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ABSTRACT: We investigate the case of a hydraulic fracture (HF) propagating perpendicular to the isotropy plane of a transversely
isotropic material: a relevant configuration for the growth of HFs in sedimentary rocks where fractures are propagating vertically
across layers. We extend the implicit level set algorithm originally developed for the propagation of planar 3D HF in isotropic media
to transverse isotropy (TI) of elasticity and toughness. Contrary to the isotropic case, the near-tip plane strain elastic relation depends
on the angle α between the local propagation direction and the isotropy plane. We present an analytical solution for an elliptical
HF in the toughness dominated regime and use it to benchmark our numerical solver. For a TI elastic material, we investigate HF
growth for two different assumptions: isotropic material toughness or isotropic critical fracture energy. In both cases, we compare the
fracture aspect ratio obtained by our numerical results with simplified estimations based on the minimization of the variation of local
stress intensity factor (or energy release rate) under the assumption of an elliptical fracture. Our numerical results show that for both
assumptions, the fracture aspect ratio inversely scales with the ratio of plane-strain elastic modulus in the two orthogonal directions
of the material frame with a different exponent. However, the fracture is never strictly elliptical, except for a very peculiar form of
toughness anisotropy.

1. INTRODUCTION

A number of sedimentary rocks are composed of beds of
metric to sub-metric scales. Such a lamination intrinsic to
the rock diagenesis leads to a transverse isotropy. The effect
of such type of anisotropy on the propagation of hydraulic
fracture remains poorly understood, and most hydraulic
fracturing models assume isotropic elasticity. Hydraulic
fracture propagation is governed by strong couplings be-
tween rock deformation, fracturing and viscous flow within
the newly created fracture (Detournay, 2016). The goal of
this study is to investigate the effect of transverse isotropy
on HF growth focusing on the case of a planar fracture prop-
agating perpendicular to the isotropy plane (Fig. 1). We
restrict to an impermeable media and a Newtonian fluid.

2. PROBLEM FORMULATION

We study the case of a planar hydraulic fracture (HF)
propagating in transverse isotropic (TI) impermeable me-

dia. We introduce the material canonical orthonormal ba-
sis (e1,e2,e3) where e3 is the axis of symmetry and (e1,e2)
is the plane of material isotropy. The TI stiffness ma-
trix ci jkl can be expressed in terms of the five parameters
(C11,C12,C13,C33,C44) in Voigt notation (see e.g. Pan and
Chou (1976); Voigt (1928)).We focus on the case of a hy-
draulic fracture propagating in the (e1,e3) plane perpendic-
ular to the plane of isotropy. The fracture is subject to an
internal fluid pressure p f (function of space and time) and
an external uniform far field stress σh. The fracture is driven
by the injection of a Newtonian fluid (viscosity µ) under a
constant rate Qo from a point source.

2.1. Governing equations

Under the configuration of Fig. 1, the planar HF exhibit
pure mode I (see Keer and Lin (1990); Lin and Keer (1989)),
the net pressure p(yyy) = p f (yyy)−σh at yyy ∈ (e1,e3) is related
to the normal displacement discontinuity profile w(xxx) via
the following boundary integral equation (see e.g. Bonnet
(1999); Mogilevskaya (2014)):
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Fig. 1: Schematic of planar hydraulic fracture perpendicular to
the plane of material isotropy normal to the in-situ minimum
stress. The different configurations of the region near tip around
the fracture front is also reported: (A) semi- infinite fracture
propagating along the divider direction, (B) semi-infinite fracture
propagating within the plane (e1,e3) and (C) semi-infinite frac-
ture propagating along the arrester direction.

p f (yyy)−σh = c22mn

∫
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(xxx)
)
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where Sm
i j(yyy,xxx) is the stress tensor at point x due to an unit

force at y in the m direction. δi j is the Kronecker delta op-
erator.

