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Abstract

Our modern society is struggling with an unprecedented amount of online

misinformation, which does harm to democracy, economics, and cyberse-

curity. Journalism and politics have been impacted by misinformation on

a global scale, with weakened public trust in governments seen during the

Brexit referendum and viral fake election stories outperforming genuine news

on social media during the 2016 U.S. presidential election campaign. Online

misinformation also single-handedly caused $136.5 billion in losses in the

stock market value through a single tweet about explosions in the White

House. Such attacks are even driven by the advances of modern artificial

intelligence (AI) these days and pose a new and ever-evolving cyber threat

operating at the information level, which is far more advanced than tradi-

tional cybersecurity attacks at the hardware and software levels.

Research in this area is still in its infancy but demonstrates that debunking

misinformation on the Web is a formidable challenge. This is due to several

reasons. First, the open nature of social platforms such as Facebook and

Twitter allows users to freely produce and propagate any content without

authentication, and this has been exploited to spread hundreds of thousands

of fake news at a rate of more than three million social posts per minute.

Second, those responsible for the spread of misinformation harvest the power

of AI attacking models to mix and disguise falsehoods with common news.

Methods of camouflage are used to cover digital footprints through synthe-

sizing millions of fake accounts and appearing to participate in normal social

interactions with other users. Third, innocent users, without proper alerts

from algorithmic models, can accidentally spread misinformation in an ex-

ponential wave of shares, posts, and articles. The misinformation wave is

often only detected when already beyond control and consequently can cause

large-scale effects in a very short time.

The overarching goal of this thesis is to help media organizations, govern-

ments, the public, and academia build a misinformation debunking frame-

work, where algorithmic models and human validators are seamlessly and

cost-effectively integrated to prevent the damage of misinformation from oc-

curring. This thesis investigates three important components of such a frame-

work, including: (i) detection, (ii) validation, and (iii) visualisation. For each

of them, we focus on a working misinformation domain that enables us to

systematically design and entail consistent models and dedicated methods

for solving the problem from different angles.
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The main contributions of this thesis are:

• Detection: Early detection can potentially prevent the spread of mis-

information from occurring by flagging suspicious news for human at-

tention; however it remains, to date, an unsolved challenge. To this

end, we proposed a graph-based progressive model that detects emer-

gent misinformation stories from data streams of social networks. The

model confirmed and leveraged the echo chamber effect of misinforma-

tion waves to identify the affected social entities via their interactions.

• Validation: Learning a good detection model already requires a lot

of training data; and yet it can be outdated swiftly with new social

trends. A promising approach is to use human experts to validate the

detection results, helping algorithmic models to train themselves to be-

come smarter and adaptive to new traits of misinformation. Realizing

this approach, we proposed guidance strategies that minimize human

efforts in validating misinformation flags, boosting the confidence of

misinformation detection and reducing the risk of false alarms.

• Visualisation: Disseminating the debunking reports is an important

step to raise public awareness against falsehood contents and educate

Web users. However, human users can be easily overwhelmed by the

high volume of Web data, as the level of redundancy increases and the

value density decreases. To this end, we proposed a retaining protocol

for streaming data to visualise highly representative information with

minimal regret. The utility measure is designed so that the retained

data covers emergent social topics, fresh social posts, and rich of social

contexts.

In summary, this thesis proposed key components of building a misinfor-

mation debunking framework. The proposed techniques improve upon the

state-of-the-art in a variety of misinformation domains, including rumours,

Web claims, and social streams.

Keywords: digital misinformation, anomaly detection, effort minimisation,

social media analysis, streaming data visualisation



Résumé

Notre société moderne est confrontée à un volume de mésinformation en ligne,

ce qui nuit à la démocratie, l’économie et la cyber-sécurité. Le journalisme et

la politique ont été impactés par la mésinformation à une échelle globale, ce

qui fragilise la confiance du public envers les gouvernements. Le phénomène a

récemment été exemplifié lors du referendum pour le Brexit et de la campagne

présidentielle américaine de 2016 dans laquelle les “fake news” dépassaient la

visibilité des articles de presse légitimes. La mésinformation en ligne a été re-

sponsable d’une perte de 136.5 milliards de dollars en valeurs boursières après

un simple Tweet émanant de la maison blanche. Ce genre d’attaques profite

de l’avancée de l’intelligence artificielle et constitue une nouvelle menace, en

constante évolution, qui opère au niveau de l’information, rendant l’attaque

bien plus complexe que lorsque la cible est un logiciel ou une machine.

La recherche visant à contrer le phénomène en est toujours à ses balbu-

tiements mais elle suggère cependant le défi représenté par la tâche. Cela est

dû à plusieurs raisons. Premièrement, la nature ouverte des plateformes telle

que Facebook ou Twitter permet aux utilisateurs de partager et propager li-

brement du contenu sans mécanismes d’authentification, ce qui a déjà été ex-

ploité pour répandre des centaines de milliers de “fake news” à une fréquence

de plus de trois millions de postes par minute. Deuxièmement, les respon-

sables de la diffusion de ce contenu frauduleux exploitent la puissance de

modèles d’intelligence artificielle pour conduire leurs attaques et déguiser

une fausse information en un article standard. Troisièmement, des utilisa-

teurs innocents, s’ils ne sont pas alertés par un modèle algorithmique, peuvent

accidentellement répandre de fausses informations dans une vague exponen-

tielle de partages, de postes et d’articles. La vague de mésinformation est

souvent détectée lorsqu’elle est déjà hors de contrôle et peut, par conséquent,

causer de graves dommages dans un court lapse de temps.

Le but fondamental de cette thèse est d’aider les organisations médiatiques,

les gouvernements, le public et l’académique à encadrer le développement

de la lutte contre la mésinformation, en intégrant entre les modèles algo-

rithmiques et les validateurs humains, tout en contrôlant les coûts, afin de

prévenir des dommages liés à la mésinformation. Cette thèse abord trois

composants essentiels de cet encadrement : (i) détection, (ii) validation et

(iii) visualisation. Pour chacun d’eux, nous nous concentrons sur un do-

maine de la mésinformation, ce qui nous permet l’adoption d’une approche
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systématique dans le développement de méthodes dédiées afin de résoudre le

problème sous différents angles.

Les contributions principales de cette thèse sont:

• Détection: La détection précoce peut potentiellement prévenir la prop-

agation de la mésinformation en identifiant les nouvelles suspicieuses

et en les portant à l’attention de validateurs humains ; dans ce but,

nous proposons un modèle progressif, basé sur les graphs, qui détecte

l’émergence d’articles de désinformation à partir de flux d’actualité ou

de flux de médias sociaux. Le modèle a confirmé et exploité l’effet de

“chambre d’écho” propre aux vagues de mésinformation pour identifier

les entités affectées sur les réseaux sociaux à travers leurs interactions.

• Validation: Apprendre un bon modèle de détection demande un grand

volume de données; cependant, il peut être mis à jour rapidement en

intégrant de nouvelles tendances sociales. Une approche prometteuse

fait usage d’experts humains pour valider les résultats de détection,

aidant ainsi les modèles algorithmiques à devenir plus performants et

à s’adapter aux nouvelles caractéristiques de la mésinformation. En

adoptant cette approche, nous proposant une stratégie de guidage qui

minimise l’effort de validation des alertes de mésinformation, améliorant

ainsi la confiance dans la détection de contenu frauduleux et réduisant

les risques de fausses alertes.

• Visualisation: Disséminer les rapports concernant les articles fraud-

uleux est une étape essentielle pour rendre le public attentif à la més-

information et éduquer les utilisateurs du Web. Cependant, les util-

isateurs peuvent être rapidement dépassé par le volume d’information

titanesque provenant du Web, surtout lorsque le niveau de redondance

augmente et la densité de la valeur diminue. Dans ce contexte, nous pro-

posons un protocole de rétention de flux de données afin de visualiser de

l’information représentative avec un regret minimal. La mesure d’utilité

est établie de façon à ce que les données couvrent les sujets de discussion

émergents, les postes récents provenant des réseaux sociaux et possédant

un contexte social riche.

En résumé, cette thèse propose les composants clés visant à construire un

cadre pour la lutte contre la mésinformation. Les techniques proposées

améliorent les résultats des méthodes existantes dans divers domaines, inclu-

ant les rumeurs, les affirmations sur le Web et les flux de données provenant

des réseaux sociaux.

Mots-clés: mésinformation digitale, détection d’anomalie, minimisation de

l’effort, analyse de médias sociaux, visualisation de flux de données
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Résumé v
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Chapter 1
Introduction

The use of freely available online data is rapidly increasing, as companies have detected

the financial value and potentials of these data in their businesses. In particular, data

from social media have attracted an enormous amount of interests in the recent decade,

as they can, when properly treated, assist in achieving customer insight into business

decision making. However, the distributed and decentralized nature of this kind of user-

generated content presents a new kind of challenge: information is largely propagated

without any filters for quality control. This leads to a large variety of misinformation

on the Web, particularly on the social media landscape, such as false news, satire news,

and rumours [Zea18].

1.1 Motivation

Our modern society is struggling with an unprecedented amount of online misinforma-

tion, which do harm to democracy, economics, and national security [VRA18]. Creators

of misinformation optimise their chance to manipulate public opinion and maximise

their financial and political gains through sophisticated pollution of our information dif-

fusion channels. The Digital News 2018 Australian report shows that three quarters

of online news consumers say they encounter one or more instances of fake news every

day [oC]. Journalism and politics have been impacted by fake news on a global scale,

with weakened public trust in governments seen during the Brexit referendum and viral

fake election stories outperforming genuine news on social media during the U.S. pres-

idential election campaign [New]. Online misinformation also single-handedly caused

$136.5 billion in losses in the stock market value through a single tweet about explosions

in the White House [ZAB+18]. Such attacks are even driven by the advances of mod-

ern artificial intelligence (AI) these days [cfr] and pose a new and ever-evolving cyber

threat operating at the information level, which is far more advanced than traditional

cybersecurity attacks at the hardware and software levels [gov].

Research in this area is still in its infancy but demonstrates that preventing the

spread of misinformation is a formidable challenge. This is due to several reasons. First,

the open nature of social platforms such as Facebook and Twitter allows users to freely
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1. Introduction

produce and propagate any content without authentication, and this has been exploited

to spread hundreds of thousands of fake news at a rate of more than three million social

posts per minute [All17]. Second, those responsible for the spread of fake news harvest

the power of AI attacking models to mix and disguise falsehoods with common news.

Methods of camouflage are used to cover digital footprints through synthesising millions

of fake accounts and appearing to participate in normal social interactions with other

users [HSB+16]. Third, innocent users, without proper alerts from algorithmic models,

can accidentally spread misinformation stories in an exponential wave of shares, posts

and articles. The misinformation wave is often only detected when already beyond con-

trol and consequently can cause large-scale effects in a very short time. Early detection

can potentially prevent damage from occurring by flagging suspicious news for human

attention; however it remains, to date, an unsolved challenge.

Existing techniques for detecting misinformation in online social networks are focused

on building fully autonomous algorithmic models [Zea18]. However, such models become

obsolete with the new generation of AI-driven attacks. Fabricated videos using AI to

mimic real people such as Barack Obama as well as social media bots and clickbaits

disguised to appear real can go by unnoticed with existing techniques [cfr]. Detecting this

new generation of misinformation requires a deep understanding of social contexts, which

often exceeds the limits of autonomous algorithms. Learning a near-exact algorithmic

model, even AI, already requires a huge amount of training data; yet this data is often

not available in advance and can be outdated swiftly with new social trends [LNL+15].

Furthermore, giving algorithmic models the privilege to be a judge of truth in modern

society has raised ethical concerns regarding fairness and transparency [HBC16], i.e.

who is there to check them? A promising approach is to use human experts to validate

the algorithmic detections, boosting the confidence of misinformation alarms. In this

research, we bring humans on board by harnessing the advances of human validation

platforms such as Snopes and Figure-Eight, which provide tools and incentives to employ

millions of experts for any validation tasks.

1.2 Misinformation Debunking Framework and Research
Questions

The overarching goal of this thesis is to build the cornerstones of a human-powered mis-

information debunking framework for helping media fight misinformation and restore

public’s trust with cost-effective, scalable, robust and streaming techniques on top of

large-scale dynamic social networks. The debunking framework is expected to work on

data streams of social platforms and issues alarms on suspicious information waves. Hu-

man experts are employed to validate these emerging stories, guiding algorithmic models

to train themselves to become smarter and adaptive to new traits of misinformation for-

mation. We argue that a typical debunking framework would require three important

components: Detection, Validation, and Visualisation, as illustrated in Figure 1.1.
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1.2 Misinformation Debunking Framework and Research Questions

Detection (Chapter 3)

Feedback

Streaming Data

Validation (Chapter 4)

Information 
Network

Social media

Web articles

News

Visualisation (Chapter 5)

Evolution of Misinformation Stories Experts

Credibility Model

Retained data

Figure 1.1: Misinformation Debunking Process

Detection. The role of this component is to develop a model that can detect emergent

misinformation stories from data streams of social networks. In particular, the early

detection will help preventing the spread of misinformation from occurring by flagging

suspicious news for human attention. To achieve this goal, there are numerous research

questions to tackle:

• How to identify the indicative signals for distinguishing misinformation from gen-

uine news?

• How to detect the affected social entities with high confidence?

• How to design a progressive detection algorithm that works with data streams of

social platforms?

Validation. The role of this component is to build a seamless and cost-effective in-

tegration of human validators to power the algorithmic models in improving detection

accuracy and reducing the risk of false alarms. To achieve this goal, the following re-

search questions need to be answered:

• How to select the most beneficial question(s) for human feedback?

• How to design support information to increase feedback quality, avoiding mistakes

and biases?

• How to incorporate user input to improve the correctness of credibility model?

• How to define termination criteria to get the best trade-off between validation time

and detection accuracy?

Visualisation. The role of this component is to design a data stream visualisation

protocol that addresses the issues of high velocity and high volume with massive social

streams. Representative social entities should be retained while the lesser ones should be

discarded to preserve the framework storage. To achieve this goal, the following research

questions are required to solve:

• How to design a utility function that captures different aspects of social data?

3
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• How to build an information sketch to help computing utility accurately even when

historical data is discarded?

• How to develop a retaining algorithm that preserves a part of historical data with

minimal information loss?

1.3 Thesis Methodology

The theme of this thesis is to treat the misinformation debunking framework from differ-

ent angles; so that when working with different types of misinformation across different

social platforms, end-users can reuse the developed models to discover domain-specific

insights and practical guidelines. To do so, we follow a bottom-up approach, where each

of the framework components (Detection, Validation, and Visualisation) focuses on a

well defined working domain (rumours, online facts, and social streams), for which the

required data is accessible, and that is representative of misinformation landscape, al-

lowing us to explore various types of challenges arise. While there are limits to such an

approach, as the working domain might under- or over-represent their kind, by allow-

ing researchers to focus on a common set of problems and data, it facilitates a better

understanding of fundamental mechanisms and their guarantees.

1.4 Contributions and Thesis Organisation

In addressing the above research questions, this thesis makes the following contributions:

Misinformation Detection: The Case of Rumour Early-Detection. In Chap-

ter 3, we solve the problem of Early Detection on Dynamic Data Networks. That is,

finding a set of entities on a social graph that are affected by a rumour propagation. In

particular:

• We develop a model that grounds rumour detection on a generic graph represen-

tation of social data, thereby achieving a solution that is applicable for any type

of social platform.

• Based on a model for social platforms, we develop a general process to detect

rumours by observing anomalous signals indicative of rumours.

• We show how to apply our approach for streaming data by incrementally computing

anomaly scores on the local level and global level.

Misinformation Validation: The Case of Minimal-Effort Fact-Checking. Ex-

pert input is expensive (in terms of time and cost), so that a validation of all misinfor-

mation claims is infeasible, even if one relies on a large number of experts. There is a

trade-off between the precision of a credibility model and the amount of expert input:

the more claims are checked manually, the higher the precision. However, expert input

is commonly limited by some budget. Chapter 4 solves the problem of Human-powered

Validation with Minimal Effort.
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• We design a cost-effective iterative process for guiding users in fact checking.

• We present a novel probabilistic model that enables us to reason on the credibility

of claims, while new user input is continuously incorporated.

• We propose strategies to guide users, i.e., to select the claims for which validation

is most beneficial. These strategies target the reduction of uncertainty in our

probabilistic model for fact checking.

• We combine our mechanisms for credibility inference and user guidance to obtain a

comprehensive validation process. We also show how to achieve robustness against

erroneous user input.

Misinformation Visualisation: The Case of Minimal-Regret Data Streaming

Retaining. In Chapter 5, we solve the problem of Progressive Data Visualisation with

Minimal Regret. We consider the natural setting of social platforms, where data is

dynamic and available as a stream. Then, retaining of data becomes more challenging

compared to one-off summarization, as data selection has to be repeated every time new

data arrives. Instead of considering the whole historical data, summarization now works

on the retained data (i.e., a previous summary) and the new data.

