
ORIGINAL RESEARCH
published: 23 July 2019

doi: 10.3389/fninf.2019.00054

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 54

Edited by:

Sharon Crook,

Arizona State University, United States

Reviewed by:

Susanne Kunkel,

Norwegian University of Life Sciences,

Norway

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

*Correspondence:

Felix Schürmann

felix.schuermann@epfl.ch

Received: 02 April 2019

Accepted: 05 July 2019

Published: 23 July 2019

Citation:

Magalhães BRC, Sterling T, Hines M

and Schürmann F (2019)

Asynchronous Branch-Parallel

Simulation of Detailed Neuron Models.

Front. Neuroinform. 13:54.

doi: 10.3389/fninf.2019.00054

Asynchronous Branch-Parallel
Simulation of Detailed Neuron
Models
Bruno R. C. Magalhães 1, Thomas Sterling 2, Michael Hines 3 and Felix Schürmann 1*

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Biotech, Geneva, Switzerland, 2Department of

Intelligent Systems Engineering, CCA Laboratory, Indiana University, Bloomington, IN, United States, 3Department of

Neuroscience, Yale University, New Haven, CT, United States

Simulations of electrical activity of networks of morphologically detailed neuron models

allow for a better understanding of the brain. State-of-the-art simulations describe the

dynamics of ionic currents and biochemical processes within branching topological

representations of the neurons. Acceleration of such simulation is possible in the

weak scaling limit by modeling neurons as indivisible computation units and increasing

the computing power. Strong scaling and simulations close to biological time are

difficult, yet required, for the study of synaptic plasticity and other use cases requiring

simulation of neurons for long periods of time. Current methods rely on parallel Gaussian

Elimination, computing triangulation and substitution of many branches simultaneously.

Existing limitations are: (a) high heterogeneity of compute time per neuron leads to

high computational load imbalance; and (b) difficulty in providing a computation model

that fully utilizes the computing resources on distributed multi-core architectures with

Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present

a strategy that extracts flow-dependencies between parameters of the ODEs and the

algebraic solver of individual neurons. Based on the resulting map of dependencies, we

provide three techniques for memory, communication, and computation reorganization

that yield a load-balanced distributed asynchronous execution. The new computation

model distributes datasets and balances computational workload across a distributed

memory space, exposing a tree-based parallelism of neuron topological structure, an

embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration

of subtree state updates. The capabilities of our methods are demonstrated on a

prototype implementation developed on the core compute kernel of the NEURON

scientific application, built on the HPX runtime system for the ParalleX execution model.

Our implementation yields an asynchronous distributed and parallel simulation that

accelerates single neuron to medium-sized neural networks. Benchmark results display

better strong scaling properties, finer-grained parallelism, and lower time to solution

compared to the state of the art, on a wide range of distributed multi-core compute

architectures.

Keywords: neurosimulation, branch-parallelism, neural networks, asynchronous runtime systems, HPX, ParalleX

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00054&domain=pdf&date_stamp=2019-07-23
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:felix.schuermann@epfl.ch
https://doi.org/10.3389/fninf.2019.00054
https://www.frontiersin.org/articles/10.3389/fninf.2019.00054/full
http://loop.frontiersin.org/people/50186/overview
http://loop.frontiersin.org/people/396/overview
http://loop.frontiersin.org/people/311/overview

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

1. INTRODUCTION

Interest in the simulation of large neural network activity
has been steadily increasing in recent years (Kandel et al.,
2013). Experimental advances such as high resolution recording
of neurons in vivo and in vitro have supported quantitative
modeling. Biologically inspired simulations of neural circuits
present an enormous opportunity for understanding the behavior
of the brain. Recent efforts fromMarkram et al. (2015) presented
for the first time a simulation of amorphologically detailedmodel
of a part of the neocortex, simulated in the NEURON simulation
environment (Hines and Carnevale, 1997). The simulation
was based on the multi-compartment Hodgkin-Huxley (HH)
formalism (Hodgkin and Huxley, 1952), a conductance-based
model that approximates the current passing through spatially-
discretized representations of neuron morphologies. The multi-
compartment HH model involves the analytical resolution
of stiff, coupled, continuous differential equations on each
individual cell, with high variability in time and space scales
(Carnevale and Rosenthal, 1992).

The large number of equations involved in such systems leads
to computationally costly simulations thatmay be required to run
for long periods of time. A short time to solution is particularly
required for the exploration of biological phenomena expressed
over long time scales. For example, synaptic weight changes
underlying plasticity and learning, on the scale of dozens of
minutes to days, in response to continuous millisecond scale
neural network activity. Such use cases are studied on networks
with a size ranging from two isolated cells (Markram et al.,
2012) to thousands or even millions of neurons each with
thousands of synaptic connections to other cells (Chindemi,
2018). Since it is not feasible to analytically solve complex
HH equations, simulations typically employ standard time-
discretized ODE solvers.

Typical efforts to speed-up simulations rely on the parallel
and distributed computation of several neurons simultaneously.
The theoretical speed-up limit is dictated by the most detailed
neuron model in the network, whose state takes the longest to
compute. Common approaches follow the Bulk Synchronous
Parallel (BSP) execution model, relying on the synchronous
parallel execution of several neurons. Multi-core and multi-
compute node simulation of branched neuronal morphologies
is available in NEURON (Hines and Carnevale, 1997) and
other modern neural network simulators. Single Instruction
Multiple Data (SIMD or vectorization) optimization of ODE
state variables has been implemented in Brian (Goodman and
Brette, 2008; Brette and Goodman, 2011), Auryn (Zenke and
Gerstner, 2014), and NEST simulators (Gewaltig and Diesmann,
2007) for point neuron representations, and by CoreNeuron
(Kumbhar et al., 2016) and Arbor (Klijn et al., 2017) for branched
morphologies. Efficient usage of resources is possible if (1)
the input includes a dataset large enough to allow enough
flexibility to balance neurons across the compute units; and (2)
static load balancing is performed beforehand. This has been
demonstrated by the Least Processing Time (LPT) algorithm
(Korf, 1998), yielding quasi-balanced workload distribution by
iteratively assigning neurons to the compute node with the least

total computation time. Synaptic communication in distributed
executions is typically performed with Message Passing Interface
(MPI) (Walker and Dongarra, 1996). A hardware specific
and more scalable solution has been presented by Hines
et al. on an IBM BlueGene/P using the Deep Computing
Messaging Framework (DCMF) runtime (Kumar et al., 2010;
Hines et al., 2011), based on immediate selective broadcasts
of spikes and a synchronization barrier at the end of every
communication step.

