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Building on the mapping of large-S spin chains onto the O(3) nonlinear σ model with coupling constant
2=S, and on general properties of that model (asymptotic freedom, implying that perturbation theory is
valid at high energy, and Elitzur’s conjecture that rotationally invariant quantities are infrared finite in
perturbation theory), we use the Holstein-Primakoff representation to derive analytic expressions for the
equal-time and dynamical spin-spin correlations valid at distances smaller than S−1 expðπSÞ or at energies
larger than JS2 expð−πSÞ, where J is the Heisenberg exchange coupling. This is supported by comparing
the static correlations with quantum Monte Carlo simulations for S ¼ 5=2.
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Spin chains have been the subject of intensive inves-
tigation since the early days of quantummechanics. Thanks
to the Bethe ansatz, bosonization, and numerical simula-
tions, the static and dynamical properties of the spin-1=2
chain are very well understood [1–5]. There is no exact
solution for the spin-1 chain, but thanks to the mapping onto
the O(3) nonlinear σ model initiated by Haldane and to
extensive quantum Monte Carlo (QMC) simulations and
time-dependent density matrix renormalization group
(DMRG) results, spin-1 chains are fairly well understood
as well [6–8]. In comparison, much less is known for spin
chains with spin S ≥ 3=2. According to the mapping onto
the nonlinear σ model, half-integer spin chains are expected
to be gapless while integer spin chains are expected to be
gapped. The difference can be traced back to the presence of
a topological term in the case of half-integer spins. The
critical theory of the S ¼ 1=2 chain is known to be the
SUð2Þ1 Wess-Zumino-Witten conformal field theory and all
higher half-odd-integer spins are expected to lie in the same
universality class [9–11].Alternatively, the presence of a gap
for integer spin chains up to S ¼ 4 has been confirmed by
QMC simulations [12,13], but there is no definitive infor-
mation on the dynamics of large-S spin chains because of the
difficulty to extend time-dependent DMRG to large spin.
Another very useful concept for analyzing spin chains is

asymptotic freedom, a concept borrowed from quantum
chromodynamics according to which quarks appear as
nearly free particles in certain high-energy experiments
because the effective coupling constant is small at high
energy [14–16]. For integer spin chains, which are simply
described by the O(3) nonlinear σ model, the gap corre-
sponds to the energy scale at which the coupling constant
becomes of order 1 as we reduce the energy (see below).
Interestingly enough, the more fundamental aspect of
asymptotic freedom, namely the fact that perturbation theory

can be used at high energy (or at short distance), has not been
used to discuss the properties of spin chains.
In this Letter, we show how to derive analytical results

for large-S spin chains using perturbation theory in 1=S for
the equal-time correlation function and the dynamical
structure factor defined by

GðjjjÞ≡ hSj · S0i;

Sðk;ωÞ≡X
j

e−ikj
Z

∞

−∞
dteiωthSjðtÞ · S0ð0Þi: ð1Þ

This relies on two fundamental observations. (i) The domain
of validity of these results, set by asymptotic freedom,
extends to an energy that is exponentially small with S
(or to distances that are exponentially large with S), so that
already for S ¼ 5=2 most of the parameter space in energy
and distance is covered by this perturbative approach.
(ii) Divergences typical of quantum fluctuations in 1D often
cancel out when averaging over direction.
Let us first review the connection between spin chains

and the nonlinear σ model, and the consequences of
asymptotic freedom. The low-energy (compared to JS)
degrees of freedom of the antiferromagnetic Heisenberg
chain of spin S, with Hamiltonian

H ¼ J
X
j

Sj · Sjþ1; ð2Þ

can be mapped into those of the O(3) nonlinear σ model
(NLσM) with Lagrangian density [6,7]

L ¼ 1

2g

�
1

v
ð∂tϕÞ2 − vð∂xϕÞ2

�
þ θ

8π
ϵμνϕ · ð∂μϕ × ∂νϕÞ:

ð3Þ
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Here the field ϕ is a three-component unit vector,
jϕðt; xÞj2 ¼ 1. The last term is topological; it has no effect
in perturbation theory. The parameters take the approxi-
mate values (setting the lattice constant a of the spin
chain to 1)

g ¼ 2

S
; v ¼ 2JS; θ ¼ 2πS: ð4Þ

This approximate mapping is obtained using

Sj ≈ ð−1ÞjSϕðxjÞ þ lðxjÞ; ð5Þ

where

l ¼ 1

vg
ϕ × ∂tϕ ð6Þ

is the conserved spin density of the σ model. The field ϕ is
the antiferromagnetic order parameter.
A perturbative treatment of the σ model assumes

spontaneous breaking of the O(3) symmetry with, e.g.,
ϕ ≈ ð0; 0; 1Þ. We then introduce a pair of Goldstone boson
fields, φ ¼ ðφ1;φ2Þ, and write

ϕ ¼
�
φ1;φ2;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

q �
: ð7Þ

Rescaling φ →
ffiffiffi
g

p
φ, and setting the velocity to 1, the

nontopological part of the Lagrangian density becomes

L ¼ 1

2

�
∂μφ · ∂μφþ gðφ · ∂μφÞðφ · ∂μφÞ

1 − gφ2

�
: ð8Þ

Taylor expanding the denominator in the second term gives
a series of interaction terms. But perturbation theory is
plagued with infrared divergences in (1þ 1) dimensions.
This is related to the Mermin-Wagner-Coleman theorem
[17,18]. This failure of perturbation theory can be under-
stood using the renormalization group, just as in QCD.
The renormalized coupling constant at length scale L is
determined by [19]

dg
d lnL

¼ 1

2π
g2 þ 1

ð2πÞ2 g
3 þOðg4Þ: ð9Þ

Integrating this equation and using the expression of the
bare coupling constant g given in Eq. (4) we obtain the
crossover length scale at which gðLÞ becomes Oð1Þ (see,
for instance, Ref. [20] and references therein),

ξ ∝
1

S
eπSð1þOðS−1ÞÞ. ð10Þ

This implies that the effective coupling constant becomes
Oð1Þ at the energy scale Λ¼v=ξ∝JS2e−πSð1þOðS−1ÞÞ.