• We propose a novel statistical model, which does not only capture the traditional

context of social data (importance of topics, user influence, information diffusion),

but also embeds the dynamics of this context over time.

• We design a utility function to assess the representativeness of a subset of data

items against all historical data.

• We develop a progressive algorithm to solve the streaming data visualisation prob-

lem such that the retained data has minimal utility loss.

The remainder of this thesis is organised as follows. Chapter 2 presents a survey

of literature related to research challenges addressed in this thesis work. Chapter 6

concludes our thesis and discusses the future work.

1.5 Selected Publications

This thesis is based on the following research papers:

• Nguyen, T.T., Weidlich, M., Zheng, B., Yin, H., Nguyen, Q.V.H., and Stantic,

B., 2019. From Anomaly Detection to Rumour Detection using Data Streams of

Social Platforms. In the 45th International Conference on Very Large Data Bases.

(VLDB 2019)
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This paper presents models and methods to realise the idea of detecting

rumours based on anomalies. It follows a data management approach:

rumour detection is grounded in algorithms that work on a generic graph

representation of social data, thereby achieving a solution that is appli-

cable for any type of social platform.

• Nguyen, T.T., Weidlich, M., Yin, H., Zheng, B., Nguyen, Q.V.H., and Stantic,

B., 2019. User Guidance for Efficient Fact Checking. In the 45th International

Conference on Very Large Data Bases. (VLDB 2019)

This paper proposes a comprehensive framework to guide users in the

validation of facts, striving for a minimisation of the invested effort. The

framework is grounded in a novel probabilistic model that combines user

input with automated credibility inference.

• Nguyen, T.T., Phan, T.C., Nguyen, Q.V.H., Aberer, K. and Stantic, B., 2019.

Maximal Fusion of Facts on the Web with Credibility Guarantee. Information

Fusion Journal, 48, pp.55-66. (IFJ 2019)

This paper overcomes the inherent trade-off between the precision of

information credibility and the recall of information coverage in a novel

way for sensitive applications: maximizing the recall while preserving

the precision at least better or equal to a pre-defined requirement.

• Nguyen, T.T., Duong, C.T., Weidlich, M., Yin, H. and Nguyen, Q.V.H., 2017.

Retaining data from streams of social platforms with minimal regret. In the 26th

International Joint Conference on Artificial Intelligence. (IJCAI 2017)

The data streams of today’s social platforms exceed any reasonable limit

for permanent storage, especially since data is often redundant, overlap-

ping, sparse, and generally of low value. This paper proposes techniques

to effectively decide which data to retain, such that the induced loss of

information, the regret of neglecting certain data, is minimized.
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Chapter 2
Background

In this chapter, we review the literature related to this thesis work. For a better un-

derstanding with clear organization, we present the following topics as the research

background of this thesis; i.e.,

2.1 Misinformation Landscape

2.1.1 Social Data and Social Platforms

Online social data typically includes digital traces generated by (or about) Web users,

providing insights into how people behave, communicate, and interact in real-world [KSG13].

It has been coined a variety of terms such as “crowdsourced data”, “wisdom of crowds”,

“human traces”, “usage data” by the community to describe its collective and user-driven

nature [BY14, Olt16]. One origin of social data is from people who voluntarily produce

content by reporting scientific studies, uploading their comments, writing product re-

views, and sharing knowledge via various Web platforms, such as blogs (e.g. Tumblr,

Wordpress), social media (e.g. Twitter, Facebook), and wikis (e.g. Wikipedia, Wiki-

rate) [NPN+19, HWN+19, NNL+19, NYW+19, NWZ+19]. Examples of social data and

their statistics can be found in Table 2.1.

Table 2.1: Examples of online social data

Data sources Size #Users Content

Twitter [Twi] ∼ 0.5B tweets/day ∼ 0.3B active users opinions
Tumblr [Tum] ∼ 100B posts ∼ 0.25B blogs arguments

Wikipedia [Wik] > 35M articles > 70K active contributors facts

The attention around online social data has particularly grown with of a diversity of

social platforms, from social media sites (Twitter) to social networks (e.g. Facebook),

from consuming information to interacting with friends, resulting in the proliferation of

social units (e.g., clicks, likes, shares, social links) [Tuf14]. While social data itself is

not the origin of misinformation, malicious users can easily leverage those social units

to spread and amplify misinformation, as well as other forms of falsehoods such as fake
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2. Background

reviews, spams and scams, and propaganda [VRA18]. This thesis shows that those social

units are not as bad as everyone thought and can be used together to trace and detect

emergent misinformation stories.

2.1.2 A Taxonomy of Misinformation

There are a plethora of definitions have been attempted to categorise misinformation.

A popular one is information authenticity approach, where the veracity is emphasised

rather than the intentions of misinformation creators. In this approach, online misin-

formation has been connected to various terms and concepts such as maliciously false

news, false news, satire news, and rumour news [Zea18]. Here, the term ‘news’ broadly

refers to all kinds of claims, statements, speeches, posts via social media or mainstream

channels. This definition supports most existing fake-news-related studies, and datasets,

as provided by the existing fact-checking (aka misinformation debunking) websites (e.g.

Snopes) [ZZS+19].

Another categorisation is information intention approach, in which misinformation

is defined as incorrect information with no intention of harm. Whereas, disinforma-

tion is incorrect information with the intention of deceiving the consumer [CGL+18].

In either cases, the incorrect information can be accidentally shared by social users,

blurring the line between innocence and deception. In this thesis, we refer the term

‘misinformation’ as an information pollution phenomenon that disrupts our information

diffusion channels, including propaganda, rumors, and misleading reports. Powered by

our ubiquitous Web technologies and modern artificial intelligence, these types of false-

hoods can be fabricated easily and realistically, and be propagated with unprecedented

speed and scale [ZZJ+19, TPN+18, HVN+18, DLV+18, TPT+18]. The damages are be-

coming more catastrophic, including sensitive domains such as vaccination and political

elections, affecting many lives [ABC+18].

2.2 Web Credibility

Web credibility and misinformation detection are two sides of the same problem on

curating information on the Web. While Web credibility research generally focuses

on building a reputation system where each source and each data item is assigned a

credibility score indicating the correctness of its information capability, misinformation

detection approaches the problem from a data cleaning perspective, where errors, noises,

and biases in social networks are identified and removed promptly to avoid ’domino’

effects. In this section, we review the literature of web credibility on how the Web data

is wrangled, evaluated, and aggregated to build credible Web knowledge bases.

2.2.1 Information Extraction

Fact extraction. Fact extraction may be performed by diverse data representations,

e.g., knowledge bases [DGH+14], web tables [CHW+08], semi-structured data [ECD+04],

8
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or free text [BCS+07]. Other work uses co-occurrence information and evidential logs [LDLL17,

LMY11], but is limited to quantitative information such as identifying unpopular facts

based on the number of mentions [LDLL17, DCMT19]. Various tools such as TextRun-

ner [YCB+07], TweetIE [BDF+13], and DeepDive [DSRR+16] have been developed to

organise non-structured facts (e.g. textual statements) into structured data, particular

relational tables that capture the relationships between information units [SS17].

Our work is orthogonal to all the above mentioned. By relying on an abstract data

representation, our model is not specific to a particular domain. Our principles of user

guidance can further be adapted for many of the above techniques, exploiting its generic

notion of uncertainty.

Credibility indicators. A lot of prior research have been conducted on identifying

credible claims from the Web [PROA12, YJP17]. In these works, they capture the cred-

ibility of a claim as a combination of individual features/indicators. The first type of

features is content-based, such as semantic features (e.g. category, entities, keywords),

sentiments features (e.g. subjectivity), and syntactic features (part-of-speech tag, punc-

tuation marks, spelling errors), advertisements, and page layout [VLCH18, CCWH18,

PCBH17, Cam16]. The second type of features is network-based, such as the overall

ratings of sources sharing the same claims. However, most of the existing works only

compute the credibility as an aggregation function of these features; and again, do not

provide a precision guarantee. On top of these works, we reuse these features and ad-

ditionally take into account the mutual relationships between sources, their documents,

and claims by the factor graph model to support the precision guarantee process.

2.2.2 Data Representation

Information networks. There exists various graph-based models for data of social

platforms, referred to as information networks [SLZ+17]. Some models capture real-

world entities, such as users and posts [SH12], while others represent derived data ele-

ments, such as topics [TQW+15]. Data representation for special types of misinformation

such as fake news, in which the propagation of fake news in social networks is modelled

by information cascade [FAEC14], a tree-like data structure rooted from the genesis

post. Existing work on misinformation detection in information networks focuses on

modelling the propagation patterns of known phenomena [FAEC14, ZAB+18] or clas-

sifies known events [ZRM15]. This setting is orthogonal to our work, since we strive

for the detection of phenomena that emerge on social networks, but are not known a

priori [PZH+18, NZW+18a, YZN+18, NVN+18, PSH+18].

Belief databases. Various efforts have been spent to build databases of knowledge

including facts (objective), claims (unverified), and beliefs (subjective) [DGM19]. In

particular, healthcare-related facts (e.g. side effects of drugs) have been extracted from

online forums and validated by an expert clinic portal [MWDNM14a]. Subjective facts

are also studied, in which arguments (claims + evidences) supporting a user point of

view are collected for modelling the opinion landscape in online social data [STVB16]. A
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special type of belief in relational model is also studied, which indicates the confidence of

an attribute value of database entities (e.g. user profile, background information) [GS10].

In that, a relational model has been built to capture the relationship between users and

their believes, reflecting how the belief is transferred from one user to another [GBKS09].

2.2.3 Trust Computation

Credibility Assessment. The study of trust computation on the Web in general and

social networks in particular has been concerned with how to evaluate the credibility

of data items and the trustworthiness of data providers [Wie18, TVF+17, HVT+18].

Existing techniques for this include: (i) statistical approaches – Bayesian systems and

belief models that compute continuous trust values [HVT+18], (ii) machine learning

techniques – artificial neural networks and hidden Markov models that compute discrete

trust labels [QLNY18], (iii) heuristics-based techniques – practical consistency rules for

real-time systems [HDT+17], and (iv) behavior-based models – user pattern (e.g. activity

frequency) [YLLL17]. These techniques are, however, static and require a large collection

of data in advance. They cannot produce timely alarms in response to the arrival of a

stream of data [PTHS18, HDT+17, HTN+17, DNWS17, YCS+17].

Techniques for credibility assessment vary from domain to domain, including medical

articles [NBW18], Web pages [KNW17], social media [SCA19], and subjective ground-

truth (user opinion and sentiment) [THL+15]. For example, [SCA19] uses published

scientific articles to verify the credibility of social media news by computing textual

similarity. Following a similar but more fine-grained approach, [NBW18] splits the doc-

uments into sentences and comparing these sentences with a knowledge base of experts’

medical statement. On the other hand, [KNW17] leverages the ‘wisdom of the crowd’

via crowdsourcing (Amazon Mechanical Turk) to provide labels on dozens of criteria

(freshness, informativity, references, language quality, contact information, etc.) and

then aggregate all of these factors into a credibility rating on a five-point Likert scale

for a Web site [TWT+17, YZC+16, PH16, YHZ+16, HTNA15].

Truth finding on the Web. Given a set of claims of multiple sources, the truth finding

(aka fact checking) problem is to determine the truth values of each claim [DSS12]. Ex-

isting work in this space also considers mutual reinforcing relations between sources and

claims, e.g., by Bayesian models [ZRGH12], maximum likelihood estimation [WKLA12],

and latent credibility analysis [PR13]. However, these techniques neglect posterior

knowledge on user input and rely on domain-specific information about sources and

data, such as the dependencies between sources and temporal data evolution [DSS12].

Truth finding is also known as knowledge verification [LDLL17] and credibility anal-

ysis [MW15]. Existing automatic techniques mostly look at features of data, such as

number of relevant articles, keywords, and popularity, which are noisy and can be eas-

ily dominated by information cascades [LDLL17]. Again, posterior knowledge on user

input cannot be incorporated. Also, approaches based on gradient-descent [MW15]
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only optimise model parameters, but neglect external probability constraints [TNHA15,

NHWA15, HNC+15, HTWA15b, HTWA15b].

Truth finding is also studied in relational databases [CMT18]. For enterprises,

this includes finding the emergent semantics across department and sector [ACMH03,

ACMO+04]. However, the schemas of these database sources are heterogeneous, due

to the fact that they are designed in different time, by different people, and for dif-

ferent purposes. This requires further data preprocessing steps such as data integra-

tion [HWT+19, NNM+14, BH08] and data cleaning [YEN+11]. For Deep Web (i.e. Web

tables Web [NNWA15] that are generated by underlying relational databases), truth

finding is hindered by an additional processing challenges including unstructured for-

mat, data extraction error, and restricted access to original data sources [LDL+13]. For

Argument Web [RZR07], truth finding includes the resolution of controversial issues, in

which finding and aggregating evidences for unverified claims is the first citizen. How-

ever, while some claims can be objective verified (e.g. climate change), a large amount

of them are subjective [BLSR13].

Fact Checking. The fact checking literature, in particular the claim accuracy assess-

ment, focuses on the classification of claims by credibility, based on a fixed training

data [CLL+18b, CLL+18a, LMT18, Man19]. This can be seen as the starting point

for our work: We put an expert user in the loop to clean the results obtained by au-

tomated classification. Our guidance strategies therefore complement the literature on

classifying claims in identifying which potential errors of a classifier are most bene-

ficial to validate by an expert user. At the same time, our approach can also sup-

port an expert user in building up a fact database from scratch, in a pay-as-you-go

manner. Moreover, our approach goes beyond recent work on offline fact checking,

e.g., [PMSW17], by including a streaming process to incorporate new claims on-the-

fly [HTWA15a, HNMA14, HSDA14, HTNA14, HNM+14].

Fact checking is also studied from many different perspectives, such as content man-

agement [Man17], query processing [BCC+16] (e.g. to check relationships between

claims in their RDF representation), and scalability [Man19]. In particular, scalabil-

ity is a key issue since it is hard to construct a database of verified social facts reaching

the scale of millions, due to various content management issues such as data man-

agement, data integration, NLP, text analysis, and graph mining [CLL+18b]. This

hinders the power of algorithmic models in learning both generic and domain-specific

rules for assessing the credibility of claims. To facilitate the scalability problem, some

pioneering efforts have been spent to develop crowd-sourced platforms that use the

mass of crowd inputs to build large-scale fact data [Fis], but still in early develop-

ment [HJA13, HLM+13b, HNMA13, HWM+13, HLM+13a, GKS+13].
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2.3 Misinformation Detection

2.3.1 Intradisciplinary Approaches

Classification as Detection. Existing works on misinformation detection on social

platforms focus on classification of social news as false or not, using techniques grounded

in detective features manually defined from statistical observations and domain knowl-

edge [ZAB+18, SSW+17]. To avoid ad hoc definition of these features, deep learning

methods have been applied to learn them automatically by extracting temporal depen-

dencies and the dynamics of misinformation propagation [Zea18, MGW+15]. Real-time

detection models were studied, but not adaptive to new traits of misinformation that

appear outside their knowledge base [LNL+15]. In general, existing techniques require

a preprocessing step to explicitly group social posts into a news event, which may have

a cumulative effect on inaccuracies in the main detection step as well as posing an in-

convenience for real-time data stream processing. Moreover, the computed features are

often not embedded in the same value space, and thus not generic enough to fuse several

kinds of misinformation indicators [HNLA13b, HA13, HNLA13a, NHQ12, HA08].

Rumour detection. Rumour is a domain-specific term of misinformation, in which

false information often originates from the fact that people tend to exaggerate what they

dislike [TWZ+19]. While there is a large body of work on rumour detection on social

platforms, surveyed in [ZAB+17], little has been done to exploit multiple modalities to

detect rumours. Most work leverages only textual data such as tweets [CMP11, ZRM15,

GKCM14]; whereas others consider different data entities such as users and hashtags but

still treat them as additional features or textual data only [MGM+16]. Techniques based

on hand-crafted features [CMP11, ZRM15, YLYY12] are grounded in an ad-hoc defini-

tion of features, which are expected to be strong indicators of rumours. Recently, deep

features based on temporal dependencies of the posts have been proposed [MGM+16].

While this approach achieves high detection accuracy, it first requires the detection of an

explicit event and thus depends on the accuracy of this event detection step. There are

further approaches [MGW17, WYZ15, WT15] that mine behavioural patterns of social

users by extracting subgraphs of social posts (support, deny, question) on how rumours

propagate [ATH06]. However, these techniques require large collections of tweets to

conduct the respective analysis. As such, they cannot be expected to yield small lag

times in the detection of rumours and are not well-suited for a streaming setting. Our

approach is the first to leverage not only the textual data, but also other modalities in

both offline and online settings.

