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Abstract We revisit the question of frame equivalence in
Quantum Field Theory in the presence of gravity, a situation
of relevance for theories aiming to describe the early Universe
dynamics and Inflation in particular. We show that in those
cases, the path integral measure must be carefully defined and
that the requirement of diffeomorphism invariance forces it
to depend non-trivially on the fields. As a consequence, the
measure will transform also non-trivially between different
frames and it will induce a new finite contribution to the
Quantum Effective Action that we name frame discriminant.
This new contribution must be taken into account in order
to assess the dynamics and physical consequences of a given
theory. We apply our result to scalar-tensor theories described
in the Einstein and Jordan frame, where we find that the frame
discriminant can be thought as inducing a scale-invariant reg-
ularization scheme in the Jordan frame.
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1 Introduction

A fundamental property that all sensible physical theories
share is the fact that physical statements cannot depend
on the choice of variables we use to describe the phys-
ical system, even though there might be a set of vari-
ables which have a preference. For example, in Special
Relativity we have the notion of different inertial frames
associated to observers moving at different relative veloc-
ities. Both observers have their own preferred coordinate
frames in which to describe events but physical state-
ments are invariant under Lorentz transformations which
relate the two frames. Moving to the theory of General
Relativity, we demand physical statements to be invariant
under quite arbitrary coordinate transformations on space-
time. In classical field theory one can also extend the
notion of general covariance to field space by demanding
that physical statements are independent of the way we
parametrise the field variables. Invariably, the equations of
motion will appear simpler if we use a certain set of vari-
ables, however the physics should be indifferent to this
choice.

Quantum Field Theory (QFT) is a different story though,
since the formalism is drastically different to classical
mechanics. In perturbative QFT we are interested in ampli-
tudes between asymptotic states, which can be obtained
by taking variational derivatives of the Quantum Effec-
tive Action after performing a path integral over all pos-
sible paths with the right boundary conditions. One prob-
lem is that the standard definition of the Quantum Effec-
tive Action depends on the choice of variables as a con-
sequence of the source term. However since the source
is equal to the effective equations of motion, the non-
equivalent pieces which arise for this reason do not con-
tribute to on-shell amplitudes used to derive S-matrix ele-
ments. More generally, since observables are evaluated for
vanishing source this dependence on the choice of vari-
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ables is innocuous. Indeed one may even overcome this
problem off-shell by using the unique effective action [1]
which makes use of a covariant source term. However, as
we shall see, this is not the end of the story. Even with
the vanishing source terms, the path integral measure must
also transform in a covariant manner for theories formulated
with different field variables to be equivalent. This issue
becomes especially subtle in the presence of gravity and
whenever extra symmetries are required for the field man-
ifold.

A first indication that the choice of variables can be signif-
icant was found in [2] where it was pointed out that in certain
scalar-tensor theories it is possible to map anomalous sym-
metries (scale invariance) to healthy ones (shift symmetry)
after a field redefinition. Specifically, theories which are clas-
sically scale invariant in the Jordan frame and are related to
a theory which enjoys shift symmetry in the Einstein frame.
In that case, quantization in the two different sets of vari-
ables lead to a different S-matrix due to the appearance of
new transition amplitudes only in the Jordan frame, where
the scale invariance is anomalous.1 In the Einstein frame the
shift symmetry remains intact in the quantum theory and con-
sequently no anomaly occurs. Through the example in [2],
one can trace the origin of the discrepancy to the existence
of the metric as a dynamical degree of freedom, since it is
the metric redefinition what eventually leads to the transmu-
tation of symmetries. This prompts us to further investigate
the frame dependence of more general scalar-tensor theo-
ries and to identify the origin of disparity between different
quantum theories.

Although we do not have a complete theory of Quantum
Gravity, there are several regimes in which we require the
metric to be a dynamical degree of freedom and General
Relativity (GR), or alternative theories, to be quantized as an
effective field theory. The most prominent of these regimes
is inflation, happening at the very first moments of our Uni-
verse’s lifetime, when the mean energy was high enough for
quantum gravitational effects to be of relevance. We do not
dispose of an accurate description of inflation though, due to
a lack of data to pinpoint a particular theory [3], but instead
there exist many models which satisfy the requirements that
lead to a successful inflationary regime compatible with our
meager data [4–19]. Many of these models are formulated,
either explicitly or effectively after disentangling the relevant
degrees of freedom, as single field inflation models, where a
scalar field is coupled to gravity and moves down a poten-
tial, producing inflation while rolling down and stabilizing
in the minimum of the potential afterwards. Although this
leads to a large zoology of different models, even just for

1 The textbook example of the triggering of new S-matrix elements by
anomalous currents is the decay of the neutral pion in two photons due
to the axial anomaly in chiral perturbation theory.

single field inflation, they all share a basic structure on their
Lagrangian2

L = −U (φ)R + 1

2
∂μφ∂μφ + V (φ). (1)

Different choices of the scalar field potential V (φ) and
the gravitational coupling U (φ), which includes both the
Lagrangian for gravity and the non-minimal interaction terms
between gravity and the scalar field φ, will lead to the differ-
ent explicit proposals for inflation.3 Related to scalar tensor
models are f (R) models where L = f (R) which, apart for
the case where f (R) is linear, also describe one physical
scalar particle coupled to a spin-two graviton.

It is of common practice, though, to use field redefinitions
to eliminate unpleasant non-minimal couplings in U (φ)R
between the metric and the scalar field e.g. φ2R. By redefin-
ing a new metric and scalar field, which we denote with tildes,
it is always possible to get rid of these terms and arrive to a
minimally coupled theory

L = −M2
p R̃ + 1

2
∂μφ̃∂μφ̃ + Ṽ

(
φ̃
)

, (2)

where the gravitational sector is described by plain General
Relativity. The theory described by the original Lagrangian
(1) is referred to as the Jordan frame where as the minimally
coupled theory is known as the Einstein frame. Similarly one
can also use field redefinitions to rewrite any f (R) model as a
scalar tensor theory either in the Jordan frame or the Einstein
frame.

The simpler setting of the Einstein frame allows for an also
straightforward interpretation of the dynamics of the system
as a scalar field rolling down the new potential, from which
we can derive all relevant inflationary parameters. However,
as we have previously pointed out, this is a dangerous step
if we want to include quantum effects, since the quantum
formulation of both theories might be different in certain
cases and we might be missing important physical effects.
Indeed, the question of equivalence of scalar-tensor theories
in Cosmology has been thoroughly studied in the recent years
from many different points of view ([20–37] and references
therein). However, most works are focused on the classical
and observational aspects of frame equivalence and the few
that study the issue at a quantum level find contradicting
results. Several works have concentrated on the divergent
part of the one-loop the effective action and the correspond-
ing beta functions (for related non-perturbative studies using

2 Here and throughout we write the Euclidean Lagrangians. The corre-
sponding Lorentzian Lagrangian comes with a relative minus sign for
each term.
3 There are models that are not explicitly captured by this simple
Lagrangian (Starobinsky inflation [4], for example). However we can
get them by minor modifications of (1).
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the functional renormalisation see [38,39]). These studies
show that the divergent part of the effective action generi-
cally differs in the two frames by terms proportional to the
equations of motion. This was shown in two and four dimen-
sional dilatonic gravity in [21,40] while in four dimensions
this has also been proven in [22] for a wide range of models.
In [30] calculations were carried out using the field space-
covariant Vilkovisky-DeWitt effective action which guaran-
tees that results are formally independent of parameterisation
of the quantum fields (see also [41,42] for another frame-
covariant approach). However one should bear in mind that
even if one uses a covariant approach results can still depend
on the definition of the geometric objects such as metrics and
connections defined on field space.

Motivated by these concerns, which might have conse-
quences for many important inflationary and gravitational
models, we wish to revisit the problem of equivalence of
Quantum Field Theories. We will do this by giving a proper
definition of all the elements involved in the path integral
quantization of a given Quantum Field Theory and studying
their behaviour under a change of frames. We will find that, as
hinted by the previous discussion about anomalies, the source
of the apparent inequivalence between the frames is the defi-
nition of the path integral measure, which includes the deter-
minant of a metric defined on the field manifold. While this
metric is generically field independent for scalars, fermions
and vector fields, and thus it can be ignored for perturbative
computations, this is no longer the case when gravity enters
into the game. The requirement of diffeomorphism invari-
ance of the Quantum Effective Action (even when the metric
is just a semi-classical degree of freedom or a external source)
forces the integration measure to depend non-trivially on the
field variables.

