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Particle-Based Simulation Reveals Macromolecular
Crowding Effects on the Michaelis-Menten
Mechanism
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ABSTRACT Many computational models for analyzing and predicting cell physiology rely on in vitro data collected in dilute and
controlled buffer solutions. However, this can mislead models because up to 40% of the intracellular volume—depending on the
organism, the physiology, and the cellular compartment—is occupied by a dense mixture of proteins, lipids, polysaccharides,
RNA, and DNA. These intracellular macromolecules interfere with the interactions of enzymes and their reactants and thus
affect the kinetics of biochemical reactions, making in vivo reactions considerably more complex than the in vitro data indicates.
In this work, we present a new, to our knowledge, type of kinetics that captures and quantifies the effect of volume exclusion and
other spatial phenomena on the kinetics of elementary reactions. We further developed a framework that allows for the efficient
parameterization of these kinetics using particle simulations. Our formulation, entitled generalized elementary kinetics, can be
used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein applied to investigate the
influence of crowding on phosphoglycerate mutase in Escherichia coli, which exhibits prototypical reversible Michaelis-Menten
kinetics. Current research indicates that many enzymes are reaction limited and not diffusion limited, and our results suggest
that the influence of fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates and
decreased dissociation rates lead to a strong decrease in the effective maximal velocities Vmax and the effective Michaelis-
Menten constants KM under physiologically relevant volume occupancies. Finally, the effects of crowding were explored in
the context of a linear pathway, with the finding that crowding can have a redistributing effect on the effective flux responses
in the case of twofold enzyme overexpression. We suggest that this framework, in combination with detailed kinetics models,
will improve our understanding of enzyme reaction networks under nonideal conditions.
SIGNIFICANCE Kinetic models are essential for understanding and designing biochemical and biophysical processes in
living organisms. Currently, kinetic models rely on the in vitro characterization of biochemical reactions, although
intracellular reactions are taking place in crowded, nonideal conditions. The interactions of the enzymes and their reactants
with other macromolecules in a cell alter the enzyme kinetics significantly, but little has been done to model and quantify the
impact of these interactions on the in vivo reaction rates. We present a computational framework that allows us for the first
time, to our knowledge, to estimate the in vivo apparent kinetic parameters of an enzyme that follows Michaelis-Menten
kinetics. Interestingly, crowding conditions similar to those in Escherichia coli can reduce the maximal enzyme activity 10-
fold.
INTRODUCTION

The intracellular environment is a crowded place, with
�20–40% of the interior volume of living cells occupied
by a variety of macromolecules, including proteins, RNA,
DNA, and lipids (1,2). The composition of this mixture
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depends considerably on the organism, the cell type, and
its environment, but even within the cell, the local density
and size distribution of the macromolecules varies between
and within compartments (3–5). Because the presence of
these macromolecules can impact diffusion rates, protein
conformation, folding and aggregation, catalytic rates, and
enzyme-substrate affinities (6–8), an alteration in the
elementary properties governing the spatiotemporal dy-
namics of cells can affect all cellular functions, such as
expression, translation signaling, and metabolism. Because
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many of these cellular functions depend on specific reac-
tions catalyzed by cellular enzymes, it is necessary to study
the effect of macromolecular crowding on the function of
enzyme-catalyzed reaction systems, and to do this, it is
necessary to characterize the kinetics of these systems under
the altered conditions.

Computational models are used to analyze and predict
cell physiology, though computational studies are limited
in their frequent reliance on in vitro characteristics to
directly parameterize their models (9,10), reduce uncer-
tainty (11,12), or to evaluate predicted parameters (13).
This results in the actual enzyme in vivo characteristics
not being captured such that the model predictions from
these studies might deviate significantly from the ones
measured in vitro. This is especially true considering that
in vitro characterizations are usually performed in dilute,
homogenous conditions, whereas reactions in the cytoplasm
occur in an inhomogeneous and densely packed environ-
ment (14).

The relevance of environmental impact on enzyme
kinetics is therefore an important topic of study, especially
in terms of crowding in the densely packed intracellular
space. In early studies of crowded enzyme catalysis, it
was believed that the main effect of diffusion-limited
Michaelis-Menten kinetics was caused by altered, anoma-
lous diffusion accompanied by increased effective concen-
trations. These studies were limited, however, in that
volume exclusion effects caused by the reactive partners
themselves were often neglected, which results in the
change in activity due to interaction with macromolecules
not being captured (15–18). A more recent work on the sub-
ject was presented by Mourao et al., in which fractal
behavior, indicating that the diffusion and the apparent order
of the elementary reactions is altered, was studied using a
lattice-based model for an irreversible Michaelis-Menten
mechanism. They showed that fractal kinetics only occur
under very restrictive conditions, suggesting that it might
be less common than previously assumed (19).

Further recent work has shown that the effective rate
constant for bimolecular reactions changes under crowded
conditions (20,21). Berezhkovskii and Szabo demonstrated
that it is possible to express the effective rate for bimolec-
ular reactions as a function of a crowding-induced interac-
tion potential between two reaction partners, which results
from an interaction with the surrounding particles when
two reactants are in contact. Repulsive interactions be-
tween the reactants and particles would, therefore, result
in an attractive effective potential between the reactants
and vice versa. Relatedly, it has been shown that for rate-
limited reactions, the influence of diffusion is minimal,
indicating that the effective crowding-induced interaction
potential might be more dominant for some enzymatic re-
actions (22).

Because of its importance in modeling in vivo systems,
the effects of crowding on biochemical reactions have
356 Biophysical Journal 117, 355–368, July 23, 2019
been extensively studied by various computational and
experimental methods, as seen in several reviews
(1,2,23). Most of the effort in these studies has been
directed toward investigating the impact of diffusion in
fractal media on the reaction kinetics (22), with little
focus on characterizing the effect of crowding on the
mean effective enzyme kinetics. However, because it has
now been shown that in vitro, some enzymes might not
be limited by their translational diffusion but by their
apparent association rate constants (24–28), the reevalua-
tion of crowding in these reactions is important. In this
work, therefore, we introduced computational methods
for studying spatial effects of any kind, applying our
work to the effects of crowding on reaction-limited en-
zymes with the goal of bridging the discrepancy between
the in vitro measurement of kinetic parameters and the
actual in vivo conditions. The proposed method will also
allow for studying the differences in the impact of spatial
effects for single reactions and for integrated reaction net-
works. Although the scope of this work is the study of a
reaction-limited system, we further evaluated the perfor-
mance of the proposed method for a simple system under
diffusion-limited conditions.

In contrast to the previous studies on the Michaelis-
Menten kinetics, which used a diffusion-limited irreversible
reaction scheme, we studied the effect of crowding on
enzyme kinetics by employing a fully reversible reaction
scheme and present herein an example with a representative
catalytic activity and affinities that result in a reaction-
limited enzyme. Additionally, our molecular particle model
accounts for volume exclusion and the diffusion of all spe-
cies, including reactants and crowding agents, and this was
used to study the effect of different size distributions of
crowding agents on reaction kinetics.

