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Introduction
In Switzerland there is currently great effort to increase the use of renewable energy. 
This effort is motivated by the Swiss Energy Strategy 2050, which sets as a goal to cease 
the use of nuclear power as a part of the energy mix by 2035, and reduce the CO2 emis-
sions by factor of 70 % by 2050. One promising solution is the large-scale deployment 
of ground-source heat pumps. While for many pumps the heat drawn from the surface 
layer is primarily from the sun, other pumps, particularly those using vertical bore-
holes, draw their heat from geothermal resources. Here we refer to the heat sources 
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as geothermal in the sense of being related to heat inside or from the earth. Geother-
mal energy is currently a commonly used renewable energy resource in Switzerland 
(Kemmler et al. 2018). Its main asset is that a ground connected heat pump can theoreti-
cally be installed almost anywhere (subject to regulations) and extract energy from the 
ground in an efficient way. Its use has been particularly common for single houses. Yet, 
a real impact over the whole country can be only reached with a large-scale deployment 
of ground-source heat pump. To do so, a thorough analysis of the thermal proprieties of 
the surface layers all the over the country is needed. Since, however, many different fac-
tors affect the thermal behavior of the ground, mapping the large-scale ground-source 
heat pump potential is a challenging task.

There have been several studies proposing large-scale (regional or national scale) 
methodologies for shallow (50 to 200 m depth) geothermal potential estimation. In par-
ticular, the potential for vertical Borehole Heat Exchangers (BHEs) has been studied 
often, since their high coefficient of performance (usually between 3 and 6) make them 
one of the most attractive means of exploiting shallow geothermal energy (Lund et al. 
2004; Sanner et al. 2003).

Some studies extract the theoretical potential for shallow geothermal energy estimat-
ing a thermal ground-related variable at a large scale. In most studies, the estimated 
variable is the thermal conductivity, which is understandable given its high impact on 
the potential. Beamish (2013) made a GIS study on the thermal conductivity all over 
the UK using statistical sampling with airborne electromagnetic data together with an 
available geological database for the country. Di  Sipio et  al. (2014) made a GIS study 
based on sampling to extract thermal conductivity values for the Calabria region in Italy. 
Kalogirou et al. (2015) explored the use of machine learning, more specifically Neural 
Networks, in order to estimate a thermal conductivity contour map for Cyprus, based 
on a measurement training data of 41 points at different locations in the island. The fea-
tures used as inputs for the models for each point were as follows: the lithology class, the 
elevation, air temperature statistics, rainfall, and the x and y coordinates. These studies, 
however, lack the estimation of other variables (e.g., thermal heat capacity, ground tem-
perature gradient, etc.) to provide a full geothermal potential.

Many studies have developed large-scale methodologies for extracting the complete 
technical potential for shallow geothermal systems. Ondreka et  al. (2007) proposes 
a methodology using GIS together with geological, hydrogeological, and lithological 
ground information, based on the German Verein Deutscher Ingenieure (VDI) guide-
line 4640, for extracting the technical geothermal potential for two study areas in Ger-
many. The VDI guideline is a table that provides heat extraction values depending on the 
type of soil or surface rocks/sediments of a particular location, the number of operat-
ing hours of the pump, and other factors (Verein Deutscher Ingenieure. VDI Richtlinie 
4640 Thermische Nutzung des Untergrundes 2001). Despite its being comparatively 
crude, the VDI guideline is very practical to obtain potential estimations and is particu-
larly suitable for large-scale studies, where only very general geological information may 
be available. VDI has been used in many later studies, including a study by García-Gil 
et  al. (2015), focusing on the groundwater flow to extract the technical potential, and 
in another recent study by Schiel et al. (2016), using the VDI guideline and demand val-
ues for extracting the very shallow geothermal potential in the urban area of a city in 
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Germany. Another strategy to extract the technical potential consists in first estimating 
significant ground thermal variables (commonly the thermal conductivity, ground tem-
perature, and heat capacity, forming a theoretical geothermal potential) using suitable 
methods, and combining these variables with modelling in order to extract the techni-
cal potential. Galgaro et al. (2015) use multiple models to estimate the annual air and 
ground temperature, thermal conductivity, and monthly energy loads, to finally extract 
technical potential values using empirical modelling. Casasso and Sethi (2016) propose 
a quantitative method called G.POT to map the shallow geothermal potential. The ther-
mal heat capacity, thermal conductivity, and ground temperature are first extracted from 
typical values (based on the type of rock/sediment) and empirical models. Then, the 
G.POT method uses analytical models to simulate the heat transfer in the ground and 
in the borehole with varying thermal properties and operational and design parameters 
of the system. It results in the technical potential estimation in the form of heat extrac-
tion values per year. In a later study (Casasso and Sethi 2017), the G.POT method was 
revised so as to extract the potential for open-loop installations such as groundwater 
heat pumps, in addition to BHEs. Furthermore, many studies have considered the geo-
thermal potential of shallow aquifers (Casasso and Sethi 2017; García-Gil et  al. 2015). 
A notable recent study estimates the geothermal potential of shallow aquifers in Fin-
land (Arola et al. 2014). In this study, the heating capabilities of groundwater for build-
ings were extracted from the entire country based on the heat flux, temperature, thermal 
heat capacity of groundwater, and design of buildings.

Since very shallow geothermal systems are particularly suitable for cities, several stud-
ies attempted to account for specific urban conditions, and most notably the impact of 
urban heat islands. In particular, studies by Allen et  al. (2003), Zhu et  al. (2010), and 
more recently Arola and Korkka-Niemi (2014) and Rivera et  al. (2017) show that the 
urban heat island effect has a very significant positive impact on the geothermal poten-
tial for BHEs installed in urban areas. These results are, in theory, also valid for shallower 
geothermal installations.

While traditional shallow geothermal installations (50 to 200 m depth) such as verti-
cal Borehole Heat Exchangers can be of great use for urban settings and single family 
houses given their very high efficiency (Sanner et al. 2003), very shallow geothermal sys-
tems (VSGs) (≤ 10 m depth) can often offer a viable alternative solution. Despite their 
efficiency being lower than that of the BHEs, VSGs offer many advantages, including (1) 
easy maintenance, (2) low-cost installation, (3) fewer legal constraints than for deeper 
installations, (4) possibility for technical improvements, and (5) a potential for installa-
tion almost everywhere. For the heat to be easily replenished around the collector, how-
ever, steady groundwater flow in the surface layer (normally soil or sediment) is the ideal 
condition. Thus, water-saturated surface layers offer much better heat sources for the 
heat pump collectors than dry and non-cohesive soils and sediments such as sand (Arola 
and Korkka-Niemi 2014; Lee and Hahn 2006; Milenić et al. 2010).

There have been recent efforts to develop, in addition to traditional horizontal loops 
or heat collectors, new VSGs using less space and with increased efficiency such as 
Slinky loops, helical heat exchangers, stacked tubes, and heat baskets. Several studies 
have focused on the main factors influencing the latter VSGs (Di Sipio and Bertermann 
2017). Some other studies provide design guidelines and models for multiple VSGs 
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(Boughanmi et al. 2015; Dehghan et al. 2016; Xiong et al. 2015; Zarrella et al. 2013a, b; 
Zarrella and De Carli 2013). Thus, when the heat potential exists at a very shallow depth, 
it is now possible to model and size appropriate VSGs at any location. It is necessary, 
however, to conduct a detailed study of the thermal characteristics of the ground/surface 
layers at such depth before deciding on the best location of such systems.

Few studies have been made on large-scale vSGP estimation. Some recent articles 
test multiple methods to compute the apparent (very shallow) thermal diffusivity from 
ground temperature time series, using various analytical methods and numerical models 
based on the 1D heat equation. Such studies include those of Busby (2015), Rajeev and 
Kodikara (2016), and Andújar Márquez et al. (2016). These studies, however, aim at pro-
viding estimations for specific study areas rather than large regions. The main large-scale 
vSGP study is the one initiated by the ThermoMap project (Bertermann et al. 2013, 2014, 
2015). This project aims at extracting the very shallow (top 10 m) geothermal potential in 
Europe as a whole, including specific case studies. Values are estimated for heat capacity 
and thermal conductivity based on near surface geology and hydrogeology information, 
the United States Department of Agriculture (USDA) soil texture classification, and equa-
tions from Kersten (1949) and Dehner (2007). For the ThermoMap project, the continen-
tal scale is used, which naturally reduces the resolution of the study. Eventually, a reliable 
methodology for vSGP at large (regional/national) scale is still to be developed.

Regarding the estimation of energy values and environmental modelling in general, 
machine learning (ML) methods have recently become widely used. In particular, many 
different ML algorithms have been explored for geospatial modelling of multiple envi-
ronmental variables, including solar radiation and wind speed (Kanevski and Maignan 
2004; Kanevski et al. 2009), forecasting of solar radiation over horizontal and tilted sur-
faces (Alessandrini et al. 2015; Hassan et al. 2017; Hussain and AlAlili 2017; Lou et al. 
2016; Yadav and Chandel 2014), and short-term forecasting of wind speed and wind 
power prediction (Heinermann and Kramer 2016; Najeebullah et al. 2015; Treiber et al. 
2016). Also, Joshi et al. (2014) used ML algorithms to perform a rooftop classification 
and provide a solar potential estimation over rooftops, and Assouline et al. (2017, 2018) 
used a combination of GIS and ML methods (Support Vector Machines and Random 
Forests) to map the technical solar rooftop potential in Switzerland. It has been very 
rarely used, however, for ground-related variable estimations. One of the main related 
studies is the work of Kalogirou et al. (2012), which used neural networks for extract-
ing ground temperature maps at various depths in Cyprus, based on measurement data 
from 41 boreholes. In addition, Beardsmore et al. (2016) and Beardsmore (2014) devel-
oped a Bayesian inference (which can be seen as an ML sub-family of methods) software 
tool for geophysical joint inversions, in the framework of the National ICT Australia, 
helping for the detection of promising locations for geothermal energy exploration. Nev-
ertheless, ML has never, to the best of our knowledge, been used for a geothermal poten-
tial mapping study.

In the present study, we propose a methodology to map the theoretical geothermal 
potential at very shallow depths (the top 1 meter of the ground/surface layer) and 
at the national scale for Switzerland. To do so, we use a combination of Geographic 
Information Systems, traditional modelling, and machine learning methods. The 
theoretical potential in this study includes an estimation of three significant thermal 
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properties of the ground/surface layer: thermal conductivity, thermal diffusivity, and 
temperature. Each of the three variables is separately treated and estimated, using 
multiple sources of data for processing and estimation, as detailed in the different 
sections of the paper. In the remaining sections, the paper focuses on the following: 
(1) the methods, (2) the data sources used in the study along with their characteris-
tics and the associated pre-processing steps, (3) the presentation of the results for the 
three ground variable mentioned above, and (4) the discussion of the results and their 
implications for Switzerland.

Methods
Elements of soil structure and texture

The soil structure consists of the arrangement of solid, liquid, and void parts within the 
soil. It is defined by the following variables: the volume of air, water, solid soil, void, and 
total volume, which are, respectively, noted as Va , Vw , Vs , Vv , and VT . The void volume 
can be filled with air and water, so that Vv = Va + Vw , and the total volume is given by 
VT = Vv + Vs = Va + Vw + Vs . The masses of the different parts are also of use and are 
noted as Ms and Mw , respectively, for the mass of solid soil and the mass of water.