If we want preserve frame equivalence at the quantum
level, the measure must also transform non-trivially after a
change of frames. However if we first change frames at the
classical level and then quantize the resulting theory, the mea-
sure will not coincide with the transformed one. The oper-
ations of changing frames and quantizing do not commute.
Consequently, the corresponding Quantum Effective Actions
will differ by a non-vanishing finite piece which is not pro-
portional to the equations of motion. The derivation of this
frame discriminant term constitutes the main novel result
of this work. It will contribute to 1PI correlation functions
and thus it cannot be ignored. Disregarding it represents a
different choice of integration measure, and thus a different
Quantum Field Theory.

This paper is organized as follows. In Sect. 2 we will intro-
duce the concept of frame equivalence both at the classical
and quantum level, discussing the state-of-the-art of the dis-
cussion and raising some concerns for scalar-tensor theories.
In Sect. 3 we will define the path integral and the integration
measure for a general theory, keeping in mind the scalar-

tensor theories of interest and discussing the transformation
of the path integral measure.

We will then present the derivation of the frame discrim-
inant using the background field method in Sect. 4 and we
will apply our formalism to scalar-tensor theories in Sect. 5,
describing also its relation with the so called scale-invariant
regularization. Finally, we will summarize and discuss our
results and conclusions in Sect. 6. Appendix A will be
devoted to prove some statements about our derivation in
the presence of gauge invariance.

2 Frame equivalence

Frame equivalence is an important assumption for physics
to be reliable. It means that the choice of variables used to
describe a system should not matter when deriving physical
statements, although of course computations might be sim-
pler for some of these choices than for others. The trivial
example of this situation is the case of a particle forced to
move in a circumference in classical mechanics. The system
can be described either by using Cartesian or polar coordi-
nates. The equations are simpler in the latter but physical
statements are equivalent and in one-to-one correspondence,
provided that we properly transform quantities between dif-
ferent coordinates systems.

In classical field theories we can give a solid definition
of this statement. If we have two frames (two choices of
dynamical field variables) �a(x) and �̃a(x) related locally
by

�̃a(x) = �̃a(�a(x)), (3)

we call them equivalent if any physical quantity A(�) satis-
fies

Ã(�̃)|�̃=�̃(�) = A(�). (4)

This is no more than the statement of covariance under the
manifold spanned by all possible configurations of the vari-
ables �a . Alternatively, we could also say that this defines the
notion of what we consider a physical quantity for a general
theory. In particular, it encloses a notion of relativity famil-
iar from General Relativity but where in (4) the coordinates
are the dynamical variables which parametrise the physical
system rather than space-time coordinates. We can therefore
identify the variables � with coordinates on the space of
dynamical histories M� such that (4) is just the statement
of general covariance, where physical observables A(�) are
understood as scalars on M�.

A very important consequence of what we have described
is the equivalence of classical field theory under redefini-
tions of the variables �. This follows from the fact that the
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action S(�) satisfies (4), which means that classical equa-
tions of motion, obtained by applying the variational princi-
ple to either S(�) or S̃(�̃), are related by

δS[�]
δ�a

=
∑
b

∂�̃b

∂�a

δ S̃
[
�̃

]

δ�̃b
. (5)

Provided that the Jacobian matrix ∂�̃b

∂�a is non-singular

when evaluated at each of the stationary solutions, δS(�)
δ�a = 0

implies δ S̃(�̃)

δ�̃b = 0 and stationary trajectories are in a one-
to-one correspondence. One can then say that two theories
where the variables are related to each other by (3) are classi-
cally equivalent if the dynamical shells corresponding to the
points �0 and �̃0, where the actions are stationary, are related
by �̃0 = �̃(�0). Thus, any physical quantity will lead to the
same result in either frame when evaluated on-shell, as a
consequence of (4). Again, this just encloses the common
notion that one should be free to choose whatever variables
they prefer to perform a computation and, although particular
equations will be different, physical statements must remain
the same for any choice.

Although this statement is crystal clear in classical
mechanics, the situation is not so transparent in Quantum
Field Theory(QFT), where not only stationary trajectories
contribute to the dynamics of a given system. There, instead,
we are interested in objects formally obtained from a path
integral over all possible trajectories with the right boundary
conditions. In particular, we focus our interest on correlation
functions obtained from the Quantum Effective Action �[Q],
which is defined in terms of the mean field Q by a Legendre
transform

�[Q] = W [J ] − J · Q, (6)

where Q satisfies the effective equations of motion

∂�

∂Qa
= −Ja, (7)

and W [J ] is given as a (Euclidean) path integral over the
field variables with a source Ja

Z[J ] = e−W [J ] =
∫

[d�] e−S[�]−J ·�. (8)

Here the dot product is assumed to represent sum over all
indices as well as integration over space-time coordinates

J · � =
∫

d4x Ja�
a . (9)

However, as noted by Vilkovisky in [1], the quantum effec-
tive action as defined here does not satisfy an analogous for-
mula to (5). In general

δ� [Q]

δQa
�=

∑
b

δQ̃b

δQa

δ�̃
(
Q̃

)

δQ̃b
, (10)

and there is not a one-to-one correspondence of 1PI correla-
tion functions in different frames. Nevertheless, it was also
shown in [1] that the problematic pieces are proportional to
the equations of motion and they cancel on-shell, preserving
equivalence for those correlators that contribute to S-matrix
elements. The problem persists off-shell, and although there
is a way to covariantize �[Q], arriving to what is known as
Unique Effective Action, it is not clear if this redefinition is
needed at all for most standard settings, since all dynamics
is presumably contained in the S-matrix.4 One may summer-
ize the situation by noting that it is the non-covariance of
(9) which is responsible for (10) but that, since observables
are calculated for J = 0, this can only lead to disparities in
intermediate steps in the calculation of correlation functions
but not in observables (e.g. the S-matrix).

Even though things seem pretty clear from Vilkovisky’s
arguments, more concerns can be raised in the presence of
gravity as one of the dynamical fields in �, even for on-shell
quantities. In particular, let us focus in the problem pointed
out in [2], where we consider non-linear redefinitions of the
fields. In those cases, the realization of gauge and global sym-
metries might differ in different frames. Therefore, it might
also happen that something which is an exact symmetry under
renormalization in one frame maps to an anomalous symme-
try in the other. Then, the anomaly to the current conservation
generates new S-matrix elements in one of the frames only,
through the expectation value

〈0|∇μ J
μ|0〉 = 〈0|�〉 �= 0, (11)

where |�〉 = ∇μ Jμ|0〉 is some state of the theory. This
amplitude, which it is not generated in the second frame,
where there is no anomaly, spoils the equivalence premise in
a strong way.

Although this is a quite general effect associated to field
redefinitions, let us here be explicit and show a realization
of this phenomenon by choosing a particular scale-invariant
scalar-tensor theory, where we couple the metric gμν to a
scalar field φ in the Jordan frame

SJ [gμν, φ] =
∫

d4x
√|g|

(
−ξφ2R + 1

2
∂μφ∂μφ + λ

4!φ
4
)

,

(12)

where ξ and λ are dimensionless couplings. This action is
invariant under diffeomorphisms as well as under global scale
transformations of the form

4 There is some discussion about the need of using the Unique Effective
Action in order to obtain gauge invariant beta functions for running
couplings [43,44].

123



Eur. Phys. J. C (2019) 79 :595 Page 5 of 18 595

gμν → �2gμν, φ → �−1φ, (13)

for constant �. This symmetry is extended to local Weyl
invariance when ξ = − 1

12 , for which the scalar field becomes
a gauge degree of freedom [40]. This defines our first frame,
with variables collectively denoted as �.

The frame �̃ will be the corresponding Einstein frame,
obtained by defining a new of set of variables through

g̃μν = ξφ2

M2
p
gμν, φ̃ = Mp

√
1

ξ
+ 12 log

(
φ

m

)
, (14)

where we have introduced two new scales, the Planck mass
Mp and an arbitrary scale m. The corresponding action is

SE [g̃μν, φ̃] =
∫

d4x
√|g̃|

(
−M2

p R̃ + 1

2
∂μφ̃∂μφ̃ + λ

4!
M4

p

ξ2

)
.

