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Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric
self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory
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Using linear flavor-wave theory (LFWT) and auxiliary field quantum Monte Carlo (QMC), we investigate
the properties of the SU(4) Heisenberg model on the anisotropic square lattice in the fully antisymmetric six-
dimensional irreducible representation, a model that describes interacting fermions with four flavors at half-
filling. Thanks to the calculations on very large systems, we have been able to convincingly demonstrate that
QMC results are consistent with a small but finite antiferromagnetic moment at the isotropic point, in qualitative
agreement with LFWT obtained earlier [F. H. Kim et al., Phys. Rev. B 96, 205142 (2017)], and in quantitative
agreement with results obtained previously on the Hubbard model [D. Wang et al., Phys. Rev. Lett. 112, 156403
(2014)] after extrapolation to infinite U/t . The presence of a long-range antiferromagnetic order has been further
confirmed by showing that a phase transition takes place into a valence-bond solid (VBS) phase not too far from
the isotropic point when reducing the coupling constant along one direction on the way to decoupled chains.
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I. INTRODUCTION

Substantial leaps of progress have been reported in recent
years in the field of ultracold atom manipulation in optical
lattices [1–10]. This, in turn, raises an exciting prospect of
realizing the SU(N ) symmetric fermionic Hubbard model
with N flavors experimentally, whose Hamiltonian is given by

H = −t
∑

〈i, j〉,μ
( f †

i,μ f j,μ + H.c.) + U
∑

i,μ<ν

ni,μni,ν (1)

with fermionic operators f †
i,μ, fi,μ on each site i with N flavors,

ni,μ = f †
i,μ fi,μ, and the summation is over the 〈i, j〉 nearest-

neighbor sites. In the Mott insulating phase, the low-energy
physics of this model in the second order in t/U is captured
by the antiferromagnetic SU(N ) Heisenberg model,

H = J
∑
〈i, j〉

∑
μ,ν

Ŝμ
ν (i)Ŝν

μ( j) (2)

where the operators Ŝμ
ν simply exchanges the SU(N ) flavor

μ with ν, and J ∼ t2/U . When having one particle per site,
the flavor states are described by the fundamental irreducible
representation (irrep) of SU(N ) denoted by the Young tableau
with one box �. In contrast, when multiple particles are
present per site, the flavor states are described by a differ-
ent irrep of SU(N ) depending on the flavor symmetry that
the particles form. The SU(N ) antiferromagnetic Heisenberg
model has been of considerable interest for a while because
of the abundance of interesting phases and physical phenom-
ena that it can accommodate. They should soon be within
reach, allowing perhaps the realization of a variety of exotic
phases shown by recent theoretical and numerical activities

in the field [11–21] thanks to the unprecedented control over
various parameters that the optical lattices offer. Notably,
one-dimensional systems in the fundamental irrep of SU(N )
were already solved exactly by Sutherland in the 70s using
the Bethe ansatz [22], and calculations using the mean-field
saddle-point treatment in the large-N limit have been per-
formed for various irreps [23–28] in the late 80s and early
90s, shedding light on the theoretical understanding of the
SU(N ) models in a controlled way. However, the nature of the
large-N expansion implies that the validity of its results could
be questionable for small values of N . Since the enhanced
SU(N ) symmetry seems to be physically realizable for up to
N = 10 with up to two particles per site [5,8,9], it is crucial to
have a reliable assessment of these systems with a relatively
low N .