Various soil texture quantities are often used to describe the amount of water or air 
within the soil:

•	 Volumetric Water Content (VWC) := Vw/VT

•	 Gravimetric Water Content (GWC or w) := Mw/Ms

•	 Porosity ( np ) := Vv/VT = e/(1+ e)

•	 Void ratio (e) := Vv/Vs = np/(1− np)

•	 Saturation degree ( Sr ) := Vw/Vv

•	 Particle density ( γs ) := Ms/Vs

•	 Dry (bulk) density ( γd ) := Ms/VT

•	 Water density ( γw ) := Mw/Vw ≈ 1 g/cm3

Formulas can be derived to link some of these quantities, using their respective defini-
tions. One of these formulas, expressing VWC as a function of the GWC, will be used in 
the present study. It states that

The soil texture differentiates soil types based on the arrangement of particles or 
grains and their sizes, defined by their diameter ∅ . Often, the very coarse grains with 
∅ > 2 mm (block, rocks, and gravels) are isolated, and the soil texture is defined by the 
respective percentage of the three fine soil elements, namely sands (50 μm < ∅ < 2 mm 
), silts (2 μm < ∅ < 50 μm), and clays ( ∅ < 2 μm). Note that the percentages of sand, 
silt, and clays are given independently of the coarse minerals, meaning that the sum 
of the three percentages is 100%. In order to create a finite set of typical soil textures, 
soil texture classes can be extracted. The most common classification is the one created 
by the USDA, followed by that of the American Society of Agronomy, and used in the 
United States (Gee and Bauder 1986).

(1)VWC = GWC
γd

γw
.
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Interpretation of vertical electrical sounding data

Vertical Electrical Sounding (VES) is a classical geophysical method for estimating the elec-
trical resistivity or conductivity of a medium. As it is one of the oldest and most trusted 
methods for extracting resistivity values and one of the least expensive to perform per unit 
depth, it is a very commonly conducted type of study. It is based on the measurement of 
the voltage between grounded electrodes that are installed at multiple distances from each 
other in order to reach various depths of the ground. The apparent electrical resistivity/
conductivity is then given by Ohm’s law as a function of the induced current, the measured 
voltage, and the geometry of the installation setup.

Although there exist multiple configurations for the installation of a VES study, the geom-
etry of the electrode array can be generalized in order to extract generic formulas. A gen-
eralized form of array is defined by two main points A and B, in between which a current 
is induced. In the line joining A and B are two other points M and N, between which the 
difference of potential δV is measured. [For an illustration of such an array, see for exam-
ple (Reynolds 2011)]. The value of δV and therefore the resistivity depend on the distance 
between A and B and the larger this distance the deeper in the ground the current flows 
between the two electrodes. As a result, the AB distance is gradually increased in practice 
in order to extract the apparent resistivity at increasing depths of the ground. The list of AB 
distance (or AB/2) with the corresponding measured apparent resistivities is what is often 
called a VES curve, or in the present paper VES data.

VES curves are said to be interpreted (or inversed) when the depth and corresponding 
resistivity of the different ground strata are extracted from the AB and apparent resistiv-
ity measurements. There are multiple methods to interpret VES curves, including fitting 
simple curve shapes, graphical modelling, or numerical modelling. The latter is, however, 
the most rigorous and up to date general method. Many algorithms and methods have been 
developed for the automatic inversion of VES curves (Friedel 2003; Haber 2004; Loke and 
Barker 1996, 1995; Reynolds 2011; Zohdy 1989). In the present study, a 1D inversion func-
tion from a C++/python library [pyGIMLi (Rücker et al. 2017)] is used. pyGIMLi generally 
uses regularization methods to perform inversion, with different schemes, including the 
popular Marquardt scheme. For more details on pyGIMLi and details about the inversion 
algorithms, please see (Rücker et al. 2017).

For more details on Vertical Electrical Sounding studies and geophysical exploration 
methods in general, the reader is invited to see (Reynolds 2011).

Fourier modelling for thermal diffusivity estimation

The behavior of the daily average soil or sediment temperature can be described at any 
location by the 1D heat conduction equation. The equation depends on the volumetric heat 
capacity cv and the apparent thermal conductivity � , which are generally functions of time 
and depth. In the commonly made assumption of uniform physical properties of the soil, 
however, both variables can be considered constant and the heat equation becomes

where T is the soil temperature at depth z, t the time, and α = �

cv
 the apparent ther-

mal diffusivity, also considered constant by the uniformity assumption. The apparent 

(2)∂T

∂t
= α

∂2T

∂z2
,
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thermal diffusivity is therefore representative of the ground at one location, indepen-
dently of time and space.

At very shallow depths (meaning <  10 m), the daily average soil/sediment tem-
perature is characterized by a periodic behavior over the years, due to the seasonal 
changes of weather. Note that, despite this behavior, there exists a critical depth 
under which the temperature varies little throughout the year. This critical depth 
depends on the location and properties of the soil but is commonly 2 to 3  m. Fol-
lowing the assumptions that (i) the ground surface temperature (boundary condition 
at z = 0 ) is sinusoidal, (ii) the ground temperature is constant at infinite depth and 
equal to the average ground temperature, and (iii) the apparent thermal diffusivity 
is, as mentioned, constant with depth and throughout the year, the solution of Eq. 2 
can be given by a Fourier series, defining an infinite sum of harmonic functions which 
can be fit to experimental data. The boundary condition [ground surface temperature 
T(0,  t)], in particular, can be captured by the following Eq.  3 (Hurley and Wiltshire 
1993):

where T0 is the average ground surface temperature over a year (the period of the Fou-
rier series), TSn and Cn are the amplitude and phase of the harmonics defined by n, and 
ω = 2π

P  is the angular frequency of one period P (a year or 365.24 days).
The general Fourier solution of Eq. 2 is then given by (Hurley and Wiltshire 1993):

where

and T0,z is the average value of T (z, t) over 1 year period (and also the constant of the 
Fourier series, usually noted as c0 ) and D is damping depth, which traduces the decrease 
of the temperature amplitude when the depth increases (Carslaw and Jaeger 1959; Wijk 
1963). D is given by

The coefficients φn(z) and Rn(z) are the phase and amplitude of the harmonics of the 
solution given by Eq. 4 and can therefore be computed using Fourier analysis based on 
a set of temperature measurements at various depths and times (Hurley and Wiltshire 
1993).

In order to use discrete temperature data, Rn(z) and φn(z) are computed in practice 
with the Fast Fourier Transform (FFT). The FFT, in this study used from the NumPy 
Python library, approximates the Fourier series by computing N frequencies rather than 
an infinity of frequencies. The Nyquist sampling theorem gives the value for N as 

(3)T (0, t) = T0 +
∞
∑

n=1

TSn sin (nωt + Cn),

(4)T (z, t) = T0,z +
∞
∑

n=1

Rn(z) sin (nωt + φn(z)),

(5)Rn(z) = TSn exp

(−z
√
n

D

)

and φn = −z
√
n

D
+ Cn

(6)D =
√

2α

ω
.
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N =
⌊

Ns
2

⌋

 , where Ns = 365 (days) is the number of sampling points (one sample tem-

perature value for each day).
The damping depth D, often assumed to be 1–3 m as indicated above, and therefore 

the apparent thermal resistivity can be computed using Eq. 5 together with the previ-
ously estimated values for Rn(z) and φn(z) . An exact computation, however, requires 
another Fourier analysis to extract TSn and Cn from Eq. 3. In practice, it has been shown 
that the slope of ln (Rn) vs. z

√
n provides a reliable estimate of the damping depth (Car-

son 1963; Wijk 1963), which allows for an easier estimation of the apparent thermal dif-
fusivity α.

Machine learning/Random Forests

Machine learning (ML) aims at building models that develop predicting abilities by gath-
ering information from examples (training data) (Hastie et al. 2001; Jordan and Mitch-
ell 2015). Generally, the larger the number of examples, the better the performance of 
the model. Formally, let Y denote the output variable (or target) that requires predic-
tion and X1, ...,Xd the input variables (or features) of interest that were gathered for their 
expected impact on the behavior of Y. Let us also use small letters to denote a realiza-
tion (meaning one point value) of the corresponding variables denoted by the capital 
letters, i.e., y for a realization of Y, and x1, ..., xd for a realization X1, ...,Xd . A regression 
task, in an ML framework, can be described as follows: given a training dataset (xi, yi) 
( i = 1, ...,N  ) of N points (training samples), where xi ∈ R

d is the input feature vector and 
yi ∈ R is the output value (or label) for point i, we seek to learn a function ϕ : Rd → R 
so that a prediction ϕ(x) is as close as possible to the observed output y. While there 
exists a great variety of ML algorithms [see (Hastie et al. 2001) for reference], Random 
Forests was chosen for its multiple qualities, as discussed further later in the section.

Random Forests (RFs) (Breiman 2001) is an ML algorithm part of the Ensemble Learn-
ing family of methods. Ensemble Learning aims at training multiple weak learners (mod-
els with poor accuracy) and aggregating their prediction in order to obtain one model 
with a better performance. In the case of RFs, the weak learners are decision trees (Brei-
man 2017).

Decision trees are models that are built from the training data using a series of binary 
splits performed at each node of the tree. Each binary split consists in separating the 
data in two children nodes, defined by an inequality query on one of the variable (e.g., 
X3 < 2 ). A tree is grown until either there is exactly one data point in each leaf (node 
that does not have children), or until a certain condition is fulfilled. A prediction can 
then be performed by passing a new point through the built tree, following the different 
queries imposed by the nodes, the estimated output value being the value of the data 
point contained in the leaf the new point ends in, or the average of the different data 
point values of the leaf. The heart of the algorithm resides in the optimization performed 
at each node of the tree in order to pick a variable and a threshold to form the query. For 
more details on decision trees, please see (Breiman 2017).

A Random Forest is a gathering of a certain number B of decision trees, trained using 
B bootstrapped versions (sampled with replacement) of the training data. In the case 
of regression, the RF prediction is given as the average of all the trees’ predictions. The 
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key aspect of RF which differentiates it from other Ensemble Learning methods using 
decision trees is an additional layer of randomness at each node split: m variables are 
randomly picked out of all d variables and the best split using these m variables is used. 
This extra step increases significantly the performance of the model by decorrelating the 
trees, while increasing the speed of the training step.

RFs has multiple practical advantages, notably:

(i)	It is mainly sensitive to only two hyperparameters: B the number of decision trees, 
and m the number of randomly chosen variables at each node split.

(ii)	 It is very fast to train.
(iii)	It includes an embedded measure of error, called the Out-Of-Bag score (OOB), 

giving information about the generalization capability of the regressor in compari-
son with a simple average estimator (the closer the OOB score is to 1, the better 
the regressor can perform predictions for unobserved points).

(iv)	It indirectly performs a feature selection process when building the trees by choos-
ing the best feature (together with the best threshold) at each splitting. Thus, all 
intuition/knowledge-driven features can be used regardless of their respective sig-
nificance without damaging the overall performance of the model.

(v)	 It includes an embedded measure of feature importance, namely the Variable 
Importance (VI). The VI evaluates the impact of each feature while training an RF 
model.

In addition, B does not require fine tuning as the performance can only increase with 
the number of trees, and a high number of trees cannot result in overfitting (Breiman 
2001; Hastie et al. 2001). Therefore, it is advised to try increasing values of B until a per-
formance plateau is reached and the optimal value is found (Hastie et al. 2001). Lastly, a 
modified version of RFs, namely Quantile Regression Forests (QRFs), allows the compu-
tation of Prediction Intervals (PIs) with a certain confidence level (90%, 95%, 99%, etc.) 
when using a trained RF to estimate a variable at new points (Meinshausen 2006), which 
provides a very useful estimation of the uncertainty of the prediction. For more details 
about the theory of QRFs please see Meinshausen (2006) or Assouline et al. (2018) for 
a quicker introduction in the framework of energy estimation. For more details about 
the Random Forests in general or its numerous embedded measures, please see Breiman 
(2001).