(15)

In this frame, the action is invariant under diffeomor-
phisms too but, instead of enjoying a scale symmetry, this
has mutated into a shift symmetry for the scalar field

φ̃ → φ̃ + C, (16)

where C is a constant.
Now we can ask to what extent the two actions (12) and

(15) are classically equivalent. If we consider the equations
of motion for (12) it is clear that φ = 0 is a solution for
all metrics gμν . However for φ = 0 the coordinate transfor-
mation between the two frames is singular, since it maps to
g̃μν = 0 and φ̃ = ∞. Thus, equivalence demands the the-
ory to be in the broken phase. As long as we give a vacuum
expectation value to the field φ, both frames are classically
equivalent.

However, this is not the end of the story. As we com-
mented, this setup gives us an explicit relalization of the
problem referred to as anomalous frame equivalence in [2].
When quantizing this theory in the Jordan frame in dimen-
sional regularization5 we will generate contributions to the
effective action of the generic form

�J
[
gμν, φ

] = 1

ε

∫
dd x

√|g|
∑

OJ
[
Rμναβ, φ

] + finite,

(17)

where OJ
[
Rμναβ, φ

]
are homogeneous operators of energy

dimension 4, Rμναβ is the Riemann tensor constructed with
gμν and we have restricted ourselves to a single loop in the

5 Here we use dimensional regularization for simplicity of the discus-
sion and computations, since it is a standard tool in QFT. However, any
other regularization will unavoidably lead to the same conclusions.

perturbative expansion. Note that the volume integral here is
d-dimensional, with d = 4+ε. This means that, after a scale
transformation, the integrand will transform as

√|g|
∑

OJ
[
Rμναβ, φ

] → √|g|
∑

OJ
[
Rμναβ, φ

]
�ε,

(18)

which, after expanding in ε will generate a finite residue on
the transformation of the effective action

δ�J
[
gμν, φ

] = ω

∫
dd x

√|g|
∑

OJ
[
Rμναβ, φ

]
, (19)

where � = 1 + ω + O(ω2).
This is the usual scale anomaly of theories with scale

invariance in curved space, where new contributions to the
gravitational lagrangian are generated by radiative correc-
tions and, whenever we can define a sensible S-matrix,6 they
will generate a new scattering amplitude from the anomalous
contribution to the current conservation

〈0|∇μ J
μ
J |0〉 =

∑
OJ

[
Rμναβ, φ

]
, (20)

where Jμ
J is the classically conserved current associated to

the symmetry (13).
In the Einstein frame, we can also proceed with quantiza-

tion in the standard fashion, also using dimensional regular-
ization. In that case, the one-loop effective action will take a
similar form

�E

[
g̃μν, φ̃

]
= 1

ε

∫
dd x

√|g̃|
∑

OE

[
R̃μναβ, φ̃

]
+ finite.

(21)

The operators OE can be obtained, when on-shell, as a
transformation of the corresponding ones in the Jordan frame,
satisfying equivalence in the sense of [1]. However, in this
case there is no anomaly in the shift symmetry, so there is no
obstruction to the conservation of the corresponding current

〈0|∇μ J
μ
E |0〉 = 0, (22)

and the new elements are not generated. This effect distin-
guishes the frames.

There is an obvious clash here with the conclusion of [1],
which claims that the S-matrix must be equivalent in both
frames. However, by examining this particular illuminating
example of a scale-invariant theory that we have chosen, it
is not difficult to see what is the origin of the issue. Going

6 The definition of the S-matrix depends on the uniqueness of asymp-
totic states, which is only possible if the space-time is globally hyper-
bolic [45]
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carefully over the derivation described in the previous para-
graphs, we see that there are two crucial steps involved in
the computation – the introduction of a regularization and
the computation of the anomaly. Taking into account that,
provided that the transformation between frames is not sin-
gular, the action transforms in a proper manner, this clearly
isolates the origin of the problem in the measure of the path
integral. Indeed, if one goes over the derivation of the Unique
Effective Action in [1], it can be seen that although the path
integral measure is carefully defined in the paper, it is con-
sidered to be the same in any frame and thus to give the same
contribution regardless of the choice of variables. We will
see in the next section that this is actually not true.

3 The functional integral

Let us consider the Euclidean path integral of a quantum field
theory described by a set of fields collectively denoted as �

with Euclidean action S[�]. That is

Z[J ] =
∫

[d�] e−S[�]−J ·�. (23)

Since the source termJ ·� breaks reparameterisation invari-
ance we will from now on consider the case J = 0. This
allows us to concentrate on effects which come from differ-
ent choices of the functional measure.

Here [d�] represents the functional measure before reg-
ularisation, whose definition might vary depending on the
parametrization of the degrees of freedom used to construct
the perturbative expansion of the path integral. However, we
must require this measure to be reparametrisation invariant.
This can be achieved by regarding the fields � as coordinates
on the configuration space M�. General covariance in this
space thus defines

[d�] =
∏
a

d�a

√
2π

√
det Cab[�]V−1

gauge. (24)

Let us explain the different objects that appear in this for-
mula. First, we have allowed the action to be invariant under
certain symmetry (global or gauge) such that the field �a is a
section of the corresponding bundle, carrying an index which
might be also used as a label for the different field species.
With the dependence of the field suppressed �a = �a(x),
we can understand a as a DeWitt index. Consequently the
product over a also implies a product over points in space-
time. The factor of

√
2π appears for normalization purposes.

The measure is then parametrized by the metric Cab in M�,
which will be generally curved and is to be understood as a
two point function of the ultra-local form

Cab = Cab(x)δ(x, y), (25)

where Cab(x) are local functions of the fields �a(x).

For gauge theories we also have to divide by the volume
of the gauge group of the action. The definition of Vgauge also
requires a metric such that

Vgauge =
∫ ∏

α

dξα

√
2π

√
det ηαβ [�], (26)

where ξα are the generators of the Lie algebra of the symme-
try. Here again α is understood as a DeWitt index including
both the discrete index and the spacetime coordinate and ηαβ

has the ultra local form ηαβ = ηαβ(x)δ(x, y).
Thus the path integral will not depend only on the action

S[�] but also on the choice for the metrics Cab[�] and
ηαβ [�]. For theories such as Yang-Mills, the metrics can
be chosen to be independent of the fields without breaking
gauge invariance and thus they are not relevant for the com-
putation of correlators in perturbation theory. However, in
the presence of gravity, the metrics have to depend on the
dynamical fields � themselves to preserve diffeomorphism
invariance [46]. This implies that in a general case we can-
not neglect the contribution of the functional measure into
the result of the path integral.

As it is written, the integration measure is reparameterisa-
tion invariant, since it is invariant under diffeomorphisms on
M�. Therefore at a purely mathematical level we are free
to choose a different parametrisation of our quantum fields
(3). Throughout this paper we will be interested in the case
where �̃a(�b) is a local invertible function of the fields that
does not involve derivatives such as (14). Under this change
of variables, the action S satisfies (4) in a trivial manner

S̃[�̃] = S[�], (27)

while the metrics Cab and ηαβ transform as a tensor and a set
of scalars respectively,

C̃ab[�̃] = δ�c

δ�̃a
Ccd

δ�d

δ�̃b
, η̃αβ(�̃) = ηαβ(�), (28)

which maintains the form (25) provided that �̃a(�b) is a
local function of the fields.

We are then free to equivalently write the path integral in
the form

Z =
∫

[d�̃]e−S̃[�̃], (29)

where now

[d�̃] =
∏
a

d�̃a

√
2π

√
det C̃ab[�̃]V−1

gauge, (30)

provided both (27) and (28) hold. Note that here we could
have written Z̃ on the left hand side of the previous formula.
However, we want to stress the fact that the value of the path
integral in the new variables must remain the same, we are
just performing a change of variables. Thus, as long as one
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properly transforms the integration measure, the choice of
field variables can not affect the physics; it is just a choice of
coordinates on M�. However, what can affect physics is the
choice of the metric Cab and the choice of the metric ηαβ .
If one were to choose different metrics Cab and ηαβ then
evidently the path integral would be different. Thus, while
classically we require that equivalent theories have actions
related by (27), quantum mechanically we have the addition
requirement that the measures of the theories are equivalent
which is satisfied by (28).