Parallelism of individual neuron models has been exploited
in a limited way through the NEURON multisplit approach
(Hines et al., 2008)—henceforth denominated as previous
branch-parallelism efforts or simply multisplit—executed on a
single-core, Single Instruction Single Data, distributed compute
architecture. The multisplit method implements a parallel
computation of neuron branches by converting a given topology
into a tree-structure of connecting backbones (linear sequence
of unbranched compartments) and leaf subtrees. Tree-based
parallelism requires information spawn and reduce throughout
connecting subtrees, yielding a limit of parallelism dictated
by the slowest subtree to perform a computation step. The
method provides a substantial speed-up on the architectures
tested at the time, however it lacks support for load-balancing
and processing based on SIMD-based acceleration available in
modern compute architectures. As an orthogonal effort, spatial
decomposition and parallel processing of volumetric regions has
been presented by Kozloski et al. for branched neuron models
(Kozloski and Wagner, 2011). This approach is most suitable
for the simulation of spatially organized and computationally
costly elements, as the computation must be large enough to
minimize the high communication required—executed at every
computation timestep—between neighboring spatial regions in
different compute nodes. Moreover, it may yield a high memory
overhead and load imbalance due to the duplication (ghosting)
of compartments in high density regions in networks of detailed
neural networks (Magalhães et al., 2016). A complementary
acceleration has been proposed by Vooturi et al. (2017), by
applying Exact Domain Decomposition to the numerical solver
in NEURON (Hines, 1984). The method partitions neuron
trees by creating subdomains at the bifurcations with degree
greater or equal than two. However, parallelism based on
bifurcation points does not properly handle detailed topologies
that yield a high disparity of branch lengths, and does not
take into account workload imbalance for complex non-HH
compartment models.

The various limitations of existing approaches motivate the
search for a computation model that accelerates simulations of
branched neural networks—independently of the input size—
on a wide range of compute architectures, fully utilizing multi-
core and vector-based capabilities, exposing finer computation
granularity, and running efficiently on single node and
distributed networks of compute nodes. Better parallelism of
neurons should allow for simulations to run at a runtime closer
to real time, and with better usage of the computing resources of
modern architectures with hundreds of compute cores and high
Single Instruction Multiple Data (SIMD) capabilities, such as
Graphical Processing Units (GPUs) or the Intel Knights Landing

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

(Sodani, 2015). Recent efforts such as HPX (Sterling et al.,
2014), Charm++ (Kale and Krishnan, 1996), and OmpSs (Duran
et al., 2011) provide programming models and runtimes for
asynchronous parallelism and heterogeneity. Such tools increase
the possibilities of new use cases on the simulations for large-
scale HH-based neural simulations, until now restricted to the
BSP paradigm and MPI communication model.

The work presented introduces novel insights in the field
of asynchronous simulation applied to distributed multi-core
SIMD-enabled computing platforms. Starting from the work
of Hines et al. in branch-parallelism (Hines et al., 2008), we
cover the mathematical, computational, and implementational
aspects underlying a distributed load-balanced asynchronous
parallel simulation of detailed neuron models. The main point
of relevance of this work is the acceleration of single neuron
simulations. However, as we will later demonstrate, the fine
granularity, strong scaling capabilities, and load balancing
methods introduced allow as well for a significant acceleration of
medium-sized neural networks of up to few thousand neurons.
The contributions of the this paper are the following: (a) a
formal description of the data dependencies underlying the
branching structure of neurons; (b) a method that describes
and extracts read-after-write dependencies from the underlying
algebraic solver; (c) a load-balancing algorithm that decomposes
neuronal representation into a minimal number of subtrees
that enable a balanced multi-core execution; (d) a method for
the transformation of subtrees into a vector-friendly memory
layout that accelerates execution in the SIMD axis; (e) an
asynchronous parallel execution model for the resolution of the
mathematical dependencies between equations of connecting
branches, based on an active producer-consumer execution
model of flow dependency variables; and (f) a dynamic finer-
grained version of the LPT-based load balancing algorithm for
distributed networks, that delegates neuron sections to different
compute nodes (henceforth also denominated as localities)
in order to balance the workload, while minimizing network
communication. An overview of the scope of the research and
key conceptual advancements covered in this article are displayed
in Figure 1.

The efficiency of the methods presented is demonstrated
by a prototypical implementation on the core kernel of the
NEURON simulator, with asynchronicity capabilities provided
by the HPX runtime system (Sterling et al., 2014) for the ParalleX
execution model (Kaiser et al., 2009) on a global address memory
space with transactional memory capabilities (Kulkarni et al.,
2016). Applied to a network of morphologically-detailed neuron
models from Markram et al. (2015), our strategy is shown
to provide close to full usage of computing resources (when
enough computation is available), finer grained parallelism,
and higher multi-threading and SIMD capabilities, validated on
three highly heterogeneous neuron models. The benchmarks
of individual neurons demonstrate a 1.8x to 10.5x speed-up
compared to the reference NEURON multisplit implementation
on four distinct compute architectures (Figure 10). Large
scale executions yield a speed-up of almost twofold on a
network of 128 Cray XE6 compute nodes simulating 4,096
neurons (Figure 12).

2. MATERIALS AND METHODS

2.1. Numerical Resolution
Our reference implementation follows the explicit resolution
using staggered timestepping of the NEURON scientific
simulator. In our model, neurons are described by a tree topology
of resistors, with capacitors and non-linear resistive current flows
at each node connected to ground. Each of the complex nodes is
also referred to as a compartment. The current passing through
the membrane of a single compartment n with difference in
potential (across its membrane) Vn can be described as:

In(t) = Cn
dVn

dt
+

∑

i

gixi(Vn − Ei) (1)

where gi, and Ei describe the conductance and reversal potential
of the different current channels in the system, respectively.
In(t) is the synaptic current of an injected current stimuli, if
any. When applicable, xi is the voltage-dependent variable(s)
defining the opening and/or closing of the ion channels, and
typically described as a first-order voltage-dependent differential
equation. For brevity, the formulation of the ionic currents from
the opening variables are omitted.

A branched representation of a neuron allows for larger
spatial resolution, by adding the neighboring compartments’
contributions according to the neuronal cable theory for multiple
compartments (Niebur, 2008). However, ion channels and other
biological mechanisms are normally distributed along the neuron
topology in an heterogeneous way. Thus, the computational
workload of individual compartments may vary extensively.
Following the compartment numbering convention used by
NEURON (Hines et al., 2008), the tree of compartments is
numbered using a Depth-First Search scheme from root to leaves,
ensuring that the index of a parent compartment is larger than all
its children and smaller than its parent. Such a matrix guarantees
that the matrix is symmetric and in each row i there exists a single
non-zero element with columns index j such that j < i, i.e., a
single parent compartment per branch. Branched neuron trees
include the terms defining the currents derived from the parent
and children branches, leading to the final formulation:

In(t) = Cn
dVn

dt
+

∑

i

gixi(Vn − Ei) +
∑

c : p(c)=n

Vc − Vn

rc

−
Vn − Vp(n)

rp(n)
(2)

where p(c) : N → N returns the index of the parent compartment
of a given compartment c and rc is the resistance of the
connectivity to neighboring compartments, if any. Due to having
no analytic solution, numerical methods are employed with a
problem-optimized solver used for the resolution of the system
of equations.