In the present study, each Random Forest model, using the RF implementation 
from the Scikit-Learn library, a python library for machine learning (Pedregosa et al. 
2011), is trained following the same procedure. Each data set is split into a training 
data and a test data (75% for training, 25% for test). The number of variables chosen 
at each node split m is tuned using a sixfold Cross-Validation (CV) (Stone 1974). 
The choice of K = 6 in the K-fold CV was motivated by a rule of thumb suggested by 
Hastie et al. (2001), which consists in choosing a value for K that offers a CV error 
within one standard error of the minimum mean CV error. The best value for m is 
picked from a list of values that proved efficient in practice: 1, 

⌊

d
6

⌋

 , 
⌊

d
3

⌋

 , 
⌊

2d
3

⌋

 , where d 

is the total number of feature variables available in the training data (Liaw and Wie-
ner 2002). As previously mentioned, an increasing number of decision trees, B, can 



Page 10 of 50Assouline et al. Geotherm Energy            (2019) 7:19 

only improve the performance of the model. Within the present study, B = 1000 
trees for each model was enough to reach the performance plateau and therefore 
optimal accuracy for each variable prediction. Note that the depth of the trees 
trained within the RF model can have an impact on the performance, although less 
important than the previously mentioned parameters, as deep trees may lead to the 
overfitting of the training data (Hastie et  al. 2001; Segal 2004). The RF depth is 
therefore controlled through the tuning of the minimum number of samples in a leaf 
by sixfold CV, using grid-search to find value offering the best results out of a list of 
possible values (1, 2, 3, 4, 5) together with m. The accuracy of the RF models is 
measured through the use of a testing error (error between predictions and actual 
output values in the test set). In the present study, two forms of errors are used, 
along with the OOB score: (i) the Root Mean Square Error (RMSE, also noted as ER ), 
given the same unit as the variable of interest, using Eq. (7), and (ii) the Normalized 
Root Mean Square Error (NRMSE, also denoted by ENR ), using Eq. 8, given in per-
centage. They are expressed as (Willmott and Matsuura 2005):

where Ntest is the number of test data points, yi is the observed (real) output value, ŷi 
is the value predicted by the trained RF, and ȳ is the average of the observed values in 
the test set. Lastly, PIs with 95% confidence were computed both in the test set and for 
unobserved new points for suitable variables. While the PIs in the test set make it pos-
sible to cross-validate the PI computation with the known data, the PIs computed for 
new points allows to provide a measure of uncertainty along with predictions. The PIs in 
the test set are accompanied by a test confidence, that is, the fraction of observed points 
that occur within the boundaries of the computed PI. For a PI to be validated, the test 
confidence has to be around (ideally higher than) the confidence of the PI, for example 
95% (0.95 in decimal form).

Finally, it should be noted that the spatial extrapolation capabilities of RFs have 
been questioned for some tasks in the past, particularly when the training points 
are located far from the points to be estimated (Rezvanbehbahani et al. 2017). Given 
that RF model building is highly dependent on the data itself, however, its perfor-
mance must be assessed in each particular study. In the present study, and for each 
extrapolation task, experiments were conducted to verify such capabilities: in addi-
tion to the RF models trained/tested on the regular training/testing sets (randomly 
extracted from the labeled data, and as presented in the following sections), addi-
tional models we trained and tested, respectively, on clearly separated (spatially) 
sets. It showed good performances, as the RMSE and NRMSE appeared only very 
slightly higher than in the randomly extracted sets.

(7)RMSE = ER =

√

∑Ntest
i=1

(

yi − ŷi
)2

Ntest

(8)NRMSE = ENR = ER

ȳ
,
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Data
Data sources and scale of study

Switzerland is a Central European country located at a latitude of 46°57′N and a longi-
tude of 7°27′N, and has an area of 41,285 km2 , divided between the mountain chains of 
the Alps in the south and the Jura in the north. In between the mountain chains is the 
Swiss Plateau, where most of the urban areas are located. The population is around 8.5 
million (2018). Switzerland is divided into 26 cantons, which are further divided into 
communes, the smallest administrative divisions in the country. The communes could 
therefore provide a natural division of Switzerland for a national-scale study of the 
potential for shallow geothermal energy or heat pumps. One issue, however, besides the 
relatively large size of the communes, is that the boundaries of communes have often 
changed over the years. To avoid that issue and provide a higher precision to the study, 
a grid of (200 × 200) (m2) cells spanning over the entire country is used. The whole grid 
covering Switzerland consists of 1140 × 1925 pixels. The location of the cells is based 
on a Swiss digital elevation model (DHM25), presented later in the section. Throughout 
the study, the grid cells will be called pixels in order to avoid the possible confusion with 
raster data cells.

Several datasets, provided by federal offices, companies or particular studies were 
gathered in order to extract significant features impacting on the variables of interest 
and train machine learning models to predict the behavior of these variables. Table  1 
gives a summary of all data sources used in the study, along with references and sources 
of data, including links to access the data, when available. The use of the dataset within 
the study is also specified: features means that the dataset is used for extracting one or 
more features to train an RF model; labels means that the dataset is used for extracting 
examples (training values) of a variable of interest to be further extrapolated over Swit-
zerland using an RF model; modelling means that the dataset is used to collect inputs for 
a model (inversion, FFT) aiming at extracting examples for a variable of interest. Note 
that several data sources have multiple uses. For example, some datasets are used for 
two different estimations (the ground temperature data are used for both the ground 
temperature extrapolation and diffusivity estimation) or in two consecutive estimations 
steps (e.g., the precipitation data are used first as features for precipitation extrapolation, 
and then the obtained precipitation maps are used as features for the ground tempera-
ture estimation). Also note that more details on the processing and use of these datasets 
are given in the following parts of the article. In particular, the features dataset details 
are given in the following data section, while the labels and modelling dataset details are 
given in their respective sections (e.g., the VES processing is detailed in a dedicated sub-
section further in the article).

Data processing—feature selection

Feature selection is one of the most important steps when building a machine learning 
model. It consists in selecting significant features (variables) that impact on the quan-
tity one would like to predict. Automated procedures exist to select good, or ideally the 
“best” features possible out of all the features gathered (Chandrashekar and Sahin 2014; 
Siedlecki and Sklansky 1993). Some algorithms (e.g., RFs) include an embedded feature 
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selection in their core, which prevents them from seeing their predictive power drop in 
the presence of low-impact or redundant features (Breiman 2001). It is crucial, however, 
to gather significant features that were built from either intuition or expert knowledge in 
the domain of interest, given all the data available at hand. This procedure is called fea-
ture engineering (Dong and Liu 2018). In the present study, we look for features that have 
an impact on electrical and thermal properties of ground rocks and soils.

The main source of information on Swiss geology at the national level is the GK500 
(or GeoCover500) dataset, provided by Swisstopo, which gives information on surface 
geological formations and materials for the whole of Switzerland. It is used to extract the 
first family of features that will be used within this study, the geology features. The data 
are available in a GIS vector polygon format. Each polygon represents the boundaries 
of a surface geological formation and includes various pieces of information about the 
formation. Some features were therefore naturally extracted from this dataset. Further-
more, as it is reasonable to assume the ground properties to generally remain similar 
within one formation polygon, all additional geological features are aggregated within 
the GK500 polygons (if not specified otherwise).

The features available from the GK500 data are all categorical (class-based) features, 
and include

•	 geological period [code: PERIOD] (classes include quaternary, tertiary, etc.),
•	 main types/classes of rocks [code: TYPE ROCHE] (classes are sedimentary, igneous, 

and metamorphic),
•	 detailed rock-type classification [code: LITH PET] (rock type classes include sand, 

silt, clay, limestone, gneiss, gabbro, basalt, andesite, etc.),
•	 yydrogeological characteristics [code: HYDRO] (classes include surface water, pres-

ence or absence of aquifers, etc.), and
•	 productivity of aquifers [code: PRODUCTIV] (classes include saturated from 2 to 

10 m, saturated from 10 to 20 m, etc.).

The previously mentioned features need to be converted into real values. A “one hot 
encoding” approach is used in order to obtain real numbers from the categorical fea-
tures: for each original variable, we create as many binary features as there are classes, 
defining the binary features as “variable=class1,” “variable=class2,” etc. and label with 
0 or 1 each feature (1 if the point belongs to the class for this variable, 0 if it does not). 
All possible classes of each GK500 variable are listed in Appendix 1. It results in 107 
geology features, as shown in Tables 4, 5, 6, 7, and 8.

Additional soil/sediment texture features are gathered for the study. Soil texture 
information (in the first meter of the ground) was extracted from the NABODAT 
(NAtionale BOdenDATenbank) dataset from the Swiss Federal Office for the Envi-
ronment. The dataset contains various soil textural information for an array of 6212 
measurements at various locations in Switzerland (mostly in the Swiss plateau), 
including the sand, silt and clay content, as well as gravel and stones content, in frac-
tional values. The percentage sum of the sand and gravel fractions in the soil, denoted 
by F, is also computed at each measurement location. As the measurements are often 
available at multiple depths, all the content values were aggregated at each location, 
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using a weighted average with the depths as the weights. Therefore, the aggregated 
content value (for sand or silt, etc.) at a location l is computed as q̄l defined as follows:

where qi,l , hi,l , and nl are, respectively, the measured content in the rock of interest in 
stratum i, the thickness (depth) of stratum i, and the number of strata considered in 
location l. Given that the soil texture depends more on the type of rock (LITH_PET) 
rather than on spatial location of the measurement, it was decided to aggregate the soil 
texture information by type of rock rather than within each GK500 geology polygon. For 
example, for the rock type “silts a sables avec graviers et blocs” (“Silty sands with grav-
els and blocks”), 1614 NABODAT points spanning over 1962 different GK500 polygons 
were recorded and considered for extracting statistical information. This information is 
then considered correct for each of these 1962 polygons containing this kind of rock. 
The number of polygons of each rock type and the number of NABODAT samples for 
these rock types are specified in Appendix 1. Note that, for statistical sampling validity, 
rock types covered by only 3 or less than 3 NABODAT sample points were not con-
sidered in the study, independently of the number of GK500 polygons typical for these 
types of rock. For example, the 291 GK500 polygons of one type of gneiss (more spe-
cifically “Gneiss with sericitic and chloritic schists”) could not be considered, as only 2 
NABODAT samples are of this rock type. Eventually, 10,812 polygons are characterized 
by soil texture information, out of the 13,320 GK500 polygons.

The statistical information for the soil texture is extracted in two forms: (i) classi-
cal summary statistics, and (ii) Probability Density Functions (PDFs). The first form 
of statistical information is extracted to serve directly as features. Statistics for sand, 
silt and clay content, as well as F, are computed for each rock type, using the ArcGIS 
Joint Spatial tool: the minimum, maximum, range, standard deviation, median, 25th 
and 75th percentiles. It results in 28 soil texture statistical features. The second form 
of statistical information is extracted to serve as weights (when converting electrical 
to thermal resistivity). PDFs for percentages of sand, silt, clay, and F are computed 
for each rock type using 10% wide bins (for example, we compute the probability that 
the percentage of sand is within 0−10%, etc.). We denote the random variables for 
sand, silt, and clay content, respectively, as Sd, St, and Cl, and the possible intervals 
as I1, I2, . . . , I10, for [0−10%], [10−20%], …, [90−100%]. In order to store all possible 
marginal and joint PDFs for the four structure variables efficiently, we compute the 
full joint PDF P

(

Sd ∈ Ii, St ∈ Ij , Cl ∈ Ik , F ∈ Il
)

, where ( i, j, k , l) ∈ {1, 2, ..., 10}4 . Since 
the four structure variables are considered non-independent random variables, the 
full joint PDF is expressed as a function of conditional probabilities using a chain rule:

where we omitted the I intervals to lighten the notation. Any marginal or joint PDF (with 
2 or 3 variables out of the 4) can easily be extracted from the full joint by summing the 
probabilities over the unconsidered variables. As an example, Fig. 1 shows the marginals 
and the 2-joint PDFs extracted from the NABODAT samples for one example of rock 
type (“silty sands with gravels and blocks”). Note that the conditional probabilities were 

(9)q̄l =
∑nl

i=1 qi,lhi,l
∑nl

i=1 hi,l
,

(10)P(Sd, St, Cl, F) = P(Sd | St, Cl, F)P(St | Cl, F)P(Cl | F)P(F),
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computed within each rock type in a frequentist fashion, counting the number of sam-
ples with particular sand, silt, clay, and F percentages.

