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Abstract

In this text, we study the extension of Euclidean Distance Matrices (EDM) to other types of
linear varieties. Constructing these matrices so as to contain the minimum distance between a
set of linear varieties, we try to create a general framework for what we call Extended Euclidean
Distance Matrices (EEDM) and look at theoretical similarities with EDMs. Then, we propose
algorithms to reconstruct the set of linear varieties that generated the observed EEDM, where we
concentrate on two subtypes: Minimum distance between a set of points with a set of linear varieties
of any dimension; and minimum distance between a set of lines. Finally, we show that EDMs can
also be easily extended from points in a Euclidean space to functions in finite dimensional Hilbert
spaces.
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Notation

Symbols

n,m Number of measurements
d Dimension of the ambient space
k, l Dimension of the linear variety
1n Column vector of dimension n containing all 1’s
diag(G) Vector containing the diagonal of a square matrix G
xi Point i in space
pj Intercept vector of linear variety j
v`j `-th direction vector of linear variety j
Φ For Chapters 2 and 3: Matrix containing direction vectors for a given linear variety
N Matrix containing normal vectors for a given linear variety in its rows
X,P Matrices for which the columns contain points and intercepts respectively
Vj Matrix gathering the `-th direction vector for m distinct linear varieties
F Linear variety (set containing all the points)
{Fi}1≤i≤n Collection of n distinct linear varieties
D Euclidean, or generalized, distance matrix
edm(X) Euclidean distance matrix generated by X
edm(X,P ) Euclidean distance matrix containing the distances between columns of X and

columns of P
d(F ,G) Minimum distance between linear varieties F and G

eedm
(
{Fi}

)
Distance matrix containing the distances between the linear varieties in

the collection {Fi}

eedm
(
{Fi}, {Gj}

)
Distance matrix containing the distances between the linear varieties in

the first and second collection

pldm
(
{xi}, {Fj}

)
Distance matrix containing the distances between the points {xi}
and linear varieties {Fj}

affdim(X) Affine dimension of the columns of X
affdim(S) Affine dimension of the set S
N Null space
R Range space
S⊥ Orthogonal complement of a set S
AT Transpose

v



A∗ Hermitian Transpose
A ◦B Hadamard product of A and B
A�B Hadamard division of A by B
A◦2 Hadamard square of A
H Hilbert space of dimension d
〈x, y〉 Inner product on H
|| · ||2 Both `2 and L2 norms
hdm(X) Hilbert distance matrix generated by X
Φ For Chapter 4: Orthonormal basis of H
1{·} Indicator function

Acronyms and Abbreviations

EDM Euclidean Distance Matrix
EEDM Extended Euclidean Distance Matrix
PLDM Point to Linear variety Distance Matrix
LDM Line Distance Matrix
HDM Hilbert Distance Matrix
LV Linear Variety
OA Orthonormality Assumption
MDS Multidimensional Sclaing
MDU Multidimensional Unfolding
SDR Semidefinite Relaxation
GD Gradient Descent
PSD Positive Semi Definite
EVD Eigenvalue Decomposition
SVD Sinular Value Decomposition
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Chapter 1

Introduction

Euclidean distance matrices (EDM) come from a simple idea; given a configuration of points in
space, the distances (squared) between them are stored in a structured manner in a symmetric
matrix, where the components are given by:

dij = ||xi − xj ||2.

As we will discuss in Section 1.1, there has been many studies on the theory and practical aspects
of EDMs, and shown that they implicitly contain information on the geometry of the points that
generated the matrix. As depicted in Figure 1.1, going from points to EDMs is usually referred to
as the forward problem, whereas the inverse problem consists of reconstructing the configuration
by measuring the EDM. In practice the measurements may be noisy or some of them missing.

(a) Representation of the construction of EDMs for 4 points in 2D space.

(b) Same configuration as in 1.1a but we observe noisy measurements of the distances. Re-
constructing the configuration of points is often named the "Inverse Problem".

Figure 1.1: Visual representation of EDMs.

Based on this existing theory, we ask ourselves whether there exists such matrices containing the
distances between other type of objects than points. We restrain ourselves to linear varieties,

1



2 1.1. A bit of history and context

Figure 1.2: This figure represents the table we are trying to fill. EDMs have been studied in detail,
and many properties are already known. The other cases remain less explored. Although points
and lines in 2D and points and planes in 3D have been studied before by Krekovic et al. [1] and [2]
respectively, we will adopt a slightly different approach, as discussed in Chapter 2, which is why
we indicated them as unexplored too in the table.

i.e. lines, planes etc. in Euclidean space and look at methods of reconstructing the original
configuration from noisy measurements. Due to the similar approach we will have to EDMs, we
review in detail these matrices in Section 1.2, after having introduced previous works in Section
1.1. The final section of this chapter defines the notation and discusses some properties of linear
varieties, to avoid ambiguities later on. Chapter 2 is dedicated to the extension of linear varieties,
where we define these matrices and explore theoretical properties. Chapter 3 discusses inverse
problems in the context of extended EDMs, i.e. methods to retrieve the original configurations from
potentially noisy and missing measurements. Overall, our aim is to describe a general framework
for these extended EDMs and explore how close these objects are to EDMs. An overview is
depicted in Figure 1.2. Finally, in Chapter 4, we show that EDMs can be naturally extended to
finite dimensional Hilbert spaces. In particular, we see that we obtain distance matrices with very
similar properties between d-dimensional vectors and functions of a Hilbert space for which the
basis contains d elements.

1.1 A bit of history and context

Interestingly, EDMs have started to be used quite late considering their simple definition. Around
the 1930’s, Menger [3] and Schoenberg [4] discuss the sufficient and necessary conditions required
for a set of values to be measures of the distances between a certain points. The matrix form
as we know it appears in the paper from Young and Householder [5], where the important rank
property of EDMs is proved. Further properties involving the rank have been studied by Gower
[6] and [7]. Moreover, the set containing EDMs have been proven to be a convex cone by Hayden
et al. [8] and analyzed in detail by Dattorro [9]. An early discussion of the problem of finding the
closest EDM to a given matrix, and therefore projecting on the EDM cone, can be found in the
papers by Mathar [10] and Glunt et al. [11]. On the other hand, knowing the distances between a
set of points, the problem of reconstructing the set is called Multidimensional Scaling (MDS) and
discussed by Torgerson [12]. A simple eigendecomposition algorithm, often called classical MDS is
presented in the analysis by Gower [6]. The case where we consider two different sets of points is
called Multidimensional Unfolding (MDU) and is presented by Schönemann [13] and also Crocco
et al. [14]. However, the mapping from the set of points to distance matrices is not injective,
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indeed, EDMs are invariant to rigid motion of the set (rotation, reflection, translation). Therefore,
reconstructing the exact configuration requires a knowledge of some anchor points and can be
done using the Orthogonal Procrustes Algorithm, proposed by Schoenemann [15]. It is worth
mentioning that a large portion of these results were developed by the Psychometric (Quantitative
Psychology) Society, where the distances were considered as dissimilarity measures and the points
would correspond to stimuli, as described by Mead [16].

Many of the practical applications of EDMs correspond to inverse problems, i.e., reconstructing
the configuration of points given the distance measurements. Moreover, in practice, these measure-
ments may be inaccurate, which we can be modeled as a noisy observation of the original matrix,
but also some values may be missing. An early measure, called stress, of goodness of fit is intro-
duced in Kruskal [17], for example to answer how plausible it is to obtain the noisy measurements
we observe for a certain set of points. Therefore, algorithms for estimating the true distances have
been studied. Alternating Rank-Based EDM completion by Dokmanic and Vetterli [18] is based
on alternatingly forcing the rank property and keeping the observed measures. Keshavan et al.
[19] propose OptSpace, a matrix completion algorithm filling missing measurements and denoising
existing ones. It is based on gradient descent on a non-convex Frobenius norm objective, but con-
vergence to the global optimum is proven to be a high probability event. This algorithm can also
be applied to other completion problems, such as collaborative filtering. A detailed analysis of the
objective function can be found in the text by Keshavan et al. [20]. The Alternating Descent algo-
rithm proposed by Parhizkar [21] uses the stress function as the objective, which can be expressed
as a sum of fourth order polynomials. The algorithm then consists of minimizing independently
these polynomials. This objective function has initially been studied by Takane et al. [22]. On the
other hand, a Semidefinite Programming method has been studied by Alfakih et al. [23], where
the rank constraint making the problem non-convex is dropped, but as mentioned by Krislock
and Wolkowicz [24] and can easily be observed by experiments, the dimension parameter of the
set of points is often lost. A possible solution involves including the trace norm, as discussed by
Weinberger and Saul [25] and Biswas et al. [26]. A very compact and complete discussion about
the theory of EDMs and comparison of these methods can be found in the paper by Dokmanic
et al. [27].

These theoretical results have led to the use of EDMs in several applications, initially in psycho-
metrics and then ranging from molecule and protein shape reconstruction (Holm and Sander [28]
and Havel and Wüthrich [29]) to image manifold learning (Weinberger and Saul [25]), including
also musical rythm analysis, "Euclidean rythms", by Demaine et al. [30]. These measures have also
been used to determine the shape of a room, as described by Dokmanić et al. [31], Parhizkar [21],
Dokmanic and Vetterli [18] and Dokmanić et al. [32]. In this problem, the distances are sometimes
unlabeled, i.e. we measure the distances but we do not know which distance corresponds to which
pair of points. Dokmanić et al. [31] propose the Echo Sorting Algorithm to tackle this problem.
Phase retrieval discussed by Ranieri et al. [33] also deals with Euclidean distance geometry. Again,
the distances are unlabeled and a solution is proposed by solving the turnpike problem. A differ-
ent approach to the unassigned (unlabeled) distance geometry problem is presented by Huang and
Dokmanić [34] where the observed distances are considered as following a discrete distribution,
where the support is the set of the distances, and the problem comes down to finding a set of
points with the same distance distribution.

Recently, the notion of distance matrices has been broadened to a larger class of objects than only
static points. Tabaghi et al. [35] introduce the notion of kinetic EDMs (KEDM), where the points
have a trajectory in time. Polynomial and bandlimited trajectories have been studied and shown
that they can be recovered from KEDMs in the same paper. This technique has applications in,
for example, localization of robot swarms (Cornejo and Nagpal [36]). In Simultaneous Localization
And Mapping (SLAM, Durrant-Whyte and Bailey [37]), we study whether it is possible for a
robot to both map its surrounding and localize itself within it. In this context, Krekovic et al. [1]
propose a method to reconstruct the room by directly taking into account the higher dimensional
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(compared to a point) aspect of the walls (lines, in 2D). Kreković et al. [2] extend this analysis
to 3D room reconstruction, where walls are modeled as planes. A similar formulation allows to
localize a microphone array and retrieve the direction of arrival of acoustic events in [38]. A
detailed study of the uniqueness of such distance matrices is presented by Krekovic et al. [39]. We
see that, gradually, the studies gained dimensions; MDS led to MDU, then points and lines and
finally points and planes, which comes to our analysis; we look whether the matrices obtained from
computing the distances of higher dimensional objects between each other have similar properties
to EDMs and are there ways to reconstruct the original configurations.

1.2 Review of EDM and inverse problems

In this section, we discuss definitions and theoretical properties of EDMs. This will be helpful
in the following chapters because we will study matrices similar to them and our analysis has
foundations from what has previously been discovered for EDMs.

We place ourselves in a space of d dimensions, which we will refer to as the dimension of the ambient
space in the following text, and consider n distinct points X = {xi}ni=1 ⊂ Rd, we construct
the matrix X = [x1,x2, . . . ,xn] ∈ Rd×n containing the points in its columns. Then, the EDM
D ∈ Rn×n such that [D]i,j = dij = ||xi − xj ||2, is given by the function edm : Rd×n → Rn×n,
defined as:

D , edm(X) , 1ndiag(XTX)T − 2XTX + diag(XTX)1Tn , (1.1)

where 1n is the n-dimensional column vector containing 1’s in each of its entries.

Remark. To see why this equation holds, which will also be useful later, we note that for con-
veniently sized matrices A and B, the entry (i, j) of ATB is given by aTi bj, where ai is the i-th
column of A, and bj is the j-th column of B. Similarly, a matrix containing ||xi||2 in row i and
every column j, can be written as diag(XTX)1Tn , where the columns of X contain the vectors xi.
Since dij = ||xi||2 + ||xj ||2 − 2xTi xj, we obtain the relationship in 1.1.

Some properties we can directly observe are:

1. Symmetry: dij = dji,

2. Positivity: dij ≥ 0, dij = 0 ⇐⇒ i = j,

3. Triangle inequality: dij ≤ dim + dmj .

In most applications, n is much larger than d, therefore, by computing the EDM, we usually use
more values to describe the points than initially (n× d). By symmetry, we have

(
n
2

)
= 1

2n(n− 1)
distinct (in general) values, but we still lose some information. Looking for example at Figure 1.1,
we would have obtained the same EDM by shifting every point to the left by the same amount, or
rotating every point around the center of the points, which leads to the following result:

Lemma 1.1 (Invariance to rigid motion). Suppose R ∈ Rd×d a rotation/reflection matrix and
b ∈ Rd a translation vector, then

edm(RX +Rb1Tn ) = edm(X).

Proof. A matrix R is a rotation/reflection matrix if and only if R is orthogonal, i.e RTR = I,
hence, (RX +Rb1Tn )T (RX +Rb1Tn ) = XTX +1nb

Tb1Tn +XTb1Tn +1nb
TX. By linearity of the

diag operator, and observing that XTb1Tn = diag(XTb1Tn )1Tn and diag(XTb1Tn ) = diag(1nb
TX),

we obtain the desired result.
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This result shows that EDMs only keep relative information between the points and that infinitely
many point sets can result in the same EDM, as long as the configurations are differing up to a
rigid motion. This is important to know since many algorithms used in inverse problems find one
of these solutions, that we denote as X̂ , without a guarantee of returning the true one, X . This
requires additional knowledge, such as the true coordinates of a subset of X . Schoenemann [15]
describes a way to find the required orthogonal matrix and translation vector to compute the best
aligning configuration, called the Orthogonal Procrustes problem. The procedure is presented in
Algorithm 1, where the matrices Xa, X̂a ∈ Rd×n′ contain a subset of size n′ ≤ n of X and X̂
respectively, in their columns.