The model of interest in the present article is the SU(4)
AFM Heisenberg model at half filling (with two fermionic
particles per site) in the fully antisymmetric configuration.
The states thus belong to the fully antisymmetric self-
conjugate representation and this irrep corresponds to the
Young tableau (two boxes placed in one column). For
this model, the large-N limit calculations at zero temperature
have long predicted a degenerate dimerized ground state in
one dimension [24,25], with other analytical approaches and
numerical methods such as the density matrix renormaliza-
tion group (DMRG), the quantum Monte Carlo (QMC) and
variational Monte Carlo (VMC) calculations also reaching
the same conclusion [29–32]. The Coleman-Mermin-Wagner
theorem [33,34] indeed excludes the possibility of having a
long-range order in 1D, but this is not the case in 2D at
zero temperature. In the two-dimensional square lattice, the
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FIG. 1. Illustrations of the (a) Néel-like pattern with an ordering
vector q = (π, π ) and (b) VBS configuration with an ordering vector
q = (π, 0) for the Mott-insulating state of SU(4) fermions with two
particles per site. The flavors A, B, C, and D of the fermions are
represented by the colors blue, yellow, red, and green, respectively.
The horizontal lines represent the intrachain coupling Jx whereas
the vertical dashed lines represent the interchain coupling Jy that
controls the dimensional crossover. The grey ellipse-shape objects
in (b) indicate the strongly entangled pairs of sites.

Néel-ordered configuration has been suggested as a possible
ground state by VMC calculations [31], and this possibility
has been further supported by the linear flavor-wave theory
(LFWT) [35], an extension of the spin-wave theory for SU(2)
spins. Furthermore, QMC simulations carried out on the
SU(4) Hubbard model in the strong-coupling regime with
sizes up to 16 × 16 show the Néel ordering [36,37]. However,
it remains to be seen if this magnetic order will survive
in the Heisenberg limit. As a matter of fact, auxiliary field
QMC simulations with system sizes up to 24 × 24 seem to
suggest the absence of long-range order [11] for the SU(4)
AFM Heisenberg model at half filling. The existence of an
ordered magnetic state in this model thus appeals for further
investigations.

To progress further on this issue, we study here the evo-
lution of this system between 2D and 1D by tuning the
interchain couplings (thus obtaining a collection of 1D chains
from the 2D square lattice). The aim is to show that this
dimensional crossover triggers a continuous phase transition
to a valence bond solid (VBS) in 1D, and that it supports the
long-range antiferromagnetic configuration for the 2D lattice,
albeit with a small magnetic moment. An example of the
Néel-like configuration and the VBS configuration is shown
in Fig. 1. The phase transition from the Néel state during this
dimensional crossover will first be assessed by the LFWT by
closely following the steps in Ref. [35]. The results of the
auxiliary field QMC simulations (free of the sign problem
for the current model) will then be presented by considering
system sizes up to 40 × 40, showing a small local moment in
the 2D model and supporting a continuous transition between
the Néel state and the VBS state during the dimensional
transition.

II. THE MAGNETIC TRANSITION WITH THE LINEAR
FLAVOR-WAVE THEORY (LFWT)

We first define the SU(4) AFM Heisenberg model in 2D
with the intrachain coupling Jx and the interchain coupling Jy

depicted in Fig. 1,

H =
∑
〈�ı,�j 〉

∑
μ,ν

J�ı,�j Ŝμ
ν (�ı)Ŝν

μ(�j ). (3)

The site indices 〈�ı, �j 〉 run over the nearest neighbors, and
the indices μ, ν ∈ {A, B,C, D} label the flavors. The nearest-
neighbour coupling J�ı,�j is given by

J�ı,�j =
{

Jx for intrachain bonds,
Jy for interchain bonds. (4)

At the isotropic point Jx = Jy, the model describes a square
lattice whereas the regime Jy/Jx = 0 corresponds to decou-
pled chains. The states of the model of interest are the
states of the six-dimensional fully antisymmetric self-adjoint
representation. We will assume a Néel-type ordering with a
bipartite configuration, where we have the flavors A and B on
one sublattice and the flavors C and D on the other sublat-
tice. Assuming the existence of such a magnetic phase, we
will apply the multiboson approach [35,38–40] to study the
behavior of the ordered magnetic moment of the system as a
function of the interchain coupling Jy in the linear flavor-wave
approximation. Within this approach, a boson is attributed to
each of the six existing states in the irreducible representation.
We will thus be working in terms of the composite particles,
not in terms of the individual flavor particles.