NEURON’s algebraic solver (Hines, 1984) describes each
neuron as a sparse-tridiagonal matrix that represents the voltage
in a compartment as a function of the main diagonal of the
matrix, the contributions from parents and children on the

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 1 | Scope and key concepts of the methods presented. (I) A spatial discretization of a neuron into two compartmental trees representing axons and

dendrites branching; (II) A sample of a dendritic tree and its representative branching matrix structure in thumbnail. Simulation dependency parameters across

compartmental connectivity and respective matrix are extracted from these structures; (III) A method for load balancing recursively tests for the optimal tree

decomposition, based on the computational workload of each possible subtree. Initial compartmental tree is decomposed into a tree of subtrees and distributed

across a distributed memory space. Matrix decomposition follows accordingly. Resolution of independent subtrees is computed asynchronously, with three variables

dependencies on parent-children connectivity across subtrees (in dashed), synchronized throughout the execution; (IV) Subtree memory layouts are reorganized to

provide SIMD-acceleration of mechanism (ion channel) state updates and solver resolution.

upper and lower diagonals, respectively, and the mechanism
contributions to the voltage on the right hand side of the matrix-
vector multiplication. Upon the computation of all mechanism
contributions, all compartments must solve:

bp(n)Vp(n) + dnVn +
∑

c : p(c)=n

acVc = rhsn (3)

where d, a, b ∈ R
N are the coefficients of the voltage contribution

for the compartment, its children and parent compartment,
on a neuron with N compartments—refer to Figure 2 for a
sample neuron and its sparse tridiagonal matrix representation.
As previously, V is the difference in potential across the
compartment’s membrane and p(n) returns the parent index of a
compartment n. The right hand side term rhs holds the remaining
terms. Given a tree with the aforementioned terms updated, the
final solution of the system (rhs) can be computed by a problem-
specific implementation of the Gaussian Elimination, that only
modifies the d and rhs vectors, as a and b are constant.

For the numerical resolution of state updates, NEURON
performs a spatial discretization of the neuronal morphology
and interpolates the solution only at consecutive discrete time
intervals. The coupling between the main current equation
and the set of ionic states is resolved in a staggered fashion,
in interleaved half timesteps. Moreover, it assumes the spatial
discretization to be small enough, so that the second order
correctness only implies that the value at a node (center of
the compartment) is the average value in the compartment,
allowing compartments to be interpolated throughout time only,
and reducing the spatio-temporal dimensionality of the system.
Subsequently, the state of the axonic branches are assumed
to be constant throughout the execution, therefore simulating
only soma and dendrite sections. Thus, upon an action
potential (spike) of a neuron, the synaptic propagation delay
(time dependency) between two neurons includes the current

propagation from the soma (or axon initial segment where the
action potential has a constant velocity and can be represented
as a triggered event) to the bouton in the axon, plus the time
required for the electro-chemical reaction at the synapse. This
interval varies extensively across pairs of neurons. The shortest
propagation delay in a neural network—of circa 0.1 ms in our
model—is used as the synchronization and communication step
size for the exchange of synapses to be delivered within the next
interval. The computation step time is defined to be short enough
to capture the resolution of the fastest mechanism, and is typically
set to 0.025ms. For completeness, Figure 3 summarizes the
workflow of a computation timestep, and provides the runtime of
individual processes.

2.2. HPX Implementation
Our methods were implemented on the core kernel of the
NEURON simulator, available as open source (Blue Brain
Project, 2015; Kumbhar et al., 2019). Communication, memory
handling and threading protocols were replaced by primitives
provided by the HPX runtime system for ParalleX. HPX allows
for a platform-agnostic representation of data structures and
distributed computation on a Global Memory Address Space
(GAS). Data objects are not locally addressable on a machine,
but defined by a global reference instead, thus leading to
a high level abstraction of memory allocations across the
network. The global memory address space and transactional
memory capabilities available on the HPX runtime system
allow for procedure calls, synchronization objects (mutual
exclusion, semaphores, thread gates), and memory allocating
functions, to be performed asynchronously and remotely as if
they were local, with futures guiding their state. Therefore, the
implementation on single and multiple compute nodes of the
methods presented are indistinguishable, and data structures are

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 2 | The topological structure of a sample neuron, and its representative sparse tridiagonal dendritic tree representation. Lower and upper diagonals include

parent and children contributions to the current function (a and b in Equation 3). Main diagonal (d) includes the changes to the compartment voltage dV/dt induced by

the capacitance and mechanisms. Remaining terms are included in the right hand side (rhs) vector. Straight lines display parent-to-children connections between

compartments with non-sequential indices (referenced by p).

FIGURE 3 | Workflow of a compute step of the core computation of NEURON

used as reference implementation. Tsynch and TIO are the communication and

IO step intervals, respectively. Processes with inter-compartmental data

dependencies are presented in bold. Single compute node simulations

exclude the step for collective exchange of spikes.

automatically represented and transparently accessible across any
network configuration.

The results presented next rely on the efficient
implementation of HPX control objects across neuron subtrees

(or subsets of the initial neuron topology), built on a distributed
memory space. Themost relevant implementation features are:

• Subtrees are allocated on the Global Memory Address Space
(GAS), with a physical allocation on the compute node
provided by the load-balancing method detailed later in the
manuscript. Each GAS address is unique and its pointed object
can be transparently accessed from any compute node. The
GAS addresses of connecting parent-children subtrees and
synaptically-connected neurons are shared at the onset of
the execution;

• Synaptic deliveries are performed with a remote procedure
call to the address of the target (post-synaptic) subtree, with
spiking time as argument;

• Synchronization of neurons time advancement is
enforced with a communication barrier at equidistant
time frames, equivalent to the smallest synaptic delay in
the network;

• Computation flow on each neuron is guided by threads
attached to the shared placeholders between connecting
subtrees, that go dormant and active when waiting for a
placeholder or upon a placeholder value update. The HPX
thread scheduler handles the scheduling of compute resources
to the queued compute kernels;

• Shared placeholders for dependency variables among
connecting subtrees are built on top of asynchronous
calls to set and get operations, supported by a future for
probing of state. A thread gate (or and gate) underlies the
implementation of each placeholder, with an initial counter
set to the number of contributions that must be set before
execution is allowed to continue. There is one contribution
to be set for parent-to-children dependencies, and a number
of contributions equal to the number of children in the
converse direction;

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

• The distributed execution on the GAS is based on remote
procedure calls, that initiates a lightweight thread on the
appropriate compute node, or places it in a queue of dormant
threads to be dynamically allocated to idle compute resources
throughout the execution. Upon the execution of the method
at a remote location, an asynchronous call is sent back to
the request initiator with the return value. The runtime
system handles communication, execution and callbacks for
the remote procedure calls;

Finally, to allow for efficient point to point communication,
selective broadcasts, and remote direct access memory, we use
specialized Infiniband network hardware, interfaced via the
photon API library (Kissel and Swany, 2016).

