.

5.6.1 Method Lifting

We start by describing the method lifting transformation which transforms methods within

(sealed) trait and class definitions into top-level function definitions. We therefore extend

the language with abstract and concrete method definitions, method calls, immutable and

mutable abstract fields, as well as this expressions. These considerations lead to the following

grammar extensions.

expr ::= ·· · | expr.id [ tparams ]( expr ) | this

mdef ::= fdef | 〈 fannot 〉∗ def id [ tdecls ]( id : type ) : type

| val id : type | var id : type

tdef ::= ·· · | sealed trait id [ tdecls ] extensions tbody

| final case class id [ tdecls ]( 〈 var 〉? id : type ) extensions tbody

tbody ::= ε | { 〈 mdef 〉∗ }

Abstract (immutable and mutable) fields are treated analogously to abstract methods which

must then be overridden by case class fields. In other words, they correspond to required state.
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This behavior is a restriction on the Scala semantics of abstract fields, however we have found

it useful to enable modular reasoning about expected state of abstract types.

As the trait definitions considered in this transformation are sealed, we assume here that all

abstract methods and fields are correctly overridden by concrete definitions. We will see in the

following sub-section how this invariant will be guaranteed by our system when faced with

open type hierarchies with unsealed traits.

The method lifting transformation encodes methods into top-level functions by introducing

an extra parameter for the method receiver and dispatching overrides based on the receiver

type. For dispatch, we rely on instance checks and cast expressions as discussed in the context

of type encoding. For example, consider the following List type definition with an abstract size
method which is defined in the children case classes

sealed trait List[T]
case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

{ def size: Int }
{ def size = 1 + t.size }
{ def size = 0 }

Method lifting would remove the method definitions from the trait and class bodies and lift

them into the following top-level definitions

def List-size[T](thiss: List[T]): Int =
if (thiss.isInstanceOf[Cons[T]]) Cons-size[T](thiss.asInstanceOf[Cons[T]])
else Nil-size[T](this.asInstanceOf[Nil[T]])

def Cons-size[T](thiss: Cons[T]): Int = 1 + List-size[T](thiss.t)

def Nil-size[T](thiss: Nil[T]): Int = 0

Note that we preserve the function definitions which were given in the source (as opposed

to inlining the bodies of Cons-size and Nil-size in List-size). This allows us to both 1) leverage

more precise static dispatches given by the Scala compiler, and 2) increase the modularity of

reasoning in the model finding procedure by "hiding" the precise body of overriding function

definitions behind further unfoldings.

When applying method lifting to a concrete (non-abstract) overridden method, we preserve

the current function’s body as an else branch in the dispatch. Note that if all descendant types

define an overriding method, then the branch may become dead. In such cases, we safely

prune the else branch in order to simplify the resulting program.

5.6.2 Trait Sealing

We now extend our language to support open type hierarchies. We introduce unsealed traits,

final methods, as well as an @mutable annotation which indicates that some (open) a type
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hierarchy allows mutable state. These considerations lead to the following grammar extension.

tdef ::= ·· · | 〈 @mutable 〉? trait id [ tdecls ] extensions tbody

mdef ::= ·· · | 〈 fannot 〉∗ final def id [ tdecls ]( id : type ) : type := fbody

Let us start by considering the meaning of the @mutable annotation. This annotation deter-

mines which open type hierarchies can allow mutable state. In other words, only extensions

of unsealed trait definitions marked as @mutable are allowed to introduce mutable state. This

implies that while unmarked unsealed traits may feature mutable state either through locally

defined mutable fields or due to mutable fields inherited from ancestor traits, their descen-

dants will not be allowed to introduce more mutable state. This allows the user to precisely

specify the scope of mutation which may occur within potential method overrides. Consider

for example the following (unmarked and unsealed) trait definition.

trait MutableBool {
var b: Boolean
def access(): Int

}

We know here that each MutableBool value features exactly two distinct states and calls to

access (for a same instance of MutableBool) can only return at most two different values.

The trait sealing transformation seals open traits by generating a synthetic case class child for

each unsealed trait definition. Consider some (unsealed) trait definition trait t [τt ] extends τp .

Further consider the set of abstract (immutable or mutable) field definitions in t and its

ancestors val/var x1 : τ1, · · · ,val/var xn : τn . We assume here that each type τi is adequately

substituted with the relevant type parameter instantiations; hence, given value v with type

t [τt ], the field access v.xi has type τi . Finally, consider a field val/var r : Nat that is mutable iff

the trait was marked with the @mutable annotation. We then generate a case class definition

with the following signature that represents unknown trait extensions.

final case class Open-t [τt ](〈var〉? r : Nat, 〈var〉? x1 : τ1, · · · , 〈var〉? xn : τn) extends t [τt ]

This case class definition represents unknown trait extensions. The fields x1, · · · , xn concretize

the state which was required by parent traits. The field r : Nat ensures that the open type t [τ]

allows infinitely many distinct values. Note that if the trait was marked @mutable, then its

children can introduce arbitrary state extensions. We therefore rely on the unbounded domain

of the mutable field var r : Nat to encode this property.

The final step in the sealing procedure consists in introducing suitable method overrides.

Unsealed trait extensions may introduce arbitrary overrides of non-final methods. Hence,

we introduce method overrides in the Open-t class definitions for all non-final methods

in ancestor traits. In order to allow arbitrary implementations, we treat these methods as
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uninterpreted and rely on a special non-deterministic construct for their body. It is important

to note here that these special non-deterministic functions require dedicated support at the

model finding level (calls are unblocked without introducing new clauses during unfolding).

5.6.3 Super Calls

We further extend our expression grammar with the super keyword which allows calling

(overridden) methods of parent classes. As the method lifting transformation replaces the

body of the overridden method with the dispatching expression, this transformation duplicates

(relevant) concrete overridden methods. Super calls are then dispatched to the function’s

copy which is no longer considered overridden. In order to avoid having the trait sealing

transformation introduce overrides for the synthetic super methods, we mark these as final.

For example, let us consider the following Scala type hierarchy involving a super call:

trait Parent { def method(x: Int): Int = 2 * x }
trait Child extends Parent { override def method(x: Int): Int = 2 * super.method(x) }

The following three function definitions will be generated by applying the super call and

method lifting transformations. (Note that the trait sealing transformation would in addition

introduce synthetic overrides for both Parent.method and Child.method.)

def Parent-method(thiss: Parent, x: Int): Int =
if (thiss.isInstanceOf[Child]) Child-method(thiss.asInstanceOf[Child], x) else 2 * x

def Parent-super-method(thiss: Parent, x: Int): Int = 2 * x

def Child-method(thiss: Child, x: Int): Int = 2 * Parent-super-method(thiss, x)

5.6.4 Class Invariants

The method trees further introduce a special specification construct which we call class

invariants. This construct allows users to specify invariants that will hold for all instances of

a given trait or class type. Syntactically, a class invariant is specified in a trait or class body

through a require statement with a Prop-typed argument.

tbody ::= ·· · | { require( expr ) 〈 mdef 〉∗ }

The first encoding step consists in lifting the proposition into a parameterless method def-

inition with signature def invariant() : Prop. This allows the method lifting transformation

to dispatch invariants of descendant types. However, class invariants in descendant type

definitions do not replace the ancestor invariant but are taken as a conjunction. Hence, given
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an invariant require(p), we generate the following invariant method.

def invariant() : Prop := super.invariant() ∧ p

If the invariant was given in a root type definition, we omit the super call. In order to ensure

that method lifting correctly dispatches the invariant methods, we generate invariant methods

that simply return the True proposition in root type definitions if necessary (namely if the type

definition does not feature a class invariant but has a descendant which does).

The second encoding step then consists in refining all occurrences of types which feature a

class invariant (or for which an ancestor or descendant does) by the relevant invariant method

call. In other words, the type t [τ] will be replaced by { x : t [τ] | x.invariant() }. As the method

lifting transformation introduces new receiver parameters, relevant type occurrences may be

added to the program at this stage. This second step is therefore partially performed by the

method lifting transformation which will introduce a refined receiver parameter.

It is important to note here that since class invariants are lifted into method definitions,

straightforwardly applying the above rule would result into lifted invariant methods with the

following signature: def invariant(thiss : { x : A | invariant(x) }) : Prop. It is clear that our type

checking procedure will fail to validate this definition due to the recursion in the parameter

type. A similar issue appears for function or method definitions which are (transitively) called

from the class invariant as they may introduce invalid mutual recursion between the invariant

definition and injected refinements.

In order to avoid unsupported mutual recursion as a result of refinement injection, we skip

definitions which are (transitively) called from the invariant (as well as the invariant method

itself). It is important to note that this approach introduces a somewhat unexpected de-

pendency between the specifications and the call-graph. However, we have found that this

dependency is only rarely relevant in practice.

5.6.5 Laws

Before discussing laws, the final language construct introduced by the method trees, let

us discuss the implications of refinements in abstract methods result types. Consider, for

example, the following Monoid definition.

trait Monoid[T] {
def unit: T
def combine(x: T, y: T): T

}

In addition to providing concrete unit and combine definitions, a valid monoid implementation

should satisfy the three monoid laws. In other words, given a monoid instance m and values

a,b,c, the following properties must hold.
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associativity : m.combine(a, m.combine(b, c)) ≈ m.combine(m.combine(a, b), c),

left identity : m.combine(m.unit, a) ≈ a,

right identity : m.combine(a, m.unit) ≈ a.

These properties can be specified in the Monoid type definition through the use of abstract

methods with refined result types, leading to the following definition.

trait Monoid[T] {
def unit: T
def combine(x: T, y: T): T

def associativity(x: T, y: T, z: T):
{r : Unit | combine(x,combine(y,z)) ≈ combine(combine(x,y),z) }

def left_identity(x: T): {r : Unit | combine(unit,x) ≈ x }

def right_identity(x: T): {r : Unit | combine(x,unit) ≈ x }

}

One can then view the concrete implementation of these abstract methods as the proof that

the property indeed holds for the given concrete monoid.

Laws allow users to specify such properties in a natural manner. A law is a (concrete) method

definition in some trait marked with an @law annotation. Such methods correspond to

syntactic sugar for defining abstract methods with refined result types. We allow laws to

be either boolean- or Prop-typed and insert the necessary conversions during encoding.

For example, the associativity method defined in the previous example can be given as the

following law.

@law def associativity(x: T, y: T, z: T): Boolean =
combine(x, combine(y, z)) ≈ combine(combine(x, y), z)

Law overrides correspond to proofs of the corresponding abstract law methods. The encoding

of these proof methods ensures that the type checking procedure will check the implication

between the given proof and the specified property. For example, consider the following proof

definition of associativity in the context of a List monoid implementation with append.

�nal case class ListMonoid[T]() extends Monoid[List[T]] {
· · ·
override def associativity(x: List[T], y: List[T], z: List[T]): Boolean = x match {
case Cons(l, ls) ⇒ associativity(ls, y, z)
case Nil() ⇒ true

}
}

The encoding procedure will transform this definition into the following method which will be
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successfully verified by the type checking procedure.

override def associativity(x: List[T], y: List[T], z: List[T]):
{r : Unit | combine(x,combine(y,z)) ≈ combine(combine(x,y),z) } = x match {
case Cons(l, ls) ⇒ let u = associativity(ls, y, z) in ()
case Nil() ⇒ ()

}

Empirically, we have found that many law proofs turn out to be trivial in class implementations.

In order to reduce the burden on the user and improve code readability, we allow proofs (i.e.

law overrides) to be omitted and generate a default (trivial) proof in such cases.

5.7 Inner Class Trees

These trees introduce support for local type definitions and anonymous classes. Analogously

to how inner functions are lifted into top-level definitions, inner classes (and traits) are lifted

into top-level class (and trait) definitions. In order to preserve the context under which the

type definition occurs, we introduce extra type parameters and (concrete or abstract) fields

in the lifted definition. Type definitions may close over local immutable variables, however

we disallow closure over local function definitions and var-bindings. If the local class (or

trait) definition refers to methods or fields of an enclosing class, then we introduce an outer

reference field to the lifted definition through which the method or field can be accessed.

It is important to note here that, as with first-class functions, the equality semantics given by

this encoding do not line up with those of the Scala language. Indeed, Scala equality for inner

classes ignores potential outer references. It is therefore important to ensure that the program

does not rely on equality between values of such types.

5.8 Specification Trees

Although the type system presented in Chapter 3 relies on refinement types for specifica-

tion, the Scala language features no such construct. The specification trees introduce Scala-

compatible constructs which allow specifying properties of interest. These constructs are then

desugared into the dependent types supported by our type checking procedure.

5.8.1 Contract Desugaring

We introduce contract-style specifications through require, ensuring and assert statements.

The require statement corresponds to a precondition, ensuring to a postcondition, and assert
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to an assertion. These considerations lead to the following grammar extensions.

fbody ::= ·· · | { 〈 require( expr ); 〉? 〈 decreases( expr ); 〉? expr } ensuring( λid. expr )

expr ::= ·· · | assert( expr ) in expr

We further provide a shorthand { e }.holds which corresponds to { e } ensuring(λb. b). These

specification statements constitute syntactic sugar over refinement types. Let us first discuss

the transformation of require and ensuring statements. The require statement introduces a

refinement on the parameter type, and the ensuring(λr. p2) defines a refinement on the result

type resulting in the following definition encoding.

def f [τ f ](x : τ1) : τ2 := { require(p1); e f } ensuring(λr. p2)  
def f [τ f ](x : { x : τ1 | p1 }) : {r : τ2 | p2 } := e f

Assertions allow us to check a proposition and then introduce it into the typing context. Given

the type annotated let-expression discussed in Chapter 3, the assert statement is therefore

encoded as follows.

assert(p) in e  let u : {u′ : Unit | p } := ( ) in e

5.8.2 Partial Functions

Thanks to propositional quantifiers, the contracts described above allow specifying certain

properties about first-class functions. However, these constructs do not allow us to specify

partial functions, namely pi-types where the input domain is restricted. We introduce a special

type τ1 7→ τ2 which behaves similarly to a function type of the form { x : τ1 | p } → τ2.