Algorithm 1 Orthogonal Procrustes, Schoenemann [15]

1: function OrthogonalProcrustes(X̂, X̂a, Xa)
2: x̄a ← 1

n′Xa1n′ X̄a ← Xa − x̄a1
T
n′

3: x̃a ← 1
n′ X̂a1n′ X̃a ← X̂a − x̃a1

T
n′

4: UΣV T ← X̃aX̄
T
a . SVD

5: R← V UT

6: return R(X̂ − x̃a1
T
n ) + x̄a1

T
n

7: end function

The previously cited characteristics of EDMs, namely symmetry, positivity and the triangle in-
equality are only necessary conditions, but not sufficient. Indeed, there exists matrices that satisfy
these conditions but are not EDMs, i.e. their components do not describe a configuration of points
in Euclidean space. Gower [6] described a way to fully characterize these matrices, as given in the
theorem below.

Theorem 1.2 (Gower [6]). A matrix D is an EDM if and only if − 1
2 (I − 1ns

T )D(I − s1Tn ) < 0
for any s ∈ Rn such that sT1n = 1 and sTD 6= 0.

Proof. It can be shown that − 1
2 (I − 1ns

T )D(I − s1Tn ) = Y TY , i.e. a Gram matrix of a certain
configuration of points Y , hence it must be positive semi-definite (PSD). Moreover, since tr(D) = 0,
we have thatD is not PSD⇒ wTDw < 0 for somew ∈ Rn. Therefore, we can takew = (I−s1Tn )u
and the relationship holds as long as I − s1Tn is invertible. However, we want uTY TY u ≥ 0, which
implies det(I − s1Tn ) = 0 and sT1n = 1. Moreover, we need to avoid Ds = 0 because otherwise
− 1

2 (I −1ns
T )D(I − s1Tn ) = − 1

2D which is not PSD. Therefore if there exists s : sT1n = 1, Ds 6= 0
for which the expression in the theorem is PSD, then D is Euclidean.

For the converse part, consider another vector t : tT1n = 1. Then (I−1ntT )(I−1nsT ) = (I−1ntT ),
consequently, − 1

2 (I − 1nt
T )(I − 1ns

T )D(I − s1Tn )(I − t1Tn ) = (I − 1nt
T )D(I − t1Tn ). Therefore,

for a vector s : sT1n = 1, Ds 6= 0, if − 1
2 (I − 1ns

T )D(I − s1Tn ) is PSD, then it is PSD for all such
s.

Corollary 1.3 (Schoenberg [4]). In particular, the previous theorem holds for s = 1
n1. In this

case, J = I − 1
n11

T is the geometric centering matrix, where XJ is centered at the origin, and we
have − 1

2JDJ < 0.

The classical MDS algorithm mentioned earlier is based on these results. Taking the geometric
centering matrix as defined in the previous corollary, we remark that − 1

2JDJ = (XJ)T (XJ)
which is the Gram matrix corresponding to the centered version of X around the origin. Using
the eigenvalue decomposition (EVD), we have (XJ)T (XJ) = UΛUT ⇒ X̂ = Λ1/2UT , where X̂
corresponds to the reconstruction of the point set centered at the origin. We note that Λ1/2UT ∈
Rn×n, but since rank(XTX) = d (supposing d < n), then, the last n − d eigenvalues are 0,
considering we order them in decreasing absolute value. Hence, to obtain a reconstruction in
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Rd×n, we should use [diag(
√
λ1 . . .

√
λd),0d×(n−d)]U

T . As pointed out by Dokmanic et al. [27], the
truncation of the d largest eigenvalues has also the advantage of being relatively robust to noisy
measurements. Algorithm 2 describes this procedure concisely.

Remark. In Algorithm 2, we took s = 1
n1, which leads to the reconstruction centered around

the origin. Other options could also be considered. For example taking s = ei reconstructs a
configuration such that point i is at the origin.

Algorithm 2 Classical MDS, Gower [6]

1: function ClassicalMDS(D)
2: J ← I − 1

n11
T

3: UΛUT ← − 1
2JDJ . EVD

4: return [diag(
√
λ1 . . .

√
λd),0d×(n−d)]U

T

5: end function

In the derivation of the previous algorithm, we used the rank of the Gram matrix to obtain a
result on the number of non-zero eigenvalues which led to the reconstruction of the configuration
of points. Indeed, in usual applications, the dimension of the ambient space is much smaller than
the number of measurements. Therefore, we obtain a relatively big matrix for the EDM, however,
the next theorem shows that the embedding (or affine) dimension of the point set is still implicitly
present.

Theorem 1.4 (Gower [7]). The rank of an EDM is at most r + 2, where r = affdim(X) ≤ d.
Morover, if the points lie on the relative boundary of an r-dimensional hypersphere, rank(D) = r+1.

Remark. The affine dimension is related to D with : r = affdim(X) = rank(JDJ).

Remark. By r-dimensional hypersphere, we mean the hypersphere requiring at least r dimensions
for it to exist in an Euclidean space. For example, r = 2 for a circle.

Proof. For points placed in d dimensions without a particular configuration, Equation 1.1 allows
us to see that rank(edm(X)) ≤ d + 2, where we use the fact that the rank of an outer product is
1, rank(XTX) ≤ min(rank(X), rank(X)) = d, and rank(A+B) ≤ rank(A) + rank(B).

If the points lie on an affine subspace of dimension r, then this means that there exists an orthogonal
matrix R ∈ Rd×d and a vector b ∈ Rd such that the last d − r entries of the columns of X̃ =
RX+b1T are 0. Therefore rank(X̃T X̃) = r and rank(edm(X̃)) ≤ r+ 2. Since edm(X̃) = edm(X)
by Lemma 1.1, rank(edm(X)) ≤ r + 2.

For the last result, we use the same argument as the one by Gower [7]. Suppose that rank(D) = r′

and, without loss of generality, that the points are already centered around the origin (XJ = X).
Then, there exists n−r′ linearly independent vectors ui such that Dui = 0,∀1 ≤ i ≤ n−r′. Using
Theorem 2 by Gower [7], we can also find a generalized inverse D− of D such that 1TnD−D = 1Tn .
This implies that 1Tnui = 0. But then, ui’s also belong to the null space of XTX = − 1

2JDJ .
Moreover, 1

n1n is also in the null space of the Gram matrix, and also linearly independent from
ui’s. Theorem 1 by Gower [7] states that if the points X lie on the relative boundary of a
hypersphere, 1TnD−1n 6= 0. This condition implies (detailed in the paper) that other vectors in the
null space of the Gramian are linear combinations of {ui}1≤i≤n−r′ and 1

n1n. By the rank-nullity
theorem, rank(XTX) = r′ − 1 = rank(X).

Example 1.1. Randomly distributed points in R3 will most probably result in a rank equal to 5.
Points on a plane in R3 will result in a rank equal to 4. Points on the boundary of a circle in R4

will result in a rank of 3.
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This is an important property of EDMs, and we will see in Chapter 2 that some extensions of EDMs
have also a rank constraint. Dokmanic and Vetterli [18] (Algorithm 3) and Keshavan et al. [19]
(OptSpace) propose algorithms robust to noisy and missing measurements of EDM components
to estimate the original matrix. These measurements, contained in the matrix D̃ ∈ Rn×n can be
expressed using the model:

D̃ = D + Z, (1.2)

where we consider the additive noise model and usually consider zij
i.i.d.∼ N (0, σ2). Additionally,

some measurements may not be available to us, therefore the complete observed matrix can be
written asM ◦D̃. Here, "◦" denotes the component-wise, or Hadamard, product andM is a binary
mask, putting the missing measurements to 0. Algorithm 3 proposes a method that enforces the
rank constraint and the observed measurements in an alternating manner; however, this process
may converge to a matrix that is not an EDM or may even not converge at all. The notation DM

indicates the entries of D restricted to non-zero entries of M .

Algorithm 3 Alternating Rank-Based EDM Completion, Dokmanic and Vetterli [18]

1: function RankCompleteEDM(D̃,M)
2: DM ← D̃M

3: D11T−M ← µ . Initialize unobserved
entries

4: repeat
5: D ← EVThreshold(D, r)

6: DM ← D̃M . Force known entries
7: diag(D)← 0 . Diagonal gets 0
8: D ← (D)+ . Zero the negative

entries
9: until MaxIter or Convergence

10: return D
11: end function

12: function EVThreshold(D, r)
13: UΛUT ← D . EVD
14: Σ← diag(λ1 . . . λr, 0 . . . 0)
15: return UΣUT

16: end function

Other algorithms where the rank property is not directly exploited rely on the minimization of the
Frobenius matrix norm:

min
X∈Rd×n

||M ◦ (edm(X)− D̃)||2F . (1.3)

This objective function is often called the s-stress function, initially introduced by Takane et al.
[22]. Parhizkar [21] notes that for each component Xij of X, the s-stress function can be written
as a fourth-order polynomial, the overall function being a sum of these polynomials. The same
paper proposes a greedy algorithm, Alternating Descent, where at each stage, these fourth-order
polynomials are minimized, independently of the rest. The process is repeated until convergence
or the maximum number of iterations is attained.

On the other hand, this problem can also be written as the following semidefinite program:

maximize
H

tr(H)− λ||M ◦ (D̃ −K(QHQT ))||F

subject to H ∈ Sn−1+ ,
(P)

where the function K : Rn×n → Rn×n is the equivalent of the function edm, but takes the Gram
matrix as argument, i.e. K(XTX) = edm(X). The matrix Q ∈ Rn×(n−1) must satisfy QT1 = 0,
QTQ = I and QQT = J . The choice proposed by Alfakih et al. [23] is Q = [y1, x11T + I]T ,
where x = −1/(n +

√
n) and y = −1/

√
n. We omit the derivation of the problem (P), but full

explanations and analysis can be found in the papers by Alfakih et al. [23], Weinberger and Saul



8 1.3. Linear Varieties

[25], Biswas et al. [26], Dokmanic et al. [27]. In the remaining of this text, we will refer to this
semidefinite program as SDR (for semidefinite relaxation).

For the sake of completeness, we also present below the properties of the matrix manifold containing
every n× n EDM.

Definition 1.1. A subset K of a vector space V is a cone if ∀x ∈ C, θ ∈ R+, θx ∈ K. Moreover,
K is a convex cone if ∀x, y ∈ K and α, β ∈ R+, αx+ βy ∈ K.

Definition 1.2. We denote by EDMn the set containing every EDM of dimension n× n. The set
of hollow and symmetric matrices are given by Snh = {A ∈ Sn : diag(A) = 0}. The set of positive
semidefinite matrices is given Sn+ = {A ∈ Sn : A < 0}. Finally, we also define the orthogonal
complement of the geometric center subspace Sn⊥c = {u1T + 1uT : u ∈ Rn}.

Following the results from [3], [4], [6] and Hayden et al. [8], Dattorro [9] gives a compact equation
for the EDM cone; EDMn = Snh ∩ (Sn⊥c − Sn+), as written in one of the earliest pages of this last
text. Also, using the above definitions and properties, we can see that EDMn is a closed convex
cone.

Lemma 1.5 (Dattorro [9], Parhizkar [21]). The relative interior of EDMn is given by

relint EDMn = {D ∈ EDMn : rank(JDJ) = n− 1},

which is a convex cone. The relative boundary is

rel ∂ EDMn =

n−2⋃
r=0

{D ∈ EDMn : rank(JDJ) = r}.

This lemma shows that every EDM with rank(JDJ) < n − 1 lie in the boundary of EDMn. As
pointed out by Parhizkar [21], we do not have a guarantee of convexity for the relative border of
the manifold, which justifies why projecting onto the EDM cone is difficult.

1.3 Linear Varieties

In our analysis of extension of EDMs, we will study matrices containing the distance between one
linear variety and another in their entries. Therefore, this section provides definitions of the latter
so that we avoid ambiguities later on. Most of the definitions follow the book by Vetterli et al.
[40], where more detailed analysis can be found.

Definition 1.3. A vector space V is said to have dimension d when it contains a linearly inde-
pendent set of d elements and every set with d+ 1 or more elements is linearly dependent.

Definition 1.4 (Linear varieties, LV). A nonempty subset S of a vector space V is a subspace
when it is closed under vector addition and scalar multiplication. A subset T of V is an affine
subspace if there exists an x ∈ V such that any t ∈ T can be written as x + s for some s ∈ S. If
V = Rd, these affine subspaces are called linear varieties or flats.

Throughout this text, we will consider V = Rd, therefore of dimension d. Based on Definition
1.4, LVs are a set of points which can be written as the set F = {x ∈ Rd : Nx = c}, where
N ∈ R(d−k)×d, k ≤ d. In addition, if rank(N) = d − k, the matrix describes an LV of dimension
k. In the following parts, we will consider that N is full rank and, without loss of generality, that
its rows are unit norm. Special cases include k = 0, in which case we have a point, k = 1, which
results in a line, k = 2, which describes a plane. By the rank-nullity theorem, there exists k linearly
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independent vectors v` ∈ Rd such that Nv` = 0 and any x belonging to this set can be written as
a parametric equation of the form

f(t) = p + Φt = p +

k∑
`=1

v`t`, (1.4)

where Φ = [v1 . . .vk] ∈ Rd×k, t ∈ Rk and p ∈ Rd such that Np = c, or equivalently, p = NT c,
since NNT = I. We also observe that the rows of N describe an orthonormal basis for the vectors
normal to the LV and any row nj of N belongs to N (ΦT ), and therefore p ∈ N (ΦT ) too. We call
such vectors p, v`, nj the intercept, direction and normal vectors respectively. Again, without loss
of generality, we may assume that the v`’s are unit norm. Overall, any LV can be fully described
by the pair (N, c) or (p,Φ) using the above assumptions. This is summarized below.