Anomaly detection. Anomaly detection can be classified into point or group-based

techniques [YQW+16]. Point-based anomaly detection aims to detect individuals, for

which the behaviour is different from the general population [SDJ+01, JV01, IHS06].

Group-based anomaly detection, in turn, strives for groups of individuals that collectively

behave differently compared to some population [CBK07, DSN09, CN14, YHL15, MS13,

XPS+11]. However, none of the above techniques has been applied to rumour detection.
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2.3 Misinformation Detection

While [CN14] addresses a similar use case, it neglects the anomalies related to feature

differences between entities. Our technique is the first one for group-based anomaly

detection that simultaneously identify anomalies in all features, entities, and relations.

Most of the work on anomaly detection in general and rumour detection in particular

focuses on accuracy. Here, we define the detection coefficient to capture the balance

between accuracy and completeness, which is optimised by our approach.

2.3.2 Interdisciplinary Approaches

Misinformation Detection in Journalism. Computational journalism is an estab-

lished area to support journalism work with computational methods [CHT11, CLYY11].

In that, hard or verified facts are the first-class citizens; and the task of finding them

becomes automated for scale. In mainstream media, such task is guided by domain ex-

perts, where reputation and accountability are frequently validated, cross-checked and

guaranteed. As such, misinformation detection in journalism rather is rather about de-

tecting mistakes and processing errors during the publication processes [HSW+14]. In

particular, computational journalism research focuses on extracting and exploring state-

ments (e.g. knowledge triples) from the Web to support journalists in forming evidences

and claims. The veracity of Web statements are not heavily focuses and often implicitly

verified by domain experts (i.e. the fact that they do not use some statements for their

arguments might indicate that they are not true).

With the advent of Web technologies, in particular social media, every internet-user

can become his own journalist, threatening the guarantees of long-established credibility

and accountability of traditional journalism. The need of assessing data sources and

computing the credibility of its claims (commonly called as “facts”) becomes the heart

of misinformation detection, web credibility, and fact-checking research [SS17].

Misinformation Detection in Psychology. While creators of misinformation might

only produce the genesis post, online misinformation is, in fact, spread by social users.

Understanding the psychological factors would help to understand and predict the propa-

gation behaviour of misinformation stories. Research in social psychology proved that in

average, humans can only detect falsehoods better than a coin-flip by 5%-8% [Rub10].

This result has a profound implication, especially with misinformation stories inten-

tionally fabricated for deception such as fake news, that the social users can be easily

manipulated. Even worse, the success of deception can be increased further by validity

effect [Boe94] (humans can easily trust a story if being exposed to it several time), by

confirmation bias [Met13] (humans can be easily deceived if the misinformation is built

on top of their prior knowledge), or by bandwagon effect [Lei50] (you tend to believe if

most of your peers already believe) [Zea18].

Misinformation Detection in Economics. Modeling the propagation of misin-

formation stories in social networks is an important task in detecting and predicting
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their social damages. This is done by various quantitative models such as social influ-

ence theory [DLBS14], information diffusion framewokr [NDG12] and forecasting meth-

ods [DS14]. In addition, economic-related model such as epidemics is proven to help

increase the performance of quantitative tools [Zea18], since the propagation of infor-

mation in human society, especialy misinformation stories, is similar to how contagious

diseases are spread. For example, information diffusion model in social networks can be

augmented by a heat kernel function to control the propagation rate. Economic-related

game theories can also be applied to model the dominance of an information source over

another via information utility, psychological utility, short-term economical utility (e.g.

profit), and long-term social utility (e.g. reputation) [Zea18].

2.4 Human-powered Validation

2.4.1 Human Validation Platforms

Human validation platforms have drawn attentions in both academia and industry due to

their ability to employ millions of online workers in real-time [TTFS18]. Crowdsourcing

marketplace such as Amazon Mechanical Turk is one type of such platforms, in which a

freelancer flags malicious contents such as frauds and scams to help machines learn an

accurate detection model [HVT+18]. Fact checking site such as Snopes and PolitiFact

is another type, where journalism experts are employed to verify rumours [TWY+19].

Despite of such availability, existing human validation solutions cannot be tailored easily

for misinformation debunking due to the domain-specific challenges of task design, task

scheduling, task distribution, and consensus computation [HVT+18]. This thesis brings

novelty to the field by minimising the human efforts needed to validate misinformation

flags, which are detected by the Detection part of the thesis.

Micro-work systems. In micro-work systems, a crowd of users is employed to complete

small tasks (ranging in time duration from a few seconds to a few minutes) for fair

amounts of incentives. These systems provide an opportunity for time and money work

that would otherwise be accomplished by a handful of hired experts, to be completed in

a fraction of the time and money by a crowd of ordinary humans. For example, Amazon

Mechanical Turk (AMT) is a well-known micro-work system with millions of active crowd

workers and hundreds of thousands of human computation tasks. In Amazon Mechanical

Turk (AMT), tasks range from labeling images with keywords to judging the relevance

of search results and linguistic jobs (e.g. translate, proof-reading). Although workers

from any country can work on tasks on AMT, only US and Indian workers can receive

money directly in their bank accounts [RIS+10]. Therefore, the majority of workers on

AMT are US and Indian citizens. Moreover, the workers are young since more than

50% of AMT workers have age below 34 [RIS+10]. In addition, the workers keep getting

younger as the average age decreases through time. The workers on AMT are highly

educated since most of them have an undergraduate degree or higher [RIS+10]. Other

well-known micro-work platforms include CrowdFlower, CloudCrowd, etc.

14



2.4 Human-powered Validation

Implicit human computation also involves the completion of micro-tasks by crowds

of human users. In implicit human computation users solve a problem as a side effect

(passively) of something else they are doing. The ESP Game [VAD04] provides an

example of an implicit HC system that allows people to label images while enjoying

themselves. In this game, the participant labels an input image by a keyword, which

most properly describes the image, from a set of provided keywords. The ultimate goal is

to obtain proper labels for each image. This effort is part of the larger goal of collecting

proper labels for images on the Web, which would be an invaluable for information

retrieval applications.

Another example is reCAPTCHA [VAMM+08], which is a piggyback HC system built

on top of CAPTCHA (used by websites to prevent spam). By solving the CAPTCHA,

users implicitly perform OCR tasks, such as digitizing books, newspapers and old time

radio. In a reCAPTCHA task, a user is presented with two words. One word serves as a

conventional CAPTCHA, while the other word cannot by recognized by automatic OCR

techniques. If a user recognizes the recognized word, the answer to the unrecognized word

is assumed to be correct, and is collected as training data for further OCR tools.

Social-based systems. Social-based human computation systems encourage millions

of people over the world to contribute to human computation problems via the Inter-

net. With the growth of Web 2.0 technologies, there are many kinds of works that

can be performed by people. The first type of social-based HC systems can be de-

scribed as ‘Knowledge-Base’. Wikipedia is a well-known example of human computa-

tion knowledge-base, which has thousands of editors to continually edit articles and

contribute knowledge for building the world’s most comprehensive free encyclopedia.

The writing is distributed and open in that essentially almost anyone who has access to

the Internet can contribute.

Q&A sites that allow users to post questions, provides answer, and edit and organize

the constructed information, also fall under the category of Social-based HC systems.

A typical example is Yahoo! Answers, which is a general Q&A forum. The human

computation in such systems involves answering the questions and the incentives include

social benefits such as prestige, fun and social networking. The collected human answers

provide a large body of human-knowledge data, that can be used for solving further AI

problems. Other example Q&A sites are ask.fm, Quora, etc.

Some social-based HC systems take the form of competitions. In contrast to micro-

tasks, HC competitions aim to solve complex problems and offer high prices. Instead of

collaborating, human participants compete with each other to achieve higher ranks. The

collected human solutions offer a great variety of ways to solve a particular computational

problem, thus not only enhancing overall knowledge but also changing the way computers

approach the problem. A well-known example is Topcoder.com, which offers various

computer science problems, ranging from algorithms to software design and development.

Another example is the Goldcorp Challenge 1, which employs geological experts from all

over the world to identify the locations of gold deposits.

1http://www.goldcorpchallenge.com/
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‘Crowdfunding’ and ‘Skill Markets’ are yet other types of social-based HC systems.

Crowdfunding is an HC-based strategy for funding one’s projects by asking a multitude

of people to contribute small amounts of money instead of seeking huge contributions

from a few big investors. The advantage of crowdfunding is that it is easy for people

to invest a small amount of money. A multi-level payment mechanism is often applied,

in which the more one contributes, the more rewards one gets such as e.g., souvenirs,

progress updates, first copy of the product at discounted price, etc. In ‘Skill Markets’,

people work as freelancers to complete jobs. Example marketplaces include Elance,

ODesk, and Freelancer.com, where millions of freelancers do various kinds of work.

It is worth noting that social-network services are also considered as social-based

human computation systems due to their long-existing nature of human computation.

They enable the wisdom of the crowd efficiently by providing fundamental infrastruc-

ture to employ a mass amount of user in a short period of time. As such, social-network

services are born a platform qualified not only for spreading human communications,

but also for human computation tasks. For example in [CSTC12], the authors lever-

age a micro-blog service (i.e. Twitter) to collect answers for decision making questions

by actively distributing the questions to workers via the “@” markup. However, social

network services are only best-fit for knowledge collection. This is because it is often dif-

ficult to build a payment mechanism on top of social networks. As such, social networks

cannot be used for micro-tasks that require monetary payment.

Pervasive systems. Pervasive systems make use of activities that human beings per-

form in their daily lives to solve computational problems. With the rapid uptake of

mobile technologies, we can access human computation power via smart phones to imple-

ment pervasive systems. The first type of such systems include community-based traffic

navigation platforms (e.g. Waze), also called geosocial networks. In Waze [FKP+12],

the human participants are drivers who report real-time traffic and road information

such as accidents, traffic jams, speed-traps, and nearby police units. All this informa-

tion is publicly shared among drivers for the purposes of routing and navigation. The

Waze community has millions of active users mainly across Europe, Asia, and North

America. Similarly, Google Maps and Google Earth also employ human-powered traffic

information for various data visualization purposes.

Human-powered newspapers serve as another example of pervasive HC systems. In-

stead of using professional reporters, local people are employed to report rumours and

stories in their communities. An example is Ushahidi [Oko09], in which people in crisis

situations (e.g., in disaster and conflict zones) submit their reports through the web and

mobile phones. These reports are then aggregated and organized temporally and geospa-

tially to give a general view of emerging situations. There are some distinct advantages

of this approach. One is the relatively faster reporting of information as compared to

traditional methods since professional journalists are limited in number. Also, in hu-

man powered newspapers, the information is untamed and covers different points of

views of human participants, as opposed to the point of view of a single individual (the

professional reporter).
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Participatory sensing systems are also pervasive HC systems, in which people equipped

with sensors, e.g., built in their smartphones, measure environmental conditions. An

example is Common Sense [DAK+09], which is a human-power pollution monitoring

application. Common Sense uses specialized handheld air quality sensing devices, which

are deployed across a large number of human participants, to collectively measure the

air quality of an area. Similarly, we can apply the same method to monitor other envi-

ronmental conditions such as noise and water.

Management systems. Management systems are general-purpose human computation

systems that are designed to manage the entire human computation process, including

designing and posting tasks, collecting and aggregating human inputs, and performing

further analyses. The first example is CrowdDB [FKK+11], which aims to develop a

declarative language to express the logic of the expected human computation task instead

of describing it in natural language. CrowdDB employs human power via crowdsourcing

to answer the uncertain queries that cannot by processed by automatic engines.

Another example is CrowdForge [KSKK11], which aims to manage human compu-

tation workflow, including decomposing large tasks into small ones, and assigning these

tasks to human participants. Both dynamic and fixed workflows are supported to allow

the parallelization of human computation tasks. More precisely, CrowdForge employs a

MapReduce-liked model to post micro-tasks into crowdsourcing platforms such as Ama-

zon Mechanical Turk. A sample complex task studied is article writing [KSKK11], in

which an article is partitioned into different Map tasks, such as collecting and writing

facts about an entity. After all facts are collected, a Reduce task is performed by human

users to combine the facts into one paragraph. For quality control purposes, CrowdForge

uses majority voting to determine the best write-ups for the article.

As an industrial example, CrowdFlower [DWKDH15] (now becomes Figure-Eight [Eig18])

supports integrating human computation into business processes by offering three im-

portant features: workflows, taxonomy, and quality control. First, CrowdFlower help

users define the workflows by pre-designing job templates for crowdsourcing tasks such

as image categorization, text transcription, and sentiment analysis. On top of the user-

defined workflows, the system will automatically route and process data between multiple

CrowdFlower jobs and/or external services. Second, CrowdFlower help users manage

a large number of jobs hierarchically by letting them define a taxonomy of tags and

indexing the CrowdFlower jobs by these tags. Based on the tag index, users can search

the jobs efficiently. Third, CrowdFlower allows to control the quality of workers by using

test questions (whose answers are known before-hand) to discard the answers of workers

who do not substantially pass the test questions. Moreover, the system also supports

peer review and provides statistical reports on the outcome of worker answers, for the

purposes of evaluating and profiling workers.
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2.4.2 Human-powered Applications

Web and mobile technologies have enabled massive collaboration across the world, es-

pecially with the emergence of real-time human-empowered applications [HVT+18]. For

instance, humans act as sensors to help machines monitor public health at scale via

personal smartphones [CTL+17] (aka participatory sensing). Mobile Millennium project

is another example that uses GPS-enabled mobile phones to collect en route traffic in-

formation and upload it to a server in real-time [TTFS18]. Recently, real-time food

ordering and delivery services have been enabled by spatial crowdsourcing, in which

crowd workers service spatially located requests through their smartphones [DGD+17].

Human experts are always needed to tune capacity, universality, and quality of AI mod-

els [LZZ+18]. Motivated by these successes, this project utilizes human validators to aid

algorithmic models in debunking misinformation.

Human-powered machine learning. In many machine learning applications (e.g.,

classification, visual recognition, and object detection), training data is needed to pa-

rameterize the automatic models. However, in traditional systems, training data is

often limited (e.g., only a single expert is hired) and out of date (e.g., old data is

used several times for modern techniques). To address this problem, a large body of

works [SRYD14, BWS+10, VG14] employs human computation in the form of crowd-

sourcing to iteratively improve the training data. All of these works are feasible due to

the mass availability of thousands of crowd workers and their cheap hiring cost in online

platforms (e.g., as stated earlier, Amazon Mechanical Turk, CrowdFlower).

In general, these works design an active learning process, which is executed as fol-

lows. Firstly, automatic results are produced based on existing training data. Then,

crowd workers are employed to validate these results. Combining worker inputs, the

system generates new training data. On top of the new training data, another iteration

is performed using the same automatic techniques. In brief, this active learning pro-

cess entails a human computation loop, in which human users iteratively contribute to

improve the output quality of automatic tools.

Participatory sensing and measuring. In participatory sensing, people are equipped

with built-in sensors in their smartphones to measure real world physical conditions.

There are various applications in this category such as environmental monitoring and

tracking daily activities.

Traditional environmental monitoring systems rely on aggregate statistics by fixed

sensors to measure and report environmental pollution over an area (e.g., community,

city, state). These systems have several limitations. For example, since the cost of sensor

deployment is high, the sensors might not cover all the desired regions. Moreover, due to

various factors including low battery or damaged components, the deployed sensors might

report imprecise measurement. To overcome these limitations, participatory sensing

systems (e.g. Common Sense [DAK+09]) use specialized handheld air quality sensing

devices, which are distributed to a large number of human participants, for collectively
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measuring various air quality indices such as carbon emissions, noise levels, and water

conditions.

Similar methods are demonstrated in PEIR – another participatory sensing sys-

tem [MRS+09], which uses mobile phones to infer daily activities of human participants.

For example, the combination of personalized accelerometer data and a sequence of lo-

cations from the GPS can recognize the transportation mode of a user, such as biking,

driving, or taking public transports (bus, metro).

Human-powered data curation. Annotation is the process of attaching metadata

(e.g., comments, tags, markups) to different types of data such as images, text, media,

etc. Since data has different characteristics and formats, automatic annotation tools

might not be able to produce meaningful annotations that satisfy user needs. Moreover,

humans often understand the content of data more easily than computers (e.g., watching

videos). As such, many research works employ human computation for the purposes of

data annotation. As an example, the authors of [KNW+14] designed a system that

enables human participants to annotate step-by-step structure for an existing video, in

which each step is a meaningful segment with textual and visual annotations of the video

content. Human annotations are then combined by majority voting to decide the best

annotations for the videos.

