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Abstract—In this paper, we present a processing technique to
determine the statistical distribution of additive measurement
noise in real-world acquisitions, with specific reference to Phasor
Measurement Unit (PMU) applications in Active Distribution
Networks (ADNs). The proposed approach identifies the power
signal fundamental component, as well as harmonic and inter-
harmonic interferences, and models the measurement noise as a
Gaussian random variable. First, we describe the algorithm main
stages and the criteria for the most suitable parameter setting.
Then, we carry out a numerical validation inspired by IEEE
Std. C37.118.1 test conditions. Finally, we validate the proposed
approach on real-world measurements acquired by a PMU in
the distribution network of EPFL campus.

Index Terms—Noise measurement, Statistical analysis, Taylor-
Fourier Transform, Phasor Measurement Unit (PMU)

I. INTRODUCTION

In recent years, Phasor Measurement Units (PMUs)
are increasingly employed as a distributed and flexible
measurement infrastructure for electrical power network
monitoring and control [1]–[3]. In this context, the IEEE Std
C37.118.1 [4] and its recent amendment [5], briefly IEEE
Std, define the PMU requirements in terms of estimation
accuracy and reporting latency in both static and dynamic
test conditions. To this end, the IEEE Std introduces a set
of challenging test conditions, intended to evaluate the PMU
estimates’ reliability in the presence of different uncertainty
sources, like interfering components or time-varying trends of
the fundamental amplitude, frequency or initial phase.

Unfortunately, as regards the resilience against both narrow-
and wide-band disturbances, the IEEE Std tests do not
represent a plausible approximation of the distortion and noise
levels typically experienced in modern power networks [6]. In
particular, the Harmonic distortion test considers a steady-state
condition where the fundamental component is characterized
by constant amplitude, frequency and initial phase, and
a single harmonic component produces a Total Harmonic
Distortion (THD) equal to 1 or 10%. Similar considerations
hold for the Out-of-band interference test, where the distortion
level due to a single inter-harmonic component is limited
to 10% only. In terms of measurement noise, the IEEE Std
does not even provide any specific requirement, thus limiting
the noise sources to the quantization and non-linearity effects
inherent in any device that processes digitized data [7].

Before deploying PMUs in real-world applications, it would
be recommended to test them in plausible operating conditions.
As a consequence, the development of statistical models for
measurement noise along with harmonic and inter-harmonic
components still represents an open issue. In this context,
recent literature has discussed the statistical distribution of
noise [9] and time-varying distortion levels [10] in real
medium voltage networks. However, the proposed results tend
to be application-dependent and lack of a parametric model to
be used in the assessment of PMU metrological performance.

In this paper, we propose a processing method to infer a
thorough statistical model of the measurement noise from real-
world current and voltage waveforms, as acquired by PMUs in
distribution networks. From a mathematical point of view, we
model this uncertainty source as the summation of two additive
and uncorrelated components. In particular, we approximate
the high-frequency spurious oscillations by means of a white
Gaussian random variable, whereas we represent the low-
frequency spectrum by means of a stochastic random walk.
In this way, we are able to model not only a generic wide-
band measurement noise, but also the non-linear effects of
low-power instrument transformers.

The proposed approach consists of four main stages.
First, we employ the Iterative Interpolated DFT (i-IpDFT)
algorithm [11] to accurately determine the fundamental
frequency. Based on this information, we design a Taylor-
Fourier Multifrequency (TFM) model [12] that accounts for
the first 50 harmonic components and enables us to recover
the signal dynamic evolution over time [13]. By construction,
the difference between acquired waveform and TFM-based
estimates should account only for measurement noise and
other (inter-harmonic) components, that were not previously
included in the TFM-model. This working hypothesis can be
verified a posteriori by inspecting the statistical properties of
the obtained noise model.

In order to mitigate the effect of inter-harmonic components,
we apply a peak-selection routine to the difference signal.
If a significant spectral tone is detected, the corresponding
frequency is included in the TFM-model and the estimate
is repeated. Otherwise, we assume that the difference signal
consists only of noise, and thus we process it in order to
distinguish low- and high-frequency noise components. On
one side, we apply a Savitzky-Golay filter to extract a smooth
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signal baseline [14]. On the other side, we identify a Gaussian
random variable that better fits the residual distribution.

