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Abstract

Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic
system represented by a Master equation (ME) that can be modeled by a Fokker—Planck equationin a
coarse-grained, mesoscopic description. We show that the corresponding coarse-grained entropy
production contains information on microscopic currents that are not captured by the Fokker—Planck
equation and thus cannot be deduced from it. We study a discrete-state and a continuous-state system,
deriving in both the cases an analytical expression for the coarse-graining corrections to the entropy
production. This result elucidates the limits in which there is no loss of information in passing from a
ME to a Fokker—Planck equation describing the same system. Our results are amenable of
experimental verification, which could help to infer some information about the underlying
MiCroscopic processes.

1. Introduction

Any physical system, and its characterizing processes, can be depicted by making use of different levels of
description. Considering a microscopic spatial and temporal resolution, any evolution will appear purely
reversible in time. Since most of the details of a system are usually unknown, they are neglected a priori, thus
requiring a mesoscopic description in terms of random variables and probabilities. The theory of stochastic
thermodynamics relies on this assumption, i.e. on a temporal and spatial ‘coarse-graining’ [1]. Furthermore,
within the possible mesoscopic descriptions, different levels of coarse-graining are allowed, and all the physical
observables could be somehow affected by the information we are unaware of or deliberately ignored a priori.
Quantifying the influence of the coarse-graining on our prediction of the physical properties of a system isa
long-standing problem, addressed by countless works in literature [2—7].

Itis known [1] how the entropy balance is affected by performing a coarse-graining on the system
‘microstates’. The limit of instantaneous equilibration of the internal microscopic states makes the
mathematical form of the theory independent of the level of description. Remarkably, this unravels the key
assumption of the stochastic thermodynamics, that is the internal structure of each state may evolve in time, but
always remaining at equilibrium. In [1] the effect of neglecting information is investigated in a Markovian
discrete-state dynamics, which is one of the possible ways to describe a stochastic system.

Among all the possible quantities that can be estimated in a system out of equilibrium, in this work we focus
on the entropy production, a fingerprint of non-equilibrium conditions. Recently, its crucial role in the outmost
thermodynamic uncertainty relations [8, 9] has been pointed out, along with the possibility to use the entropy
production as a possible quantification of the non-equilibrium activity of a biological system [10]. Itis also a
fundamental quantity involved in various fluctuation theorems [11-18], whose theoretical relevance has
stimulated several experimental confirmations in the field of stochastic thermodynamics [19-21]. Moreover, the
production of entropy has a leading role in building efficient engines [22, 23], since it can be understood as the
‘cost’ of performing a given task. For all these reasons it has been widely investigated both in discrete [24-26] and
continuous systems [27-30].
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We consider a system with a finite number, N, of accessible states whose dynamics is described by a Master
equation (ME) of the form:

N
Pi(t) = D (W, Pi(t) — W;iPi(1)), (1)

j=1

where Wj;is the transition rate from the state j to the state i and P(t) is the probability to be in the state i at time £.
Following Schnakenberg’s formulation [24], the (average) entropy production is

)

Sme(t) = Z Wiij(t)lOg(M),
ij

Wi Pi(t)

where the sum is performed over all non-zero transition rates (it is assumed that Wj; > 0implies Wj; > 0).
Equation (2) was originally motivated from an information theory approach [24, 31], but it is thermodynami-
cally consistent, as pointed outin [25, 32]. In what follows we refer to equation (2) as the microscopic entropy
production.

The entropy production is intimately connected to the information theory [33, 34]. Several experiments
have been performed in this direction [35-37], evidencing the physical meaning of the mathematical backbone
on which this and previous works strongly relies.