A. The LFWT multiboson Hamiltonian

Let the six states of the antisymmetric irrep be

AB = |AB〉 − |BA〉√
2

, AC = |AC〉 − |CA〉√
2

,

DA = |DA〉 − |AD〉√
2

, BC = |BC〉 − |CB〉√
2

,

BD = |BD〉 − |DB〉√
2

, CD = |CD〉 − |DC〉√
2

. (5)

The bar over the flavors is used as a reminder that the flavor
indices are antisymmetric. We group these states into the
set �:

� = {AB, AC, DA, BC, BD,CD}. (6)

The states are represented in the weight diagram in Fig. 2.
Let us attribute a boson to each of these states. In other words,
the bosons d

AB
, d

AC
, d

DA
, d

BC
, d

BD
, d

CD
, and their adjoint

counterparts will be used to create and annihilate the six states
of the irrep. Since our model has one composite particle per
site, we have the constraint∑

η∈�

d†
ηdη = nc, (7)

with nc = 1 for each site, where the boson index η ∈ � refers
to the individual states in �. As for the SU(4) generators Ŝμ

ν (i)
on a site i, they can be written as

Ŝμ
ν (i) =

D∑
α=A

α �=μ,ν

d†
αν (i)dαμ(i) − δμ,ν

1

2
nc, (8)
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FIG. 2. Weight diagram of the six-dimensional antisymmetric
SU(4) irrep. The flavors A, B, C, and D are represented by the col-
ors blue, yellow, red, and green, respectively, as in Fig 1. The weight
diagram is in three dimensions in the Cartan-Weyl basis {H1 ∝ ŜA

A −
ŜB

B, H2 ∝ ŜA
A + ŜB

B − 2ŜC
C , H3 ∝ ŜA

A + ŜB
B + ŜC

C − 3ŜD
D}, since SU(4)

is a group of rank 3, and its vertices form an octahedron. The plane
with circles is beneath the plane with dots. The states AB and CD are
antipodal and are farthest from each other.

where the (antisymmetric) indices of the bosons are now
ordered in such a way that they correspond to the labels
of the states. When reordering the indices, the sign of the
permutations needs to be taken into account, i.e., d†

νμ = −d†
μν ,

to reflect the antisymmetry of the states of this irrep. As an
example, the generator ŜA

B is given by

ŜA
B = d†

BC
d

AC
− d†

BD
d

DA
. (9)

These expressions of Ŝμ
ν in terms of the bosons d is a valid

bosonic representation of the SU(4) generators as it satisfies
the SU(N ) commutation relation[

Ŝα
β , Ŝμ

ν

] = δα
ν Ŝμ

β − δ
μ
β Ŝα

ν . (10)

Without loss of generality, the classical ground-state Néel
order can be assumed to be composed of the state AB on
sublattice 	AB and the state CD on sublattice 	CD. Note that
these two states are the farthest apart from one another in
the weight diagram in Fig. 2. With the assumption of small
fluctuations around our flavor order, the Holstein-Primakoff
prescription can be used by considering the limit nc → ∞.
Let us introduce the pair of Holstein-Primakoff bosons aη(i)
and a†

η(i) for the sublattice 	AB. Using the constraint (7), the
prescription leads to the following equations:

d†
AB

(i), d
AB

(i) →
√

nc −
∑

η

a†
η(i)aη(i), (11a)

d†
η (i) → a†

η(i), (11b)

dη (i) → aη(i), (11c)

where the index η labels the noncondensed bosons in the set
�, i.e., η ∈ � \ {AB} = �AB, with

�AB := {AC, DA, BC, BD,CD}. (12)