The possible applications of this noise modeling technique
are numerous. On one side, most state and line parameter
estimation techniques require a prior knowledge of the
measurement noise variance. This information is typically
assumed as known by the modeler, but is hardly retrievable
in practice. In this context, the presented routine can provide
an accurate and frequently updated noise characterization
and thus avoid discrepancy between model inputs and real
measurements [15], [16]. To the best of the Authors’
knowledge, some analysis have been carried out on the noise
affecting PMU estimates [17], [18], but a thorough and
rigorous modeling routine for the actual measurement noise
on the acquired waveforms (and thus applicable to other smart
meters) is still missing.

On the other side, the present paper validates the proposed
method by using point-on-wave data coming from PMUs
installed in a real-world distribution feeder, and quantifies the
noise level typical of medium voltage distribution networks.
Such values can be used by PMU developers when testing the
appropriateness of their synchrophasor estimation technique
for distribution installations.

The paper is organized as follows. In Section II, we describe
the processing method for the extraction of measurement
noise from real-world acquired waveform. Section III provides
a thorough characterization of the routine accuracy in
numerically simulated scenarios, inspired by the IEEE Std
test conditions. In Section IV, we evaluate the effect of
improper noise modeling through the simulation of a non-
normal distributed measurement noise, and in Section V, we
apply the proposed technique to an experimental dataset of
real-world waveforms directly acquired in the EPFL campus
[19]. Finally, Section VI provides some closing remarks.

II. PROPOSED STATISTICAL ANALYSIS TECHNIQUE

In this Section, we present the processing method for the
identification of measurement noise statistical properties. First,
we define the signal model, then we describe the algorithm
main stages and discuss the criteria for the most suitable
setting of the algorithm parameters. It is worth noticing that
the proposed algorithm has been developed based on the given
signal model, whose validity has been a posteriori verified by
means of real-world experimental acquisition. Nevertheless,
in the following Section, we investigate also the uncertainty
contribution due to possible discrepancy between the signal
model and the acquired waveform.

a) Signal model: Let us consider a noiseless sinusoidal
signal, affected by narrow-band interfering components:

x(t) = A · (1 + γA(t)) · cos(2πft+ ϕ+ γϕ(t)) + β (1)

where A, f , and ϕ represent the amplitude, frequency and
initial phase of the fundamental component, respectively. The
time-varying terms γA and γϕ account for any dynamic
evolution of amplitude and phase (e.g. modulations, linear

ramps, quadratic trends, etc.). The additive term β models the
contribution of both harmonic and inter-harmonic components.

The acquisition process introduces further disturbances that
can be modeled as additive uncorrelated1 stochastic variables:

y[nTs] = x[nTs] + η[nTs] + ε[nTs], n = 1, . . . Ns (2)

where the sample index n ranges from 1 to Ns, i.e. the
length of the considered observation interval. For this analysis,
we assume the sampling time Ts to be uniform and the
corresponding sampling rate Fs = 1/Ts to exceed the signal
Nyquist rate by almost one order of magnitude. It is thus
reasonable to say that the acquired signal y is not affected by
neither jitter phase noise nor aliasing. The two additive terms η
and ε account for low- and high-frequency noise components.
In more detail, η represents the time-evolution of the signal
baseline level (i.e. the DC component in the context of power
network) and is modeled as an one-dimensional random walk,
whereas ε is associated to the wide-band measurement noise
and is assumed to be known in terms of distribution type
(i.e., the identification problem unknowns are the distribution
parameters). The combination of these two terms enables us to
suitably reproduce many realistic operating conditions, where
the acquired signal is affected by several uncertainty sources,
e.g. quantization noise or transducer non-linearity.

b) Identification method: First of all, given the acquired
signal y, we compute and then subtract its mean value
E[y]. This operation allows for significantly reducing spectral
leakage effects due to DC components.