Human-powered Trust Management. Information credibility has been studied in

the literature to evaluate the trustworthiness of a data source or an artifact, indicating

whether the information is trusted or not. With the growth of the web, information cred-

ibility is applied to assess the credibility of websites. However, assessing the credibility

of information on the web is still a challenging issue. As a publicly available platform in

which anyone can share anything, the web is inherently uncertain, in which information

published cannot be easily verified for validity, legitimacy and trustworthiness. More-

over, as the web contents are shared by humans, automatic techniques might not be able

to truly assess the credibility of web content.

Overcoming this issue, a large body of work employs human computation to eval-

uate the credibility of websites. In general, these works collect users’ feedback by al-

lowing them to provide ratings on a web page. Possible rating scores can be binary

(e.g., Postive/Negative [Giu10]) or multiple (Trustfulness/Unbiased/Security/Page de-

sign [HOA13]). The ratings are then combined to produce the credibility score of the web

page (e.g., by computing the means and standard variances of user rating scores [Giu10]).

2.4.3 Feedback Guidance

While there are various optimisation issues of human-powered validation such as quality

control [HTTA13], workflow control [MGAM16], latency control and task design [LWZF16,

CCAY16], we focus on a cost control problem, i.e. effort minimisation, to guide user in

validating misinformation flags.

User guidance. Guiding users has been studied in data integration, data repair, crowd-

sourcing, and recommender systems [JFH08, YEN+11, LSD+17]. Most approaches rely
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on decision theoretic frameworks to rank candidate data for validation. Despite some

similarities in the applied models, however, our approach differs from these approaches

in several ways. Unlike existing work that focuses on structured data that is deter-

ministic and traceable, we cope with Web data that is unreliable and potentially non-

deterministic. Also, instead of relying on two main sources of information (data and

data provider), we incorporate individual features as well as direct and indirect relations

between data types (sources, documents, claims).

Our setting is also different from active learning, as we do not require any training

data for a user to begin the validation process. Moreover, we incrementally incorporate

user input without devising a model from scratch upon receiving new labels. However,

stopping criteria for feedback processes have been proposed in active learning, e.g. using

held-out labels [MSF+14] and performance estimation [LS08]. Yet, these methods are

applicable only for specific classifiers and do not incorporate human factors. Using our

probabilistic model, we have been able to propose several criteria for early termination

that turned out to be effective in our experimental evaluation.

Moreover, we focus on reducing manual effort, assuming that there is a notion of

truth. Yet, user input may be uncertain or subjective [AGMS13]. While we consider the

integration of such feedback to be future work, we see two scenarios with different impli-

cations. First, if claims are validated by a single biased expert [STVB16], the grounding

function is shifted to the expert belief. This angle can be extended to recommender sys-

tems, which recommend the most belief-compatible claim for a user. Second, if claims

are validated by multiple biased experts, differences in their belief suddenly have an

impact. Finding a common ground then requires negotiation and conflict resolution

mechanisms [GBKS09].

Active learning. Active learning approaches allows the learning algorithm to choose

the data it wants to get labels [Set09], which is suitable in settings where the labels are

costly to obtain. It has been applied in various machine learning applications such as

information fusion [PGQdC17, PDA17], speech recognition [ZLR05], information extrac-

tion [AED99] and text classification [TK02]. In credibility assessment, active learning

approaches can be classified into two categories: classifier-independent and classifier-

specific. Classifier-specific approaches requires constructing a classifier. Notable works

in this category are SVMs [TK02] and decision trees [ZE01] while committee-based ap-

proaches [AED99] belong to classifier-independent category. Although our approach is

similar to active learning approaches, there is a fundamental difference. Traditional

active learning approaches do not guarantee that the values returned by the learning

algorithm satisfy a predefined quality. Moreover, they still require a lot of training data,

which is costly, and might not reach the required quality [Set12]. On the other hand,

our approach is able to achieve this constraint while maximizing the output size.

Implicit Feedback. Asking users directly for validation might incur some overhead

time to setup the procedure and incentive mechanism. For this reason, different frame-

works are established to collect implicit feedback from users via their social posts, due

to the fact that users might write an assertion post with evidences to confirm or reject
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a story [VR15]. Similar ideas of constructing evidences and supporting information for

a rumour are also explored, e.g. by collecting all preceding social posts in the same

event [ZLP17]. However, such approaches might introduce addition errors coming from

the preprocessing step, e.g. to extract evidences from textual data. Moreover, the col-

lected evidences themselves do not have a high confidence since the validating users

are not necessarily qualified to be experts. Further steps for credibility assessment of

validating users might be a solution, but implying a “chicken or egg” dilemma where

a large amount of historical data needs to be collected for references. To the best of

our knowledge, such a referencing dataset is still limited (e.g. Snopes) due to the fact

that different types of misinformation stories behave very differently [VRA18], making

it difficult to generalise from historical records.

2.5 Data Visual Analytics

2.5.1 Social data visualisation

Social data visualisation or visual analytics is often based on topic modelling [BNJ03],

feature extraction [MWDNM14b, WP15, NDN+17], and temporal-aware information

processing [CTY+16]. Methods for topic modelling, e.g., Latent Dirichlet Allocation [BNJ03],

hierarchical Dirichlet processes [GT04], or word modelling [ZBG13], are not applicable

for a streaming setting, since they require multiple passes over the data. Streaming ver-

sions of these techniques [HBB10, CSG09], in turn, ignore the dynamics of social data.

Our model follows a non-parametric approach, where the number of topics and vocab-

ulary words is learned from the data rather than specified in advance. Moreover, our

model incorporates social features [MWDNM14b, EMSW14] when assessing data utility.

Also, methods to query a streams of social data [KDM16, YLC16] are not applicable for

data summarization, since the query is not known in advance.

2.5.2 Streaming data management

Data stream management systems (DSMS) handle a continuous flow of incoming data

records, such as postings in social networks. In the Big Data era, as it is necessary to pro-

cess a large amount of data in a very short time, in-memory DSMS have been developed

such as Storm, Yahoo! S4, Spark Streaming, and MapReduce Online. Several indexing

mechanisms are also proposed such as textual indexing [WHMO13] with a composite

tree structure and a shared list of stream events to speed up response time. On top of

the state-of-the-art, this thesis will propose techniques to retain important information

from social streams, in particular textual data. To achieve a fast response with minimal

overheads in a memory-efficient manner, an information sketch is incrementally updated

upon the arrival of new data to summarise historical data without storing all of them.
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2.5.3 Data summarisation

Traditional data summarisation works on offline data [ZRH+16, NMD12, NNWA15,

HTTA13] and, even if temporal aspects are considered [CTY+16, ABR16, CA13], on the

whole data. Existing streaming algorithms for data summarization also rely on access

to the complete data, as they sample the data for an estimation of the utility [MBK+15,

MKSK13, BMKK14]. A relaxed version of the retaining problem has been addressed

in [ELVZ16], which finds subsets of items with maximal utility using a sliding window.

Yet, different from our problem formulation, this method targets solely the recent data

bounded by a fixed window size, discarding all old items. Whereas, our approach retains

old items as long as they are valuable. Also, unlike [ELVZ16], our approach summarizes

the entire history of a data stream. Finally, the algorithm in [ELVZ16] assumes apriori

knowledge of an upper bound of utility. While this assumption may be reasonable

for some types of data streams, it it unrealistic for dynamic data produced by social

platforms.

2.5.4 Exploratory Visual Analytics

Our problem setting is similar to the one of database exploration techniques [IPC15],

especially in the context of multi-objective optimisation problems [Deb01]. That is,

users cannot formulate their interests as a query until the data of interest is shown to

them. Data exploration scenarios with a single goal often employ an information sketch

or histogram to approximate the distribution of data [Ioa03, ESC16, GSW04, JKM+98,

GKS01]. Different types of histograms have been studied in the literature, such as:

(i) equi-width histograms [MZ11], (ii) equi-depth histograms [MZ11], (iii) v-optimal his-

tograms [ILR12], (iv) maxdiff-histograms [PHIS96], (v) compressed histograms [PHIS96].

The quality of histogram construction is measured by error functions that are specific

to application domains and data characteristics. Examples include the sum of squares

of absolute errors [WSA15], maximum error metrics, and relative error metrics [Ioa03].

Histograms have also been studied in signal and image processing [JS94] under the

name of wavelets. Here, the idea is to apply hierarchical decomposition functions to

transform raw data into wavelet coefficients. Despite having different concepts and

techniques, wavelet construction shares some similar complexity and quality results with

histogram construction.

The state-of-the-art in histogram construction is limited to a single outcome di-

mension. So-called multi-dimensional histograms [LKC99, PI97] are either based on

dimensionality reduction (SVD and Hilbert numbering) and lack guarantees on the re-

sult quality, or partition each dimension incrementally (MHIST [PI97]). In the latter

case, a dimension is partitioned only based on the partition of the previous dimension,

which neglects any trade-off between outcome dimensions.
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Chapter 3
Misinformation Detection: The Case of
Rumour Early-Detection

From Anomaly Detection to
Rumour Detection using Data
Streams of Social Platforms

VLDB 2019

Social platforms became a major source of rumours. While rumours can have severe

real-world implications, their detection is notoriously hard: Content on social platforms

is short and lacks semantics; it spreads quickly through a dynamically evolving network;

and without considering the context of content, it may be impossible to arrive at a

truthful interpretation. Traditional approaches to rumour detection, however, exploit

solely a single content modality, e.g., social media posts, which limits their detection

accuracy. In this chapter, we cope with the aforementioned challenges by means of a

multi-modal approach to rumour detection that identifies anomalies in both, the entities

(e.g., users, posts, and hashtags) of a social platform and their relations. Based on local

anomalies, we show how to detect rumours at the network level, following a graph-based

scan approach. In addition, we propose incremental methods, which enable us to detect

rumours using streaming data of social platforms. We illustrate the effectiveness and

efficiency of our approach with a real-world dataset of 4M tweets with more than 1000

rumours.

3.1 Introduction

Social platforms became widely popular as a means for users to share content and in-

teract with other people. Due to their distributed and decentralised nature, content on

social platforms is propagated without any type of moderation and may thus contain

incorrect information. Wide and rapid propagation of such incorrect information quickly

leads to rumours that may have a profound real-world impact. For instance, in April

2013, there was rumour about two explosions in the White House, injuring also Barrack

23



3. Misinformation Detection: The Case of Rumour Early-Detection

Obama [ZRM15]. The rumour was fuelled by content posted using a hacked Twitter

account associated with a major new agency. The resulting panic had major economic

consequences, such as a $136.5 billion loss at the stock market. This incident highlights

the need for early and accurate rumour detection, in particular on social platforms.

It is notoriously hard to detect rumours [VRA18]. Posts on social platforms are

short and lack semantics. For instance, tweets have a limited number of characters,

and comprise slang and spelling mistakes. Hence, traditional techniques to assess the

credibility of (long, well-written) documents are of limited use for social platforms. Also,

user interactions at unprecedented scale lead to rumours spreading quickly. Earliness of

rumour detection is as important as detection accuracy. Moreover, social platforms are

dynamic. Content is posted continuously, so that rumour detection cannot exhaustively

collect data before giving results, but needs to work with streaming data. Finally, posts

on social platforms are contextual. A post in isolation may not provide sufficient infor-

mation for rumour detection. Instead, modalities such as user backgrounds, hashtags,

cross-references, and user interactions must be considered to improve detection accuracy.

Several debunking services such as snopes.com have been established to expose ru-

mours and misinformation. They harness collaborative user efforts to identify potential

rumours, which are then verified by experts. Due to such manual processing, the number

of potential rumours that can be assessed is limited and significant time is needed for

verification, which motivated work on automated rumour detection. Given the short

length of posts on social platforms, rumour detection is often approached by grouping

posts that relate to a single event [MGM+16]. This does not work in an online setting,

though, since the posts related to an event are not available a priori.

Traditional rumour detection techniques tend to rely solely on the textual informa-

tion of posts, potentially combined with features on post authors and their relations.

However, focusing on one or two modalities of posts on social platforms is insufficient.

For instance, users posting rumour-related content are often ignored by other users,

which is not directly visible in features that capture solely the characteristics of a single

user. In another example, posts circulating among a group of users that believe in con-

spiracy theories are likely to refer to rumours. Without information from outside the

group, it is impossible to know whether these posts are related to a rumour.

Our approach. Against this background, we argue for a novel approach to rumour

detection that identifies anomalies on social platforms by comparing data between peers

and with the past. Such anomalies can be observed for different modalities (e.g., users,

tweets) and at varying levels of granularity. For example, a sudden increase or decrease

in the number of followers of a user may be related to the user spreading rumours. Also,

within a group of users, the credibility of one user being significantly lower than their

peers may stem from the propagation of rumours. Moreover, relations between entities

(e.g., users, posts, hashtags, links) may hint at anomalies, e.g., differences in time and

location mentioned in a tweet and in a linked article.

In this chapter, we present models and methods to realise the idea of detecting

rumours based on anomalies. To this end, we follow a data management approach: We
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ground rumour detection in algorithms that work on a generic graph representation of

social data, thereby achieving a solution that is applicable for any type of social platform.

We first show how to identify anomalies locally, by assessing entities and relations of a

social platform in comparison to their peers and to their past. Yet, acknowledging the

inherent randomness of social platforms, anomalies are then viewed at a broader scale.

To conclude on the spread of rumours, which is deemed more important than their

classification [VRA18], we incorporate the vicinity of local anomalies.

Our contributions and the structure of the chapter (following a discussion of some

background in Section 3.2) are summarised as follows:

• Social Platform Model and Rumour Detection (Section 3.3). Based on a model for

social platforms, we develop a general process to detect rumours based on local

and global anomalies.

• Local Anomaly Detection (Section 3.4). We propose a non-parametric method for

anomaly detection at the level of individual entities, based on differences between

(i) current and past observations related to an entity, and (ii) the entity and its

peers.

• Global Anomaly Detection (Section 3.5). We lift anomaly detection to groups of

entities, taking into account relations between them.

• Streaming Setting (Section 3.6). We show how to apply our approach for streaming

data by incrementally computing anomaly scores on the local and global level.

An evaluation of our approach with more than 4M real-world tweets, spanning more

than 1000 rumours, is presented in Section 5.5. We conclude the chapter in Section 5.6.

3.2 Motivating Example

Anomalies in social media. Abnormal propagation of information on social plat-

forms can be classified as different types of anomalies, including hypes, fake news, satire

news, disinformation, misinformation, and rumours [ZAB+18]. For hypes, information

is propagated in cascades that accidentally ‘blow-up’ on social platforms, e.g., related to

popular events. Rumours, in turn, originate from the fact that people tend to exaggerate

what they dislike [Ver]. Their veracity needs to be assessed, which is commonly done by

assigning a trust score to entities, such as users and posts [Eng].

Here, we focus on detecting rumours. While hypes and rumours share some charac-

teristics, they differ in how information is propagated. In hypes, information is spread

randomly and chaotically. As revealed in a recent survey [VRA18], however, rumours

are propagated in a channelled manner, spreading ‘farther, faster, and deeper’ through

interactions of actual users rather than bot accounts.

Type of anomalies differ in their sets of indicative signals. For example, detection of

hypes (e.g., breaking news) focuses on peak volume of social posts and sharing activi-

ties [OCDA15, OCDV14]. Spam detection of online reviews, in turn, uses user signals,

such as average rating, number of reviews, and selectivity [YKA16]. Our approach for

rumour detection looks at inconsistency signals, exemplified below.
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Twitter as an example. While we use Twitter as an example of a social platform

throughout the chapter, our model is applicable to other social platforms [SLZ+17], as

it is based on a universal graph representation (Section 3.3), generic statistical measures

to compute anomalies (Section 3.4), and a graph-based anomaly detection algorithm

(Section 3.5).

Consider a snapshot of Twitter social graph, as shown in Figure 3.1. It includes users,

tweets, hashtags, and linked articles. Each entity has different features, e.g., a user has

a registration date and a number of followers. Entities are connected by relations. For

instance, the relation between a tweet and an article indicates that the content of the

tweet contains a link to that article. Moreover, each relation has an attribute value,

e.g., the tweet-article relation has an attribute that indicates the difference between the

publication dates of the tweet and the article, respectively.

Figure 3.1: Multi-modal social graph

Rumours are often manifested in anomalies related to entities and their relations.

In Figure 3.1, one may observe that the highlighted user has a registration date that is

significantly newer than those of related users. At the same time, the number of followers

is very high, compared to the historical record of the user. Other entities in this example

are also suspicious, due to anomalies. For the highlighted tweet, the number of retweets

is suddenly higher than in the past, as is the number of mentions for the highlighted

linked article.