The τ1 7→ τ2 type is syntactic sugar for a PartialFunction[τ1,τ2] class type. The corresponding

case class definition features two fields, namely a pre field which specifies the domain over

which the partial function is defined, and an f field which defines the partial function.

final case class PartialFunction[A,B ](pre : A →Prop, f : { x : A | pre x } → B )

This class definition allows us to specify the domain over which a first-class function must be

defined. For example, the parameter g : { x : τ1 | p } → τ2 can be specified by combining the

declaration g : τ1 7→ τ2 and precondition require(∀x : τ1. (p x) =⇒ (g .pre x)).

In order to construct instances of type τ1 7→ τ2 in a natural manner, we introduce the following

lambda syntax λx : τ1. { require(p); e } which is then desugared into the partial function

PartialFunction[τ1,τ2](λx : τ1. p, λx : { x : τ1 | p x }. e). We similarly desugar Scala partial

functions and lambdas whose body is a call to some named function with a precondition.

(Note that we rely on a Scala implicit conversion in order to convert lambdas which have type

τ1 → τ2 into expressions with type τ1 7→ τ2 in the Scala type checker.)
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In this chapter, we present our verification system based on the model finding, type checking

and encoding procedures presented in Chapters 1 to 5. Our system is split into two main

components, namely 1) Inox, a verification condition solver based on the model finding

procedure, and 2) Stainless, a program verifier which encodes and type checks Scala programs

by relying on Inox to handle verification conditions. Both projects are implemented in Scala.

Inox and Stainless were developed as a redesign and extension of the Leon verification system.

We will describe the functionality and interface of each component and present certain

important design decisions.

In order to showcase the practicality of our system, we will then present a series of verification

benchmarks. These benchmarks range over functional datastructure definitions, higher-

order collection APIs, algebraic properties and mathematical truths. The benchmark set

makes use of both object-oriented and functional features of the Scala language and explores

different approaches to verification supported by our tools. Our total benchmark set, including

regression tests, comprises over 15K lines of Scala code and verifies in under 10 minutes.

6.1 Inox Solver

The model finding procedures presented in Chapters 1 through 4 are implemented in the

Inox solver. The solver is developed as a library whose main task is to discharge verification

conditions. Inox features a programmatic API (which Stainless uses), a TIP [CJRS15] frontend

for the fragment without dependent types, and a frontend which performs Hindley-Milner

type inference on the verification language. Inox features multiple SMT solver backends

such as Z3 [dMB08] (also through a native interface [KKS11]), CVC4 [BCD+11] and Princess

[Rüm08] (which gives us an option to have a JVM-only software stack). Solving can also be

performed in portfolio mode in order to fully leverage the strengths of each SMT solver.

The Scala file and line counts for the Inox tool broken down by directory are given in Figure 6.1.

The embeddings and unfolding procedure implementations (Section 6.1.1) reside in the
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Directory Files LoC Directory Files LoC
ast 19 6.4K tip 6 1K
evaluators 6 1K transformers 10 1.3K
parser 42 4.9K utils 27 2.7K
solvers 51 11K Tests 37 5.1K

Total 198 33.4K

Figure 6.1 – Scala file and line count statistics for Inox broken down by (main) directory. These
statistics omit documentation and regression tests given in the TIP format [CJRS15].

solvers directory, and the abstract syntax trees (Section 6.1.3) are defined in ast. It is clear

given the size of the directories that these features form the main complexity of the Inox

tool. The third large component defined in the parser directory is the Hindley-Milner based

frontend which includes an elaboration procedure and typing constraint solver.

6.1.1 Proofs and Counterexamples

Inox relies on the unfolding procedure to perform both counterexample and proof search. At

each unfolding step i , we check satisfiability of Φi . If the clause set is unsatisfiable, then we

have found a proof. Otherwise, we check satisfiability ofΦi ∪blocki ∪modeli (recall blocki and

modeli from Chapter 4). If a model is found, then the procedure terminates. Otherwise, we

proceed with the next unfolding step. A visual representation of this process can be found in

Figure 6.2. The procedure can be viewed as alternatively under- and over-approximating the

propositional truth relation and each unfolding step incrementally refines the approximations.

Φ0 Φ1 Φ2 · · ·

Φ0 ∪b0 Φ1 ∪b1 Φ2 ∪b2

Unsat? Unsat? Unsat?Sat? Sat? Sat?

Figure 6.2 – A sequence of alternating satisfiability checks in the unfolding procedure where bi

corresponds to the clause set blocki ∪modeli .

The unfolding procedure described in the first half of the thesis computes embeddings (with

freshened variables) at each unfolding step (Sections 1.4, 2.3 and 3.4). Function and lambda

bodies will therefore often be embedded multiple times during unfolding. Our implementation

performs staged embedding by computing a unique embedding for each (typed) function and

lambda definition and then freshening constants in the resulting SMT term and clause set.

Inox further implements the incremental lambda embedding strategy described in 2.6.1 and

the lambda tracking optimization discussed in 2.6.2.

Inox features an interpreter which implements the operational semantics of our language.

It further supports an (incomplete) checker for ground propositional truth relations. This
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checker relies on the interpreter for True(·) propositions and invokes the model finding proce-

dure when dealing with quantifiers. Inox finally features a denotation checker that verifies

whether a value belongs to some (ground) type. The denotation checker encodes the reducibil-

ity relation into some (ground) proposition and then relies on the propositional truth checker.

While the propositional truth and denotation checkers are incomplete, they are both sound.

The propositional truth and denotation checkers allows the solver to validate potential coun-

terexamples and mark spurious invalid (or unverified) counterexamples when given verifica-

tion conditions in fragments where counterexample finding is unsound. Furthermore, given

the alternating procedure described above, in the case where Φi is satisfiable (and therefore

the proof check failed), then the SMT solver can report a satisfying model. Although this model

is not guaranteed to constitute a valid counterexample, we can apply the validation procedure

to potentially terminate early. However, as validation can sometimes be an expensive process,

this approach is not enabled by default.

6.1.2 Additional Theories

The Inox input language extends the verification language with certain constructs which

correspond to SMT theory symbols. These allow users to leverage the theory solvers in

the underlying SMT solvers and improve automation in the model finding procedure (in

comparison with equivalent recursive definitions).

Each theory is associated to a (possibly parametric) type in the extended verification language.

For each such type, the language then features a set of native operations which are embedded

into theory symbols at the SMT level. The set of types (and associated operations) for which

Inox provides specific support is given as follows.

BigInt : This type corresponds to the theory of integers with linear arithmetic. We further

allow non-linear arithmetic when relying on compatible SMT solver backends (e.g. Z3).

Int〈0−9〉+ : This family of types corresponds to the (size parametric) bitvector theory.

String : This type corresponds to the theory of character strings with length, substring and

concatenation operations. The SMT solver backends support the theory of 8-bit char-

acter strings whereas we are interested in the JVM 16-bit character strings for Scala

compliance. Our embedding and extraction procedures therefore encode and decode

strings literals and operations such that the 16-bit semantics are guaranteed.

Set[τ] : This type corresponds to the parametric theory of finite sets.

Bag[τ] : This type corresponds to the parametric theory of finite multisets.

Map[τ1,τ2] : This type corresponds to the parametric theory of maps with finite domain,

namely the theory of SMT arrays.
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Note that not all SMT solver backends support this set of theories. For example, only Z3

features support for multisets. We introduce a set of theory encoders which translate theory

symbols into functions and datatypes annotated with useful specifications for proof derivation.

These encodings significantly reduce the automation provided by the SMT solver, however

counterexample finding typically remains tractable.

It is important to note here that since sets, multisets and maps can contain other values, the

reducibility relation embedding and unfolding procedure presented in Chapter 3 are extended

to handle these types as well.

6.1.3 Extensible Tree Definitions

A common approach when dealing with programs in the context of compilers, static ana-

lyzers or verifiers is to introduce some abstract syntax tree definition which represents the

considered types, expressions and definitions. Based on these trees, various (higher-order)

transformation operations are implemented such as pre- and post-traversals, folds, etc. Inox

provides extensible tree definitions which are designed for type-safe transformations between

different tree variants.

The abstract syntax trees are defined as inner types within a Trees trait, as shown in Figure 6.3.

The Expr, Type and De�nition traits are left unsealed in order to allow extensions of the Trees
type to introduce new AST nodes. Nodes therefore have path-dependent types prefixed by

some instance of the Trees trait. For each new tree definition, we define a corresponding tree

deconstructor (see Figure 6.4) which allows decomposing and reconstructing nodes across

different tree definitions. This deconstructor then enables us to define a generic transformer

trait (Figure 6.5) from any tree definition to another. Programs are represented through a

Symbols type which contains mappings from identifiers to function and type definitions. The

Symbols type is also defined within the Trees trait and has access to the path-dependent AST

node definitions. These APIs allow us to define the tree hierarchy described in Chapter 5 with

the Inox trees as the root verification language.

The abstract syntax tree and program definitions are immutable. This allows our system to

behave predictably in the presence of both encoding and decoding transformations. Fur-

thermore, this property enables safe concurrent tree manipulations. The immutability of

trees implies that transformations must perform tree copying operations which come at the

price of lower performance. However, we have found that the cost associated to tree copying

in the Stainless encoding pipeline is negligible in comparison to the time spent performing

satisfiability checks in the underlying SMT solvers.

6.1.4 Simplifier

Inox features a simplification procedure that is aimed at improving counterexample (or proof)

finding performance. The main goal of the procedure is therefore to eliminate function calls
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trait Trees {
trait Expr
case class Let(id: Identi�er, expr: Expr, body: Expr) extends Expr
· · ·
trait Type
case class Re�nementType(id: Identi�er, tpe: Type, pred: Expr) extends Type
· · ·
protected def deconstructor(other: Trees): TreeDeconstructor {
val s: Trees.this.type
val t: other.type

}
}

Figure 6.3 – (Partial) Inox trees definition API. In extensions of the Trees trait, the deconstructor
method must generate a TreeDeconstructor which is defined for the lower bound between the
current tree definition and the given one.

trait TreeDeconstructor {
protected val s: Trees
protected val t: Trees

def deconstruct(expr: s.Expr): (s.ExprComponents, (t.ExprComponents) ⇒ t.Expr)
def deconstruct(tpe: s.Type): (s.TypeComponents, (t.TypeComponents) ⇒ t.Type)

}

Figure 6.4 – Inox tree deconstruction. ExprComponents and TypeComponents correspond
to the constitutent identifiers, expressions, types, and modifiers of the given expression or
type prefixed with either s or t. Hence, the deconstruct methods allow us to decompose and
reconstruct AST nodes while passing from one tree definition to another.

trait TreeTransformer {
protected val s: Trees
protected val t: Trees

def transform(expr: s.Expr): t.Expr
def transform(tpe: s.Type): t.Type

}

Figure 6.5 – (Partial) Inox Tree transformation API. As the input and output type prefixes are
distinct, the transformation function signatures ensure that all children of the input AST node
must be correctly transformed (should the transformed node depend on them).
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and applications from the considered property (and program) in order to reduce the exponen-

tial blowup during unfolding. However, we also want to ensure that no relevant information is

lost during simplification to avoid unexpected proof failures. The main transformations we

apply are let-expression elimination and call merging.

Let us first discuss let-expression elimination in the context of some expression let x := e1 in e2.

If x 6∈ FV (e2) and we can establish that the embedding of e1, as well as the entailed unfoldings,

will not impact satisfiability of the Φi clause sets, then we can replace the let-expression with

e2. Note that this applies both in the case of type annotated and unannotated let-expressions.

The satisfiability preservation check is performed by determining whether evaluation of e1

may encounter an error term, a function application, or a function call with refined result

type. (Recall that the pi-type reducibility relation will be unfolded for applications and typing

derivations associated to function calls are assumed by the unfolding procedure.)

Call merging is performed when (type compatible) calls to a same function appear in multiple

branches of an if- or match-expression. In such cases, the call is lifted outside the branching

expression and the if- or match-expression is pushed down into the call argument. For

example, the if-expression if (c) f [τ](e1) else f [τ](e2) would be simplified into the single call

expression f [τ](if (c) e1 else e2). This transformation significantly reduces the exponential

blowup of unfoldings when calls occurring in a recursive function definition can be merged.

6.2 Stainless Verifier

The type checking and encoding procedures presented in Chapters 3 and 5 are implemented

in the Stainless verifier. Stainless relies on either the Scala 2.12 or Scala 3 compilers to parse

and type check (according to Scala’s type system) the input programs, then encodes them into

the verification language supported by Inox, and finally algorithmically verifies the encoded

programs by discharging verification conditions through Inox.

inox

core

scalac

dotty-frontend

dotty

scalac-standalone scalac-plugin

sbt-plugin

Inox

Stainless

Figure 6.6 – Dependenty graph between Stainless sub-projects.

The Stainless system is split into multiple sub-projects as shown in Figure 6.6. The core

project defines the encoding and type checking procedures. The scalac project uses the Scala
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2.11.12 compiler as a frontend, while the dotty-frontend and dotty projects rely on the

Dotty (Scala 3) compiler. Stainless is designed as a compiler phase, and the scalac-plugin

and sbt-plugin projects provide an sbt plugin which allows easy integration of Stainless

into Scala projects. Finally, the scalac-standalone project allows Stainless to be built as

a self-contained jar for simpler installation and prototyping. The Stainless implementation

features around 30K lines of Scala code, out of which over 20K reside in the core project.

6.2.1 Parallelism and Caching

In order to enable parallelism in our verification system, we consider each type or function

definition in the original Scala program and generate a sub-program that contains its minimal

set of (transitive) dependencies. We can then parallelize both the encoding and verification

procedures at the level of definitions in the original Scala program by considering each sub-

program independently. Note that we therefore only verify the definition(s) that correspond to

the original Scala definition in the encoded sub-program (and not the full sub-program). As

each definition in the original Scala program is verified (in the context of its own sub-program),

all definitions in each sub-program end up being verified. It is important to note that certain

transformations will introduce new definitions when encoding the original Scala definition.