The explicit construction of the metric is a subtle issue and
different approaches can be found in the literature [46–50]. A
fundamental restriction on the choice of Cab and ηαβ which
we can impose is that they must lead to a BRST invariant
measure for gauge theories [46]. However this only dictates
that they transform in a covariant manner under a gauge trans-
formation and does not fix their form. Thus to completely fix
the measure we must give a prescription which may itself
depend on a preferred choice for the field variables (also
phrased as a choice of frame). Since different prescriptions
lead to different path integrals involving the same action,
they correspond to different quantisations of the same clas-
sical theory. In other words we may encounter a situation
where (27) holds but (28) is violated.

A prescription which is usually used to determine the met-
rics, either explicitly or implicitly, is to choose them to cancel
ultra-local divergences which appear in the one-loop expres-
sion for the path integral. To see how this arises naturally,
let us consider the simple example of a free scalar field in
curved space-time with action

Sfree[φ, gμν] = 1

2

∫
d4x

√|g| gμν∂μφ∂νφ. (31)

We can then write the source-free path integral where we
integrate over the fields φ as

Zfree[gμν] =
∫

dφ
√

det C[φ, gμν]e−Sfree[φ,gμν ], (32)

where dφ is shorthand for
∏

x
dφ(x)√

2π
.

The question then is by what criteria should we fix
C[φ, gμν]? First, let us impose that Zfree[gμν] is diffeomor-
phism invariant. To ensure that this is the case we can impose
that the line element

d�2 =
∫∫

d4x d4y δφ(x)C(x, y)δφ(y), (33)

is itself diffeomorphism invariant. This implies that∫
dφ

√
det C[φ, gμν] is diffeomorphism invariant as well,

which along with the diffeomorphism invariance of
Sfree[φ, gμν] in turn implies the invariance of Zfree[gμν].
Furthermore if we impose that C(x, y) is ultra-local, we can
determine it up to the choice of a scalar s(x) where

C(x, y) = √|g|s(x)δ(x, y), (34)

such that

d�2 =
∫

d4x s(x)
√|g|(δφ(x))2. (35)

If we assume that s(x) is independent of φ we can thus
formally perform the functional integral to obtain

Zfree[gμν ] =
[
det

(
C−1S(2)

)]− 1
2 =

[
det

(
−s−1(x)∇2

)]− 1
2

,

(36)

where S(2) refers to the Hessian of the action. Then, the natu-
ral choice is to take s(x) = �2 to be a positive constant where
� should have the dimension of a mass to ensure that Zfree

is dimensionless. The prescription can be thus summarised
(and generalised straightforwardly) as identifying the metric
Cab with the coefficient of the Laplacian appearing in the
Hessian of the action multiplied by the constant �2. That
is, if we assume that the term in the Hessian involving two
derivatives is of the form

S(2)
ab = −Gabg

μν∂μ∂ν + O(∂) = −Gab∇2 + ..., (37)

for some metric gμν , we can then choose Cab = �2Gab.
We shall refer to this method of determining the measure as
the standard procedure as it is the one which is adopted in
practice. A derivation of this prescription starting from the
phase space path integral which defines the canonical theory
is given in [48].

However there is an ambiguity once we include the space-
time metric as one of the quantum fields if there is not a
unique choice of which metric we use to construct the Laplace
operator gμν∂μ∂ν in the previous formula. Different choices
of metrics will lead to different Laplace operators and to
different choices for Gab. For instance, different conformally
related metrics

gμν(σ ) = e2σgμν(0), (38)

will lead to different definitions of Gab depending on the
value of σ

Gab(σ ) = e2σGab(0). (39)

If σ were field dependent, then we would find that the inte-
gration measure depends non-trivially on which metric is
identified with gμν .

Thus, the prescription is not unique. Different choices of
the preferred space-time metric gμν will lead to different path
integrals. This choice can then be interpreted as a preferred
frame choice since, if we consider two parametrisations of
the fields �a and �̃a which include metrics gμν and g̃μν

respectively, then the choices gμν = gμν and gμν = g̃μν

will in general lead to different path integrals. Nonetheless
the choice of which field variables we use to carry out the
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calculation is independent of how we identify gμν in order to
determine the form of the measure. While the former choice
does not affect the physics, the latter choice can be under-
stood as a different quantization which can lead to different
physical predictions and thus to different quantum field the-
ories. One can therefore trace the consequences of defining
theories with different preferred metrics gμν to the additional
factor of e2σ . By carefully keeping track of this difference
one can then identify a concrete physical difference between
the two inequivalent quantum theories.

4 The frame discriminant: a background field approach

In the previous section we argued that the choice of variables
for the path integral influences the choice of the integration
measure, and that in the presence of gravity this can lead to
inequivalent contributions to the path integral. We did this in
a schematic way, using a simple free theory as a toy exam-
ple. The purpose of this section is to generalize this result
and present a derivation of this effect at one-loop in the per-
turbative expansion by using the background field method
[51]. Specifically, we will always have in mind the example
of a scalar-tensor theory of the general form

S[φ, gμν]
=

∫
d4x

√|g|
[

1

2
Z(φ)∇μφ∇μφ −U (φ)R + V (φ)

]
,

(40)

where the fields � = {gμν, φ} are the metric gμν and a scalar
field φ, and of which (12) is a particular example. Many of
the details of the one-loop path integral for this model have
been worked out in [52].

Here we consider a frame �̃a where the fields �̃ =
{g̃μν, φ̃} are related to the original frame � by (3) which
we take to be invertible such that we also have functions
�a = �a(�̃). The action S therefore transforms as a scalar
in the sense that

S̃[�̃] = S[�]|�=�[�̃], (41)

where S and S̃ are the actions before gauge fixing. In partic-
ular, we will consider that the spacetime metrics will differ
by a non-trivial conformal factor

g̃μν = e2σ gμν |σ=σ(φ), (42)

for some function σ(x) of the space-time coordinates which
can be expressed as a function of φ(x). Again, note that (14)
is a particular example of this.

Now we note that up to terms proportional to the equations
of motion

δ2 S̃[�̃]
δ�̃aδ�̃b

= δ�c

δ�̃b

δ�d

δ�̃a

δS[�]
δ�cδ�d

+ O
(

δS

δ�

)
, (43)

and thus the on-shell Hessian transforms as a tensor on �.
This is true of the Hessian without the gauge fixing terms,
however as we demonstrate in appendix A, the relation (43)
remains true when we use the minimal gauges in both of the
respective frames. The Hessians of the gauge fixed action
have the form

δ2(S[�] + Sgf [�])
δ�aδ�b

≡ Dab

= −Gabg
μν∇μ∇ν + 2�

μ
ab∇μ + Wab, (44)

and

δ2(S̃[�̃] + S̃gf [�̃])
δ�̃aδ�̃b

≡ D̃ab

= −G̃abg̃
μν∇̃μ∇̃ν + 2�̃

μ
ab∇̃μ + W̃ab. (45)

Explicitly, the components ofGab in the case of the scalar-
tensor theories (40) are given by

Gab =
(

− 1
4Ugμν ρλ + 1

2U
′gμν

+ 1
2U

′gρλ Z − (U ′)2

U

) √|g|δ(x, y). (46)

where gμν ρλ = gμρgνλ + gμλgνρ − gμνgρλ.
Now we can ask how G̃ab will be related to Gab. From

(42) and (43) it follows that

G̃ab = e2σ δ�c

δ�̃a
Gcd

δ�d

δ�̃b
, (47)

which shows that G̃ and G are inequivalent metrics. Specifi-
cally, they differ by the factor e2σ in addition to the expected
tensor transformation between frames given in (28).

As we discussed in the previous section, there now comes
a choice of which spacetime metric gμν or g̃μν we select
as the physical one gμν , since different choices will lead to
inequivalent path integral measures. If we choose gμν = gμν

the metric on field space is given by Cab = �2Gab which
is the natural measure in the � frame. Alternatively, if we
declare the physical spacetime metric to begμν = g̃μν , which
is the natural choice in the �̃ frame, the field space metric is
given by C̃ab = �2G̃ab. However from (47) we see that Cab

and C̃ab are not related by simply a change of coordinates on
field space.