3. RESULTS

3.1. Dependency Parameters
We extracted themathematical dependencies from the numerical
resolution of the electrical activity in the compartmental
tree. The dependencies are retrieved from the matrix set-up
and Gaussian Elimination operations, presented in Figure 4.
Parameters that are required to be communicated between
connecting compartments are color-coded. The direction of
the parameter flow dependencies is indicated by the direction
of the arrow in the same color—top-down for parent-to-
children, bottom-up for children-to-parent. The read-after-write
dependencies are:

1. Branching contributions to RHS: the set-up of the Right
Hand Side requires the contribution of the difference in
potential between connecting compartments (vp(n) − vn)
and their constant branching contributions an and bn. An
updated voltage from children to parent (⇑ vn) allows for the
computation of the rhs vector set-up, yielding a children-to-
parent flow dependency;

2. Backward triangulation: a children-to-parent flow
dependency allows for the completion of the Backward
Triangulation step by providing the children compartment
contributions to their parents’ diagonal and right hand side
values (⇑ dn, rhsn);

3. Forward substitution: rhs values are required to be modified
in the root-to-leaves direction, in order to compute the final
value of children’s rhs, leading to a parent-to-children flow
dependency [⇓ rhsp(n)]. The outcome of the substitution step
is the updated rhs for the current step, i.e., the voltage values;

For subtrees with a single connection point to a parent node,
the back-triangulation is complete, i.e., triangulation at its parent
subtree can be initiated immediately after. For subtrees with
two connection points, triangulation stalls until the triangulation
on both children branches is completed. Substitution follows
a converse logic, being optimally computed for leaf (single
connection point) subtrees, and requiring substitution at parent
subtrees to be completed beforehand if not a leaf subtree.

Mechanism state update of compartments (current and state
functions in Figure 3) can be performed independently, as
long as the previous dependency variables are resolved. Thus,

the finest granularity of parallelism (or the smallest compute
task) can now be modeled at the compartment level. More
importantly, granularity of tasks can be increased and decreased
by clustering connecting compartments. With that in mind,
the following section provides a clustering method that takes
advantage of this property to perform load-balancing on multi-
core execution units.

3.2. Neuron Tree Decomposition and
Parallel Execution
The problem of scaling the model of a neuron efficiently
across any number of compute units with vectorization (SIMD)
capabilities is two-fold: at first, there should be a large enough
number of compute tasks to provide enough flexibility in the
distribution of tasks. The rationale is that a high number of
tasks allows for a better balancing of the total workload (sum of
task runtimes) across processors. Secondly, the number of total
tasks should ideally be as small as possible, so that vectorization
can be maximized inside each task and threading (de)allocation
overhead is minimized. This leads to a competitive trade-off
between multi-core and vector acceleration.

To fine-tune the data representation to the host compute
architecture, our strategy takes advantage of the flexibility in
granularity presented in the previous section. The algorithm
responsible for loading data structures into memory, recursively
traverses the neuron tree and clusters connecting compartments
that yield a computational workload as close as possible to
a given threshold. The cluster is a subtree of compartments
whose computational complexity is provided by the runtime
of all compartments it contains. Remaining compartments, not
included in the previous subtree, will recursively be clustered
using the same maximum-threshold testing algorithm, until all
compartments are traversed. Bifurcations require independent
tests on each branch. Thus, if a branch connects to several
children, then all branches in the lower level are either in the
same subtree as the parent, or on independent subtrees. This
rule avoids having subtrees connected to compartments that are
neither root or leaf in other subtrees, so that synchronization
of computation is not required except at terminal compartment
connections. The maximum computation time assigned to a
subtree of a given neuron n is scaled by a constant k and
provided by:

max worksubtree(n) = k
runtimen

cores count
(4)

an approach similar to NEURON’s multisplit which can be
interpreted as each subtree must yield a max computational
workload to fit at most 1/k subtrees per compute core. An
analogous interpretation is that the initial neuron tree is
decomposed in several subtrees, each guaranteed to have a
runtime of at most runtimen/cores count scaled to a factor k—
where the constant k provides flexibility in the number of
subtrees generated, essential for load balance of computation
across compute cores. An illustrative example of the application
of the clustering algorithm to a single neuron is presented in
Figure 5. Two cases may lead to a subtree with an assigned

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 4 | Algorithms of the initial matrix values set-up (left) and Gaussian Elimination and voltage update methods (right) of a neuron discretized by N
compartments. Data-dependency variables are emphasized in colored text, with direction of arrow in same color pointing up if children-to-parent flow dependency, or

down otherwise. Variables notation follow Equation (3).

workload which does not approximate (Equation 4): a linear
sequence of compartments of small computational complexity
that requires a bifurcation into multiple subtrees; or a leaf subtree
of the topology that does not aggregate enough complexity.

Following the partitioning algorithm, parallelism of subtrees
is possible, requiring synchronization of the connecting flow
dependencies at every computation step. Due to the recursive
tree-traversal nature of the algorithm, the final representation
of the neuron is a tree of subtrees, where each subtree is a
tree of compartments by itself. Analogously, the initial solver
problem is now decomposed into several smaller solver problems
with a data dependency between only the root and leaf rows in
different subtrees—refer to Figure 6 for an illustrative sample of a
neuron and its linear solver structure after the clustering method.
This property allows for a vector-based acceleration of individual
subtrees, as will be covered in the following section.

3.3. Vector-Based Acceleration
Similarity in the computation of the mechanisms and
compartments update function allow for an acceleration in
the SIMD-axis by performing vectorized computation of state
variables. Vectorization can be enabled in two distinct core
computations: (1) on the execution of the Gaussian Elimination
method, by performing simultaneous (memory-aligned) read
operations of a, b, and p, and updating the variables d, v,
and rhs; and (2) vectorization can be achieved by performing
simultaneous computation of instances of the same mechanism
types, placed in different compartments, holding different
states, yet defined by similar state-update functions. To enable
vectorization, the memory layout for individual subtrees is
serialized and realigned on a SIMD-friendly layout, after the

subtrees decomposition algorithm presented. For completeness,
Figure 7 displays the post-vectorization memory layout for the
morphological representation studied previously.

The computation workload allocated to each task (subtree)
during load balancing is measured as the runtime of the subtree
in the vectorized memory layout. In practice, a test for the
computational complexity of a subtree requires the tentative set
of compartments to be merged and SIMD memory-arranged.
As high disparity in workload across subtrees may occur, ideal
core workload balancing is not guaranteed. An asynchronous
execution model mitigates this issue by dividing the subtree
stepping workflow in smaller kernels and dynamically running
available kernels as soon as dependency variables are resolved.
This procedure is detailed next.