Stochastic systems, under suitable conditions, can be also described in terms of continuous variables by
means of a diffusive equation. The standard approach [38] consists of introducing a new variable x = iAx, that
represents, for example, the spatial position of a particle in the state i, which becomes continuous in the limit
Ax — 0. By performing the Kramers—Moyal expansion on equation (1) [38], this procedure leads to the
Fokker—Planck equation (FPE) [38, 39]:

P(x, 1) = —O[AX)P(x, 1) — O«(D(x)P(x, )] = =0 (x, 1], 3

where P(x, t) = Pj(t)/ Axrepresents the probability density function to be in the state x at time
t, A(x) = A(iAx) = Zj(j — i) AxWj; the driftand D(x) = %Zj((j — 1) Ax)*Wj; the diffusion coefficient, in
the limit Ax — 0. This approach relies on the assumption that all the ‘pseudo-moments’ of the transition rates
of order higher than 2 vanish when Ax approaches 0°. It is important to notice that the dynamics represented by
equation (3) belongs to a different level of description with respect to the discrete-state dynamics, equation (1),
and all the relevant information are now encoded in the coefficients A(x) and D(x).

In [27], Seifert calculated the mean entropy production for systems described by a FPE starting from the
entropy associated with each possible trajectory, leading to the following formula:

J (x, 1)*

See(f) = DX)P(x, 1)

(C))

In this work, we address the basic question of how equations (2) and (4) are related. The former is derived
within a framework considering discrete states systems, whereas the latter arises directly in the continuum limit,
where many microscopic details are ignored, i.e. after a suitable coarse-graining on the dynamics. Since both
formulas refer to the same quantity at two different levels of description, we naively expect that one can be
obtained from the other. As we will show, this is true only for a specific choice of the transition rates. However, in
general, equation (4) does not fully capture the contribution to the entropy production stemming from the
microscopic currents, which do not enter explicitly in the FPE.

2. Discrete-state systems

Asanillustration of the idea, we first consider a simple model of a one-dimensional random walk where a
particle can jump in both directions with different step lengths k = 1,2, ..., natany time* (for simplicity in the
formulation we skip the length scale at this point), as sketched in figure 1. Jump rates are:

we = IWedjice k=1, n
’ 0 otherwise.

(€)

The ME for this process can be written in terms of the incoming and outgoing probability currents at each
node, P(t) = J;(t) — J;(t), where:

We called them ‘pseudo-moments’, since W(y, r) is not a distribution.

We alert the reader that the continuum limit in this example has been carried out naively. We postpone a more formal derivation to the
general case of a continuous state space.




10P Publishing

NewJ. Phys. 21 (2019) 073004 D M Busiello et al
WW” /:
. p W
202 oeol 2o
M‘W
W,
— Z Z microscopic currents b

/- N ,
O‘ /'\\l [0 \ mesoscopic
Jig
N S y current

Figure 1. Panel a—the microscopic dynamics of a n-step random walk is sketched: red and blue arrows indicate jumps to the right and
left of size 1 and 2 with transition rates W, and W_.,, respectively. Panel b—microscopic currents at each node i can be associated
with each jump size, J gk)’ where k = 1, 2. The coarse-grained current, J;, can be calculated considering all currents passing through a
given node. This is the current appearing in the FPE.

T =5 %), (6)
k=1
NAGED SN0 %)
k=1
with
TPt) = WrPi(t) — WaPiw(t), k=1, ... n ®)

being the instantaneous current passing through the node i at time # due to jumps of size k.

2.1. Probability currents and entropy production inequality
The microscopic entropy production, as defined by Schnakenberg [24], can be written in terms of the
microscopic currents:

. " TP
- 723 }: (k) _ Y V7
SME : Ji (t)log[l ) . 9)

A description in terms of a FPE, equation (3), can be guaranteed if we take the transition rates as

Br £ ax Ax) Wi ’
Ax?

Wig = (1 + (10)

wherewy > 0and [ > |y to ensure that Wy > 0 for all Ax. In particular, equation (10) leads to
A =Y} kagywrand D = 3}, Dy, where Dy = k*wy is the diffusion coefficient associated with the process
involving only jumps of size k, and higher-order ‘pseudo-moments’ of the transition rates vanish when
Ax — 0. Note that in this simple case both coefficients are independent of x.
The microscopic entropy production, equation (9), in the continuum limit becomes:

Arop T®(x, 1)?
S dx—"—"2" 11
ME k; f DyP(x, 1) (v

where, by definition, the probability current associated with the step of size k in the continuum limit is