Previous studies on crowding conditions were often
limited by their computational cost and lack of global
insight into the sensitivity of the reaction kinetics or are
missing a direct connection to the first physical principles.
They often use spatial simulation techniques to simulate
multiple realizations of reaction trajectories to determine
the influence on the effective kinetics under very specific
conditions, meaning that these studies only gain insight
into the local sensitivity of the kinetics with respect to
the crowding conditions. Furthermore, it is computation-
ally very expensive to resolve the reaction trajectories
from particle simulations for reaction-limited reactions
because the timescale to resolve the diffusion of the particle
is up to seven orders of magnitude faster than the reaction
timescale. This requires billions of time steps to be solved
for tens of thousands of particles, resulting in a month of
simulation time for a single trajectory (29). An effective
approach to reduce the computational complexity of the
Brownian is the crowder-free formulation of the Ci-
chocki-Hinsen algorithm (30), which has been validated
for homogenous and locally homogenous crowding
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conditions (31). Whether the validity of the homogenous or
local homogenous crowding assumption holds for inert
molecules with a diverse size distribution remains to be
examined and shall be discussed elsewhere. Another way
to overcome the computational challenges is mesoscopic
formulations based on the reaction-diffusion master equa-
tion (32,33). These formulations require additional models
to capture the microscopic effect of obstacles on the macro-
scopic rate constant, meaning that they can capture the ef-
fect of obstacles on the apparent transport coefficient but
need additional models to capture how the microscopic
collision dynamics are altered.

In the work presented here, we resolve these challenges
with a new, to our knowledge, formulation entitled general-
ized elementary kinetics (GEEK). The formulation allows
us to characterize kinetic mechanisms that are influenced
by various spatial effects, including volume exclusion,
confinement (one-dimensional/two-dimensional diffusion),
strong and weak interaction forces, localization, or any com-
bination of similar phenomena. In this work, we use a
coarse-grained particle model based on HSRB to parame-
terize this formulation, which can be used in a straightfor-
ward way to build ordinary differential equation (ODE)
models that use power-law approximations to capture the
characteristics of spatial effects and to directly quantify
the impact of fractal diffusion. The formulation presented
here is achieved by a regression model that is trained
from data governed by simulating the microscopic diffusion
and collisions from the first physical principle. For the
workflow, any kind of simulation algorithm with single
molecule detail can be used. Possible alternatives are, for
example, the Cichocki-Hinsen algorithm (30), the reaction
Brownian dynamic algorithm (34), the Green’s function re-
action dynamics algorithm (35), smoldyn (36), or Readdy
(37). In this work, we used an algorithm that combines
hard-sphere Brownian dynamics (38) and Brownian reac-
tion dynamics (39–42).

We applied our method to the investigation of macro-
molecular crowding on the function of phosphoglycerate
mutase (PGM) in Escherichia coli. Our example clearly
demonstrates that accounting solely for an increased local
concentration and anomalous diffusion is not sufficient to
properly describe crowding effects. We show that a mech-
anism-dependent effect emerges upon crowding that is
facilitated by an increase in both product and substrate as-
sociation activity and a decrease in the dissociation activ-
ity. For reversible Michaelis-Menten kinetics, these effects
result in an increase in the binding affinity for the product
and substrate as well as a decrease in the maximal reaction
rate. Finally, we investigated the effects of crowding on a
linear pathway, in which we show that crowding can
significantly redistribute the relative flux responses with
respect to enzyme overexpression, indicating that the
impact of altered kinetics is also propagated on a network
level.
METHODS

Reversible Michaelis-Menten kinetics

In this study, we primarily investigated a reversible Michaelis-Menten reac-

tion mechanism, in which a substrate S binds to an enzyme E to form a com-

plex ES via a reversible reaction, which can reversibly transform the

substrate and reversibly dissociate the product P. The overall reaction

scheme is given by

SþE
k1;f
#
k1;b

ES
k2;f
#
k2;b

Eþ P; (1)

where k1,f, k1,b, k2,f, and k2,b denote the rate constants of the elementary re-

actions. The typical form of the reaction rate v as a function of substrate and
product concentrations (see Eq. 2) is derived from the assumption that all

enzymes are conserved such that [ES] þ [E] ¼ [ET], where [ET] denotes

the total enzyme concentration and the enzyme-substrate complex concen-

tration [ES] is in a quasi-steady state, i.e., d[ES]/dt z 0 (43):

vð½S�; ½P�Þ ¼
Vþ
m

½S�
Km;S

� V�
m

½P�
Km;P

1þ ½S�
Km;S

þ ½P�
Km;P

; (2)

where the parameters Vþ
m , V

�
m , KM,S, and KM,P are related to the elementary

rate constants k1/2,f/b given an [ET]:
Vþ
m ¼ k2;f ½ET �; (3a)

V� ¼ k1;b½ET �; (3b)
m

Km;S ¼ �
k1;b þ k2;f

��
k1;f ; and (4a)
Km;P ¼ �
k1;b þ k2;f

��
k2;b: (4b)
The equilibrium constant of the system is then
Keq ¼ k1;f
k1;b

k2;f
k2;b

: (5)
Geek

By introducing inert molecules, we observe an alteration of the effective

rate constants due to a change in the diffusion and the collision dy-

namics. In the most general case, this can, compared to mass-action ki-

netics, result in a change of the effective order and effective rate

constant. Berezhkovskii and Szabo showed that the effective (Collins-

Kimball) reaction rate constant kCK for a diffusion-influenced, bimolec-

ular reaction under crowded conditions can be expressed in terms of

an altered diffusion constant D1 and an external crowding-induced inter-

action potential DU between the two reacting species. This potential is

an implicit representation of the interaction of the individual reactant

species with the molecules in their environment and whether these inter-

actions keep the reactants in contact or if they are tearing them apart. The

expression for the Collins-Kimball rate constant was found to follow that

described by Berezhkovskii and Szabo (20):

kCK ¼ 4pD1Rk0e
DU
kBT

4pD1Rþ k0e
DU
kBT

; (6)
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where k0 is the reaction rate upon collision. For the reaction-limited

case k0 � 4pD1R, this expression simplifies to an exponential relation,

kCK z k0exp(DU/kBT). In general, the induced interaction potential DU

and the diffusion constantD1 are a function of the global state of the system,

which includes concentrations and intermolecular interactions.

To approximate this deviation of the effective elementary rate con-

stants—indicated by kj,eff, where j ˛ [(1, f), (1, b), (2, f), (2, b)]—from

the free rate constants in ideal conditions, kj,0 in a general form, the loga-

rithmic deviation zj was introduced:

log

�
kj;eff ðfÞ
kj;0

�
¼ zj: (7)

To quantify this deviation as a function of the species’ concentrations, a

linear function of the scaled logarithmic concentrations log([Xi]/[Xi]0) was

introduced and tested for zj:

log

�
kj;eff
kj;0

�
¼
XN
i¼ 1

ai;j log

� ½Xi�
½Xi�0

�
þ bj; (8)

where ai,j are the coefficients quantifying the effect of one of the N reactants

Xi on reaction j and bj is an offset attributed to the effect of different occu-

pied volume fractions.

The effective reaction rate is thus given by

kj;eff ðfÞ ¼ kj;0 exp bj

YN
i¼ 1

� ½Xi�
½Xi�0

�ai;j

: (9)

From this expression, a generalized mass-action rate law is defined for

the elementary reactions:

vjðfÞ ¼ kj;0 exp bj

YN
i¼ 1

� ½Xi�
½Xi�0

�ai;j þ ni;j

½Xi�ni;j0 ; (10)

where ni,j denotes the stoichiometric coefficient of the substrate Xi in reac-

tion j. The generalized elementary mass-action rate law (10) can be directly

used to create a system of ODEs that can approximate the time evolution of

the system under nonideal conditions.
Generalized elementary Michaelis-Menten
kinetics

Given the generalized elementary rate laws, the quasi-steady-state approx-

imation for the Michaelis-Menten reaction rate with GEEK can be defined.