Under the assumption of an incompressible fluid, the
width averaged fluid mass equation reduce to the following
continuity equation when neglecting any fluid leak-off:

∂w
∂ t

+∇qqq = Qoδ (x1,x3) (2)

Under lubrication flow, the fluid flux qqq is related to the
fluid pressure gradient and opening via Poiseuille’s law:

qqq =−w3

µ ′ ∇∇∇p f (3)

where µ ′ = 12µ .

2.2. Boundary conditions

For sufficiently deep fractures, the fluid lag is negligible
leading to the following boundary conditions along the frac-
ture front C (t) (Detournay, 2016):

w(xxxC , t) = 0, qqq(xxxC , t) = 0, xxxC ∈ C (t). (4)

We investigate the general case when both the material
elasticity and the fracture toughness are anisotropic with re-
spect to the TI configuration. The fracture toughness, thus,
depends on the local fracture propagation direction, namely
the angle α . The angle α is defined as the angle between
the local propagation direction (normal to the tangent of the
fracture front) and the divider direction e1 (see Fig. 1).

For a pure mode I fracture, the quasi-static propagation
condition along the fracture front can be either written in
terms of energy release rate or stress intensity factor thanks
to Irwin’s relation (see Stroh (1958); Barnett and Asaro
(1972) for the anisotropic case) - using the later here-, we
write

KI(xxxC , t) = KIc (α) , xxxC ∈ C (t) (5)

where the material fracture toughness KIc may be function
of the fracture propagation direction - here the angle α be-
tween the local propagation direction and the e1 axis of the
material frame.

2.3. Near Tip Elastic behavior

The near-tip region of a hydraulic fracture is where the fluid-
solid coupling non-linearities of the problem resides - and as
such are well known to control the finite hydraulic fracture
growth behavior for isotropic material (Garagash, 2009).

It is possible to derive a near-tip plane-strain operator for
a mode I semi-infinite HF propagating at an angle α with
respect to the divider direction e1 (see Fig. 1). Such a con-
figuration is a local zoom into the tip region - now function
of the propagation direction due to material anisotropy. We
define the local axis e′1 of the direction of propagation of
the semi-infinite fracture where (ê′1,e1) ≡ α , and e′2 = e2
is the normal to the fracture surface. A near tip elastic de-
formation can be then derived from the solution of an edge
dislocation in anisotropic media (Hirth and Lothe, 1982):

p
(
y′1
)
= p f

(
y′1
)
−σh =

E ′
α

4π

∫
∞

0

1
y′1 − x′1

∂w
∂x′1

dx′1, (6)

where E ′
α is a near tip plane-strain anisotropic elastic mod-

ulus which depends obviously on the propagation direction
(via angle α) as well as all the elastic constants Ci j. E ′

α can
be expressed function of a dimensionless function F as

E ′
α =

〈
E ′〉×F(α, β , ε, δ ,C13/C11) (7)

where the elastic mean value
〈
E ′〉, the anisotropy ratio β ,

and Thomson parameters {δ ,ε} are given as:
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It is important to note that the near-tip plane-strain opera-
tor (6) has a form strictly equal to the isotropic case pending
the use of modulus E ′

α . As a result, all the hydraulic frac-
ture tip asymptotes obtained for the isotropic case can be
chiefly used in anisotropy pending the proper use of E ′

α . No-
tably, very near the tip, the linear elastic fracture mechanics
asymptote prevails, i.e.

w =

√
32
π

KIc

E ′
α

√
ρ ρ ≪ 1 (9)

where ρ is the closest distance to the fracture front in the
propagation direction.