3.4. Asynchronous Execution of State
Updates
To handle the disparity in computation times across subtrees
and to fully utilize compute resources, an asynchronous
producer-consumer execution model was implemented. Flow
dependencies can be resolved by actively exchanging information
between connecting subtrees, providing parent and bottom
subtree contributions required for the completion of the
Gaussian Elimination step. Execution is driven by shared
placeholders across connecting subtrees, that stall the execution
and resume it when dependency variables are updated for the
current step, as detailed previously in section 2.2.

Figure 8 provides the diagram for the resolution of flow
dependencies based on the three placeholders demonstrated
previously, in line with the algorithm displayed in Figure 4. The
combination of SIMD-enabled compute tasks, placed in and

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 5 | A sample workflow of the algorithm that decomposes neuron morphologies into a tree of subtrees. Dashed contours display groups of compartments

being tested against the maximum computational complexity threshold. Straight contours represent a set of compartments with a total computational complexity

below the threshold, clustered into a subtree. (1) The total runtime of the initial tree is computed and compared with the complexity threshold. (2) The previous cluster

exceeds the allowed computational complexity threshold. The following sequence of non-bifurcated compartments that yields smaller complexity (top two

compartments) is clustered into a subtree. The connecting three branches are tested. (3) Both left and center sections are benchmarked and their execution time is

below the threshold, thus becoming two independent subtrees. The same threshold test for the right region fails. The first two compartments in the right region yield

less runtime than the complexity threshold and are clustered into a subtree. (4) The remaining compartments on the right branch of the tree comply with the

complexity test and are clustered, leading to the final data representation.

FIGURE 6 | Alternative representations of the neuron model presented in Figure 2, after the decomposition into subtrees pictured in Figure 5. Straight lines

represent parent-children data-dependencies within the same subtree. Dashed lines represent data dependencies to different subtrees.

out of context of compute cores throughout execution, allows
for an asynchronous execution model and the full utilization of
computing resources on a single compute node.

3.5. Distributed Load Balancing
The extension of the methods presented to a network of
compute nodes relies on a load balancing algorithm that aims
to equalize the workload across the network, while minimizing
inter-node communication. To that extent, the previously
mentioned vector vs. multicore efficiency trade-off is extended
with a communication optimization on distributed localities: the
framework must now deliver enough balanced SIMD-tasks that
utilize all compute cores across the network, while minimizing

the inter-node communication from the placeholders connecting
neuron sections held on different localities.

The load balancing algorithm implemented follows a
distributed implementation of the Least Processing Time
algorithm (Korf, 1998). To allow finer-granularity in the load
balancing, the LPT is applied to groups of connected neuron
subtrees instead of whole neurons. The method relies on the
active update of a shared table holding the total computational
time assigned to each locality so far. At the onset of the execution,
neurons are loaded across the network, assigned a weight based
on a computational workload (measured as the mean runtime
of 10 sample 100 ms simulations of each subtree), serialized
and finally communicated to the least busy compute node. As

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 7 | Representation of a neuron topological structure after clustering into 5 subtrees (top); and memory layouts for the pre- and post-subtree clustering

phases presented in Figure 5 (bottom). Morphology includes 17 compartments, and 9 instances (mech 1–9) of a mechanism type with state variables x, y, and z.
Distinct mechanism types and solver parameters a, b, p, d, v, and rhs were omitted for simplicity.

a reminder, the workload of individual subtrees remains quasi-
constant throughout the execution, thus justifying (1) static
load balancing, once and at the onset of execution, and (2) the
usage of a computationally-heavier yet very accurate metric of
computational workload (weight) based on simulated runtime
and not on predictive methods. In most cases, only whole
neurons are moved to other localities. This rationale allows
connecting subtrees to be placed within the same memory
region, and reducing inter-node communication—required once
at every synaptic delay between connecting neurons, and three
times per step for connecting subtrees. However, terminal (leaf)
subtree groups of a neuron may be assigned to a different locality
if the load imbalance caused by a whole-cell placement in a
single memory region exceeds the locality runtime threshold.
To avoid communication delays caused by more than two
computed nodes involved in any resolution of a single neuron,

only terminal sections of neurons are delegated to a remote
compute node. This rationale avoids transitive communications:
in practice, dividing a single neuron across three localities 1..3
may yield a communication pattern of 1 → 3 and 2 →

3 for two unconnected arborizations 2 and 3, but not 1 →

2 → 3. The maximum computation threshold assigned to each
compute node is provided by the mean runtime of the dataset
per locality—computed at the onset of the execution—with a
tolerance value of about 10% that, when exceeded, signals the
delegation of the remaining arborization of a neuron to a remote
memory locality.

3.6. Benchmark
Our test bench simulates the biological activity of a digital
reconstruction of a morphologically-detailed neural network
extracted from the model of Markram et al. (2015). The

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 8 | Schematic overview of the asynchronous producer-consumer model, displaying the shared placeholders between subtrees—colored and matching

(Figure 4). Arrow head (tail) on placeholders represents a set (get) operation by the producer (consumer) of the placeholder’s value. Dots in arrow line comprise the

update of mechanism states, leading to an updated voltage value to be used in the following iteration.

reconstruction model underlies the research of synaptic plasticity
and learning from The Blue Brain Project (Chindemi, 2018),
requiring a simulation of dozens of minutes to several days
to be expressed. Input neurons were extracted from the layer
5 of rodent brain neocortex. Neuron models include 23
distinct biological mechanism types modeled by 44 ODEs, and
highly heterogeneous neuron topologies—see Figure 9 for the
distribution of compartments and branches across the dataset.
Each neuron requires 4–10 MB of memory for the storage of
the topological structure, linear solver, mechanisms states, and
dynamic data containers for synaptic events.

Execution times on a single compute node were measured on
four distinct compute architectures: (1) an Intel Sandy Bridge E5-
2670 with 16 cores at 2.6 GHz, with and AVX capabilities (256-bit
floating point vector operations), and 128 GB of RAM; (2) an
Intel Knights Landing (KNL) with 64 cores at 1.3 GHz, 96 GB
of RAM, and AVX-512 (512-bits register file width); (3) a Cray
XE6 with 2x AMD Opteron 6380 with 16 cores at 2.5 GHz each,
64 GB of RAM and 256-bit floating point units; and (4) an Intel
Xeon Gold 6140 with 18-core at 2.3 GHz with AVX-512, turbo-
boost up to 3.7 GHz, and 98 GB RAM. State values are stored
at double floating-point precision, leading to a maximum SIMD
speed-up of 4 and 8 simultaneous operations for 256- and 512-bit
register file width, respectively.

The optimal value of the constant k defining the maximum
computational complexity per subtree was computed with a grid
search between 0.1 and 2 with a step of 0.2, a method commonly
used in problems of the same domain (Hines et al., 2008). The
optimal value depends on the number of active cores available at
runtime, and was measured at approximately k = 0.8 for 2 cores,
k = 1 for 4 cores, k = 1.5 for 8 cores, k = 1.8 for 16 cores,

and k = 2 for more than 16 cores. A deviation of circa 20% over
the aforementioned values is possible, as it depends on the input
morphology and architecture.