The above local anomalies provide a first signal for rumour detection. Yet, in iso-

lation, these signals are not reliable. For instance, a user sparking a hype will also
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experience a sudden increase in the number of followers. We therefore need to consider

global anomalies that comprise connected entities for which local anomalies have been

observed. In the example, a rumour-related user is expected to post a rumour-related

tweet, which links to a rumour-related article. Moreover, these connections between

entities are also meaningful for rumour detection. For instance, in Figure 3.1, the time

difference between the highlighted tweet and linked article is suspicious, as is the differ-

ence between the regular linguistic style of this user (derived from past tweets) and the

style of this particular tweet.

In this work, we provide the methods to realise the above idea: We exploit local

anomalies and, based thereon, global anomalies among the entities of a social platform

to reliably detect rumours.

3.3 Model and Approach

Below, we present a model to capture entities of a social platform and their relations

(Section 3.3.1). We then define the rumour detection problem (Section 5.2) and outline

our approach to address it (Section 3.3.3).

3.3.1 A Model of Social Platforms

A social platform comprises many entities that are linked to each other by relations.

Entities (nodes). Our model comprises entities of specific types, i.e., modalities, such

as tweets, links, users, and hashtags. Entities are modelled using feature vectors, where

the features depend on the entity type. For the example in Figure 3.1, each user has

registration date and number of followers as features. While we limit the discussion to

the above modalities in the remainder of this chapter, our model is generic in the sense

that further modalities such as images and videos [KLPM10] can be incorporated.

Relations (edges). Characteristics of entities in isolation are not sufficient to detect

rumours. The relations between them provide a richer picture and thus can be expected

to be beneficial for rumour detection. Each relation is also modelled by a feature vector,

which is specific to the the type (or modality) of the relation. For the example in

Figure 3.1, each tweet-article relation has the time difference between the publication

times of tweets and linked articles.

Multi-modal social graph. A multi-modal social graph, or social graph, is composed

of modalities, entities, and relations between entities. We denote by D = {D1, . . . , Dn}
a set of entity types, while V = V1 ∪ . . .∪Vn is a set of entities, such that Vi is the set of

entities of type Di. Similarly, C ⊆ [D]2 = {C1, . . . , Cm} is a set of relation types ([D]2

being the 2-element subsets of D), E = E1 ∪ . . . ∪ Em are sets of relations, where Ei is

the set of relations of type Ci.

Based thereon, a social graph is defined as G = (Q,V,E, f), where Q = D ∪ C is

called the set of modalities of G. The feature information f of entities and relations is

used to capture rumour signals in a social graph. Formally, f = {f1, . . . , fn+m} is a set
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of mapping functions, where fi : Qi → Rqi defines an qi-dimensional feature vector fi(x)

for each element x of the modality Qi.

The notion of a social graph enables us to address rumour detection with techniques

for data management. As such, the developed algorithms are also applicable to data

of social platforms that can be transformed to a graph representation [ZZZ+17, TF13,

JLLH11, SAH12].

3.3.2 Rumour Detection

In a social graph, rumours materialise for a subset of its entities. The definition of this

subset is not known, so that its identification is referred to as the rumour detection

problem. That is, there is some (unknown) function that assigns truth values to entities

(regular or rumourous), which shall be approximated.

Problem 1. Given a social graph G = (Q,V,E, f) and a ground-truth set R∗ ⊆ Q, the

rumour detection problem is to find a label function l : Q → {1, 0} to categorize which

entities are rumourous, such that detection coefficient is maximized:

|R∗ ∩R|
|R∗ ∪R| with R = {x ∈ Q | l(x) = 1}.

While the above definition is independent of the type of entity that is considered ru-

mourous, in the remainder, we focus on the detection of rumourous tweets. The reason

being that there is no clear-cut truth function to label other entities. For example, users

may spread rumours in some tweets, but propagate regular information in others.

3.3.3 Approach Overview

Addressing the above problem requires us to overcome the trade-off between accuracy

and completeness, which is difficult [BG94]. A common strategy is to first focus on

completeness and subsequently optimize the accuracy of rumour detection. Filtering

out false positives is often easier than finding additional true positives.

Following this line, we first strive for completeness by collecting all rumourous signals

in data features: The more anomalous a feature of a tweet, the more rumourous it is.

However, such a feature-based approach alone will not yield high accuracy of rumour

detection. Since there is always randomness and noise in the data of a social platform,

we conclude that a tweet is rumourous only if it is part of a rumourous graph structure.

For example, in Figure 3.1, the highlighted subgraph denotes such a structure for the

respective tweet, capturing rumourous context related to a user, hashtag, and linked

article.

Retrieving all rumour signals from a social graph, we then reduce false positives by

cross-checking between the signals, while incorporating their contexts. More precisely,

we use the structural information of a social graph (i.e. relations between entities) to

find a subgraph that is most rumourous. The tweets contained in this subgraph are then

considered to be the actual rumour.

Rationale. Our approach is driven by the following observations:
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• Identifying solely individual rumourous tweets ignores the rumour structure, i.e.,

it neglects that a cluster of rumourous tweets denotes a single rumour. Hence,

rumour detection shall incorporate the co-occurrence of rumourous tweets as part

of a rumour.

• Identifying rumours solely on the level of tweets neglects the interplay of modalities

in rumour propagation. A social graph defines complex relations between entities,

so that the identification of rumourous tweets, e.g., leads to the identification of

rumourous users, hashtags, and links. Hence, the structure of a social graph shall

be exploited to assess the propagation of rumourous information. This way, the

need to detect explicit events by aggregating entities is eliminated, which is a

common first step in traditional rumour detection [PBKL14].

Framework. Against this background, we design a two-step rumour detection process,

illustrated in Figure 3.2. In a first step, we aim to detect local anomalies in entities and

relations. In a second step, these local anomalies and the relations in the graph enable

the detection of rumours at the subgraph level. Below, we summarise the two steps,

while their details are given in Section 3.4 and Section 3.5, respectively.

Figure 3.2: Rumour as Anomaly Detection Process

Local anomaly detection. First, we design a function that assigns an anomaly score

to each entity. We argue that an anomaly scoring shall satisfy the following requirements:

(R1) Completeness: In order to eliminate false negatives in rumour detection, the iden-

tification of anomalies in the data shall be comprehensive. That is, complementary

angles to identify deviations from expected observations should be considered.

(R2) Uniformity: For entities of all modalities, there shall be a uniform scoring domain

(independent of the number of features), with a uniform ordering (lower value

indicating more rumourousness), and a uniform distribution (scores are uniformly

distributed in [0, 1]). The latter is important as thresholding for rumour detection

is challenging for non-uniform distributions.

(R3) Non-parametric: We assume that features follow an unknown baseline distribution.

It is estimated based on the data and serves to assess the level of anomalousness

per entity.

Global anomaly detection. Second, we rely on the detected local anomalies and aim

at the detection of global anomalies, which indicate rumours. This shall incorporate the

following requirements:

(R4) Cross-checking: In order to avoid false positives, rumourousness between neigh-

bouring entities shall be cross-checked in the social graph. As content on social
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platforms is dynamic and rumours may propagate very quickly, a rumourous entity

is expected to affect its neighbours immediately. Hence, global anomaly detection

shall consider the context of local anomalies.

(R5) Structuredness: Any algorithmic solution to detect global anomalies shall acknowl-

edge the structure of rumours. The ‘rumour-related’ parts of a social graph, in

terms of rumourous information that jointly denotes a rumour, shall be detected.

(R6) Non-parametric: The scoring of a global anomaly shall not assume any prior dis-

tribution of local anomaly scores. This supports multi-modality and robustness to

different datasets.

3.4 Local Anomaly Detection

This section is devoted to the computation of local anomaly scores in a social graph.

Guided by the above requirements (R1, R2, R3), we first show how to construct features

for identifying rumours (Section 3.4.1). Then, we introduce history-based anomaly scores

(Section 3.4.2) and similarity-based anomaly scores (Section 3.4.3). Based thereon, a

unified anomaly score is derived for each graph element (Section 3.4.4).

3.4.1 Features to Identify Rumours

Feature engineering is the only domain-specific step of our approach, which we illustrate

here for the case of Twitter. We distinguish history-based and similarity-based features.

The former capture differences between the current and past state of an entity. The

latter help to cross-check the differences between entities and relations of the same type.

Specifically, we consider the following features per modality, see also Table 3.1:

• User: The registration age and credibility score are considered indicators for ru-

mours, since users spreading rumours tend to create new accounts to hide their

identity. Moreover, sudden changes in the frequency of status updates, the number

of followers, and the number of #friends may be related to rumours.

• Tweet: We consider keywords and the linguistic style. Tweets that are subjective

or emotional are more likely to be rumour-related as they aim to provoke strong

emotions to promote sharing. Also, the number of retweets may indicate rumours.

• Link: Articles linked in tweets may indicate rumours, which we assess based on the

credibility score and linguistic style of the linked source and article, respectively.

Furthermore, the number of mentions over time is used as a feature.

• Hashtag: The popularity, as measured by a semantic ranking [BJV15], and sudden

changes in the number of usages of a hashtag are expected to be rumour-related.

We further consider the features of relations between entities:
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• Tweet-Link: The time, location, and event mentioned in a tweet may be different

from the respective details given in the linked article. Also, the linguistic style of

the tweet may be different from the one of the linked article.

• User-Tweet: The linguistic style of a tweet may differ from the regular style of the

user who posts it.

• User-Link: The source linked in a tweet is anomalous.

• User-Hashtag: The hashtag is novel, i.e., it has not been used by the user before.

• Link-Hashtag: The hashtag has been mentioned in the linked article with an

anomalous frequency.

While some of the features are static (similarity-based), others are dynamic (history-

based), so that they are derived from time snapshots using streaming APIs, such as [MPLC13].

We compute the features using established methods, whose details are described in the

experiment section (Section 3.7.2).

Table 3.1: Features to identify local anomalies.

Element Feature Anomaly Type

E
n
ti
ti
es

User

registration age similarity-based
credibility score similarity-based
status frequency history-based
#followers history-based
#friends history-based
#tweets history-based

Tweet
keywords similarity-based
linguistic style similarity-based
#retweet history-based

Link
credibility score similarity-based
linguistic style similarity-based
#mentions history-based

Hashtag
popularity score similarity-based
#usages history-based

R
el
a
ti
o
n
s

Tweet-Link

time history-based
location similarity-based
event similarity-based
style similarity-based

User-Tweet linguistic style similarity-based

User-Link source similarity-based

User-Hashtag novelty similarity-based

Link-Hashtag mentioning similarity-based

Using the above features independently may lead to false positives. For instance,

although rumours usually have a specific linguistic style, the reverse is not always true

as, e.g., news about tragedies also adopt an emotional style. To mitigate such effects,

we consider the above diverse set of features, which addresses requirement R1.
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3.4.2 History-based Scoring

An anomaly score may be based on the differences between the current and past values

of a feature vector. To this end, we establish a baseline distribution for each attribute

to represents the normal behaviour, in the absence of any rumour. Then, based on the

baseline distribution and the current feature values, we estimate an empirical p-value

to measure the anomalousness of a feature. Aggregating these values, we asses the

anomalousness of an entity or relation.

Deriving historic data. To derive historic values of features of entities or relations,

we apply a temporal window. For an entity or relation x, the historic data is denoted

by Xt = {x1, . . . , xt}, where all xi are temporal snapshots of x. This way, historic data

of the same length is considered for different history-based features of x, which enables

the integration of features with varying temporal properties. Yet, t is not fixed across

entities or relations, so that historic data of different lengths may be incorporated for

different modalities. Note that collecting historic data is straight-forward for common

platforms. Details on our data collection can be found in Section 3.7.2.

Anomaly score of a history-based feature. Our computation is based on the

following null hypothesis: If there is no rumour and we select a random observation

from the past, how likely is it that its value is greater than or equal the current one?

Based on historic data, the anomaly score of a feature j ∈ [1, qi] of an element (entity or

relation) x ∈ Qi at timestamp t is defined as the statistical confidence degree (i.e., the

p-value, the lower the better) [CN14]:

pT (fi,j(xt)) =
|{xr ∈ Xt−1 : fi,j(xr) ≥ fi,j(xt)}|

|Xt−1|
(3.1)

where fi,j(xt) refers to the j-th component of the feature vector fi(xt) of an element

x at timestamp t. In other words, the p-value is computed based on the number of

past values fi,j(xr) that are greater than the current observation fi,j(xt). This is a non-

parametric statistical measure (addressing requirement R3), since it does not assume

any prior distribution on the historic data.

Example 1. Consider a Twitter user @jacobawohl (x), who is related to rumours about

the Las Vegas shooting in 2017 [Snoa]. The number of active followers (feature 1)

and the number of tweets (feature 2) of the user at three consecutive time points is

{4.72K, 294, 7.03K} and {102, 43, 51} respectively. At the third time point, the p-values

of feature 1 and feature 2 are p(f1(x3)) = 0
2 = 0 and p(f2(x3)) = 1

2 = 0.5. At the second

time point, these values are p(f1(x2)) = 1
1 = 1 and p(f2(x2)) = 1

1 = 1. Moreover, at the

first time point, there is no historic value and we set p(f1(x1)) = p(f2(x1)) = 1.

History-based anomaly score. The non-parametric p-value of an entity or relation x

specifies its anomaly score based on historic observations. We aggregate these anomaly

scores as follows [CN14]:

pT (xt) =
|{xr ∈ Xt−1 : pmin(xr) ≤ pmin(xt)}|

|Xt−1|
(3.2)
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where pmin(xr) = minj=1...qip(fi,j(xr)). That is, at each timestamp, we compute the

minimum value over all features. Then, the anomaly score pT (xt) is the number of past

minimum feature values pmin(xr) that are less than the current minimum feature value

pmin(xt).

The reason for using min for the aggregation is to avoid false negatives, where some

features are anomaly-significant, whereas others are not. Moreover, we do not consider

the minimum p-value over all features at a single timestamp directly, since elements can

have different numbers of features. Rather, our idea is to cross-check the scores between

different timestamps across features, so that our aggregation yields uniform scores over

all entities and relations, regardless of their modality, which addresses requirement R2.

Example 2. Taking up Example 1, we derive that pmin(x1) = min{p(f1(x1)), p(f2(x1))} =

1 as well as pmin(x2) = min{p(f1(x2)), p(f2(x2))} = 1, and pmin(x3) = min{p(f1(x3)), p(f2(x3))}
= 0. The p-value of user x at the current timestamp is p(x3) = (0+0)/2 = 0. With a con-

fidence level of 99%, we say that the user is involved in some rumour, since p(x3) ≤ 0.01.

3.4.3 Similarity-based Scoring

Anomalousness can also be quantified by differences between entities and relations of

the same type. For instance, the linguistic style of a tweet is a static property, that often

lacks historic data, but may be a strong indicator of rumours. We therefore establish a

baseline for features of static properties, as detailed below.

Anomaly score of a similarity-based feature. The null hypothesis of this case

is summarised as: If there is no rumour, how likely does a randomly selected set of

observations for a feature of different elements (entities or relations) of the same modality

would have values greater than the considered element. We capture the null distribution

of a feature of an element x of modality Qi using the feature values of its peers (x′ ∈ Qi).
Then, the p-value of a similarity-based feature j = 1 . . . qi of an element x is defined as

follows:

pS(fi,j(x)) =
|x′ ∈ Qi : fi,j(x

′) ≥ fi,j(x)|
|Qi|

(3.3)

That is, the p-value is computed based on the number of values fi,j(x
′) from other

elements of the same modality that are greater than the value of the current element,

fi,j(x). This p-value is also non-parametric (as defined by requirement R3), since it does

not assume any prior distribution on the elements.

Example 3. Now, consider three Twitter users @prisonplanet (x), @wes chu (y), @ja-

cobawohl (z), who have registration ages (feature 1) of {8, 6, 1} and average credibil-

ity scores (feature 2) of {-5, -4, -3} (0 means least credible). For feature 1, we have

p(f1(x)) = 1 , p(f1(y)) = 2/3, p(f1(z)) = 1/3. For feature 2, we have p(f2(x)) = 1 ,

p(f2(y)) = 2/3, p(f2(x)) = 1/3.
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Similarity-based anomaly score. Again, based on the p-value of a similarity-based

feature of an element x, the similarity-based anomaly score of x is defined as follows:

pS(x ∈ Qi) =
|x′ ∈ Qi : pmin(x′) ≤ pmin(x)|

|Qi|
(3.4)

where pmin(x′) = minj=1...qi pS(fi,j(x
′)). For each element, we compute the minimum

value over all features. Then, the anomaly score of an element is the number of elements

such that the minimum feature value of the current element is larger than their minimum

feature values. As above, we choose min as an aggregation function to avoid outliers.

We also aggregate across elements rather than features of a single element only. This

yields uniform anomaly scores of elements from different modalities (requirement R2).