Assumption (Orthonormality Assumption, OA). For an LV given by (p, c,Φ, N), we assume
that {v`}1≤`≤k ∪{nj}1≤j≤d−k forms an orthonormal basis for Rd and p = NT c such that pTv` =
0,∀ 1 ≤ ` ≤ k. This assumption also implies that the intercept is the point in the LV closest to the
origin in terms of `2 norm.

Example 1.2. In R3, N = [−1, 7,−4]/
√

66 and c = 132/
√

66 describe a plane. Taking v1 =
[3, 1, 1]T /

√
11,v2 = [1,−1,−2]T /

√
6 and p = [−2, 14,−8]T , any point on the plane can be written

as p + v1t1 + v2t2 since Np = c and v1,v2, NT are orthogonal to each other.

Additionally, we will try to get a general framework for the extension of EDMs, and in some of the
derivations, it will be helpful to assume that the LVs we consider do not intersect.

Lemma 1.6. In a d-dimensional affine space, a necessary condition for two LVs of dimension k
and l respectively to not intersect is k + l < d.

An important theorem to justify this claim is given below:

Theorem 1.7 (Rouché-Capelli). The system Ax = b admits solutions, i.e. is consistent, if and
only if rank(A) = rank([A,b]). Moreover, the solution is unique if and only if the rank of A is
equal to the number of columns of A.

Consider two LVs f1(t) = p + Φt and f2(s) = q + Ψs of dimension k and l respectively and
an ambient space of dimension d. Without loss of generality, we assume k ≥ l. The system to
determine whether they intersect is of the form q − p = [Φ,−Ψ][tT , sT ]T . By Theorem 1.7, a
necessary condition for the LVs not to intersect is that this is either an overdetermined system, in
which case k+ l < d, or the columns of Ψ are spanned by the columns of Φ, in which case the LVs
are parallel. This digression allows us to see that the dimension constraint k + l < d is consistent
with the OA, in fact this dimension constraint ensures that we have enough degrees of freedom for
the OA, and a meaningful distance measure for the LVs as we will see in the next section. In the
remaining of this text, we will assume k + l < d.
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Chapter 2

Extension of EDMs to linear
varieties: Definition and Properties

The review of the EDMs in the previous chapter is of crucial importance to extend the distance
matrices into higher dimensional affine objects, which we will call extended EDMs (EEDM). This
chapter builds a general framework for EEDMs and studies their properties, to allow us to under-
stand the objects we are looking into, before asking ourselves whether inverse problems are feasible.
In the case of EDMs, the entries of the matrix contains the squared `2 norm between each pair of
points, which is chosen as the metric. In EEDMs, the ambiguity is that the objects we consider
are generally a set of infinite points and the metric must be more precise. To measure the distance
between two sets, a common choice is the minimum `2 norm, or least squares distance, which is the
option we study in this text. We also choose to keep the distances squared, as in the EDM case.
This is one of our main deviations from the model by Krekovic et al. [1] and Kreković et al. [2]. In
these studies, the main objective is to reconstruct the shape of a room, in 2 or 3D. The distance
matrix contains (non-squared) `2 distances between points, which correspond to microphones and
planes, which represent the walls, or lines, for the 2D case. In the practical applications, these
microphones are always within the room walls, therefore the distance from the origin of the points
will always be less than the minimum distance from the origin to the lines (in 2D) or planes (in 3D).
Mathematically, the model is dij = (pj − ri)

Tnj , where ri describes the position of microphone i
and nj is the normal unit norm vector of line/plane j and pj any point in that line/plane. This
represents the minimum, non-squared, distance between a point and a line in 2D, a point and a
plane in 3D, and more generally, a point and an LV of dimension d − 1 in an ambient space of
dimension d. However, to generalize this to any pair of LV, in general configurations and any given
dimension, we need to use a different model.

Definition 2.1 (EEDM). Let {Fi}1≤i≤n be a collection of n LVs of dimension k, embedded in
dimension d. Similarly, {Gj}1≤j≤m contains m LVs of dimension l. Then, we define the function
eedm, such that D = eedm

(
{Fi}, {Gj}

)
∈ Rn×m is the EEDM of the two collections of LVs. The

entry (i, j) of D is given by:

dij , d(Fi,Gj) , min
x∈Fi,y∈Gj

||x− y||2. (2.1)

On the other hand, if we want only the distances of a collection of LVs of the same dimension, we
write D = eedm({Fi}) ∈ Rn×n, and:

dij , d(Fi,Fj) , min
x∈Fi,y∈Fj

||x− y||2. (2.2)

Example 2.1. d = 3, k = 0, l = 1, n = 3,m = 5 corresponds to a setting where we have 3 points

11
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(a) Distance between a configuration of points xi and lines lj in 2D. Only the distances between objects of different
configurations are kept, as in Equation 2.1. The matrix is computed using equation 2.10.

(b) Matrix of distances in between a configuration of lines in 3D, as described in Equation 2.2. The matrix is
obtained using Equation 2.7.

Figure 2.1: Example of EEDMs.

and 5 lines in 3 dimensions. d = 5, k = 1, l = 2, n = 7,m = 4 corresponds to a setting where we
have 7 lines and 4 planes in 5 dimensions.

Observations: In the special case of k = 0, {Fi} reduces to a set of points ascribed to the columns
of the matrix X ∈ Rd×n and the last equation gives eedm({Fi}) = edm(X). Moreover, if l is also
0, the first equation comes down to computing the distance between the points X and the ones in
{Gj}, ascribed in the columns of P ∈ Rd×m, defined as:

edm(X,P ) , 1ndiag(PTP )T + diag(XTX)1Tm − 2XTP ∈ Rn×m. (2.3)

We also note that eedm
(
{Gj}, {Fi}

)
= eedm

(
{Fi}, {Gj}

)T
.

Notation. When considering multiple LVs of dimension k; fi(t) = pi+
∑k
`=1 v

`
i t`, we will denote

as P the d × n matrix containing the intercepts of each LV in its columns, and V` the d × n
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matrix containing the `-th direction vector of each LV in its columns, i.e. P = [p1, . . . ,pn] and
V` = [v`1, . . . ,v

`
n].

In the general case, the Positivity property is guaranteed since we consider non-intersecting
LVs. However, Symmetry is obtained only in the case of Equation 2.2 and there is no Triangle
Inequality property anymore. As a side note, we do not require objects for which we do not
compute the distance to be non-intersecting, for example in Figure 2.1a, the lines cross each other.

2.1 Minimum distance and special cases

Intuitively, these distances should be well defined, since there should exist a pair of points where
the LVs are closest. Formally, this problem has been studied by DuPré and Kass [41], Ben-Israel
and Greville [42] and Gross and Trenkler [43]. The former two make the OA assumption, whereas
the latter generalizes the solution.

Theorem 2.1 (Minimum distance, DuPré and Kass [41]). Under the OA, consider an LV F of
dimension k described by (p,Φ) and a distinct LV G of dimension l given by (q,Ψ), such that
F ∩ G = ∅. Then:

d(F ,G) = ||C(p− q)||2 = ||C(x− y)||2 (2.4)

∀x ∈ F ,∀y ∈ G, where C 6= 0 and its rows form an orthonormal basis of N (ΦT ) ∩N (ΨT ).

Remark. If the context requires us to work with the implicit equation of LVs; F = {x : Nx = c}
and G = {y : My = a}, we have N (ΦT ) = R(Φ)⊥ = N (N)⊥ = R(NT ), therefore we require
the rows of C to form an orthonormal basis of R(NT ) ∩ R(MT ). Then, we may write d(F ,G) =
||C(NT c−MTa)||2.

Proof. The parametric equations of F and G are f(t) = p + Φt and g(s) = q + Ψs respectively.
Then:

d(F ,G) = min
t,s
||p + Φt− q−Ψs||2 = min

t,s
||p− q||2 + ||Φt−Ψs||2 + 2(p− q)T (Φt−Ψs)

= min
u
||p− q||2 + ||Au||2 + 2(p− q)T (Au),

where A = [Φ,−Ψ] ∈ Rd×(k+l) and u = [tT , sT ]T ∈ Rk+l. This is a quadratic polynomial in u and
convex since ATA � 0. Taking the gradient with respect to u and forcing it to 0 gives:

ATAu∗ = AT (q− p).

Let PI denote the orthogonal projection onto the set I. Then,

q− p = PR(A)(q− p) + PN (AT )(q− p),

hence, AT (q−p) = ATPR(A)(q−p). Since Au∗ and PR(A)(q−p) both belong to R(A), we have
the equality Au∗ = PR(A)(q− p). Replacing this in the norm, we have:

d(F ,G) = ||(I − PR(A))(p− q)||2.

Moreover, I − PR(A) = PR(A)⊥ and R(A)⊥ = N (AT ) = N (ΦT ) ∩ N (ΨT ). Since PR(A)⊥Φ =
PR(A)⊥Ψ = 0,

d(F ,G) = ||PR(A)⊥(p− q)||2 = ||PR(A)⊥(x− y)||2

∀x ∈ F ,∀x ∈ G. Taking C : CTC = PR(A)⊥ , we obtain the desired result since CCT = I.
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Figure 2.2: The two lines in this figure are the objects for which we compute the minimum distance.
The arrows are examples of vectors orthogonal to the respective lines, i.e belonging to N (ΦT ) for
line 1 and N (ΨT ) for line 2. The red arrows are the vectors which additionally also belong to
N (ΦT )∩N (ΨT ). The vector connecting the minimum distance points will be a linear combination
of these red vectors (for lines a basis describing such vectors contains only one vector in 3D).

Geometrically, this theorem tells us that the vector connecting the LVs at the minimum distance
is orthogonal to both of these objects; an example is provided in Figure 2.2. Even though it is
helpful to have a closed-form solution, finding C is not trivial in the general case. We therefore
develop below some of the interesting cases that arise, where the solution is given by a more explicit
expression.

Parallel LVs: Assuming k ≥ l, if the LVs are parallel, N (ΦT ) ∩ N (ΨT ) = N (ΨT ). The rows of
the matrix M constitute an orthonormal basis for N (ΨT ), where M : G = {x : Mx = a}, and a is
chosen conveniently. This leads to d(F ,G) = ||M(p− q)||2.

Linearly independent LVs: In this case, we may write dim(R(Φ)+R(Ψ)) = k+ l, which implies
that A is full column rank. The optimal parameters can then be written as u∗ = (ATA)−1AT (q−
p), therefore d(F ,G) = ||(I − A(ATA)−1AT )(p − q)||2. We usually encounter this case when F
and G are non parallel lines, i.e. Φ = φφφ and Ψ = ψψψ are linearly independent vectors. Then, ATA
reduces to a 2× 2 matrix:

ATA =

(
1 −φφφTψψψ

−φφφTψψψ 1

)
⇒ (ATA)−1 =

1

1− (φφφTψψψ)2

(
1 φφφTψψψ

φφφTψψψ 1

)
and:

(p− q)TA(ATA)−1AT (p− q) =
1

1− (φφφTψψψ)2
(
−qTφφφ −pTψψψ

)( 1 φφφTψψψ
φφφTψψψ 1

)(
−φφφTq
−ψψψTp

)
.

Observing that d(F ,G) can be written as ||p−q||2− (p−q)TA(ATA)−1AT (p−q) and developing
the expression above, the distance between two non parallel and non intersecting lines
is:

d(F ,G) = ||p− q||2 − 1

1− (φφφTψψψ)2
(
2(φφφTψψψ)(ψψψTp)(φφφTq) + (ψψψTp)2 + (φφφTq)2

)
(2.5)

= ||p− q||2 − t∗φφφTq− s∗ψψψTp, (2.6)
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where

t∗ =
φφφTq + (φφφTψψψ)(ψψψTp)

1− (φφφTψψψ)2
, s∗ =

ψψψTp + (φφφTψψψ)(φφφTq)

1− (φφφTψψψ)2

are the parameters such that the point p +φφφt∗ on line F and the point q +ψψψs∗ on line G are the
pair minimizing the distance between the lines.

By inspection, when considering a set of n lines {Fi}1≤i≤n, the EEDM is therefore:

eedm({Fi}) = edm(P )− T ◦ (V TP )− TT ◦ (PTV ) ∈ Rn×n, (2.7)

where T = [(PTV ) ◦ (V TV ) + V TP ] � [1n1
T
n − (V TV )◦2] ∈ Rn×n and diag(T ) = 0. This matrix

contains the parameters tij for which the point pi+vitij of line i is the closest one among any other
point in line i to line j. In this last expression, "�" and "(·)◦2" correspond to the component-wise
division and square respectively.

Equation 2.7 is the equivalent of EDMs for lines, but we see that the expression is much more
complicated in the sense that it contains many non-linear, component-wise products. We also note
that without a particular structure of the lines, the matrix in 2.7 is full rank. Extending this to
planes is even harder because it may not be unusual for two planes to have a direction in common,
i.e. A = [Φ,−Ψ] is not full column rank, therefore it is not trivial to find the matrix C without
assumptions or prior knowledge about the positioning of the planes.

On the other hand, another option would be for A to have orthogonal rows, which leads to ATA = I,
in which case a similar development results in d(F ,G) = ||p − q||2 − ||ΦTq||2 − ||ΨTp||2. In the
general setting, this is a rare case, except for;

One LV is a point: Suppose G = {q}, then A = Φ and:

d({q},F) = ||q− p||2 − ||ΦTq||2 = ||q− p||2 −
k∑
`=1

((v`)Tq)2. (2.8)

The parameter t ∈ Rk of F for which the distance is minimum is t∗ = ΦTq. This is justified by
taking the gradient of ||p + Φt− q||2 with respect to t and putting it to 0 since it is a quadratic
convex function on t (ΦTΦ = I � 0). Then:

∇t||p + Φt− q||2 = 2ΦTΦt + 2ΦT (p− q).

By the OA, this results in t∗ = ΦTq and the point p̃ on F minimizing the distance is:

p̃ = p + ΦΦTq. (2.9)

Generalizing the result of Equation 2.8 to n points xi ascribed in the columns of X and m LVs
Fj = {pj +

∑k
`=1 v

`
jt`} of dimension k, the EEDM can be expressed as:

eedm
(
{xi}, {Fj}

)
= edm(X,P )−

k∑
`=1

(XTV`)
◦2 ∈ Rn×m, (2.10)

where P = [p1, . . . ,pm] and V` = [v`1, . . . ,v
`
m], i.e. the `-th direction vectors of each LV.