Therefore, it can be assumed that the enzyme is conserved, [ES] þ [E] ¼
[ET], and the enzyme complex is in a quasi-steady state, i.e.,

d½ES�
dt

¼ v1;f � v1;b � v2;f þ v2;bz0; (11)

where each flux vj is given by a generalized rate law as given in Eq. 10. For

the case of ai;j˛R and ai;js0, it is not possible to obtain an explicit expres-

sion for the reaction rate vnet,qss. To calculate the amount of enzyme-sub-

strate complex in the quasi-steady state for a given [ET], [S], and [P], the

conservation relation [E] ¼ [ET] � [ES] is introduced, and the resulting

nonlinear equation Eq. 11 is solved numerically for the steady-state enzyme

concentration [ES]qss using nsolve from the Python package sympy. The nu-

merical solution is obtained using the reference concentration [ES]0 as an

initial guess for the nonlinear solver. The reaction rate of the enzymatic re-

action at steady state, for a set of constant [S] and [P], is then given by the

net reaction rate of product formation at steady state:
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vnet;qss ¼ ½ES�qssk2;f ;eff
�
½ES�qss

�
�
�
ET � ½ES�qss

�
½P�k2;b;eff

�
½ES�qss

�
;

(12)

where [ES]qss is the enzyme-complex concentration at the quasi-steady

state. The average apparent Michaelis-Menten parameters are then ex-

tracted using a linear approximation of v([X]) with v([X])/[X] for either

[S] ¼ 0 or [P] ¼ 0, i.e., the Eadie-Hofstee form of Michaelis-Menten ki-

netics (44,45). The slope of these linear regressions yields the respective

KM, and the y axis intercept yields the respective Vmax:

jvð½S�Þ j ¼ � Km;S

jvð½S�Þ j
½S� þ Vþ

max; jvð½P�Þ j

¼ �Km;P

jvð½P�Þ j
½P� þ V�

max:

(13)

To express the thermodynamic driving forces, the elementary rate model

was considered as M reversible reactions r ˛ [1, 2], with the forward flux

vr,f and the backward flux vr,b. Using the principle of detailed balance, the

free energy of the reaction can be expressed as a function of the displace-

ment from equilibrium G ¼ vb/vf (46):

DrG
0
r ¼ RT lnGr ¼ RT ln

�
vr;b
vr;f

�
; (14)

where R is the general gas constant and T is the absolute temperature. With

the fluxes expressed in terms of the generalized elementary rate law (10),

the free energy reads

DrG
0
r ¼ RT ln

0
BBB@
kr;b;0 exp br;b

YM
i¼ 1

� ½Xi�
½Xi�0

�ni;r;bþai;r;b

½Xi�ni;r;b0

kr;f ;0 exp br;f

YM
i¼ 1

� ½Xi�
½Xi�0

�ni;r;fþai;r;f

½Xi�ni;r;f0

1
CCCA;

(15)

In general, the overall free energy consists of ideal and nonideal contri-

butions. The ideal contribution consists of the standard free energy of the

reaction and the concentration contributions, and the nonideal contribution

contains terms emerging from molecular interactions, such as by steric

repulsion, van der Waals forces, electrostatic interactions, or nonspecific

attractions.

DrG
0
r ¼ DrG

0+
r þ

XM
i

ni;rRT lnð½Xi�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DrG

0
r;ideal

þ DrG
0
r;steric þ DrG

0
r;VDW þ DrG

0
r;el þ.|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DrG
0
r;nonideal

(16)

In this work, only the nonideal contributions due to steric repulsion

were modeled by means of a hard-sphere potential, though in the most

general case, the formulation presented in this work allows for the

inclusion of any kind of nonideal contribution. The presented approach

shows that a power-law approximation suffices to describe the effect of ste-

ric repulsion. The approximation of the effect of nonspecific attractions and

other interactions in terms of kinetic parameters and free energies will



FIGURE 1 Individual algorithm steps of the molecular particle model. 1)

First-order reactions are determined by a probabilistic success rate depend-

ing on the microscopic reaction rate per molecule kmicro,i and the time step

Dt. 2) The Brownian motion for every molecule is determined by its indi-

vidual diffusion coefficient Di. 3) For second-order reactions, success is

determined upon collision given the microscopic reaction, the sum of the

diffusion coefficient Dij ¼ Di þ Dj, the sum of the radii of the colliding par-

ticles rij¼ riþ rj, and the time step (24). 4) Boundary reactions are given as

constant particle boundaries, wherein the removal or insertion of particles is

done if the number of particles deviates from the given boundary condition.

Crowded Enzyme Kinetics
probably require alternative functional forms in these approximations in

addition to this power-law formulation. A functional to account for the

approximation of nonspecific attractions could be based on the derivations

of Kim and Mittal (47).

By comparing the free energy of the generalized elementary rate model

to the free energy of the dilute mass-action equivalent, the ideal contribu-

tion can be identified as

DrG
0
r;ideal ¼ RT ln

�
kr;b;0
kr;f ;0

�
þ
XM
i

ni;r;bRT lnð½Xi�Þ

�
XM
i

ni;r;f RT lnð½Xi�Þ ¼ DrG
0+
r

þ
XM
i

ni;rRT lnð½Xi�Þ:

(17)

The remaining contributions can be identified as the nonideal

contribution:

DrG
0
r;nonideal ¼ RT

�
br;b � br;f

�þ RT ln

0
BBB@
YM
i¼ 1

� ½Xi�
½Xi�0

�ai;r;b

YM
i¼ 1

� ½Xi�
½Xi�0

�ai;r;f

1
CCCA:

(18)

DrG
0
r;nonideal can be further partitioned into a reactant-independent and a

reactant-dependent contribution:

DrG
0
r;nonideal ¼ DrG

0
r;indep þ DrG

0
r;dep ¼ RT

�
br;b � br;f

�
þ RT ln

 YM
i¼ 1

� ½Xi�
½Xi�0

�ai;r;b�ai;r;f
!
:

(19)

The free energy of the generalized elementary Michaelis-Menten ki-

netics is given by the sum of all reversible-reaction free-energy contribu-

tions DrG
0
r:

DrG
0 ¼

XR
r

DrG
0
r: (20)

With [Xi] ¼ [[S], [E], [ES], [P]], the free energy of the reaction can be

simplified to the well-known ideal contribution containing only the chem-

ically modified species [S] and [P] as well as a nonideal contribution,

wherein the nonideal contribution is a phenomenological description of

free-energy change based on the GEEK.

DrG
0 ¼ DrG

0+ þ RT ln

�½P�
½S�
�

þ DrG
0
nonidealð½S�; ½E�; ½ES�; ½P�Þ

(21)

The formulation of the reversible Michaelis-Menten rate law in terms of

GEEK allows for the phenomenological capture of nonlinear effects on the

collision level.
Hard-sphere Brownian reaction dynamics

To incorporate the spatial effects into the enzymatic reaction system, hard-

sphere Brownian reaction dynamics (HSBRD) were used. This method is

using the elastic hard-sphere Brownian dynamics algorithm (38) to

compute the transport and the collisions dynamics of the particles and

implement reactions according to the Brownian dynamics algorithm

(39,40), see Fig. 1. Similar methods combining these two approaches

have been presented by Wilson et al. (41) and Kim et al. (42).

The method describes the movement of independent particles as a

random walk of point particles diffusing in a viscous medium. Thereby,

HSBRD neglects the hydrodynamic interactions between the particles.