For brevity, in the following benchmarks we will refer to our
implementation as neurox, as in NEURON on HPX. Moreover,
the initial load balancing and memory layout realignment
processes take ∼1–2 s of execution time and are excluded
from the analysis, as they are considered negligible in the
overall execution.

3.6.1. Reference Branch-Parallel Implementation
We compared our methods against the reference branch-parallel
implementation in the NEURON multisplit (Hines et al., 2008).
Our test bench measures the runtime of the simulation of
one second of the electrical activity of the cell A (illustrated
in Figure 9), on the four compute architectures mentioned
previously. The benchmark results are presented in Figure 10.
The speed-up achievedwas of approximately: 10.5x for the single-
core execution, down to 2.64x on the 64-core execution on the
Intel KNL; 2.2x–1.8x for single- to 32-core execution on the dual-
AMD Opteron; 3.2x–1.8x for single- to 32-core on the Intel E5;
and 3.5x–1.9x on the single- and 18-core implementation on
the Intel Xeon 6140. As expected, better acceleration is achieved
by the Intel Xeon and KNL architectures, mostly noticeable for
a small number of cores, as the register file width is twice the
amount of the dual-Opteron and E5.

As an important remark, some of the single-core runtimes
presented (particularly the KNL) exceed the theoretical limit of
SIMD speed-up of 4x or 8x. This efficiency increase is due to
the structure-of-arrays data layout in memory allowing better
memory access compared to the non-SIMD array-of-structures,

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 9 | (Left) Morphological structure of the Layer 5 neurons extracted from the digital reconstruction of the rodent neocortex used as input data. Data provided

as a histogram (50 bins) in terms of distribution of number compartments (top) and number of sections (unbranched cables of a neuron, bottom). (Right) Dendritic

compartmental trees of the three individual neurons used as input dataset on single node benchmarks.

FIGURE 10 | Strong scaling plot for the simulation of one second of electrical activity of the neuron A, illustrated in Figure 9. Benchmark results presented for the

NEURON multisplit approach, and our methods (neurox). Hardware specifications: Intel KNL with 64 cores at 1.3 GHz and AVX-512; Cray XE6 compute node with 2×

AMD Opteron 6380 with 16 cores at 2.5 GHz; Intel E5 with 16 cores at 2.6 GHz and AVX2; and Intel Xeon Gold 6140 with 18-core at 2.3 GHz with AVX-512.

allowing an extra speed-up on top of the SIMD instruction-
level parallelism.

3.6.2. Scaling of Single Neurons
We analyzed the strong scaling properties of our methods,
simulating one second of electrical activity of three neuron
morphologies characterized by different levels of width and depth
of branching, illustrated in Figure 9. The benchmark results are
presented in Figure 11. This analysis provides the theoretical
limit of acceleration for single-neuron execution, as a basis
for the study of the acceleration for the larger networks of
neurons that will follow. As a first remark, it is noticeable that

the single-core runtime of individual neurons is not related to
the branching density of each neuron model. This is due to
the computational workload of each neuron being not derived
from the branching-related computation, but mostly from the
computational workload attached to ionic current and state
updates (Figure 3).

On the comparison of single-core with maximum-core
execution runtimes on four distinct compute architectures, the
benchmarks demonstrate a speed-up of: 5.3x, 3.3x, and 2.3x for
cells A, B, and C, respectively, on the Intel KNL; 8.2x, 7.5x, and
6.0x on the dual AMD Opteron; 6.3x, 8.2x, and 6.3x on the Intel
E5; and 5.1x, 4.2x and 3.2x on the Intel Xeon 6140.

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 11 | Strong scaling benchmark for the simulation of one second of electrical activity of three different models of single neurons illustrated in Figure 9,

benchmarked on four compute architectures: Intel KNL with 64 cores at 1.3 GHz and AVX-512; Cray XE6 compute node with 2× AMD Opteron 6380 with 16 cores at

2.5 GHz; Intel E5 with 16 cores at 2.6 GHz and AVX2; and Intel Xeon Gold 6140 with 18-core at 2.3 GHz with AVX-512.

Almost linear strong scaling on up to 8 threads on single-core
compute units with Single Instruction Single Data processing
has been previously demonstrated by the NEURON multisplit
approach (Hines et al., 2008). Similarly, in our methods, ideal
scaling is not visible and an acceleration beyond 16 threads per
neuron is strenuous. This limitation has already been studied in
the multisplit method by Hines et al. (2008), and is unrelated
to the implementation but due to the nature of the problem
instead. Subtrees are quasi-balanced in terms of workload, yet
stochastic temporal events such as user-defined current injections
and synaptic activity account for extra computation that can not
be accounted for by the subtree clustering algorithm, leading
to an unpredictable imbalance at certain time intervals. More
importantly, the tree structure of the dataset limits the parallelism
exposed when computation is concentrated at higher levels of the
neuron tree, such as during Gaussian Elimination. This property
is noticeable when comparing the runtimes of the three cells A–C
with increasing branching depth, where an increase of the cell
depth leads to a reduction in the strong scaling capabilities of
our method.

Finally, the reduction of the speed-up with the increase of
compute cores is also related to the aforementioned trade-off
between SIMD parallelism (maximized for single core execution)
and vector-based parallelism: to fully utilize all available cores,
smaller SIMD data structures are created, causing a loss on
the exposed vector acceleration, i.e., register file width is not
fully utilized. As a smaller factor of performance loss, an extra
overhead is added by threading (de)allocation as we increase the
number of active cores.

3.6.3. Scaling of Networks of Neurons
An analysis of scaling of our implementation on a larger dataset
was executed on a network of 128 Cray XE6 compute nodes,

performing a simulation of one second of electrical activity on
the same neocortical model. The benchmark presents the scaling
properties of our branch-parallel implementation, similar to the
previous section, and compares it against the non branch-parallel
counterpart, that simulates neurons as indivisible units.

The execution runtime for an increasing number of neurons is
presented in Figure 12. The first (leftmost) benchmark illustrates
a strong scaling analysis of one neuron per compute node,
similar to the previous (single node, single locality) benchmarks.
The results demonstrate the preservation of strong scaling
properties between the single and 128 compute nodes use cases.
Similar benchmarks were performed for 16, 32, and 64 compute
nodes—omitted for brevity—and provide identical results. A
weak scaling analysis follows by increasing the workload from
128 to 4,096 neurons (following the benchmarks from left to
right), in the same hardware and number of compute units.
Results suggest that an increase of the input dataset per compute
node approximates the runtime to the ideal strong scaling limit.
This is due to an overlap of computation and communication
across different neurons subtrees, leading to a better usage of
compute resources.