T ®(x, 1) = kwi(aP(x, 1) — kO P (x, 1)). (12)

> The generalization to A and D depending on the state of the system is straightforward.
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Alternatively, it is possible to write the ME in terms of a current accounting for all the probability flux
crossing a fictitious barrier located at node i (see figure 1):

n k
MGED DD IRVARN N (13)
k=1m=1

sothat B(t) = —(Jiy1(t) — Ji(t)). In the continuum limit, the probability current
Ji(t) =>4, kJSk)(t) — S0, I®(x, t) = J(x, t), which is the corresponding current appearing in the FPE.
Thus the Seifert’s formula for the entropy production, equation (4), gives:

*®) 2
Spp = f dxM_

= 14
> DyP(x, 1) ()
k
Asa consequence of the Cauchy—Schwarz inequality, we get
Ser < Swip - (15)

Itis interesting to note that equation (11) corresponds to the sum of the mesoscopic entropy production, as in
equation (4), associated with each microscopic process, while the entropy production directly derived from a
mesoscopic description involves an ‘integrated’ current and diffusion coefficient, leading to the inequality in
equation (15).

2.2. Interpretation of the results and conditions for not having corrections

We conclude that Seifert’s formula represents a lower bound for the production of entropy; instead,
equation (11) gives a more accurate value as it captures all microscopic currents hidden in the mesoscopic
description, but contributing to the entropy production.

Intuitively, the discrepancy between the two formulas relies on having different ‘channels’ through which
the particle can move, jumping to distant locations without necessarily going through the intermediate points
(see figure 1). All the microscopic currents contribute to the production of entropy. When the system is coarse-
grained they are simply added up and part of the information is lost if currents through different channels flow in
opposite directions.

The inequality in equation (15) is formally equivalent to the one derived in [ 1, 40], for a system whose
transitions occur due to the coupling to different baths. However, we point out that this latter is just a
mathematical similarity, since the ‘channels’ we refer to are just ensemble of transitions of different length that
cannot be resolved within a diffusive description.

Remarkably, notice thatif 7 Ek) = 0, that is the microscopic detailed balance condition is satisfied, then also
detailed balance holds in the corresponding Fokker—Planck description, i.e. J(x) = 0[38]. However, the
vice versa does not necessarily hold, that is an equilibrium in the continuum description does not necessarily
implies that the underlying microscopic dynamics is also at equilibrium. In other words, the system seems at
equilibrium in the continuum description, while there is not detailed balance at the microscopic level.

It is worth noting that in some conditions the Seifert’s formula captures all the relevant information about
the system, and no coarse-graining correction to the entropy production is needed. Independently of the details
of the specific model, this happens when k = 1, i.e. only transitions between nearest neighbors states are
allowed. In other words, this condition is equivalent of having just one single ‘channel’ through which the
particle can jump.

Another example of a physical system satisfying this constraint, in a two-dimensional space, is presented in
[41], where the formula for the entropy production is the generalization of the Seifert’s one, as derived in [29].

2.3. A simple example

The multi-step random walk becomes very simple to solve at stationarity if we impose periodic boundary
conditions. The stationary solution of the ME corresponds to the homogeneous state P*(x) = 1/L, where Lis
the size of the system. Thus, the Seifert’s formula for the entropy production simplifies to:

<k (Zzzlkakwk)z

Sep = 0 ) (16)
2
Z ke 1k Wik
whereas the actual value for the entropy production can be found by taking the continuum limit of the
microscopic entropy production:
n
« Ax—0,% <k
Sue = > aiwi = Sep 17)

k=1
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Zl<k<k1<nwkwk’(kak’ — Kay)?
n 2
Zkzlk Wk

Apart from the trivial case of n = 1 (discussed in the previous subsection), the equality holds if and only if
oy = ak, where avis a constant. This case leads to the stationary kth current (see equation (12))
J®(x)* = aDP*, whichis independent of x.