The equations of motion are given in terms of the overdamped Langevin

equation. Using the Einstein-Smoluchwoski relation, its velocity is given

by Wang and Uhlenbeck (48):

d~x

dt
¼ � D

kbT
Fð~xÞ þ ffiffiffiffiffiffi

2D
p d~hðtÞ

dt
; (22)

where Fð~xÞ is a force acting on the particle, kB is the Boltzmann constant, T

is the absolute temperature of the surrounding fluid, and~hðtÞ is the result of
a three-dimensional Wiener process. An explicit Euler formulation was

used to update the positions at every time step, Dt, as follows:

~xtþ1 ¼~xt � Dt
D

kbT
Fð~xÞ þ ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

ht; (23)

where ht is a random vector drawn from a normal distribution.
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When two reactants collided, i.e., their radii overlapped after the posi-

tions were updated, a uniform distributed random number r was compared

to the reaction with a probability p to determine if the reaction occurred

within this time step Dt. The probability p was determined by the micro-

scopic reaction rate kj,micro (34):

p ¼ 1� exp

�
� kj;microDt

4pIðD;R;DtÞ
�
; (24)

where I(D, R,Dt) is a normalization factor for the effective collision volume

in Brownian reaction dynamics simulations to account for all possible diffu-

sion path within Dt, as derived by Morelli and ten Wolde (34). Using the

relation derived by Collins and Kimball, the observed steady-state reaction

rate kj,0 for a bimolecular reaction, j ˛ [(1, f), (2, b)] with educts A and B, in

homogenous, dilute conditions is related to its microscopic or transition rate

constant kj,micro and the diffusion-limited reaction rate constant gj ¼
4p(DA þ DB)(rA þ rB) (49). Assuming that the Collins-Kimball rate con-

stant corresponds to the observed rate constant in the experimental

in vitro system and the dilute particle simulation, the corresponding micro-

scopic rate constant can be expressed as a function of the rate constant

observed in vitro kj,0 and the diffusion-limited rate constant gj, calculated

based on the molecular properties of the collision radii rA, rB and self-diffu-

sion constants DA, DB:

kj;micro ¼ gjkj;0

gj � kj;0
: (25)

In the case of a particle collision without a subsequent reaction, an elastic

hard-sphere collision was assumed to take place. The new particle position

was computed from the momentum conservation using the average velocity

vi ¼ D~ri=Dt of the move that led to the particle overlap (38).

First-order reactions, j˛ [(1, b), (2, f)], are modeled similarly to bimolec-

ular reactions by comparing a uniformly distributed random variable to the

probability that the reaction took place in the time interval Dt, with the re-

action probability of p ¼ 1 � exp(�kj,microDt). The reaction products are

placed in contact around the original position of the educt using a random

orientation. If the products were to collide with any other particles, the

move would be rejected, and the educt would remain at its original position.

Otherwise, the educt would be removed, and the products would be placed

instead.

Furthermore, constant particle boundary conditions were applied at every

time step through the random insertion or removal of particles of a given

species to match the specified particle count of the species. The HSBRD

particle simulation was implemented in Cþþ using the OPENFPM frame-

work (50).
Measuring effective rate constants

Because it is necessary to resolve the particle movement on the nanosecond

timescale as opposed to the timescales of the reaction dynamics, which are

found to be on the order of seconds to hours, a separated timescale approach

was proposed to efficiently bridge these differences. The effective elemen-

tary reaction rates at constant concentrations and crowding conditions in

particle simulation were therefore measured. To measure the effective

rate constants from a particle simulation, two separate schemes for mono-

molecular and bimolecular rate constants were proposed.

For monomolecular rate constants, j ˛ [(1, b), (2, f)], the effective reac-

tion rates were extracted by probing the space around the enzyme-substrate

complexes. Therefore, for every valid educt molecule k of a monomolecular

reaction j, L dissociation reactions were attempted with a random orienta-

tion. For each molecule k and reaction j, the success of the l-th attempt

ujkl is determined. If the dissociation were to be successful, meaning that

the dissociated particles would not collide, ujkl ¼ 1. If the dissociation

were to yield a collision, ujkl ¼ 0. Averaging over the results of all disso-
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ciation attempts ujkl of the probed molecule k, a local success probability

of hujki ¼ 1=L
PL
l¼1

ujkl was obtained. To describe the equivalent homoge-

nous system, the reaction success probability huji was computed as

the mean of the local average success rate over all N probed parti-

cles:huji ¼ 1=LN
PN
k¼1

PL
l¼1

ujkl. In the limit of continuous concentrations,

the effective rate constant, keff,j, is given by the rate constant k0,j scaled

by the reaction success probability uj:

kj; eff ¼ k0;j
�
uj

�
: (26)

The effective bimolecular rate constants, j ˛ [(1, f), (2, b)], can be ex-

tracted from the effective collision frequency zA,B between the two educts

A and B of reaction j. This collision frequency is estimated as the number

of collisions between A and B in an integration time interval cA,B(t, t þ
Dt) per time step Dt:

zA;Bðt; t þ DtÞ ¼ cA;Bðt; t þ DtÞ
Dt

: (27)

Given the probability of a reactive collision (Eq. 24), the effective bimo-

lecular rate constant can be measured as the mean collision frequency per

number of possible interactions pairs, i.e., NANB, scaled by the fraction of

successful collisions within a measurement time interval Dt:

kj;eff ¼ hzA;Bi
NANB

�
1� exp

�
� kj;microDt

4pIðD;R;DtÞ
��

: (28)

Modeling framework

In this work, we propose a new, to our knowledge, simulation framework

using the above-described concept of GEEK. In our simulation framework,

an equivalent particle model is first created from an elementary step mech-

anism (Fig. 2, part 1). To create an equivalent particle model, only the

elementary reactions of the enzyme mechanism are required. If only

phenomenological constants, e.g., parameters for the quasi-steady-state

approximation, are given for the enzymatic reaction, it is necessary to

map these to the elementary reaction rate constants. Furthermore, all spe-

cies involved in the elementary reaction properties need to be assigned to

describe their molecular movement, i.e., a diffusion coefficient, a collision

radius, and a mass. Given the molecular data, the rate constants of the par-

ticle model are matched with the rate constants of the elementary step

model with the assumption that the measured or calculated rate constants

were measured in homogenous, dilute conditions. In the case of monomo-

lecular reactions, the observed rate constants are then equivalent to the

microscopic transition rates. For bimolecular reactions j ˛ [(1, b), (2, f)],

the diffusion-limited rate constant gj is first computed based on the diffu-

sion coefficients and collision radii and then matched to the effective reac-

tion rate of the dilute, homogenous particle system with the rate constant in

the elementary step model by adapting the corresponding microscopic rate

constant kj,micro using Eq. 25. A volume that is large enough to capture the

local bulk properties of a locally well-mixed enzyme-substrate system is

then chosen such that the number of particles of each species in the system

is large enough to discretize the concentration space of interest.