Example 4. We continue with Example 3 and derive pmin(x) = min{p(f1(x)), p(f2(x))} =

1, pmin(y) = min{p(f1(y)), p(f2(y))} = 2/3, and pmin(z) = min{p(f1(z)), p(f2(z))} =

1/3. The p-value of z is p(z) = (0 + 0 + 1)/3 = 0.33. With a confidence level of 65%,

we say that user z is involved in some rumour, since p(z) ≤ 0.35.

3.4.4 Unified Scoring

As both entities and relations show history-based and similarity-based features, we com-

bine the respective anomaly scores:

p(x) = min{pT (x), pS(x)} (3.5)

where pT (x) = 1, if x has no history-based features, and pS(x) = 1, if x has no similarity-

based features. Again, min is used in the aggregation to avoid outliers.

We note that pT (.) and pS(.) are uniformly distributed in [0, 1] under the assump-

tion that, in the absence of rumours, (i) the current observations are interchangeable

with observations in the past; and (ii) the current observations of an element are inter-

changeable with observations from other elements. Based thereon, the probability that

fi,j(xr) ≥ fi,j(x) and fi,j(x
′) ≥ fi,j(x) is 0.5, which makes pT (fi,j(x)) and pS(fi,j(x))

follow a uniform distribution in [0, 1]. Also, the minimum of p-values from different fea-

tures are interchangeable with past minimum values or from other peers, so that pT (x)

and pS(x) are uniformly distributed in [0, 1].

The uniform distribution of p-values is important: It enables us to handle the het-

erogeneity of a social graph, as different elements and modalities are mapped to the same

domain of p-values. Moreover, the model facilitates the integration of multiple features

for a single user, tweet, link, or hashtag, without a priori knowledge on the importance

of feature for rumour detection. Finally, the overall p-value is non-parametric, since

it does not assume any prior distribution, but integrates any correlation of p-values of

different features.
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3.5 Global Anomaly Detection

Guided by the requirements for global anomaly detection (R4, R5, R6), we introduce

the notion of an anomaly graph (Section 3.5.1), before turning to the computation of

the anomalousness of a subgraph (Section 3.5.2), and the detection of a most anomalous

subgraph (Section 3.5.3).

3.5.1 Anomaly Graph

Rumour detection using solely local information is not reliable. Local anomalies may be

outliers (false positives), as features on social platforms are often noisy [MPLC13] and

there are no clear-cut thresholds to filter false positives. Hence, rumour detection shall

incorporate information from several elements (entities and relations) of a social graph,

each providing a different view on a rumour and, thus, potentially reinforcing each other.

A global view is further valuable to differentiate between anomalies that stem from the

random nature of social platforms from those that originate from rumours. Finally, the

propagation of rumourous information in a social graph helps to understand the rumour

structure.

Formally, using the local anomaly detection, each element (entity or relation) in a

social graph is associated with a p-value of being rumour-related. Given a social graph

G = (Q,V,E, f), this yields an anomaly graph A = (Q,V,E, p), where p : Q→ [0, 1] is a

mapping that assign anomaly scores to entities or relations. This anomaly graph is the

starting point for the identification of global anomalies, which materialise as subgraphs

of the anomaly graph.

3.5.2 Anomalousness of a Subgraph

Rumour structure. Given an anomaly graph A = (Q,V,E, p), a rumour structure

is a subgraph of A that is induced and connected, which are standard graph proper-

ties [Die18]. Connectedness is required to cross-check anomaly scores between different

elements. The subgraph shall be induced as we shall consider all relations between

connected entities as a whole to eliminate false positives.

The anomalousness of a rumor structure is assessed based on:

• Direct connections, i.e., the relations (edges) of the graph. While both entities and

relations are assigned anomaly scores, we need to conclude on the anomalousness

of entities only (e.g., a tweet may be rumourous, while it is not meaningful to

consider a tweet-link relation as rumourous). Hence, anomaly scores of a relation

and its endpoints need to be unified.

• Indirect connections hold between entities that are connected by a path (of length

larger than one) in the graph. The longer the path, the smaller the effect of the

entities on each other, though.

Anomaly Hypergraph. To incorporate the above aspects, we propose to transform the

anomaly graph to an anomaly hypergraph. The idea is to replace every two entities and
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the relation between them by a hypernode, which represents the collective information

on the entities and the relation, while also providing an aggregated view on their anomaly

scores. The hypernode inherits all further relations of the two original entities, i.e., it

is connected to all entities to which the original entities had been connected. Formally,

given two entities v1, v2 ∈ V and a relation e = {v1, v2} ∈ E of an anomaly graph

A = (Q,V,E, p), we define the respective hypernode as vH = {v1, v2, e} with an anomaly

score:

pH(vH) = max{p(v1), p(v2), p(e)} (3.6)

Since p(.) is uniformly distributed in [0, 1], pH(.) also follows a uniform distribution in

[0, 1]. Here, using max for aggregation reduces the chance of false positives, following

requirement R4.

Processing all pairs of entities that are connected by a relation in the anomaly graph

A = (Q,V,E, p) as detailed above yields an anomaly hypergraph H = (QH , VH , EH , pH),

with QH ⊂ [Q]2 being a set of modalities, VH being a set of hypernodes, EH ⊆ [VH ]2

being a set of edges, and pH being a mapping function that assigns a anomaly score to

each hypernode. Figure 3.3 illustrates this construction.

Figure 3.3: Hypergraph construction

Anomalousness measurement. Using the hypergraph H, we strive for a connected

subgraph S that shows the highest level of anomaly. Since the hypernodes already

include the original relations, it is straightforward to revert a subset of connected hy-

pernodes to an induced connected subgraph of the original anomaly graph.

To this end, we first measure the anomalousness of a subgraph, acknowledging the

structure of rumours, see requirement R5. We employ the idea of scan statistics [Kul97],

which computes the statistical significance of a subgraph S being anomalous without

assuming any prior distribution of the subgraph [CN14]:

P (S) = max
0<α≤αmax

φ(α, |Vα(S)|, |V (S)|) (3.7)

where αmax is the maximum statistical significance level (αmax = 0.05 indicates that the

value is at least 95% statistical significant), V (S) is the node set of S, Vα(S) = {v ∈
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V (S) : pH(v) ≤ α} is the set of nodes in S with anomaly scores that are significant at

the confidence level α > 0.

To maximize the detection coefficient (see Section 5.2), function φ(.) shall favour

the propagation of rumours, meaning that ‘insignificant’ nodes (V (S) \ Vα(S)) are also

accepted as long as they are connected with enough ‘significant’ entities (Vα(S)). This

is motivated by the dynamic nature of a rumour: Anomaly scores of rumourous entities

vary over time and may not be significant at the same time. Moreover, function φ(.)

shall be non-parametric (requirement R6), i.e., a function that compares the observed

number of α-significant p-values |Vα(S)| to the expected number of α-significant p-values

E[|Vα(S)|. Since our p-values are uniformly distributed in [0, 1], we have E[|Vα(S)|] =

α|V (S)|. Therefore, we can directly compare |V (S)| and |Vα(S)| as follows [BJ79]:

φ(α, |Vα(S)|, |V (S)|) = |V (S)| ×KL(
|Vα(S)|
|V (S)| , α) (3.8)

where KL is the Kullback-Leibler divergence defined as KL(x, y) = x log(x/y) + (1 −
x) log( (1−x)

(1−y) ). Since KL(x, y) ≥ 0, it follows that P (S) ≥ 0 (the higher, the more

anomalous). Based thereon, our goal is to detect subgraphs as large as possible (via

|V (S)|), that have a high confidence level of anomalousness (via |Vα(S)|/|V (S)|).

Example 5. Consider a subgraph S with nodes V (S) = {v1 = 0.02, v2 = 0.03} and

αmax = 0.05. We have |V (S)| = 2. With α = 0.05, we have |V0.05(S)| = 2 and

φ(0.05, 2, 2) = 2 × (1 log(1/0.05) + 0 log(0/0.95)) = 2.6. With α = 0.02, we have

φ(0.02, 1, 2) = 1.1. With α = 0.03, φ(0.03, 2, 2) = 3.0. Therefore, we say that with

at least 95% statistical significance (αmax = 0.05), we are confident that the anomalous-

ness of S4 is P (S) = max{2.6, 1.1, 3.0} = 3.0.

3.5.3 Detection of a Most Anomalous Subgraph

Detecting a rumour structure in an anomaly graph A = (Q,V,E, p) is equivalent to

finding a connected subgraph with maximal anomalousness in the anomaly hypergraph

H = (QH , VH , EH , pH):

arg max
S∈S(H)

P (S) (3.9)

where S(H) contains all possible connected subgraphs of H.

Proposition 1. Solving Equation 3.9 is NP-hard [CN14].

Proof (Sketch). With a given α, we can construct a weight function on the node set

as w(v) = 1 if p(v) ≤ α and w(v) = 0 otherwise [CN14]. It is known that φ(.) is

monotonically increasing w.r.t. |Vα(.)| [BJ79]. Thus, φ(.) is monotonically increasing

w.r.t.
∑

v∈S w(v). Solving Equation 3.9 is now equivalent to finding a solution to the

maximum weighted subgraph problem, which is known to be NP-hard [ÁMLM13].

As the above problem is computationally expensive, we develop an approximation

solution that scales to real-world social graphs. In the context of online social platforms,

we argue that such a detection algorithm needs to satisfy two additional requirements:
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• Extensibility. In practice, multiple rumours may occur at the same time. Hence,

we consider a threshold as a relaxation parameter. We then aim at detecting

all subgraphs in the anomaly graph that have an anomalousness value above this

threshold. Such a threshold may be set based on rumours detected and verified in

the past.

• Incremental processing: To cope with continuous data generated by social plat-

forms, detection shall be incremental, incorporating new data as it arrives.

An Extensible and Incremental Algorithm. Due to the inherent complexity of

Equation 3.9, we present an approach to approximate a solution, see Algorithm 3.1. It

takes as input an anomaly graph and a detection threshold, and returns a sorted list of

the most anomalous subgraphs that satisfy the threshold. The solution to Equation 3.9

is simply the top-1 in the list. Moreover, in the light of the rumour detection problem

(Section 5.2), only the tweet nodes of the output graph may be considered. Since multiple

rumours may spread simultaneously on social platforms, however, we include a coverage

level K as an input parameter, to cover rumours with smaller anomalousness values.

Algorithm 3.1: Anomalous Subgraphs Detection
input : An anomaly graph A = (Q,V,E, p),

a retain threshold τ (for streaming version),
a coverage level of anomaly K (default = 5),
a specified number of hops Z (default = log(|V |))

output: A sorted list of subgraphs S
1 Construct anomaly hypergraph H = (QH , VH , EH , pH) from A;
2 Sort the nodes in H by anomaly score;
3 αmax = 0.05, S = C = ∅;
4 for q ∈ [1, . . . , |QH |] do
5 for k ∈ [1, . . . ,K] do
6 R = {vk}, vk is the k-th most anomalous node in VH of modality q ;
7 for z ∈ {1, ..., Z} do
8 H′ = {v ∈ VH \R : ∃v′ ∈ R, {v, v′} ∈ EH};
9 〈S, P (S)〉 = bestNeighbourhood(H′, R, αmax) ;

10 if S \R 6= ∅ then R = S ;
11 else break;

12 S = S ∪ {R};

13 for S ∈ S do
14 if P (S) ≥ τ then C = C ∪ {S} ; // candidate rumours

15 return S;

Our algorithm first expands the subgraphs from a seed node to their neighbours,

before greedily optimising the anomaly score for the subgraphs. Specifically, we construct

a hypergraph H (line 1), in which each hypernode has an anomaly score, as detailed

above. We sort the hypernodes by these scores as this later improves the run-time

of the scan statistics subproblem. We then select a root node (line 6), determine its

neighbourhood (line 8), and find the subgraph in this neighbourhood with the highest

anomaly score (line 9) using Algorithm 3.2 (extended from [Nei12]). The latter greedily

retains nodes in the increasing order of p-values (the smaller, the better). Then, we

continue to expand the subgraph until our root node set is equal to the most anomalous

node set (line 10), i.e., it cannot be expanded further to increase the anomaly score. This

guarantees that the subgraph is connected and its anomaly score is maximal [CN14].
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Algorithm 3.2: Optimal subgraph in the neighbourhood
input : An anomaly hypergraph H, a root set R, a threshold αmax
output: The most anomalous subset S∗ and its score P (S∗)

1 W = {p(v) : v ∈ S} ∪ {αmax};
2 S∗ = ∅;P (S∗) = 0;
3 for α ∈W do
4 S = ∅;S∗α = ∅;P (S∗α) = 0;
5 for v ∈ sorted(V (H) ∪R) do
6 S = S ∪ {v};
7 P (S) = φ(α, |Vα(S)|, |V (S)|);
8 if P (S) > P (S∗α) and R ⊆ S then
9 S∗α = S;

10 P (S∗α) = P (S);

11 if P (S∗α) > P (S∗) then
12 S∗ = S∗α;
13 P (S∗) = P (S∗α);

14 return 〈S∗, P (S∗)〉 ;

Figure 3.4 illustrates the core step of extending the neighbourhood of a root node

and finding the optimal subgraph in Algorithm 3.1 (line 6- 10).

Figure 3.4: Illustration of Algorithm 3.1

Proposition 2. The output of Algorithm 3.1 is a sorted list of subgraphs in the decreas-

ing order of anomaly level.

Proof. Algorithm 3.1 processes the nodes in increasing order of p-values (line 6). Since

φ(.) is monotonically increasing w.r.t. |Vα(.)| and monotonically decreasing w.r.t. α and

|V (.)| [BJ79], a detected subgraph always has a smaller anomalousness value than its

predecessor, which completes the proof.

3.6 The Streaming Setting

We now lift our approach to a streaming setting. We first discuss how local anomaly

scores of a social graph can be computed incrementally (Section 3.6.1), before turning

to the incremental computation of anomalous subgraphs detection (Section 3.6.2).
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3.6.1 Incremental Anomaly Computation

Recall that computing local anomaly scores is based on historical data. However, in

a streaming setting only a window w of data is available, and current observations

continuously become historic observations; i.e. Xt+|w| ← Xt ∪ w. To avoid continuous

re-computation of anomaly scores, we propose a heuristic that estimates the score, but

works incrementally. Below, we discuss this heuristic for history-based anomaly scores.

However, the same approach can also be followed for similarity-based scores.

Intuitively, our approach avoids evaluating Equation 3.1 and Equation 3.2 whenever

new data arrives. To this end, we approximate Equation 3.1 with an incremental ap-

proach, as long as the respective feature is expected to have no effect on the anomaly

score computation. In addition, we discuss how Equation 3.2 can be evaluated efficiently.

Feature-level. To approximate Equation 3.1, we assume that the historical data of a

feature of an element x (entity or relation), i.e. fi,j(XT−1) = {fi,j(xt) : xt ∈ XT−1}
where T is the current timestamp, follows a normal distribution. Note that we consider

this assumption solely in the streaming setting, as it yields runtime improvements by not

using historic data. In practice, the anomaly scores can be justified by periodic updates

from historic data. This distribution, denoted by Nj,x(µ, σ), is induced by the empirical

mean µ and standard deviation σ computed from historic data. The empirical mean µ

and standard deviation σ are updated incrementally as new data arrives:

µt+1 =
µt × t+ xt+1

t+ 1
; µ′t+1 =

µt × t+ x2
t+1

t+ 1
; σt+1 =

√
µ′t+1 − µ2

t+1

as derived from µ = E[X] and σ =
√
E[X2]− E2[X].

Under the above assumption, Equation 3.1 is approximated using µ and σ. Equa-
tion 3.1 essentially counts the number of past values fi,j(XT−1) that are greater than
the current observation fi,j(xT ). Given a new observation fi,j(xT+1) and the historical
data captured by Nj,x(µ, σ), we derive the percentile of fi,j(x). This percentile is an
approximation of how many past observations are greater than the current one. To
compute the percentile, we convert fi,j(x) to a z-critical value:

zi,j(x) =
fi,j(x)− µ

σ

Based thereon, the percentile is computed as follows:

P (Z ≥ z) =

∫ +∞

z

1√
2π
e
−x2

2 dx

The percentile value provides us with approximation of the p-value of a specific feature:
pj(x = z) = P (Z ≥ z).

The above approximation is used to determine when Equation 3.1 shall be evalu-
ated from scratch. To this end, we exploit that pj(x) is used to calculate pmin(xt) =
minj=1...qi p(fi,j(xt)), while pmin(xT+1) is compared with other {pmin(xt)}t=1...T in Equa-
tion 3.2. Thus, pj(x) has an effect on the anomaly score of entity x only if it is smaller
than the smallest value pmin(xt). That is, if p̂j(x) < min{pmin(xt)}t=1...T , we do not need
to re-evaluate Equation 3.1. We later demonstrate experimentally that this heuristic
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helps to reduce the runtime significantly. However, the heuristic requires us to maintain
min{pmin(xt)}t=1...T , which is done as part of the computation on the entity-level.