+

(18)

3. Continuous-state systems

Our results can be extended to a continuous-step model where the system can jump to any location according to
a certain distribution. The continuous versions of equations (1) and (2) are [38]:

P(x, t) = fdr(W(x — 1P —r11t) — W(x, —r)P(x, 1)) (19)
and

Sue(t) = fdxfer(x — 1, 1)Px—r1,1)

« log W —r,rPx—r,t) 20)
W, —nPx, 1)

where W(x, ) is the rate density of a jump of size r from location x. We now consider an infinite system and
therefore integrals are performed between —00 and +oo.
We take the following scaling form for the transition rates:

Wi(x, r) = 11

€ Jdx)e
where f isa generic symmetric function®and z(x, r) = (r — A(x)¢)/+/d(x) e. Without loss of generality we
have chosen f(0) such that f dze/® = 1. We have introduced an expansion parameter € in such a way to
control the right scaling of W(x, r) in the diffusive limit, ¢ — 0. The surviving terms in the Kramers—Moyal
expansion lead to the FPE, equation (3), with D (x) = d(x) f dz z2e 1@ / 2 (see appendix A for details).
The entropy production, calculated in the € — 0 limit, is (the derivation is quite lengthy and it is presented
in appendix B):

e/ (21)

AGPG) — B(D(P ()Y

se—0 _ 4. 5 _
S = lim S = [ & DOP()
A 2
+(H@.f @) -1 [ dy—D((yy))p(y)
A(y)0,D
+ (3 = (220 f(2)*) f dy(”#y)(”m)
1 (240 () (9,D(y))
el P
" 4( T )fdy by 22

where (-} = f dz - e/, Since this general formula is quite cumbersome, in what follows we restrict our
analysis to two simple cases of interest: the one with non-vanishing drift and constant diffusion rate, and the case
with zero drift and space-dependent diffusion coefficient.

3.1. Two simple frameworks and limit of no correction
For a constant diffusion coefficient (D(x) = D), we obtain:

A(x)? )
5)) > Simn (23)

S5’ = Sep + (2 (0.f (@) — 1) f dx

where the inequality follows from the Cauchy—Schwarz inequality. Equation (23) emphasizes that Seifert’s
formula (4) needs to be corrected by a positive term, which takes into account information about the
microscopic dynamics missing in the FPE.

Itis particularly interesting the choice of Gaussian transition rates, f (z) = z? + log +/7. This represents the
limiting case, in this setting of constant diffusion, where there is no loss of information in the coarse-graining
process, so that equation (23) holds as equality, i.e. the Seifert’s formula gives the actual entropy production.

® The symmetry condition on fensures that (z) = 0. This condition is necessary to have the drift coefficient of order 1 (see appendix A for
details)
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This result agrees with the fact that, in order to consistently describe a microscopic dynamics as a FPE, one needs
to assume Gaussian transition rates, otherwise inconsistencies in non-equilibrium quantities may arise [42, 43].
Notice that, in principle, there could be physical systems exhibiting non-Gaussian transition rates. It can be
seen, for some cases (see appendix C), that this rely on how the energy barriers between any two states behave as a
function of their distance (in a real or abstract state space).
On the other hand, when A = 0 and D(x) is not constant, we obtain:

se—0 ](x)2 (8XD(X))2
S5 = f S f TR (24)

where v = (=9 + (z*(0,f (2))?) / (z%)) /4. To demonstrate the positivity of , let us define a new measure (not
aprobability measure) diu = dzz2e /@, then:

<Z4(8zf(z))2> _ <22(8zf(z))2>p ’ (25)

(z%) (D

where:
(= [ du= (22, 26)
Noting that:
(220 f @) (L) > (20:f (2)); (27)

the inequality directly follows by rearrangement and integration by parts. Note that, in this case, the inequality
holds for any choice of W(y, r), which is consistent with the Kramers—Moyal expansion. Although this result is
valid for any system amenable to be described by a ME, it is interesting to study the application to the case of a
diffusing particle. The entropy production in equation (24) corresponds to the one associated with the Fokker—
Planck description of an overdamped process, where the positive corrections are due to the coarse-graining
procedure as explained above.