We consider these definitions to be derived and they must be verified as well.

When verifying a definition in the original Scala program, the associated sub-program must

be entirely encoded. As programs are often structured in a modular manner where smaller

building blocks are assembled into more complex features, many sub-programs will contain

shared definitions. Most encoding transformations are compositional and rely only on the

dependencies of a given definition. Hence, the encoding of shared definitions will often lead

to duplicated effort. We alleviate this issue by introducing lock-free caches in key points of

the transformation pipeline that allow sharing transformation results of shared definitions.

We rely on precise and minimal cache key computations tailored to each transformation in

order to maximize the cache hit rate. Note that these caches are not meant to be persisted and

therefore do not require serialization support.

Stainless features persistent caching both at the level of extracted sub-programs and veri-

fication conditions. These caches rely on a canonization operation which normalizes the

variable names in the program or verification condition, as well as a serialization procedure

which allows the cache keys to be persisted. In order to reduce the cache size, we only store

programs, respectively verification conditions, for which type checking, respectively solving,

was successful. This allows us to reduce the size of cached results and avoid keys which will

have low hit rates once the faulty snippet has been fixed.
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6.2.2 Verification-Aware Libraries

Stainless provides a set of libraries containing useful type and function definitions. These

include collections (see Appendix A for the List type definition), common math operations, and

utilities which empower verification. The libraries are designed such that both the verification

and unfolding procedures can effectively handle the provided definitions.

@inline implicit def any2EqProof[A](x: ⇒ A): EqProof[A] = EqProof(() ⇒ x, () ⇒ x)

case class EqEvidence[A](x: () ⇒ A, y: () ⇒ A, evidence: () ⇒ Boolean) {
require(x() == y() && evidence())

@inline def |(that: EqProof[A]): EqProof[A] = {
require(evidence() =⇒ (y() == that.x()))
EqProof(x, that.y)

}

@inline def |(that: EqEvidence[A]): EqEvidence[A] = {
require(evidence() =⇒ (y() == that.x()))
EqEvidence(x, that.y, that.evidence)

}
}

case class EqProof[A](x: () ⇒ A, y: () ⇒ A) {
require(x() == y())

@inline def ==|(proof: ⇒ Boolean): EqEvidence[A] = {
require(proof)
EqEvidence(x, y, () ⇒ proof)

}

def qed: Boolean = (x() == y()).holds
}

Figure 6.7 – Stainless equational reasoning library designed for effective simplifications.

Consider for example the equational reasoning library given in Figure 6.7. This library allows

users to write equational proofs of the following form

(a ==| proofa==b | b ==| proofb==c | c).qed

where proofa==b constitutes evidence that a is indeed equal to b (and likewise for proofb==c).

The library is constructed in such a way that each equation is verified independently, and the

Inox simplifier then collapses the sequence of equations into a single end-to-end equation.

This allows scalable equational reasoning by ensuring the typing context is not polluted with

irrelevant evidence expressions.
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6.3 Evaluation

We have evaluated the Stainless verification system on a set of verification tasks. These tasks

include verifying functional datastructure definitions, sorting algorithms, interpreters and

higher-order collection APIs. We have further used Stainless to prove certain categorical laws

and mathematical truths. We summarize these tasks in Figure 6.8. The table displays the size

of given programs and time spent during type checking. In order to showcase the effectiveness

of the measure inference transformation, we further provide the number (and type) of inferred

measures and the time spent during measure inference.

It is important to note here that the implementation of Stainless and Inox do not (yet) fully

reflect the procedures presented in this thesis. For example, the type checking procedure is

currently implemented as a simple forward pass through function bodies which generates

verification conditions for key program constructs. However, we expect the procedures to be

comparable on the presented benchmarks.

We now discuss certain selected benchmarks from Figure 6.8.

GodelNumbering : In this benchmark, we show that the pairing function 2x (2y +1)−1 con-

stitutes a bijection between the natural numbers and pairs of natural numbers. We

define the natural numbers through a Nat datatype and prove a series of lemmas about

linear and non-linear arithmetic. This benchmark makes extensive use of the equational

reasoning library described above. The full benchmark is provided in Appendix B.

EuclidGCD and EuclidEGCD : We show in EuclidGCD that Euclid’s algorithm computes the

greatest common divisor, and in EuclidEGCD we show that applying Euclid’s extended

algorithm on the natural numbers a,b ∈ N gives us a triplet (r, x, y) ∈ N3 such that

ax +by = r and r divides both a and b. Both benchmarks require proving some extra

lemmas about non-linear division and remainders.

ListMonad and OptionMonad : In these benchmarks, we proved that the monadic laws hold for

the List and Option monads. It is interesting to note that In order to prove the �atMap
associativity property for the List type, we must perform two separate inductions. This

leads to the property statement and proof given in Figure 6.9.

ConcRope and ConcTree : These benchmarks model operations from the Scala data parallel

library [PO15] and were first presented in [MKK17] where termination was assumed.

In addition to our case studies and benchmarks, Stainless has been applied to smart contract

verification [JH] and modeling of actor systems [Rue18]. These projects extend the Stainless

input language with additional domain-specific constructs and introduce new transformations

which encode them into the dependently-typed verification language. Inox has further been

used (independently of Stainless) as a backend for experimental integration of refinement

types in the Scala type checker [SK16] and as a default tactic for theorem proving [Ede].
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Operation LoC Funs Rec Funs Measures Dec. Infer (s) Check (s)
Ackermann 10 1 1 1 lex 0 1.0 0.6
AliasPartial 16 4 1 1 sum 0 0.4 0.0
AmortizedQueue 125 15 4 4 arg 0 0.2 3.5
AnyDown 21 1 1 1 lex 0 0.8 0.0
AssociativeFold 104 10 7 7 arg 0 0.1 1.3
AssociativeList 51 6 5 5 arg 0 0.1 0.7
BalancedParentheses 388 38 12 12 arg 0 9.1 14.0
BinarySearchTrees 79 8 5 5 arg 0 0.9 3.0
ChurchNum 21 5 0 - - 0.0
ConcRope 468 30 13 1 lex/3 sum/9 arg 0 159.7 27.9
ConcTree 320 24 12 2 sum/10 arg 0 38.2 12.2
ConstantPropagation 268 17 10 3 sum/7 arg 0 41.5 3.9
CountTowardsZero 16 1 1 1 sum 0 0.3 0.5
EuclidEGCD 82 9 2 1 arg 1 8.9 2.6
EuclidGCD 203 23 2 1 arg 1 4.0 7.7
GodelNumbering 420 46 25 2 sum/20 arg 3 14.1 24.6
IndirectHO 16 2 1 1 sum 0 0.4 0.0
IndirectIntro 24 3 2 1 lex/1 sum 0 1.5 0.4
Indirect 20 3 1 1 sum 0 0.5 0.0
InsertionSort 69 7 6 1 sum/5 arg 0 0.7 0.9
Knapsack 71 5 4 1 sum/2 arg 1 1.4 0.5
LeftPad 90 9 4 2 sum 2 5.2 4.4
ListMonad 81 12 5 1 lex/4 arg 0 3.5 1.2
ListOperations 104 17 9 1 lex/8 arg 0 6.5 1.1
List 887 95 63 4 sum/59 arg 0 4.9 10.6
McCarthy91 24 2 1 0 1 - 0.7
MergeSorts 199 21 17 4 sum/12 arg 1 9.4 4.3
OddEvenComplex 26 3 2 0 2 - 0.8
OddEvenMoreComplex 20 2 2 0 2 - 0.7
OddEven 34 4 4 4 sum 0 0.5 0.4
OptionMonad 49 9 0 - - 0.7
QuickSorts 219 25 15 5 sum/8 arg 2 39.5 10.8
ReachabilityChecker 502 29 15 1 sum/7 arg 6 38.0 25.0
RedBlackTree 99 11 6 6 arg 0 2.1 3.7
StableSort 115 11 6 1 lex/5 arg 0 20.7 2.0
ToChurch 26 5 1 1 sum 0 0.5 0.2
UpDown 47 4 2 2 sum 0 0.4 0.4
XPlus2N 18 4 1 1 sum 0 0.6 0.3
Total 5332 521 268 245 22 415.6 171.6

Valid Regression Tests 13015 270.0 256.0
Invalid Regression Tests 3063 - 42.0

Figure 6.8 – Summary of Stainless evaluation results. For each benchmark, we give the total
lines of code (LoC), the number of function definitions (Funs) and how many are recursive
(Rec Funs), the number and type of inferred measures, the number of user-provided decreases
statements (Dec.), and the respective measure inference and verification times (in seconds).
The inferred measures are either [lex]icographic, a [sum] of argument sizes, or a specific
[arg]ument. Note that the valid regression tests line count includes certain benchmarks from
the list above. Further note that the invalid regression tests ensure that verification does
indeed fail when attempting to prove invalid properties.
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def associativity[T,U,V](list: List[T], f: T ⇒ List[U], g: U ⇒ List[V]): Unit = {
associativity_induct(list, Nil(), Nil(), f, g)

} ensuring { _ ⇒
�atMap(�atMap(list, f), g) ≈ �atMap(list, (x: T) ⇒ �atMap(f(x), g))

}

def associativity_induct[T,U,V](
list: List[T], �ist: List[U], glist: List[V], f: T ⇒ List[U], g: U ⇒ List[V]): Unit = {
glist match {
case Cons(ghead, gtail) ⇒ associativity_induct(list, �ist, gtail, f, g)
case Nil() ⇒ �ist match {
case Cons(fhead, ftail) ⇒ associativity_induct(list, ftail, g(fhead), f, g)
case Nil() ⇒ list match {
case Cons(head, tail) ⇒ associativity_induct(tail, f(head), Nil(), f, g)
case Nil() ⇒ ()

}
}

}
} ensuring { _ ⇒
append(glist, �atMap(append(�ist, �atMap(list, f)), g)) ≈
append(append(glist, �atMap(�ist, g)), �atMap(list, (x: T) ⇒ �atMap(f(x), g)))

}

Figure 6.9 – Proof of flatMap associativity for the Listmonad. The associativity_induct function
definition provides the inductive argument to the (generalized) associativity property.
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7 Related Work

In this chapter, we will review research endeavours that are related to this thesis. This discus-

sion will follow the general structure of the thesis. We will start by discussing counterexample

finding and proof automation for first-order languages. We will then extend this discussion

to include higher-order functions as well as dependent types. In this context, we will present

related dependent type systems and discuss relevant approaches to supporting recursive and

sized types. We will then compare our quantifier instantiation and model finding technique to

alternative approaches, as well as discuss quantifier support in other verification systems. Fi-

nally, we will consider the approach of verification through encoding into a verifiable language

and present related automated termination checking techniques.

Before discussing competing approaches, it is important to position our work in Stainless

with respect to its precursor Leon [SKK11, BKKS13]. A monomorphic version of the first-

order unfolding procedure presented in Chapter 1 was implemented in the Leon verification

system which further featured support for inner functions, method lifting, imperative code

elimination, as well as simple termination checking. This thesis extends the Leon approach

with support for generic polymorphism, higher-order functions, dependent types, powerful

measure inference, as well as various advanced Scala language features. Moreover, we provide

proofs of long-standing theoretical claims associated to the approach.

First-order languages. Several industrial-grade verification systems for first-order languages,

such as ACL2 [CDMV11] and Spec# [LM08], have been developed over the years and success-

fully applied to real-world case studies [KMM13]. ACL2 features some support for counterex-

ample finding [CM11, Man13], however the approach is incomplete and ACL2’s Common

Lisp input language renders the question of polymorphism unapplicable. Spec# relies on

the Boogie verification condition generator [BCD+05] which supports generic polymorphism

as well as an incomplete approach to counterexample generation and exploration [LLM11].

VeriFun [WS03] is another first-order verifier which supports polymorphic recursive functions

[WAS06] and features fast but incomplete disproving capabilities [AWSS06].
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Another important first-order language is the language of SMT itself. The SMTLIB standard

has recently introduced support for recursive function definitions [BFT17], and a variant of

the named function unfolding procedure based on [SKK11] has been added to the Z3 solver

[Bjø]. Moreover, terminating recursive functions can be encoded by relying on first-order

universal quantifiers in cases where the solver does not (yet) support recursive function defini-

tions. Specific work in this direction has been implemented in the CVC4 solver [RBCT16], and

model finding in the presence of universal quantification has further gained some traction

recently [GdM09, RTB17]. SMT solvers generally don’t provide support for parametric polymor-

phism, however techniques based on monomorphisation of polymorphic problems have been

successfully applied in this context [BDT14, BBPS16]. Furthermore, there exist theoretical

foundations for SMT solvers that support parametric polymorphism [KGGT07]. Nevertheless,

none of the techniques and approaches described in this paragraph provide completeness of

model finding in the presence of recursive function encodings through universal quantifiers

(aside from the approach in Z3 which is analogous to our own).

Our approach to recursive function unfolding is similar in essence to loop unfolding, a tech-

nique that has been explored in the context of model checking for imperative programs in

tools such as CBMC [CKL04] or F-SOFT [IYG+08]. The CORALL solver [LQ13] applies these

techniques to show the unreachability of errors similarly to how our unfolding procedure can

show counterexample inexistence. Model finding is also performed in the context of specifi-

cation refinement [TJ07, Tag08] where non-spurious counterexamples can be immediately

reported as disproving the property of interest. Due to the imperative nature of the supported

input languages, these procedures are often more tricky and complex than our rather direct

embedding into SMT.

Finally, it is worth mentioning the Haskell Bounded Model Checker [CR] which features a

likewise complete counterexample finding procedure for monomorphic first-order haskell

programs which combines symbolic execution with sat-based solving. This approach has

proved effective in finding counterexamples for programs with large branching factors.