The next step is to construct the path integral in both
frames. We do this by assuming that the transformation
between frames does not break power counting and thus the
perturbative expansion remains organized in the same way.
Otherwise, we could only compare terms at the same order
in the expansion in terms of the coupling constants. In the
� frame the path integral in the minimal background field
gauge is given by

Z =
∫

dc̄
√

det Yαβ

∫
dc

1√
det ηαβ [�]
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×
∫

d�
√

det Cab[�] e−S[�]

− Sgf [�] −
∫

d4xFc̄αQ
α

βc
β, (48)

where the gauge fixing action is given by Sgf = 1
2

∫
d4xFα

YαβFβ . After expanding around a background solution �B ,
this can be computed at one loop to be

Z = e−S[�B ] 1√
det

[
(C−1)acDcb

] (det[Qα
β ])

√
det[(η−1)αγ Yγβ ].

(49)

One can also construct the minimal gauge in the �̃-frame
leading to an analogous expression for the path integral Z̃ .
As we show in appendix A, the Fadeev-Popov operators in
the two frames and in their respective minimal gauges are
also related by

Q̃α
β = e−2σ Qγ

β, (50)

while the Y and Ỹ are related by

Ỹαβ = e4σYαβ. (51)

By the choice ηαβ = �4Yαβ , the last ultra-local factor in
(49) is unity up to factors of �4 which are needed to ensure
that the path integral is dimensionless. However canceling
the analogous ultra-local factor in the �̃ frame means that
we choose η̃αβ = �4Ỹαβ . Thus ηαβ and η̃αβ will also differ
depending on which frame the theory is quantized in.

Defining �c
b by Dab = �−2Cac�

c
b the path integral is

then given by

Z = e−S[�B ] 1√
det

[
�−2�a

b
]

(
det[�−2Qα

β ]
)

, (52)

where the factors of �4 appearing in ηαβ are used to make
the Fadeev-Popov determinant dimensionless. Similarly the
one-loop path integral in the �̃ frame is given by

Z̃ = e−S̃[�̃B ] 1√
det

[
�−2�̃a

b

]
(

det
[
�−2 Q̃α

β

])
, (53)

= e−S̃[�̃B ] 1√
det

[
�−2e−2σ �a

b
]

(
det

[
e−2σ �−2Qα

β

])
.

(54)

We formally find that the path integral in both frames
differ by an infinite factor which is a divergent power of
e2σ . However, this ignores the fact that we must regularise
and renormalise the theory to obtain finite results. After this
is done we will obtain a finite difference between the two
path integrals.

4.1 Regularisation and renormalisation

In order for the expressions for the one-loop determinants to
make sense we should introduce a UV cut off at the scale � to
regularise the functional integral and include counter terms.
The cutoff can be introduced using the Schwinger proper-
time representation of the functional-trace [53]

� = S0 + Sct(�) − 1

2
Tr

∫ ∞

1/�2
dss−1e−s�

+Tr
∫ ∞

1/�2
dss−1e−sQ, (55)

where in the limit � → ∞ the traces approach the unregu-
lated form. The counter term Sct(�) should be chosen such
that � is independent of the cutoff scale

∂�

∂�
= 0. (56)

In the �̃ frame we can follow the same procedure and
write

�̃ = S0 + S̃ct(�) − 1

2
Tr

∫ ∞

1/�2
dss−1e−se−2σ �

+Tr
∫ ∞

1/�2
dss−1e−se−2σ Q, (57)

and again choose S̃ct(�) such that �̃ is independent of �

∂�̃

∂�
= 0. (58)

An important observation to be made here is that by mak-
ing the replacement � → �eσ one can relate the difference
between the effective action and the counter terms in the two
frames by

�̃ − S̃ct(�) = � − Sct(�)|�→�eσ . (59)

By a straight forward calculation it is then easy to show
that the logarithmic dependence of the counter terms is given
by7

�∂�Sct(�) = · · · + 1

(4π)2

∫
d4x

√|g|(B4(�)

−2B4(Q)) + · · · (60)

and

�∂� S̃ct(�) = · · · + 1

(4π)2

∫
d4x

√|g|(B4(e
−2σ �)

−2B4(e
−2σ Q)) + · · · (61)

7 This approach to computing the one-loop effective action in curved
space-time is commonly known as Schwinger-Dewitt technique [43,54]
or Heat Kernel method [53,55].
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where the coefficients B4, whose argument indicates the rel-
evant differential operator, are the dimensionless heat kernel
coefficient in four dimensions in the expansion

Tr
(
e−sD

)
= 1

(4πs)2

∑
n

∫
d4x

√|g|B2n(D)sn, (62)

for a given differential operator D. One can show [53,55]
that although the operators differ in the two frames, the coef-
ficients agree such that

√
gB4(e−2σ �) = √

gB4(�) and√
gB4(e−2σ Q) = √

gB4(Q).
Thus the scheme independent renormalisation in both

frames agree and one can identify the scheme independent
counter terms in both frames

Sct = S̃ct = · · · + log(�/μ)
1

(4π)2

∫
d4x

√|g|B4 + · · · ,

(63)

where for brevity we define the sum of the heat kernel coef-
ficients B4 ≡ B4(�) − 2B4(Q). The ellipses in (63) and
previous formulas includes scheme dependent terms which
have either a power law dependence on � or vanish on-shell.
Note that we have been forced to introduce a renormaliza-
tion scale μ in order to cancel the divergence. This shows
that divergences will be the same in both frames, agreeing
with the results of [22].

However, matching the counter terms in this way is
not enough to conclude that the theories differ only by
scheme dependent terms and are therefore physically equiv-
alent. Instead we need to compare the renormalised effective
actions, where finite terms might be relevant. The relation
(59) already indicates to that these finite terms will differ. In
order to make the comparison, let us note that the regulated
traces and the classical action S0 are themselves independent
of μ. Consequently, there must be a physical scale

Mphys = Mphys(φ, gμν), (64)

coming from the classical action and which may depend on
the fields as well as the couplings, such that the logarithmic
dependence on � takes the form

−1

2
Tr

∫ ∞

1/�2
dss−1e−s� + Tr

∫ ∞

1/�2
dss−1e−sQ = · · ·

+ 1

(4π)2

∫
d4x

√|g| log(Mphys/�)B4 + · · · , (65)

with Mphys compensating the dimension of � in the argument
of the logarithm. In principle one should be able to calculate
Mphys.8 After subtracting the counter term we will then have
a finite contribution to the effective action given by

8 The classical example of this is the Coleman-Weinberg potential [56],
where Mphys will be a combination of the mass and vacuum expectation
value of the scalar field.

� � 1

(4π)2

∫
d4x

√|g| log(Mphys/μ)B4. (66)

Now if we consider the effective action in the �̃ frame we
see from (59) that � is replaced by �eσ in (65) and thus

�̃ � 1

(4π)2

∫
d4x

√|g| log(e−σ Mphys/μ)B4, (67)

which amounts to the replacement of the physical scale Mphys

by

M̃phys = e−σ Mphys. (68)

Comparing both expressions, one can then conclude that the
finite effective actions in both frames differ by

�̃ − � = −A + off shell terms, (69)

since after subtracting the counter terms there will remain a
finite contribution

A = 1

(4π)2

∫
d4x

√|g| σ(x)B4(x), (70)

which is present even after going on shell. We will refer to
this quantity as frame discriminant hereinafter. An equiva-
lent way to quantify the difference between quantising the
theory in either frames follows from promoting μ to a field
dependent scale via

�̃ = �|μ→μ̄=eσ μ. (71)

As we shall explain in more detail in Sect. 5 this transfor-
mation resembles the transformation made in the so-called
scale invariant renormalisation schemes. However, we stress
that (71) is much more general and applies to related theo-
ries quantised in the standard manner beginning in separate
frames regardless of whether we have scale invariance.

Thus we can conclude that the two theories are inequiv-
alent at the one-loop level and will therefore give different
physical predictions, derived from the frame discriminant A.
This means that there is an ambiguity in the quantization of
the theory related to the choice of the functional measure.
This choice of functional measure can in turn be traced to a
choice of which spacetime metric is declared to be the phys-
ical one. The frame discriminant A is finite and a function
of the fields in the theory, so it will potentially generate new
amplitudes that can contribute to S-matrix elements.