Intersecting LVs: Even though we assumed non intersecting LVs, we also discuss this possibility
for the sake of completeness. DuPré and Kass [41] prove that F and G intersect if and only if
C = 0 or p−q ∈ N (C). Geometrically, these conditions imply that either the LVs intersect in the
usual way, or, considering k ≥ l, that G ⊆ F .
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2.2 Invariance

As in the case of points, linear varieties also have different configurations that result in the same
distance matrix, and again the information on the absolute position is lost and only the relative
information is kept. Intuitively, two configurations of LVs differing by a rigid motion should give
the same EEDM, because the distances are not affected by "the position from where we look" to
compute them.

Lemma 2.2. Consider the two following configurations: {Fi} containing n LVs of dimension k
and {Gj} having m LVs of dimension l, embedded in an ambient space of dimension d. Then:

eedm
(
{Fi}, {Gj}

)
= eedm

(
{F̃i}, {G̃j}

)
, (2.11)

where {F̃i} and {G̃j} are obtained by applying the same rigid motion to both initial configurations.
This result also applies for only one configuration: eedm({Fi}) = eedm({F̃i}).

Proof. By Theorem 2.1, each entry of the EEDMs is of the form ||C(x− y)||2, where x and y are
points on different LVs. Consider the orthogonal matrix R ∈ Rd×d representing rotation/reflection,
and a vector b ∈ Rd for translation. Assuming, without loss of generality, that the translation is
applied first, any point x on any LV of the configurations becomes Rx+Rb after the transformation.
Therefore:

||C(Rx +Rb−Ry −Rb)||2 = ||CR(x− y)||2 = ||C(x− y)||2.

Since RTR = I and C has orthonormal rows, CR just changes the basis of the rows of C, and
keeping R(CT ) = R(RTCT ). Since any basis would do, the two last terms above are indeed equal,
which completes the proof.

In terms of the parametric equation, we can represent rigid transformations of an LV given by the
pair (p,Φ) as having transformed intercept and direction vectors (Rp + Rb, RΦ). Here, R is an
orthogonal matrix and b is a vector representing rotation/reflection and translation respectively.
Note that the translation is only applied to the intercept vectors whereas the same rotation/re-
flection is applied to both the intercepts and the direction vectors. This is an important result
for reconstructing the original configuration from EEDM measurements. In the context of match-
ing the original configuration and the one we have reconstructed from EEDM measurements, the
Orthogonal Procrustes algorithm (Algorithm 1) can be used on the intercepts given by P . Then,
the rotation/reflection matrix obtained from this process can be applied to the direction vectors
to have an estimation of the original LVs. This procedure comes of course after estimating the
configuration from EEDM measurements, which will be the main topic of Chapter 3.

Remark. We can also see this result by replacing X and P by RX+b1Tn and RP+b1Tn respectively
and V by RV in Equation 2.10 or 2.7 for example. However, we observe that we need to have
b ∈ N (ΦT ). This is often too constraining and sometimes not even possible. At first, this might
seem contradictory to what we discussed previously, but it is not the case; it is simply a consequence
of the OA. Indeed, since we cannot take any intercept p given Φ because of the OA, but need to
satisfy ΦTp = 0, we also need to satisfy this property for the translation vectors. Therefore, this
constraint is only present because of the OA and is reflected on the closed form solutions in these
equations mentioned above. Mathematically, translating the overall configuration by a vector b can
be represented by adding a different translation vector b̃j to each LV j, where b̃j =

bTpj

||pj ||2pj is the
orthogonal projection of b onto the intercept of LV j.

We end this discussion by noting that there exists other, non-rigid, invariances for EEDMs, as
presented in detail by Krekovic et al. [39] (Theorem 1). For instance, in 2D, for distances between
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points xi and lines given by the pairs (pj ,Φj), such that ||xi||2 < ||pj ||2 (supposing the config-
uration is centered at the origin), the distance matrix is the same if and only if the points are
collinear, the lines enclose a parallelogram, or every line is parallel. In 3D, for distances between
points xi and planes given by the pairs (pj ,Φj), such that ||xi||2 < ||pj ||2, if there are m < 6
planes, there are infinitely many configurations that result in the same distance matrix. If m ≥ 6,
then the points must be coplanar or the configuration must belong to one of the specific classes
presented in Figure 1 in [39] for this to happen. We consider general configurations and generally
many measurements to only consider invariance to rigid motion, and leave the generalization of
invariance other than rigid motion, in any dimension, and for any type of LV for a future study.

2.3 Rank

In this section we look at the rank properties of EEDMs, motivated by the rank constraints of
EDMs. Unfortunately, the minimum distance between LVs given in Equation 2.4 depends on the
matrix C which differs in general for each pair of LV. This is seen in the following conjecture made
by Ivan Dokmanic in a private correspondence.

Conjecture 2.3 (General rank, Ivan Dokmanic). For n LVs of dimension k in the configuration

{Fi} embedded in an ambient space of dimension d, if k = 0, rank
(
eedm

(
{Fi}

))
≤ d + 2.

Otherwise, eedm
(
{Fi}

)
is full rank in the general setting. Additionally, considering m LVs of

dimension l > 0 {Gj}, eedm
(
{Fi}, {Gj}

)
is full rank in the general setting if k > 0.

Sketch of Proof. Let us denote by xi = pi + Φiti a point belonging to Fi and yj = qj + Ψjtj a
point belonging to Gj , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We also define Cij , a matrix such that its
rows are an orthonormal basis for N (ΦTi ) ∩ N (ΨT

j ). Then, d(Fi,Gj) = ||Cij(xi − yj)||2 and the
EEDM D ∈ Rn×m can be written as:

D =


||C11x1||2 + ||C11y1||2 − 2xT1 C

T
11C11y1 · · · ||C1mx1||2 + ||C1mym||2 − 2xT1 C

T
1mC1mym

||C21x2||2 + ||C21y1||2 − 2xT2 C
T
21C21y1 · · · ||C2mx2||2 + ||C2mym||2 − 2xT2 C

T
2mC2mym

...
. . .

...
||Cn1xn||2 + ||Cn1y1||2 − 2xTnC

T
n1Cn1y1 · · · ||Cnmxn||2 + ||Cnmym||2 − 2xTnC

T
nmCnmym


This expression is similar to EDMs except that each inner product is weighted by a different
matrix Cij , depending on the row and column. This high dependency on the pair of LVs we
choose to compute the minimum distance makes the EEDM full rank without very specific and too
constraining assumptions on the configurations. However, formulating the precise assumptions to
guarantee that D, given above, is full rank is not trivial and so this result remains a conjecture—at
least for now.

The results of this conjecture can also be verified in practice. For example, the EEDM for lines
given by Equation 2.7 has rank n for configurations generated randomly. This seems to be an early
bad news for rank properties. However, we omitted one case in this theorem, the one for which
one of the LV configurations is a set of points, thus k = 0 and/or l = 0. Indeed, we will show that
this type of EEDM is rank deficient, and to show that we need to come back to Equation 2.10.
The first term, edm(X,P ) has rank less than d+ 2, because it is a sum of two outer products and
a matrix of rank d (Equation 2.3). The other term is less trivial but it can be shown that it is rank
deficient too, as detailed in the following lemma.

Lemma 2.4. Let A ∈ Rn×m be a matrix of rank d. Then rank(A◦2) ≤
(
d+1
2

)
.
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Proof. As shown in Styan [44] using SVD, the rank of a Hadamard product is less than the product
of the rank of the two matrices. We use a similar approach here for the component-wise square of
a matrix. Since A has rank d, it can be written as

∑d
i=1 σiuiw

T
i , where the ui’s and wi’s are the

left and right singular vectors of A respectively and σi’s the singular values. Then:

A◦2 =

(
d∑
i=1

σiuiw
T
i

)
◦

 d∑
j=1

σjujw
T
j

 =

d∑
i=1

d∑
j=1

σiσj(uiw
T
i ) ◦ (ujw

T
j ).

Observing that (uiw
T
i ) ◦ (ujw

T
j ) = (ui ◦ uj)(wi ◦wj)

T , we write:

A◦2 =

d∑
i=1

d∑
j=1

σiσj(ui ◦ uj)(wi ◦wj)
T .

Since ui ◦ uj = uj ◦ ui, there are
(
d
2

)
terms in this double sum that can be combined with the

corresponding
(
d
2

)
terms. At the end, the double sum contains at most d2 −

(
d
2

)
=
(
d+1
2

)
distinct

outer products, therefore rank(A◦2) ≤
(
d+1
2

)
.

Looking at Equation 2.10, this result is sufficient to say that the EEDM containing distances
between points {xi} and LVs {Fj} of dimension k are rank deficient. Using previous results,

rank
(
eedm

(
{xi}, {Fj}

))
≤ d + 2 + k

(
d+1
2

)
. However, the expression on the right might quickly

become large, but fortunately, this bound is not tight. Indeed, simple tests confirm that the rank
is much less than this expression. Surprisingly, the rank is in fact independent of k.

Theorem 2.5. Consider n points {xi} and m LVs {Fj} of dimension k. Then,

rank
(
eedm

(
{xi}, {Fj}

))
≤ d+ 1 +

(
d+ 1

2

)
. (2.12)

Proof. Let X =
∑d
α=1 σα(X)uα(X)wα(X)T and V` =

∑d
β=1 σβ(V`)uβ(V`)wβ(V`)

T , corresponding
to the SVD decomposition. Then, XTV` can be written as

∑d
α=1

∑d
β=1 κ(α, β, `)wα(X)wβ(V`)

T ,
where the coefficients κ(α, β, `) = σα(X)σβ(V`)(uα(X)Tuβ(V`)). Similarly to the expression in the
proof of the previous lemma, we have:

(XTV`)
◦2 =

d∑
α=1

d∑
β=1

d∑
γ=1

d∑
δ=1

κ(α, β, `)κ(γ, δ, `)(wα(X) ◦wγ(X))(wβ(V`) ◦wδ(V`))
T .

Hence

k∑
`=1

(XTV`)
◦2 =

k∑
`=1

∑
α,β,γ,δ

κ(α, β, `)κ(γ, δ, `)(wα(X) ◦wγ(X))(wβ(V`) ◦wδ(V`))
T

=
∑
α,γ

(wα(X) ◦wγ(X))

( k∑
`=1

∑
β,δ

κ(α, β, `)κ(γ, δ, `)(wβ(V`) ◦wδ(V`))

)T
.

On the other hand, using a similar computation, XTX =
∑d
α=1

∑d
γ=1 κ(α, γ)wα(X)wγ(X)T ,

where this time κ(α, γ) = σα(X)σγ(X)(uα(X)Tuγ(X)). Observing that for two vectors of the
same length w1,w2, diag(w1w

T
2 ) = w1 ◦w2, we may write:

diag(XTX)1Tm =

d∑
α=1

d∑
γ=1

κ(α, γ)(wα(X) ◦wγ(X))1Tm.
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Figure 2.3: We see a comparison between the rank upper bound we obtained from Theorem 2.5 with
respect to the dimension of the ambient space d. The green curve shows the EEDM rank obtained
from computing the distance between points and lines. The yellow curve is computed similarly but
lines are replaced by planes. Each value obtained for a dimension is averaged over 100 tests, and
the number n of points and m of lines/planes is a random integer between 100 and 120. Other
numbers of measurements still give the same result, as long as we satisfy min(n,m) ≥ d+1+

(
d+1
2

)
.

Every linear variety used for the computations is generated randomly.

Combining these last two results, we have an expression of the form:

diag(XTX)1Tm −
k∑
`=1

(XTV`)
◦2 =

d∑
α=1

d∑
γ=1

(wα(X) ◦wγ(X))w(α, γ)T ,

where w(α, γ) is the vector resulting from the combination of the expressions. As in the case of the
previous lemma, there is at most

(
d+1
2

)
distinct vectors wα(X) ◦wγ(X) in the double sum, which

finally leads to rank
(
diag(XTX)1Tm −

∑k
`=1(XTV`)

◦2
)
≤
(
d+1
2

)
. Since the sum of remaining two

terms in the computation of the EEDM has at most rank d+ 1, we obtain the desired result.

In fact, in the general setting, this upper bound is met with equality, as shown in Figure 2.3. For
this to hold, we need of course d+1+

(
d+1
2

)
≤ min(n,m) since the EEDM has size n×m. This means

that to benefit from this upper bound, we need a large number of measurements and/or low ambient
space dimension. Analogously to the EDM rank bound presented in Theorem 1.4, some interesting
special cases arise when the points and LVs are arranged in a special configuration. Looking back
at the derivation of the upper bound in Theorem 2.5, we assumed that rank(X) = rank(P ) = d.
Therefore, the upper bound on the rank can further be reduced if affdim(X) or affdim(P ) is less
than d, where X and P are defined as in Equation 2.10. This occurs when the points or the
intercept vectors of the LVs are positioned on an affine subspace of dimension less than d.

Corollary 2.6. Consider n points {xi} and m LVs {Fj} of dimension k, where the intercept
vectors of the LVs are given by {pj}. Supposing affdim({xi}) = r and affdim({pj}) = r′, then:

rank
(
eedm

(
{xi}, {Fj}

))
≤ min(r, r′) + 1 +

(
r + 1

2

)
. (2.13)
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Furthermore, if the points {xi} are on the relative boundary of an r-dimensional hypersphere, and
the intercepts {pj} are positioned on the boundary of an r′-dimensional hypersphere, we have:

rank
(
eedm

(
{xi}, {Fj}

))
≤ min(r, r′) +

(
r + 1

2

)
. (2.14)

Moreover, this last inequality still holds if the intercepts {pj} are such that affdim({pj}) = r′.