In the second step, the system is perturbed on the microscopic

level to investigate the influence of crowding (Fig. 2, part 2). Therefore,

inert particles are introduced into the system that therefore alter

effective particle interactions between the reactive species (20). To model

a realistic crowding environment, a size distribution function p(r) is

estimated from the mass distribution p(Mw) and an empirical mass size re-

lation, r ¼ 0:0515M0:392
w ½nm�, with Mw in [Da], as reported for proteins in

E. coli by Kalwarczyk et al. (51). The simulation volume is then populated



Reference state for 
concentrations Xi

Sample space around 
reference state

X1

X2

X2,0

X1,0

ln(keff,j/k0,j)

ln(X1/X1,0)

ln(X2/X2,0)

Elementary-step 
Model

Equivalent 
particle model

Diffusion Di
Collision radii ri

Crowded 
particle model

Crowder size distribution p(r)
Occupied volume fraction φ

Get effective 
rates keff,j for 
fixed state 

Linear regression for 
scaled effective constants

In vitro rate constants: k0,j
GEEK parameters: αij βj
for conditions: p(r)/φ 

Crowded ODE model
S + E ↔ ES ↔ E + P 

k0,1,f

k0,1,b

k0,2,f

k0,2,b

Elementary step scheme:

1

2

3

4 6

7

5

8

For each X do
k times:

FIGURE 2 Modeling framework for crowded

generalized elementary kinetics (GEEK). The

input for the modeling framework is an arbi-

trary elementary step model containing in vitro

data for the enzyme kinetics. 1) This model

is then translated into an equivalent in vitro

particle model of the enzymatic reaction. 2) The

space is filled with inert molecules that are

drawn from a size distribution p(r) until the frac-

tion f of the simulation space is occupied. 3) A

reference concentration state is then chosen for

the GEEK model, and 4) the space around the

concentration space is sampled. 5) The k particle

model realizations are then simulated for each

concentration sample, i.e., repeat step 2 and simu-

late. 6) From the resulting particle traces, the

effective rate constants are measured from the

particle collision frequencies and the locally

available volume. 7) These effective reaction

rate constants are log transformed, and a linear

regression is performed with respect to the

scaled logarithmic concentrations. The output of the linear regression directly links to the GEEK parameters; see Eqs. 7 and 8. 8) Finally, the

GEEK model can approximate the crowded kinetics using ODEs. To see this figure in color, go online.
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with inert molecules by randomly drawing collision radii from the size dis-

tribution until the specified inert volume fraction f is reached. The diffusion

constant of the individual species is then calculated using the Stokes-Ein-

stein relation, assuming that the hydrodynamic radius is equal to the colli-

sion radius:

D ¼ kBT

6phrhyd
; (29)

where rhyd is the hydrodynamic radius and h is the dynamic viscosity.

Next, the model is sampled around a chosen reference state (Fig. 2, parts

3 and 4). In this work, we chose to generate our sample with a full-factorial

design. For each concentration sample, a particle simulation is performed

where the effective rate constants keff,j are measured for every elementary

reaction as described in the previous section (Fig. 2, part 5).

Subsequently, multivariate linear regression is used to estimate the

mean GEEK parameters aij and bj for the specified crowding conditions

(Fig. 2, part 6). Finally, the GEEK, as described above, is used to analyze

the response behavior of an equivalent crowded ODE-enzyme model

(Fig. 2, part 7).
Weighted linear regressions

To estimate the GEEK parameters using multivariate regression, a multivar-

iate regression was performed. Because the variance of the reaction rate

would be expected to be dependent on the regression variables, a weighted

linear regression was performed to avoid fitting data with large heterosce-

dasticity (see Supporting Materials and Methods). The conditional variance

of the residuals was therefore extracted, and a weighted linear regression

was performed in which each observation was weighted by the inverse of

the conditional variance of the residual. To perform these calculations,

the Python package statsmodels was used (52).
Computational details

The Brownian reaction dynamics simulations were performed with a time

step Dt of 0.25 ns. The dynamics viscosity of the liquid between the parti-

cles was assumed to be water with 0.7 Pa s at T ¼ 310.15 K. The system is

considered to be isothermal (T ¼ constant). At each time step, all possible

first-order reactions are attempted L ¼ 100 times. For the regression input
space, all combinations of substrate and product concentrations that were

n-fold increased and decreased with respect to the reference concentration

of [S]0 ¼ [P]0 ¼ 49 mM were used, with n ˛ [1, 2, 3, 4, 5], in combination

with all free-enzyme and enzyme-complex concentrations that yielded sat-

urations of s¼ [ES]/[ET]¼ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] given a

total amount of enzyme [Etot] ¼ [ES] þ [E] ¼ 64 mM. Each sampled con-

centration state is simulated 1 ms, where the first 0.1 ms are discarded.

Furthermore, 10 independent realizations of the crowding population

were used for every concentration sample to capture the variability that

comes from differently sized crowding agents drawn from the size

distribution.
RESULTS AND DISCUSSION

To address the pitfalls currently associated with computa-
tional studies of enzymatic reactions in the intracellular
space, this work presents GEEK, a novel, to our knowledge,
approach to capture spatial effects, such as crowding, inODE
models. The framework is available in the form of two
Python packages: a package to implement GEEK expres-
sions into ODE (https://github.com/EPFL-LCSB/geek) and
a package to perform openfpm-based HSBRD simulations
(https://github.com/EPFL-LCSB/openbread). The GEEK
formulation directly quantifies the deviation from dilute
mass-action behavior in a systematic and efficient procedure,
and we have focused our studies on the impact of crowding
due to the influence of densely packed biomolecules on
enzyme reaction rates in vivo.

We validate the GEEK framework by comparing 1) an
HSBRD-based GEEK model with the exact solutions ob-
tained by HSBRD and 2) a GEEK model based on the crow-
der-free Cichocki-Hinsen algorithm with the respective
solution of the full simulation (see Supporting Materials
and Methods). We therefore used the initial rate experiment
of a simple association-dissociation system. We simulated
this system in dilute conditions and with single-sized inert
Biophysical Journal 117, 355–368, July 23, 2019 361
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TABLE 2 Molecular Properties of the Reacting Particles

Species Diffusion (mm2 s�1) Collision Radius (nm) Mass (kDa)

g3p 940a 1.11b 0.186b

g2p 940a 1.11b 0.186b

PGM 84.8b 3.87b 61c

PGM complex 84.8b 3.87b 61.186

aThe remaining values were obtained from Perry (56).
bValues were calculated according to the approximations suggested by

Gameiro et al. (54).
cThe remaining values were obtained from Gameiro et al. (54).
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molecules, r ¼ 2.1 nm, for volume fractions between
f ¼ 0.0 andf ¼ 0.4. We show that for this reaction system,
the GEEK models are able to capture the dynamics and the
impact of crowding on the dynamics as predicted by the
respective full simulation of the system (see Figs. S4–S7).
We further discuss the results of 1 and 2 with respect to their
modeling assumptions (see Fig. S8; Supporting Materials
and Methods).