Entity-level. When new data arrives, many terms of Equation 3.2 remain unchanged,
such as the anomaly score of a feature of an element in the past, pmin(xt). The only
term that needs re-computation is the anomaly score of features at the current times-
tamp, pmin(xT+1). Therefore, to evaluate Equation 3.2 efficiently, we maintain all values
pmin(xt). Given the requirement of maintaining min{pmin(xt)}t=1...T , these values are
kept in a sorted list. Evaluating Equation 3.2 then becomes counting the number of
values stored in the list before pmin(xT+1).

3.6.2 Incremental Subgraph Detection

To handle streaming data in the computation of anomalous subgraphs, we realise the
following idea: Upon the arrival of new data, the anomaly hypergraph will contain
new nodes. For these nodes, we identify whether they are rumour-related due to being
connected to existing anomalous subgraphs or inducing a new such subgraph. To this
end, we associate nodes which belong to an anomalous subgraph with an identifier of
the root node used for expansion (nodes may have several such identifiers). This way,
upon adding a node, we immediately identify the subgraphs that it may be related to.
These subgraphs can be rumour-related (S in Algorithm 3.1) or potentially-anomalous
(C in Algorithm 3.1), which we distinguish as follows:

In the case that the new node connects to a rumour-related subgraph, the node
is assessed based on a property of Algorithm 3.2. Recall that in Algorithm 3.1, we
detect anomalous connected subgraphs by expanding subgraphs from root nodes using
their neighbours. For each candidate set, we strive for the maximal connected subgraph
(Algorithm 3.2). The algorithm relies on a list of nodes, sorted by their p-values. When
a new node arrives, we identify the related anomalous subgraphs (if any) and add the
new node to the sorted list. If the p-value of the new node is higher than the value
of any other node in the subgraph, the new node is rumour-related and added to the
subgraph. If a node can be added to several rumour-related subgraphs, the subgraph
with the highest anomalousness value is chosen. Otherwise, in the case that the new
node connects to a potentially-anomalous subgraph, Algorithm 3.2 is re-run to identify
whether the addition of the node yields a new anomalous subgraph.

3.7 Empirical Evaluation

We evaluated our approach with a large real-world dataset obtained from Twitter. Be-
low, we introduce our experimental setting (Section 3.7.1), data collection methodology
(Section 3.7.2), and report characteristics of our data (Section 3.7.3). We show that
our approach outperforms baseline methods for rumour detection in terms of effective-
ness (Section 3.7.4) and explore the design choices of our model (Section 3.7.5). Next,
we evaluate the scalability of our methods, including their use in a streaming setting
(Section 3.7.6). Finally, we present an illustrative case study (Section 3.7.7).

3.7.1 Experimental Setting

Metrics. We use the following evaluation metrics:

• The detection coefficient, first proposed in [SZN13], can be seen as a combination of
precision and recall applied to a graph setting. R∗ is defined as the set of rumour-
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related entities, whereas R is the set of entities labelled by a rumour detection
technique. Then, the measure is defined as: Coefficient = |R∗ ∩R|/|R∗ ∪R|.

• The run-time of processing a set of tweets.

• The lag time to detection, which is the time difference the first occurrence of a
rumour (i.e., the first rumour-related entity) and its detection (i.e., a first entity
is labelled accordingly).

Baselines. State-of-the-art rumour detection [ZAB+18] is not applicable in our context,
as it aims at learning a classification model based on a collection of entities that have been
labelled with rumours. Such a collection is typically extracted by a pre-processing step
that crawls the data related to a particular event, thereby assuming that the extracted
elements can be labelled accordingly. As a result, the performance of these approaches
strongly depends on the accuracy of such pre-processing. In our work, we progressively
detect rumour-related entities by scanning abnormal signals (entities with high anomaly
scores) in the social graph.

This fundamental difference in the taken approach is also reflected in the employed
evaluation measures. Existing rumour detection techniques are evaluated using machine
learning metrics, applied per rumour. This is not possible for our approach, so that we
rely on the detection coefficient, applied per graph entity. In a broad sense, most rumour
detection techniques focus on maximizing accuracy, instead of striving for a balance of
accuracy and completeness.

Against this background, we consider several baseline methods. We implemented
these methods based on the respective papers.

• Decision [CMP11]: A decision tree classifier that is based on the Twitter infor-
mation credibility model. The decision tree is constructed based on several hand-
crafted features.

• Nonlinear [YLYY12]: An SVM-based approach that uses a set of hand-crafted
features, selected for the tweets to classify.

• Rank [ZRM15]: A rank-based classifier that aims to identify rumours based on
enquiry tweets.

In addition, we also compare our approach with methods based on homogeneous
graphs that contain only a single modality. For instance, a tweet graph contains only
tweets, while edges between tweets represent that tweets stem from the same user, have
retweet relations, or share a keyword. We constructed four such homogeneous graphs,
for users, tweets, links, and hashtags, respectively.

Parameters. We set the statistical significance level αmax = 0.05 (i.e. the result is
guaranteed to be at least 95% confidence). The coverage level K in Algorithm 3.1 has
been varied, so that we can detect multiple rumours at the same time.

For the static version of our approach, our rumour detection algorithm is executed
multiple times by gradually extending the historical data Xt = {x1, . . . , xt} from the
first day (t = 1) to the last day of each dataset. At each extension, all tweets in detected
rumours will be removed to avoid that some rumours in the future will have smaller
anomaly scores than the past (and thus the p-values might not be high enough with
95% confidence threshold).

For the incremental version, we set the window size |w| to 12 hours; i.e. the historical
data is defined by Xt = {xt−|w|, . . . , xt}. Again, all tweets in detected rumours are
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removed. Note that, however, we cannot remove other types of entities (users, hashtags)
since they potentially participate in different rumours. The threshold τ to retain the
candidate rumours is set by the 20-quantiles of the anomalousness values of returned
subgraphs.

Experimental environment. All results have been obtained on an Intel Core i7 system
(2.8 Ghz, 32GB RAM).

3.7.2 Data Collection

Rumour collection. Snopes is a world-leading rumour-debunking service. Unlike other
organizations such as Politifact and Urbanlegends, it is considered to be objective when
evaluating the veracity of rumours [Net]. Snopes editors investigate each rumour along
different dimensions and provide an argumentative report as shown in Table 3.2. For
example, the claim describes the rumour succinctly and the rating represents its truth
value according to the fact-checker.

Table 3.2: Information about a rumour.

Attribute Example

id trump-aid-puerto-rico
date 10/2/2017
genesis tweet [..] President Trump has dispatched 140 helicopters [..]
sources of veracity press reports, local officials, organizations
rating MIXTURE [Snob]

Multi-model social graph construction. Twitter is a large social platform with
tweets covering various domains such as politics and crime. It is frequently used by
users to express their opinions in a timely manner, e.g., by retweeting others, which
provides insights into how rumours propagate. These characteristics make Twitter data
particularly suitable for evaluating rumour detection methods.

We followed the dataset construction process described in [KCJ17]. For each rumour,
we identify its fingerprint, which is a set of keywords. Then, we use these keywords to
search for tweets that are related to this rumour using Spinn3r [Spi]. We take the ID
of a Snopes article as the starting point to create the fingerprint of a rumour. If the ID
is not unique or too general, keywords are manually selected from the rumour’s claim
and the respective Snopes article. Applying modifications to these keywords provided
us with a set of search queries to identify rumourous tweets. Since the queries may
not identify all tweets that are rumour-related, we also considered retweets. To obtain
negative samples, we collected further tweets from the timelines of users that authored
rumourous tweets and of other users identified by retweets of regular tweets.

At this point, the social graph contains two entity types (tweets and users) and one
relation type (user-tweet). The remaining entity and relation types are constructed as
follows. For each tweet, we extract the links using regular expressions and crawl the
corresponding articles, which results in a tweet-link relation. The link-hashtag relation
is created by connecting an article to any hashtag it mentions. The user-hashtag relation
is created by connecting a user to a hashtag they used in their tweets. The user-link
relation stems from connections of a user to an article they mentioned in their tweets.

Feature engineering. Features of each individual entity are engineered as follows.
Static features (similarity-based) have been extracted directly from the Twitter REST
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API [KLPM10], including user features such as registration age. To assess the credibility
of a user, we relied on Tweetcred framework [GKCM14], which is an aggregation of 45
characteristics such as #retweets, #favorites, #replies, and presence of swear words into
Likert Scale (score 1-5). The credibility feature of linked articles was assessed using the
Alexa ranking (higher ranking, higher credibility). Popularity of hashtags was quantified
using semantic ranking [BJV15]. The linguistic style of tweets and linked articles was
evaluated using OpenIE framework [MWDNM14b]. Each linguistic feature is measured
as the fraction of English words in a tweet that reflect the writing style of the user.
Six linguistic features are used: discrepancy words (e.g., could, would), tentative words
(e.g., perhaps), filter words (e.g., I mean), punctuations, swear words (e.g., damn), and
exclusion words (e.g., but).

Dynamic features (history-based) are extracted using the Twitter Streaming API [MPLC13].
For instance, the number of retweets of a tweet is collected over time by monitoring the
respective tweet. Similarly process is used for status frequencies, numbers of followers
and friends of a user. Numbers of tweets as well as mentions of hashtags and links were
obtained using this way.

Similarly, data is collected for features of relations. For example, the difference
between the time mentioned in a tweet and given in a linked article is assessed for
all tweets in a specific time window. Then, upon receiving a tweet that links to an
article, the respective time difference can be compared to those observed for historic
data. Location and event features, in turn, are binary and capture whether the tweet
and link originate from the same location or event.

Datasets. The collected data comprises 4 million tweets, 3 million users, 28893
hashtags, and 305115 linked articles, revolving around 1022 rumours from 01/05/2017
to 01/11/2017. This period was chosen as it contains several rumours, e.g., related to
the Las Vegas shooting and information published by the US administration. Our data
spans over 20 different domains, available at [Snod]. Here, we report results for the most
popular ones:

• Politics: rumours related to all political issues.

• Fraud & Scam: rumours related to online hoax/scam entreating users to share
posts and photographs under the false premise of a greater good.

• Fauxtography: rumours related to images or videos circulating on the Web.

• Crime: rumours related to criminology and incidents, such as the Las Vegas shoot-
ing.

• Science & Technology: rumours related to scientific myths and exaggerated tech-
nological inventions.

Each of the datasets is a full view of the social graph. The modelled entity types, relation
types, and features are summarised in Table 3.1.

3.7.3 Understanding Rumour Characteristics

What are the rumours about? In order to understand the diffusion of rumours
on social platforms, we plot the distribution of rumours with their respective tweets
in Figure 3.5. The top-3 domains with the most number of rumours and tweets are
Politics, Fraud & Scam, and Fauxtography. In total, they comprise over 80% of number
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Figure 3.5: Data distributions

of rumours and tweets. This implies that rumours are easily spread in the domains
where being right or wrong is rather subjective.

We also observe discrepancies between the number of rumours and the number of
tweets in each domain. Although the majority of tweets is in the Politics domain, the
number of rumours belonging to this domain is only the third highest. As political
rumours are controversial, they tend to attract more interactions, leading to a high
number of tweets [VRA18]. On the other hand, although more than 30% of rumours are
Fauxtography, only 10% of the tweets belong to this category. An explanation may be
that false pictures are easy to create, but may not deceive people easily.

Who post rumours? To investigate the features of rumour-related users, Figure 3.6
displays boxplots of the relations between the number of friends, followers, lists [KJMO10]
(groups on Twitter that a user can subscribe to) and likes of a user and the domain of
rumours to which they contributed. Interestingly, users who post fraud & scam tweets
have lower numbers of features on average in comparison with other domains. Moreover,
there seems to be no correlation between the number of friends and followers and the
domain of rumours.
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Figure 3.6: Relations between user features and rumours

Where are the rumours from? Figure 3.7 shows the number of users who tweet about
rumours by country. Here, the most prominent countries are English-speaking (US, UK)
or populous (China, India). The majority of users in our dataset, however, resides in
the US, with nearly 0.4M users. Figure 3.8 analyses whether there is an indication that
the location of the users affects the domain of their tweets. The top popular domains
for most countries are Politics, Fraud, and Faux, which is similar to the top domains in
overall. This fits with the data collection period after the 2016 US presidential election.

In Figure 3.9, we show a histogram of the numbers of users who post tweets related
to different rumours. The histogram follows a long-tail distribution in which most users
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tweet about 1-2 rumours. There are users who tweet about more than 100 rumours.
However, their number is extremely small. Analysing these users, we identify several
interesting characteristics. The accounts who post about most rumours are extremely
similar. We suspect that they are bots or part of a network. Given our focus on rumour
detection, however, we refer to [VRA18] for an in-depth analysis of user accounts.
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Figure 3.10: Propagation of rumours

How do rumours propagate? To illustrate the propagation of rumours, we collect
the number of retweets per tweet, which is a measure of its influence. Figure 3.10 shows
the number of retweets per rumor per domain in the first 13 hours.

We observe that political rumours are extremely bursty. In the first hour, the average
number of retweets of these rumours is over 1000, which indicates that these rumours can
spread in a short amount of time. After the first hour, these rumours keep propagating
extremely fast, following a linear trend. Therefore, it is important that rumours belong-
ing to this domain are detected early. On the other hand, rumours in other domains
follow a log-scale increase after the first hour. In addition, rumours in these domains are
not as bursty. The number of retweets after the first hour is moderate as most of them
have less than 500 retweets in the first hour.

3.7.4 Effectiveness of Rumour Detection

Detecting rumourous tweets. We evaluate the detection coefficient of our approach
versus the baseline methods in Figure 3.11 for the domains Politics and Crime (the same
trends emerge for the other domains). We vary the amount of rumours contained in the
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dataset, i.e. data sparsity, by randomly removing some rumours, so that the remaining
rumours cover 30%, 60%, 100% of the original count.
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Figure 3.11: Rumour Detection Coefficient across datasets

In general, our approach outperforms the baseline methods in the detection of rumour-
related tweets. For instance, taking the results of the Politics dataset, when considering
30% of the rumours, our approach achieves a coefficient of 0.82, whereas the best baseline
method achieves solely a coefficient of 0.62.

Going beyond the detection of tweets. Our multi-modal approach enables not only
the detection of rumour-related tweets, but also rumour-related users, hashtags and links.
We therefore evaluated the effectiveness of rumour detection for these modalities, in
comparison with the baseline methods. As the baseline methods detect solely rumour-
related tweets,we used these tweets to determine rumour-related users, hashtags, and
links that are their direct neighbours in the social graph. We assessed the performance
of our approach and the baseline methods in terms of the achieved coefficient, when
varying the amount of rumours contained in the dataset.
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Figure 3.12: Coefficients for different modalities

Figure 3.12 shows the results obtained for users, links and hashtags on Politics (re-
sults for other datasets are similar). Our approach still outperforms in the detection
of rumour-related users, links, and hashtags. This is expected as our approach incor-
porates multiple modalities explicitly, which yields a synergistic effect when trying to
detect rumour-related entities of different types.

3.7.5 Model Design Choices

Effects of Relations. We analyse the effect of considering relations of the social graph
when detecting rumours. To this end, we detected anomalies using only entities (node)
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and compare the results to our actual approach (edge+node). We varied the coverage
level in Algorithm 3.1 to obtain multiple anomalous subgraphs.
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Figure 3.13: With vs. without relations

The results in Figure 3.13 show that using solely entities yields worse coefficients,
e.g., a value of 0.64 instead of 0.85, when considering K = 15 in the Politics dataset
(again, trends are consistent over all domains). This highlights that relations constitute
an important source of information for rumour detection.

Effects of Multi-Modality. We further evaluated the impact of multi-modal informa-
tion, by comparing our approach with rumour detection based on homogeneous graphs,
built of a single modality. The respective modality is then taken as the target for rumour
detection, e.g., the user graph is used to detect rumour-related users. We measure the
detection coefficient, while considering the best coverage level K = 15 from the previous
experiment.
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Figure 3.14: Heterogeneous vs. homogeneous graphs

As illustrated in Figure 3.14 for two domains, the multi-modal social graph yields
a better coefficients. This underlines the importance of a rich model, with multiple
modalities, for rumour detection.