Similarly, we can introduce the Holstein-Primakoff bosons
bη( j) and b†

η( j) for the other sublattice 	CD. In this case, we
get

d†
CD

( j), d
CD

( j) →
√

nc −
∑

η

b†
η( j)bη( j), (13a)

d†
η ( j) → b†

η( j), (13b)

dη ( j) → bη( j), (13c)

with η ∈ � \ {CD} = �CD.
The square root expansion in 1/nc yields the quadratic

Hamiltonian H(2). We can perform the Fourier transform on
H(2) with

aη(i) =
√

2

Ns

∑
k∈RBZ

aη(k)e−ik·ri ,

bη( j) =
√

2

Ns

∑
k∈RBZ

bη(k)e−ik·r j , (14)

in which η ∈ � is the state index, Ns is the number of sites
and the sums run over the reduced magnetic Brillouin zone.
The Fourier-transformed quadratic Hamiltonian H(2) is finally
given by

H(2) = H(2)
0 + H(2)

1 + H(2)
2 + H(2)

3 + H(2)
4 , (15)

where

H(2)
0 = nc

∑
k∈RBZ

2A[a†
CD,k

a
CD,k + b†

AB,k
b

AB,k],

H(2)
1 = nc

∑
k∈RBZ

[A(a†
AC,k

a
AC,k + b†

BD,k
bBD)

+Bk(a†
AC,k

b†
BD,−k

+ a
AC,k b

BD,−k )],

H(2)
2 = nc

∑
k∈RBZ

[A(a†
BD,k

a
BD,k + b†

AC,k
b

AC,k )

+Bk(a†
BD,k

b†
AC,−k

+ a
BD,k b

AC,−k )],

H(2)
3 = nc

∑
k∈RBZ

[A(a†
DA,k

a
DA,k + b†

BC,k
b

BC,k )

+Bk(a†
DA,k

b†
BC,−k

+ a
DA,k b

BC,−k )],

H(2)
4 = nc

∑
k∈RBZ

[A(a†
BC,k

a
BC,k + b†

DA,k
b

DA,k )

+Bk(a†
BC,k

b†
DA,−k

+ a
BC,k b

DA,−k )], (16)

with

A = 2Jx + 2Jy,

Bk = 2Jx cos kx + 2Jy cos ky. (17)

Note that all the terms in H(2) are of the same order in
our expansion parameter nc. Let us reestablish the constraint
(7) by setting nc = 1. The terms H(2)

1,...,4 in Eq. (15) can be
diagonalized separately with the Bogoliubov transformation
in an identical fashion. For instance, the diagonalization of
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bosons aAC,k, bBD,k in H(2)
1 can be performed with(

ã†
AC,k

b̃
BD,−k

)
=

(
uk vk
vk uk

)(
a†

AC,k
b

BD,−k

)
, (18)

where

uk =
√

1

2

( A
ωk

+ 1

)
, vk =

√
1

2

( A
ωk

− 1

)
. (19)

Hence, the diagonalized quadratic Hamiltonian finally reads
as

H(2) =
∑

k∈RBZ

⎧⎨
⎩

∑
η ∈ �′

[
ωk

(
ã†

η,kãη,k+ 1

2

)
+ωk

(
b̃†

η,kb̃η,k+ 1

2

)]

+ 4(Jx + Jy)(a†
CD,k

a
CD,k + b†

AB,k
b

AB,k )

⎫⎬
⎭ + const.,

(20)

where �′ = �AB ∩ �CD = {AC, DA, BC, BD} and

ωk =
√
A2 − B2

k

=
√

(2Jx + 2Jy)2 − (2Jx cos kx + 2Jy cos ky)2. (21)

There are eight dispersive modes and two localized modes.
The flat localized modes stem from multipolar transitions
requiring more than one flavor exchange, and, thus, these
excitations do not interact in the quadratic order of our expan-
sion in nc [35,39]. Moreover, in the subsequent calculation,
it can be seen that they do not contribute to the ordered
moment in the harmonic approximation. It is also worthwhile
noting that when applying the LFWT calculations using a
different boson representation, namely the Read and Sachdev
bosonic representation [25], it can be shown that only the eight
dispersive modes are present in the harmonic approximation
[35].