Higher-order functions. The procedure discussed in Chapter 2 extends our work presented

in [VKK15] with support for first-class functions which appear within datatypes, as well as

extraction of inputs with recursive functions. We will focus here on approaches that target

higher-order functions in languages which do not feature dependent types as these will be

treated separately below.

The Dafny [HLQ11] programming language provides some support for higher-order functions

through translation into first-order verification conditions. These are then discharged by

Boogie [Lei08], which provides support for (incomplete) counterexample generation and

exploration [LLM11]. It is however unclear whether the Boogie counterexample corresponds

to valid higher-order inputs at the Dafny level. Shape analysis of symbolic execution traces has

also proved effective in verifying higher-order functional programs, and even feature relatively
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complete counterexample finding [NH15, NTH17]. It is important to note that the relative

completeness guarantee here is given with respect to a first-order solver and is weaker than

our completeness for counterexamples.

Another important class of higher-order languages consists of logics that have been augmented

with some form of higher-order functions, for example (Classical) Higher-Order Logic. The

main automated theorem provers for HOL are Satallax [Bro12], LEO-II [BS13] and the more

recent Leo-III [SB18]. Satallax relies on a tableau calculus with an underlying SAT solver and

first-class function enumeration, whereas the Leo provers leverage a variety of techniques

in portfolio or collaborative mode. Note that these theorem provers can also be used for

model finding by negating the input formula and extracting the assignments for existentially

quantified variables. Recent work has also shown promising results in (partially) bridging the

gap between First-Order and Higher-Order Logic in both automated theorem provers based

on the superposition calculus [BBCW18, BR18] and SMT solvers [BRO+19].

The difficulty of detecting invalid properties in both interactive and automated HOL theorem

provers has led to the development of model finders for HOL. These model finders are based

on logical semantics (as opposed to our operational semantics), yet these semantics will some-

times coincide, for example in the fragment of total functions over inductive datatypes. Two

well known examples of such model finders are Nitpick [BN10] and its successor Nunchaku

[CB16] which rely on symbolic model enumeration and encoding into First-Order Logic to

construct valid models for HOL formulas.

Finally, other logics featuring polymorphism and higher-order functions have been handled

through encodings into first-order SMT clauses [BDT14, CJRS15]. However, these approaches

often rely on a program monomorphisation (which does not always exist), and are aimed

at theorem proving, thus relying on an under-approximation which can lead to spurious

counterexamples.

Automation for dependent types. Proof automation in the presence of dependent types

has been explored in the past through encodings into First-Order Logic [TS95]. This topic is

making a comeback in recent years with the rise of automated theorem provers [Cza16], and a

hammer for Coq based on an unsound yet practical encoding is showing promising results

[CK16, CK18]. The significant improvement of quantifier support in SMT solvers has further

led both the F* and Lean theorem provers to rely on dependent type encodings during proof

search [SWS+13, Agu16, dMKA+15].

Further noteworthy approaches supporting automated verification in the presence of de-

pendent types are those based on Liquid Types [RKJ08, VSJ+14b, VTC+18] and those based

on higher-order recursion schemas [Kob09, KTU10, KSU11, OR11, Ter10, SAK15]. Both ap-

proaches typically rely on a CEGAR loop during verification and feature a high level of automa-

tion. However, the Liquid Types approach restricts the expressivity of refinements in order to

ensure decidability of type checking. Moreover, the approach based on recursion schemas
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operates on programs featuring only integer and function types, and has not been shown to

scale to more complex (and useful) types of data.

Counterexample (or model) finding in the presence of dependent types is an emerging research

topic. The importance of counterexample finders in interactive theorem provers based on

Higher-Order Logic has been demonstrated by tools such as Nitpick [BN10] and Nunchaku

[CB]. However, counterexample finders for systems based on dependent type theory are still

lacking [Gru]. Nunchaku has recently introduced support for dependent datatypes and record

types through encodings into First-Order Logic [CB16], however support for the more complex

pi-types is still missing.

As mentioned in Chapter 3, producing reducible inputs in the presence of (dependent) pi-types

largely intersects with the topic of synthesis from specifications [MW71, KMPS12, KKKS13,

RKT+17]. We will however not discuss this relation any further as our approach does not

handle model finding in this case.

Verification through (dependent) type checking. Dependent types constitute a natural

foundation for verification systems and many well-known frameworks such as Coq [BC04],

Idris [Bra13], Lean [dMKA+15], F* [SWS+13], Agda [BDN09] and LiquidHaskell [VTC+18] are

based on dependently-typed languages. Certain systems also feature refinement types as

a specification mechanism and rely on SMT solvers to improve automation. However, the

verification techniques which are then applied are quite diverse. Approaches based on liquid

typing [RKJ08, VRJ13, VSJ+14b, VTC+18] rely on some form of abstract interpretation, F*

[SWS+13, SHK+16] is based on a weakest precondition calculus, whereas others [Dun07, GF10]

define algorithmic type checking procedures similar to our own.

Most systems given above are based on expressive calculi, such as the Calculus of Inductive

Constructions [CH88, CP88] for Coq, which allow formalization of complex mathematical

properties while maintaining decidability of type checking. These systems are based on

Martin-Löf type theory [MLS84] and rely on equality judgements or types instead of our

boolean equality expression. We saw that decidable equality is a prerequisite to complete

counterexample finding in the absence of dependent types and quantifiers, however our

system could possibly benefit from relying on extensional propositional equality instead when

verifying Scala programs. These calculi often feature decidable type checking, however this

property generally comes at the cost of automation.

Inductive (and, when supported, coinductive) types are favored over recursive types in most

dependent type systems [BC04, Bra13, dMKA+15, SWS+13, BDN09], as well as systems with

logical foundations [NPW02]. This distinction allows these systems to introduce an induc-

tion (or coinduction) principle given a type definition. Logical relations associated to sized

inductive and coinductive types are generally given similarly to our own. However, systems

which support the more general recursive types are less common. The TORES system [JPT18]
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introduces index-stratified types which are similar to our recursive types but does not support

our intersection types over index-stratified types.

Our typing rules for function definitions and calls follow the same principles as type-based

termination [HPS96, Par98, Xi01, BFG+04, Abe04, Abe07]. Our recursive functions (fixpoint

operations) rely on strong induction over arbitrary well-orders which is similar to the approach

described in [Abe12]. Our type generalization procedure then serves a similar purpose to

the limit ordinal in coinductive definitions. Note however that our approach eliminates

the size expression entirely and thus sacrifices generality in order to avoid having to deal

with potential paradoxes due to reasoning with a limit ordinal [HPS96, Abe08, Abe10]. In

practice, the conditions on which [Abe10] relies in order to eliminate these paradoxes are fairly

restrictive as well.

Quantifier support. Many interactive theorem provers [NPW02, dMKA+15, BC04] and ver-

ification frameworks [Lei10, SWS+13] support some form of reasoning or specification in-

volving existential and universal quantifiers. Certain systems such as Isabelle/HOL [NPW02]

rely on logic as their foundations. Others, as in our case, rely on dependent type systems

[BC04, dMKA+15, SWS+13, BDN09] based on intuitionistic Martin-Löf type theory [MLS84].

Our definition of propositional values and the propositional truth relation can be viewed

as a restricted version of the impredicative Prop type in the Calculus of Inductive Construc-

tions [CH88, CP88] on which Coq is based. In comparison with Coq, our system sacrifices

expressivity of propositional types and expressions in favor of better support for automation.

It is important to note that certain verification systems do not support specifications involving

existential or universal quantification. This is for example the case of Liquid Haskell [VSJ14a,

VTC+18] which focuses on decidability and automation of type checking. Note however that

some restricted form of quantifiers can be simulated through dependent sigma- and pi-types.

Most systems provide automation by embedding proof goals or verification conditions into

some variant of First-Order Logic and relying on off-the-shelf automated theorem provers or

SMT solvers to discharge them. Quantifiers at the source level are thus embedded into (possi-

bly instrumented) quantifiers in the target prover. Such techniques have been successfully

applied in state-of-the-art interactive theorem provers [MP08, CK18, EMT+17, dMKA+15] as

well as verification frameworks [Lei10, SHK+16]. While this approach enables these systems to

take full advantage of the improvements in the underlying automated prover, the encoding is

usually all-or-nothing and disallows the integration of more specialized reasoning techniques

during solving. Certain SMT solvers are however begining to bridge this gap by providing more

high-level constructs as encoding targets [RBCT16, Bjø].

We saw that our quantifier instantiation procedure follows a similar approach to the one

presented in [GdM09]. Most SMT solvers perform instantiation through E-matching [DNS05,

dMB07], however this approach requires having access to the congruence closure (or E-graph)

which is not tracked by our system. An alternative approach which has shown effective in
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practice performs instantiations by selecting likely value terms as instantiation candidates

[RTB17]. However, both approaches only constitute decision (or semi-decision) procedures

on severly limited fragments [BRK+15].

As discussed, our approach extends the work in [GdM09] with broader model finding ca-

pabilities. Although the technique introduced in [GdM09] also performs model-directed

instantiations, valid models are only guaranteed to be found when the set of instantiations

becomes saturated. Furthermore, although our instantiation selection requires considering

a larger clause set, the resulting candidates are more likely to be relevant to the final result.

A different approach to model finding relies on domain finiteness to construct valid models

[RTGK13, RTG+13], and has shown effective as a backend for model finding in the presence of

more complex features [CB, CB16]. These techniques do not rely on a symbolic treatment of

candidate instantiations but instead directly perform instantiations with likely values.

Verification through encoding. Many verification systems support a rich and expressive

input language which is then encoded into an intermediate language on which verification is

performed. For example, Boogie [BCD+05, LLM11] and Why3 [FP13] are two such intermedi-

ate languages which are used in verifiers such as Dafny [Lei10], Spec# [LM08], VCC [CMST10]

and Krakatoa [FM07]. Viper [MSS16, MSS17], another intermediate verification language, in-

troduces support for permission logics such as separation logic and relies internally on Boogie

(as one of multiple possible backends). This design principle allows verification frameworks

to support high-level language features simply by defining an appropriate encoding.

A similar approach consists in encoding programs into powerful logics (such as Higher-Order

Logic or the Calculus of Inductive Constructions) which can then be handled by existing

theorem provers. The expressivity of these encoding targets allows both shallow embeddings

and powerful specification constructs. However, these features generally come at the cost of re-

duced automation during theorem proving. This approach has, for example, been successfully

applied to object-oriented program verification [BW08].

Interestingly, intermediate verification languages based on dependent type systems are rare,

possibly due to the difficulty in automating verification in the presence of dependent types.

A notable outlier is the F* language which has been used as an encoding target for verifying

Javascript [SWS+13] and F#. As our approach to automation is fairly different, we believe our

verification language will be an interesting alternative encoding target for verification systems.

Most Scala language constructs supported by our encoding procedures have a corresponding

counterpart in other verification systems such as Dafny [Lei10, HLQ11, ALN15], Spec# [LM08],

Krakatoa [FM07], etc. However, our verification language is quite rich in comparison with

Boogie and Why3. This allows our system to often avoid introducing under-approximations

during encoding and can lead to significant differences in the encoding procedures. This

precision of encoding ensures that counterexamples generally remain valid with respect

to the original Scala source code. Furthermore, as our verification language has dedicated
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support for high-level language constructs, we avoid common issues such as trigger selection

in quantified encodings [LP16].

Automated termination checking. Most verification systems feature some level of automa-

tion for termination checking. Some systems rely on simple heuristics such as the lex-

icographic ordering of parameters [Lei10, SHK+16] or use syntactic criteria [Abe, Bou12],

whereas others perform more complex analysis but are restricted to first-order languages

[MT09, CDMV11, FZG18]. Our system allows semantic termination criteria and considers a

variety of candidate measures in order to increase coverage.

First-order techniques such as Size-Change Termination [LJB01] and termination analysis of

Term Rewriting Systems [GTSF04] have been successfully extended to the higher-order setting

[GRS+11] by reducing the question to a first-order termination problem on an approximate

call-graph. It is however not clear how a proof in the approximate call-graph can be extracted

into measures and refinements in order to produce a program which can be validated by the

type checking procedure.

A different line of work reduces the problem of termination in the presence of higher-order

functions to a question of binary reachability [KTUK14, LR12]. These techniques rely on

predicate abstraction and CEGAR [KSU11], as well as ranking function inference in order

to feature a high level of automation. However, the approach is defined on a simply-typed

lambda calculus without datatypes and has not been shown to apply to practical programs.
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Conclusion

In this thesis, we have presented a verification system for an expressive subset of the Scala

language based on a dependent type system with refinements. We have discussed how to

provide automation in the system, perform verification through type checking and support

complex Scala features by encoding them into an intermediate verification language. We have

demonstrated that the resulting system is effective through a series of verification tasks. We

have found that thanks to the expressivity of the supported Scala fragment, our system can

verify idiomatic functional Scala programs which contain advanced language features and

appear natural to Scala developers.

We have presented a powerful proof automation technique which is complete for counterex-

amples for a higher-order functional language with recursive functions and datatypes. We

have further extended this technique to support dependent types and propositional quanti-

fiers, as well as discussed both syntactic and semantic fragments for which counterexample

finding remains complete. Our verification system relies on this procedure to automatically

prove (or disprove) verification conditions. In our experience, the counterexample finding

procedure enables practical and predictable proof development, and counterexamples have

proved critical in avoiding wasted efforts on invalid statements.

Based on our proof automation procedure, we have presented a bidirectional type checking

algorithm that ensures both normalization and functional correctness (which further implies

the absence of stuck terms). In addition to the usual constructs featured in dependently-typed

languages, our type system supports sized (or indexed) recursive types, mutual recursion

between type and function definitions, as well as corecursive (or productive) functions. The

language and type system have proved sufficiently expressive to encode an important subset

of the Scala language while preserving predictability of verification.