As a final note, let us note that our derivation here can be
applied to any QFT regardless of its renormalizablity. Even in
the case of an EFT, this procedure is well-defined as long as
we compare expressions at the same order in the perturbative
expansion in terms of the coupling constants. Indeed, in the
next section we will show how this piece solves the anomaly
problem in the scale invariant scalar-tensor theory that we
used as an example in Sect. 2, which is non-renormalizable
and thus can be only considered as most as an EFT.

123



Eur. Phys. J. C (2019) 79 :595 Page 11 of 18 595

5 The frame discriminant in scale invariant
scalar-tensor theories

Now that we have presented a precise derivation of the frame
discriminant, let us go back to the explicit example of a scalar-
tensor theory introduced in Sect. 2, with actions in the Ein-
stein and Jordan frames given by

SE [g̃μν, φ̃] =
∫

d4x
√|g̃|

(
−M2

p R̃ + 1

2
∂μφ̃∂μφ̃ + λ

4!
M4

p

ξ2

)
,

(72)

SJ [gμν, φ] =
∫

d4x
√|g|

(
−ξφ2R + 1

2
∂μφ∂μφ + λ

4!φ
4
)

, (73)

where the variables are related by

g̃μν = ξφ2

M2
p
gμν, φ̃ = Mp

√
1

ξ
+ 12 log

(
φ

m

)
. (74)

As we commented in Sect. 2, the standard quantization
of this theory carried out in each frame leads to inequiva-
lent theories due to the presence of an anomaly only in the
Jordan frame. This is precisely a consequence of defining
the functional measure in one of the frames, where we are
thus choosing a preferred metric gμν , as discussed in previ-
ous sections. If we want to rewrite the theory in any other
frame, we need to transform this functional measure as well,
picking up the finite contribution of the frame discriminant
into the quantum effective action, which for this particular
example will solve the clash with the scale anomaly, as we
will see. Quantizing in any other frame without taking care of
this represents, as previously discussed, a different choice of
functional measure and thus a different quantum field theory.

Here we can identify the issue by looking at the measures
for both theories. Quantising in the Jordan frame, the line
element of the field space metric is given by

CJabδ�
aδ�b = �2

∫
d4x

√
g

(
1

4
ξφ2gμναβδgμνδgαβ

−2ξφgμνδgμνδφ + (1 + 4ξ)δφδφ

)
, (75)

which is not scale invariant and hence we will have the usual
scale anomaly. If we now were to make an innocuous change
of variables we obtain

CJabδ�
aδ�b = CEabδ�̃

aδ�̃b

= �2
∫

d4x
√
g̃
M2

p

m2ξ
exp

(
− 2φ̃

Mp
√

ξ−1 + 12

)

×
(

1

4
M2

p g̃
μναβδg̃αβδg̃μν + δφ̃δφ̃

)
, (76)

which is the Jordan frame metric written in Einstein frame
variables. Notably (76) is not invariant under a shift of φ̃:

the scale anomaly in the Jordan frame has transmuted into a
shift anomaly in the Einstein frame as a consequence of us
quantizing the theory in the Jordan frame. Conversely if we
quantize the theory in Einstein frame the field space metric
is given by

C̃Eabδ�̃
aδ�̃b

= �2
∫

d4x
√
g̃

(
1

4
M2

p g̃
μναβδg̃μνδg̃αβ + δφ̃δφ̃

)
,

(77)

which is invariant under the shift symmetry for φ̃ and thus
we have no anomaly. Performing the change of variables, this
time from the Einstein frame to the Jordan frame, we obtain
the field space metric

C̃Eabδ�̃
aδ�̃b = C̃Jabδ�

aδ�̃b

= �2

M2
p

∫
d4x

√
gφ2ξ

(
1

4
ξφ2gμναβδgμνδgαβ

−2ξφgμνδgμνδφ + (1 + 4ξ)δφδφ
)
,

(78)

which, in contrast to (75), is scale invariant and hence we do
not have a scale anomaly. Thus we have the choice of two
quantizations: the anomaly free ‘Einstein frame quantization’
and the anomalous ‘Jordan frame quantization’. Picking the
Einstein frame as the preferred frame in which to determine
the measure will mean we remain anomaly free even if we
ultimately use Jordan frame variables.

Let us now work out the form of the frame discriminant to
see how it preserves scale invariance of the level of the one-
loop quantum effective action provided we pick the Einstein
frame as the preferred frame. The divergent part of the effec-
tive action in the Einstein frame can be computed at one-loop
by the use of standard techniques. Here we show the results
in dimensional regularization. We refrain to reproduce the
details of such computation here and refer the reader to the
literature instead, e.g. [40,52,57]. For simplicity we neglect
terms which involve derivatives of the field φ̃. Up to these
terms the equations of motion reduce to

Rμν = 1

4
gμν

λ

12ξ
φ2, (79)

which in the Einstein Frame translates to

R̃μν = 1

4
g̃μν

λM2
p

12ξ2 . (80)

Where we note that the value of φ̃ and φ are not determined
due to the shift and scale symmetries. When evaluated on the
equations of motion, we have the heat kernel coefficients

B4(x) =
(

71

60
R̃μνρσ R̃

μνρσ − 19M4
pλ

2

3840ξ4

)
, (81)
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in the Einstein frame, and

B̃4(x) =
(

71

60
Rμνρσ R

μνρσ − 19λ2

3840
φ4

)
, (82)

in the Jordan frame. This leads to a finite part of the effective
action given by

�̃E = − 1

(4π)2

∫
d4x

√|g̃|
(

71

60
R̃μνρσ R̃

μνρσ

−19M4
pλ

2

3840ξ4

)
log

(
μ/M̃phys

)
. (83)

Let us note that although
∫
d4x

√
g̃ R̃μνρσ R̃μνρσ is a topo-

logical invariant on an Einstein Space since log(μ/M̃phys) is
a function of the fields the first term in (83) is not a topolog-
ical invariant.9 In a more general case we would find terms
involving derivatives of φ̃ and terms which vanish on the
equations of motion.

Now since in the Einstein frame we have an unbroken
shift symmetry we know that M̃phys must be invariant under
(16) and thus for a constant φ̃ the physical scale M̃phys is
independent of φ̃ and only depends on the metric g̃μν =
e2σ(φ)gμν where from (74) σ is given by

σ(φ) = 1

2
log

(
ξφ2

M2
p

)
= log

(√
ξ φ

Mp

)
. (84)

Writing the action (83) in the Jordan frame variables we then
obtain10

�̃J = − 1

(4π)2

∫
d4x

√|g| B4 log
[
μ/M̃phys(e

2σ gμν)
]
,

(85)

which is scale invariant since the shift symmetry has simply
transformed into the scale symmetry under the change of
variables. We can equally write the effective action in Jordan
variables according to (69) as

�̃J = �J − A (86)

in terms of the effective action

�J = − 1

(4π)2

∫
d4x

√|g|B4 log(μ/Mphys), (87)

which we would obtain if we were to take Jordan frame as
the preferred frame, and the frame discriminant

A = 1

(4π)2

∫
d4x

√|g| σ B4

9 On the other hand, the divergence proportional to R̃μναβ R̃μναβ is a
topological invariant [58].
10 Here the subscript J simply denotes which variables we are using
while the tilde indicates that the preferred frame is the Einstein frame.

= 1

(4π)2

∫
d4x

√|g| log

(√
ξφ

Mp

)

×
(

71

60
Rμνρσ R

μνρσ − 19λ2

3840
φ4

)
. (88)

In this form we see how the frame discriminant comes to
save frame equivalence and solves the problem with the scale
anomaly. First let us note that from the relation (68) and using
that M̃phys is independent of φ̃ we have

M̃phys = M̃phys(g̃μν) = e−σ(φ)Mphys �⇒ Mphys

= eσ(φ)M̃phys(e
2σ(φ)gμν). (89)

Thus, unlike M̃phys, under a scale transformation (13) the
physical scale Mphys transforms non-trivially as

Mphys → �−1Mphys. (90)

If we now compute the conservation of the current for scale
invariance we will find that �J induces what we called before
the anomaly

δ�J = −δ

(
1

(4π)2

∫
d4x

√|g| B4 log(μ/Mphys)

)

= − ω

(4π)2

∫
d4x

√|g|
(

71

60
Rμνρσ R

μνρσ − 19λ2

3840
φ4

)
,

(91)

for a constant transformation with coefficient � = 1 + ω +
O(ω2). However by taking into account the discriminant,
which transforms precisely as

δA = δ

(
1

(4π)2

∫
d4x

√|g| log

(√
ξφ

Mp

)
B4

)
(92)

= − ω

(4π)2

∫
d4x

√|g|
(

71

60
Rμνρσ R

μνρσ − 19λ2

3840
φ4

)
,

(93)

we find that now the total quantum effective action is invariant

δ�̃J = 0, (94)

and there is not anomalous current whatsoever!
What is happening here is that the S-matrix, and thus all

physical properties, are defined by the frame in which we
define the functional measure, where we implicitly choose a
preferred metric gμν . In any other frame, the effective action
must transform appropriately in order to preserve all physical
statements and in particular all S-matrix amplitudes. Since
there are no anomalously generated elements in the Einstein
frame, our quantization process must preserve this condition
in any other frame.