Proof. Again, referring to Equation 2.10, we have rank(XTP ) ≤ min(r, r′). Without loss of gener-
ality, we may write X =

∑r
i=1 σiuiw

T
i , i.e. the sum is over r terms (If it is not the case, we could

always find a rotation/reflection and translation so that we can, and by Lemma 2.2, we obtain the
same EEDM). Replacing d in the computations by r, we obtain the desired result.

For the hypersphere configurations, we start by first observing that the additional rank in Equation
2.13 compared to Equation 2.14 is due to the term 1ndiag(PTP )T from Equation 2.10. We will show
that rank(1ndiag(PTP )T +diag(XTX)1Tm− (XTV`)

◦2) = rank((XTV`)
◦2) in the context of Equa-

tion 2.14, for a fixed direction `. This is without loss of generality since the dimension of F ′j ’s does
not affect the rank. First, we remember that rank(diag(XTX)1Tm− (XTV`)

◦2) = rank((XTV`)
◦2).

Then, we note that if the points X lie on the relative boundary of an r-dimensional hypersphere,
supposing of radius ρ, we have diag(XTX) = ρ21n. Then, we may write 1ndiag(PTP )T +
diag(XTX)1Tm = diag(XTX)(1m+ 1

ρ2 diag(PTP ))T . As shown in the proof of the previous theorem,
rank(diag(XTX)1Tm−(XTV`)

◦2) = rank((XTV`)
◦2) because of the term diag(XTX), and indepen-

dently of the term 1m. Hence, replacing it by 1m + 1
ρ2 diag(PTP ), the sum does not actually get

additional terms. Therefore, rank(1ndiag(PTP )T +diag(XTX)1Tm−(XTV`)
◦2) = rank((XTV`)

◦2),
which explains why the rank is one unit lower in the latter equation, since we cannot use this argu-
ment in the former equation in the general case. As a final note, this proof is equivalent to showing
that 1m can be expressed as a linear combination of {wα(X) ◦wγ(X)}α,γ (as defined in the proof
of the previous theorem) when the points {xi} lie on the relative boundary of an r-dimensional
hypersphere.

Some examples of the results stated in this corollary are presented in Figure 2.4. We see that
these special configurations do not require that both the points and the intercepts lie on the same
surface, as in Figure 2.4d. Looking at Figure 2.4c and 2.4d, the points and the intercepts are
actually both on the surface of a plane but in the latter case, the additional special configuration,
i.e. positioning on the relative boundary of a circle reduces the rank by 1. This can be interpreted
as removing a degree of freedom, since r-dimensional hyperspheres are in fact objects of dimension
r − 1.
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(a) The points are on a line and the intercepts on a
plane. This results in an EEDM of rank 3.

(b) The points are on a plane and the lines on a line.
This results in an EEDM of rank 5.

(c) Both points and intercepts are on the same plane.
This results in an EEDM of rank 6.

(d) Both points and intercepts lie on the relative
boundary of a circle but not the same one. This
results in an EEDM of rank 5.

(e) Points lie on the relative boundary of a circle and
intercepts on a plane. This results in an EEDM of
rank 5.

(f) Intercepts lie on the relative boundary of a circle
and points on a plane. This results in an EEDM
of rank 6, therefore, no changes compared to Figure
2.4c

Figure 2.4: Some examples of special configurations that reduce the general upper bound. In these
images the ambient space dimension is 3, the points {xi} are represented in black, and the lines in
blue. The red dots correspond to the intercepts {pj} of the lines. The surface in which the points
lie has been colored for better visualization.
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Chapter 3

Inverse problems

After defining EEDMs and exploring their theoretical properties, this chapter discusses methods
and algorithms to retrieve the configurations of LVs that generated the distances we measured.
Referring to the definitions is Section 1.2, we will denote the true EEDM as D, i.e. the matrix
containing the exact distances generated by the configuration of LVs. In practice, it is common
to measure noisy values, therefore we express by D̃ = D + Z the noisy measurement matrix,
where we assume zij

i.i.d.∼ N (0, σ2). Finally, we define the mask M , a binary matrix modelling
missing measurements. In the general case, we observe M ◦ D̃. We present in the following parts
two different approaches; first we look at general methods for reconstructing the configurations in
Section 3.1. This means that the algorithms we present are not specific to EEDMs. Especially,
we will look into line distance matrices (LDM). Then, in Section 3.2, we restrain ourselves to
EEDMs where one of the configuration is a set of points (distances between a set of points and a set
of LVs). For easier referencing to this case, we call them in this chapter point to linear variety
distance matrices (PLDM). As we saw in Section 2.3, PLDMs have an upper bound on their
rank, therefore we will look at low-rank approximations of the measured matrix to denoise them.
Then, we present a method inspired by the MDU problem in the case of EDMs to reconstruct the
original configurations. In both approaches, we convert the problem into an optimization problem
with the aim to find the objects most likely to have generated our observations. Below, we define
LDMs and PLDMs, as many examples in this chapter will involve them, and present the notations
we will use throughout this chapter.

Definition 3.1 (LDM). Consider n non-parallel, non-intersecting lines {Fi}1≤i≤n in d dimensions
given by their parametric equation pi+vit and the matrices P, V ∈ Rd×n such that P = [p1, . . . ,pn]
and V = [v1, . . . ,vn]. We call the matrix containing the minimum distance between each and every
line in its entries LDM (as depicted in Figure 2.1b) and define:

ldm(P, V ) , eedm
(
{Fi}

)
= edm(P )− T ◦ (V TP )− TT ◦ (PTV ) ∈ Rn×n, (3.1)

where the last expression is the one we derived in Equation 2.7.

Definition 3.2 (PLDM). Consider n points {xi}1≤i≤n and m LVs {Fj}1≤j≤m of dimension k

embedded in dimension d. The parametric equation of the j-th LV is pj +
∑k
`=1 v

`
jt`. We define

X = [x1, . . . ,xn] ∈ Rd×n, the matrix containing the points, P = [p1, . . . ,pm] ∈ Rd×m the matrix
containing the intercepts, and V` = [v`1, . . . ,v

`
m] ∈ Rd×m,∀ 1 ≤ ` ≤ k, the matrices containing the

`-th direction vector of each LV. Then, we call the distance matrix containing the distances between
the points and the LVs PLDM (as depicted in Figure 2.1a) and define:

pldm(X,P, {V`}1≤`≤k) , eedm
(
{xi}, {Fj}

)
= edm(X,P )−

k∑
`=1

(XTV`)
◦2 ∈ Rn×m, (3.2)

23
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where the last expression is the one we derived in Equation 2.10.

(a) Similarly to the example by Parhizkar [21], we con-
sider an EDM of n = 3 points in d = 1 dimension.
The plot represents f(x, y) = ||edm(X) − D||2F where
X = [0, x, y], and the true configuration is [0,−1, 4]. A
global minimum is observed for the original configura-
tion but also for x = 1, y = −4. We also note a local
maximum for x = y = 0.

(b) For this example, we consider n = 4 lines in d = 3
dimensions, each line i having intercept pi and direction
vi. The plot shows the s-stress as a function of the
first and second component of the direction vector of
the first line, v1[1] and v1[2], the ground truth being
v1 = [1/

√
2,−1/

√
2, 0]

T .

Figure 3.1: Examples of the stress function surface plots for two different cases. The value of the
objective function is in logarithms in both cases for better visualization of the variations.

3.1 General Methods

In this section, we will look first at a gradient descent based approach and then to interior point
methods. These methods do not exploit any potential hidden structure of EEDMs as they can be
used for many optimization problems. Based on previous studies ([22], [27], [2]), we choose the
objective f to minimize to be:

f
(
{Fi}, {Gj}

)
=

∣∣∣∣∣∣∣∣M ◦ (eedm({Fi}, {Gj})− D̃)∣∣∣∣∣∣∣∣2
F

, (3.3)

where the minimization is over the two collection of LVs {Fi}1≤i≤n and {Gj}1≤j≤m, and || · ||F
denotes the Frobenius norm.

For EDMs, this function, called the s-stress function, has been studied by Takane et al. [22] and
Parhizkar [21]. As we stated in Lemma 1.5, when the number of measurements is one less than
the dimension of the ambient space (d = n− 1), the manifold containing these EDMs is given by
relint EDMn which is a convex set. For this particular setting, Gaffke and Mathar [45] propose an
algorithm to find the global minimum of the s-stress function. Otherwise, as shown in the analysis
by Parhizkar [21], the objective contains local maxima, saddle points, and global minima. An
example, based on the one provided by Parhizkar [21], illustrates the surface plot of the s-stress
function in Figure 3.1a.

The situation is more complicated for higher dimensional objects. Consider a set of lines in 3D.
Since the minimization is over all possible lines, the problem can be translated to finding the best
intercepts and direction vectors for each line. Figure 3.1b shows the surface plot of the s-stress,
where the two variables are the first and second component of the direction vector for line 1.
As it can be seen, the function is highly non-convex and experiments show that this undesired



Chapter 3. Inverse problems 25

property is in particular present over direction vectors. This gives us an idea about the challenge
of reconstructing the LVs.

3.1.1 Gradient Descent

A natural first approach to tackle our problem is by applying gradient descent on our objective
f . To be able to give concrete examples, we restrain ourselves to EDMs and LDMs. Even though
theoretically more satisfying algorithms already exist for EDMs, we still study them for comparison
purposes. We will see that adding the direction vectors into the equation will make the minimization
harder, taking the example of LDMs. As seen in Figure 3.1b, f becomes highly non-convex when
the objects are lines, therefore we should not expect that gradient descent would give impressive
results because of the presence of many local minima, but we rather analyze how good we can
approximate the configurations, starting from a close estimation of the actual points/lines, and
decided to add this analysis to report our results using this method.

A full overview of the algorithm can be found in the last Part of the book by Boyd and Vanden-
berghe [46]. Here, we give a short reminder of the gradient descent algorithm for a differentiable
function f : dom f → R taking the argument x ∈ dom f . The intuitive idea is to move in the
opposite direction of the gradient of f on the surface of its graph, since the gradient points to the
direction of maximum ascent, the aim being finding the pair (x∗, f(x∗)), the optimal point/value.
After choosing a starting point x(0), the iterates are given by:

xk+1 = xk − γk∇f(xk).

Here, γk is the step-size, and there exist various methods for choosing this value, such as the
backtracking line-search algorithm (Boyd and Vandenberghe [46]).

In our analysis, the objective f is a function taking a matrix A as input. An option for gradient
descent in this case is to take the gradient, which would be a matrix, to contain the partial
derivative ∂f

∂Aij
in its entry (i, j). We assume that the objective is locally differentiable to allow

us to compute the gradient. For a theoretical background on optimization over matrix manifolds,
the text by Absil et al. [47] gives a detailed analysis of the subject. Then, in the EDM case, the
gradient of the function f̃(X) = ||edm(X)− D̃||2F is

∇X f̃(X) = 4
[
X ◦ (1d1

T
n (2D − D̃ − D̃T ))−X(2D − D̃ − D̃T )

]
. (3.4)

For LDMs, we write f̃(P, V ) = ||ldm(P, V ) − D̃||2, and the gradient with respect to P and V
respectively of f is

∇P f(P, V ) = 4
[
P ◦ (1d1

T
n (2D − D̃ − D̃T ))− P (2D − D̃ − D̃T ) (3.5)

− V (T ◦ (2D − D̃ − D̃T ))
]

∇V f(P, V ) = −4
[
P (TT ◦ (2D − D̃ − D̃T )) + V (TT ◦ T ◦ (2D − D̃ − D̃T ))

]
. (3.6)

The derivation of these results are given in Appendix A. The iterates are therefore:

X(k+1) = X(k) − γk∇X f̃(X(k)),

for EDMs, and for the LDM case, we can update each matrix separately:

P (k+1) = P (k) − γk∇P f(V (k+1), P (k))

V (k+1) = V (k) − γk∇V f(V (k), P (k)).

Figure 3.2 depicts comparisons of the gradient descent with other methods, namely classical MDS
and SDR, for estimating original points from noisy EDM measurements. Overall, we note that the
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(a) In this example we fix n = 20, and run various
algorithms to estimate the original points from noisy
observations D+Z such that zij

i.i.d.∼ N (0, σ2). We
compare the loss function over different values for
the standard deviation σ of the additive noise. Each
point is averaged over 20 tests, where the original
points are generated randomly each time.

(b) Example of reconstructed points after applying
the Orthogonal Procrustes algorithm using different
methods. The observed matrix D + Z is a noisy
version of the EDM D, such that zij

i.i.d.∼ N (0, 1).

Figure 3.2: Example of comparison results between gradient descent, classical MDS and SDR for
EDMs. The initial point X(0) for gradient descent was chosen randomly for each result.

gradient descent method is slightly better than classical MDS but not as good as SDR. In general,
the initial point X(0) to start the gradient descent algorithm can be taken randomly, avoiding us
to need an initial knowledge about the configuration of points that generated the observed EDM.

However, for the LDM case, the results were not satisfying using gradient descent. Experimentally,
we observe that the main difficulty is to estimate correctly the direction vectors, which make the
objective function highly non-convex as discussed previously. The algorithm gets stuck in local
minima unless we have an unrealistically good initial guess of the direction vectors V .

This method is therefore not a good option for inverse problems involving EEDMs, in addition to
a closed form equation of the EEDM itself, it also requires the computation of its gradient, or an
approximation of it.

3.1.2 Interior Point Method

To deal with the non-convexity of the objective, we turn our attention to global optimization
tools. For a PLDM between a set of n points and a set of m k-dimensional LVs, we can write our
optimization problem as follows:

minimize
X∈Rd×n

P∈Rd×m,V`∈Rd×m

||M ◦ (pldm(X,P, {V`})− D̃)||2F

subject to ||v`j || = 1, ∀1 ≤ j ≤ m, ∀1 ≤ ` ≤ k
diag(PTV`) = 0, ∀1 ≤ ` ≤ k
diag(V T`1 V`2) = 0, ∀`1 6= `2

− 1 ≤ v`j ≤ 1, ∀1 ≤ j ≤ m, ∀1 ≤ ` ≤ k,

(Qf )

where the inequalities in the last constraint are component-wise. The formulation is similar for
LDMs. The option we adopted to solve this problem uses interior point methods for nonlinear
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programming, presented by Ugray et al. [48], and using the Matlab implementation. This algorithm
requires an initial estimate for the optimal values; or starting points. To have short computation
times, these estimations should be relatively close to the original values, especially for the direction
vectors. Figure 3.6 gives examples about the performance of the algorithm. The first two figures
compare the estimated PLDM, denoted by pldm(X̂, P̂ , V̂ ) to the true one, D, for noisy and missing
measurements, by measuring the squared Frobenius norm of their difference. In these examples,
we chose X(0) = X + N (0, 1), P (0) = P + N (0, 1), V (0) = V + N (0, 0.01), where X,P and V
are the ground truth values, and the addition represents a random starting point around the true
values. Each point on the plots are obtained by averaging 10 independent tests, each test creating
the data randomly.