We then applied the described modeling framework to
investigate the effects of macromolecular crowding on the
enzymatic activity of PGM in E. coli. PGM is part of the
lower glycolysis pathway and functions by reversibly trans-
forming 3-phospho-D-glycerate (g3p) into 2-phospho-D-
glycerate (g2p). We use PGM for our investigation because
it exhibits a prototypical reversible Michaelis-Menten
kinetics and its in vitro kinetics are well-known (53).
TABLE 3 Microscopic Reaction Rates per Reacting Particle,
Impact of crowding on the elementary reaction
level

For our reference elementary step mass-action model, which
will serve as a basis for constructing the GEEK model, we
calculated the elementary rate constants by the relations
given in Eqs. 3, a and b and 4, a and b from the in vitro
Michaelis-Menten parameters measured by Fraser et al.
(Table 1; (53)). Based on this in vitro elementary step
model, we built an equivalent in vitro particle model that
required additional information on the molecular parame-
ters, including mass, diffusion, and collision radius, of all
the species involved in a reaction, meaning the substrates,
products, free enzymes, and enzyme complexes. To estimate
the collision radius of the enzyme and the enzyme-substrate
complex, we followed the suggestions of Gameiro et al. and
used the empirical relation between mass and size to esti-
mate the inert molecule size from the enzyme mass
(51,54). In the same way, we applied the Stokes-Einstein
relation to calculate the diffusion constants from the colli-
sion radius. We additionally assumed that the enzyme-sub-
strate complex entirely enclosed the substrate with its
binding pocket, thus rendering the collision radius of the
complex and enzyme equal. To estimate the collision radius
of g3p and g2p, we also followed the suggestions of Game-
iro et al. and used the method developed by Zhao et al. to
estimate their van der Waals volume and to calculate the
equivalent sphere radius (54,55). The diffusion constants
of g2p and g3p were obtained from the literature (56). All
molecular properties are summarized in Table 2.
TABLE 1 In Vitro Michaelis-Menten Parameters and

Calculated Elementary Rate Constants for PGM in E. coli

Michaelis-Menten Parameters Elementary Rate Constants

KM g3p 210 mM (53) k1,f 1.52 � 105 s�1 M�1

KM g2p 97 mM (53) k1,b 10 s�1

kcat g3p to g2p 22 s�1 (53) k2,f 22 s�1

kcat g2p to g3p 10 s�1 (53) k2,b 3.29 � 105 s�1 M�1
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Given the effective elementary rate constants and the
molecular properties of the species, we calculated the effec-
tive microscopic rate constants using the relation given in
Eq. 25 (Table 3). Comparing the microscopic rate constants
in Table 3 with the diffusion-limited rate constants, it can be
seen that the diffusion-limited constants g1,f ¼ g2,b ¼
3.88 � 1010 M�1 s�1 are about five orders of magnitude
higher than the microscopic reaction constants. This indi-
cates that the microscopic binding process is much slower
than the diffusion process and that the kinetics are reaction
limited and not diffusion limited. Thus, the mean time until
the first collision between two reactants, i.e., the mean first
passage time, is orders of magnitudes shorter than the mean
time to the first reaction. For a reaction to be successful, tens
of thousands of collisions are occurring; hence, the impact
of any increase in high-frequency first passage events due
to fractal diffusion is limited (22).

To build a GEEK model that allows us to characterize the
enzyme kinetics in a crowded environment, we sampled the
concentration space. This was done using a full-factorial
design, allowing us to study the effect of several variables
on the response output, as well as interactions between those
variables, that sampled both the product and substrate con-
centrations as well as different enzyme saturation levels,
indicating the percentage of bound enzyme with respect to
the total enzyme concentration. The computational details
of the simulation procedure are summarized in the respec-
tive method subsection above.

In total, we generated 21 generalized elementary kinetic
models for five different inert volume fractions fk and
four different size distributions pk(r), plus one without any
crowding. This allowed for a detailed comparison of the
effects of the volume fraction and size distribution of
the crowding agents on enzyme kinetics. For the size
per Collision, and Diffusion-Limited Rate Constants of the

Bimolecular Reactions

Microscopic Rate Constants

k1,f (c) 1.57 � 105 s�1 M�1

k1,b (p) 10 s�1

k2,f (p) 22 s�1

k2,b (c) 3.40 � 105 s�1 M�1

p, particle; c, collision.
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distributions, we used 1) the E. coli distribution derived
from Kalwarczyk et al., 2) a population containing only par-
ticles of the median size of the E. coli distribution, 3) a pop-
ulation the size of the upper quartile of the E. coli size
distribution, and 4) a population the size of the lower quar-
tile (Fig. 3; (51)). These crowding populations were each
investigated for inert volume fractions of f ˛ [0.0, 0.1,
0.2, 0.3, 0.4, 0.5].

For each crowding condition, we estimated the mean
GEEK parameters aij and bij using multivariate weighted
linear regression, which indicate conditions that likely influ-
enced the enzyme kinetics. To further quantify the uncer-
tainty of the mean GEEK parameters, the 95% confidence
intervals of the regression results are given in Table 4. For
parameter estimates with a p-value R 0.05, it was assumed
that no significant correlation existed, and these parameters
were not accounted for in the GEEK model. A closer anal-
ysis shows that the offset bj could always be determined
with statistical significance; only some of the coupling pa-
rameters aij were not be able to be determined with the
required significance level. Excluding a coupling relation
from Eq. 9 corresponds to aij ¼ 0. Note that this mean
GEEK parameter model assumes that the crowding compo-
sition of an average cell is given by the average effect of a
crowding configuration on the rate constant, which should
accurately reflect the mean behavior of cell populations.
Further, it should be taken into account that the calculations
leading to the effective rate constants are based on the
assumption of the microscopic model, considering that
effective association rate constants are proportional to the
collision frequency of their educts and that effective disso-
ciation reaction constants are proportional to the surface
accessible to the products. The validity of the GEEK
approximation is therefore always dependent on the validity
FIGURE 3 Size distribution function of the inert particles, numerically

calculated from the mass distribution and empirical mass size relation as re-

ported for proteins in E. coli by Kalwarczyk et al. (51). To see this figure in

color, go online.
of the underlying microscopic model used to compute the
effective rate constants. As mentioned in the Introduction,
the workflow within the GEEK framework will remain valid
even if a more detailed microscopic model is used for the
estimation of the rate constant.

Comparing the parameters ai,j and bj of each elementary
reaction j (Table 4), it can generally be observed that the
direct effect bj is about one to two orders of magnitude
larger than each corresponding coupling coefficient, ai,j.
Therefore, the direct effect is on the order of 510�2 to
5100, whereas the coupling coefficients are on the order
of510�4 to510�2. Assuming a twofold increase in a con-
centration, the change in the coupling is smaller than 1%,
whereas the direct effect varies between one and 1000%.
This suggests that the effect of the reduced dimensionality
only plays a small role compared to the effective interaction
potential and the diffusion inhibition.
Effects of crowding on the reversible Michalis-
Menten kinetics

We used the results of the linear regression to parameterize
GEEK models to compare the ODE simulations of the clas-
sical Michaelis-Menten experiment with the mass-action
model. The basis of this experiment involved an initial sub-
strate concentration [S]init that was added to a volume with a
fixed enzyme concentration [E]init ¼ [E]tot. When the sub-
strate was added, the enzyme started to convert the substrate
into a product. If the enzyme was operating reversibly, part
of the product would also be converted back to a substrate,
and the reaction would become indistinguishable as it ap-
proached equilibrium. In this equilibrium state, the overall
free energy of the reaction DrG

+0
was close to zero. There-

fore, the ratio between the product and substrate concentra-
tions could be used to estimate the apparent equilibrium
constant Keq.