We have shown how to encode different features of the Scala language into our verification

language. We have presented a shallow encoding of open type hierarchies with subtyping,

variance, multiple inheritance and methods which allows us to handle object-oriented Scala

programs and leverage the resulting modularity during verification. Our encoding further

supports Scala-style contracts [Ode10] which will be statically checked by our system. In order

to reduce the annotation burden, we have discussed a measure inference technique which

can synthesize ranking functions and refinements necessary to termination checking. We
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have shown that these encodings are effective by verifying a set of benchmarks which feature

advanced Scala language constructs.

Lessons Learned

From the outset, the goal of our work was to enable verification of an expressive subset of

the Scala language. The original Leon system upon which Stainless is based already featured

elegant counterexample finding and verification procedures for monomorphic first-order

programs with executable specifications. However, the supported language did not allow

idiomatic Scala programs containing higher-order functions, parametric polymorphism, or

subtyping. We will describe here certain important challenges and the lessons we learned

while introducing support for these language features in our verification system.

We started by considering support for higher-order functions and parametric polymorphism.

Extending the counterexample finding procedure proved surprisingly natural once suitable

embedding and extraction strategies were selected. However, designing useful specification

mechanisms and a sound verification procedure turned out to be more challenging. Our first

attempt was to introduce executable quantifiers into the language, as well as a few other ad-hoc

specification constructs such as datatype invariants. Unfortunately, we found that defining

reasonable (namely both sound and useful) operational semantics for these extensions was a

non-obvious task. Hence, the soundness of our verification system became fairly nebulous.

In a bid to build a formal metatheory for our system and resolve our soundness questions,

we considered Tait’s reducibility method [Tai67] and its various extensions to dependent type

theory. Dependent types (and especially refinement types) would allow us to represent the pre-

and postconditions featured by our original first-order language. Furthermore, by introducing

an error term, we could even capture the influence of executable contracts on the program

traces. Dependent types with refinements were therefore a promising candidate around which

to build a metatheory. This adoption of type theory as our system foundations allowed a major

shift in both our vision of and approach to verification soundness.

By relying on dependent type theory, soundness of verification became straightforward. Fur-

thermore, our long-standing questions of both defining and proving termination in the pres-

ence of higher-order functions were naturally resolved as well. All that remained was for us to

extend our counterexample finding procedure to take the newly introduced dependent types

into account. We discovered that the unfolding techniques explored in the context of function

calls and applications could be further adapted to the reducibility relation. We found that

building an end-to-end soundness proof for our dependently-typed language, including the

counterexample finding procedure, was feasible and significantly increased our confidence

in the overall verification system. Indeed, exploring the metatheory allowed us to identify a

rather frightening number of soundness issues in our previous ad-hoc approach.
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A further unexpected benefit of primitive support for dependent types in our verification pro-

cedure was a significant increase in the expressivity of our verification language. This allowed

us to encode complex high-level language features without introducing native support for

new constructs in the verification language (our previous strategy). In addition to improving

our verification procedure, dependent types therefore enabled simpler and clearer encodings

of complex language constructs.

Future Work

Although our verification system already enables verification of useful properties about ex-

pressive Scala programs, there remain many important and interesting questions to tackle.

Undecidable equality. The syntactic notion of equality for first-class functions defined in

Chapter 2 presents certain disadvantages. Indeed, syntactic equality is inconsistent with

the Scala operational semantics, and our system may report invalid (according to Scala)

counterexamples involving higher-order first-class functions. Syntactic equality is further

inconsistent with common mathematical notions of equality, which makes it difficult to

treat first-class functions as mathmatical functions in our system. In a bid to resolve these

limitations, it could be useful to consider alternative (undecidable) notions of function equality.

In order to allow type checking and reasoning about equality, our system would then require

the introduction of an equality type and/or an equality proposition. We have already started

preliminary exploration of such constructs in the context of our Coq formalization which

features both an equality type and and equality judgement.

The counterexample finding procedure presented in Chapter 2 relies on the syntactic equality

notion, both in the embedding of function types into algebraic datatypes (which imposes

syntactic equality), and in the extraction of lambda values. The incremental embedding

strategy presented in 2.6.1 can be adapted to admit non-syntactic notions of equality simply

by relaxing the generated disequality clauses. However, extracting valid lambda values without

relying on an equality operation remains challenging. A promising direction consists in

generating clauses from which distinguishing inputs can be extracted. These inputs can then

be used to differentiate between function values by comparing application results.

Formalizing propositions. In Chapter 4, we discussed how our counterexample (or proof)

finding procedure can be extended to handle impredicative propositional quantifiers. How-

ever, we did not give a formal defininition of the reducibility and truth relations associated to

propositions. As previously mentioned, these definitions are involved as we need to introduce

both an arity and an environment in the reducibility definition.

Our truth relation embedding and unfolding procedures enable verification of programs

which feature propositional refinements by relying on the counterexample finder. In practice,
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however, although our quantifier instantiation procedure provides considerable automation, it

is useful to introduce type checking rules specialized for proving propositional truth relations.

Some propositional expressions imply natural type checking rules such as those given below

for the truth relation associated to conjunction and disjunction propositions.

CONJUNCTION TRUTH

P ;Θ;Γ` e1 holds P ;Θ;Γ` e2 holds

P ;Θ;Γ` e1 ∧e2 holds

DISJUNCTION TRUTH

P ;Θ;Γ` e1 holds ∨ P ;Θ;Γ` e2 holds

P ;Θ;Γ` e1 ∨e2 holds

However, for certain other propositional expressions, there is no clear algorithmic procedure

for (directly) verifying the truth relation. For example, a sound but non-algorithmic approach

to checking the truth relation associated to an existentially quantified proposition would be to

synthesize a witness expression for which the proposition holds. An alternative (and algorith-

mic) approach would be to leverage the Curry-Howard isomorphism and indirectly prove the

truth relation by type checking an expression against the corresponding type. For example, we

would have the following rules for universally and existentially quantified propositions.

UNIVERSAL TRUTH

P ;Θ;Γ` e ⇓Πx : τ. {u : Unit | p }

P ;Θ;Γ` e ⇓ {u : Unit | ∀x : τ. p }

EXISTENTIAL TRUTH

P ;Θ;Γ` e ⇓Σx : τ. {u : Unit | p }

P ;Θ;Γ` e ⇓ {u : Unit | ∃x : τ. p }

Selecting and implementing a type checking strategy will enable structured reasoning about

propositional truth relations in our system beyond what is provided by the truth relation

embedding and unfolding procedures.

Enabling metaprogramming. While our proof automation technique is often effective in

practice, relying on a single approach to automation can prove limiting. Indeed, certain

problems can be handled more efficiently and effectively by different techniques and there

exists no single best approach to automation. One can partially address the issue by introduc-

ing dedicated support for alternative automation techniques within the tool, however this

strategy does not scale. Instead, the approach taken by many verification systems, and espe-

cially interactive theorem provers, is to introduce support for metaprogramming [MAD+19]

or tactics [NPW02, W+04, BC04, KZK+18, dMKA+15, GT16]. These features allow users to

programmatically define and distribute their own automation techniques without requiring a

deep knowledge or understanding of the tool implementation.

A first step towards user-defined automation is to reflect the program trees within the language.

We can define a datatype in the verification language which corresponds to the abstract

syntax trees of the language itself. We can then implement operations such as evaluation

or tree transformations on the datatype through (potentially recursive) function definitions.

The second and more important step consists in linking the datatype (and possibly certain

functions as well) with the system trees through reification and splicing. The challenge here
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will be in determining which axioms relating operations on reified and spliced trees are

necessary in order for our system to allow proof splicing.

Supporting more Scala features. In Chapter 5, we presented an encoding pipeline for many

Scala language constructs. Although the resulting fragment is expressive and supports a

large class of idiomatic Scala programs, there remain important Scala features which are not

handled by our system. Some noteworthy examples are exceptions, mutation with aliasing,

non-constructor parameter fields, type members and existential types. In order to allow

verification of industrial Scala code, it is important that the language coverage of our tool be

close to complete. A first step in this direction would be to introduce support for a special

unknown construct to which all unsupported features are mapped. The challenge then

consists in ensuring that the handling of the unknown construct in our system is consistent

with the original unsupported Scala features.

Let us consider support for exceptions in particular. Our system can verify that no exception

is ever thrown, however it can be useful to provide some more fine-grained support for

verification in the presence of exceptions, e.g. when exceptions are used for control flow. By

relying on an effect system for exceptions, these can be eliminated by either performing a

CPS (continuation-passing style) transformation or replacing effectful function result types by

Either[Exception,τ] and introducing match expressions at relevant call sites. We have already

begun exploratory work in both directions.

Final Words

This work makes a case for a verification system which supports a large (and growing!) subset

of the Scala language. Targetting such a high-level and feature-rich programming language

has proved an opportunity to explore a multi-paradigm verification approach combining

object-oriented, functional and type theoretic elements in a single system. I believe that by

integrating the advances in industrial programming language design and formal verification,

we can both improve the state of the art in formal verification and increase industry adoption

by lowering the entry barrier. I hope that someday, in the not-too-distant future, support for

formal verification will become just another programming paradigm standing on an equal

footing with the object-oriented and functional paradigms.
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A Stainless List Library

The Stainless system provides a library which includes various common type and function def-

initions. In particular, the library contains an (invariant) parametric List type definition with

common operations. In order to facilitate verification tasks involving lists, many operations

feature useful (verified) contracts. We provide the List definition here for reference.

import stainless._
import stainless.lang._
import stainless.annotation._
import stainless.math._
import stainless.proof._

sealed abstract class List[T] {

def size: BigInt = (this match {

case Nil() ⇒ BigInt(0)

case Cons(h, t) ⇒ 1 + t.size

}) ensuring (_ ≥ 0)

def length = size

def content: Set[T] = this match {

case Nil() ⇒ Set()

case Cons(h, t) ⇒ Set(h) ++ t.content

}

def contains(v: T): Boolean = (this match {

case Cons(h, t) ⇒ h == v || t.contains(v)

case Nil() ⇒ false
}) ensuring { _ == (content contains v) }

def ++(that: List[T]): List[T] = (this match {

case Nil() ⇒ that

case Cons(x, xs) ⇒ Cons(x, xs ++ that)
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}) ensuring { res ⇒
(res.content == this.content ++ that.content) &&

(res.size == this.size + that.size) &&

(that != Nil[T]() || res == this)
}

def head: T = {

require(this != Nil[T]())

val Cons(h, _) = this
h

}

def tail: List[T] = {

require(this != Nil[T]())

val Cons(_, t) = this
t

}

def apply(index: BigInt): T = {

require(0 ≤ index && index < size)

if (index == BigInt(0)) {

head

} else {

tail(index−1)
}

}

def ::(t:T): List[T] = Cons(t, this)

def :+(t:T): List[T] = {

this match {

case Nil() ⇒ Cons(t, this)
case Cons(x, xs) ⇒ Cons(x, xs :+ (t))

}

} ensuring(res ⇒ (res.size == size + 1) && (res.content == content ++ Set(t)))

def reverse: List[T] = {

this match {

case Nil() ⇒ this
case Cons(x,xs) ⇒ xs.reverse :+ x

}

} ensuring (res ⇒ (res.size == size) && (res.content == content))

def take(i: BigInt): List[T] = { (this, i) match {

case (Nil(), _) ⇒ Nil[T]()

case (Cons(h, t), i) ⇒
if (i ≤ BigInt(0)) {
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Nil[T]()

} else {

Cons(h, t.take(i−1))
}

}} ensuring { res ⇒
res.content.subsetOf(this.content) && (res.size == (

if (i ≤ 0) BigInt(0)

else if (i ≥ this.size) this.size
else i

))

}

def drop(i: BigInt): List[T] = { (this, i) match {

case (Nil(), _) ⇒ Nil[T]()

case (Cons(h, t), i) ⇒
if (i ≤ BigInt(0)) {

Cons[T](h, t)

} else {

t.drop(i−1)
}

}} ensuring { res ⇒
res.content.subsetOf(this.content) && (res.size == (

if (i ≤ 0) this.size
else if (i ≥ this.size) BigInt(0)
else this.size − i

))

}

def slice(from: BigInt, to: BigInt): List[T] = {

require(0 ≤ from && from ≤ to && to ≤ size)

drop(from).take(to−from)

}

def replace(from: T, to: T): List[T] = { this match {

case Nil() ⇒ Nil[T]()

case Cons(h, t) ⇒
val r = t.replace(from, to)

if (h == from) {

Cons(to, r)

} else {

Cons(h, r)

}

}} ensuring { (res: List[T]) ⇒
res.size == this.size &&
res.content == (

(this.content ++ Set(from)) ++

(if (this.content contains from) Set(to) else Set[T]())
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)

}

private def chunk0(s: BigInt, l: List[T], acc: List[T], res: List[List[T]], s0: BigInt): List[List[T]] =
{

require(s > 0 && s0 ≥ 0)

l match {

case Nil() ⇒
if (acc.size > 0) {

res :+ acc

} else {

res

}

case Cons(h, t) ⇒
if (s0 == BigInt(0)) {

chunk0(s, t, Cons(h, Nil()), res :+ acc, s−1)
} else {

chunk0(s, t, acc :+ h, res, s0−1)
}

}

}

def chunks(s: BigInt): List[List[T]] = {

require(s > 0)

chunk0(s, this, Nil(), Nil(), s)

}

def zip[B](that: List[B]): List[(T, B)] = { (this, that) match {

case (Cons(h1, t1), Cons(h2, t2)) ⇒
Cons((h1, h2), t1.zip(t2))

case _ ⇒
Nil[(T, B)]()

}} ensuring { _.size == (

if (this.size ≤ that.size) this.size else that.size

)}

def −(e: T): List[T] = { this match {

case Cons(h, t) ⇒
if (e == h) {

t − e

} else {

Cons(h, t − e)

}

case Nil() ⇒
Nil[T]()

}} ensuring { res ⇒
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res.size ≤ this.size &&
res.content == this.content ++ Set(e)

}

def ++(that: List[T]): List[T] = { this match {

case Cons(h, t) ⇒
if (that.contains(h)) {
t ++ that

} else {

Cons(h, t ++ that)