The maximum speed-ups measured were of 7.4x for 128
neurons, 5.8x for 256 neurons, 4.2x for 512 neurons, 2.8x
for 1,024 neurons, 2.3x for 2,048 neurons, and 1.9x for 4,096
neurons. For the 128–2,048 neuron datasets, most of the speed-
ups are due to the saturation of threads with compute tasks
on the branch-parallel execution, but not on the non-branched
execution (due to an insufficient number of neurons). However,
in the scenarios where both implementations fully utilize their
compute units, a significant speed-up is noticeable. This property
is more prominent on the largest dataset tested, where the dataset
yields one neuron per thread, thus providing enough tasks to
fully occupy all computing resources on both implementations,

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

FIGURE 12 | Benchmark of the simulation of one second of electrical activity of Layer 5 neurons, on a Cray XE6 cluster with 128 compute nodes. Each node contains

two AMD Opteron 6380 with 16 cores at 2.5 GHz each with 256-bit register file width. Ideal strong scaling assumes complete overlap of computation and

communication.

and speed-up of almost twofold is visible. This speed-up is due to
the finer-grained parallelism and load balancing exposed by our
methods, allowing better dynamic allocation of tasks to threads,
thus leading to an overall reduction in runtime.

DISCUSSION

This paper presented an algorithm and an implementation
that extract numerical dependencies at the topological level
of neurons, and accelerate the simulation of morphologically-
detailed neuron models. We detailed the method for the
numerical resolution of our problem, and showed that (1)
the activity of the electrical current at the level of neuron
topological trees depends on three parameters of the numerical
solver that include current contributions between connecting tree
sections; (2) the previous dependency allows for the grouping
of connecting compartments into subtrees, where each subtree
is a subset of the initial problem, and the set of substrees holds
the same data representation as the initial neuron; and (3)
subtrees can be grouped into a tree of subtrees—holding the
previous cover and distinct set properties—and allocated to any
locality on the network in order to allow for accurate distributed
load balancing.

Our analysis showed that a numerical resolution with full
usage of compute resources on a distributed network of compute
nodes is possible at three layers of parallelism: (1) at the level of
compute nodes, a load balancing method delegates sections of
neuron arborizations to localities at the onset of execution; (2) at
the compute node level, load balancing follows analogously with
the clustering of compartments into subtrees, allowing a multi-
core acceleration by dynamically delegating subtrees to compute
cores throughout the execution; and (3) at the core level, where
SIMD-based acceleration of state variable updates and numerical
solver acceleration is possible by realigning the memory layout of
each subtree.

The methods were implemented on the compute
kernel of the NEURON scientific application, yielding an
asynchronous simulator on a global memory address space, with
synchronization and threading supported by the HPX runtime
system. The benchmark results compared our methods with the

reference branch-parallelismmethod in the NEURON simulator,
yielding a speed-up of up to 10.5x on an Intel Knights Landing
with 64 cores, 2.2x on a Cray XE6 compute node with 2x 16-core
AMDOpteron, 3.2x on an 16-core Intel E5, and 3.5x on a 18-core
Intel Xeon 6140. A following benchmark studied the efficiency
of our methods on three highly heterogeneous neuron models,
displaying good strong scaling properties on up to 16 cores, and
a dependency of the parallelism efficiency on the depth of the
neuron tree.

We extended our methods to larger neuron networks, and
assessed their scaling properties on a network of 128 Cray
XE6 compute nodes simulating up to 4,096 neurons. Our
implementation was shown to deliver a speed-up of 7.4x for small
datasets, and 1.9x when full occupancy of compute resources
was guaranteed. Moreover, it displayed a good preservation of its
strong scaling properties, with almost ideal scaling on the largest
dataset tested.

The preservation of the scaling properties—independently
of the network size and compute cores per neuron—combined
with the added capability of generating a varying number of
compute tasks allocated in a balanced way across all localities,
allows our strategy to be fine-tuned to a wide range of distributed
architectures and inputs.

Finer-grained parallelism is a requirement for succeeding
in efficiently leveraging the compute capabilities of modern
compute architectures. The combination of the methods
presented allows for the detachment of the problem
representation from the hardware specifications, and
introduces—to our knowledge—the first implementation of
a distributed, multi-core, SIMD-enabled simulator that adapts
the data memory layout to the host architecture on a distributed
network of compute nodes, opening the door for new possibilities
in approximating the runtime simulation of morphologically
detailed neuron models to real time. Our methods provide
insights for the design of future simulators across a wide range
of scientific domains, driven by large heterogeneous datasets and
compute architectures.

As a final remark, a further acceleration of the simulation
can be achieved by (1) graph-parallelism extracted from
the dependencies between ODEs driving individual neurons

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

or subtrees, and (2) the removal of the synaptic exchange
synchronization barrier on distributed networks, with a
cache-efficient stepping of neurons based on the synaptic
delay of their pre-synaptic counterparts. These two
properties are part of ongoing work and will be included in
future manuscripts.

DATA AVAILABILITY

The source code of the neuron implementation presented can be
found in the Blue Brain’s neurox repository (Magalhães, Bruno
RC and Blue Brain Project, 2017). The reference CoreNEURON
implementation can be found in the Blue Brain CoreNEURON’s
repository (Blue Brain Project, 2015). The datasets for this study
will be made available by the authors, without undue reservation,
to any qualified researcher.

AUTHOR CONTRIBUTIONS

BM and FS conceived the study. BM pursued the detailed
computational research, performed the computations, verified
the methods, and wrote the manuscript. MH developed the

mathematical theory and provided corrections to themanuscript.
FS supervised the findings of this work and provided corrections
to the manuscript. TS supervised the HPX technical team. All
authors discussed the results.

FUNDING

The work was supported by funding to the Blue Brain Project,
a research center of the École polytechnique fédérale de
Lausanne (EPFL), from the Swiss government’s ETH Board of
the Swiss Federal Institutes of Technology. The super-computing
infrastructures were provided by the Blue Brain Project at EPFL,
Swiss National Supercomputing Centre and Indiana University.
A portion of Michael Hines efforts was supported by NINDS
grant R01NS11613.

ACKNOWLEDGMENTS

The authors would like to thank Francesco Cremonesi, Luke
Dalessandro, and Abhishek Kulkarni for technical discussions
and support.

REFERENCES

Blue Brain Project (2015). Coreneuron—Simulator Optimized for Large Scale

Neural Network Simulations. Available online at: https://github.com/bluebrain/
CoreNeuron

Brette, R., and Goodman, D. F. (2011). Vectorized algorithms for
spiking neural network simulation. Neural Comput. 23, 1503–1535.
doi: 10.1162/NECO_a_00123

Carnevale, N., and Rosenthal, S. (1992). Kinetics of diffusion in a
spherical cell. I. No solute buffering. J. Neurosci. Methods 41, 205–216.
doi: 10.1016/0165-0270(92)90086-S

Chindemi, G. (2018). Towards a Unified Understanding of Synaptic Plasticity

Parsimonious Modeling and Simulation of the Glutamatergic Synapse Life-Cycle.