For integer spin, corresponding to θ ¼ 0, there is a
“Haldane gap” of order Λ. For half-integer spin, corre-
sponding to θ ¼ π, the model is gapless, but Λ is none-
theless a crossover scale. At energy scales ≫ Λ or,
correspondingly, length scales ≪ ξ≡ v=Λ, we might
expect perturbative behavior to hold, corresponding to
asymptotic freedom. This behavior will be the same for
both integer and half-integer spin. The field theory approxi-
mation only holds at energy scales small compared to the
bandwidth JS. But, for large S, Λ ≪ JS, so there is an
intermediate energy window, Λ ≪ E ≪ JS, in which a
perturbative treatment of the σ model applies. As we go to
larger S, the lower bound of this energy window extends
almost to zero. Table I summarizes the values of Λ and ξ
obtained from numerical measurement of the gap for
integer spin S ¼ 1, 2, 3, as well as the expected values
for S ¼ 3=2 and 5=2 obtained by interpolation [12].
Perturbation theory works at high energies in the σ model

for rotationally invariant quantities only. In particular, such
angular averaging leads, as we will see, to cancellations of
infrared divergences, resulting in infrared-finite perturbative
results. This is known as Elitzur’s conjecture [21,22].
Indeed, the staggered part of the equal-time spin chain
Green’s function is given by the ϕa Green’s function. Up to
OðgÞ this gives

hϕaðxÞϕbð0Þi ≈ ghφaðxÞφbð0Þi; ða; b ∈ f1; 2gÞ;
hϕ3ðxÞϕ3ð0Þi ≈ 1 − ghφð0Þ · φð0Þi: ð11Þ

The free massless boson Green’s function is

hφaðxÞφbð0Þi ¼ δab
Z

dk
4πjkj e

ikx: ð12Þ

We may insert an ultraviolet cutoff jkj < D=v, where
D ≈ JS. However, there is also a logarithmic infrared
divergence at k ≈ 0. Thus, hϕaðxÞϕbð0Þi is infrared diver-
gent. Averaging over directions leads to

hϕðxÞ · ϕð0Þi ≈ 1þ g
Z

dk
4πjkj ðe

ikx − 1Þ; ð13Þ

which is an infrared-finite result at all energy scales.
Performing the integration leads to thewell-known result [21]

hϕðxÞ · ϕð0Þi ≈ 1 −
g
π
lnðjxjD=vÞ. ð14Þ

TABLE I. Values of the energy scale Λ and associated length
scale ξ for the relevant values of the spin S.

S 1 3=2 2 5=2 3

Λ=J 0.410 ∼0.1 0.0892 ∼0.02 0.0100
ξ 6.02 ∼14 49.5 ∼160 637

PHYSICAL REVIEW LETTERS 123, 037202 (2019)

037202-2



In order to use the σ model to make predictions for the spin
chain, it is also useful to calculate hlaðxÞlbð0Þi. Using

l ≈
1ffiffiffi
g

p
v
ð−∂tφ

2; ∂tφ
1; 0Þ; ð15Þ

we get

hlðxÞ · lð0Þi ≈ −
1

πgx2
: ð16Þ

(In this case, averaging is not necessary to get an infrared-
finite result.)
Using the mapping of Eqs. (5) and (6), the spin-spin

correlation is given by

hSaj ðtÞSb0ð0Þi ≈ S2ð−1Þjhϕaðt; jÞϕbð0; 0Þi
þ hlaðt; jÞlbð0; 0Þi: ð17Þ

From Eq. (17) we see that, in perturbation theory, these
Green’s functions are very different for a ¼ b ¼ 3 and
a ¼ b ¼ 1 or 2. In fact, we only expect perturbation theory
to be valid if we average over directions, using

hSaj ðtÞSb0ð0Þi ¼
δab

3
hSjðtÞ · S0ð0Þi: ð18Þ

Thus, in the σ model approximation we predict

hSj · S0i ≈ ð−1ÞjS2
�
1 −

2

πS
ln

�jjjD
v

��
−

S
2πj2

ð19Þ

for 1 ≪ jjj ≪ ξ and S integer or half-integer. This expres-
sion explicitly breaks down at distance veπS=2=D ≈ ξ.
The correct exponent of the exponential factor for this
crossover length scale can be obtained from Eq. (19) by
adding second order corrections. For jjj ≫ ξ, we expect
exponential decay for integer S. For half-integer S,
ð−1Þj=jjj decay is expected.
Now we apply nonlinear spin-wave theory (NLSWT) to

the spin chain using the Holstein-Primakoff (HP) repre-
sentation of spins. The advantage of this perturbative
approach on the lattice is that the energy window of the
perturbative regime extends to arbitrary high energies,
E ≫ Λ. For this reason we expect HP perturbation theory
to provide a more accurate description of the spin chain at
very short distances. Using HP transformation we rewrite
all spin operators in terms of HP bosons and treat the model
perturbatively in 1=S [23]. We begin by computing, to first
order, the spin-spin correlation along the z axis:

hSz0Szri ¼ ð−1ÞrS2
�
1þ 1

S

�
1 −

2

π

Z
π=2

0

dk
1

sin k

��
: ð20Þ

The first order term is obviously infrared divergent. The
correlations along the x and y axis are equivalent and must

be computed separately for even and odd distance. We
obtain to first order

hSx0Sxri ¼
S
π

Z
π=2

0

dk
cosðkrÞ
sin k

; r even; ð21Þ

hSx0Sxri ¼ −
S
π

Z
π=2

0

dk
cosðkrÞ
tan k

; r odd: ð22Þ

The two integrals involved in these expressions are diver-
gent at k ¼ 0. However, adding Eq. (20) to twice Eq. (21)
or (22) for even or odd distance, respectively, leads to
infrared-finite results. Extending the calculation to second
order in perturbation theory to the rotationally invariant
spin-spin correlation, we obtain [24]

hS0 ·Sri¼ ð−1ÞrS2
�
1þ 1

S

�
1−

2

π
JαðrÞ

�

þ 1

4S2

�
1−

2

π
JαðrÞ−δr;0

�
2

þOðS−3Þ
�
; ð23Þ

where α ¼ rðmod 2Þ and where J0;1ðrÞ are the two follow-
ing infrared-finite integrals:

J0ðrÞ ¼
Z

π=2

0

dk
1 − cosðkrÞ

sin k
;

J1ðrÞ ¼
Z

π=2

0

dk

�
1

sin k
−
cosðkrÞ
tan k

�
: ð24Þ

This formula is thus in agreement with Elitzur’s con-
jecture in the O(3) NLσM. The O(3) invariant two-point
function of spin operators in spin-wave theory is infrared
finite to second order. The divergences occurring in hSz0Szri
are exactly canceled by the divergences of 2hSx0Sxri [24].
Figure 1 compares Eq. (23), as well as its finite-temperature
generalization, to QMC simulations for spin S ¼ 5=2 in the
regime jrj < ξ ≈ 160. At finite temperature the agreement
between the perturbative calculation and the QMC result is
excellent up to distance jrj ≃ 50 ≃ ξ=3 and goes beyond the
initial expectations of validity jrj ≪ ξ. Taking now the limit
of large distance jrj ≫ 1 but always keeping jrj ≪ ξ, we
obtain

hS0 · Sri ≃ ð−1ÞrS2
�
1 −

2

πS
ln

�jrj
r0

�
þ 1

2πS
1

r2

þ 1

π2S2
ln2

�jrj
r0

��
−

S
2πr2

; ð25Þ

where r0 ¼ eπ=2−γ=2 ≃ 1.35 and γ is the Euler-Mascheroni
constant [24]. This is in agreement with the NLσM.
Spin-wave theory thus predicts a logarithmic decay of
the spin-spin correlation function at short distance with
respect to the crossover length scale ξ, very different from
the exponential or power-law decay at long distance
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jrj ≫ ξ. The 1=r2 term at order 1=S in the staggered part of
Eq. (25) comes from small violation of Lorentz invariance
in spin-wave theory and is subdominant at large distance
1 ≪ jrj ≪ ξ compared to the logarithmic decay.
The dynamical structure factor can be obtained from the

time-ordered Green’s function of HP bosons,

iGðk; tÞ ¼
	
T

� akðtÞ
a†−kðtÞ

�
½ a†kð0Þ a−kð0Þ �



; ð26Þ

and its Fourier transform Gðk;ωÞ as [25]

Sabðk;ωÞ ¼ −2Im½Fabðk;ωÞ�; ð27Þ

where Fabðk;ωÞ is the time-ordered Green’s function of
spin operators,

iFabðk;ωÞ ¼
Z

∞

−∞
dteiωthTSakðtÞSb−kð0Þi: ð28Þ

We get

Sxxðk;ωÞ ¼ Sπ
�
1 −

n
S

����� tan
�
k
2

�����δðω − ϵkÞ; ð29Þ

where ϵk is the dispersion relation of the spin waves [24].
The coefficient n ¼ ha†i aii is infrared divergent. The trans-
verse part of the dynamical structure factor is thus divergent.
First order interaction terms do not broaden the delta peak.
The weight is turned from finite and positive at zeroth order
to infinite and negative at first order. This is, however, not
a major issue since perturbation theory is only expected to
be valid at energies jω2 − ϵ2kj > Λ2, in analogy to the NLσM
where the two-momentum must satisfy jQ2j > Λ2. The
longitudinal component of the structure factor is given by
a two-magnon continuum starting at energy ϵk and extending

up to energies of the order of 4JS. The spectral weight
diverges quadratically in the frequency close to momentum
k ≈ 0; π. Again we only trust the results above the threshold
where the spectral weight is finite.
As a consequence of the divergences of Sxxðk;ωÞ and

Szzðk;ωÞ, the associated components of the static structure
factor obtained as

SaaðkÞ ¼
Z

∞

0

dω
2π

Saaðk;ωÞ ð30Þ

are also divergent. However, averaging over directions
leads to an infrared-finite result, thus providing a reliable
description of the isotropic quantity for k ≫ Λ=v [24]. The
same result can be obtained by Fourier transforming the
static spin-spin correlation function in Eq. (23).
One can perform the same calculation at finite temper-

ature T ¼ 1=β [24]. The main tool is now the bosonic
Matsubara Green’s function Gðk; iωnÞ defined equivalently
to Eq. (26), and the dynamical structure factor is obtained
as [25]

Sabðk;ω; βÞ ¼ −
2

1 − e−βω
Im½Fab;Rðk;ω; βÞ�; ð31Þ

where Fab;Rðk;ω; βÞ is the retarded Green’s function of
spin operators and is obtained from the imaginary-time
ordered Green's function by analytical continuation. Since
Fab;Rðk;ω; βÞ can be nonzero at negative energy, we expect
nonvanishing spectral weight at ω < 0. This corresponds to
transitions between single-magnon states, as shown in