}

case Nil() ⇒
Nil[T]()

}} ensuring { res ⇒
res.size ≤ this.size &&
res.content == this.content ++ that.content

}

def &(that: List[T]): List[T] = { this match {

case Cons(h, t) ⇒
if (that.contains(h)) {
Cons(h, t & that)

} else {

t & that

}

case Nil() ⇒
Nil[T]()

}} ensuring { res ⇒
res.size ≤ this.size &&
res.content == (this.content & that.content)

}

def padTo(s: BigInt, e: T): List[T] = { (this, s) match {

case (_, s) if s ≤ 0 ⇒
this

case (Nil(), s) ⇒
Cons(e, Nil().padTo(s−1, e))

case (Cons(h, t), s) ⇒
Cons(h, t.padTo(s−1, e))

}} ensuring { res ⇒
if (s ≤ this.size)
res == this

else
res.size == s &&

res.content == this.content ++ Set(e)

}
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def indexOf(elem: T): BigInt = { this match {

case Nil() ⇒ BigInt(−1)
case Cons(h, t) if h == elem ⇒ BigInt(0)

case Cons(h, t) ⇒
val rec = t.indexOf(elem)

if (rec == BigInt(−1)) BigInt(−1)
else rec + 1

}} ensuring { res ⇒
(res ≥ 0) == content.contains(elem)

}

def init: List[T] = {

require(!isEmpty)

(this : @unchecked) match {

case Cons(h, Nil()) ⇒
Nil[T]()

case Cons(h, t) ⇒
Cons[T](h, t.init)

}

} ensuring ( (r: List[T]) ⇒
r.size == this.size − 1 &&

r.content.subsetOf(this.content)
)

def last: T = {

require(!isEmpty)

(this : @unchecked) match {

case Cons(h, Nil()) ⇒ h

case Cons(_, t) ⇒ t.last

}

} ensuring { this.contains _ }

def lastOption: Option[T] = { this match {

case Cons(h, t) ⇒
t.lastOption.orElse(Some(h))

case Nil() ⇒
None[T]()

}} ensuring { _.isDe�ned != this.isEmpty }

def headOption: Option[T] = { this match {

case Cons(h, t) ⇒
Some(h)

case Nil() ⇒
None[T]()

}} ensuring { _.isDe�ned != this.isEmpty }

def tailOption: Option[List[T]] = { this match {
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case Cons(h, t) ⇒
Some(t)

case Nil() ⇒
None[List[T]]()

}} ensuring { _.isDe�ned != this.isEmpty }

def unique: List[T] = this match {

case Nil() ⇒ Nil()

case Cons(h, t) ⇒
Cons(h, t.unique − h)

}

def splitAt(e: T): List[List[T]] = split(Cons(e, Nil()))

def split(seps: List[T]): List[List[T]] = this match {

case Cons(h, t) ⇒
if (seps.contains(h)) {
Cons(Nil(), t.split(seps))

} else {

val r = t.split(seps)

Cons(Cons(h, r.head), r.tail)

}

case Nil() ⇒
Cons(Nil(), Nil())

}

def evenSplit: (List[T], List[T]) = {

val c = size/2

(take(c), drop(c))

}

def splitAtIndex(index: BigInt) : (List[T], List[T]) = { this match {

case Nil() ⇒ (Nil[T](), Nil[T]())

case Cons(h, rest) ⇒ {

if (index ≤ BigInt(0)) {

(Nil[T](), this)
} else {

val (left,right) = rest.splitAtIndex(index − 1)

(Cons[T](h,left), right)

}

}

}} ensuring { (res:(List[T],List[T])) ⇒
res._1 ++ res._2 == this &&
res._1 == take(index) && res._2 == drop(index)

}

def updated(i: BigInt, y: T): List[T] = {
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require(0 ≤ i && i < this.size)
this match {

case Cons(x, tail) if i == 0 ⇒
Cons[T](y, tail)

case Cons(x, tail) ⇒
Cons[T](x, tail.updated(i − 1, y))

}

}

private def insertAtImpl(pos: BigInt, l: List[T]): List[T] = {

require(0 ≤ pos && pos ≤ size)

if(pos == BigInt(0)) {

l ++ this
} else {

this match {

case Cons(h, t) ⇒
Cons(h, t.insertAtImpl(pos−1, l))

case Nil() ⇒
l

}

}

} ensuring { res ⇒
res.size == this.size + l.size &&

res.content == this.content ++ l.content

}

def insertAt(pos: BigInt, l: List[T]): List[T] = {

require(−pos ≤ size && pos ≤ size)

if(pos < 0) {

insertAtImpl(size + pos, l)

} else {

insertAtImpl(pos, l)

}

} ensuring { res ⇒
res.size == this.size + l.size &&

res.content == this.content ++ l.content

}

def insertAt(pos: BigInt, e: T): List[T] = {

require(−pos ≤ size && pos ≤ size)

insertAt(pos, Cons[T](e, Nil()))

} ensuring { res ⇒
res.size == this.size + 1 &&

res.content == this.content ++ Set(e)

}

private def replaceAtImpl(pos: BigInt, l: List[T]): List[T] = {
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require(0 ≤ pos && pos ≤ size)

if (pos == BigInt(0)) {

l ++ this.drop(l.size)
} else {

this match {

case Cons(h, t) ⇒
Cons(h, t.replaceAtImpl(pos−1, l))

case Nil() ⇒
l

}

}

} ensuring { res ⇒
res.content.subsetOf(l.content ++ this.content)

}

def replaceAt(pos: BigInt, l: List[T]): List[T] = {

require(−pos ≤ size && pos ≤ size)

if(pos < 0) {

replaceAtImpl(size + pos, l)

} else {

replaceAtImpl(pos, l)

}

} ensuring { res ⇒
res.content.subsetOf(l.content ++ this.content)

}

def rotate(s: BigInt): List[T] = {

if (isEmpty) {

Nil[T]()

} else {

drop(s mod size) ++ take(s mod size)

}

} ensuring { res ⇒
res.size == this.size

}

def isEmpty = this match {

case Nil() ⇒ true
case _ ⇒ false

}

def nonEmpty = !isEmpty

def map[R](f: T ⇒ R): List[R] = { this match {

case Nil() ⇒ Nil[R]()

case Cons(h, t) ⇒ f(h) :: t.map(f)

}} ensuring { _.size == this.size }
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def foldLeft[R](z: R)(f: (R,T) ⇒ R): R = this match {

case Nil() ⇒ z

case Cons(h,t) ⇒ t.foldLeft(f(z,h))(f)

}

def foldRight[R](z: R)(f: (T,R) ⇒ R): R = this match {

case Nil() ⇒ z

case Cons(h, t) ⇒ f(h, t.foldRight(z)(f))

}

def scanLeft[R](z: R)(f: (R,T) ⇒ R): List[R] = { this match {

case Nil() ⇒ z :: Nil()

case Cons(h,t) ⇒ z :: t.scanLeft(f(z,h))(f)

}} ensuring { !_.isEmpty }

def scanRight[R](z: R)(f: (T,R) ⇒ R): List[R] = { this match {

case Nil() ⇒ z :: Nil[R]()

case Cons(h, t) ⇒
val rest@Cons(h1,_) = t.scanRight(z)(f)

f(h, h1) :: rest

}} ensuring { !_.isEmpty }

def �atMap[R](f: T ⇒ List[R]): List[R] =

ListOps.�atten(this map f)

def �lter(p: T ⇒ Boolean): List[T] = { this match {

case Nil() ⇒ Nil[T]()

case Cons(h, t) if p(h) ⇒ Cons(h, t.�lter(p))

case Cons(_, t) ⇒ t.�lter(p)

}} ensuring { res ⇒
res.size ≤ this.size &&
res.content.subsetOf(this.content) &&
res.forall(p)

}

def �lterNot(p: T ⇒ Boolean): List[T] =

�lter(!p(_)) ensuring { res ⇒
res.size ≤ this.size &&
res.content.subsetOf(this.content) &&
res.forall(!p(_))

}

def partition(p: T ⇒ Boolean): (List[T], List[T]) = { this match {

case Nil() ⇒ (Nil[T](), Nil[T]())

case Cons(h, t) ⇒
val (l1, l2) = t.partition(p)
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if (p(h)) (h :: l1, l2)

else (l1, h :: l2)

}} ensuring { res ⇒
res._1 == �lter(p) &&

res._2 == �lterNot(p)

}

def withFilter(p: T ⇒ Boolean) = �lter(p)

def forall(p: T ⇒ Boolean): Boolean = this match {

case Nil() ⇒ true
case Cons(h, t) ⇒ p(h) && t.forall(p)

}

def exists(p: T ⇒ Boolean) = !forall(!p(_))

def �nd(p: T ⇒ Boolean): Option[T] = { this match {

case Nil() ⇒ None[T]()

case Cons(h, t) ⇒ if (p(h)) Some(h) else t.�nd(p)

}} ensuring { res ⇒ res match {

case Some(r) ⇒ (content contains r) && p(r)

case None() ⇒ true
}}

def groupBy[R](f: T ⇒ R): Map[R, List[T]] = this match {

case Nil() ⇒ Map.empty[R, List[T]]

case Cons(h, t) ⇒
val key: R = f(h)

val rest: Map[R, List[T]] = t.groupBy(f)

val prev: List[T] = if (rest isDe�nedAt key) rest(key) else Nil[T]()

(rest ++ Map((key, h :: prev))) : Map[R, List[T]]

}

def takeWhile(p: T ⇒ Boolean): List[T] = { this match {

case Cons(h,t) if p(h) ⇒ Cons(h, t.takeWhile(p))

case _ ⇒ Nil[T]()

}} ensuring { res ⇒
(res forall p) &&

(res.size ≤ this.size) &&
(res.content subsetOf this.content)

}

def dropWhile(p: T ⇒ Boolean): List[T] = { this match {

case Cons(h,t) if p(h) ⇒ t.dropWhile(p)

case _ ⇒ this
}} ensuring { res ⇒
(res.size ≤ this.size) &&
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(res.content subsetOf this.content) &&
(res.isEmpty || !p(res.head))

}

def count(p: T ⇒ Boolean): BigInt = { this match {

case Nil() ⇒ BigInt(0)

case Cons(h, t) ⇒
(if (p(h)) BigInt(1) else BigInt(0)) + t.count(p)

}} ensuring {

_ == this.�lter(p).size
}

def indexWhere(p: T ⇒ Boolean): BigInt = { this match {

case Nil() ⇒ BigInt(−1)
case Cons(h, _) if p(h) ⇒ BigInt(0)

case Cons(_, t) ⇒
val rec = t.indexWhere(p)

if (rec ≥ 0) rec + BigInt(1)

else BigInt(−1)
}} ensuring {

_ ≥ BigInt(0) == (this exists p)
}

def toSet: Set[T] = foldLeft(Set[T]()){

case (current, next) ⇒ current ++ Set(next)

}

}

case class Cons[T](h: T, t: List[T]) extends List[T]

case class Nil[T]() extends List[T]

object List {
def �ll[T](n: BigInt)(x: T) : List[T] = {

if (n ≤ 0) Nil[T]()

else Cons[T](x, �ll[T](n−1)(x))
} ensuring { res ⇒
(res.content == (if (n ≤ BigInt(0)) Set.empty[T] else Set(x))) &&

res.size == (if (n ≤ BigInt(0)) BigInt(0) else n)

}

def range(start: BigInt, until: BigInt): List[BigInt] = {

require(start ≤ until)

decreases(until − start)

if(until ≤ start) Nil[BigInt]() else Cons(start, range(start + 1, until))

} ensuring{(res: List[BigInt]) ⇒ res.size == until − start }
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def mkString[A](l: List[A], mid: String, f: A ⇒ String) = {

def rec(l: List[A]): String = l match {

case Nil() ⇒ ""

case Cons(a, b) ⇒ mid + f(a) + rec(b)

}

l match {

case Nil() ⇒ ""

case Cons(a, b) ⇒ f(a) + rec(b)

}

}

}

object ListOps {
def �atten[T](ls: List[List[T]]): List[T] = ls match {

case Cons(h, t) ⇒ h ++ �atten(t)

case Nil() ⇒ Nil()

}

def isSorted(ls: List[BigInt]): Boolean = ls match {

case Nil() ⇒ true
case Cons(_, Nil()) ⇒ true
case Cons(h1, Cons(h2, _)) if(h1 > h2) ⇒ false
case Cons(_, t) ⇒ isSorted(t)

}

def sorted(ls: List[BigInt]): List[BigInt] = { ls match {

case Cons(h, t) ⇒ sortedIns(sorted(t), h)

case Nil() ⇒ Nil[BigInt]()

}} ensuring { isSorted _ }

private def sortedIns(ls: List[BigInt], v: BigInt): List[BigInt] = {

require(isSorted(ls))
ls match {

case Nil() ⇒ Cons(v, Nil())

case Cons(h, t) ⇒
if (v ≤ h) {

Cons(v, ls)

} else {

Cons(h, sortedIns(t, v))

}

}

} ensuring { res ⇒ isSorted(res) && res.content == ls.content + v }

def toMap[K, V](l: List[(K, V)]): Map[K, V] = l.foldLeft(Map[K, V]()){

case (current, (k, v)) ⇒ current ++ Map(k −> v)

}

}
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object :: {
def unapply[A](l: List[A]): Option[(A, List[A])] = l match {

case Nil() ⇒ None()

case Cons(x, xs) ⇒ Some((x, xs))

}

}

import ListOps._

object ListSpecs {
def snocIndex[T](l: List[T], t: T, i: BigInt): Boolean = {

require(0 ≤ i && i < l.size + 1)

((l :+ t).apply(i) == (if (i < l.size) l(i) else t))

}.holds because (

l match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ if (i > 0) snocIndex[T](xs, t, i−1) else true

}

)

@induct

def consIndex[T](h: T, t: List[T], i: BigInt): Boolean = {

require(0 ≤ i && i < t.size + 1)