Once removed any constant offset, we identify the
fundamental frequency f by means of an Iterative Interpolated
DFT (i-IpDFT) approach. In particular, the i-IpDFT performs
a three-point interpolation of the DFT bins centered around the
nominal fundamental frequency (i.e. 50 Hz) and implements
an enhanced compensation routine for the mitigation of
both long- and short-range spectral leakage effects [11].
In particular, the i-IpDFT algorithm adopts 2 iterations to
estimate and compensate the interference coming from the
negative frequency component (long-range spectral leakage)
and 28 iterations to mitigate the effect of neighboring
interfering terms, like harmonic or inter-harmonic components
(short-range spectral leakage). It is thus reasonable to expect
that the obtained frequency estimate is accurate and robust
even in the presence of high distortion levels.

Based on the fundamental frequency information, we design
a Taylor-Fourier Multifrequency (TFM) model B that accounts
for the spectral contribution of the signal harmonic support Sh
[12] . In this regard, the TFM performance depends on two
main model parameters. On one side, the maximum harmonic
order Nh defines the actual signal bandwidth, as we limit our
spectral analysis up to Nh · f Hz. On the other side, the
maximum order No accounts for the number of derivative
terms to be included in the Taylor-series expansion. Recent

1Also the assumption of non-correlation between signal and noise
components has been verified a posteriori on the experimentally acquired
waveforms.



results have shown how a 2nd-order model allows for an
accurate estimation of the entire harmonic support in both
static and dynamic conditions [13].

It should be noticed that the definition of the signal
spectral support Sh does not require the interpolation process
to be repeated for each harmonic component. Differently
from [20], we consider a scenario where the narrow-band
components are further affected by wide-band disturbances
due to measurement noise and acquisition system non-
linearities. In this case, the estimation accuracy of the
harmonic terms by means of an i-IpDFT approach might
degrade significantly, particularly if the harmonic amplitudes
are comparable with the noise level.

As reported in Algorithm 1, given the TFM model B, it
is possible to recover the time-domain trend of the selected
frequency component by means of a simple Least-Squares
(LS) approximation [21]2. At this point, the estimation
residual r should account only for additive uncorrelated
components and possible inter-harmonic components. In order
to discriminate between these two contributions, we perform
a peak search on the residual DFT. For each detected peak
that exceeds the significance threshold θih (whose setting is
discussed in Sec. III.c), the peak frequency is included in the
signal support Sh, the TFM model is correspondingly updated,
and the LS-based signal recovery is repeated.

Once removed any narrow-band component, we further
process the residual r, i.e. the measurement noise, to provide
a more detailed description of its statistical properties. First,
we apply the Savitzky-Golay filter Hlp to extract a smooth
approximation η of the low-frequency components. For
the sake of completeness, this time-varying baseline model
includes also the previously computed DC offset E[y]. As
regards the high-frequency components ε, instead, we assume

2By adopting a LS-based estimation approach, we assume that the residual,
i.e. the estimated noise, is additive, uncorrelated and normally distributed.

Algorithm 1 Measurement Noise Identification
Input: y, Nh, No, θih, Hlp

Output: r, ε, η, µ, σ2

1. signal mean removal: y = y − E[y]
2. fundamental frequency: f = i-IpDFT(y)
3. harmonic support: Sh = {fh = f · h, h = 1, . . . Nh}
4. Taylor-Fourier model: B = TFM(Sh, No)
5. dynamic signal recovery: ŷ = (B†B)−1B†y
6. estimation residual spectrum: ρ = fft(r) = fft(y − ŷ)
7. interharmonic peak search: Sih = findpeaks(ρ, θih)

if Sih 6= ∅
8. support update: Sh = Sh ∪ Sih
9. repeat routine steps from 4. to 7.

end
10. residual de-trending: η = filter(r,Hlp) + E[y]
11. random contribution: ε = r − η
12. statistical description: ε −→ N (µ, σ2)

the probability density function to be Gaussian, and thus
thoroughly describe it through its mean µ and variance σ.

c) Parameter setting: The proposed algorithm presents
several different parameters that can be suitably tuned
according to the expected operating conditions or the desired
estimation accuracy requirements.