In the isotropic case, the modulus E ′
α simply reduces to

the plain strain Young’s modulus E ′ =C11

(
1− C2

12

C2
11

)
. We

do not report here the analytical expression of E ′
α as it is

quite lengthly. We plot in Fig. 2 the scaled anisotropic
modulus E ′

α/
〈
E ′〉 as function of the angle α for different

values of the dimensionless parameters {β ,ε,δ ,C13/C11}.
The magnitude of the elastic modulus is controlled by the
ratio β , whereas, the slope is function of {β ,ε,C13/C11}.
The Thomson parameter δ has a second order effect on the
variation of E ′

α . We also compare the analytical expression
(solid lines) to the approximation function E ′

app/
〈
E ′〉 pro-

posed by Laubie and Ulm (2014) (dashed line):

1
E ′

app
=

cos2(α)

E ′
α (α = 0)

+
sin2(α)

E ′
α

(
α = π

2

) (10)

This approximation underestimates in most cases the exact
expression of E ′

α , and is only valid for a low degree of
anisotropy (i.e. for β < 1.5) (see Fig. 2). For simplicity,
we will focus thereafter only on the effect of the anisotropic
elastic ratio β while we will set the other parameters to the
following values: ε = 0.3, δ = 0.2, and C13/C11 = 0.5 in
the remainder of this paper.

3. DIMENSIONAL ANALYSIS AND SCALING

The propagation of HF fracture in impermeable media is
governed by two distinct regimes: toughness and viscosity
(Detournay, 2016). In the following, we focus only on the
toughness dominated regime which dominates at large in-
jection time when the effect of the fracture energy becomes
larger than viscous fluid dissipation. Following Savitski and
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Fig. 2: Near tip plane strain modulus E ′
α as function of the prop-

agation direction angle α . Exact solution (solid lines) and the
approximation used in Laubie and Ulm (2014) (dashed line). In-
fluence of the different dimensionless elastic constants: (a) ef-
fect of β = {1.2,1.5,2} for ε = 0.3, δ = 0.2, and C13/C11 = 0.5,
(b) effect of C13/C11 = {0.4,0.5,0.7} for β = 1.5, ε = 0.3, and
δ = 0.2, (c) effect of ε = {0.2,0.3,0.5} for β = 1.5, δ = 0.2, and
C13/C11 = 0.5, and (d) effect of δ = {0.1,0.2,0.3} for β = 1.5,
ε = 0.3, and C13/C11 = 0.5.
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Table 1: Characteristic lengthscales in the toughness dominated
scaling.

Detournay (2002); Madyarova and Detournay (2003), we
use the so-called toughness dominated scaling. We scale the
dimensional unknowns: fracture front, width and pressure
by the characteristic lengthscales Lk(t), Wk(t), and Pk(t) re-
spectively (see Table 1). We choose the scaling toughness

as the mean value ⟨KIc⟩=
KIc (α = 0)+KIc

(
α = π

2

)
2

.

4. ELLIPTICAL HF TOUGHNESS DOMINATED SOLU-
TION

We derive here the solution for a propagating toughness
dominated elliptical HF. In the toughness dominated, the net
pressure is spatially uniform.

For an elliptical fracture of semi-major axis a and semi-
minor axis b subject to an uniform pressure p in an infinite
medium, following Eshelby et al. (1953) the corresponding



fracture opening takes the given form:

w = w0 p
√

ab

√
1−

x2
1

a2 −
x2

3
b2 (11)

where w0 is an pre-factor that needs to be determined. We
will follow here the approach described by Hoenig (1978)
to obtain such pre-factor. First, using the geometrical prop-
erties of the ellipse we show that near tip the first order term
of the fracture opening is simplified to (Hills et al., 1996):

w = w0 p
√

a
√

2ρ
(
sin2

θ + γ
2 cos2

θ
)1/4

(12)

where ρ is the minimum distance between a point inside the
elliptical fracture and its closest projection on the fracture
front, γ = b/a < 1 is the fracture aspect ratio, and θ refers
to:

θ = arctan(γ tanα) . (13)

We obtain the expression of the stress intensity factor by
equalizing the tip asymptote (Eq. (9)) and taking the limit
of Eq. (12) for small ρ

KI =
w0

4
√

πaE ′
α p
(
sin2

θ + γ
2 cos2

θ
)1/4

(14)

On the other hand, the global energy release rate G is ob-
tained from the work W applied by the uniform pressure as:

G =
1

2πγa
∂W
∂a

=
1

2πγa
∂

∂a

(
1
2

pVf rac

)
=

1
2

p2
γ

1/2aw0,

(15)
where Vf rac is the fracture volume.