Further terrain and weather features are aggregated within the GK500 polygons to 
bring more additional general information to the machine learning models. These fea-
tures include the following:

•	 Space features Latitude, longitude, and altitude. Originally available for the whole 
Switzerland at a 25 × 25 (m2) resolution from the DHM25 digital elevation model 
(DEM), they are resampled at a 200 × 200 (m2) resolution. The latitude and longitude 
of each GK500 polygon are computed by extracting its centroid using the Graphics 
and Shapes toolbox (Jenness 2011). Statistics are computed for the altitude within 
each GK500 polygons (minimum, maximum, range, mean, standard deviation, and 
sum). It results in 8 space features.

•	 Terrain features Ground surface slope and aspect. They are computed from the 
resampled 200 × 200 (m2) DHM25 DEM using the Spatial Analyst toolbox from 
ArcGIS. To condense the terrain information, slope and aspect classes are cre-
ated, as it is often done in the literature. We consider 9 aspect classes: 1 =  flat, 
2 =  North, 3 =  North-East, 4 =  East, 5 =  South-East, 6 =  South, 7 =  South-
West, 8 = West, 9 = North-West; and 12 slope classes: 1 = [0–5°], 2 = [5−10°], 
…, 9 = [40−45°], 10 = [45−50°], 11 = [50−60°] and 12 = [60−70°]. Statistics are 
computed for both features within each GK500 polygon based on classes: variety 
(number of different classes), majority (most frequent class), minority (least fre-
quent class), “mean” class (the mean value of all registered classes using the class 
labels, even though it does not have any physical meaning), and median class. It 
results in 10 terrain features.

•	 Weather features Monthly mean air temperature, mean sunshine duration, mean 
precipitation, and cumulative snow depth. For each of the previously mentioned 

Fig. 1  Example of marginal and 2-joint PDFs for the percentages of sand, silt, clay, and F. Numbers given 
within each mesh are percentages. The distributions are here given for the rock type: “Silty sands with gravels 
and blocks”
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weather variables, except snow depth, monthly rasters derived in Assouline et al. 
(2018) are used. The rasters are built based on MeteoSwiss measurement data and 
the DHM25 DEM, using Random Forests. The monthly cumulative snow depth 
rasters are estimated in a similar fashion, using snow depth measurement data 
from MeteoSwiss. Statistics are computed for each of the weather variables within 
each GK500 polygons (minimum, maximum, range, mean, standard deviation, 
and sum). It results in 24 weather features.

Lastly, soil moisture features are extracted for the study. Soil moisture (in the top 
5 cm of the ground) was extracted from the recently available Soil Moisture Active 
Passive (SMAP) satellite data from NASA, in the form of Volumetric Water Content 
(WVC). As the SMAP data were very recently collected by NASA (from 2015), it 
should be noted that our estimation of the soil moisture in Switzerland will only 
reflect its behavior during the past 3 years. Furthermore, the specificity of the SMAP 
mission is that the data are collected during 6:00 a.m. descending or 6:00 p.m. 
ascending half orbits (see https​://smap.jpl.nasa.gov/data/ for more information). It 
therefore does not reflect the fluctuations of the soil moisture during the entire day. 
Lastly, the data were only available for 6 months in Switzerland during the last 3 
years (January, February, March, October, November, December), and yearly average 
values (considering the six mentioned months) were therefore used. The data do not, 
as a result, allow for precise information about the monthly moisture fluctuations 
during summer. The spatial variations of the moisture, however, are nonetheless 
captured by the data. Originally with a resolution of 3 km × 3 km, and resampled 
to a resolution of 1 km × 1 km by NASA, the data were further resampled to follow 
the 200  m × 200  m pixel grid. A grid of SMAP polygon cells was built in ArcGIS 
based on the original SMAP points defining the centroids of the cells, using Thies-
sen polygons (polygons generated based on the centroids, so that any point within 
one polygon is closer to its centroid than to the other centroids). Then, the ArcGIS 
Joint Spatial tool was used in order to associate each 200 m × 200 m pixel with the 
moisture value of the SMAP 1 km × 1 km cell that contains the centroid of the pixel 
(the option HAVE THEIR CENTER IN is used when performing the Joint Spatial). 
While covering a large portion of the territory, the SMAP data do not span over the 
whole country (the spatial coverage is different depending on the month as well). 
Therefore, an RF model is trained for each available month using the soil moisture 
values in pixels as labels, and the previously mentioned space, weather, and terrain 
features. Testing errors, that is, the RMSE and the NRMSE are shown for each model 
in Table 2. The obtained yearly soil moisture (VWC) map of Switzerland is shown in 
Fig. 2.

Statistics of VWC are computed within each GK500 polygon to form the soil mois-
ture features: VWC minimum, maximum, range, mean, standard deviation and sum. 
It results in 6 soil moisture features.

Then, a total of 183 features are computed for each GK500 polygon. Note that not 
all features will be systematically used to estimate each of the three ground thermal 
variables. Depending on the variable, an adequate subset of the mentioned features 
will be used.

https://smap.jpl.nasa.gov/data/
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Results
In order to extract the very shallow geothermal theoretical potential (vSGP) for the sur-
face layers or ground of entire Switzerland, three main variables must be estimated for 
the uppermost meters (in the present study, 1 m): the monthly ground temperature, the 
ground thermal conductivity, and the ground thermal diffusivity. Note that while these 
three variables are among the most important variables, they are not the only ones that 
affect the theoretical potential (Di Sipio and Bertermann 2017). The local groundwater 
behavior is notably another important factor, which is not studied here because of a lack 
of data (but could be added in a future study to complete the potential estimation). Note 
also that the thermal heat capacity can be derived from the conductivity and the diffu-
sivity. The three variables are ultimately estimated at the aggregated level of 200 × 200 
(m2) pixels. In the following sections, we explain the details of the multiple steps leading 

Table 2  Testing RMSE ( ER ) and  NRMSE ( ENR , in  percentage) for  Random Forest models 
trained for monthly ground soil moisture (Volumetric Water Contents)

Month Soil moisture

ER (cm3/cm3) ENR (%) OOB
(−)

Jan. 0.08 19.61 0.82

Feb. 0.08 20.82 0.82

Mar. 0.07 22.75 0.85

Oct. 0.07 26.65 0.87

Nov. 0.07 23.88 0.87

Dec. 0.07 19.78 0.84

Soil moisture (yearly) [cm³/cm³]
0.03 - 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

0.6 - 0.7

0.7 - 0.75

0 25 5012.5 Kilometers

Fig. 2  Yearly soil moisture map estimated from the SMAP data in cm3/cm3
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to the estimation of each of the three potential variables. These steps are summarized in 
a flow-chart in Fig. 3.

Ground temperature estimation

The first step in the potential study is the estimation of ground temperature maps in 
Switzerland at different shallow depths in order to assess the shallow thermal gradi-
ent. Given that we consider very shallow horizontal ground loop collectors or systems 
(loops), the seasonal weather variations may have a significant impact on the ground 
temperature, and yearly temperature values would not bring sufficient information. As 
indicated above, below the depth of 2−3 m, the soil temperature changes little through-
out the year. However, most horizontal ground loop collectors are at the depth of 1−2 
m, where there are significant changes in temperature throughout the year. The reasons 
why the collectors are placed at this shallow depth relate to the lack of thicker soil/sedi-
ment cover in the particular location, the higher costs of deeper trenches, and their suit-
ability to provide an economic space heating.

As a result, monthly ground temperature maps have been computed. The estimation 
is based on an hourly ground temperature time series data, available from MeteoSwiss 
(see Table 1) for multiple locations and at multiple depths, namely 5, 10, 20, 50, and 100 
cm. The data are not always available for all the depths at the same locations for the same 
years. Therefore, the five datasets for the five different depths are treated separately. Each 
data is aggregated monthly through the available years, allowing for 12 typical average 
monthly values for each location. Intuitively, the seasonal variations should be attenu-
ated with larger depths, as it is shown in Fig. 4, showing the monthly ground tempera-
ture at the five different depths, averaged through all locations available for each depth. 
Box plots are also computed for each month and depth (Fig. 5), showing the variability of 
temperature values across the multiple measurement stations. To allow for the estima-
tion to be at the resolution of the 200 × 200 (m2) pixels, the values of the available meas-
urement stations are assigned to their nearest pixels. Each measurement corresponds to 
the pixel whose centroid is the closest to the location of the considered station. In the 
case where multiple stations are located within one pixel, the multiple measured values 
are averaged through the stations in order to provide one ground temperature value for 
the pixel.

RF models are trained using the pixel ground temperature values as training labels 
and weather and terrain variables as features: latitude, longitude, altitude, ground 
aspect and slope, and monthly precipitation, sunshine duration, snow depth, air tem-
perature as defined in the data section. One RF model is built for each depth and for 
each month, leading to 60 different models. The model are used to extrapolate the 
training temperature data and build a ground temperature map for each month and 
each depth. Testing errors, that is, the RMSE and the NRMSE are shown for each 
model in Table 3. The resulting monthly maps for a depth of 100 cm as well as yearly 
maps for 5, 10, 20, 50, and 100 cm are shown in Figs. 6 and 7. Furthermore, 95% Pre-
diction Intervals (PIs) for ground temperature have been computed at all depths and 
for all month, both in the test set and for new predicted points. A visualization of the 
PIs for 2 months (January and June) is shown in Fig. 8.
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Thermal conductivity estimation

Due to a lack of data, the estimation of the ground thermal conductivity is less straight-
forward than that for the ground temperature. It includes multiple steps that aim at tak-
ing maximum advantage of the current data available at national level. The steps are as 
follows: (i) geophysical inversion of Vertical Electrical Sounding (VES) data, (ii) estima-
tion of electrical resistivity values, (iii) spatial extrapolation of electrical resistivity in 
Switzerland, (iv) conversion of electrical resistivity into thermal conductivity. VES data 
are perhaps the most common resistivity data as it involves standard equipment and 
is a practical non-invasive geophysical study often performed to extract basic ground 
properties. The methodology presented here can therefore be re-used in other locations, 
should this sort of data be available. Also note that the conductivity could have been 
simply assumed from typical rock values. The focus of the study, however, is precisely to 
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Fig. 3  Flow-chart of the methodology. The main steps leading to the estimation of the three geothermal 
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Fig. 4  Monthly ground temperature data in Switzerland. Temperatures are shown for depth of 5, 10, 20, 50, 
and 100 cm, and are averaged through all the measurement stations available in Switzerland

Fig. 5  Box plots for monthly ground temperature data in Switzerland. Box plots are computed over the 
measurement stations available in Switzerland for each month and shown separately for depths of 5, 10, 20, 
50, and 100 cm
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attempt to extract more accurate values from real data. The remaining parts of the sec-
tion aim at explaining the details of the four previously mentioned steps.

Processing and interpretation of Vertical Electrical Sounding data

The estimation of electrical resistivity across Switzerland is based on a Vertical Electri-
cal Sounding (VES) dataset created by the Swiss Geophysical Commission (see Table 1). 
The data were built in an effort to gather multiple measurement studies performed over 
the last few years by multiple Swiss laboratories and universities (Dumont and Chapel-
lier 2003). The dataset is split into two parts: (i) the raw electrical measurements which 
require interpretation (inversion), and (ii) the already inverted/interpreted electrical 
measurements. As a result, the two parts of the dataset were processed individually. The 
locations of all the points are shown in Fig. 9.