As regards the acquired signal y, the observation interval
length Ns directly affects the final reconstruction accuracy. In
fact, a larger sample number corresponds to a finer frequency
resolution, and thus enables us to reduce scalloping loss and
spectral leakage effects. As suggested by IEC Std. 61000-4
[22], the observation interval should include ten cycles of the
nominal system frequency (in the present case, 50 Hz). In the
following, we set the sampling frequency and the observation
interval length equal to 50 kHz and 200 ms, respectively.

It should be also noticed that the i-IpDFT algorithm applies
a preliminary Hanning weighing function to further mitigate
both long- and short-range leakage effects. In this way, in the
signal DFT, each component is characterized by a wider main
lobe and rapidly-decreasing side-lobes. The first one limits
the scalloping loss, whereas the second one reduces mutual
interference between adjacent components [23].

The structure of the TFM model depends on the selection
of Nh and No. In concordance with the Harmonic distortion
test, the maximum harmonic order is set equal to 50. In other
words, we assume that the actual signal bandwidth does not
exceed 2500 Hz. As regards the derivative terms, instead,
it is common practice to limit the Taylor-series expansion
up to the 2nd order. In this way, in fact, it is possible to
estimate the Rate-of-Change-of-Frequency (ROCOF) as the
second time-derivative of the signal phase. In this context, it is
worth observing that the inclusion of higher-order derivative
terms allows for a more accurate reconstruction of dynamic
conditions. On the other hand, it is also more easily subject
to noise injections [24].

As regards the significance threshold θih, the most suitable
setting requires a prior knowledge of the additive noise level.
Unfortunately, this information is unavailable and the user has
to find an optimal trade-off between support completeness and
avoiding the misinterpretation of noisy spikes as actual spectral
components. An improper setting of this parameter might lead
to misinterpret the noise superposed to the signal spectrum
as an actual narrow-band spectral component. Nevertheless,
it is reasonable to say that similar occurrences are very
unlikely. In fact, the proposed approach adopts a window
length of 200 ms that corresponds to a spectral resolution of
5 Hz. Differently from the PMU-based measurement context,
such a refined value guarantees limited spectral leakage and
interference effects among adjacent components. As a result,
the discrimination between noise floor and narrow-band tones
is less challenging. In particular, in this paper we set θih equal
to 3% of the fundamental component amplitude, i.e. nearly one
third of the expected inter-harmonic amplitude as defined by
the Out-of-band interference test [4].

Finally, the Savitzky-Golay filter Hlp is characterized by
two main parameters: the filter length and the polynomial



order [14]. In the following, the optimal trade-off between
de-noising and reconstruction accuracy has been heuristically
found by a filter length of 20 ms, i.e. one cycle of the nominal
fundamental frequency, and a polynomial order equal to 3.
In other words, we assume that the low-frequency trend η is
nearly-stationary within the considered window length and its
curvature or inflexion can be adequately approximated by a
cubic polynomial function.

III. NUMERICAL VALIDATION

In this Section, we present the validation of the algorithm
performance by means of numerical simulations carried out in
Matlab 2018 programming environment.

Algorithm 2 Test Waveform Generation
Signal model: x(t) = A ·cos(2πft+ϕ)+β(t)+η(t)+ε(t)
1. fundamental fixed parameters: A = 1 pu, ϕ = 0 rad
2. fundamental frequency: f ∈ [45, 55] Hz, ∆f = 1 Hz
Harmonic addition: β(t) =

∑
hAh · cos(2πfht+ ϕh)