The global energy is also equal to the integral of the local
energy release rate along the fracture front:

G =
1

2π

∫ 2π

0
gdθ , (16)

where g is given by the local stress intensity factor and the
near tip anisotropic modulus via:

g =
K2

I

E ′
α

(17)

Equalizing the two expression of the global energy re-
lease rate (15) and (16), we find the opening magnitude w0:

w0 = 16γ
1/2 1∫ 2π

0 E ′
α (γ2 cos[θ ]2 + sin[θ ]2)1/2 dθ

. (18)

For the isotropic elastic case, w0 can be obtained completely
analytically function of the complete elliptical integral of
the second kind E

(√
1− γ2

)
.

w0,iso =
4

⟨E ′⟩E
(√

1− γ2
)γ

1/2 (19)

It is interesting to note that this problem has also been
investigated by Fabrikant (2011); Kanaun (2007) recently.
However, their analytical solutions contain some errors and
do not match with the one obtained from the procedure out-
lined above - originally derived by Hoenig (1978). Note that
the solution reported here matches exactly finite element re-
sults.

For a self similar growth, the SIF should be equal to the
material fracture toughness at all points along the front:
(KI = KIc). This therefore imply a particular form of ma-
terial fracture toughness variation with angle which must
be of the form of Eq. (20). Introducing KIc,3 as the material
toughness in the divider direction e3 (and E ′

3 the correspond-
ing plane-strain modulus), we obtain the following fracture
toughness anisotropic function in order to strictly ensure an
elliptical fracture

KIc = KIc,3

(
E ′

α

E ′3

)(
sin2

θ + γ
2 cos2

θ
)1/4

(20)

Denoting κ = KIc,1/KIc,3 as the toughness ratio between the
arrester and divider directions, the fracture aspect ratio γ is
given by:

γ =

(
KIc,1

KIc,3

E ′
3

E ′
1

)2

=

(
κ

β

)2

(21)

We can then obtain the following expression for the net
pressure combining Eqs. (14) and (20):

p(t) =
4KIc,3

w0E ′
3

√
πγb(t)

. (22)

and using the volume balance (equivalence of injected vol-
ume and fracture volume), we derive the following propa-
gation solution (e.g. Zia et al. (2018)):

b(t) =
(

3tQoE ′
3

8KIc,3
√

π
γ

)2/5

, a(t) =
(

KIc,3

KIc,1

E ′
1

E ′
3

)2

b(t).

(23)
Such a toughness dominated TI elliptical HF growth solu-
tion is obviously self-similar like the radial hydraulic frac-
ture for isotropic material.

5. NUMERICAL SCHEME

We discretize the fracture plane with rectangular element
and track the fracture front using a level set - following the
implicit level set algorithm introduced by Peirce and De-
tournay (2008). Piece-wise constant displacement disconti-
nuity element are used while the fluid pressure is evaluated
at the center of the cells. We solve the coupling of elastic-
ity and lubrication flow in a fully implicit manner. We use
the universal HF tip asymptotic solution originally derived
for the isotropic case (Garagash et al., 2011; Dontsov and



Peirce, 2015) but using for the proper elastic modulus E ′
α

as function of the local fracture front propagation direction.
It is important to note that, for the anisotropy, the near-tip
plane strain modulus and possibly material toughness de-
pends on the local propagation direction. As a result, an
additional iterative loop is required in the implicit level set
algorithm in order to converge on the local propagation di-
rection (at each ribbon cells). More details are given in Zia
et al. (2018).