B. Magnetization and the dimensional crossover

Let us now study the magnetization and the dimensional
crossover of the system. For a bipartite lattice with SU(4)
flavors A, B and C, D on the two different sublattices, the
ordered magnetic moment on site i ∈ 	AB can be defined as

mi = 1
2

〈
ŜA

A (i) + ŜB
B (i) − ŜC

C (i) − ŜD
D (i)

〉
, (22)

such that the classical Néel configuration yields mi = nc and
the disordered case yields mi = 0. Using Eq. (8), this becomes

mi(Jx, Jy) = nc − 〈n̂AC (i)〉 − 〈n̂AD(i)〉 − 〈n̂BC (i)〉
− 〈n̂BD(i)〉 − 2〈n̂CD(i)〉, (23)

where n̂η = a†
η(i)aη(i) with η ∈ �AB. Within the LFWT and

with our constraint nc = 1, the ordered moment mi is finally
given by

mi(Jx, Jy) = 1 − 4
〈
v2

k

〉
, (24)

where we used the fact that 〈n̂CD〉 = 0 in the harmonic ap-
proximation, i.e., the localized bands do not contribute to the

0 0.2 0.279 0.4 0.6 0.8 1

0.1

0

0.1

0.2

FIG. 3. Magnetization calculated from LFWT, as a function of
Jy, while keeping Jx = 1. The magnetization below Jc

y = 0.279 is
negative, suggesting that the order is completely destroyed below this
value.

reduction of the magnetization. The ordered moment on the
sublattice 	CD can be defined to be mj = −mi, and we thus
consider m = mi only in the following and fix the value of
the intrachain coupling Jx = 1 for simplicity. In the isotropic
case, Jy = 1, it has already been concluded in Ref. [35] that
the magnetic moment retains a finite value,

m = 0.214. (25)

Though the correction to the magnetization 1 − m = 0.786 is
rather large, this would suggest a potential flavor order of the
system. From this isotropic point, we can now investigate how
the value of ordered moment decreases as we decrease the Jy.
As the magnetization m vanishes when

Jc
y = 0.279, (26)

we can conclude that the dimensional crossover we are search-
ing for happens at this point. Below this value of Jy, quantum
fluctuations completely destroy the flavor order, indicating a
possible phase transition. The ordered moment is plotted in
Fig 3. The LFWT thus predicts a phase transition from the
Néel ordered state.

III. AUXILIARY FIELD QUANTUM MONTE CARLO

Auxiliary field QMC simulations of the SU(N) Hubbard
model, Eq. (1), demonstrate that charge fluctuations favor
magnetic ordering at half-filling for even values of N [37].
At N = 6, one observes a VBS state in the Heisenberg limit
[11], U/t → ∞, and a magnetically ordered state below a
critical value of U/t . For the strong coupling N = 4 model,
the magnetic moment is a decreasing function of U/t and in
the Heisenberg limit it is to date not clear if the ground state
is magnetically ordered. Our first aim is to carry out more
precise simulations than in Ref. [11] of the SU(4) Heisenberg
model. We will see that the model has a small but finite
magnetic moment. Having established order in the isotropic
case, we will then search for the signatures of the dimensional
crossover in the spin and VBS correlation functions.
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A. Auxiliary field QMC: formulation

It is beyond the scope of this article to provide a full
description of the auxiliary field QMC approach. Here we will
restrict ourselves to a formulation of the model akin to be
implemented in the Algorithms for Lattice Fermions (ALF)
library [41]. Our starting point is a fermionic representation
of the SU(N) generators,

Ŝμ
ν (i) = ĉ†

i,ν ĉi,μ − δμ,ν

N

N∑
α=1

ĉ†
i,α ĉi,α , (27)

where the half-filling constraint

Nc =
N∑

ν=1

ĉ†
i,ν ĉi,ν = N

2
(28)

selects the fully antisymmetric self-adjoint representa-
tion. In this representation, the Heisenberg model, H =∑

〈i, j〉 J〈i, j〉
∑

μ,ν Ŝμ
ν (i)Ŝν

μ( j)
reads

H = HJ + HU ,

HJ = −1

2

∑
〈i, j〉

J〈i, j〉(D̂†
i, j D̂i j + D̂i, j D̂

†
i, j ) ,

HU = U
∑

i

(
N∑

ν=1

[
ĉ†

i,ν ĉi,ν − 1

2

])2

. (29)