3. harmonic frequencies: fh = h · f, h = 2, . . . 50
4. harmonic init. phases: ϕh ∈ U(0, π), h = 2, . . . 50
5. harmonic amplitudes: Ah = A·THD/50 +N (0, 0.005)

where THD = [10, 40]%, incremental step 5%
Inter-harmonic tone: β(t) = β(t)+Aih ·cos(2πfiht+ϕih)
6. inter-harmonic amplitude: Aih = 0.1 pu
7. inter-harmonic init. phase: ϕih ∈ U(0, π) rad
8. inter-harmonic frequency: fih ∈ [10, 25] ∪ [75, 90] Hz
Low-frequency trend: η ∈ { offset, walk }
9. noisy offset trend: η(t) = 2 · 10−4 +N (0, 1 · 10−8)
10. random walk trend: η(t) = η(t− 1) +N (0, 1 · 10−6)
Measurement noise: ε ∈ N (0, σ2)→ SNR = [40, 60] dB

In this regard, Algorithm 2 summarizes the main steps
for generating the test waveforms for a power system with
nominal rated frequency of 50 Hz. First, we define the
fundamental component, whose frequency ranges between 45
and 55 Hz, whereas amplitude and initial phase are set equal
to 1 pu and 0 rad, respectively. Then, we add the harmonic
components, up to the 50th order. In more detail, the harmonic
amplitudes and initial phases are modeled as random variables:
the amplitudes belong to a Gaussian distribution and produce
an overall THD that ranges between 10% and 40%, whereas
the phases are uniformly distributed between 0 and π rad.

In a specific test, we also evaluate the robustness
of the proposed algorithm in the presence of out-of-
band interferences. To this end, we add an inter-harmonic
component characterized by a generic initial phase, and an
amplitude of 0.1 pu, i.e. corresponding to a Total Inter-
Harmonic Distortion (TIHD) of 10%. In concordance with
the Out-of-band interference test, we vary the inter-harmonic
frequency between [10, 25] and [75, 90] Hz, and we repeat
the test with different fundamental frequency values, i.e. f ∈
[47.5, 50, 52.5] Hz.

Once defined the spectral composition of the test waveform,
we simulate the additive measurement noise. As regards the
low-frequency trends, we consider two alternative models: a

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time [s]

-1

0

1

a
m

p
lit

u
d
e
 [
p
u
]

(a)

0 500 1000 1500 2000 2500 3000

frequency [Hz]

10
-4

10
-2

10
0

a
m

p
lit

u
d
e
 [
p
u
]

(b)

Fig. 1. Test waveform with THD = 25% and SNR = 45 dB in time (a) and
frequency (b) domain.
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Fig. 2. Quantile-quantile plot of the original (blue) and estimated (red) noise
with respect to the ideal Gaussian distribution (black).

stationary offset of 2 · 10−4 pu that is corrupted by an 80
dB white Gaussian noise, or a random walk whose steps are
characterized by a variance of 1·10−6 pu. The wide-band noise
contribution, instead, is modeled as an uncorrelated Gaussian
random variable, whose variance is scaled to reproduce a SNR
ranging from 40 to 60 dB.

Fig. 1 represents a test waveform, where THD and SNR
are set to 25% and 45 dB, respectively, and the fundamental
frequency is equal to 50 Hz. In the upper graph, it is
worth noticing how the time-domain trend of the fundamental
component is gravely distorted by both noise and spurious
contributions. In the lower graph, we present the signal
DFT in the bandwidth of interest [0, 3000] Hz, where the
harmonic components are characterized by randomly-varying
amplitudes.

In order to assess the algorithm estimation accuracy, Fig.
2 compares the quantile-quantile plots associated to the
generated and estimated measurement noise in blue and
red line, respectively. In concordance with the assumption
of additive Gaussian noise, the two distributions are nearly
coincident and most of the samples lay on the ideal Gaussian
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Fig. 3. Standard deviation estimation error as function of the fundamental
frequency for different SNR values. For this analysis, THD is fixed at 40%.

distribution and are included within the range ±3σ. In this
context, a more quantitative metric is given by the discrepancy
between the estimated and generated standard deviations (that
is equal to -27.91 ppm, in the present case).

In the first test, we evaluate the algorithm estimation
accuracy as function of the fundamental frequency with
different SNR levels ranging from 40 to 60 dB. For this
analysis, we set THD equal to 40%, whereas we neglect the
effect of low-frequency trend and inter-harmonic interference.
As shown in Fig. 3, the proposed algorithm tends to slightly
under-estimate the noise standard deviation, with a maximum
error of -60 ppm with SNR equal to 40 dB. On the other
hand, this discrepancy proves to be inversely proportional to
the SNR. As the noise level decreases, the algorithm correctly
identifies the fundamental and harmonic contributions and is
thus able to accurately recover the original measurement noise.