(a) This plot compares results of the objective for grow-
ing additive noise variance over the observed measure-
ments. The probability of an observed distance to be
missing was fixed to 0.1.

(b) This plot compares results of the objective for grow-
ing probability of missing entries in the observed dis-
tance matrix. The noise on the measurements are addi-
tive Gaussian with a fixed variance of 0.01

(c) Example of reconstructed points and lines compared
to the original configuration, in the case of PLDMs. The
entries of the measured distance matrix have indepen-
dent additive noise following N (0, 0.25).

(d) Example of reconstructed lines compared to the orig-
inal configuration, in the case of LDMs. The entries of
the measured distance matrix have independent addi-
tive noise following N (0, 0.25).

Figure 3.3: Example of performance results by solving the optimization problem (Qf ).

Over various tests, we observed that using the starting points described above, the algorithm is
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robust to noisy observations of the EEDMs. However, for missing measurements, we start to get
bad estimations around the probability 0.2 of each single measurement being missing.

3.2 Specific Algorithms for PLDMs

Starting from our analysis in Section 2.3 and inspired by the algorithms in Section 1.2, we present
here approaches specific to the context of PLDMs, i.e. the distance matrix contains the minimum
distance between a point and an LV in each of its entries. We suppose that the rank r of the
PLDM is known in practice or can be estimated well, which is not unrealistic since we usually
know the dimension of the ambient space and can get an upper bound on the rank as shown in
Theorem 2.5 or if we have a prior knowledge of particular structures in the configurations as in
Corollary 2.6. The methods discussed here need only the measured matrix and the estimation
of the rank of the original distance matrix, and, as opposed to previous algorithms, they do not
require an initial estimation of the configurations which was a drawback since we often needed a
good approximation of the true values, especially for direction vectors.

3.2.1 Denoising and Completion

First, consider we observe a noisy PLDM D̃ ∈ Rn×m as defined above. Before reconstructing
the configurations, we aim to estimate the original PLDM D ∈ Rn×m, and call the estimation
D̂ ∈ Rn×m. This can be expressed as the well-known low-rank approximation problems, expressed
as:

minimize
D̂∈Rn×m

g(̂D, D̃)

subject to rank(̂D) ≤ r.
(Q)

There exists various options for the objective function g, but to be coherent with the s-stress
function, we choose g(̂D, D̃) , ||̂D−D̃||2F . The low-rank approximation problem with the Frobenius
norm as a cost function has in fact been studied by Eckart and Young [49], where it is shown that
the solution is a truncated sum of the singular value decomposition of the observed matrix, as
detailed in the theorem below.

Theorem 3.1 (Eckart and Young [49]). Let D̃ be a rank r′ matrix and its singular value decompo-
sition given by

∑r′

i=1 σiuiw
T
i , with the singular values σi of D̃ arranged in decreasing order. Then,

for r < r′, the truncated sum

D̂ =

r∑
i=1

σiuiw
T
i

is a minimizer of ||̃D−A||2F over the matrices A with rank less than or equal to r, and the minimum
is ||̃D − D̂||2F =

∑r′

i=r+1 σ
2
i .

As a side note, we could have also taken g(̂D, D̃) = ||̂D − D̃||22, where ||A||2 = σmax(A) is the
spectral norm of a matrix, and this would have resulted in the same low-rank matrix D̂, as proven
by Mirsky [50], the difference being that in the spectral norm case, the minimum is attained at
||̃D − D̂||22 = σ2

r+1.

Continuing from Theorem 3.1, writing D̃ = UΣWT by SVD and denoting by Σ̂ the matrix con-
taining the r largest singular values of D̃ in its diagonal, we estimate D by D̂ = Û Σ̂ŴT , where
Û and Ŵ contain the left and right singular vectors corresponding to the r largest singular values
respectively.
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However, if we additionally have missing measurements, modeled by M ◦ D̃, doing only this com-
putation is not sufficient anymore, since the low-rank approximation matrix can contain negative
values at the positions where there were missing entries. Adapting Algorithm 3, we propose Al-
gorithm 4 presented below, where we alternatingly force the rank property and zero the negative
entries. Line 6 in the algorithm, where we force observed entries, is optional, in the sense that it
will be helpful if our measurements are noiseless or the noise is low, but in practice it is usually
helpful since the noisy observations are close to the true value, closer than what the SVD could
potentially give. We note that compared to Algorithm 3 we replace the EVD by SVD since we do
not have a guarantee of the matrix being symmetric or even square.

Algorithm 4 Alternating Rank-Based PLDM Completion

1: function RankCompletePLDM(D̃,M)
2: DM ← D̃M

3: D11T−M ← µ . Initialize unobserved
entries

4: repeat
5: D ← SVThreshold(D, r)

6: DM ← D̃M . Force known entries
7: D ← (D)+ . Zero the negative

entries
8: until MaxIter or Convergence
9: return D

10: end function

11: function SVThreshold(D, r)
12: UΣWT ← D . SVD
13: Σ← diag(σ1 . . . σr, 0 . . . 0)
14: return UΣWT

15: end function

Similarly to Algorithm 3, we do not have a guarantee of convergence, but experimentally, the
results are satisfying and the missing entries are completed well, especially for large numbers of
measurements n and m. Moreover, Figure 3.4 shows performance results in d = 3 dimensions of
Algorithm 4, namely the value of ||̂D −D||2F /(m||D||2F ), where D̂ is the estimated matrix and D
the true PLDM, when observing M ◦ (D + Z). Each point in the figures is obtained by averaging
50 independent tests, and for each test, the points and LVs are generated randomly. Moreover, the
number of iterations of Algorithm 4 is fixed to 100. We present PLDM examples where the LVs
are either lines or planes.

We observe that there is not much difference between what we obtain when the PLDM is generated
by points/lines or points/planes. The algorithm is more effective when the number of measurements
is large, as stated previously. This can be explained by the fact that each measured distance
implicitly adds a geometrical constraint, hence, the larger the number of distances we get, the
fewer the number of degrees of freedom there is for guessing the rest. The noise does not affect
much the approximation error, since in realistic cases, it is very small compared to the values
of the entries of the distance matrices. As expected, the error grows as the number of missing
measures grow. However, this small value for the error, for example when the probability of each
single measurement being missing is around 0.9 should not be interpreted as a good estimation
of D. Experimentally, the estimations stop becoming accurate around a probability of missing
measurements of 0.3.

3.2.2 Reconstruction

We now turn our attention to reconstructing the configurations of points and LVs that generated
the observed PLDM, i.e. retrieving X,P, {V`}1≤`≤k as defined in Equation 3.2, and for this we
will translate the problem as a special case of MDU. We remind that MDU is the setting where we
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(a) Plot of the approximation error ||D̂ −
D||2F /(m||D||

2
F ) for growing number of LVs m.

The number of points n is fixed to 20. The additive
noise Z is fixed, such that zij

i.i.d.∼ N (0, 0.01) and the
probability of a measurement being missing is fixed to
0.1.

(b) Plot of the approximation error ||D̂ −
D||2F /(m||D||

2
F ) for growing additive noise vari-

ance in the observed PLDM. The number of points and
LVs are fixed to n = 20 and m = 40. The probability
of a measurement being missing is fixed to 0.1.

(c) Plot of the approximation error ||D̂ −
D||2F /(m||D||

2
F ) for growing probability of mea-

surements being missing. The number of points and
LVs are fixed to n = 20 and m = 40. The additive noise
Z is fixed, such that zij

i.i.d.∼ N (0, 0.01).

Figure 3.4: Performance evaluation of Algorithm 4.

partition a set of points into two subsets and we measure the distances of the points belonging to
different subsets and not the same subset. In our context, each LV j contains n points which are
the closest points on the LV to one of the points in the set {xi}1≤i≤n. Let us denote by p̃ij ∈ Rd
the point on LV j closest to the point xi. These can be interpreted as "ghost" points {̃pij}1≤j≤m
appearing in the configuration only when dealing with point xi. As proposed by Dokmanic and
Vetterli [18], MDU can be expressed as EDM completion in the following way and adapted to our
case. Consider the collection of points xi∪{̃pij}1≤j≤m and the matrix P̃ i = [̃pi1, . . . , p̃im] ∈ Rd×m.
Then, the EDM Di of this collection can be written as:

Di , edm
(
xi ∪ {̃pij}j

)
=

(
0 edm(xi, P̃ i)

edm(xi, P̃ i)
T edm(̃P i)

)
∈ R(m+1)×(m+1). (3.7)
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Figure 3.5: In this example, we consider the distance between the two points xi (black dots) and
and the three lines lj (black lines). The red points correspond to the points p̃ij on line j closest
to the point xi. The resulting PLDM can be decoupled into two incomplete EDM, one for each
point i, as shown on the right.

However, we do not know the distances between these "ghost" points, i.e. edm(̃P i), but this can
be represented as observing MMDU ◦Di, where

MMDU =

(
0 1Tm
1m 0m×m

)
, (3.8)

therefore we note that this problem becomes similar to EDM completion for each point xi sepa-
rately, which we choose to address by solving the semidefinite relaxation presented in Problem (P)
in Section 1.2. A visual representation is provided in Figure 3.5. The reconstruction procedure is
described in Algorithm 5.

Algorithm 5 PLDM Reconstruction

1: function ReconstructPLDM(D, d)
2: for i ∈ {1, . . . , n} do
3: Di, X̂P i ← SDR(Di,MMDU , d)
4: end for
5: {x̂i}, {p̂ij} ←MatchXP(X̂P 1, . . . , X̂Pn)
6: for j ∈ {1, . . . ,m} do
7: p̂j , {v̂`j}` ← FitLV({p̂ij}i, {x̂i})
8: end for
9: return {x̂i}, {p̂j}, {v̂`j}

10: end function

11: function SDR(Di,MMDU , d)
12: x← −1/(m+ 1 +

√
m+ 1)

13: y ← −1/
√
m+ 1

14: Q← [y1m, x1m1Tm + yI]T

15: H ← SolveP(Di, Q,MMDU , λ)
16: Di ← edm(QHQT )
17: WΛWT ← Di . EVD
18: X̂P ← diag(

√
λ1, . . . ,

√
λd)[w1, . . . ,wd]

T

19: return Di, X̂P
20: end function

Overall, the strategy is to reconstruct each "ghost" point, along with the points xi, and then fit
an LV for each set {̃pij}i, since for a fixed j, each p̃ij is on the surface of the same LV j. We
note that the number n of points {xi} should be greater or equal to k, the dimension of the linear
varieties, to be able to determine each linear variety j with {p̃ij}i. We now detail and discuss
some practical subtleties of Algorithm 5.

SDR: The function SDR is used for completing the EDM Di and estimating the set of points that
generated it. It is largely based on the one presented by Dokmanic et al. [27], the only difference
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being that we used an eigenvalue decomposition instead of the singular value decomposition, since
the Di is symmetric. We only keep the d largest eigenvalue-eigenvector pairs to force the resulting
points to be d-dimensional. Of course, since the points are d-dimensional in reality, the remaining
m+ 1− d smallest eigenvalues will be very small compared to the first d of them, this can also be
verified in practice, where quick simulations show that these smallest eigenvalues are nearly 0, but
we choose to truncate them.

SolveP: The function SolveP is the one solving the semidefinite program defined in Problem
(P). There exists various programming libraries to solve (P), in our case, we chose to use the
Matlab/CVX implementation (Grant et al. [51], Grant and Boyd [52]). The regularization term
λ proposed by Biswas et al. [26] is chosen heuristically, generally depending on the number of
measurements we have.

Note: Instead of the function SDR, which solves the optimization Problem (P), we could have
taken other EDM completion algorithms such as Rank Alternation (Algorithm 3), Alternating
Descent or OptSpace, as presented in Section 1.2. However, OptSpace may not be the better
option in this case, because it assumes the missing entries are scattered randomly, and does not
perform well when they are structured in blocks, as in MMDU ([27]).

Therefore, at this point of Algorithm 5, for a fixed i, we have a way of retrieving the points
that generated Di. We call the matrix containing the estimates of the points in its columns
X̂P i = [̂xi, p̂i1, . . . , p̂im] ∈ Rd×(m+1). But these estimates we have for xi and {̃pij}j are entangled
over the different values of i, in the sense that we do not have a guarantee for them to be aligned
correctly relative to each other, which is a direct consequence of the invariance to rigid motion of
EDMs.

MatchXP: This function addresses the latter problem and its goal is to align correctly the
estimates ascribed in the columns of X̂P 1, . . . , X̂Pn. In theory, we can use Orthogonal Procrustes
to match the columns of X̂P i to xi ∪ {̃pij}j , and doing this for each point i, we would solve the
problem, but this is possible only when we have prior knowledge about the points, for example
some anchors. This is however the version presented in Algorithm 5. On the other hand, if we
additionally have access to the distances between xi’s, i.e. edm(X), we can construct an alternative
matrix Di to be completed:

Di = edm
(
{xi} ∪ {̃pij}j

)
=

(
edm(X) edm(X, P̃ i)

edm(X, P̃ i)
T edm(̃P i)

)
∈ R(n+m)×(n+m), (3.9)

with the corresponding mask:

MMDU =

(
1n1

T
n [1m, 0m×(n−1)]

T

[1m, 0m×(n−1)] 0m×m

)
. (3.10)

In this case, the matrix X̂P i would additionally contain an estimate for every point xi: X̂P i =
[̂x1, . . . , x̂n, p̂i1, . . . , p̂im]. Then, the coordinates of the points xi can be estimated from edm(X),
using for example the classical MDS algorithm, and taken as anchor points. It follows to match
{̂xi} to these anchors, to find an alinement for the overall set, i.e. rotation/reflection matrices
Ri and translation vectors bi. This version does not require any changes in the algorithm or our
discussion except that each "m+ 1" should be replaced by "m+ n".