The first part of the dataset, which requires interpretation, includes 4144 points. For 
each point, the 1D inversion set of functions from the pyGIMLi library (Rücker et  al. 
2017) is used in order to provide an interpretation of the sounding data. Note that the 
number of different resistivity layers of the soil ns at the measurement location is a 
parameter of the inversion algorithm. Therefore, a simple tuning strategy is performed: 
for each point, (i) the point is inversed separately with multiple values of ns from 2 to 
10, (ii) the resulting forward model is used to compute the apparent resistivities cor-
responding to the multiple distances between the electrodes, (iii) the ns minimizing the 
RMSE between the original measurements and the forward modelled values is picked. 
Once ns is picked, we obtain the resistivity in each different layer of the ground at the 
measurement point. Figure 10 shows an example of the inversion results for one point. 
Two additional constraints are considered in order to filter noisy data points: we do not 
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AugustJulyJuneMay
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Fig. 6  Monthly ground temperature maps as estimated for Switzerland for a depth of 100 cm
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consider a point for which (i) the depths of the layers are non-strictly-increasing, as it 
has no physical meaning, (ii) the RMSE is greater than 30%. Note that the choice of 30% 
as a maximum threshold for the RMSE is motivated by a tradeoff between accuracy and 
number of points considered. While a higher threshold than 30% would signify poor 
lead to a poor accuracy, a lower one would result in a very low number of points consid-
ered (around 5% of the original 4144 points data). It results in 694 interpreted points in 
the first part of the data.

Fig. 7  Yearly ground temperature maps as estimated for Switzerland at the depths of 5, 10, 20, 50, and 
100 cm
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The second part of the dataset, already interpreted, includes 1915 points. This part 
of the data specifies the layers’ thickness and apparent resistivity at each measurement 
location. Note that the method or algorithm used for inversion is unknown, as the 

a b

c d

e f

g h

Fig. 8  Prediction Intervals (with 95% confidence) from Quantile Random Forests for the monthly ground 
temperature at a depth of 100 and 50 cm for an example of 2 months. a and c PIs in the test set, in January, 
respectively, for 100 cm and 50 cm; b and d PIs for 30 random new points, in January, respectively, for 100 cm 
and 50 cm; e and g PIs in the test set, in June, respectively, for 100 cm and 50 cm; f and h PIs for 30 random 
unknown points, in June, respectively, for 100 cm and 50 cm
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Fig. 9  Vertical Electrical Sounding data point locations in Switzerland. “Int” stands for “Interpreted”

Fig. 10  Vertical Electrical Sounding data point inversion example. The right graph shows the measured 
electrical resistivities given by Ohm’s law for different distances between electrodes A and B in red and the 
forward model resulting from the inversion in blue ( ρa is the apparent resistivity, and the RMSE between the 
two set of values is specified); the left graph shows the resulting depths and resistivities of the ground layers 
obtained from the inversion
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studies leading to these data were often performed many years ago and did not spec-
ify their strategy. Therefore, after verifying that the values are realistic (between 0 and 
100,000 � m ), the values have to be trusted. Furthermore, information (depth and/or 
resistivity) is missing in some points, which are excluded from the study. It results in 
1521 interpreted points in the second part of the data.

The two parts of the data are merged together once both interpreted. Finally, the two 
data gather 2215 points across Switzerland.

Estimation and extrapolation of electrical resistivity

The whole VES data are processed to extract resistivity values at shallow depths for all 
2215 filtered points. In order to obtain one shallow electrical resistivity value for each 
point, the resistivities at different depths are averaged through the first meter and 
weighted by the width of the corresponding layer. At each measured location, the aver-
age shallow resistivity ρmoy is computed as follows:

where ρi is the interpreted resistivity in layer i, hi is the width of layer i, and ns<1m is the 
number of layers in the first meter of the ground (the total width of all layers in the first 
two meters is therefore hns<1m − h0).

The estimated shallow electrical resistivity values are aggregated within the GK500 
geology polygons (see Table 1). Using the Joint Spatial function from ArcGIS to track the 
GK500 polygons covered by the VES interpreted points, the resistivity values from these 
points are averaged in each polygon. Note that in the case of a GK500 polygon contain-
ing only one interpreted point, this sole point defines the apparent electrical resistivity of 
the polygon. Eventually, 317 polygons are covered by at least one interpreted VES point 
and are therefore attached with an estimated shallow resistivity value.

In order to further extrapolate the electrical resistivity over the whole Switzerland, an 
RF model is trained. The 317 resistivity values are used to build the training labels, and 
the space, weather, and all geological features (defined in the data processing section) 
sampled at the label points locations are used as training features. The label variable, 
however, is not the resistivity itself but ln

(

5+ ρ
C

)

 where ρ is the resistivity within the 
polygon and C is the number of 200 × 200 (m2) pixels contained in the polygon. This 
small modification allows to take advantage of the information of the polygon size while 
reducing the order of magnitude of the output. The test RMSE, NRMSE, and OOB score 
of the RF are, respectively, 0.25, 13 %, and 0.37. The RF model is finally used in order 
to estimate the electrical resistivity in each GK500 polygon over the whole Swiss terri-
tory. The obtained electrical resistivity map of Switzerland is shown in Fig. 11. Also, 95% 
Prediction Intervals (PIs) for electrical resistivity predicted values have been computed, 
both in the test set and for new predicted points. A visualization of the PIs for 30 test 
and new points is shown in Fig. 11. Note that the values plotted on the Y-axis are not the 
electrical resistivity ρ but the modified output used to train the RF ( log(5+ ρ

C ) with C 
being the number of pixels in the polygon of interest). Finally, in order to show the dis-
tribution of the uncertainty attached to the estimation, PIs have been computed for all 

(11)ρmoy =
1

hns<1m − h0

ns<1m
∑

i=1

ρi(hi − hi−1),
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GK500 polygons over Switzerland (besides the ones that were not considered from the 
start because of lack of data, or the ones used for training). The lower and upper width of 
the PIs can be seen as lower and upper prediction errors (respectively noted asPEs,down 
and PEs,up ), and the overall prediction error attached to the estimation of the electrical 
resistivity in each GK500 polygon is the average ( PEs,down + PEs,up)/2. The resulting error 
map is shown in Fig. 12.

From electrical resistivity to thermal conductivity

The conversion of electrical into thermal resistivity values requires information on the 
structure/texture of the soil. In particular, previous studies have shown that the most 
important parameters allowing this conversion are the particle size, moisture content, 
dry density, and saturation (Erzin et  al. 2010; Singh et  al. 2001; Sreedeep et  al. 2005). 
These studies also developed models for the conversion: Sreedeep et al. (2005) suggested 

a

b c

Fig. 11  Electrical resistivity map as estimated in the study with visualization of PIs (with 95% confidence) 
both in the test set and for new points. a Electrical resistivity ( ρ ) map; b PIs in the test set for the label variable 
used ( log(5+ ρ

C
) and not ρ ) while training the RF model; c PIs for 30 random unknown points for the same 

label variable



Page 28 of 50Assouline et al. Geotherm Energy            (2019) 7:19 

a parametric model based on electrical resistivity, saturation degree Sr , and percentage 
sum of the sand and gravel fractions F, while Erzin et al. (2010) trained an artificial neu-
ral network using the same variables. The two previous models, however, could not be 
used in the present study as the saturation degree is not available over the Swiss terri-
tory. We use, instead, the data collected by both studies in order to train a conversion 
model to predict the thermal resistivity from the electrical resistivity. It is then straight-
forward to extract the thermal conductivity as the inverse of the thermal resistivity. Both 
data gather 135 points with experimental values of electrical and thermal resistivity, 
along with other soil characteristics, for different types of soils with various textures and 
structures. All 135 points offer, in particular, the dry density γd , the gravimetric water 
content (GWC), the saturation degree Sr , and the percentage sum of the sand and gravel 
fractions F. As saturation values are very challenging to gather at the scale of a country, 
we rather use the VWC to express the soil water content. The VWC can be obtained 
from γd and the GWC using Eq. 1.

The conversion from electrical resistivity to thermal conductivity consists of the fol-
lowing steps:

1.	 Import the combined data from (Sreedeep et al. 2005; Erzin et al. 2010).
2.	 Train an RF conversion model, with the following features: (i) the experimental val-

ues from the combined data for percentage sum of the sand and gravel fractions F, (ii) 
Volumetric Water Content (VWC), and (iii) electrical resistivity. The outputs are the 
thermal resistivity values from the combined data. The RMSE, NRMSE, and OOB 
score of the conversion RF trained in (2) are, respectively, 0.16, 17.6%, and 0.94%.

Fig. 12  Prediction error attached to the electrical resistivity estimation (for each GK500 polygon). The error is 
computed as the average of the lower and upper ( PEs,down and PEs,up ) width of Prediction Intervals computed 
with Quantile Regression Forests
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3.	 For each GK500 polygon in Switzerland, extract the previously estimated electrical 
resistivity and the VWC mean (extracted from NASA SMAP data, as presented in 
the data processing section), and consider the 10 possible values for F (5%, 15%, …, 
95%) corresponding to the center of the 10 possible intervals ( I1,…, I10 ) (data pro-
cessing section).

4.	 For each GK500 polygon in Switzerland, use the trained conversion RF model 
together with the 10 possible configurations of VWC, electrical resistivity, and F in 
order to estimate the thermal resistivity for all 10 possible F values.

5.	 Consider the full joint PDFs extracted for each GK500 polygon (extracted from the 
NABODAT data, as presented in the data processing section) in order to extract the 
marginal PDF for F ( P(F ∈ Ii) ). Use it to weigh the 10 possible thermal resistivity val-
ues with their respective probabilities and finally obtain the final thermal resistivity 
value for each GK500 polygon.

6.	 The thermal conductivity is then computed as the inverse of the thermal resistivity 
over the whole Switzerland.

Note that the joint PDF for soil texture is not used fully and only the probabilities for 
F are used. This is caused by the lack of sand, silt, and clay content information within 
the experimental data used for thermal and electrical resistivity values (Erzin et  al. 
2010; Sreedeep et al. 2005). We computed the full joint PDF nonetheless as it is a val-
uable piece of information that can be useful for later research. The obtained thermal 
conductivity map of Switzerland is shown in Fig. 13. In order to have an estimation of 
the RF prediction, 95% Prediction Intervals (PIs) were again computed for the conver-
sion from electrical resistivity to thermal resistivity, before applying the F PDFs and 
the computation of the conductivity, both in the test set and for new predicted points. 
A visualization of the PIs for 30 test and new points is shown in Fig. 13. Note that the 
values plotted on the Y-axis are not the thermal conductivity � but the modified out-
put used to train the RF ( log(ρt) where ρt is the thermal resistivity).

Thermal diffusivity estimation

The third and final thermal variable to estimate is the shallow thermal diffusivity, 
for each GK500 polygon in Switzerland. The estimation consists of two main steps: 
(i) estimation of shallow thermal diffusivity in locations where temperature data are 
available at various depths, using Fourier modelling of the 1D heat equation, and (ii) 
extrapolation of the diffusivity to the whole Switzerland.

Fourier modelling for thermal diffusivity estimation

The Fourier modelling strategy (presented in an earlier section) to estimate the apparent 
thermal diffusivity is applied to several locations in Switzerland where shallow ground 
temperature data (also presented earlier) is available from MetwoSwiss at 5, 10, 20, 50, 
and 100 cm.