0 50 100 150
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8

FIG. 1. Static spin-spin correlation function obtained in
NLSWT for S ¼ 5=2 at zero and finite temperature and com-
parison to QMC simulations [12]. The error bars are smaller than
visible.
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FIG. 2. Dynamical structure factor for S ¼ 5=2 at inverse
temperature β ¼ 10 (in units of J−1). The white dashed lines
are the lower and upper thresholds of the continuum,
ωk ¼ �vβj sinðkÞj, ωk¼2vβsinðk=2Þ, and ωk ¼ 2vβj cosðk=2Þj.
Because of temperature effects there is nonzero spectral weight
at jωj < vβj sinðkÞj.
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Fig. 2, where we averaged over directions. Along the lower
thresholds jωj ¼ vβj sinðkÞj, where vβ is the temperature-
dependent NLSWT velocity, the spectral weight is diver-
gent. However the behavior along the thresholds will
in reality be different for integer and half-integer spin:
for integer spin, the gap Λ appears at momentum π and a
two-magnon continuum starts at momentum 0 and
energy 2Λ [8]. For half-integer spin the spectrum is gapless
at momentum 0 and π [2]. As S increases, the spectral
weights for integer or half-integer spin well above Λ, which
is exponentially small in S, become identical and are
described by the perturbative approach developed here.
To summarize, we have shown that reliable perturbative

results in 1=S can be obtained for large-S spin chains in
spite of the infrared divergences typical of quantum field
theory or spin-wave expansion in (1þ 1) dimensions. The
static spin-spin correlation has a characteristic logarithmic
decay with distance below a crossover length scale that
grows extremely fast with S as S−1eπS, and the dynamical
structure factor can be accurately determined except in a
very narrow energy window of order JS2e−πS. This
perturbative regime cannot be observed in the well-studied
cases of spin-1=2 and spin-1 chains because the crossover
length is too small. In that respect, the spin-5=2 case
illustrated in this Letter is of particular interest because the
crossover length scale ξ ≃ 160 is large enough to observe
an extended perturbative regime and because several
compounds with half filled d orbitals realize isotropic
quasi-one-dimensional Heisenberg antiferromagnets,
allowing for experimental investigation [26–30]. We hope
that the present results will motivate such investigations.
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1Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute,

University of British Columbia, Vancouver, B.C., Canada, V6T1Z1

In this Supplementary Material we provide details on the spin-wave theory calculations. In the first section we
introduce our definitions and develop the standard Rayleigh-Schrödinger perturbation theory for the Heisenberg
chain. In Section II we derive Eq. (23). Section III is devoted to the derivation of the asymptotic (large distance)
behavior of the integrals given in Eq. (24). Equation (25) can then be easily obtained. In Section IV we extract the
static structure factor S(k) at zero temperature from the results obtained in Section II. In order to avoid repetitions
when treating the finite-temperature case, we postpone the derivation of Eq. (29) to Section VI and focus in Section V
on the calculation of the dynamical spin structure factor at finite temperature 1/β. This contains all the information
needed to reproduce Fig. 2. Finally Section VI deals with the limit β →∞ to prove Eq. (29). Moreover, we also apply
Eq. (30) to rederive the expressions for the static spin structure factor at zero temperature obtained in Section IV.

I. HOLSTEIN-PRIMAKOFF PERTURBATION THEORY

We use Holstein and Primakoff representation of spin operators to rewrite the Heisenberg Hamiltonian in terms of
bosonic creation and annihilation operators. For convenience we perform a π-rotation along x-axis for all spins living
on odd sites Si → S̃i := (Sxi ,−S

y
i ,−Szi )T , i odd and keep the spin operators on even sites unchanged Si → S̃i :=

Si, i even. The transformed spin operators S̃i on all sites can then be expressed as

S̃+
i =

√
2S fi(S) ai, (S1)

S̃−i =
√

2S a†i fi(S), (S2)

S̃zi = S − a†iai, (S3)

where a†i (ai) is a creation (annihilation) operator on site i satisfying [ai, a
†
j ] = δi,j and

fi(S) =

√
1− a†iai

2S
. (S4)

Assuming 〈a†iai〉 � 2S and expanding the square root leads to an infinite sequence of terms in 1/S which allows us
to rewrite the Hamiltonian as

H = JS
∑
〈ij〉

[
a†iai + a†jaj + aiaj + a†ia

†
j

]
+ V (S5)

where V = V1 + 1
SV2 + ... contains all orders in 1/S and where we have omitted a constant term. The first order

interaction term V1 takes the following form:

V1 = −J
2

∑
〈ij〉

(
a†iaiaiaj + h.c.

)
− J

∑
〈ij〉

a†ia
†
jaiaj . (S6)

Introducing the Fourier-transformed operators,

ak =
1√
N

∑
j

e−ikrjaj , a†k =
1√
N

∑
j

eikrja†j (S7)

with N the number of sites in the chain, rj = ja and a the lattice spacing, the Hamiltonian becomes

H = H0 + V (S8)
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where

H0 =
∑
k

[
Ak a

†
kak −

1

2
Bk

(
a†ka
†
−k + aka−k

)]
(S9)

and

Ak = 2JS, Bk = −2JSγk, γk = cos k. (S10)

Similarly the first order interaction V1 becomes

V1 =
1

N

∑
k1,k2,k3

Ξ1(k1)
(
a†k1+k2+k3

ak1ak2ak3 + h.c.
)

+
1

N

∑
k1,k2,k3

Ξ2(k1, k3)a†k1a
†
k2
ak3ak1+k2−k3 (S11)

where the vertices are given by

Ξ1(k1) = −J
2
γk1 , Ξ2(k1, k3) = −Jγk1−k3 . (S12)

The diagonalization of H0 is obtained with a Bogoliubov transformation where we introduce a new set of bosonic
operators through the relations

αk = ukak + vka
†
−k α†k = uka

†
k + vka−k (S13)

with the standard commutation relations, [
αk, α

†
k′

]
= δk,k′ . (S14)

Solving one gets

uk =

√
Ak + εk

2εk
, vk = −sign(Bk)

√
Ak − εk

2εk
(S15)

where the linear spin-wave theory dispersion relation is

ε
(0)
k =

√
A2
k −B2

k = 2JS| sin k|. (S16)

Let us now consider the first order interaction V1. It is useful to introduce intermediary quantities:

∆ := 〈aiaj〉 = − 1

N

∑
k

γkukvk IR-divergent (S17)

n := 〈a†iai〉 =
1

N

∑
k

v2
k IR-divergent (S18)

where 〈O〉 denotes a vacuum expectation value taken in the free theory: 〈O〉 = 〈0|O|0〉 where |0〉 is the Bogoliubov
vacuum αk |0〉 = 0. The crucial observation is that

κ := n+ ∆ =
1

N

∑
k

vk (vk − γkuk) =
1

N

∑
k

| sin k| − 1

2
−→ 1

2π

∫ π

−π
dk
| sin k| − 1

2
=

1

π
− 1

2
' −0.181690 (S19)

is infrared finite (we have taken the continuum limit).