In order to better understand the accuracy dependence on
noise level, we perform the same test for a wider range of
SNR values, i.e. from 40 up to 100 dB. In order to minimize
the contribution due to spectral leakage, for this analysis we
set the fundamental frequency equal to 50 Hz. In Fig. 4, the
standard deviation error follows an exponential decay trend.
The optimal performance is met for SNR larger than 75 dB,
when the estimation error can be considered as negligible.

In Table I, we report the standard deviation errors as
function of THD in the presence of three different low-
frequency trends, i.e. none, noisy offset, and random walk.
For this analysis, we set the SNR equal to 40 dB and we
consider three different values of the fundamental frequency,
i.e. f = [45, 50, 55] Hz, that span the entire PMU pass-
bandwidth. It is worth noticing that the estimation accuracy is
independent from the harmonic distortion level and the low-
frequency trend. As expected, the best performance is obtained
in nominal conditions (f = 50 Hz), whereas the long-range
spectral leakage from the negative frequency components
results in an accuracy deterioration (e.g., for f = 45 Hz).

In the final test, we characterize the algorithm robustness
towards inter-harmonic interferences. For this analysis, we fix
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Fig. 4. Standard deviation estimation error as function of the SNR for nominal
fundamental frequency (50 Hz). For this analysis, THD is fixed at 40%.

TABLE I
STANDARD DEVIATION ERRORS [PPM] AS FUNCTION OF THD

Frequency Low-Freq. THD [%]
[Hz] Trend 10 20 30 40

45
none -54.953 -54.950 -54.946 -54.912

noisy offset -54.964 -54.958 -54.949 -54.931
random walk -54.962 -54.956 -54.951 -54.933

50
none -49.766 -49.751 -49.738 -49.629

noisy offset -49.783 -49.764 -49.757 -49.648
random walk -49.796 -49.789 -49.783 -49.676

55
none -52.032 -52.026 -52.018 -52.012

noisy offset -52.139 -52.131 -52.125 -52.112
random walk -52.244 -52.227 -52.216 -52.203

THD and SNR equal to 40% and 40 dB, respectively, and
we vary the fundamental frequency within the range [47.5,
50, 52.5] Hz. In Fig. 5, we show the standard deviation error
as function of the inter-harmonic frequency. Once more, the
estimation accuracy proves to be independent from the additive
distortion contributions, and the standard deviation errors are
comparable with the results of the previous tests.

IV. MODELING UNCERTAINTY

In this Section, we evaluate the uncertainty contribution
introduced by an improper modeling of the statistical
distribution of the measurement noise. In other words,
we discuss the algorithm estimation accuracy when the
assumption of uncorrelated white Gaussian noise is not
verified.

To this end, we consider a test waveform where the wide-
band measurement noise is taken from a Rayleigh probability
density function. In general, this statistical model accounts for
a two-dimensional vector, whose coordinates vary according
to independent and identically distributed zero-mean Gaussian
distributions, and is typically employed to represent fading or
scattering phenomena.

For this analysis, we set the fundamental component
amplitude, frequency, and initial phase equal to 1 pu,
50 Hz, and 0 rad, respectively. In concordance with the
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previous numerical validation, the narrow-band interference
contribution consists of the first 50 harmonic terms with a
THD of 40%. As regards the additive measurement noise, we
consider a Rayleigh-distributed random variable, whose scale
parameter is set equal to 280 ppm. Furthermore, a continuous
offset is added in order to center the probability density
function around zero.

In Fig. 6, we show the histogram representations associated
to the generated and estimated measurement noise. It is worth
noticing how the statistical distributions are nearly coincident
and accurately approximate the ideal Rayleigh function.