The role of the frame discriminant in this example is pre-
cisely to compensate the differences in the finite pieces of the
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quantum effective action between the two different frames,
being those the origin of the scale anomaly. But this also
means that the frame in which we choose to start is very
important. If instead we were starting from the Jordan frame,
where the anomaly is a physical effect, the frame discrim-
inant would give us exactly the opposite effect to what we
have shown here – to generate the consequences of the scale
anomaly in any other frame, in order to preserve all S-matrix
elements. Of course, this effect is not restricted to theories
with anomalous currents, but it appears whenever we do a
non-linear redefinition of variables which affects the inte-
gration measure. In summary, a quantum field theory is not
defined solely by the action, but also by the choice of inte-
gration measure or equivalently by the choice of preferred
frame which selects the form of the measure.

5.1 A comment on scale-invariant regularization

Let us take a closer look to the expression for the quantum
effective action �̃J in the Jordan frame where the preferred
metric is the Einstein frame metric g̃. It is given by

�̃J = − 1

(4π)2

∫
d4x

√|g| log(μ/Mphys)B4

− 1

(4π)2

∫
d4x

√|g| log

(√
ξφ

Mp

)
B4

= − 1

(4π)2

∫
d4x

√|g| log

( √
ξμφ

MpMphys

)
B4. (95)

Looking to the last expression, we can see that our result
is identical to the standard renormalized effective action �J

(the first term in the first line), when the Jordan frame metric
gμν is the preferred one, if we define a new renormalization
scale

μ̄ = zφ, z =
√

ξμ

Mp
, (96)

so that

�̃J = − 1

(4π)2

∫
d4x

√|g| log
(
μ̄/Mphys

)
B4, (97)

which is just a special case of the transformation (71).
That is, if we introduce a renormalization scale which

is field dependent, with a parameter z encoding the scheme
independence11 inherited from μ. Moreover, once in the bro-
ken phase, which is the only phase in which both frames are
even classically equivalent, we have φ = 〈φ〉+δφ and there-
fore

11 Indeed, scheme independence of this approach has been studied
through the Callan-Symanzik equation in several works. See [59–61].

log(μ̄) = log(z〈φ〉) + δφ

〈φ〉 − 1

2

(
δφ

〈φ〉
)2

+ · · · (98)

If we set 〈φ〉 = Mp/
√

ξ we recover the usual logarith-
mic term, which leads to the standard expression for the beta
functions of the couplings in the quantum effective action,
plus an infinite tail of non-renormalizable interactions. Inci-
dentally, this precise value for the vacuum expectation value
of the scalar field, which breaks spontaneously the scale sym-
metry, gives rise to an Einstein-Hilbert term in the action with
the right Planck mass Mp.

This construction can be found in the literature under
the name of scale-invariant regularization, motivated by the
search of a common solution to the hierarchy and cosmologi-
cal constant problems altogether [16,62–73], as well as to the
question of whether scale invariance can be preserved at the
quantum level as a fundamental symmetry of Nature. Indeed,
if one uses this regularization by substituting μ by μ̄ every-
where, scale invariance is preserved in the quantum effective
action at all orders in the perturbative expansion. Then, both
the hierarchy and cosmological constant problems seem to
be solved at once thanks to the cancellation of radiative cor-
rections to dimensionful quantities [74,75]. Afterwards, the
spontaneous breaking of the symmetry by 〈φ〉 gives rise to
the standard terms plus new interactions. Ways to trigger this
spontaneous symmetry breaking from the point of view of
cosmology have been also recently explored [76–78].

Our arguments here seem to suggest that this regulariza-
tion can be also understood as a consequence of choosing the
Einstein frame as our preferred frame, thus forcing the scale
anomaly to be absent to satisfy equivalence, thanks to the con-
tributions of the frame discriminant. In the literature about
frame equivalence and scale invariant regularization (see e.g
[79–81] and references therein) this is normally described
in terms of two different regularization prescriptions – pre-
scription I refers to taking the renormalization scale μ to
be constant in the Einstein frame and field-dependent in the
Jordan frame, while prescription II represents the opposite
situation. This would correspond, in our language, to choose
the preferred metric in the Einstein frame (prescription I) or
in the Jordan frame (prescription II) in total agreement with
previous results.

The fact that a scale invariant renormalization proce-
dure corresponds to a non-standard quantisation with a scale
invariant measure has been observed in [66], where the idea
was to have a renomalisation scheme that preserves exact
local scale invariance (i.e. Weyl invariance) by the introduc-
tion of a dilaton i.e. the field φ. In this case one can view
the dilaton as an auxiliary field, with local scale invariance
being ‘fake’, since one can always gauge fix the dilaton to be
a constant. From the view point of frames, gauge fixing the
dilaton is tantamount to going to the Einstein frame, where
the shift symmetry is now local and enforces the action to
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be independent of φ̃, since the shift transformation is now
φ̃(x) → φ̃(x) + C(x).

6 Discussion and conclusions

In this paper we have studied the problem of frame equiva-
lence of a given Quantum Field Theory. While in classical
physics it can be easily proven that stationary trajectories
map to stationary trajectories under a non-singular change of
variables (of frame), Quantum Field Theory requires the extra
ingredient of defining the path integral measure. In the case
of scalars, fermions and Yang-Mills fields, the integration
measure is typically field independent,12 but it is not the case
anymore if we want to preserve diffeomorphism invariance
when the metric is a dynamical degree of freedom. When we
quantize a theory in the Einstein frame, where the matter is
minimally coupled to gravity and the scalar has a canonical
kinetic term, the measure will depend on the metric alone.
However the measure obtained by quantizing a theory in the
Jordan frame will depend on the scalar field in addition to
the metric. What we have established in this paper is that,
even after transforming the measure to take account of the
Jacobian (a purely mathematical operation), the measures
are not equivalent. The frame where we choose to define the
path integral matters, and defining the measure in different
frames leads to different Quantum Field Theories. Of course
one could simply insist that the measures in both frames are
equivalent, however this is only possible if the quantization
in one of the frames would be non-standard.

Once we decide the preferred frame where we define the
integral measure, this will also establish any physical con-
clusion of the theory. If for some reason we however want
to describe it in a different set of variables, perhaps for sym-
metry or interpretation reasons, then we must carry on the
effect of changing frames in the integration measure, together
with transforming the action. However the resulting effec-
tive action will differ from the one which would result from
choosing the second frame as the preferred frame to define
the measure. We have shown that this difference can be eval-
uated in a way which is close to Fujikawa’s method for the
trace anomaly [82] and that it reduces, in the case of confor-
mal rescalings of the metric, to the need of adding a frame
discriminant contribution to the one-loop Quantum Effective
Action in the transformed frame

A = � − �̃ = 1

(4π)2

∫
d4x

√|g| σ(x)O(x), (99)

where σ is the conformal factor driving the field redefinition
andO(x) contains the local counterterms of the theory, which
can be computed by standard techniques.

12 The exception is when the kinetic term in the action is non-canonical,
for example in the case of a non-linear sigma model.

Our findings are of specific interest in the case of scalar-
tensor theories of the general form13

SJ =
∫

d4x
√|g|

(
1

2
∂μφ∂μφ + F(R, φ) + V (φ)

)
.

(101)

These models are often used to explain inflationary
dynamics by taking them to the Einstein frame, where the
gravitational fluctuations are driven by an Einstein-Hilbert
term −M2

p R̃ and one can interpret the dynamics of the the-
ory as that of a scalar field rolling down a potential. The
field redefinition relating both frames will be generally non-
linear, most likely including a conformal transformation sim-
ilar to (14), and will thus produce a non-trivial transformation
of the integration measure, regardless of the symmetries of
the action. In those cases, the quantum effective action will
always pick up an extra finite piece needed to ensure equiv-
alence, as given by our prescription.