Using now Wick’s decoupling one can show that the first order interaction takes the form:

V1 = Γ0 +
∑
k

Γ1(k)α†kαk+ : (4− bosons) : (S20)

where : (4− bosons) : denotes normal-ordered terms with 4 Bogoliubov bosons and where

Γ0 = −JNκ2, (S21)
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Γ1(k) = −2Jκ
[
(u2
k + v2

k)− 2γkukvk
]

= −2Jκ| sin k|. (S22)

Γ0 and Γ1(k) renormalize the linear spin-wave theory ground state energy and dispersion relation, respectively, by
a finite amount. Another important observation is that V1 does not contain terms with 2 annihilation or 2 creation
Bogoliubov operators.

In what follows we define the NLSWT dispersion relation by

εk = ε
(0)
k + Γ1(k) = 2JS

(
1 +
|κ|
S

)
| sin k|. (S23)

II. DERIVING EQ. (23)

We turn now to the O(3) invariant static two-point spin-spin correlation function,

Oij := Si · Sj (S24)

which can be expressed in terms of the HP bosons as a power series in 1/S. The π-rotation of odd spins requires to
treat separately even and odd distances |i− j| between the two operators. Writing

Oij = S2

[
O(0)
ij +

1

S
O(1)
ij +

1

S2
O(2)
ij +O(S−3)

]
(S25)

we obtain

O(0)
ij = (−1)i−j , (S26)

O(1)
ij =

{
a†iaj + aia

†
j − a

†
iai − a

†
jaj for i− j even

a†ia
†
j + aiaj + a†iai + a†jaj for i− j odd,

(S27)

O(2)
ij =

 a†iaia
†
jaj − 1

4

[
aia
†
ja
†
jaj + a†iaiaia

†
j + a†ia

†
jajaj + a†ia

†
iaiaj

]
for i− j even

− a†iaia
†
jaj − 1

4

[
a†iaiaiaj + aia

†
jajaj + a†ia

†
iaia

†
j + a†ia

†
ja
†
jaj

]
for i− j odd.

(S28)

Before going through more details we first make the link with Eq. (20-22) where we have explicitly separated the
longitudinal (Szi S

z
j ) and the transverse (Sxi S

x
j +Syi S

y
j ) contributions at first order. Given the HP transformation one

sees that O(0)
ij comes from the longitudinal part and is simply the (−1)rS2 term in Eq. (20). The first order term

O(1)
ij is made of both longitudinal and transverse parts. The on-site terms (a†iai and a†jaj) in Eq. (S27) come from the

Szi S
z
j terms, which can indeed be obtained by keeping the O(S) terms when using Eq. (S3). Notice also that they do

not depend on the distance between site i and site j. The terms which mix i and j in Eq. (S27) are the ones coming
from the transverse parts. They lead, after some development, to an explicit dependence on distance |i − j|, as can
be seen in Eq. (21-22).

Here our aim is to derive Eq. (23) and, for simplicity, we will consider the longitudinal and transverse parts together.
The cancellation of infrared divergences between longitudinal and transverse parts explicitly shown in the main text,
with the details provided above, occur precisely in the same manner at second order.

The definition of the following quantity will be handy when computing expectation values:

γk(r) = cos(kr). (S29)

We proceed now to the perturbative development. Our aim is to compute the ground state expectation value of
the two-point function,

Cij := 〈Si · Sj〉 = 〈Oij〉 (S30)

using Rayleigh-Schrödinger perturbation theory. Developing this expectation value, we obtain

Cij = S2

[
C

(0)
ij +

1

S
C

(1)
ij +

1

S2
C

(2)
ij +O(S−3)

]
(S31)
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where

C
(0)
ij = (−1)i−j , (S32)

C
(1)
ij = 〈0|O(1)

ij |0〉 , (S33)

C
(2)
ij = 〈0|O(2)

ij |0〉+ 〈0|O(1)
ij |Ψ

(1)
0 〉+ 〈Ψ(1)

0 |O
(1)
ij |0〉 . (S34)

In these expressions, |0〉 is the unperturbed ground state corresponding to the Bogoliubov vacuum and |Ψ(1)
0 〉 is its

first order correction in Rayleigh-Schrödinger perturbation theory, satisfying 〈0|Ψ(1)
0 〉 = 0. Thanks to the absence of

terms in V1 with 2 creation or 2 annihilation Bogoliubov operators it is clear that only the first term in Eq. (S34) is
potentially non-vanishing. All tools have now been given and we state the results for distance r = |i− j|, setting the
lattice spacing a = 1 and taking the continuum limit in the last equality:

Even distance r = |i− j|:

C
(1)
ij = 〈0|O(1)

ij |0〉 = δr,0 +
2

N

∑
k

(γk(r)− 1) v2
k = 1− 2

π
J0(r), (S35)

C
(2)
ij =

1

4

(
C

(1)
ij − δr,0

)2

=
1

4

(
1− δr,0 −

2

π
J0(r)