To characterize the dynamics of this system, the time to
half-equilibrium teq/2 was measured, which indicates the
time needed for the ratio between the product and substrate
concentrations to equal Keq/2 (Fig. 4 a). In general, an in-
crease in the teq/2 was seen with an increasing substrate con-
centration (Fig. 4 a). The time to half-equilibrium for the
interconversion between g3p to g2p was reduced for small
substrate concentrations and inert molecule fractions, up
to f ¼ 30–40%. In the case of [S]init ¼ [S]ref/4, the time
to half-equilibrium was reduced to a minimal value for
an inert volume fraction of f ¼ 40% (Fig. 4 a). For
[S]init ¼ [S]ref and [S]init ¼ 2[S]ref, this decrease in half-
life time persists, though the overall half-life times are larger
than for [S]init ¼ [S]ref/4, and the minimal point occurs at
lower inert volume fractions. Finally, in the [S]init ¼ 4
[S]ref case, this decrease in teq/2 is no longer visible. It fol-
lows from this that the average initial rate increases with
substrate concentration and decreases with an increasing
volume occupancy. This suggest that the same substrate
Biophysical Journal 117, 355–368, July 23, 2019 363



TABLE 4 Parameters of the GEEK, i.e., aij and bj, for All Elementary Reactions at Different Inert Volume Fractions

Elementary Reaction Crowding Conditions

Formula Parameters 0% 10% 20% 30% 40% 50%

Sþ E/
k1;f

ES b1,f 7.31 � 10�2 2.61 � 10�1 4.57 � 10�1 6.87 � 10�1 9.57 � 10�1 1.25

aS,1,f 4.74 � 10�3 * 3.22 � 10�3 7.22 � 10�3 6.95 � 10�3 3.23 � 10�3

aE,1,f 1.07 � 10�2 1.89 � 10�2 9.67 � 10�3 8.07 � 10�3 1.23 � 10�2 *

aES,1,f * 1.34 � 10�2 * * * *

aP,1,f * 2.51 � 10�3 �3.47 � 10�3 * * 2.42 � 10�3

ES/
k1;b

Sþ E b1,b �1.48 � 10�2 �1.17 � 10�1 �2.80 � 10�1 �5.46 � 10�1 �1.03 �2.26

aS,1,b �2.94 � 10�3 �3.56 � 10�3 �4.53 � 10�3 �6.09 � 10�3 �8.33 � 10�3 �9.58 � 10�3

aE,1,b �1.90 � 10�4 1.71 � 10�3 6.47 � 10�4 3.32 � 10�3 * 3.16 � 10�3

aE,1,b * 3.46 � 10�3 * 2.03 � 10�3 �1.22 � 10�3 *

aP,1,b �2.94 � 10�3 �3.58 � 10�3 �4.52 � 10�3 �6.09 � 10�3 �8.33 � 10�3 �9.58 � 10�3

ES/
k2;f

Pþ E b2,f �1.48 � 10�2 �1.17 � 10�1 �2.80 � 10�1 �5.46 � 10�1 �1.03 �2.26

aS,2,f �2.94 � 10�3 �3.56 � 10�3 �4.53 � 10�3 �6.09 � 10�3 �8.34 � 10�3 �9.58 � 10�3

aE,2,f �1.90 � 10�4 1.71 � 10�3 6.53 � 10�4 3.31 � 10�3 * 3.13 � 10�3

aES,2,f * 3.46 � 10�3 * 2.01 � 10�3 1.20 � 10�3 *

aP,2,f �2.94 � 10�3 �3.58 � 10�3 �4.52 � 10�3 �6.10 � 10�3 �8.34 � 10�3 �9.57 � 10�3

Pþ E/
k2;b

ES b2,b 6.88 � 10�2 2.54 � 10�1 4.58 � 10�1 6.85 � 10�1 9.52 � 10�1 1.25

aS,2,b * * 2.29 � 10�3 * 3.09 � 10�3 *

aE,2,b * * 1.05 � 10�2 * * *

aES,2,b * * * �7.78 � 10�3 * *

aP,2,b 6.59 � 10�3 2.76 � 10�3 4.70 � 10�3 6.85 � 10�3 8.45 � 10�3 3.74 � 10�3

The asterisks denote GEEK parameters with a significance of p % 0.05.

Weilandt and Hatzimanikatis
concentrations yield higher enzyme saturations, meaning
that the ratio of enzyme-substrate complex/total amount of
enzyme increases and that the dissociation of the enzyme-
substrate complex is inhibited.

For a closer analysis of these findings, the Michaelis-
Menten parameters were estimated using Eadie-Hofstee di-
agrams, solving for the steady-state flux of the substrate and
product concentrations between 4.9 and 490 mM (Eq. 11).
The Eadie-Hofstee diagrams (Fig. S9) reveal that for both
high- and low-occupancy volume fractions, a slight nonlin-
earity with respect to the linear Eadie-Hofstee form of the
reversible Michaelis-Menten is introduced with the
GEEK. This indicates that the effective maximal flux
V
þ=�
max;eff and effective Michealis-Menten constant KM,X,eff

are actually functions of the reactant concentrations [S]
and [P]. For the case of f ¼ 0%, this nonlinearity is only
pronounced at small reactant concentrations, whereas for
higher volume occupancy conditions, the nonlinearity is
visible over the entire measurement range. Nevertheless,
we used linear regression to estimate the effective average
parameters to compare the steady-state GEEK model to
the traditional Michaelis-Menten kinetics (Fig. S3).

Interestingly, the steady-state analysis revealed that all
the effective Michaelis-Menten parameters V

þ=�
max;eff , KM,X,eff

decreased as a function of the inert occupied volume f,
shown in Fig. 5, a and b respectively. These results comple-
ment our primary analysis because the maximal flux of the
enzyme directly relates to the ability of the enzyme-sub-
strate complex to dissociate, and the Michaelis-Menten con-
stant is a measure of the affinity of the reactant binding to
the enzyme. The lower the Michaelis-Menten constant, the
higher the binding affinity to the enzyme. Consequently,
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a decreasing Michaelis-Menten constant indicates more
enzyme bound at the same reactant concentration, or in
other words, an increased enzyme saturation. For the effec-
tive flux through the enzyme, this results in two counteract-
ing effects: a potential increase in flux due to an increase in
saturation or a decrease in flux due to the reduced dissocia-
tion. From the analysis of teq/2 and the effective Michaelis-
Menten parameters, it is evident that the flux-increasing
effect is dominating if enough free enzyme is available to
increase the saturation. If the enzyme capacity does not
allow more substrate to associate, the flux-decreasing effect
dominates.
Influence of crowder size on the Michaelis-
Menten kinetics

We further investigated the influence of the size of the inert
molecules on the enzyme kinetics by comparing crowding
with different inert molecule sizes obtained using the results
for the E. coli size distribution. When comparing the teq/2 as
a function of the volume occupancy obtained from crowding
using the E. coli distribution to the population consisting of
a single inert molecule size, a general flux-decreasing effect
was observed for crowding in the single-sized population,
shown in Fig. 6 a. Furthermore, smaller inert molecule sizes
showed a stronger flux-decreasing effect that was alleviated
as the size of the inert molecules increased. When we
compared the enzyme saturation at equilibrium for the
different inert molecule sizes, the single-sized crowding
showed an increased saturation, and smaller crowding sizes
had a stronger effect, illustrated in Fig. 6 b. This shows that
the overall substrate affinity is increased more if the inert



FIGURE 4 (a) [P]/[S] dynamics determined for mass-action and GEEK

models for different initial substrate concentrations [S]init and different

occupied volume fractions (f) for the E. coli molecular weight distribu-

tions. The light dashed lines represent the dilute mass-action model,

whereas the thin solid lines represent a population of 100 resampled

GEEK models. (b) Time to half-equilibrium teq/2 as a function of the occu-

pied volume fraction for different initial substrate concentrations [S]init is

shown. The colors of the lines denote the different initial concentrations:

blue corresponds to [S]init ¼ [S]ref/4, yellow to [S]init ¼ [S]ref, green to

[S]init ¼ 2[S]ref, and red to [S]init ¼ 4[S]ref.

a

b

FIGURE 5 Effective Michaelis-Menten parameters (a) KM,S and KM,P

and (b) Vþ
max and V�

max as a function of volume fraction. The gray dashed

lines represent the effective parameters when all concentrations are scaled

to an effective volume Veff¼ V(1� f) that excludes the volume occupied by

inert molecules. The errors in the values calculated from uniformly resam-

pling the GEEK parameters are smaller than 2% of the mean.
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molecules are smaller than the enzyme-substrate collision
radius.