In this regard, Table II reports the standard deviation error3

as function of the harmonic distortion level. Independently
from the considered THD value, the proposed approach
tends to under-estimate the actual noise standard deviation.
Nevertheless, the introduced error can be reasonably
considered negligible as it does not exceed 7 ppm.

3By construction, the standard deviation of a Rayleigh-distributed random
variable is directly proportional to its scale factor.

TABLE II
RAYLEIGH DISTRIBUTION - NOISE MODEL STATISTICAL PROPERTIES

THD [%] Std Dev Err [ppm] SNR [dB] ER [dB]

10 -6.526 65.23 61.58
20 -6.541 65.29 61.65
30 -6.540 65.35 61.71
40 -6.571 65.56 61.89

Even if the noise modeling assumption is not verified
in the present case, it is still possible to extract useful
information regarding the noise energy content by computing
the traditional SNR index. In this context, Table II compares
the SNR values provided by Matlab routines with a similar
index derived directly from the algorithm estimates. In
particular, we define the Energy Ratio (ER) index, that is
computed as the ratio between the energy associated to the
recovered signal ŷ and to the estimated measurement noise ε.
It is worth noticing that ER slightly under-estimates SNR by
less than 5 decibels. Nevertheless, both the indexes suggest
an equivalent resolution of 10 bits for the simulated test
waveforms.

Based on the obtained results, it is reasonable to say that
the proposed approach guarantees a remarkable estimation
accuracy also in the presence of non-normally distributed
measurement noise. In particular, we are able to recover the
original distribution of noise amplitude, and to infer significant
power quality indexes, representative of the noise variation
range and energy content.

V. EXPERIMENTAL VALIDATION

The experimental validation of the proposed algorithm has
been carried out by means of point-on-wave data acquired
in a real-scale PMU installation [19]. Specifically, the data
refer to a 20 kV substation of EPFL campus, coupled with
a battery energy storage system (BESS) (see Fig. 7). The
busbar is composed of 2 line departures connecting neighbor
substations, 2 MV/LV 630 kVA transformers supplying
electricity to office buildings, and one cable connecting the
BESS.

The waveform recorder functionality has been integrated
in the PMU developed in EPFL-DESL laboratory (for
more details refer to [25]). The hardware platform is
based on the National Instruments compactRIO 9068, an
embedded industrial controller with a dual-core ARM Cortex-
A9 processor and equipped with a customized Linux-RT OS, a
user-programmable Field Programmable Gate Array (FPGA)
Artix-7 equipped with a 40 MHz free-running clock and
reconfigurable IO modules. The device has been equipped
with a stationary GPS unit NI-9467 for the synchronization
to UTC-time, accurate to within ± 100 ns and two analog
input modules NI-9215 characterized by an input range of ±
10 V and a sampling frequency of 50 kHz. Medium voltage
signals are acquired by dedicated instrument transformer
manufactured by Altea Solutions (CS-50-I current class 0.2
and VS-24-C voltage class 0.5 sensor).



Fig. 7. Experimental setup of PMU-based waveform acquisition in EPFL
campus [19].
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Fig. 8. Real waveforms acquired in the EPFL campus distribution network
in time (a) and frequency (b) domain.

The BESS is composed by Lithium titanate oxide (LTO)
cells arranged in series and parallel to form 9 battery racks
connected to a DC bus whose voltage oscillates between 590
and 810 V. The DC bus is interfaced with the medium-voltage
grid through a four quadrant DC-AC converter and a 0.3/21
kV, 630 kVA transformer [26].

In this context, the present analysis considers a three-phase
voltage waveform, characterized by an average THD and SNR
approximately equal t0 20% and 35 dB, respectively. As
shown in Fig. 8, the entire observed spectrum is affected by
harmonic components, whose amplitude is slowly decreasing
and becomes almost negligible after the 40th order.

Since the adopted input model does not employ any low-
pass filter, the acquired waveforms might be affected by
aliasing effects. In order to quantify this distortion source, we
compare the energy associated to the time-domain acquired
waveform and to the DFT coefficients included in the Nyquist
bandwidth, i.e. between 0 and 25 kHz. We repeated this
analysis on all the three phases, and we obtained a worst-
case discrepancy equal to 11.67 ppm. As a consequence, it is
reasonable to say that the aliasing effects are negligible in the
considered measurement setup.