)2

, (S36)

where the IR-convergent integral J0(r) is given by

J0(r) :=

∫ π/2

0

dk
1− cos(kr)

sin k
. (S37)

Odd distance r = |i− j|:

C
(1)
ij =

2

N

∑
k

vk (vk − γk(r)uk) = −1 +
2

π
J1(r), (S38)

C
(2)
ij = −1

4

(
C

(1)
ij

)2

(S39)

where the IR-convergent integral J1(r) is given by

J1(r) :=

∫ π/2

0

dk

[
1

sin k
− cos(kr)

tan k

]
. (S40)

Here, for the sake of simplicity, we have used Rayleigh-Schrödinger perturbation theory, but we could have used a
different path. In particular an elegant approach is to use HP Green’s functions perturbation theory. The latter is the
method to favor for computing the dynamical spin structure factor at zero temperature. We will omit this approach
to avoid redundancy with the finite-temperature calculation treated in Section V.

III. ASYMPTOTIC BEHAVIOR OF J0(n) AND J1(n)

We now compute the asymptotic (large distance) behavior of the IR-convergent integrals J0(n) and J1(n).

Claim:

J0(n) = ln 2 + γ + lnn+O(n−4), n even, (S41)

where γ is the Euler-Mascheroni constant.
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Proof:

We rewrite J0(n) as,

−J0(n) =

∫ π/2

0

dk
cos(nk)− 1

sin k
=

∫ π/2

0

dk

[
1

k
− 1

sin k

]
+

∫ π/2

0

dk cos(nk)

[
1

sin k
− 1

k

]
+

∫ π/2

0

dk
cos(nk)− 1

k
.

(S42)

The first integral in the right-hand side can be evaluated exactly,∫ π/2

0

dk

[
1

k
− 1

sin k

]
= ln

(π
4

)
(S43)

while the third can be related to the Cosine Integral,∫ π/2

0

dk
cos(nk)− 1

k
= Ci(nπ/2)− γ − ln(nπ/2) (S44)

where γ is the Euler-Mascheroni constant. Using the asymptotic behavior of the Cosine Integral and the fact that n
is an even integer, we obtain,

Ci(nπ/2) =
4(−1)n/2+1

n2π2
+O(n−4). (S45)

We focus now on the second integral in Eq. (S42). We define

f(k) =
1

sin k
− 1

k
(S46)

and observe that

f(k) =
1

k

[
1

sinc(k)
− 1

]
(S47)

Rewriting sinc(k) = 1− (1− sinc(k)), observing that sinc(k) ∈ [ 2
π , 1] for k ∈ [0, π2 ] and using the Taylor expansion of

the sinc function we obtain

1

sinc(k)
=

∞∑
p=0

k2p

[ ∞∑
m=0

(−1)m

(2m+ 3)!
k2m

]p
. (S48)

Then we have

f(k) =

∞∑
m=0

amk
2m+1 for k ∈ [0, π/2] (S49)

with the coefficients

am =
2(−1)m(22m+1 − 1)B2(m+1)

(2m+ 2)!
(S50)

where B2l are the first Bernoulli numbers. We can thus evaluate the integral in the following way:∫ π/2

0

dk cos(nk)f(k) =

∞∑
m=0

amJm(n) (S51)

where

Jm(n) =

∫ π/2

0

dk k2m+1 cos(nk). (S52)
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Integrating we get

Jm(n) =
1

2

(π
2

)2m+2 1

m+ 1
1F2

(
a;b;−n

2π2

16

)
(S53)

with

a = m+ 1, b = (
1

2
,m+ 2) (S54)

and pFq(a;b; z) is the generalized hypergeometric function. It is interesting to note that Eq. (S53) is valid for any
value of n, not only even integers. The integral J0 for n integer is given by

J0(n) =

{
(−1)n/2−1

n2 for n even,

− 1
n2 + (−1)(n−1)/2π

2n for n odd.
(S55)

Let us now prove the following property of Jm(n) for n even:

|Jm(n)| = O
(

1

n2

)
for n even. (S56)

Assume that

∃ m̄ ∈ N∗ such that Jm̄−1(n) = O
(

1

n2

)
(S57)

and let us prove the relation for Jm̄. We have

Jm̄ =

∫ π/2

0

dk k2m̄+1 cos(nk) (S58)

Performing integration by part twice and using the fact that n is an even integer, we get

Jm̄(n) = (−1)n/2
2m̄+ 1

n2

(π
2

)2m̄

− 2m̄(2m̄+ 1)

n2
Jm̄−1(n) (S59)

which proves the statement (together with Eq. (S55)). Bringing together Eq. (S43), (S44) and (S51), we obtain

− J0(n) = ln
(π

4

)
+ Ci(nπ/2)− γ − ln(nπ/2) +

∞∑
m=0

amJm(n) (S60)

for n even. Using Eq. (S59), we get

J0(n) = ln 2− Ci(nπ/2) + γ + lnn− (−1)n/2
1

n2

∞∑
m=0

am(2m+ 1)
(π

2

)2m

+O(n−4) (S61)

where the coefficients am are given by Eq. (S50). Observe now that we can actually compute explicitly the coefficient
of the term proportional to n−2. Recall that

f(k) =
1

sin(k)
− 1

k
=

∞∑
m=0

amk
2m+1 (S62)

leading to

f ′(k) =
1

k2
− cot(k) csc(k) =

∞∑
m=0

am(2m+ 1)k2m. (S63)

Thus we have

∞∑
m=0

am(2m+ 1)
(π

2

)2m

= f ′
(π

2

)
=

4

π2
(S64)
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leading to

∞∑
m=0

amJm(n) = (−1)n/2
4

π2

1

n2
+O(n−4). (S65)

The integral J0(n) is then given by

J0(n) = ln 2− Ci(nπ/2) + γ + lnn− 4(−1)n/2

n2π2
+O(n−4). (S66)

The final result is obtained by replacing Ci(nπ/2) by its expression in Eq. (S45).