The discretization of the elasticity equation (Eq.1) use the
piece-wise rectangular displacement discontinuity element
for transverse isotropy (see e.g. Pan et al. (2014)).

6. NUMERICAL RESULTS

6.1. Elliptical HF benchmark

We first benchmark our numerical solver with the analytical
solution derived above for an elliptical HF. It is important
to note that in order for the fracture to be elliptical, the ma-
terial fracture toughness must follow Eq. (20). We there-
fore use such type of toughness anisotropy in our numerical
simulation and compare the numerical and analytical width,
pressure, and radius evolution with time.

We set the value of the toughness and elasticity ratios to:
κ
−1 = β = 1.2 such that the elliptical fracture aspect ratio

is b(t)/a(t) = 0.47. The fracture is initialized as an ellipse
of ratio 0.5 (slightly off the correct solution). The computa-
tional domain is divided into 150 cells along e1 and 100 cells
along e3. Figs. 3,4 and 5 display the numerical (black dots)
and analytical (green solid line) solution for the self similar
dimensionless width profile as well as the evolution of di-
mensionless radius and dimensionless maximum width and
pressure with time. The analytical solution for radius, width
and pressure are reported in Eqs. (23), (11) and (22) respec-
tively. We plot also the analytical results in dot-dashed line
for the case of planar fracture propagating in isotropic me-
dia (κ−1 = β = 1).

The dimensionless width w/Wk along the major axis e1
and the minor axis e3 are displayed in Fig. 3. We can
observe that the numerical results matches very the ellip-
tical HF analytical solution derived above. The extent of
the major axis [−a/Lk,a/Lk] (top-figure) and the minor axis
[−b/Lk,b/Lk] (bottom-figure) are depicted from the width
profiles which depart from the value w = 0 at the fracture
tip x1 =±a and x3 =±b. The fracture width extent is wider
along the major axis than the minor axis with the same max-
imum width value at the center. The fracture width shape
for the isotropic case (dot-dashed line) does not predict the
anisotropic width profiles.

We scale the time by a a dummy characteristic time tk cor-
responding to the time required to get a unit fracture length:
Lk(tk) = 1, and similarly for the width by w(t)/Wk(tk), the
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Fig. 3: Toughness dominated elliptical HF: self similar width
profiles w(t)/Wk(tk) along the major axis e1 (top-figure) and the
minor axis e3 (bottom-figure) for κ−1 = 1.2, β = 1.2, ε = 0.3,
δ = 0.2, and C13/C11 = 0.5.

net pressure p(t)/Pk(tk), and the semi-axis a(t)/Lk(tk) and
b(t)/Lk(tk). We can observe from figures (Figs. 4 and 5)
that our numerical simulation follow accurately the analyt-
ical solution over more than four decades of time. The HF
growth evolves self similarly with the same power law of
time as for the isotropic case: 2/5 for the radius, 1/5 for
width and −1/5 for the pressure. A maximum relative error
on the fracture radius is estimated to 5% (Fig. 4-bottom)
with respect to the elliptical toughness dominated HF solu-
tion.

6.2. Isotropic toughness

We now study the effect of the dimensionless elastic
anisotropy ratio β . We relax the assumption of an ellipti-
cal fracture and consider the case of an isotropic material
toughness (KIc (α) = KIc / κ−1 = 1). We perform a series
of fracture propagation simulations for different TI parame-
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Fig. 4: Toughness dominated elliptical HF: Dimensionless major
a(t)/Lk(tk) and minor b(t)/Lk(tk) semi axis in log-log scale in the
top-figure, the relative error with respect to the analytical solution
is shown in the bottom-figure. Case for κ−1 = 1.2, β = 1.2, ε =
0.3, δ = 0.2, and C13/C11 = 0.5.
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Fig. 5: Toughness dominated elliptical HF: dimensionless width
w(0,0)/Wk(tk) (top-figure) and pressure p(0,0)/Pk(tk) (bottom-
figure) at the injection point function of dimensionless time t/tk
in log-log scale. Case for κ−1 = 1.2, β = 1.2, ε = 0.3, δ = 0.2,
and C13/C11 = 0.5.



ters with the base dimensionless elastic parameters (ε = 0.3,
δ = 0.2, and C13/C11 = 0.5), varying only β . Here again af-
ter a short initial transient during which the fracture shape
evolves from the initial solution (taken here as a radial), the
fracture propagation exhibit a self-similar nature.