Lausanne: EPFL. doi: 10.5075/epfl-thesis-8186
Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L.,

Martorell, X., et al. (2011). Ompss: a proposal for programming
heterogeneous multi-core architectures. Parallel Process. Lett. 21, 173–193.
doi: 10.1142/S0129626411000151

Gewaltig, M., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F., and Brette, R. (2008). The brian simulator. Front. Neurosci. 3:26.
doi: 10.3389/neuro.01.026.2009

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines, M., Kumar, S., and Schürmann, F. (2011). Comparison of neuronal spike
exchange methods on a blue gene/p supercomputer. Front. Comput. Neurosci.

5:49. doi: 10.3389/fncom.2011.00049
Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179
Hines, M. L., Markram, H., and Schürmann, F. (2008). Fully implicit

parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448.
doi: 10.1007/s10827-008-0087-5

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Kaiser, H., Brodowicz, M., and Sterling, T. (2009). “Parallex an advanced parallel
executionmodel for scaling-impaired applications,” in International Conference
on Parallel Processing Workshops, 2009. ICPPW’09 (Vienna: IEEE), 394–401.

Kale, L. V., Krishnan, S., Wilson, G. V., Lu, P. (1996). “Parallel Programming using
C++,” in Charm++: Parallel Programming with Message-Driven Objects (MIT
Press), 175–213.

Kandel, E. R., Markram, H., Matthews, P. M., Yuste, R., and Koch, C. (2013).
Neuroscience thinks big (and collaboratively). Nat. Rev. Neurosci. 14, 659–664.
doi: 10.1038/nrn3578

Kissel, E., and Swany, M. (2016). “Photon: remote memory access middleware
for high-performance runtime systems,” in IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW) (Chicago, IL: IEEE),
1736–1743.

Klijn, W., Cumming, B., Yates, S., Karakasis, V., and Peyser, A. (2017). “Arbor:
A morphologically detailed neural network simulator for modern high
performance computer architectures,” in 26th Computational Neuroscience

Meeting (Antwerp).
Korf, R. E. (1998). A complete anytime algorithm for number partitioning. Artif.

Intell. 106, 181–203. doi: 10.1016/S0004-3702(98)00086-1
Kozloski, J., and Wagner, J. (2011). An ultrascalable solution to large-

scale neural tissue simulation. Front. Neuroinform. 5, 10–3389.
doi: 10.3389/fninf.2011.00015

Kulkarni, A., Dalessandro, L., Kissel, E., Lumsdaine, A., Sterling, T., and Swany,
M. (2016). “Network-managed virtual global address space for message-
driven runtimes,” in Proceedings of the 25th ACM International Symposium

on High-Performance Parallel and Distributed Computing (Kyoto: ACM),
15–18.

Kumar, S., Heidelberger, P., Chen, D., and Hines, M. (2010). “Optimization
of applications with non-blocking neighborhood collectives via multisends
on the blue gene/p supercomputer,” in International Conference on Parallel

and Distributed Processing Symposium, Vol. 2010 (Atlanta, GA: NIH Public
Access), 1.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,
et al. (2019). CoreNEURON: an optimized compute engine for the NEURON
simulator. arXiv preprint. arXiv:1901.10975.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.
(2016). “Leveraging a cluster-booster architecture for brain-scale simulations,”
in International Conference on High Performance Computing (Salt Lake City,
UT: Springer), 363–380.

Magalhães, B. R. C., Tauheed, F., Heinis, T., Ailamaki, A., and Schürmann,
F. (2016). “An efficient parallel load-balancing framework for orthogonal

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2019 | Volume 13 | Article 54

https://github.com/bluebrain/CoreNeuron
https://github.com/bluebrain/CoreNeuron
https://doi.org/10.1162/NECO_a_00123
https://doi.org/10.1016/0165-0270(92)90086-S
https://doi.org/10.5075/epfl-thesis-8186
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1007/s10827-008-0087-5
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1038/nrn3578
https://doi.org/10.1016/S0004-3702(98)00086-1
https://doi.org/10.3389/fninf.2011.00015
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Magalhães et al. Asynchronous Branch-Parallel Simulation of Neurons

decomposition of geometrical data,” in International Conference on High

Performance Computing (Frankfurt: Springer), 81–97.
Magalhães, Bruno RC and Blue Brain Project (2017). Neurox: A Parallel and

Distributed Asynchronous Simulator of Extended Hodgkin-Huxley Neuron

Models. Available online at: https://github.com/bluebrain/neurox
Markram, H., Gerstner, W., and Sjöström, P. J. (2012). Spike-timing-

dependent plasticity: a comprehensive overview. Front. Synapt. Neurosci. 4:2.
doi: 10.3389/978-2-88919-043-0

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah,
M., Sanchez, C. A., et al. (2015). Reconstruction and simulation of
neocortical microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.
09.029

Niebur, E. (2008). Neuronal cable theory. Scholarpedia 3:2674.
doi: 10.4249/scholarpedia.2674

Sodani, A. (2015). “Knights landing (KNL): 2nd generation Intel Xeon Phi
processor,” in IEEE Hot Chips 27 Symposium (HCS) (Cupertino, CA: IEEE),
1–24.

Sterling, T., Anderson, M., Bohan, P. K., Brodowicz, M., Kulkarni, A., and Zhang,
B. (2014). “Towards exascale co-design in a runtime system,” in Exascale

Applications and Software Conference (Stockholm).

Vooturi, D. T., Kothapalli, K., and Bhalla, U. S. (2017). “Parallelizing Hines matrix
solver in neuron simulations on GPU,” in IEEE 24th International Conference

on High Performance Computing (HiPC) (Genoa: IEEE), 388–397.
Walker, D. W., and Dongarra, J. J. (1996). MPI: a standard message passing

interface. Supercomputer 12, 56–68.
Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking

neural networks using general-purpose computers. Front. Neuroinform. 8:76.
doi: 10.3389/fninf.2014.00076

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019Magalhães, Sterling, Hines and Schürmann. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2019 | Volume 13 | Article 54

https://github.com/bluebrain/neurox
https://doi.org/10.3389/978-2-88919-043-0
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.4249/scholarpedia.2674
https://doi.org/10.3389/fninf.2014.00076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Asynchronous Branch-Parallel Simulation of Detailed Neuron Models
	1. Introduction
	2. Materials and Methods
	2.1. Numerical Resolution
	2.2. HPX Implementation

	3. Results
	3.1. Dependency Parameters
	3.2. Neuron Tree Decomposition and Parallel Execution
	3.3. Vector-Based Acceleration
	3.4. Asynchronous Execution of State Updates
	3.5. Distributed Load Balancing
	3.6. Benchmark
	3.6.1. Reference Branch-Parallel Implementation
	3.6.2. Scaling of Single Neurons
	3.6.3. Scaling of Networks of Neurons

	Discussion
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	References