Claim:

J1(n) = ln 2 + γ + lnn− 1

2n2
+O(n−4), n odd, (S67)

where γ is the Euler-Mascheroni constant.

Proof:

The proof above can be straightforwardly extended to this case.

Inserting Eq. (S41) and (S67) in Eq. (23) leads to Eq. (25).

IV. STATIC SPIN STRUCTURE FACTOR AT ZERO TEMPERATURE

In this section we extract the static spin structure factor at zero temperature. The easiest way to proceed is to
explicitly Fourier transform the static spin-spin correlation function. This is actually a trivial task since the static
spin-spin correlation function in real space was expressed as a Fourier transform. We thus only need to rewrite
the expressions in a convenient way. Proceeding order by order we begin with Eq. (S35) and (S38), remove the
distance-independent terms and make the Fourier transform manifest. We thus write

C(1),xx
e (r) =

1

2

1

N

∑
k

(u2
k + v2

k)eikr (even distance), (S68)

C(1),xx
o (r) = − 1

N

∑
k

ukvke
ikr (odd distance). (S69)

In order to implement the even-odd alternation in a single equation, we write

C(1),xx(r) = (−1)r
C

(1),xx
e (r)− C(1),xx

o (r)

2
+
C

(1),xx
e (r) + C

(1),xx
o (r)

2
(S70)

which can be reexpressed as

C(1),xx(r) =
1

4

[
(−1)r

1

N

∑
k

(uk + vk)2eikr +
1

N

∑
k

(uk − vk)2eikr

]
. (S71)

Defining Q = π the pitch vector we have (−1)r = eiQr and the previous equation becomes

C(1),xx(r) =
1

4

[
1

N

∑
k

(uk + vk)2ei(k+Q)r +
1

N

∑
k

(uk − vk)2eikr

]
. (S72)

The transverse part of the equal-time structure factor at first order can be extracted after little algebra:

Sxx(k) =
S

2

∣∣∣∣tan

(
k

2

)∣∣∣∣ . (S73)
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Proceeding similarly for the second order terms one finally obtains

Sxx(k) =
S

2

(
1− n

S

) ∣∣∣∣tan

(
k

2

)∣∣∣∣ (S74)

where n is the IR-divergent coefficient in Eq. (S18).

The longitudinal part is treated similarly. One obtains

Szz(k) = −1

4
+

1

4π

∫ π

0

dq
1− cos q cos(k + q)

sin q| sin(k + q)|
(S75)

which is a divergent integral for any non-zero value of k. However it is a simple task to show that the O(3) invariant
structure factor S(k) = 2Sxx(k) + Szz(k) is convergent to second order and is given by

S(k) =
2S + 1

2

∣∣∣∣tan

(
k

2

)∣∣∣∣− 1

4
+

1

4π

∫ π

0

dq
1

sin q

[
1− cos q cos(k + q)

| sin(k + q)|
− 2| tan(k/2)|

]
(S76)

where we used the definition of the divergent coefficient n given in Eq. (S18).

V. DYNAMICAL SPIN STRUCTURE FACTOR AT FINITE TEMPERATURE

We now turn to the calculation of the dynamical spin structure factor at finite temperature 1/β. The zero-
temperature results can be obtained as the β →∞ limit of our final results. We begin by defining the imaginary-time
ordered Green’s function of Holstein-Primakoff bosons, which is nothing but the extension of Eq. (26) to finite
temperature,

G(k, τ) = −〈Tτ
[
ak(τ)

a†−k(τ)

] [
a†k(0) a−k(0)

]
〉 = −

(
〈Tτak(τ)a†k(0)〉 〈Tτak(τ)a−k(0)〉
〈Tτa†−k(τ)a†k(0)〉 〈Tτa†−k(τ)a−k(0)〉

)
(S77)

where Tτ is the imaginary-time ordering operator. Taking the expectation values in the unperturbed ground state
leads to the free Green’s function,

G0(k, iωn) =
1

(iωn)2 − ε2k

(
Ak + iωn Bk

Bk Ak − iωn

)
(S78)

where ωn = 2nπ/β, n ∈ Z are the bosonic Matsubara frequencies and where

G0(k, iωn) =

∫ β

0

dτ eiωnτG0(k, τ). (S79)

We perform now a standard (but somehow tedious) perturbative expansion of these Green’s functions by incorporating
the first order interaction term of the Hamiltonian and then use Dyson’s equation to rewrite the Green’s function as

G(k, iωn) =
1

(iωn)2 − ξ2
k

(
Ak
(
1− κβ

S

)
+ iωn Bk

(
1− κβ

S

)
Bk
(
1− κβ

S

)
Ak
(
1− κβ

S

)
− iωn

)
(S80)

where

ξk =

(
1 +
|κβ |
S

)
ε
(0)
k = 2JS

(
1 +
|κβ |
S

)
| sin k| ≡ vβ | sin k| (S81)

is the NLSWT dispersion relation and has a first order correction which depends on the inverse temperature β through

κβ =
1

N

∑
q

| sin q| coth

(
βε(0)q

2

)
− 1

2
. (S82)

This is the obvious extension of Eq. (S19) to finite temperature. Note that κβ → κ as β →∞.
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We proceed now to the actual calculation of the dynamical structure factor. We focus first on the longitudinal part.
We define the following time-ordered spin two-point function at finite temperature in imaginary time,

F zz(k, iωn;β) = −
∫ β

0

dτ eiωnτ 〈TτSzk(τ)Sz−k(0)〉 (S83)

where Szk(τ) is an imaginary-time evolved spin operator Sz in Fourier space. Performing an analytic continuation
gives the real-frequency, retarded two-point function,

lim
iωn→ω+iη

F zz(k, iωn;β) = F zz,R(k, ω;β) (S84)

from which we can obtain the dynamical spin structure factor at finite temperature 1/β,