For models in which the transformation is simply a con-
formal transformation g̃μν = e2σ gμν , and if we assume that
the preferred frame where we define the integration measure
is the Einstein frame, our results can be summarized in the
fact that the local part of the one-loop renormalized quantum
effective action will read in both frames

�̃E = − 1

(4π)2

∫
d4x

√
g̃ log

(
μ/M̃phys

)
Õ

(
R̃μναβ, φ̃

)
,

(102)

�J = − 1

(4π)2

∫
d4x

√
g log

(
μeσ /Mphys

)O(Rμναβ, φ),

(103)

where the particular form of the counter-terms O(Rμναβ, φ)

will depend on the choice for V (φ) and F(R, φ) in the classi-
cal action. The factor of eσ which multiplies μ in �̃J ensures
that these are just the same effective action written in dif-
ferent variables and arises from properly transforming the
path integral measure. This schematic form will hold for any
quantum field theory, regardless of its renormalizability [83],
provided that power counting is preserved when traveling
between frames.

That is, when changing frames one should not only trans-
form the divergences of the theory but also promote the
renormalization scale μ to be field dependent precisely by a

13 A particular theory of this kind of important relevance is Higgs Infla-
tion [14] where

F(R, φ) = −M2
p + ξφ2

2
R, V (φ) = −λ

4

(
h2 − v2

)
, (100)

with λ and v being the self-coupling and vacuum expectation value of
the Standard Model Higgs boson.
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conformal transformation.14 This statement can be actually
found in previous literature as a way to preserve the predic-
tions of Higgs [79] and Higgs-Dilaton [16] inflation or under
the name of scale invariant regularization. Here we give an
extra formal justification to this procedure from the request
of frame equivalence of the path integral formulation.

We have shown, in particular, that the introduction of the
frame discriminant for scalar-tensor theories solves the prob-
lem pointed out in [2] with the action (12), whose naive quan-
tization generates a scale anomaly in the Jordan frame which
is absent in the Einstein frame. Inclusion of the frame dis-
criminant precisely compensates this effect and enforces the
effective action and all S-matrix elements in both frames to
agree.

Our result here is however not restrained to scale-invariant
theories, scalar-tensor theories or even to conformal transfor-
mations (although this is the most typical situation in liter-
ature) but it applies to any Quantum Field Theory where
the metric is a dynamical degree of freedom and a change
of frame is performed. This includes, among others, sev-
eral models of inflation [4,14,16,84–86], higher derivative
[87,88], Lovelock [89] and F(R) gravity [90], the relation
between the string frame and the Einstein frame [27,91],
and the Weyl invariant formulations of Unimodular Gravity
[92,93]. If we want to extract dependable conclusions from
the Quantum Effective Action on any of these theories, we
must add the frame discriminant contribution whenever we
perform a change of variables. Otherwise we might be miss-
ing important physical effects that could strongly modify our
conclusions.

There are three main questions open for future research
following the work in this paper. First, it would be useful to
extend our arguments here beyond the one-loop approxima-
tion. In particular, it would be interesting to understand if
the relation between frame equivalence and scale invariant
renormalization holds at all orders, providing thus a complete
justification for the use of the latter. More broadly one should
establish a consistent effective field theory incorporating the
choice of the measure and all of its consequences.

On the other hand, it is reasonable to ask if there is
any physical compelling argument to prefer one frame over
another. Taking into account that the operators in the action
and those generated by radiative corrections differ in differ-
ent frames, one could think that the choice must be influenced
by the UV completion of the models that we are studying.
Indeed, if we had such completion at our disposal, the pro-
cedure to obtain a low energy effective field theory would
be unique and it would single out a preferred expression for
the action and variables to use. It would be thus interesting

14 One can check that, provided that the metric transforms as g̃μν =
e2σ gμν and after choosing a chart of coordinates, any energy scale of
the theory must transform as Ẽ = e−σ E by dimensional analysis.

to understand if we can actually make a reasoning on the
opposite direction. If we can use our results here to pinpoint
a given action as preferred, this could give us information
on the shape of the UV completion of our theory, which in
particular might be relevant to understand new features of
Quantum Gravity.

Finally, it would be useful to have an explicitly frame
invariant effective action, following the spirit of the Unique
Effective Action of Vilkovisky, including the frame discrim-
inant as a built-in feature. This can be achieved by properly
incorporating a frame invariant integration measure for the
path integral into the definition of the effective action as we
have outlined here.
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Appendix A: Gauge fixing

Here we will prove the relations introduced in section 4 by
constructing the gauge fixing sector in the frames � and �̃.

The actions in both frames are invariant under diffeomor-
phisms, which we can express as

�a → �a + Ka
α [�]εα, (A1)

where the generator Ka
α is given by

Ka
α =

(
gμν,α + gμα∂ν + gαν∂μ

φ,α

)
δ(x, y). (A2)

where the comma denotes a partial derivative. Now we con-
sider expanding S[�] and S̃[�̃] around a solution to the equa-
tions of motion and adding background gauge fixing terms
with

Sgf = 1

2
Fα[�]YαβF

β [�] , Fα[�] = Fα
a �a (A3)

S̃gf = 1

2
F̃α[�̃]Ỹαβ F̃

β [�̃] , F̃α[�̃] = F̃α
a �̃a . (A4)

Here Y and Ỹ are needed to make the gauge fixing action
covariant and we will choose them to be ultra-local and
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choose Fα
a and F̃α

a to be first order derivatives operators.
Since we introduce Y and Ỹ the path integrals after gauge
fixing have the form

Z =
∫

dω

∫
dc̄

∫
dc

∫
d�

√
det Cab√
det ηαβ

e−S[�]− 1
2

∫
d4xωαYαβωβ

δ(Fα − ωα)
√

det Yαβe
− ∫

d4xc̄αQα
βcβ

, (A5)

where we integrate ω and to obtain (48). Let us note that the
anti-ghost c̄α is a one-form density of weight one while the
ghost cα is a vector of weight zero such that the Fadeev-Popov
operator

Qα
β = δFα

δ�a
Ka

β , (A6)

is a Laplace-type operator

Qα
β = −δα

β∇2 + γ
αμ
β ∇μ + wα

β. (A7)

where δα
β = δμ

νδ(x, y) is the identity.
The corresponding second order operator which drives

quantum dynamics in the � frame will be

Dab[�] = δ2S[�]
δ�aδ�b

+ Fα
a YαβF

β
b . (A8)

It is convenient to choose the gauge fixing condition F̃α

such that we also have

D̃ab[�] = δ2S[�]
δ�̃aδ�̃b

+ F̃α
a Ỹαβ F̃

β
b = δ�b

δ�̃b

δ�a

δ�̃a
Dab[�], (A9)

which implies that we have the relation

S̃gf,ab = δ�b

δ�̃b

δ�a

δ�̃a
Sgf,ab. (A10)

Additionally we wish to choose the minimal gauge such that
the Hessian is of the form (44). In the � frame the minimal
gauge is achieved by choosing

Yμν(x, y) = −U (φ)
√

det ggμνδ(x, y), (A11)

and

Fα
a =

((
gμ(ρ∇λ) − 1

2∇μgρλ
)

−U ′
U gμν∇ν

)
δ(x, y). (A12)

Since we require (A10) we can demand that

F̃β
a = Jβ

αF
α
a

δ�a

δ�̃a
, Ỹαβ = J−1Y J−1, (A13)

where J should be ultra-local. The generators of diffeomor-
phisms Ka

α and K̃ a
α are vectors on the space of fields (this

follows straight forwardly from there defintion) so we have

K̃ a
α = δ�̃a

δ�a
Ka

α . (A14)

We can then conclude that

Q̃α
β = Jα

γ Q
γ

β . (A15)

To fix Jα
γ we demand that Q̃α

β has the minimal form

Q̃α
β = −δα

β ∇̃2 + γ̃
αμ
β ∇μ + w̃α

β, (A16)

for which it follows that Jα
β = e−2σ δ(x, y)δμ

ν since g̃μν =
e−2σ gμν and thus we arrive at (50).
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