Files

Abstract

The residual broadening observed in H-1 spectra of rigid organic solids at natural abundance under 111 kHz magic angle spinning (MAS) is typically a few hundred Hertz. Here we show that refocusable and non-refocusable interactions contribute roughly equally to this residual at high-fields (21.14 T), and suggest that the removal of the non-refocusable part will produce significant increase in spectral resolution. To this end, we demonstrate an experiment for the indirect acquisition of constant-time experiments at ultra-fast MAS (CT-MAS) which verifies this hypothesis. The combination of this experiment with the two-dimensional one pulse (TOP) transformation reduces the experimental time to a fraction of the original cost while retaining the narrowing effects. Results obtained with TOP-CT-MAS at 111 kHz MAS on a sample of beta-AspAla yield up to 30% higher resolution spectra than the equivalent one-pulse experiment, in less than 10 min. (C) 2019 Published by Elsevier Inc.

Details

Actions

Preview