3.2. Future perspectives
When the FPE exhibits a non-constant diffusion coefficient, D(x), the underdamped setting represents a more
appropriate description of the system. The generalization of our result to this case will be investigated in future
works. Itis important to say that the discrepancy between the entropy production in the underdamped and
overdamped regime, investigated within the formalism of the FPE, as in [28, 44], comes from a different source
and does not involve coarse-graining corrections nor information about the microscopic transition rates.
Experimental analysis based on the theory here presented would be useful and interesting, in particular to
acquire some information about the process underlying a diffusive description. In fact, our approach relies on
knowing many microscopic details of the system—the transition rates—which are commonly unknown or not
properly measurable. A simple experimental setup could be provided by a one-dimensional overdamped
colloidal particle with a space-dependent diffusion and zero drift, similar to the one described in [28]. In this
simple scenario, the corrections to the entropy production given by equation (24) do not vanish (even the
simplest Gaussian case f = z2 + log /7 leads to v = 3/2,and therefore might become quantifiable by an
experimental test.

4. Conclusions and open questions

Itis well-known that a coarse-graining procedure leads to an underestimation of the entropy production
[1,45,46]. We have proven that the same applies when a mesoscopic description of the dynamics is adopted, i.e.
when a coarse-graining is performed on the dynamics. In other words, within some limiting procedure, a
dynamics described by a FPE can be derived from a microscopic ME and the two can be considered equivalent to
many extents. However, we have shown that, in general, the entire non-equilibrium behavior, as manifested, for
example, in the entropy production, cannot be predicted correctly by the FPE alone, as some further important
information survive in the limiting procedure of the dynamics.

On this regard a future perspective would be to look for a ‘modified’ FPE, which is able to capture all the
relevant information surviving the coarse graining limiting procedure, rather than searching for a ME leading to
the same entropy production as predicted by the standard FPE. This would result in a deeper understanding of
the microscopic world hidden behind a coarse-grained description. It would also have consequences in fields
ranging from artificial molecular motors [9, 26, 30] to the possible quantification of the dissipation in biological
systems [10] through the celebrated thermodynamic uncertainty relations [8]. Furthermore, our results can be
applied to cases where an evolution occurs over a generic state space such as in interacting ecological and social

6
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systems (e.g. bacteria, species, humans) [47, 48]. In this latter context, the description both in terms of both a ME
and as a diffusive process (FPE) is usually known. Thus, an information-theoretic and thermodynamic approach
to population dynamics could lead to a better evaluation of the non-equilibrium activity and to a better
identification of the relevant physical quantities in play.

We would like to stress that the work presented here has been focused on the derivation of the corrections to
the average entropy production under coarse-graining. In the field of stochastic thermodynamics, however, it is
crucial to study quantities at the trajectory level. How to define a coarse-graining procedure that works on
trajectories is a fundamental open question, whose answer could shed some light on the way to lose the least
amount of information in describing a physical system.
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Appendix A. Transition rates and FPE coefficients

We derive the drift and diffusion coefficients for the following general choice for the transition rates:

_flr=AWe
Wy, r) = l e f(JTm), (A1)

€ Jed(y)

where f is a generic symmetric function. All the ‘pseudo-moments’ can be computed as follows:

r—A(y)e
Vd(y)e

— fdzz(:)Zn_ke_f(z)A(}/)kd(y)ngk6%_1
k=0

a™ = fr”W(y, Ndr — z =

k=0

where:

(z"y = fz”e’f(z)dz. (A.2)

Up to the leading order in €, we get:
' =(1)A)
a? = (2)d(y) + (DAY e = (2%)d(y)
a">d = O(e27h) = 0,

where (1) is just the normalization of the transition rates. Then the Kramers—Moyal expansion can be
performed, leading to a consistent FPE with a drift A(y) (1) and a diffusion coefficient D(y) = (z%)d(y)/2. Let
us define, for sake of simplicity, the following rescaled average:

(o = O (A.3)

In what follows we will set (1) to be generic, even though it is possible to see that, without loss of generality,
we can choose f(z) such that (1) = 1, asin the main text.