The self similar footprint and width profiles w(t)/Wk(tk)
along the major and the minor axis e1 and e3 are displayed
on Figs. 6-top and 7 respectively; while, the correspond-
ing time dependence dimensionless semi-axis (a(t),b(t))
are displayed in Fig. 6-bottom. We scale the fracture ra-
dius with Lk (tk) = 1 and time t here again with tk (Fig. 6-
bottom).

We report also in Fig. 6-top the numerical results ob-
tained using the approximation E ′

app (Eq. (10)) instead of
the exact expression for the near tip plane-strain modulus.
We can directly observe that the fracture deviates from the
radial shape as it is the case for the isotropy. However, it
does not exactly fit within an elliptical shape. The elonga-
tion of the fracture footprint b/a increases linearly with β−2

as shown in Fig.6-top-inset, a direct result from the tough-
ness asymptote (Eq. (9)), where at the fronts located at the

arrester and divider directions:

√
δx3

δx1
= β

−1 w(δx3)

w(δx1)
. This

is also the case for the elliptical shape (see Eq. (21)).

The numerical results, obtained using E ′
app as the near-tip

plane-strain modulus underestimate the fracture footprint
aspect ratio - especially for large β . As an illustration, for
β = 2, the ratio of the minor and major axis obtained using
E ′

app is equal to 0.59, whereas it is estimated as 0.32 when
using the exact expression of E ′

α in the near tip plane strain
modulus. For smaller anisotropy, i.e: β = 1.2, the two near-
tip plane strain modulus are relatively similar (see Fig.2.a),
and as a results the two fracture footprints obtained numeri-
cally match very well for β close to unity (weak anisotropy).

For a given set of elastic parameters, the dimensionless
fracture radius along the major axis e1 and minor axis e3
(Fig. 6-bottom) evolves as the 2/5 power law of the time as
expected from scaling arguments (see Tab.1). We also ob-
serve that larger anisotropy (higher value of β ) results in a
significantly lower fracture aspect ratio γ . This result is ex-
pected as the local growth of the fracture is governed mostly
by the value of the near-tip elastic modulus magnitude for
given isotropic fracture toughness (see Eq. (9)).

The self similar width profiles along the major and the
minor axis are shown in Fig. 7. For different values of β ,
the self similar width profiles w(t)/Wk(tk) follows the evo-
lution of the profiles of footprint, i.e: larger elongation on
the fracture footprint corresponds to larger maximum open-
ing along both minor and major axis. The fracture width is
thiner along the minor axis. The width profiles also differ
significantly from the isotropic case.
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Fig. 6: Isotropic toughness / TI Elasticity: Self similar footprint
(top-figure) obtained using the exact near-tip plane strain mod-
ulus E ′

α (solid line) and the approximation E ′
app (dashed lines),

and time evolution of the dimensionless major a(t)/Lk(tk) and
minor b(t)/Lk(tk) semi axis (bottom-figure). Effect of different
β = {1.2,1.5,2} with: ε = 0.3, δ = 0.2, and C13/C11 = 0.5.
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Fig. 7: Isotropic toughness / TI Elasticity: Self similar solu-
tion for width profiles w(t)/Wk(tk) along the major axis e1 (top-
figure) and the minor axis e3 (bottom-figure) for different β =
{1.2,1.5,2} with ε = 0.3, δ = 0.2, and C13/C11 = 0.5.