Finally, we determined the effective standard free energy
of the reaction from the effective equilibrium constant
DrG

�0 ¼ �RT lnðKeqÞ; where the effective equilibrium con-
stant was determined from the reactant concentrations at
equilibrium Keq ¼ [P]eq/[S]eq, seen in Fig. 6 c. This showed
that the overall apparent standard free energy of reaction
does not vary significantly with crowding size or volume
fraction. Because the nonideal contributions, which contain
the terms emerging from molecular interactions, from steric
interaction for the substrates and products are exactly equal,
we would expect the overall nonideal contribution to the
free energy of the enzymatic reaction to be zero. The devi-
ation in the effective standard energy using GEEK can be
attributed to the approximation over the state space at points
far from equilibrium (see Fig. S10).
Consequences of the crowded kinetics on the
pathway level

We further investigated the effects of crowding at a system
level using an example linear pathway with three enzymes.
We considered a linear pathway where a compound Xn was
reversibly converted into a compound Xn þ 1. All reactions
were considered to follow reversible Michaelis-Menten ki-
netics. The concentration of the first compound [X1] was
considered to be 250 mM and the concentration of the last
compound [X4] to be 50 mM. These boundary concentra-
tions were considered to be constant. The last reaction cata-
lyzed by enzyme 3 was parameterized using the results
found for PGM. We further choose the parameters of
Biophysical Journal 117, 355–368, July 23, 2019 365



a b c FIGURE 6 Effects of the particle size distribu-

tion. (a) Time to half-equilibrium teq/2, (b) enzyme

saturation [ES]/[E]tot for [S]ref ¼ 49 mM, and (c)

apparent standard free energy of the reaction

measured as RTlog([P]eq/[S]eq) under different

crowding conditions are shown. The circles repre-

sents the apparent equilibrium measured from the

E. coli size distribution; crosses, diamonds, and

squares are obtained using a single size of inert

molecules corresponding to the lower quartile, the

median quartile, and the upper quartile of the

E. coli size distribution, respectively. The error

bars denote the upper and lower quartile of the

resulting population that was obtained by resampling the GEEK model parameters within their confidence bounds. The horizontal black line denotes the

equilibrium constant calculated from the in vitro kinetic parameters. To see this figure in color, go online.
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enzyme 1 and 2 by scaling the product-specific Michaelis-
Menten constant KM,P by factors of 2 and 3, respectively,
as well as the maximal backward flux V�

max by factors of
0.5 and 0.33, respectively (Table 5). We further considered
that all enzymes and reactants were of the same size and
that, therefore, their GEEK parameters aij and bj were
assumed to be the same. This models a short pathway in
which only minor modifications occur on the molecule,
for example, the reallocation of a phosphate group or a dou-
ble bond.

To characterize the influence of crowding on our pathway,
we calculated the relative responses of the flux with respect
to a twofold increase in each of the enzyme concentrations,
modeling an overexpression of the respective enzyme. We
then compared the results obtained for the traditional
mass-action model with the GEEK models representing
the E. coli size distribution at different occupied volume
fractions (Fig. 7). Comparing the GEEK model without
any inert molecules with the results from the mass-action
model, only minor differences were observed. On the other
hand, a redistribution of the flux control was clearly seen for
increasing volume fractions, wherein the initially largest
flux response decreased and the lower flux responses
increased as a function of the volume fraction. Considering
the typical volume occupancy in cells of 20–40%, the rela-
tive order between the flux responses was still the same as
under dilute conditions, though the magnitude of the largest
flux response is significantly reduced. In this case, it is the
relative sensitivity of the flux that is reduced. This could
act as an additional stabilization mechanism with respect
to fluctuations in the enzyme levels, though it should be
noted that this effect does depend on many factors, such
TABLE 5 Enzyme Parameterizations Used for the Linear

Pathway Example

Parameters Enzyme 1 Enzyme 2 Enzyme 3

KM,S 200 mM 200 mM 200 mM

KM,P 300 mM 200 mM 100 mM

Vþ
max 1.5 mM/s 1.5 mM/s 1.5 mM/s

V�
max 0.15 mM/s 0.25 mM/s 0.5 mM/s
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as relative KM values, Vmax, and reaction DrG values. How
these factors impact the response of the pathway fluxes
with respect to the change in enzyme levels will require
an extensive analysis, considering different pathway struc-
tures and different types of enzyme kinetics. Given the
extent of such a study, it will beneficial to first understand
the impact for different types of enzyme kinetics before
moving to the network level.
CONCLUSIONS

This research presents a method for characterizing spatial
effects of any nature on biochemical reactions based on
the mapping of average effects to ODEs. We therefore sup-
plement recent work on the transport properties of macro-
molecule in heterogeneous environments (57,58) and
improvements on Brownian reaction dynamics in crowded
media (31), as well as efforts to integrate models for altered
FIGURE 7 Flux responses corresponding to a twofold increase in the

respective enzyme concentration for the basic mass-action model and the

GEEK models derived from the E. coli distributions as well as the different

volume fractions of the inert molecules. The error bars denote the upper and

lower quartile of the resulting population that was obtained by resampling

the GEEK model parameters within their confidence bounds. To see this

figure in color, go online.
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diffusion and rate constants into macroscopic transport
equations (32,59), with a framework that allows for effi-
ciently characterizing the observable rate constant from
Brownian reaction dynamics simulations. In addition, we
consider the reaction-diffusion dynamics in a diverse, het-
erogeneous environment represented by a size distribution.
Besides studying the effects of intracellular crowding as
we have done, this framework can influence the study of
membrane-confined biochemical reactions, enzyme chan-
neling, and DNA- or actin-bound reaction systems, which
are all current topics in biochemistry that lack dedicated
study tools.

Using a representative example, we confirm the hypothesis
of recent research in the field that for reaction-limited enzyme
kinetics, the diffusion effects in fractal spaces are negligible
and are most likely not dominating in reaction networks.
Instead, we confirm earlier research by Grima that observed
a strong direct effect of crowding on the effective rates, for
which a decrease in dissociation rates and an increase in asso-
ciation rates was observed when increasing occupied volume
fraction (59). Both effects can be sufficiently explained by an
effective increase of the crowding-induced potential with the
volume fraction, confirming that this is a better predictor of
intracellular enzyme kinetics than the diffusion. Furthermore,
we show that the effective Michaelis-Menten parameters
strongly depended on the volume occupancy and the size dis-
tribution of inert molecules, indicating that the kinetics is
likely to vary dramatically in different cellular compartments.
We finally show that crowding at a simplified network level
can lead to a redistribution of the effective control on the
flux response, suggesting that crowding can have a stabilizing
effect with respect to fluctuation in enzyme levels, potentially
indicating why enzymatic systems in vivo systems show
higher robustness compared to in vitro.

In future work, this framework will be used to analyze the
impact of crowding on other kinetic mechanisms and on an
expanded network level. The results will illuminate the
strength of the overall impact of crowding on the regulation
of metabolism.
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