Remark. In this latter situation, we get a new estimation of the full set of points {xi} at each
iteration. Therefore, these estimations could be averaged at the end as the final estimation.

FitLV: At this point, we have all the estimates x̂i and p̂ij of the points xi and p̃ij respectively,
∀1 ≤ i ≤ n and ∀1 ≤ j ≤ m. This last function is used to fit the corresponding LV of dimension
k passing through the points {̂pij}i and this for every j. Since the estimations may contain small
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errors, we will solve the problem statistically, i.e. by minimizing the mean squared error (MSE).
For a fixed LV j, this can be written as:

minimize
Nj∈R(d−k)×d

cj∈Rd

Ei[||Nj (̂pij − cj)||2] = L(Nj , cj)

subject to NjN
T
j = I.

(Qfit)

Algorithm 6 FitLV

1: function FitLV({p̂ij}i, {x̂i})
2: pavg

j ← 1
n [p̂1j , . . . , p̂nj ]1n

3: Kj ← 1
n

∑n
i=1(p̂ij − pavg

j )(p̂ij − pavg
j )T

4: WΛWT ← Kj . EVD, such that λ1 ≥ λ2 ≥ · · · ≥ λd
5: Φ̂j ← [w1, . . . ,wk]

6: p̂j ← 1
n [̂p1j , . . . , p̂nj ]1n − 1

n Φ̂jΦ̂
T
j [̂x1, . . . , x̂n]1n

7: return p̂j , Φ̂j
8: end function

This problem is translated as follows; we are trying to find the normal vectors ascribed in the rows
of Nj that best fits, in the least squares sense, the points {̂pij}i. Since the normal vectors are
orthonormal by assumption, we have NjNT

j = I. Finally, cj is a point on the LV (or one fixed to
be). This is so that we deal only with the normal vectors for now, since Nj (̂pij − cj) describes a
linear subspace (i.e. 0 belongs to it). We can solve this greedily by first starting with cj . We have:

L(Nj , cj) = Ei [̂p
T
ijN

T
j Nĵpij ] + cTj N

T
j Njcj − cTj N

T
j NjEi [̂pij ]− Ei [̂pij ]TNT

j Njcj .

Defining the statistical average of the points to be pavg
j = Ei [̂pij ] = 1

n [̂p1j , . . . , p̂nj ]1n and taking
the gradient of L with respect to cj , we can put the expression to 0 to obtain the minimum since
L is convex and quadratic on cj (NT

j Nj � 0):

∇cj
L = 2NT

j Njc
∗
j − 2NT

j Njp
avg
j = 0

which implies that we can take c∗j = pavg
j . Since for a scalar c, we have tr(c) = c, we may write:

L(Nj) = tr
(
Ei[(̂pij − pavg

j )TNT
j Nj (̂pij − pavg

j )]
)

= tr
(
NjEi[(̂pij − pavg

j )(̂pij − pavg
j )T ]NT

j

)
,

where we used the linearity and the circular property of the trace operator. Observing that
Kj = Ei[(̂pij − pavg

j )(̂pij − pavg
j )T ] is the empirical covariance matrix of the set {̂pij}i, it is PSD.

We can rewrite the problem as:

minimize
Nj∈R(d−k)×d

tr
(
NjKjN

T
j

)
subject to NjN

T
j = I.

(Qfit)

To solve this optimization problem, we state the following lemma by Horn and Johnson [53] (Corol-
lary 4.3.39). We omit the proof to avoid digressing too much, and recommend this last text for
more details.

Lemma 3.2 (Horn and Johnson [53]). Let K ∈ Rd×d be a symmetric matrix and N ∈ R(d−k)×d

such that NNT = I. Then, tr
(
NKNT

)
is minimized by taking N to contain the eigenvectors of

K in its rows corresponding to the d− k smallest eigenvalues. Additionally, the minimum is given
by the sum of these d− k smallest eigenvalues.
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Therefore, we may take the d−k eigenvectors of Kj corresponding to the smallest d−k eigenvalues
as the normal vectors of the LV. Then, the direction vectors of the LV j, ascribed in the columns of
Φ̂j = [̂v1

j , . . . , v̂
k
j ] ∈ Rd×k can be taken to be an orthonormal basis for the orthogonal complement

of the row space of Nj , i.e. R(NT
j )⊥. These are in fact given by the k eigenvectors of Kj

corresponding to the k largest eigenvalues.

Finally, we are left to find the intercept p̂j . In Equation 2.9, we found that the point p̃ij minimizing
the distance between the LV j and the point i can be written as p̃ij = pj + ΦjΦ

T
j xi. Having the

estimates p̂ij , Φ̂j and x̂i found previously, we can estimate the intercepts, noted as p̂j , using :

p̂j = Ei [̂pij − Φ̂jΦ̂
T
j x̂i] =

1

n
P̂ j1n −

1

n
Φ̂jΦ̂

T
j X̂1n, (3.11)

where P̂ j = [̂p1j , . . . , p̂nj ] ∈ Rd×n and X̂ = [̂x1, . . . , x̂n] ∈ Rd×n.

The procedure is summarized in Algorithm 6.

We note that if the estimates {̂xi}, {̂pij} are exact, i.e. the same as the original points, the
statistical fit would give the true LV.

Experimental Observations: Some examples of reconstructions are given in Figure 3.6. In
practice, we remark that the trickiest part in the reconstruction is correctly estimating the "ghost"
points {̃pij}, which is directly linked to the EDM completion of Di. The number of missing entries
is very large, therefore there may be problems for correctly estimating it. In applications, the
results are better when we know the distances between the points {xi}, i.e. edm(X) therefore
using the expression in 3.9 instead of 3.7. This is because we already have some parts of the
EDM filled which implicitly implies geometric constraints and helps us better estimate the missing
entries. Additionally, we also need to know the position of a subset of {xi} to use them as anchor
points to keep the overall structure (otherwise {p̃ij}i may not be on the same linear variety).
Moreover, we found that the best algorithm for completion is the SDR and that the regularization
term λ in the algorithm is important for a correct reconstruction of estimates. Indeed, choosing
incorrectly this value may lead to estimates with different dimension than d, where the d largest
eigenvalues in line 18 of Algorithm 5 are not significantly larger than the rest. We chose λ to
be the square root of the number of zeros or missing entries of Di, because of empirically good
results, as stated in [27], therefore λ =

√
(n+m)2 − n2 − 2m+ n in the case of Equation 3.9. We

also observed that the results are generally better when the number of points n is larger than the
number of LVs m. Overall, the problem of reconstruction of PLDMs can be reduced to a problem
of very sparse EDM completion, where the missing entries are in block structure. This case is
found to be harder than completing randomly structured missing entries, because there is a lot
of information missing for p̃ij ’s. Therefore, the method we propose is to first use Algorithm 4 to
denoise and complete the observed PLDM. Then reconstruct an estimation of the points and LVs
with Algorithm 5. Finally, use these estimations as input, i.e. starting points, for the non linear
programming algorithm presented in Subsection 3.1.2, if necessary.
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(a) Example with points and lines in 3D. The original
configuration is represented in red and the estimation
in blue. Originally, this result is obtained with 40
points and 40 lines but we chose to plot less for better
visualization.

(b) Example with points and planes in 3D. The origi-
nal configuration is represented in red and the estima-
tion in blue. Originally, this result is obtained with
40 points and 40 planes but we chose to plot less for
better visualization.

(c) Plot of the error of reconstruction ||P̃ −
P̂ ||2F /(m||P̃ ||

2
F ) after applying Orthogonal Procrustes

as the number of linear varieties m increases. P̃ cor-
responds to the matrix of true points p̃ and P̂ , to the
estimations p̂. Each point is obtained by averaging
10 independent tests.

Figure 3.6: Results of reconstruction obtained with the algorithm PLDM Reconstruction.
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Figure 3.7: EEDM table revisited.

We end this chapter by revisiting the table we started with in Figure 1.2. We indicated in green in
Figure 3.7, EDMs to represent the fact that they have been studied by various authors and many
algorithms exist for problems involving them. The blue entries represent PLDMs for which we
found similar properties, such as rank, to EDMs and described methods closely related to EDM’s
for inverse problems. For LDMs, we achieved to reconstruct a set of lines based on their distance
with a general minimization algorithm. The rest remains to be explored, but looking at the theory
from the previous section, EEDMs (as we defined them) seem to be difficult to manipulate for
the entries of the table indicated in red. A non-rigorous but somewhat interesting analogy of the
EEDMs would be to compare them to scalars, vectors and matrices. We may at first identify
the extension of EDMs to be the distance matrices containing the distances between lines, and
then the same for planes etc. But we found that with the definitions of the previous chapter,
PLDMs had more properties in common and similarities with EDMs, than LDMs. The analogy
mentioned above can be interpreted as follows; scalars share the properties of matrices, as they can
be interpreted as 1 × 1 matrices, but on the other hand they are also vectors of length 1. Then,
"seeing" EDMs as scalars, PLDMs as vectors and the rest as matrices, we may convince ourselves
that there exist some hidden structures in EEDMs that link everything together, and that the way
that we approached the problem allowed us to mostly decipher PLDMs. However, for a unified
theory we may need to study higher order properties.
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Hilbert distance matrices

Inspired by David Hilbert’s generalization of Euclidean space properties to functions, we discuss
in this section the extension of EDMs to Hilbert spaces, therefore using the name Hilbert distance
matrix (HDM). The objects we consider here are not vectors anymore but functions, and we will
see that this extension comes naturally. We note that in this chapter, we refer to objects belonging
to Rd as "vectors", in contrast to "functions", which will be used for continuous functions. We first
define the spaces and functions we consider to avoid ambiguities, the definitions are based from
the chapter "From Euclid to Hilbert" of the book by Vetterli et al. [40] where further explanations
can be found.

As we considered the `2 norm as the distance measure for vectors, we will use here the L2 distance.
Therefore, we require the functions to be square integrable on their domains I ⊆ R, and such
functions belong to L2(I). For two functions x, y ∈ L2(I), the inner product that induces the L2

norm is
〈x, y〉 =

∫
I

x(t)y∗(t)dt, (4.1)

which is the equivalent to the dot product for functions.

Remark. We will use the notation 〈·, ·〉 for the inner product between functions, i.e. x, y ∈
L2, 〈x, y〉 = 〈x, y〉L2 , whereas for vectors ααα,βββ ∈ Rd, we denote the inner product as 〈ααα,βββ〉`2 = βββTααα.
Since in many applications, for example in signal processing or communications, functions may
be complex valued, we consider x ∈ CI but we restrain ourselves to real expansion coefficients, as
defined in the next paragraph.

This gives us the distance between x and y:

d(x, y) = ||x− y||2 = ||x||2 + ||y||2 − 〈x, y〉 − 〈y, x〉 (4.2)

= ||x||2 + ||y||2 − 2<(〈x, y〉), (4.3)

where ||x||2 = 〈x, x〉. Moreover, to have analogous results to EDMs, we will consider finite dimen-
sional Hilbert spaces H ⊂ L2(I), where we use the same definition of dimension as in Definition
1.3. Hence, considering H is d-dimensional, any element x ∈ H could be written as a finite sum:

x(t) =

d∑
i=1

αiφi(t) = Φααα, (4.4)

where {αi}1≤i≤d are called the expansion coefficients and are unique; and {φi}1≤i≤d are linearly
independent functions such that H = span(Φ), since H is finite dimensional. The last term is an
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Figure 4.1: Example for HDM with sinusoids over I = [0, 1]. The solid lines represent xi’s and
the dashed ones xj ’s (j = i mod 3 + 1). As shown in the figure, the entries of the HDM can be
interpreted intuitively as the "area" squared between the curves.

equivalent notation to express the sum using the linear operator Φ : Rd → H. Furthermore, if
{φi}1≤i≤d form an orthonormal basis of H, αi = 〈x, φi〉 and 〈φi, φj〉 = 1{i = j}. This former
expression can be written compactly as ααα = Φ∗x. We will assume that it is the case in the
remaining parts of this text.

Let us now also define y = Φβββ ∈ H. Then, replacing this expression and the one in Equation 4.4,
in Equation 4.2, we obtain a familiar result given below.

Lemma 4.1. Consider a Hilbert space H ⊂ L2(I) of finite dimension d, and an orthonormal basis
Φ = {φi}1≤i≤d of H. For two elements x = Φααα and y = Φβββ of H, the distance in 4.2 can be
written as:

d(x, y) = ||ααα||2 + ||βββ||2 − 2βββTααα. (4.5)

Proof. This result is a direct consequence of Parseval’s theorem, but we do the derivations for
completeness. The inner product between x and y can be developed as follows:

〈x, y〉 =

∫
I

x(t)y∗(t)dt =

∫
I

d∑
i=1

αiφi(t)

d∑
j=1

β∗j φ
∗
j (t)dt

=

d∑
i=1

d∑
j=1

αiβj

∫
I

φi(t)φ
∗
j (t)dt

=

d∑
i=1

d∑
j=1

αiβj1{i = j} = βββTααα.

The other terms in 4.2 can be developed similarly to obtain the desired result.

This lemma implies an important result; the computation of the distance can either be done in
the Hilbert space H, or in Rd. The latter corresponds exactly to the distance computations in the
case of EDMs. To gain an intuition on why this is the case, we may see Φ as a linear operator
(since it satisfies the linearity properties). Φ : Rd → H is called a basis synthesis operator and
Φ∗ : H → Rd, the basis analysis operator, where Rd is the space of (square summable) vectors, or
sequences, of length d.