In Fig. 9, we show the histogram representation of the
estimated measurement noise. Based on the comparison with
the ideal normal probability density function derived from
phase A noise, it is reasonable to say that the assumption
of purely additive Gaussian noise is verified. As further proof,
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Fig. 9. Histograms of the estimated noise in the three phases (in blue, red
and yellow line, respectively), compared with the Gaussian distribution derived
from the mean and standard deviation of phase A noise (in black dashed line).

TABLE III
EPFL CAMPUS DATA - NOISE MODEL STATISTICAL PROPERTIES

Phase Mean [V] Std Dev [V] SNR [dB] ER [dB]

A 6.95·10−07 0.0108 34.27 32.35
B 4.35·10−05 0.0104 35.18 34.89
C -4.15·10−05 0.0110 34.62 32.13

we perform a one-sample t-test on the estimated measurement
noise, that confirms the null hypothesis of normal distribution
with a probability exceeding 99% for all the three phases.

Table III reports the mean and standard deviation as derived
from the algorithm estimates. In this regard, it is worth
noticing that phase B and C presents a larger DC component,
whereas the standard deviation values are comparable in
the three phases. In concordance with the previous Section
analysis, we compare SNR and ER indexes: the proposed
algorithm proves to be able of providing rather accurate
approximation of the real-world measurement noise, with an
estimation error lower than 1 dB.

Finally, we verify a posteriori the assumption of
uncorrelated noise components. To this end, we compute
the mutual correlation index between the recovered signal ŷ,
and the estimated low-frequency trend η and the wide-band
measurement noise ε. As shown in Table IV, the recovered
signal is almost uncorrelated with both the noisy contributions,
with a correlation index in the order of 0.8% and 1% for η
and ε, respectively. It should be noticed that the two noisy
contributions are characterized by a slightly larger similarity,
even if the correlation index does not exceed 4.6%.

In conclusion, the present experimental validation has
confirmed the likelihood of our modeling assumptions. On one
side, the measurement noise can be accurately approximated
by an additive white Gaussian random variable. On the other
side, the informative and noisy components prove to be
statistically independent and uncorrelated.



TABLE IV
EPFL CAMPUS DATA - NOISE MODEL CORRELATION PROPERTIES

Phase Corr(ŷ, ε) Corr(ŷ, η) Corr(ε, η)

A 0.0147 0.0056 0.0339
B 0.0133 0.0034 0.0456
C 0.0116 0.0081 0.0338

VI. CONCLUSIONS

In this paper, we introduced a novel processing technique
to determine the statistical distribution parameters of additive
measurement noise in real-world acquisitions. The proposed
method is intended to provide a useful tool to evaluate
the noise properties in experimental scenarios, as well as a
predictor of realistic noise variance values, that can be used in
many distribution network modeling and control applications.
A detailed representation of the noise statistical properties
allows for more accurate state estimations and enables us to
identify possible non-linear effects in the acquisition system.

First, we described in detail the main stages of the
processing technique and explained the criteria for the most
suitable parameter setting. In this regard, we particularly
focused on the accurate estimation of fundamental and
interfering components in off-nominal conditions.

Then, we carried out a numerical validation to evaluate the
estimation accuracy as function of SNR, THD, low-frequency
trends, and possible inter-harmonic components.

To account for possible improper modeling assumptions,
we also simulated a test waveform corrupted by a Rayleigh-
distributed measurement noise. We proved the accuracy of the
recovered measurement noise, also when the assumption of
purely additive white Gaussian noise is not verified.

Finally, we validated the proposed algorithm on a point-on-
wave data acquired on a PMU installation in EPFL campus,
as representative of a real-world distribution network. This
test enables us to evaluate the algorithm robustness in the
presence of high harmonic distortion and noise level, and
verify a posteriori the initial modeling assumptions. Even in
this challenging scenario, the obtained results confirmed the
accuracy of the recovered noise model.
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