(h :: t).apply(i) == (if (i == 0) h else t.apply(i − 1))

}.holds

def reverseIndex[T](l: List[T], i: BigInt): Boolean = {

require(0 ≤ i && i < l.size)

l.reverse.apply(i) == l.apply(l.size − 1 − i)

}.holds because(

l match {

case Nil() ⇒ true
case Cons(x,xs) ⇒
snocIndex(xs.reverse, x, i) &&

(if (i < xs.size) consIndex(x, xs, l.size − 1 − i) && reverseIndex[T](xs, i) else true)
}

)

def snocLast[T](l: List[T], x: T): Boolean = {

((l :+ x).last == x)

}.holds because {

l match {

case Nil() ⇒ true
case Cons(y, ys) ⇒ {

((y :: ys) :+ x).last ==| trivial |
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(y :: (ys :+ x)).last ==| trivial |

(ys :+ x).last ==| snocLast(ys, x) |

x

}.qed

}

}

def headReverseLast[T](l: List[T]): Boolean = {

require (!l.isEmpty)

(l.head == l.reverse.last)

}.holds because {

val Cons(x, xs) = l;

{

(x :: xs).head ==| trivial |

x ==| snocLast(xs.reverse, x) |

(xs.reverse :+ x).last ==| trivial |

(x :: xs).reverse.last

}.qed

}

def appendIndex[T](l1: List[T], l2: List[T], i: BigInt): Boolean = {

require(0 ≤ i && i < l1.size + l2.size)

(l1 ++ l2).apply(i) == (if (i < l1.size) l1(i) else l2(i − l1.size))

}.holds because {

l1 match {

case Nil() ⇒ true
case Cons(x,xs) ⇒
(i != BigInt(0)) =⇒ appendIndex[T](xs, l2, i − 1)

}

}

@induct

def appendAssoc[T](l1: List[T], l2: List[T], l3: List[T]): Boolean = {

(l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3)

}.holds

@induct

def rightUnitAppend[T](l1: List[T]): Boolean = {

l1 ++ Nil() == l1

}.holds

def leftUnitAppend[T](l1: List[T]): Boolean = {

Nil() ++ l1 == l1

}.holds

def snocIsAppend[T](l: List[T], t: T): Boolean = {

(l :+ t) == l ++ Cons[T](t, Nil())
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}.holds because {

l match {

case Nil() ⇒ true
case Cons(x,xs) ⇒ snocIsAppend(xs,t)

}

}

def snocAfterAppend[T](l1: List[T], l2: List[T], t: T): Boolean = {

(l1 ++ l2) :+ t == l1 ++ (l2 :+ t)

}.holds because {

l1 match {

case Nil() ⇒ true
case Cons(x,xs) ⇒ snocAfterAppend(xs,l2,t)

}

}

def snocReverse[T](l: List[T], t: T): Boolean = {

(l :+ t).reverse == Cons(t, l.reverse)

}.holds because {

l match {

case Nil() ⇒ true
case Cons(x,xs) ⇒ snocReverse(xs,t)

}

}

def reverseReverse[T](l: List[T]): Boolean = {

l.reverse.reverse == l

}.holds because {

l match {

case Nil() ⇒ trivial

case Cons(x, xs) ⇒ {

(xs.reverse :+ x).reverse ==| snocReverse[T](xs.reverse, x) |

x :: xs.reverse.reverse ==| reverseReverse[T](xs) |

(x :: xs)

}.qed

}

}

def reverseAppend[T](l1: List[T], l2: List[T]): Boolean = {

(l1 ++ l2).reverse == l2.reverse ++ l1.reverse

}.holds because {

l1 match {

case Nil() ⇒ {

(Nil() ++ l2).reverse ==| trivial |

l2.reverse ==| rightUnitAppend(l2.reverse) |

l2.reverse ++ Nil() ==| trivial |

l2.reverse ++ Nil().reverse
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}.qed

case Cons(x, xs) ⇒ {

((x :: xs) ++ l2).reverse ==| trivial |

(x :: (xs ++ l2)).reverse ==| trivial |

(xs ++ l2).reverse :+ x ==| reverseAppend(xs, l2) |

(l2.reverse ++ xs.reverse) :+ x ==|

snocAfterAppend(l2.reverse, xs.reverse, x) |

l2.reverse ++ (xs.reverse :+ x) ==| trivial |

l2.reverse ++ (x :: xs).reverse

}.qed

}

}

def snocFoldRight[A, B](xs: List[A], y: A, z: B, f: (A, B) ⇒ B): Boolean = {

(xs :+ y).foldRight(z)(f) == xs.foldRight(f(y, z))(f)

}.holds because {

xs match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ snocFoldRight(xs, y, z, f)

}

}

def folds[A, B](xs: List[A], z: B, f: (B, A) ⇒ B): Boolean = {

val f2 = (x: A, z: B) ⇒ f(z, x)

( xs.foldLeft(z)(f) == xs.reverse.foldRight(z)(f2) ) because {

xs match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ {

(x :: xs).foldLeft(z)(f) ==| trivial |

xs.foldLeft(f(z, x))(f) ==| folds(xs, f(z, x), f) |

xs.reverse.foldRight(f(z, x))(f2) ==| trivial |

xs.reverse.foldRight(f2(x, z))(f2) ==|

snocFoldRight(xs.reverse, x, z, f2) |

(xs.reverse :+ x).foldRight(z)(f2) ==| trivial |

(x :: xs).reverse.foldRight(z)(f2)

}.qed

}

}

}.holds

def scanVsFoldLeft[A, B](l: List[A], z: B, f: (B, A) ⇒ B): Boolean = {

( l.scanLeft(z)(f).last == l.foldLeft(z)(f) )

}.holds because {

l match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ scanVsFoldLeft(xs, f(z, x), f)

}
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}

@induct

def scanVsFoldRight[A,B](l: List[A], z: B, f: (A,B) ⇒ B): Boolean = {

l.scanRight(z)(f).head == l.foldRight(z)(f)

}.holds

def appendContent[A](l1: List[A], l2: List[A]) = {

l1.content ++ l2.content == (l1 ++ l2).content

}.holds

def �attenPreservesContent[T](ls: List[List[T]]): Boolean = {

val f: (List[T], Set[T]) ⇒ Set[T] = _.content ++ _
( �atten(ls).content == ls.foldRight(Set[T]())(f) ) because {

ls match {

case Nil() ⇒ true
case Cons(h, t) ⇒ {

�atten(h :: t).content ==| trivial |

(h ++ �atten(t)).content ==| appendContent(h, �atten(t)) |

h.content ++ �atten(t).content ==| �attenPreservesContent(t) |

h.content ++ t.foldRight(Set[T]())(f) ==| trivial |

f(h, Set[T]()) ++ t.foldRight(Set[T]())(f) ==| trivial |

(h :: t).foldRight(Set[T]())(f)

}.qed

}

}

}.holds

def appendUpdate[T](l1: List[T], l2: List[T], i: BigInt, y: T): Boolean = {

require(0 ≤ i && i < l1.size + l2.size)

((l1 ++ l2).updated(i, y) == (

if (i < l1.size)

l1.updated(i, y) ++ l2

else
l1 ++ l2.updated(i − l1.size, y)))

}.holds because (l1 match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ if (i == 0) true else appendUpdate[T](xs, l2, i − 1, y)

})

def appendTakeDrop[T](l1: List[T], l2: List[T], n: BigInt): Boolean = {

((l1 ++ l2).take(n) == (

if (n < l1.size) l1.take(n)

else if (n > l1.size) l1 ++ l2.take(n − l1.size)

else l1)) &&

((l1 ++ l2).drop(n) == (

if (n < l1.size) l1.drop(n) ++ l2
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else if (n > l1.size) l2.drop(n − l1.size)

else l2))

}.holds because (l1 match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ if (n ≤ 0) true else appendTakeDrop[T](xs, l2, n − 1)

})

def appendInsert[T](l1: List[T], l2: List[T], i: BigInt, y: T): Boolean = {

require(0 ≤ i && i ≤ l1.size + l2.size)

(l1 ++ l2).insertAt(i, y) == (

if (i < l1.size) l1.insertAt(i, y) ++ l2

else l1 ++ l2.insertAt(i − l1.size, y))

}.holds because (l1 match {

case Nil() ⇒ true
case Cons(x, xs) ⇒ if (i == 0) true else appendInsert[T](xs, l2, i − 1, y)

})

def applyForAll[T](l: List[T], i: BigInt, p: T ⇒ Boolean): Boolean = {

require(i ≥ 0 && i < l.length && l.forall(p))

p(l(i))

}.holds because (l match {

case Nil() ⇒ trivial

case Cons(head, tail) ⇒ if(i == 0) p(head) else applyForAll(l.tail, i − 1, p)

})

}
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We show here that the pairing function 2x (2y +1)−1 gives a bijection between the natural

numbers and pairs of natural numbers. The statement is established by the pair_unique

function in the following program.

import stainless.lang._
import stainless.equations._
import stainless.annotation._

object GodelNumbering {

sealed abstract class Nat {
def +(that: Nat): Nat = this match {

case Zero ⇒ that

case Succ(n) ⇒ Succ(n + that)

}

def *(that: Nat): Nat = this match {

case Zero ⇒ Zero

case Succ(n) ⇒ (n * that) + that

}

def −(that: Nat): Nat = ((this, that) match {

case (Succ(n1), Succ(n2)) ⇒ n1 − n2

case _ ⇒ this
}) ensuring { res ⇒
res.repr ≤ repr &&

((this > Zero && that > Zero) =⇒ res.repr < repr)

}

def <(that: Nat): Boolean = ((this, that) match {

case (Succ(n1), Succ(n2)) ⇒ n1 < n2

case (Zero, Succ(_)) ⇒ true
case _ ⇒ false

}) ensuring (_ == repr < that.repr)
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def ≤(that: Nat): Boolean = (this < that) || (this == that)

def >(that: Nat): Boolean = !(this < that) && (this != that)

def ≥(that: Nat): Boolean = (this > that) || (this == that)

def /(that: Nat): Nat = {

require(that > Zero)

decreases(repr)

if (this < that) Zero else
Succ((this − that) / that)

} ensuring { res ⇒
res.repr ≤ repr &&

((this > Zero && that > One) =⇒ res.repr < repr)

}

def %(that: Nat): Nat = {

require(that > Zero)

decreases(repr)

if (this < that) this
else (this − that) % that

}

def repr: BigInt = (this match {

case Zero ⇒ BigInt(0)

case Succ(n) ⇒ n.repr + BigInt(1)

}) ensuring (_ ≥ BigInt(0))

}

case object Zero extends Nat
case class Succ(n: Nat) extends Nat

val One = Succ(Zero)

val Two = Succ(One)

@induct

def plus_zero(n: Nat): Boolean = { n + Zero == n }.holds

def zero_plus(n: Nat): Boolean = { Zero + n == n }.holds

@induct

def minus_identity(n: Nat): Boolean = (n − n == Zero).holds

@induct

def associative_plus(n1: Nat, n2: Nat, n3: Nat): Boolean = {

(n1 + n2) + n3 == n1 + (n2 + n3)

}.holds

def commutative_plus(n1: Nat, n2: Nat): Boolean = {
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n1 + n2 == n2 + n1

}.holds because (n1 match {

case Zero ⇒ zero_plus(n2) && plus_zero(n2)

case Succ(p1) ⇒ n2 match {

case Zero ⇒ zero_plus(p1) && plus_zero(p1)

case Succ(p2) ⇒ commutative_plus(n1, p2) && commutative_plus(p1, n2)

}

})

def distributive_times(n1: Nat, n2: Nat, n3: Nat): Boolean = {

n1 * (n2 + n3) == (n1 * n2) + (n1 * n3) because (n1 match {

case Zero ⇒ true
case Succ(p1) ⇒ {

Succ(p1) * (n2 + n3) ==| trivial |

p1 * (n2 + n3) + (n2 + n3) ==| distributive_times(p1, n2, n3) |

(p1 * n2) + (p1 * n3) + (n2 + n3) ==| associative_plus((p1 * n2) + (p1 * n3), n2, n3) |

(p1 * n2) + (p1 * n3) + n2 + n3 ==| associative_plus(p1 * n2, p1 * n3, n2) |

(p1 * n2) + ((p1 * n3) + n2) + n3 ==| commutative_plus(p1 * n3, n2) |

(p1 * n2) + (n2 + (p1 * n3)) + n3 ==| associative_plus(p1 * n2, n2, p1 * n3) |

((p1 * n2) + n2) + (p1 * n3) + n3 ==| associative_plus((p1 * n2) + n2, p1 * n3, n3) |

((p1 * n2) + n2) + ((p1 * n3) + n3) ==| trivial |

(n1 * n2) + (n1 * n3)

}.qed

})

}.holds

def commutative_times(n1: Nat, n2: Nat): Boolean = {

(n1 * n2 == n2 * n1) because ((n1, n2) match {

case (Zero, Zero) ⇒ true
case (Zero, Succ(p2)) ⇒ commutative_times(n1, p2)

case (Succ(p1), Zero) ⇒ commutative_times(p1, n2)

case (Succ(p1), Succ(p2)) ⇒ {

n1 * n2 ==| trivial |

(p1 * n2) + n2 ==| commutative_times(p1, n2) |

(n2 * p1) + n2 ==| trivial |

((p2 * p1) + p1) + n2 ==| commutative_times(p2, p1) |

((p1 * p2) + p1) + n2 ==| associative_plus(p1 * p2, p1, n2) |

(p1 * p2) + (p1 + n2) ==| commutative_plus(p1, n2) |

(p1 * p2) + (n2 + p1) ==|

(associative_plus(p2, One, p1) && commutative_plus(p2, One)) |

(p1 * p2) + (p2 + n1) ==| associative_plus(p1 * p2, p2, n1) |

((p1 * p2) + p2) + n1 ==| trivial |

(n1 * p2) + n1 ==| commutative_times(n1, p2) |

(p2 * n1) + n1 ==| trivial |

n2 * n1

}.qed

})
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}.holds

def distributive_times2(n1: Nat, n2: Nat, n3: Nat): Boolean = {

(n1 + n2) * n3 == (n1 * n3) + (n2 * n3)