7. SELF-SIMILAR FRACTURE SHAPE: FULLY COU-
PLED VERSUS APPROXIMATED SOLUTIONS

As previously mentioned, at large time, the hydraulic frac-
ture propagates in toughness dominated regime (where the
net pressure is spatially uniform) - and reach a self-similar
shape (see section 6). We have reported in section 6.2 the
influence of elastic anisotropy (assuming isotropic tough-
ness) on such a shape - and observed that anisotropy pro-
motes fracture elongation but the shape does not match ex-
actly an elliptical shape. It is therefore interesting to further
compare our numerical results obtained by solving the fully
coupled hydraulic fracture problem without any priori con-
straints on the fracture shape with a simple shape adaptation
scheme solely based on the assumption of an elliptical frac-
ture (Laubie and Ulm, 2014).

The crack shape adaptability scheme proposed by Laubie
and Ulm (2014) consists in numerically obtaining γ for a
given set of elastic parameters such that either the stress
intensity factor or the local energy release rate along the
fracture front of an elliptical uniformly pressurized fracture
is constant - therefore corresponding to an assumption of
isotropic material toughness or isotropic fracture energy re-
spectively.

The hypothesis of an isotropic material toughness re-
quires that the stress intensity factor for the uniformly pres-
surized elliptical crack (14) is constant all around the frac-
ture front. For a given set of elastic parameters, one can
therefore obtain the most suitable fracture aspect ratio by
numerically minimizing the relative difference of KI at dif-
ferent angles along the elliptical front:

γ = min
γ

(
Nθ

∑
i=1

KI(γ,β ,θi)−KI(γ,β ,0)
KI(γ,β ,0)

)
(24)

where we discretize the interval [0,π/2] in Nθ = 20 val-
ues of θi the polar angle (13) parametrizing the crack front.
Note that KI is also function of ε,δ and C13/C11.

One can perform a similarly scheme assuming that the

local energy release rate g =
K2

I

E ′
α

is constant all along the

front - isotropic critical fracture energy assumption. Simi-
larly, again under the assumption of an elliptical shape, one
can perform a minimization of the variation of g along the
front as function of the aspect ratio γ:

γ = min
γ

(
∑

i

g(γ,β ,θi)−g(γ,β ,0)
g(γ,β ,0)

)
. (25)

Moreover in both cases, one can either use the exact ex-
pression of the near-time plane-strain modulus E ′

α (appear-
ing in the expression of the local SIF (14) and energy re-
lease rate), or the approximation E ′

app (as done by Laubie
and Ulm (2014)).
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Fig. 8: Top: Comparison of the fracture aspect ratios b/a obtained
from the numerical solution (black dot), the SIF minimization cri-
teria using E ′

α (black square) or the approximation E ′
app (black

diamond) for the near tip plane strain modulus. Results for differ-
ent β−2 = {1,1.05,1.1,1.2,1.3,1.4,1.5,1.7,2}−2 with ε = 0.3,
δ = 0.2, and C13/C11 = 0.5 for all cases. Bottom: corresponding
scaled stress intensity factor KI/KI,1 function of θ .

7.1. Hypothesis of isotropic toughness

Fig. 8-top represents the ratio b/a as function of β ob-
tained by minimizing the variation of stress intensity fac-
tor along an elliptical fracture front - either using E ′

α or
its approximation E ′

app as the near tip plain strain modu-
lus. The numerical results obtained without the constraint
of an elliptical fracture are also reported as black dots. For
small values of β (β−1 > 0.8) the results obtained with
the assumption of an elliptical fracture and the numerical
ones (unconstrained) agrees well with the same slope func-
tion of β−2 (γ = 1.04β−2). When the anisotropy increases
(β−1 < 0.8), the results obtained via minimization of varia-
tion of KI for an elliptical crack starts to significantly differ
form the numerical prediction of the fracture front for which
γ = 0.9β−2. The relative error between the two estimations
exceeds 30% for the case of high anisotropies (β−1 < 0.3).
Moreover as expected, the stress intensity factor along the
elliptical crack front are not uniform even at the optimal
γ value obtained -see Fig. 8-bottom for the dimensionless
SIF KI/KI,1 = KI(θ)/KI(θ = 0) along the front. The non-
uniformity reaches 5% for the largest elastic anisotropy.