Lemma 4.2. Considering an orthonormal basis Φ of a d-dimensional vector space H, Φ∗Φ = I
on Rd and ΦΦ∗ = I on H.
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Figure 4.2: In this example, we take d=2 and Φ = {
√

2 sin(2πt),
√

2 sin(4πt)} an orthonormal basis
for H = span(Φ) ⊂ L2([0, 1]). x ∈ H is given by x(t) = α1

√
2 sin(2πt) + α2

√
2 sin(4πt), with

α1 = 3 and α2 = 2.

Proof. We have 〈x, φi〉 =
∑d
j=1 αj〈φj , φi〉 = αi, which leads to Φ∗x = ααα, and, since Φ is an

orthonormal basis for H, (ΦΦ∗x)(t) =
∑d
i=1〈x, φi〉φi(t) = x(t),∀x ∈ H. Therefore, ΦΦ∗ = I on

H. On the other hand, 〈Φααα, φi〉 =
∑d
j=1 αj〈φj , φi〉 = αi ⇒ Φ∗Φααα = ααα,∀ααα ∈ Rd. Hence, Φ∗Φ = I

on Rd.

Combining previous arguments leads to x = ΦΦ∗x, ∀x ∈ H, and ααα = Φ∗Φααα,∀ααα ∈ Rd. Therefore,
as stated by Vetterli et al. [40], we have a one-to-one correspondence between the two spaces,
where the geometrical properties are preserved, i.e. isometry, which explains the identical results.
We can see this as a change of basis; in the case of EDMs, we have H = Rd, thus, x is a d-
dimensional real vector. A natural choice of basis for Rd is the standard basis {ei}1≤i≤d. This
implies x =

∑
i αiei = ααα. Hence, for EDMs, we are doing the computations directly in Rd. For

HDMs, the space of the objects can be replaced by any finite dimensional Hilbert space H, and ααα
is the representation of x in Rd given an orthonormal basis for H. An analogy in the context of
digital communications would be to go from d-dimensional vectors in constellations to signals by
pulse shaping. A visual example is given in Figure 4.2.

Coming back to EDMs, consider n points {αααj}1≤j≤n, each belonging to Rd, ascribed to the columns
of A ∈ Rd×n. Combining Equations 1.1 and 4.5, the EDM D ∈ Rn×n generated by A is

D = edm(A) = 1ndiag(ATA)T − 2ATA+ diag(ATA)1Tn . (4.6)

Additionally, by Lemma 4.2, Φ∗Φααα = ααα, therefore A = Φ∗ΦA, which implies A∗A = ATA =
A∗(Φ∗ΦA) = (ΦA)∗(ΦA). Defining xj = Φαααj and X containing xj ’s on its "columns", we have
X = ΦA, and finally A∗A = X∗X. This is the advantage of dealing with Gram matrices, the
equivalence 〈xi, xj〉 = αααTj αααi shown above is also reflected to them. The final result is stated
explicitly and summarized below.

Lemma 4.3. With A,X and Φ as defined above, the HDM D ∈ Rn×n of X is given by:

D , hdm(X) , 1ndiag(X∗X)T − 2<(X∗X) + diag(X∗X)1Tn = edm(A). (4.7)

This lemma makes the link with EDMs and HDMs, therefore any property and algorithm described
previously for EDMs can be applied for HDMs. In particular, the invariance to rigid motion is
still present, since for an orthogonal matrix R and a vector b, hdm(X) = edm(A) = edm(RA +
Rb1Tn ) = edm(RΦ∗X + RΦ∗Φb1Tn ) = edm(RΦ∗(X + Φb1Tn )). But R(Φ∗) = R(RΦ∗), because R
is orthogonal. Hence multiplying X by RΦ∗ corresponds to a change of basis, and adding Φb ∈ H
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Figure 4.3: We take again d=2 and Φ = {
√

2 sin(2πt),
√

2 sin(4πt)} in this example. The point in
R2 generating D have been reconstructed using MDS. Then, Procrustes is applied to match the
set to anchor points and finally, we project the points from R2 to H = span(Φ).

to X corresponds to a translation in H. On the other hand, the rank properties are still valid. For
example, an HDM obtained from functions xi = Φαααi with the same energy, i.e. ||xi||2 = C, ∀i and
for a constant C, will have rank equal to d + 1, since ||xi||2 = ||αααi||2 by Parseval’s relationship,
and in Rd, ||αααi||2 = C implies that the points lie on the relative boundary of a hypersphere, and
the result comes from Theorem 1.4. The procedure to reconstruct the signals for HDMs is very
similar to the EDM case, the observed distance matrix D can be decomposed, for example using
classical MDS, to obtain the points A = [ααα1, . . . ,αααn] ∈ Rd×n such that edm(A) = D. Then, if we
have anchor signals in practice, their expansion coefficients and A could be used for the Orthogonal
Procrustes problem to match one another. Finally, the coefficients are "modulated" to the known
basis Φ to obtain the signals. An example is given in Figure 4.3. We also note that this extension
can be used on functions x ∈ H ⊂ L2(I) such that dom x = I, x is periodic of period I, or
supp(x) = I, where supp denotes the support (also including isolated and countable 0’s).

Practical Application, Constellation finding: We end our discussion by giving a simple
example application of HDMs in the context of Digital Communications. Consider the setting
where we do not know the which constellation the transmitter chose for modulation and we want
to estimate it. We suppose that the signaling model is such that each transmitted signal is of
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Figure 4.4: Example with d=2, n = 16 and Φ = {
√

2 sin(2πt),
√

2 sin(4πt)} an orthonormal basis
for H = span(Φ) ⊂ L2([0, 1]). The signals on the left are noisy observations of xi’s. The black
points correspond to the original constellation and the red ones is obtained by applying the classical
MDS Algorithm to the HDM constructed from the noisy observations.

the form xi = Φαααi where the orthonormal basis, or waveforms, Φ and the length of the signals
are known to us. We consider that there are n possible transmitted signals, therefore log2(n) bits
are encoded per signal, and that the dimensionality is d. Additionally, we receive a "training" set
containing all possibilities {xi}1≤i≤n. The channel is supposed to be Additive White Gaussian
Noise, therefore we observe xi(t) + ε(t) where ε is a white Gaussian continuous process of variance
σ2. Computing the HDM of these signals D̃, which is a noisy observation of the true HDM,
we convert the problem into multidimensional scaling, to find the constellation points {αααi}. An
example is given in Figure 4.4. Of course, we would need some additional knowledge to correctly
know which point corresponds to which binary symbol, for example the signals could be sent in
some known order. Additionally, we would also need to know the average energy used by the
transmitter to find a correct translation of the estimated constellation, but in practice, they are
usually centered around 0 and Classical MDS as presented above already finds a configuration
satisfying this property.
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Conclusion

EDMs have been shown by various studies in the past to possess very interesting theoretical
properties which lead to algorithms to reconstruct the original data points that generated the
observed matrix, by exploiting their implicit structures. Inspired by these results, we proposed in
this text an extension of EDMs to higher dimensional objects. Namely, we asked ourselves if we
have similarities between EDMs and matrices with components containing the minimum distance
between linear varieties of higher dimensions.

Our analysis showed that in the particular case of PLDMs; which are the special cases where the
distances are computed between two subsets, one of the subsets containing points and the other
linear varieties of higher dimension; some familiar properties such as rank deficiency are present
and closely related to EDMs. For the remaining of the EEDMs, our definitions did not allow to
reach similarities with EDMs. An interesting future work would be to study different metrics,
replacing our choice of minimum `2 distance. For example Grassmannians G(k,Rd) are spaces
which parametrize all k-dimensional linear subspaces of Rd, and have been extended to affine
subspaces by Lim et al. [54]. There has been various studies on metrics over Grassmannians, and
helpful properties could be extracted for our problem. Moreover, Conway et al. [55] looks at how n
k-dimensional subspaces in ambient space of dimension d should be arranged so that they are as far
apart as possible. It could be interesting to find a way to formulate the EEDM inverse problem so as
to ask ourselves this question. This is generally referred to as subspace packing in mathematics, and
has several applications, such as in Coding Theory. Problem descriptions making use of geometric
or multilinear algebra, such as tensors, could also be considered as potential options, since with
linear algebra, we saw in Chapter 2 that we have many cases where a closed form solution cannot
be written without prior assumptions.

In Chapter 3, we studied inverse problems, involving PLDMs and LDMs, our aim being to re-
construct the original set of linear varieties that generated the observed distance measurements.
For PLDMs, we used the rank deficiency of such matrices to denoise and complete the observa-
tions using low-rank approximation theory (Algorithm 4), and proposed a way to describe the
reconstruction of the original configurations as an EDM completion problem (Algorithm 5). The
EDMs to complete are very sparse, in a blocked structure, and obtaining exact reconstructions
using existing algorithms may be problematic, but the approximations were close to the original
configurations. It would be interesting to adapt the EDM completion algorithms to better fit our
particular problem, for example by tuning the parameters optimally, as a future work. Overall,
for Algorithm 5 to give good results, knowledge of the distances between points and additionally,
some anchors should be known in practice. Moreover, we saw that PLDMs and LDMs could be
reconstructed in the presence of noise and missing measurements by minimizing over the points
and direction vectors the Frobenius norm between the observed matrix and the EEDM constructed
by the variables of the problem. The results were obtained using global optimization tools such
as the interior point method. This latter method requires initial estimations as input and we ob-
served that they should be relatively close to the original configurations. To tackle this problem
for PLDMs, an approach would be to first use Algorithms 4 and 5 to obtain a good estimation,
and then use the global optimization method with these estimations as input if necessary.
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As a future study, a similar approach to Edge-MDS (E-MDS) presented by Macagnano and
De Abreu [56] could be looked into. This method also takes into account the edges connecting
the points, allowing to obtain the angle information in addition to the range information conveyed
by EDMs. An improvement of this method is proposed by Baechler et al. [57] where additional
constraints are enforced on the edge vectors. Studying more in depth the vectors connecting the
minimum distance achieving pair of points in two linear varieties, an adaptation of E-MDS to
EEDMs seems possible. This last paper also introduces Coordinate Difference Matrices, indepen-
dently recovering the coordinates of the edge vectors. Remembering that the edge vectors between
two linear varieties belong to the intersection of the spaces spanned by the rows of their normal
vectors, a further study would be to express linear varieties implicitly in the problem formulation,
instead of parametrically, as we mostly did.

Finally, in the last chapter, we showed the easy transition from vectors to finite dimensional
Hilbert spaces for EDM related problems. The matrices obtained in this case, HDMs, share the
same properties as EDMs. Essentially, they can be viewed as the same object, since points in Rd
along with d dimensional Hilbert spaces can generate the same distance matrix, as shown by the
one-to-one correspondence between these spaces.



Appendix A

Derivation of the gradient of the
objective in Section 3.1.1

We start with the LDM case and then derive the formula for EDMs by forcing V = 0. Denoting
the entries of ldm(P, V ) = D ∈ Rn×n as dij and the ones of D̃ as d̃ij , we first rewrite f as a sum
of functions.

f(P, V ) = ||ldm(P, V )− D̃||2F

=

n∑
i=1

n∑
j=1

(dij(P, V ))2 + (d̃ij)
2 − 2dij(P, V )d̃ij

=

n∑
i=1

n∑
j=1

fij(P, V )

Using the result of the minimum distance between lines from equation 2.5, the minimum distance
between line i and line j is given by dij = ||pi − pj ||2 − ti→jvTi pj − tj→ivTj pi. Then, the partial
derivative of f with respect to the entry (l, k) of P and V respectively can be written as:

∂dij
∂Plk

= 1{k = i}
[
2Pli − 2Plj − Vljtj→i −

∂tj→i
∂Plk

vTj pi −
∂ti→j
∂Plk

vTi pj
]

+ 1{k = j}
[
2Plj − 2Pli − Vliti→j −

∂ti→j
∂Plk

vTi pj −
∂tj→i
∂Plk

vTj pi
]

∂dij
∂Vlk

= 1{k = i}
[
− Pljti→j −

∂ti→j
∂Vlk

vTi pj −
∂tj→i
∂Vlk

vTj pi
]

+ 1{k = j}
[
− Plitj→i −

∂tj→i
∂Vlk

vTj pi −
∂ti→j
∂Vlk

vTi pj
]

Since ti→j =
vT
i pj+(vT

i vj)(v
T
j pi)

1−(vT
i vj)2

if i 6= j, we have:

∂ti→j
∂Plk

= 1{k = i}
[ Vljv

T
i vj

1− (vTi vj)
2

]
+ 1{k = j}

[ Vli
1− (vTi vj)

2

]
and

∂ti→j
∂Vlk

= 1{k = i}
[Plj + Vljp

T
i vj + 2Vljti→jv

T
i vj

1− (vTi vj)
2

]
+ 1{k = j}

[PlivTi vj + Vlip
T
i vj + 2Vliti→jv

T
i vj

1− (vTi vj)
2

]
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The results for tj→i are very similar and obtained by switching j by i and vice versa. Replacing
these expressions in the results above, we obtain:

∂dij
∂Plk

= 21{k = i}[Pli − Plj − Vljtj→i]

+ 21{k = j}[Plj − Pli − Vliti→j ]
∂dij
∂Vlk

= 21{k = i}[−Pljti→j − Vljti→jtj→i]

+ 21{k = j}[−Plisj→i − Vliti→jtj→i]

On the other hand, we may write:

∂f

∂Vlk
= 2

∑
i,j

∂dij
∂Vlk

(dij − d̃ij)

and a similar expression for Plk. Putting everything together, we obtain:

∂f

∂Plk
= 4

n∑
i=1

(Plk − Pli − Vliti→k)(2dik − d̃ik − d̃ki)

∂f

∂Vlk
= −4

n∑
i=1

(Plitk→i + Vlitk→iti→k)(2dik − d̃ik − d̃ki)

Finally, for EDMs, taking f(X) = ||edm(X)− D̃||2F , X = P and V = 0, we have:

∂f

∂Xlk
= 4

n∑
i=1

(Xlk −Xli)(2dik − d̃ik − d̃ki)

The results in Subsection 3.1.1 are obtained by putting the result in matrix form.
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