}.holds because (

commutative_times(n1 + n2, n3) &&

distributive_times(n3, n1, n2) &&

commutative_times(n1, n3) &&

commutative_times(n2, n3)

)

def associative_times(n1: Nat, n2: Nat, n3: Nat): Boolean = {

(n1 * (n2 * n3) == (n1 * n2) * n3) because (n1 match {

case Zero ⇒ true
case Succ(p1) ⇒ {

n1 * (n2 * n3) ==| trivial |

(p1 * (n2 * n3)) + (n2 * n3) ==| associative_times(p1, n2, n3) |

((p1 * n2) * n3) + (n2 * n3) ==| commutative_plus((p1 * n2) * n3, n2 * n3) |

(n2 * n3) + ((p1 * n2) * n3) ==| distributive_times2(n2, p1 * n2, n3) |

(n2 + (p1 * n2)) * n3 ==| commutative_plus(n2, p1 * n2) |

((p1 * n2) + n2) * n3 ==| trivial |

(n1 * n2) * n3

}.qed

})

}.holds

def succ_<(n1: Nat, n2: Nat): Boolean = {

require(n1 ≤ n2)

(n1 < Succ(n2)) because (n1 match {

case Zero ⇒ true
case Succ(n) ⇒
val Succ(p2) = n2

succ_<(n, p2)

})

}.holds

def succ_≤(n1: Nat, n2: Nat): Boolean = {

require(n1 < n2)

Succ(n1) ≤ n2 because (n2 match {

case Succ(p2) if n1 != p2 ⇒ pred_<(n1, n2) && succ_≤(n1, p2)
case _ ⇒ true

})

}.holds

def pred_<(n1: Nat, n2: Nat): Boolean = {

require(n1 < n2)

val Succ(n) = n2
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((n1 != n) =⇒ (n1 < n)) because (n2 match {

case Succ(n) if n == n1 ⇒ true
case Succ(p2) ⇒ n1 match {

case Zero ⇒ true
case Succ(p1) ⇒ pred_<(p1, p2)

}

})

}.holds

def pred_≤(n1: Nat, n2: Nat): Boolean = {

require(n1 > Zero && n1 ≤ n2)

val Succ(p1) = n1

p1 < n2 because succ_<(p1, p1) && (n1 == n2 || transitive_<(p1, n1, n2))

}.holds

def transitive_<(n1: Nat, n2: Nat, n3: Nat): Boolean = {

require(n1 < n2 && n2 < n3)

(n1 < n3) because (n3 match {

case Zero ⇒ true
case Succ(n) if n == n2 ⇒ succ_<(n1, n)

case Succ(n) ⇒ pred_<(n2, n3) && transitive_<(n1, n2, n) && succ_<(n1, n)

})

}.holds

def antisymmetric_<(n1: Nat, n2: Nat): Boolean = {

n1 < n2 == !(n2 ≤ n1) because ((n1, n2) match {

case (Succ(p1), Succ(p2)) ⇒ antisymmetric_<(p1, p2)

case _ ⇒ true
})

}.holds

def plus_succ(n1: Nat, n2: Nat): Boolean = {

n1 + Succ(n2) ==| associative_plus(n1, One, n2) |

(n1 + One) + n2 ==| commutative_plus(n1, One) |

(One + n1) + n2 ==| associative_plus(One, n1, n2) |

Succ(n1 + n2)

}.qed

def plus_<(n1: Nat, n2: Nat, n3: Nat): Boolean = {

require(n2 < n3)

(n1 + n2 < n1 + n3) because (n3 match {

case Succ(p3) if n2 == p3 ⇒
plus_succ(n1, n2) &&

succ_<(n1 + n2, n1 + n2)

case Succ(p3) ⇒
plus_succ(n1, p3) &&

pred_<(n2, n3) &&
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plus_<(n1, n2, p3) &&

succ_<(n1 + n2, n1 + p3)

})

}.holds

def plus_<(n1: Nat, n2: Nat, n3: Nat, n4: Nat): Boolean = {

require(n1 ≤ n3 && n2 ≤ n4)

n1 + n2 ≤ n3 + n4 because (n3 match {

case Zero ⇒ trivial

case Succ(_) if n1 == n3 && n2 == n4 ⇒ trivial

case Succ(_) if n1 == n3 ⇒ plus_<(n1, n2, n4)

case Succ(p3) ⇒ pred_<(n1, n3) && plus_<(n1, n2, p3, n4) && succ_<(n1 + n2, p3 + n4)

})

}.holds

def associative_plus_minus(n1: Nat, n2: Nat, n3: Nat): Boolean = {

require(n2 ≥ n3)

(n1 + n2) − n3 == n1 + (n2 − n3) because ((n2, n3) match {

case (Succ(p2), Succ(p3)) ⇒
{

(n1 + Succ(p2)) − Succ(p3) ==| commutative_plus(One, p2) |

(n1 + (p2 + One)) − Succ(p3) ==| associative_plus(n1, p2, One) |

((n1 + p2) + One) − Succ(p3) ==| commutative_plus(n1 + p2, One) |

Succ(n1 + p2) − Succ(p3) ==| trivial |

(n1 + p2) − p3 ==| associative_plus_minus(n1, p2, p3) |

n1 + (p2 − p3) ==| trivial |

n1 + (n2 − n3)

}.qed

case _ ⇒ true
})

}.holds

def additive_inverse(n1: Nat, n2: Nat): Boolean = {

n1 + n2 − n2 == n1

}.holds because (associative_plus_minus(n1, n2, n2) && minus_identity(n2) && plus_zero(n1))

def multiplicative_inverse(n1: Nat, n2: Nat): Boolean = {

require(n2 > Zero)

(n1 * n2) / n2 == n1 because (n1 match {

case Succ(p1) ⇒
{

(n1 * n2) / n2 ==| trivial |

(p1 * n2 + n2) / n2 ==| (

commutative_plus(p1 * n2, n2) &&

increasing_plus(n2, p1 * n2) &&

antisymmetric_<(p1 * n2 + n2, n2)) |

(Succ(((p1 * n2 + n2) − n2) / n2) : Nat) ==| additive_inverse(p1 * n2, n2) |
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(Succ((p1 * n2) / n2) : Nat) ==| multiplicative_inverse(p1, n2) |

n1

}.qed

case _ ⇒ true
})

}.holds

@induct

def increasing_plus(n1: Nat, n2: Nat): Boolean = {

n1 ≤ n1 + n2

}.holds

@induct

def increasing_plus_strict(n1: Nat, n2: Nat): Boolean = {

require(n2 > Zero)

n1 < n1 + n2

}.holds

def increasing_times(n1: Nat, n2: Nat): Boolean = {

require(n1 > Zero && n2 > Zero)

n1 ≤ n1 * n2 because (n1 match {

case Succ(Zero) ⇒ true
case Succ(p1) ⇒
assert(increasing_times(p1, n2))

assert(increasing_plus_strict(p1 * n2, n2))

assert(p1 == p1 * n2 || transitive_<(p1, p1 * n2, p1 * n2 + n2))

assert(succ_≤(p1, p1 * n2 + n2))

(n1 ≤ n1 * n2 ==| trivial | true).qed
})

}.holds

def pow(n1: Nat, n2: Nat): Nat = n2 match {

case Succ(n) ⇒ n1 * pow(n1, n)

case Zero ⇒ One

}

def pow_positive(n1: Nat, n2: Nat): Boolean = {

require(n1 > Zero)

pow(n1, n2) > Zero because (n2 match {

case Succ(p2) ⇒ pow_positive(n1, p2) && increasing_times(n1, pow(n1, p2))

case _ ⇒ true
})

}.holds

def isEven(n: Nat): Boolean = n match {

case Zero ⇒ true
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case Succ(Zero) ⇒ false
case Succ(n) ⇒ !isEven(n)

}

def times_two_even(n: Nat): Boolean = {

isEven(Two * n) because (n match {

case Zero ⇒ true
case Succ(p) ⇒ {

isEven(Two * n) ==| commutative_times(Two, n) |

isEven(n * Two) ==| trivial |

isEven(p * Two + Two) ==| commutative_plus(p * Two, Two) |

isEven(p * Two) ==| commutative_times(Two, p) |

isEven(Two * p) ==| times_two_even(p) |

true
}.qed

})

}.holds

def times_two_plus_one_odd(n: Nat): Boolean = {

!isEven(Two * n + One) because times_two_even(n) && commutative_plus(Two * n, One)

}.holds

def power_two_even(n: Nat): Boolean = {

require(n > Zero)

isEven(pow(Two, n)) because (n match {

case Succ(p) ⇒ times_two_even(pow(Two, p))

})

}.holds

def pair(n1: Nat, n2: Nat): Nat = pow(Two, n1) * (Two * n2 + One) − One

def log2_and_remainder(n: Nat): (Nat, Nat) = {

decreases(n.repr)

if (isEven(n) && n > Zero) {

val (a, b) = log2_and_remainder(n / Two)

(Succ(a), b)

} else {

(Zero, n)

}

}

def project(n: Nat): (Nat, Nat) = {

val (a, b) = log2_and_remainder(Succ(n))

(a, (b − One) / Two)

}

def project_1_inverse(n1: Nat, n2: Nat): Boolean = {
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log2_and_remainder(Succ(pair(n1, n2))) == (n1, (Two * n2 + One)) because (n1 match {

case Succ(p1) ⇒
def assoc_plus_minus_one(n: Nat): Boolean = {

(One + (pow(Two, n) * (Two * n2 + One) − One) ==

(One + pow(Two, n) * (Two * n2 + One)) − One) because {

pow_positive(Two, n) &&

commutative_plus(Two * n2, One) &&

increasing_times(pow(Two, n), (Two * n2 + One)) &&

associative_plus_minus(One, pow(Two, n) * (Two * n2 + One), One)

}

}.holds

{

log2_and_remainder(Succ(pair(n1, n2))) ==|

trivial |

log2_and_remainder(Succ(pow(Two, n1) * (Two * n2 + One) − One)) ==|

trivial |

log2_and_remainder(One + (pow(Two, n1) * (Two * n2 + One) − One)) ==|

assoc_plus_minus_one(n1) |

log2_and_remainder((One + pow(Two, n1) * (Two * n2 + One)) − One) ==|

commutative_plus(One, pow(Two, n1) * (Two * n2 + One)) |

log2_and_remainder(pow(Two, n1) * (Two * n2 + One) + One − One) ==|

additive_inverse(pow(Two, n1) * (Two * n2 + One), One) |

log2_and_remainder(pow(Two, n1) * (Two * n2 + One)) ==|

trivial |

log2_and_remainder((Two * pow(Two, p1)) * (Two * n2 + One)) ==|

associative_times(Two, pow(Two, p1), Two * n2 + One) |

log2_and_remainder(Two * (pow(Two, p1) * (Two * n2 + One))) ==|

additive_inverse(pow(Two, p1) * (Two * n2 + One), One) |

log2_and_remainder(Two * (pow(Two, p1) * (Two * n2 + One) + One − One)) ==|

commutative_plus(One, pow(Two, p1) * (Two * n2 + One)) |

log2_and_remainder(Two * (One + pow(Two, p1) * (Two * n2 + One) − One)) ==|

assoc_plus_minus_one(p1) |

log2_and_remainder(Two * Succ(pow(Two, p1) * (Two * n2 + One) − One)) ==|

trivial |

log2_and_remainder(Two * Succ(pair(p1, n2))) ==| (

times_two_even(Succ(pair(p1, n2))) &&

project_1_inverse(p1, n2) &&

commutative_times(Two, Succ(pair(p1, n2))) &&

multiplicative_inverse(Succ(pair(p1, n2)), Two)) |

(n1, Two * n2 + One)

}.qed

case _ ⇒
{

log2_and_remainder(Succ(pair(n1, n2))) ==|

trivial |
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log2_and_remainder(Succ(pow(Two, n1) * (Two * n2 + One) − One)) ==|

trivial |

log2_and_remainder(Succ(Two * n2 + One − One)) ==|

additive_inverse(Two * n2, One) |

log2_and_remainder(Succ(Two * n2)) ==|

times_two_plus_one_odd(n2) |

((Zero, Succ(Two * n2)): (Nat, Nat)) ==|

commutative_plus(Two * n2, One) |

((Zero, Two * n2 + One): (Nat, Nat))

}.qed

})

}.holds

def inverse_lemma(n1: Nat, n2: Nat): Boolean = {

project(pair(n1, n2)) == (n1, n2)

}.holds because {

val (p1, remainder) = log2_and_remainder(Succ(pair(n1, n2)))

val p2 = (remainder − One) / Two

project(pair(n1, n2)) ==| trivial |

(p1, p2) ==| trivial |

(p1, (remainder − One) / Two) ==| project_1_inverse(n1, n2) |

(n1, ((Two * n2 + One) − One) / Two) ==| additive_inverse(Two * n2, One) |

(n1, (Two * n2) / Two) ==| commutative_times(Two, n2) |

(n1, (n2 * Two) / Two) ==| multiplicative_inverse(n2, Two) |

(n1, n2)

}.qed

def pair_unique(n1: Nat, n2: Nat, n3: Nat, n4: Nat): Boolean = {

(pair(n1, n2) == pair(n3, n4)) == ((n1, n2) == (n3, n4))

}.holds because {

if (pair(n1, n2) == pair(n3, n4)) {

assert(project(pair(n1, n2)) == project(pair(n3, n4)))

assert(inverse_lemma(n1, n2) && inverse_lemma(n3, n4))

assert((n1, n2) == (n3, n4))

((n1, n2) == (n3, n4) ==| trivial | true).qed
} else {

assert((n1, n2) != (n3, n4))

((n1, n2) == (n3, n4) ==| trivial | false).qed
}

}

}
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