Szz(k, ω;β) = − 2

1− e−βω
Im
[
F zz,R(k, ω;β)

]
. (S85)

In practice we will compute F̃ zz(k, iωn;β) which is the equivalent of Eq. (S83) but for the rotated spin operators and
will shift momentum by π at the very end of the calculation. We now provide the reader with intermediary steps.
We begin by expanding the spin operators in HP bosons and keep only the relevant 2-magnon terms. Using Wick’s
theorem and performing the τ integral we end up with

F zz(k, iωn;β) = − 1

N

∑
q

1

β

∑
m

[G12(q − k, iωn − iωm)G12(q, iωm) + G22(q − k, iωn − iωm)G11(q, iωm)] . (S86)

Performing the Matsubara sums, we get

− F̃ zz(k, iωn) =
1

N

∑
q

[Pk,q − iωnQk,q]S1(k, q, iωn) +
1

N

∑
q

(Rk,q − iωn)S2(k, q, iωn) +
1

N

∑
q

S3(k, q, iωn) (S87)

where

Pk,q =
(

1− κβ
S

)2

(AqAk−q +BqBk−q), (S88)

Qk,q =
(

1− κβ
S

)
Aq, (S89)

Rk,q =
(

1− κβ
S

)
(Aq +Aq−k), (S90)

and where the Matsubara sums S1, S2 and S3 take the following expressions:

S1(k, q, iωn) =
1

β

∑
m

1

(iωm)2 − ξ2
q

1

(iωm − iωn)2 − ξ2
k−q

, (S91)

S2(k, q, iωn) =
1

β

∑
m

iωm
(iωm)2 − ξ2

q

1

(iωm − iωn)2 − ξ2
k−q

, (S92)

S3(k, q, iωn) =
1

β

∑
m

(iωm)2

(iωm)2 − ξ2
q

1

(iωm − iωn)2 − ξ2
k−q

. (S93)

The next step is the analytic continuation of this expression. This is a lengthy but almost trivial calculation which
makes use of Sokhotsky’s formula:

1

x± iη
= PV

1

x
− iπδ(x). (S94)

We end up with our final expression of the dynamical spin structure factor at finite temperature 1/β:

Szz(k, ω;β) =
2π

1− e−βω
1

N

∑
q>0

[
T

(1)
k,q δ(ω − ξq − ξk+q) + T

(2)
k,q δ(ω + ξq + ξk+q)

+T
(3)
k,q δ(ω − ξq + ξk+q) + T

(4)
k,q δ(ω + ξq − ξk+q)

] (S95)
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where

T
(1)
k,q =

1

4

[
coth

(
βξq
2

)
+ coth

(
βξk+q

2

)][
1− cos q cos(k + q) + sin q − | sin(k + q)|

sin q | sin(k + q)|
− 1

]
, (S96)

T
(2)
k,q = −1

4

[
coth

(
βξq
2

)
+ coth

(
βξk+q

2

)][
1− cos q cos(k + q)− sin q + | sin(k + q)|

sin q | sin(k + q)|
− 1

]
, (S97)

T
(3)
k,q = −1

4

[
coth

(
βξq
2

)
− coth

(
βξk+q

2

)][
1− cos q cos(k + q) + sin q + | sin(k + q)|

sin q | sin(k + q)|
+ 1

]
, (S98)

T
(4)
k,q =

1

4

[
coth

(
βξq
2

)
− coth

(
βξk+q

2

)][
1− cos q cos(k + q)− sin q − | sin(k + q)|

sin q | sin(k + q)|
+ 1

]
. (S99)

Equation (S95) is plotted in Fig. 2 for spin S = 5/2 and inverse temperature β = 10 (in units of J−1).

Having worked out the longitudinal part we focus now on the transverse dynamical spin structure factor. We define
F xx(k, iωn;β) in a similar fashion as in Eq. (S83). We obtain

F̃ xx(k, iωn;β) =
S

2

(
1− nβ

S

) ∑
j,l=1,2

Gj,l(k, iωn) (S100)

where

nβ = − 1

N

∑
k

G0
22(k, τ = 0+) =

1

N

∑
k

u2
k + v2

ke
βεk

eβεk − 1
(IR-divergent) (S101)

is the equivalent of Eq. (S18) at finite temperature. The next steps, analytical continuation and application of the
equivalent of Eq. (S85), respectively, follow straightforwardly. We end up with

Sxx(k, ω;β) =
Sπsign(ω)

1− e−βω
(

1− nβ
S

) ∣∣∣∣tan

(
k

2

)∣∣∣∣ (δ(ω − ξk) + δ(ω + ξk)) . (S102)

VI. ZERO-TEMPERATURE DYNAMICAL SPIN STRUCTURE FACTOR

In the β →∞ limit the T
(1)
k,q term in Eq. (S95) is the only surviving contribution and corresponds precisely to the

result that can be obtained by the standard zero-temperature pertubative theory of real-time Green’s functions. We
obtain

Szz(k, ω) = lim
β→∞

Szz(k, ω;β) =
1

2

∫ π

0

dq

[
1− cos q cos(k + q)

sin q | sin(k + q)|
− 1

]
δ(ω − εq − εk+q) (S103)

where εq is the NLSWT dispersion relation at zero temperature given in Eq. (S23) and we have taken the continuum
limit. For consistency check one can verify that integration of this expression over positive frequency using Eq. (30)
indeed leads to Eq. (S75).

Similarly taking the β →∞ limit of Eq. (S102) leads to

Sxx(k, ω) = Sπ
(

1− n

S

) ∣∣∣∣tan

(
k

2

)∣∣∣∣ δ(ω − εk) (S104)

which is precisely Eq. (29). It is straighforward to show that applying Eq. (30) to Sxx(k, ω) one gets back Eq. (S74).
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