The Fourier series for the daily ground temperature is estimated at each avail-
able station, at each depth and for each available year using the FFT algorithm. The 
constant term of the series, which is by definition the average yearly temperature 
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( T0,z ), is first computed. Then, the amplitudes and phases ( Rn and φn ) of the frequen-
cies for the multiple harmonics of the Fourier series are computed over a period of 
1  year, meaning P = 365.24 days and ω = 2π

365.24 . Although the first three harmon-
ics ( n = 1, 2, 3 ) are often enough to reproduce the signal with a good approximation 
(Rajeev and Kodikara 2016), we consider three dominant harmonics, namely the ones 
with the highest amplitudes. It allows for a better estimation of the signal. The recon-
structed signal from Fourier analysis for one station (Bern), at one depth (20 cm), and 
for 1 year (2013) is shown in Fig. 14, together with the 30 first computed amplitude 
and phase values.

Following Fourier strategy, the slope of ln (Rn) vs. z
√
n is then estimated, separately 

for the (5, 10, 20) cm and the (50, 100) cm time series. The estimated slopes in one 
station (Bern) for the (5, 10, 20) cm time series are shown in Fig. 15 for 2013, 2014, 
2015, and 2016, where three dominant harmonics are defined by n = m1,m2,m3 . The 
linear fit for each of the three dominant harmonics is shown for each year. In Fig. 15, 

a

b c

Fig. 13  Thermal conductivity map as estimated in the study with visualization of PIs (with 95% confidence) 
both in the test set and for new points. a Thermal conductivity ( � ) map; b PIs in the test set for the label 
variable used ( log(ρt) where ρt is the thermal resistivity) while training the RF model; c PIs for 30 random 
unknown points for the same label variable
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the slope does not vary greatly from one harmonic to the other, which validates the 
uniformity assumption. The mean slope is then computed by averaging all three har-
monic slopes, which gives the damping depth and finally the apparent thermal diffu-
sivity (using Eq. 6) for each of the 49 locations and each available year.

For each station, the estimated yearly thermal diffusivity estimations are cross-vali-
dated with typical values for various common rocks and soils given for two saturation 
states (Pahud 2002), given the type of rock from the GeoCover500 polygon data (see 
data section). The value is validated if it is within the typical minimum and maximum 
values ± 0.5 (10−6 m2/s) of the corresponding rock for each year; otherwise it is dis-
carded. The final diffusivity values for each of the 49 available stations are computed 
as the average year diffusivity value for that station.

Extrapolation of diffusivity

In order to further extrapolate the estimated thermal diffusivity over the whole Swit-
zerland, an RF model is trained. The training data are represented by the GK500 poly-
gons in which we estimated the diffusivity. In the case of multiple stations within one 
GK500 polygon, the considered diffusivity in the polygon is the average of the diffu-
sivities at the included stations; otherwise the sole estimated diffusivity value defines 
the diffusivity over the whole polygon. It results in 47 training (polygon) points.

a b

dc

Fig. 14  Fourier analysis of a ground temperature time series example. The figure shows, for depth of 10 cm, 
in Bern, during the year 2013: (a) daily average temperature time series over the year, (b) and (d) amplitude 
and phase of the 30 first frequencies, (c) harmonics for the 3 dominant frequencies (here n = 1 , n = 4 , and 
n = 11 ) and resulting Fourier approximation of the signal

Fig. 15  Slope fitting for diffusivity estimation example. The linear fit between ln (Rn) and z
√
n is shown for 

the three dominant harmonics ( n = m1,m2,m3 ) in Fourier analysis in Bern, in 2013, 2014, 2015, and 2016
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For each point, the estimated diffusivity is to be used as label for the RF model, and the 
considered features are the following: the space, weather, and GK500 geological features, 
as well as the soil moisture and the soil texture features (all presented in data processing 
section). The soil texture ones, however, are not available for all polygons throughout the 
country as some of the possible rock types are not represented by a NABODAT soil tex-
ture measurement point (as explained in data processing section). As a result, a second 
RF model is trained over the 47 training points without the soil texture features. This 
latter model can later be used to obtain diffusivity estimations in polygons that lack that 
texture information.

To improve the performance of the prediction, the label is slightly modified: instead of 
the diffusivity α , we consider ln (α × C) , where C is the number of 200 ×200 m2 pixels 
contained in each GK500 polygon. The resistivity estimation makes it possible to take 
advantage of the information of the polygon size, while reducing the order of magnitude 
of the output. The testing RMSE, NRMSE, and OOB score are, respectively, 0.69 (10−6 
m2/s), 13.7%, and 0.87, for the RF model considering the soil texture information, and 
0.82 (10−6 m2/s), 16.4%, and 0.78 for the RF model not considering the soil texture infor-
mation. While both RF models show good performances in the test set, the model taking 
soil texture into account has a better accuracy, which aligns with intuition. The apparent 
thermal diffusivity is then estimated in all GK500 polygons in Switzerland, using the pre-
viously trained RF models (taking e(·)/C of the prediction to recover the diffusivity from 
the predicted modified label). The obtained thermal diffusivity map is shown in Fig. 16. 
Finally, 95% Prediction Intervals (PIs) have been computed for the estimated diffusivity 
values, for both RF models (with and without soil texture information), both in the test 
set and for new predicted points. A visualization of the PIs for the test points and 30 
new points is shown in Fig. 16. In addition, the prediction error estimated from the PIs 
computed for all GK500 polygons show the spatial variation of the uncertainty attached 
to the thermal diffusivity estimation (Fig. 17).

Re‑aggregation in 200 × 200 (m2)

The estimated maps for thermal conductivity and thermal diffusivity were re-aggregated 
from the GK500 vector polygon resolution into a 200 × 200 (m2) pixel raster in order 
to match the resolution of the ground temperature maps. For both variables, the value 
attributed to each pixel was computed as follows: (a) if the pixel is fully included within 
a GK500 polygon, then the value of the pixel is the value estimated for the polygon, (b) 
if the pixel is located at the boundaries of multiple polygons, then the value of the pixel 
is the weighted average of the values estimated for the multiple polygons, the respective 
polygon weights being the percentage of area they cover within the pixel. Note that for 
pixels in case (b), the polygon area percentages were computed using the Tabulate Inter-
section tool from the Statistics toolbox within ArcGIS.

Discussion
Three main variables affecting shallow geothermal potential, namely the monthly ground 
temperature, the ground thermal conductivity, and the ground thermal diffusivity, have 
been estimated in Switzerland, at a shallow depth of 1 m over the entire Swiss territory, 
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at a resolution of 200 × 200 (m2) pixels. The results for the three variables may be used 
and combined for a future complete potential study. It is desirable, however, that each of 
the maps obtained for the three variables are discussed and validated in some fashion, 

a

b c

d e

Fig. 16  Thermal diffusivity map as estimated in the study with visualization of PIs (with 95% confidence) 
both in the test set and for new points. a Thermal diffusivity ( α ) map; b PIs in the test set for the label variable 
used ( log(α × C) ) while training the RF model, with soil texture features considered; c PIs for 30 random 
unknown points for the same label variable, with soil texture features considered; d PIs in the test set for the 
label variable used ( log(α × C) ) while training the RF model, without soil texture features; e PIs for 30 random 
unknown points for the same label variable, without soil texture features
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with the current available information at hand, before proceeding with the further com-
bination of the estimations. In order to follow the discussion on the spatial variability of 
the multiple estimated values, a map of the Swiss cantons can be seen in Fig. 18.

Figure  7 presents the obtained yearly ground temperature maps for four different 
depths (5, 10, 20, 50, and 100 cm). The figure shows an instinctive pattern: the smaller the 
depth, the closer the ground temperature is to air temperature. Conversely, the deeper 
the depth, the less the ground temperature is affected by spatio-temporal variations. In 
particular, while the ground temperature is always higher in the Swiss plateau (where the 
altitude is lower) than in the Alps (where the altitude is higher), one can observe on the 
yearly maps that the general temperature difference between the two regions is smaller 
at a depth of 100  cm (difference of around 3  °C) than at a depth 5  cm (difference of 
around 4 to 5 °C). This latter depth of 100 cm is highly relevant for very shallow ground-
source heat pump installations, the most common ones (horizontal collectors) which are 
mostly at 1–2 m depth, and hence is the one requiring more attention. In Fig. 6, one can 
observe the monthly variations of the ground temperature at 100 cm. Although the sea-
sonal variations are significant, they are not so drastic as in the uppermost tens of cen-
timeters, where the temperature very much resembles the air temperature. In particular, 
the coldest and warmest periods are characterized by less extreme temperatures. The 
depths below the uppermost tens of centimeters allow the use of ground-source heat 
pumps in the winter, as 3 to 4  °C is sufficient for heating purposes. In order to assess 
the impact of each feature used for the ground temperature estimation, Variable Impor-
tances (VI) (presented in section) are computed. In particular, the VI attached to a yearly 
RF model used for the depth of 100  cm can be observed in Fig.  19a (the features are 
displayed in decreasing order of importance from top to bottom) and show that altitude, 

Fig. 17  Prediction error attached to the thermal diffusivity estimation (for each GK500 polygon). The error is 
computed as the average of the lower and upper ( PEs,down and PEs,up ) width of Prediction Intervals computed 
with Quantile Regression Forests
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yearly air temperature, and yearly snow cover are the most important predictors. One 
can also observe on the Prediction Intervals (PIs) in Fig.  8 that the test confidence is 
higher than 95% for all four PIs shown in the test set. While the PI in Fig. 8c has a con-
fidence of 92%, it is the result of one observed point being very slightly outside of the PI 
boundary. Also, even though the test set is very small, the respective impacts of ground 
depth and seasonality in Switzerland are shown in the PIs extracted for new predicted 
points: (i) the width of a PI is generally larger at 100 cm than 50 cm, as the temperature 
at 100 cm is more stable throughout the year and with a slightly broader range of pos-
sible values than at 50 cm, where a specific month dictates a narrower range of values 
reflecting the air temperature, (ii) the width of a PI is generally larger in spring/summer 
than in winter, as the temperature shows often more fluctuations in spring/summer at 
higher values (between 10 and 20 °C) than in the winter (between 0 and 6−7 °C), where 
it is naturally cold but rarely gets very cold.

The electrical resistivity map (Fig.  11) gives a first intuition of suitable locations 
for ground-source heat pump installations. Naturally, the most suitable locations 
are the ones characterized by smaller resistivity values, meaning the blue regions in 
the map. A significant number of areas seem to be suitable, including a medium to 
large portion of the plateau and the Geneva and Vaud cantons. Also, a large amount 
of small polygons spread all over the country show low resistivity values, notably in 
the plateau, in the Valais canton in the south, and the eastern cantons (Uri, Glarus, 
Graubunden). Variable Importances are also computed, and the twenty features with 
the highest VI are showed in Fig. 19b. It can be observed that yearly meteorological 
(statistical) features here have the largest impact on the estimation. In particular, their 
impact on the average resistivity value seem to be larger than the one of space vari-
ables and interestingly also higher than the one of soil/rock features. The very large 

Fig. 18  The 26 Cantons of Switzerland
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range of possible resistivity values for one type of rock/soil could partly explain this 
observation. When looking at the PIs in Fig.  11, one can observe that the test con-
fidence is, even though acceptable, not very high, and more particularly lower than 
95%, which indicates that the PIs for this variable are not always reliable, and must 
therefore be considered with caution for new predicted points. The PIs in Fig.  11c, 
however, give a good indication of the typical uncertainty attached to the prediction 
of electrical resistivity. In the case of the 30 unobserved random polygons shown, it 
is rather high since it is on average around ± 1 (between 2 and 4) for the modified 
output, corresponding to around an error of 50 × C ( � m), which can be significantly 
high depending on C (with C being the number of pixels in the polygon). This is partly 
caused by the extremely high range of possible values for electrical resistivity. In the 
error map (Fig. 12), the distribution of uncertainty can be seen across the Swiss terri-
tory. While the uncertainty is generally higher in the Alps region, its distribution over 
Switzerland is rather heterogeneous. It depends on the range of the output values, 
as mentioned previously, but also the density of training data available in different 
regions (which explains notably the high error in the Alps, where very few polygons 
are known), and the similarity (with respect to the features) between the unobserved 
polygons and the training polygons. Note, however, that this resistivity map is an 

a

b

Fig. 19  Variable Importances (VI). See definition of each feature (e.g., Sunshine) in Appendix 2: Table 9. a 
For the RF model trained for the estimation of the yearly ground temperature at a depth of 100 cm; b for the 
RF model trained for the estimation of the electrical resistivity
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intermediate step to the estimation of the thermal conductivity and that the electrical 
properties of the ground may differ significantly from the thermal properties. There-
fore, the thermal conductivity map must be analyzed to extract valid conclusions.