Appendix B. Splitting the entropy production

The formula for the entropy production derived performing the diffusive limit on the Schnakenberg’s
expression can be rewritten as follows:




10P Publishing

NewJ. Phys. 21 (2019) 073004 D M Busiello et al

o @,P(, 1)’ .
S= f(sl(}’)w + s6()O,P(y, 1)

+ (s2(p) + 9y54(y) + 8,aV(y) + s5(y) + Bys7(y) + ss(¥)P(y, 1)
+ (s3(p) + s4(p) + s7(p) + Bys6(¥)O,P(y, t))dr,

where:
2
a()= [ SwWo, ndr
52(y) = f r_z(ayW()’, - (O,W (y, 1)) dr

2 Wy, r)
2( Wy, —
so= [ 7(% ! I)W(” e
L g 00
si(y) = f 2(W(y, r)+ W(y, r))log(W(y, 5 )dr
Wy, —
55(y):frﬁ8yw(% rdr
e W(y, r)
se(y) = f T(W(J” n-=wo _r))k)g(m]dr

o W(y, 1)
s7(y) = f?ay(w(}’: r) — W(y, r))log(m)dr
_ 1 _ _ Wy, 1)
w0 = [SW0n - W0, mmhw%ﬂJm

with the implicit assumption that P(x) vanishes, along with its derivative, at the boundaries.
In what follows we will explicit the proposed form for the transition rates deriving an expilict expression for
each one of these terms as function of the mescoscopic parameters A(y) and D(y) only.

B.1.Expansionin ¢
Here we introduce some useful expansions:

2(y) = ——— + O(e)
Jed(y)
1 1 9,d(y)
d =—_= y + OJe), B.1
,z(y) 2 Jado) 40 r (+/€) (B.1)
—r—A(y)e 2A(y)
— 2 | =f(—2) — e 0,f(—z) + O(e). (B.2)
[ Jed(y) ) Vd()

B.2. Diffusive limit of the Schnakenberg’s entropy production
Reminding that f (ﬂ) = f (2), usingall the approximations introduced above and the parity of f(z), up to

Jed(y)
the order O(1) in €, we get:

2
50) = [SW(, ndr=D(y) (B3)

2 QW (y, =)(@O,W (y, 1) dr

2 Wy, r)
_10,D())? ( | (240, f (2))*)o (2°0,f (2))o )
== + -2
4 D(y) (z%)o (z%)o

() =
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. (Wi —
s3(y) = f%(ﬁ + l)ayW(y, r)ydr = 20,D(y)

. Won
sa(y) = —f%(W(y, r+ Wy, —T))log(%]dr = —2A(y)
. . Wy, —r1) B A(y)0,D(y)
ss(y) = fr(m)ayw(}’a rydr = 0,A(y) — T)’)(<22(6Zf(2))2>0 - 1)

_[r? 3 B W(y, r) B
56()/) - f?(w()’, r) W()/, r))log(m)dr =0
. R W
5 = [SoW0n - W, —r))log(%)dr =

(2%)0{(0:f (2))*)o-

W (y, A(y)?
ss(y) = f%(W(}/, r)— W(y, r))log[ (y, 1) )dr _ 62)

Wy, —7) D(y)

Putting all the terms together:

X 2 A 2
§ = oY qi@s @ - [ A b

D(»Py) D(y)
A(y)0,D
+ G = (O [ dy(”#y)(”P

1 (z4(0.f (2))*)o ] (0,D())?
+—-9+ d P
( (z%)o f D(y)

)

2 -

Appendix C. Non-Gaussian transition rates

Non-Gaussian transition rates might arise in systems, whose states are denote by i, with a complex free energy
landscape, E;, where the Arrhenius form for the transition rates holds:

Bjj—Ej
W, = e wt (C.1)
for all the off-diagonal elements, while W; = —>", ., Wj,. If the system eventually relaxes to an equilibrium

point, B;j = Bj;. Bjjcan be interpreted as an effective free energy barrier (activation energy) between the state i
and j. For some applications of this form of the transition matrix, see [49-51].

Itis then easy to see that, if B;; = E; + f (i, j), the function f defines the behavior of the transition rates as the
effective distance between states increases. Then, Gaussian transition rates would occur for very special choices
of the function f.
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