In the above, D̂†
i, j = ∑

ν ĉ†
i,ν ĉ j,ν and we have relaxed the

half-filled constraint at the expense of the Hubbard interaction
HU . Since [HU ,HJ ] = 0 the constraint will be automatically
imposed when carrying out simulations at any finite positive
value of U , and in the limit of infinite projection parameter �

(see below). We use the equation

D̂†
i, j D̂i j + D̂i, j D̂

†
i, j = 1

2 [(D̂†
i, j + D̂i j )

2 + (iD̂†
i, j − iD̂i j )

2]
(30)

so as to write the Hamiltonian in terms of perfect squares of
Hermitian operators as required by the standards of the ALF
library [41]. While ground state properties can be obtained
using the grand canonical formulation of the auxiliary field
QMC and extrapolating to zero temperature, it is more con-
venient to adopt a projective scheme based on the equation:

〈ψ0|Ô|ψ0〉
〈ψ0|ψ0〉 = lim

�→∞
〈ψT |e−�H/2Ôe−�H/2|ψT 〉

〈ψT |e−�H|ψT 〉 (31)

provided that 〈ψ0|ψT 〉 �= 0. We have chosen the trial wave
function to be the ground state of the tight binding model on
the square lattice,

HT = −
∑
〈i, j〉

N∑
ν=1

(ĉ†
i,ν ĉ j,ν + H.c.), (32)

with antiperiodic (periodic) boundary conditions in the x (y)
direction. To study the dimensional crossover we use the
exchange defined in Eq. (4), set Jx to unity, the imaginary
time step 
τ = 0.025 and U = 0.25. For the considered
values of the projection parameter, �, we have tested that this

choice of the Hubbard interaction suffices to freeze the charge
fluctuations within the statistical uncertainty.

B. Isotropic case

To pin down the nature of ground state of the SU(4)
Heisenberg model, we compute equal time spin-spin corre-
lation function

SSpin(q) = 1

L2

∑
i, j,μ,ν

eiq·(ri−r j )
〈
Ŝμ

ν ( j)Ŝν
μ(i)

〉
. (33)

The SSpin(q) fulfills the

1

L2

∑
q

SSpin(q) = C1 (34)

sum rule, where C1 is the value of the Casimir operator Ĉ1 =∑
μ,ν Ŝμ

ν (i)Ŝν
μ(i) on a site. For the six-dimensional irreducible

representation C1 = 5. The above sum rule is valid only in the
absence of charge fluctuations, so that it provides an excellent
crosscheck for the validity of our calculation and choice of
the Hubbard U. Indeed, our QMC calculations satisfied the
sum rule up to 2.5 × 10−4 precision. While in Ref. [11] our
biggest size corresponded to 24 × 24, enhanced computer
power allows us to reach ground state properties at L = 40.

The results for SSpin(q) are shown in Fig. 4(a) for different
system sizes. We can observe a clear peak at q = Q = (π, π ),
which grows as the system size is increased, revealing the
formation of the Neél state. To check the presence of long-
range order, we consider the correlation ratio:

RSpin(L) = 1 − SSpin(Q − (0, 2π/L))

SSpin(Q)
. (35)

This quantity scales to unity (zero) in the ordered (disordered)
phase, and is a renormalization group invariant quantity such
that in the vicinity of a critical point—where scaling holds—
we expect

RSpin(L) = F ((g − gc)L1/ν, L−ω ). (36)

In the above, g is the control parameter, ν the correlation
length exponent and ω the leading correction to scaling ex-
ponent. As apparent from Fig. 4(c), the ground state estimate
of RSpin(L) as a function of system size is initially flat and then
grows substantially when L � 24. This form of the correlation
ratio strongly suggests that we are close to a critical point. It
is tempting to interpret N as a tuning parameter that drives the
system from the Néel to VBS state. In this scenario, the local
moment is small due to competing VBS fluctuations. To test
this, we have computed the VBS correlation functions:

[SVBS(q)]δ,δ′ = 1

L2

∑
i, j

eiq·(ri−r j )

× (〈
̂i,i+δ
̂ j, j+δ′ 〉 − 〈
̂i,i+δ〉〈
̂ j, j+δ′ 〉) (37)

with


̂i,i+δ =
∑
μ,ν

Ŝμ
ν (i)Ŝν

μ(i + δ).