Figure  13 shows the estimated thermal conductivity values in Switzerland. A first 
natural observation is the range of the estimated values, which seems relatively small. 
These values, however (ranging from 0.25 to more than 1 (W/mK)), are perfectly nor-
mal for unsaturated clay, silt, and sand (Pahud 2002), which are the most frequent 
type of soil in the surface (mostly quaternary) layer of the ground (<1 m), the depth 
considered in the present study. The thermal conductivity seems to be higher in the 
center-west of the plateau, the south (Ticino and Valais cantons), and the east part of 
Switzerland (St. Gallen canton), which are therefore suitable locations for very shal-
low geothermal installations. The north part of the country, on the contrary, including 
some of the most dense urban areas of the plateau are not characterized by a high 
conductivity; notably Zurich, Vaud, Geneva, and Neuchatel cantons have also small 
potential for the very shallow installations. Note, however, that the systems consid-
ered in the present study are characterized by a very shallow depth, which are systems 
that are nowadays more adapted to rural areas, due to the lack of horizontal space in 
the ground (even though some interesting technologies, such as heat basket, are being 
developed to avoid that issue). For dense cities, Borehole Heat Exchangers (BHE) are 
usually preferred as they need less horizontal space and have a very high efficiency.

Ground-source heat pumps therefore still remain a very good option for the densely 
populated areas of Switzerland, but require a potential study at larger depths, which 
is not the focus of the present study. Also, note that the lack of measurement data for 
soil texture results in a significant number of unconsidered (gray) polygons, which 
are the polygons for which the type of texture was unobserved. Fortunately, the great 
majority of these unconsidered polygons are either lakes (Neuchatel, Bienne, Leman, 
Brienz, Zurich, etc.), either located in the alps, where the population is very low. The 
potential information is then naturally less significant in these areas. When looking 
at the PIs in Fig. 13, one can notice than similarly to the first estimation of electrical 
resistivity, the test confidence is not very high, showing again a difficulty to extract a 
PI for conductivity/resistivity variables. Furthermore, for the 30 random samples the 
width of the PI is on average [− 0.5, 1.5] in terms of log(ρt) , which corresponds to an 
error of ± 0.13 (W/mK) in terms of thermal conductivity. This uncertainty is signifi-
cant but not surprising, given the limited information used to perform the conversion 
from electrical to thermal resistivity. Note, however, that the uncertainty from the 
electrical resistivity estimation naturally propagates into the conversion step, which is 
not taken into account by the QRFs when computing the PIs.

Figure 16 shows the estimated thermal diffusivity in Switzerland. Although the impact 
of the diffusivity is less important than the conductivity, it is nonetheless of great impor-
tance when a potential study is being conducted, as it gives information on how fast the 
heat is being conducted through the ground and is needed in the modelling of the heat 
conduction between the ground and tubes of the installation (for further geographical 
and technical potential estimations). The regions with the highest diffusivity seem to 
be the Valais Canton in the south and the east cantons: Schwyz, Obwalden, Nidwalden, 
and Glarus. Variable Importances are computed and the twenty most important features 
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are illustrated with their respective VI for both RF models (with and without soil tex-
ture features) in Fig. 20a, b. Similarly to the electrical resistivity case, it shows that the 
meteorological features have a bigger impact on the estimation than the geological and 
soil texture features. The change of temperature and related variables therefore seem to 
be more important predictors than the actual types of rocks and soils, at the scale of the 
geological formation polygons which we are using. The PIs shown in Fig. 16 are notably 
more reliable than for the thermal conductivity estimation as the test confidence is better 
than 95% in both feature cases (with soil texture and without soil texture). The uncer-
tainty in the prediction, as shown by the width of the PI for unobserved points, however, 
is still significant. In the random sample, the width of the PI is on average 1.5 in terms of 
log(α × C) , which corresponds to ± 45/C (10−6 m2/s), with C being the number of pixels 
in the polygon. By construction of the label, the uncertainty decreases with an increas-
ing size of the polygon. Also, the uncertainty is slightly lower when the soil texture is 
not considered (Fig. 16d, e), specially for points with high predicted values. It seems that 
the smaller quantity of information entails a larger confidence for the model, which has 
fewer possibilities to consider and ultimately finds easier to predict a variable with fewer 
features used during the training process. It seems that the multiple trees in the forest 
agree more with each other when the number of features is small, which leads to a lower 
uncertainty. Note, however, that it does not mean that the accuracy of each prediction 

a

b

Fig. 20  Variable Importances (VI) (2). See definition of each feature (e.g., Temp_SUM) in Appendix 2: 
Table 10. a For the RF model trained for the estimation of the thermal diffusivity, considering soil texture; b for 
the RF model trained for the estimation of the thermal diffusivity, discarding soil texture
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is necessarily higher, but that the variance of the tree predictions is on average slightly 
smaller. In addition, the changes in uncertainty with space can be observed from Fig. 17. 
As discussed the resistivity, the uncertainty is again higher within the Alps, which is partly 
explained by the very small number of training points within this region. The uncertainty 
is also higher for small polygons, as previously explained. The general distribution is, like 
in the case of resistivity, quite heterogeneous, with values of uncertainty ranging from 
0.2–0.5 to 5 (10−6 m2/s) and even more in the most uncertain polygons. Finally, note that 
even though the southern and eastern regions do show a higher potential, they are char-
acterized by high uncertainty given their low number of training samples, and are there-
fore possibly subject to overestimation.

The estimated variables were aggregated (averaged) at the canton level in Switzerland 
in order to have a higher level view of the very shallow geothermal potential. Volumet-
ric Heat Capacity was also included in the aggregation, as it is commonly paired with 
thermal conductivity in geothermal potential studies. Plots for thermal diffusivity and 
electrical resistivity, and heat capacity and thermal conductivity can be seen in Fig. 21. 
Notably, it can be observed that the cantons with the highest mean thermal conductivity 
values are Graubunden, Ticino, and Valais, followed by Glarus, Uri, and Bern.

Very few geothermal potential studies have been conducted at very shallow depth, 
particularly in Switzerland, which makes comparison with other studies difficult. While 
the ThermoMap created by the European very shallow geothermal project (Bertermann 
et al. 2015) offers values for Switzerland, the resolution of these values is low, and more 
importantly, the depth does not match as it considers a depth of 10 m. In Switzerland, 
a few local organizations may have values for various thermal variables, but at larger 
depths. The “Systeme dÍnformation du Territoire a Geneve (SITG),” for example, offers 
heat capacity and thermal conductivity estimations for the Quaternary layer. The thick-
ness of the Quaternary, however, may vary. It is therefore not possible to perform a thor-
ough comparison with the results of the present study.

The present study suggests new methodologies for the estimation of thermal ground 
characteristics at a large scale and valuable information on their range of values in Swit-
zerland. Several limitations, however, are to be noted, and possibly improved in further 
studies. These include (1) the lack of labeled training data. Ideally, the training data 
should include a few hundreds of points in order to build very reliable models. Particu-
larly in the case of the thermal diffusivity and the conversion from electrical to thermal 
resistivity, the size of the data was around 50 to 100 points, which is commonly consid-
ered the minimum size to perform supervised learning. Consequently, the results are 
still valuable but would greatly benefit from additional data. Note that the test errors 
are based on the test set and are therefore only validated on this set. Low test errors 
unfortunately do not guarantee a good generalization outside of this test set. The big-
ger the test, the more reliable are the test errors. More data may be added in the future 
to improve the models. (2) The lack of validation data. As no dataset is available for the 
shallow ground characteristics of Switzerland over the entire territory, it is impossible to 
validate the final obtained results in unobserved points. Should another study be avail-
able, a comparison between the results would be valuable to provide some validation 
to the present results. (3) Using a combination of consecutive RF models together with 
more conventional signal processing methods (e.g., FFT) and numerical models (e.g., 



Page 40 of 50Assouline et al. Geotherm Energy            (2019) 7:19 

iterative inversion schemes) brings confidence, as the conventional methods have been 
tested and validated through the years, but also additional uncertainty, as the uncer-
tainty of each estimation propagates through the next step, and therefore increases at 
each step. In that sense, a single step machine learning strategy can be considered to 
avoid the propagation issue. Labeled data, however, are naturally required for the final 
variable to estimate. There might be, however, an increasing availability for data in the 
future, as there is currently an effort to digitalize geological and geophysical information, 
which is still often stored in the form of paper maps or written information. It is particu-
larly the case in Switzerland, where a very significant amount of geo-studies have been 
performed through the years.

Conclusion
We present a methodology combining GIS data processing, machine learning, and 
physical models in order to estimate the very shallow theoretical geothermal potential 
in Switzerland. This theoretical shallow geothermal potential consists of the estimation 

a

b

Fig. 21  Estimated variables aggregated at canton level. a Volumetric Heat Capacity and Thermal 
Conductivity aggregated at canton level, b Thermal Diffusivity and Electrical Resistivity aggregated at canton 
level



Page 41 of 50Assouline et al. Geotherm Energy            (2019) 7:19 

of three significant thermal variables at shallow depth: (i) ground temperature gradient, 
(ii) ground thermal conductivity, and (iii) ground thermal diffusivity. The ground ther-
mal heat capacity can then be recovered from the conductivity and the diffusivity. The 
estimation of the three variables is proposed at a spatial resolution of (200 × 200) (m2), 
all over the Swiss territory, and at a monthly mean temporal resolution for the ground 
temperature, and a yearly mean temporal resolution for the conductivity and the diffu-
sivity. Besides the methodological contributions of the present study, it eventually shows 
that, while traditional shallow geothermal systems (100−200-m-deep Borehole Heat 
Exchangers mainly) have been used for a very long time in Switzerland, there is also a 
significant potential for very shallow (first meter of the ground) geothermal energy sys-
tems, which can be a viable low-cost solution in adequate locations. There is notably a 
high potential for such systems in the Valais, Ticino, and St. Gallen cantons, where the 
highest thermal conductivity values were found.

The obtained information on ground thermal characteristics can be of great use for 
municipalities, stakeholders, and private holders who are considering small- to large-
scale very shallow geothermal installations. With the current development of new effi-
cient and cost-effective geothermal systems at shallow depths (including Slinky systems, 
helicoidal systems, and heat baskets), the estimated results could serve as a useful help 
to identify the optimal locations for geothermal energy and for energy-related decision 
making in general in Switzerland. Also, note that the methodology is mainly based on 
various sources of data (geological, weather, and terrain data) that are currently being 
digitalized in more and more countries and methods/algorithms that are already imple-
mented in various libraries. Therefore, should similar data be available, the methodology 
is generalizable to any other location.