ILSA - Isotropic 

Elliptical fracture minimisation - 

Elliptical fracture minimisation -

●
●

●

●

●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Fig. 9: Top: Comparison of the fracture aspect ratios b/a obtained
from the numerical solution (black dot), the fracture energy min-
imization criteria using E ′

α (black square) or the approximation
E ′

app (black diamond) for the near tip plane strain modulus. Re-
sults for different β−1 = {1,1.05,1.1,1.2,1.3,1.4,1.5,1.7,2}−1

with ε = 0.3, δ = 0.2, and C13/C11 = 0.5 for all cases. Bottom:
corresponding scaled local energy release rate g/g1 function of θ .

7.2. Hypothesis of isotropic fracture energy

Similarly than before, we perform HF numerical simula-
tions imposing an isotropic fracture energy gc for different
elastic anisotropy. We compare our fully coupled numerical
results (without any constraint on the fracture shape) and the
results obtain by minimizing the non-uniformity of g along
the front of an elliptical crack. Using the approximation
E ′

app or the complete modulus E ′
α , the elliptical crack shape

adaptability follows relatively well our numerical results ex-
cept the case when β−1 < 0.6 (see Fig. 9-top). We found
that the crack shape using the energy criteria scales as ratio
β−1 which is expected as: g(θ = 0)/g(θ = π/2) = β

−1.

One can also note that the variation of the scaled energy
release rate g/g1 = g(θ)/g(θ = 0) along the front of the
elliptical crack at the optimal γ appears more uniform (see
Fig. 9-bottom). The spatial variation is only of a few per-
cent for the largest value of β = 2 (β−1 = 0.5).



8. CONCLUSIONS

In this paper, we have presented a numerical solver to sim-
ulate the growth of a planar 3D hydraulic fracture prop-
agating normal to the plane of isotropy of a transversely
isotropic elastic rock. Our numerical solver was vali-
dated against an analytical solution in toughness dominated
regime for a special case of toughness anisotropy leading to
an elliptical fracture. The main conclusions of this study are
the following.

• Both elastic and toughness anisotropy tends to elon-
gate the fracture in the horizontal direction in the most
common settings of sedimentary basins.

• Only a very peculiar form of toughness anisotropy
(Eq. (20)) leads to an exactly elliptical shape - which is
highly unlikely for any material.

• The effect of the anisotropy of elasticity and tough-
ness on fracture elongation is compounded when κ =
KIc,1/KIc,3 is below 1.

• Under the hypothesis of isotropic toughness, the as-
pect ratio obtained numerically (without constraining
the fracture to be elliptical) is proportional to β−2 =
(E ′

1/E ′
3)

2, i.e. γ ≈ 0.9β−2, but the fracture(s) are not
exactly elliptical. Minimizing the SIF variation along
the front of an elliptical fracture (a strong assumption)
provides a more elongated fracture shape and the SIF
remains non-uniform confirming that under such as-
sumption the fracture can not be exactly elliptical.

• Under the hypothesis of an isotropic critical fracture
energy, the aspect ratio obtained numerically (with-
out constraining the fracture to be elliptical) is pro-
portional to β−1 = E ′

1/E ′
3, i.e. γ ≈ β−1. Here the

minimization of the local energy release rate along the
front of an elliptical fracture provides similar results,
although the local energy release rate is not exactly
uniform along the front. Here again under such an as-
sumption the fracture can not be exactly elliptical.
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