Note that to facilitate the calculation of the dimer correla-
tion function, we have used Ŝμ

ν (i) = ĉ†
i,ν ĉi,μ − 1

2δμ,ν (i.e., the
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FIG. 4. QMC results for the isotropic SU(4) Heisenberg model,
Jx = Jy = 1. (a) Spin-spin and (b) VBS correlation functions
SVBS(q) = ∑

δ [SVBS(q)]δ,δ for various lattice sizes along a high
symmetry path in the Brillouin zone. The projection parameter �

grows as a function of system size L so to guarantee that we have
indeed converged to the ground state. (c) Spin correlation ratio. For
each system size, we have checked convergence in the projection
parameter. This quantity grows but shows no clear saturation to unity
for lattice sizes up to 40 × 40. The data are consistent with a small
local moment. (d) Spin-spin correlation at the antiferromagnetic
wave vector divided by the volume, the ordered moment corresponds

charge fluctuations in the diagonal part of Ŝμ
ν (i), Eq. (27),

are neglected). Figures 4(a) and 4(b) plot the spin as well as
VBS correlation functions on our biggest lattice. While the
antiferromagnetic spin fluctuations dominate, one observes
strong q = (0, π ) and q = (π, 0) VBS fluctuations thus lend-
ing support to the point of view that the SU(4) quantum
antiferromagnetic is close to a quantum critical point.

Finally, we calculate the value of the ordered moment. In
the pure Neél state, where the fluctuations are fully neglected,
m = 1 and the correlations in real space are

∑
μ,ν

〈
Ŝμ

ν ( j)Ŝν
μ(i)

〉 =
⎧⎨
⎩

5 if i = j;
1 if i �= j, same sublattice;

−1 if i �= j, different sublattice.
(38)

Correspondingly, the correlation function in the reciprocal
space,

SNeél
Spin (q) = 4 + L2δq,Q , (39)

shows a peak diverging with the system size at the ordering
vector Q = (π, π ).

Figure 4(d) plots SSpin(Q)/L2 as a function of 1/L for the
QMC calculation. The local moment, defined in Eq. (22),
corresponds to

m2 ≡ lim
L→∞

1

L2
SSpin(Q) . (40)

A polynomial fit in 1/L using the values for L = 16, 24, 32,

and 40 gives m2 = 0.0126(10). As apparent, large system
sizes and large projection parameters support a small but finite
local moment in the thermodynamic limit. In particular our
results suggest that

mQMC = 0.11 ± 0.04 (41)

and is hence two times smaller that the linear flavor-wave
result. As shown in the Appendix, this value of the local
moment matches well with the one obtained from the Hubbard
model in the large U/t limit [37].

C. Dimensional crossover

To investigate the dimensional crossover, we consider
again the spin and VBS correlation ratios. As apparent in
Figs. 5(a) and 5(b), the data are consistent with a direct
and continuous transition between the AFM and VBS at
Jc

y = 0.74–0.78. A more precise study of the transition is
certainly possible but difficult. In particular we have seen that
due to the small magnetic moment of the AFM state in the
isotropic limit, very large system sizes are required to merely
establish long-range order. Given the numerically accessible
lattice sizes, we believe that these difficulties will hinder an
accurate estimate of the critical point as a function of dimen-
sionality. As mentioned at the beginning of the section, charge
fluctuations have the potential of enhancing the magnetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
to m2 = SSpin(Q)/L2. For each system size, we have checked for
convergence in �. Extrapolation of converged results support a small
but finite local moment m.
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FIG. 5. (a) VBS and (b) spin correlation ratios as a function
of Jy, while keeping Jx = 1. The crossing in the spin and VBS
channels are slightly shifted. From the VBS data, one would have:
Jc

y � 0.76–0.78, whereas for the spin Jc
y � 0.74–0.76. Given the

overall scatter of the crossing point, this difference is not significant
enough to claim two separate transitions. (c) 1