Future work to complement and further develop the methods presented here include 
(1) the use of newly available geological data to improve the accuracy of the different 
machine learning models in the methodology; (2) the extraction of the geographical 
potential, constraining the theoretical potential to areas where the shallow geothermal 
potential is efficiently extractable, and the technical potential, accounting for the losses 
and the practical sizing and use conditions of the installation, (3) the assessment of the 
uncertainty propagation through the consecutive steps of the methodology by means of 
statistical calculus or Monte Carlo methods.
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Appendices
Appendix 1—Geology classes from GeoCover (GK500) data

See Tables 4, 5, 6, 7, 8

Table 4  Hydrogeology [HYDRO] categories in GK500 dataset

NGK500 is the number of polygons for each category and Area is the total area spanned by all polygons of the category

Description NGK500 Area ( km2)

No information 1 69.8

Areas without productive aquifer reservoirs 2930 10,816.72

Areas without productive reservoirs 250 508.32

Surface water 250 1377.6

Glacier, Neve 377 866.28

Aquifer tanks in karstifiable coherent rocks 1796 6144.08

Low productive aquifers 3218 7758.64

Low productive aquifers in unquantifiable, cracked and porous coher‑
ent rocks

2945 10,608.32

Productive aquifers partly out of valley bottoms 1112 2061.04

Highly productive aquifer reservoirs of valley bottoms 441 1243.24

Table 5  Geological period [PERIOD] categories in GK500 dataset

NGK500 is the number of polygons for each category and Area is the total area spanned by all polygons of the category

Description NGK500 Area ( km2)

No information 1229 4976.52

Carboniferous 220 1040.04

Cretaceous 1264 4331.08

Devonian 86 762.6

Jurassic 1772 6826.72

Lower Paleozoic 126 642.8

Permian 342 770.64

Permian-Cretaceous 100 100.84

Quaternary 5541 13,733.56

Tertiary 1712 6815.68

Triassic 928 1453.56
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Table 6  Aquifer productivity [PRODUCTIV] categories in GK500 dataset

NGK500 is the number of polygons for each category and Area is the total area spanned by all polygons of the category

Description NGK500 Area ( km2)

Barely exploitable, usually in fine sands 250 508.32

Surface water 250 1377.6

Glacier, Neve 377 866.28

Not locally or barely exploitable 2930 10,816.72

Not very productive 2461 9197.0

Not very productive, in the moraines 2263 6507.36

Productive, variable or low productivity 1796 6144.08

Variable productivity 484 1411.32

Variable productivity in loamy gravels 956 1321.08

Usable saturated area for a depth of 10 to 20 m 284 771.68

Usable saturated area for a depth of 2 to 10 m 1112 2061.04

Usable saturated area for a depth of more than 20 m 157 471.56

Table 7  Rock formation types [TYPE ROCHE] categories in GK500 dataset

NGK500 is the number of polygons for each category and Area is the total area spanned by all polygons of the category

Description NGK500 Area ( km2)

Watercourses, lakes 250 1377.6

Glaciers, snowfields 377 866.28

Magmatic rocks 323 1530.64

Unconsolidated rocks 5023 11,630.76

Metamorphic rocks 2078 7511.0

Sedimentary rocks 5269 18,537.76
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Table 8  Rock/soil types [LITH PET] categories in GK500 dataset

Description NGK500 Nsoil samples Area ( km2)

Amphibolites with diorite passages or a hornblende gneiss 226 5 287.48

Slates with intercalations of dolomites, cornieules, gypsum, limestone, and 
sandstone

6 0 27.0

Phyllite slates with intercalations of sandstone and pudding stones 82 0 309.64

Ferruginous argillites 49 7 15.12

Breccia or limestone pudding stones 7 8 22.96

Breccia and pudding stones 4 0 30.04

Sandy limestones with siliceous limestones with marly shale levels 224 8 761.64

Silicious limestones 163 4 840.8

Limestones, sometimes marbled 112 4 103.68

Conglomerates and breccia rich in sericite 38 0 105.68

Rivers, lakes 250 0 1377.6

Diorites and gabbros 23 1 64.52

Dolostones and Cornieules 175 0 205.44

Dolostones with gypsum levels 47 4 42.44

Landslide and scree deposits 783 89 903.68

Glaciers 377 0 866.28

Gneiss and micaschists rich in biotite and muscovite 350 33 1525.88

Gneiss rich in biotite or muscovite, sometimes chloritic, sometimes with 
calc-silicates rocks or quartzitic horizons (hornfels)

7 0 124.96

Gneiss rich in feldspar 203 13 992.32

Gneiss rich in feldspar, schistous with sericite, epidote, and chlorite forma‑
tion

88 3 443.12

Gneiss with two micas or biotite rich in feldspar and varied structures 98 0 679.4

Gneiss with two micas or biotite rich in feldspar, platelets 5 2 268.28

Gneiss with two micas or biotite, rich in feldspar, mainly homogeneous 28 0 252.56

Gneiss with two micas or biotite, with white, often green (phengite) 22 0 137.8

Gneiss with sericitic and chloritic schists 291 2 1278.0

Granite with passages of quartzitic diorite or quartzitic syenite 111 3 823.84

Granite with sericite, epidote, and chlorite 98 6 526.52

Gravel and sand 754 740 1500.08

Gravel and sand, sometimes clayey or silty 738 636 1597.96

Hard and compact sandstone with marly shale and limestone phyllites 189 43 1096.04

Sandstone and marls with low to moderately consolidated pudding stone 
levels

207 70 945.68

Quartz sandstone with sandy slates 15 0 7.2

Glauconite siliceous sandstone and echinoderm debris 52 0 126.2

Sandstone mainly calcareous and porous, with marl levels 362 396 1622.92

Sandstone with marl levels 84 20 482.8

Dolomitic marble 23 0 19.04

Marly and shale clay with limestone bench, dolomite, and sandstone 162 145 226.32

Marls with breach levels with hard and sandy shells 1 0 34.96

Well-consolidated sandstone slabs 51 0 166.76

Marbles with sandstone levels with shell-rich breccia 12 23 35.84

Marls with sandstone levels, conglomerates, or poorly consolidated pebbles 376 698 1146.72

Quartz Phyllites 1 0 0.48

Phyllites with limestone micaschists 206 0 765.84

Phyllites with limestone micaschists with limestone levels and marbled 
dolomites

17 0 36.68

Phyllites with limestone micaschists with greenstone levels 1 0 1.04

Quartz porphyry 59 0 73.36
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Appendix 2—Features in variable importance figures

Tables 9, 10

NGK500 is the number of polygons for each category and Area is the total area spanned by all polygons of the category. 
Nsoil samples is the number of NABODAT soil texture points available in each category

Table 8  (continued)

Description NGK500 Nsoil samples Area ( km2)

Porphyrites and porphyry tuffs 15 0 19.6

Breccia puddings with arkoses and sandstone 80 0 174.04

Pudding stones with breccia with arkoses and sandstone 66 22 1406.8

Peridotites and olivine rocks 18 0 8.48

Quartzites 70 0 112.12

Radiolarites 11 0 3.72

Dolomitic rock, sometimes with limestone levels 480 19 817.04

Limestone rocks in general, often with marly intercalations 1175 560 4636.2

Limestone rocks with dolomitic levels 48 64 184.8

Limestone rocks with important levels of marl, shale, and marly limestone 628 159 1370.96

Limestone rocks, often marly 89 0 480.68

Volcanic and pyroclastic rocks 5 0 9.64

Sand, gravel, pebbles, and blocks 454 45 457.28

Marly shale with calcareous phyllites and interbedded sandstone 382 79 1226.52

Marly shale with limestone phyllites with tuffitic sandstone levels 42 0 90.48

Green shale with passages of eruptive rocks or eclogites 173 5 252.76

Serpentinites 78 13 84.68

Clayey silts, with clay with sand levels 264 499 686.24

Sand silts with gravel and blocks 1962 1614 6331.44

Silts with silty sands, often clayey, mainly calcareous 68 170 154.08

Syenite 12 0 13.16

Amphibolite and gneiss mixing zone 23 0 30.72

Table 9  Detailed definition of features showed in VI Fig. 19a

All meteorological variables are yearly averaged

Name Description

Aspect Terrain aspect (normal direction to the slope) in a pixel

Cloud Cloud cover index in a pixel

Prec Precipitation in a pixel

Slope Terrain slope in a pixel

Snow Snow cover in a pixel

Sunshine Sunshine duration in a pixel

Temp Air temperature in a pixel

X X coordinate in the LV03 coordinate system (linear 
transformation of longitude in Switzerland)

Y Y coordinate in the LV03 coordinate system (linear 
transformation of latitude in Switzerland)
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Appendix 3—Detailed tables of used variables

Tables 11, 12

Table 10  Detailed definition of features showed in VI Figs. 19b, 20a, b

All meteorological variables are yearly averaged

Name Description

Cent_X X coordinate (LV03 coordinate system) of a GK500 polygon centroid

Aspect_Class_VARIETY Number of observed classes of pixel terrain aspect values over a GK500 polygon

Slope_Class_MINORITY Least frequent class of pixel terrain slope over a GK500 polygon

Prec_MIN Minimum of pixel precipitation values over a GK500 polygon

Snow_MIN Minimum of pixel snow cover values over a GK500 polygon

Sunshine_MIN Minimum of pixel sunshine duration values over a GK500 polygon

Z_MIN Minimum of pixel elevation values over a GK500 polygon

Soil_moisture_MAX Maximum of pixel soil moisture values over a GK500 polygon

Sunshine_MAX Maximum of pixel sunshine duration values over a GK500 polygon

Prec_RANGE Range of pixel precipitation values over a GK500 polygon

Snow_RANGE Range of pixel snow cover values over a GK500 polygon

Soil_moisture_RANGE Range of pixel soil moisture values over a GK500 polygon

Sunshine_RANGE Range of pixel sunshine duration values over a GK500 polygon

Temp_RANGE Range of pixel air temperature values over a GK500 polygon

Z_RANGE Range of pixel elevation values over a GK500 polygon

Prec_STD Standard deviation of pixel precipitation values over a GK500 polygon

Snow_STD Standard deviation of pixel snow cover values over a GK500 polygon

Soil_moisture_STD Standard deviation of pixel soil moisture values over a GK500 polygon

Sunshine_STD Standard deviation of pixel sunshine duration values over a GK500 polygon

Temp_STD Standard deviation of pixel air temperature values over a GK500 polygon

Z_STD Standard deviation of pixel elevation values over a GK500 polygon

Prec_SUM Sum of pixel precipitation values over a GK500 polygon

Snow_SUM Sum of pixel snow cover values over a GK500 polygon

Soil_moisture_SUM Sum of pixel soil moisture values over a GK500 polygon

Sunshine_SUM Sum of pixel sunshine duration values over a GK500 polygon

Temp_SUM Sum of pixel air temperature values over a GK500 polygon

Z_SUM Sum of pixel elevation values over a GK500 polygon



Page 47 of 50Assouline et al. Geotherm Energy            (2019) 7:19 

Table 11  Detailed nomenclature for geothermal and soil-related variables

(−) signifies no unit

Symbol Unit Description

α (m2 s−1) Thermal diffusivity

γd (g/cm3) Dry (bulk) density

γs (g/cm3) Particle density

γw (g/cm3) Water density

� (W K−1 m−1) Thermal conductivity

ρ (� m) Electrical resistivity

ω (s−1) Angular frequency of one period in Fourier series

an (–) First Fourier coefficient for the nth harmonics

bn (–) Second Fourier coefficient for the  nth harmonics

cv (J m−3 K−1) Volumetric heat capacity

D (m) Damping depth

e (–) Void ratio

F (%) Percentage sum of sand and gravel fractions in the soil

hi (m) Width of soil strata i

I1, ..., I10 (–) Possible fraction intervals for soil texture variables

Ms (g) Mass of solid soil in ground

Mw (g) Mass of water in ground

n (–) Harmonics index in Fourier series

np (–) Porosity

Rn (–) Amplitude of  nth harmonic of Fourier series solution for T

Sd, St, Cl (%) Sand, silt, and clay fraction percentage in soil

Sr (%) Saturation degree

t (s) Time

T (◦C) Shallow ground temperature

T0 (◦C) Average ground surface temperature over a year

Va (m3) Volume of air in ground

Vs (m3) Volume of solid soil in ground

VT (m3) Total volume of ground

Vv (m3) Volume of void in ground

Vw (m3) Volume of water in ground

w (%) Gravimetric water content

z (m) Ground depth
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