L2
∂E0
∂Jy

shows no jump,
thereby supporting a continuous transition.

moment in the isotropic limit, such that a model with charge
fluctuations may be more suitable to study the criticality of the
dimensional crossover. Figure 5(c) plots 1

L2
∂E0
∂Jy

as a function of
Jy. The smoothness of the function constitutes an additional
hint that the transition is continuous.

IV. CONCLUSION

Using QMC and LFWT, we investigated the SU(4) AFM
Heisenberg model in the fully antisymmetric six-dimensional
self-conjugate representation in two spatial dimensions and
the dimensional crossover to one dimension. Both methods
show that the isotropic model in 2D has AFM order, albeit
with a very small magnetic moment according to the QMC
data. The LFWT predicts a larger magnetic moment (m =
0.214) than the QMC calculations (m � 0.11). The dimen-
sional crossover to 1D yields a phase transition from the Néel
state to the VBS, and the critical value of the dimensional
crossover is Jc

y = 0.74–0.78 according to QMC. The fading
of the Néel phase during the dimensional crossover is also

captured by the LFWT, although it overestimates the robust-
ness of the Néel phase with a predicted transition value of
Jc

y = 0.279. We understand the discrepancy between the QMC
and LFWT calculations as a consequence of the Berry phase.
For the SU(2) model, Haldane [42] has shown that skyrmion
changing configurations (hedgehogs or monopoles) carry C4

charge such that the proliferation of quadruple monopole
instances leads to a VBS state. On the realm of the theory
deconfined quantum criticality (DQC) quadruple monopole
instances are expected to be irrelevant at criticality and beyond
criticality condense to form the VBS state [43,44]. Remark-
ably, hedgehog singularities and the conclusions of Ref. [42]
can be generalized to SU(N) [25,27]. LFWT does not allow
for singular field configurations, and the strong VBS fluctua-
tions observed in the QMC calculations suggest that they can-
not be omitted for an accurate description of the SU(4) quan-
tum antiferromagnet. In particular, promoting N to a contin-
uous variable, our results show that the SU(4) quantum anti-
ferromagnet is close to a putative deconfined quantum critical
point to the VBS. Various, yet to be numerically confirmed,
field theories can be put forward to understand this quantum
phase transition [25,45] in a two-dimensional setting. Finally,
the nature of the dimensional driven transition to the VBS
remains to be studied. In the realm of the theory of DQC, the
reduction of the lattice symmetry from C4 to C2 allows for
double monopole instances in the field theory. A continuous
transition—as supported by the numerical data—would re-
quire double monopole instances to be irrelevant at criticality.
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APPENDIX: EXTRAPOLATED VALUE OF M FROM
WANG ET AL. [37]

Reference [37] investigates the SU(4) Hubbard model
in the 2D square lattice with the nearest-neighbor hopping

integral t and the on-site repulsion U . The pinning-field QMC
method [46], which induces a symmetry-breaking, is used to
probe the long-range magnetic order in the system. In the
absence of explicit symmetry breaking, we can only mea-
sure spin-spin correlation functions and thereby determine
the square of the local moment. As apparent in Fig. 4(d)
very large systems are required so as to extract reliably the
value of the local moment. For these specific cases, where
the local moment is small, the pinning field approach seems
superior. Figure 4 in Ref. [37] shows the magnetization m
as a function of U/t . Extracting the data from this figure,
we have extrapolated the value of m in the Heisenberg limit
U/t → ∞ using a linear fit in t/U , see Fig. 6. The obtained
value, m = 0.125 ± 0.044, is consistent with the value of m
[see Eq. (41)] obtained in this work without introducing a
symmetry breaking field.
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