3.7.6 Scalability and Streaming Settings

Effects of data size. This experiment compared the non-incremental and incremental
versions of our approach. We constructed sub-datasets to vary the number of nodes
in the social graph of the Politics dataset from 103 to 106 and compare the observed
coefficient and run-time. Figure 3.15 shows that the incremental computation indeed
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improves the run-time of our approach, halving the time needed to process a graph
of size 106. Moreover, the error introduced by incremental computation stays within
reasonable bounds.
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Figure 3.15: Incremental vs. non-incremental

Effects of window size. We varied the window size, from 12 to 60 hours, while
considering the coverage level K = 15. The results in terms of coefficients and lag time to
detection are shown in Figure 3.16. With larger windows, the coefficient increases, since
rumour detection exploits more information. The lag time to detection also increases,
until reaching a plateau. Again, this is due to the amount of available information.
Initially, some rumours cannot be detected and thus do not affect the lag time. With
larger windows, these rumours are detected and increase the lag time.
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Figure 3.16: Streaming setting: effects of window size

Distribution of lag time. Further, we studied the relation between lag time and
detection accuracy. For our incremental approach, we computed the lag time for each
rumour and aggregate them into several bins. For all other methods, we constructed
datasets with varying detection deadlines θ, controlling that for each rumour, only tweets
from the start of the rumour (θ0) until θ0 + θ are kept. We then report the percentage
of detected rumours for each such deadline. According to Figure 3.17, our approaches
outperform the baseline methods, especially for small lag times. For instance, in the
Politics dataset, with a lag time of 48 hours, our non-incremental approach detects 84%
of rumours, whereas the best baseline achieves 64%.

Average delay analysis. We provide a fine-grained view of the lag time by computing
the difference between the timestamps at which the same rumour was first detected (i.e.
any tweet related to that rumour is flagged) by different methods. Table 3.3 presents
the analysis within 1 day after the genesis of rumours. Our approach detect rumours
earlier than the baselines a few hours in average.
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Figure 3.17: Timeliness of rumour detection

Baseline Rumours detected Average delay

our 68.29% +0.0h
decision 59.46% +1.7h
nonlinear 47.73% +2.3h
rank 38.23% + 3.1h

Table 3.3: Delay analysis (within 1 day)

3.7.7 Case Study

Effects of timeline. Figure 3.18 highlights some detected rumours from the Crime
dataset along a timeline. Most of the rumours are related to the Las Vegas shooting,
one of the biggest events of the year that attracts many hoaxes, fake news, and viral
misinformation [Snoc]. It plots the hourly numbers of tweets for each rumour. Here,
most rumours occurred around on October 2, the date of the incident. Most rumour-
related tweets are about the shooting being caused by a member of ISIS. Also, two days
after the incident, there was a rumour that the shooter had an accomplice, which create
another peak in the number of tweets (second-shooter rumour).

Figure 3.18: Timeline of rumours about the Las Vegas shooting in October 2017

Correctness of anomaly scores. Figure 3.19 depicts the correctness of our anoma-
lousness measure on subgraphs. When a rumour happens (genesis), we compute its
anomalousness score, do the same at ± 1 day and ± 2 days, and then normalize by the
maximum values among all rumours. These scores are compared with those of other
subgraphs, which are constructed by randomly adding regular tweets into the rumours
(this noise ratio is varied from 0.0 to 1.0). Finally, we do a histogram by counting the
number of rumours and subgraphs with scores that fall into 0.1-bins.
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Figure 3.19: Correctness of anomaly scores

At the genesis, the scores of positive samples (i.e. rumours) turn out to be signifi-
cantly higher than noisy samples (i.e. other subgraphs), supporting effective detection.
Before the genesis, anomaly scores are small and nearly uniform, as historic data is not
anomalous. After the genesis, the scores decrease. Yet, they are still relatively high,
since anomalies are still present, which captures the temporal movement of rumours.

3.8 Summary

This chapter proposed an approach for rumour detection that is grounded in the anoma-
lies of a social graph. Unlike traditional approaches that focus only on accuracy, we
optimised the detection coefficient, which represents the trade-off between accuracy and
completeness. We presented a two-step detection approach that detects anomalies at
the local and global level. While the former increases the completeness of detection by
reducing false negatives, the latter optimises the detection accuracy by reducing false
positives. Our experiments showed that our method is effective and efficient, detect-
ing rumours early and accurately. It outperformed several baselines in both static and
streaming settings.
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Chapter 4
Misinformation Validation: The Case of
Minimal-Effort Fact-Checking

User Guidance for Efficient Fact
Checking

VLDB 2019

Maximal Fusion of Facts on the
Web with Credibility Guarantee

Information Fusion Journal 2019

The Web constitutes a valuable source of information. In recent years, it fostered
the construction of large-scale knowledge bases, such as Freebase, YAGO, and DBpedia.
The open nature of the Web, with content potentially being generated by everyone,
however, leads to inaccuracies and misinformation. Construction and maintenance of
a knowledge base thus has to rely on fact checking, an assessment of the credibility of
facts. Due to an inherent lack of ground truth information, such fact checking cannot
be done in a purely automated manner, but requires human involvement.

In this chapter, we propose a comprehensive framework to guide users in the val-
idation of facts, striving for a minimisation of the invested effort. Our framework is
grounded in a novel probabilistic model that combines user input with automated credi-
bility inference. Based thereon, we show how to guide users in fact checking by identify-
ing the facts for which validation is most beneficial. Moreover, our framework includes
techniques to reduce the manual effort invested in fact checking by determining when to
stop the validation and by supporting efficient batching strategies. We further show how
to handle fact checking in a streaming setting. Our experiments with three real-world
datasets demonstrate the efficiency and effectiveness of our framework: A knowledge
base of high quality, with a precision of above 90%, is constructed with only a half of
the validation effort required by baseline techniques.

4.1 Introduction

Extracting factual knowledge from Web data plays an important role in various applica-
tions. For example, knowledge bases such as Freebase [Fre], YAGO [YAG] and DBpedia
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rely on Wikipedia to extract entities and their relations. These knowledge bases store
millions of facts, about society in general as well as specific domains such as politics
and medicine. Independent of the adopted format to store facts, extraction of factual
knowledge first yields candidate facts (aka claims), for which the credibility needs to be
assessed. Given the open nature of the Web, where content is potentially generated by
everyone, extraction of claims faces inaccuracies and misinformation. Hence, building
a knowledge base from Web sources does not only require conflict resolution and data
cleansing [DSS12], but calls for methods to ensure the credibility of the extracted claims,
especially in sensitive domains, such as healthcare [MWDNM14b].

To assess the credibility of claims, automated methods rely on classification [LGMN12]
or sensitivity analysis [WAL+14]. While these methods scale to the volume of Web data,
they are hampered by the inherent ambiguity of natural language, deliberate deception,
and domain-specific semantics. Consider the claims of ‘the world population being 7.5
billion’ or ‘antibiotics killing bacteria’. Both represent common-sense facts. Yet, these
facts have been derived from complex statistical and survey methods and, therefore,
cannot easily be inferred from other basic facts.

When relying on accurate facts, incorporating manual feedback is the only way to
overcome the limitations of automated fact checking. However, eliciting user input is
challenging. User input is expensive (in terms of time and cost), so that a validation
of all claims is infeasible, even if one relies on a large number of users (e.g., by crowd-
sourcing) and ignores the overhead to resolve disagreement among them. Also, claims
are not independent, but connected in a network of Web sources. An assessment of their
credibility thus requires effective propagation of user input between correlated claims.
Finally, there is a trade-off between the precision of a knowledge base (the ratio of cred-
ible facts) and the amount of user input: The more claims are checked manually, the
higher the precision. However, user input is commonly limited by some budget.

Our approach. This chapter presents a comprehensive process for guiding users in fact
checking, adopting a pay-as-you-go approach. We present a novel probabilistic model
that enables us to reason on the credibility of facts, while new user input is continu-
ously incorporated. By (i) inferring the credibility of non-validated facts from those that
have been validated, and by (ii) guiding a user in the validation process, we reduce the
amount of manual effort needed to achieve a specific level of result precision. Credibility
inference and user guidance are interrelated. Inference exploits mutual reinforcing rela-
tions between Web sources and claims, which are further justified based on user input.
Moreover, a user is guided based on the potential effect of the validation of a claim for
credibility inference.

Efficient user guidance further requires to decide: (i) when to terminate validation
to avoid wasting resources on marginal improvements of the quality of the knowledge
base; (ii) how to group claims for batch processing to reduce the impact of set-up costs
in validation (a user familiarising with a particular domain); and (iii) how to handle
continuous arrival of new data to avoid redundant computation. Our novel model enables
us to address these aspects.

Our contributions are summarised as follows:

• Approach to Guided Fact Checking: Section 4.2 formalises the setting of fact check-
ing and, based thereon, formulates the problem of effort minimisation. We further
introduce an iterative approach to guide a user in the validation process and high-
light requirements for its instantiation.
• Probabilistic credibility inference: Section 4.3 addresses the need for a method to

reason on the credibility of facts. We introduce a probabilistic model for fact check-
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ing, based on Conditional Random Fields, and show how to perform incremental
inference based on user input. Aiming at pay-as-you-go validation, we show how
to derive a trusted set of facts based on our model.

• Probabilistic user guidance: Section 4.4 presents strategies to guide users, i.e., to
select the claims for which validation is most beneficial. These strategies target
the reduction of uncertainty in our probabilistic model for fact checking.

• Complete validation process: Section 4.5 combines our mechanisms for credibility
inference and user guidance to obtain a comprehensive validation process. We also
show how to achieve robustness against erroneous user input.

• Methods for effort reduction: Section 4.6 introduces techniques for early termina-
tion of the validation process and batch selection. The former is based on signals
that indicate convergence of our probabilistic model and, thus, of the quality of the
derived knowledge base. The latter selects groups of claims for validation based
on the benefit of their joint validation. Since this selection problem turns out to
be intractable in practice, we propose a greedy top-k algorithm, which comes with
performance guarantees.

• Streaming fact checking: Section 4.7 shows how to handle continuously arriving
data by an adaptation of our validation process that features stochastic approxi-
mation and reuse of model parameters.

We evaluate our techniques with three large-scale datasets (Section 4.8) of real-world
claims. We demonstrate low response times for claim selection (<0.5s) and high effec-
tiveness of guiding users in their validation efforts. To obtain a knowledge base of high
quality (>90% precision), only a half of the effort of baseline techniques is required.
Finally, we review related work (??) and conclude (Section 5.6).

4.2 Guided Fact Checking

4.2.1 Setting

We model the setting of fact checking by means of a set of data sources S = {s1, . . . , su},
a set of documents D = {d1, . . . , dm}, and a set of candidate facts, or short claims,
C = {c1, . . . , cn}. A source could be a user, a website, a news provider, or a business
entity. It provides multiple documents, each often being textual (e.g., a tweet, a news
item, or a forum posting) and involving a few claims. The representation of a claim
(e.g., unstructured text or an RDF triple) is orthogonal to our model. However, a claim
can be referenced in multiple documents, it depends on a specific process for information
extraction how the link between claims and documents is established (see Section 4.8.1).

A claim c ∈ C represents a binary random variable, where c = 1 and c = 0 denote
that the claim is credible or non-credible, respectively. In fact checking, however, these
values are not known, so that we consider a probabilistic model P , where P (c = 1), or
P (c) for short, denotes the probability that claim c is credible. Combining the above
notions, the setting of fact checking is a tuple Q = 〈S,D,C, P 〉, also referred to as a
probabilistic fact database.

A knowledge base is constructed from such a database by deriving a trusted set of
facts. We formalise this construction by a grounding function g : C → {0, 1}, labelling
claims as credible (g(c) = 1) or non-credible (g(c) = 0).

In fact checking, claims are validated manually by a user, which is represented by
a binary model of user input. A claim c is either confirmed as credible, which yields
P (c) = 1, or labelled as non-credible, so that P (c) = 0.
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As an example, consider the Snopes dataset [dat17b], a collection of 4856 claims
derived from 80421 documents of 23260 sources, such as news websites, social media,
e-mails, etc. For instance, this dataset comprises the claim that eating turkey makes
people especially drowsy. This claim can be found in documents of various Web sources,
among them earthsky.org [ec19a], webmd.com [ec19c], and kidshealth.org [ec19b]. In
the Snopes dataset, claims have been validated by expert editors, which corresponds
to the user input in our model. It labels the aforementioned example claim as non-
credible [eca19].

4.2.2 Effort Minimisation

Adopting the above model, the grounding g to derive a trusted set of facts is partially
derived from user input. However, manual validation of claims is expensive, in terms of
user hiring cost and time. User input is commonly limited by an effort budget, which
leads to a trade-off between validation accuracy and invested effort.

Going beyond this trade-off, we aim at minimising the user effort invested to reach
a given validation goal. We consider fact checking as an iterative process with a user
validating the credibility of a single claim in each iteration. This process halts either
when reaching a validation goal or upon consumption of the available effort budget. The
former relates to the desired result quality, e.g., a threshold on the estimated credibility
of the grounding. The latter defines an upper bound for the number of validations by a
user and, thus, iterations of the validation process.

Formally, given a probabilistic fact database 〈S,D,C, P 〉, fact checking induces a
validation sequence, a sequence of groundings 〈g0, g2, . . . , gn〉 obtained after incorporating
user input as part of n iterations of a validation process (i.e., any gi is a prediction of the
model). Given an effort budget b and a validation goal ∆, a sequence 〈g0, g1, . . . , gn〉 is
valid, if n ≤ b and gn satisfies ∆. Let R(∆, b) denote a finite set of valid validation
sequences that can be created by instantiations of the validation process. Then, a
validation sequence 〈g0, g1, . . . , gn〉 ∈ R(∆, b) as minimal, if n ≤ m for any validation
sequence 〈g′0, g′1, . . . , g′m〉 ∈ R(∆, b).

Problem 2 (Effort Minimisation). Let 〈S,D,C, P 〉 be a probabilistic fact database and
R(∆, b) a set of valid validation sequences for an effort budget b and a goal ∆. The
problem of effort minimisation in fact checking is the identification of a minimal sequence
〈g0, g1, . . . , gn〉 ∈ R(∆, b).

The validation goal could be the precision of the final grounding gn, estimated by
cross validation. Note that, in theory, Problem 2 could have no solution—the effort
budget may be too small or the validation goal may be unreachable. However, for
practical reasons, there needs to be a guarantee that the validation process terminates.

Solving Problem 2 is challenging, mainly for two reasons. First, claims are not inde-
pendent, but subject to mutual reinforcing relations with Web sources and documents.
Consequently, the validation of one claim may affect the probabilistic credibility assess-
ment of other facts. Second, the problem is computationally hard: Finding an optimal
solution quickly becomes intractable, since all permutations of all subsets (of size ≤ b)
of claims would have to be explored.

4.2.3 Outline of the Validation Process

To address the problem of effort minimisation, we argue that a user shall be guided
in the validation of claims. In essence, user input shall be sought solely on the ‘most
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promising’ unverified facts, i.e., those for which manual validation is expected to have
the largest impact on the estimated credibility of the resulting grounding.

Let 〈S,D,C, P 〉 be a probabilistic fact database. Our validation process continuously
updates the grounding g to validate claims in a pay-as-you-go manner, by:

(1) selecting a claim c for which feedback shall be sought;
(2) eliciting user input on the credibility of c, which either confirms it as credible or

labels it as non-credible;
(3) inferring the implications of user input on the probabilistic credibility model P ;
(4) deciding on the grounding g that captures the facts that are assumed to be credible.

In the above process, steps (1), (3), and (4) need to be instantiated with specific methods.
An example for a straight-forward instantiation would be a validation process that:

• selects a claim c randomly for validation;
• limits the inference to claim c, setting either P (c) = 1 or P (c) = 0, not changing
P (c′) for any claim c′ 6= c;
• decides that a claim c is credible, g(c) = 1, if and only if it holds P (c) ≥ 0.5.

In the remainder, we present methods for a more elaborated instantiation of the above
process. We introduce a probabilistic model for fact checking that captures the mutual
reinforcing relations between Web sources and claims. This enables us to infer the
implications of user input beyond the claims that have been validated, and based thereon,
decide on the grounding while incorporating the relations between sources and claims.
Also, the model enables conclusions on the claims that shall be selected. Unverified
claims for which validation is most beneficial for the inference will be chosen. Our
model further helps to identify suspicious user input, i.e., claims that may have been
validated by mistake.

We then address aspects of practical relevance, which are not captured in Problem 2.
Validation may converge before the validation goal is reached and the effort budget has
been spent. If so, further user input leads to diminishing improvements of the quality of
the grounding and the validation process may be terminated. We show how our model
enables the detection of such scenarios by decision-support heuristics.

In practice, users that validate claims face significant set-up costs, implied by the need
to familiarise with claims of a particular domain. It therefore increases user convenience
and efficiency if the validation process considers a batch of claims per iteration. We
support such batching by a greedy top-k strategy to select a set of claims with a high
joint benefit for credibility inference.

Moreover, in many applications, new sources, documents, and claims arrive contin-
uously. We thus illustrate how the above process can be lifted to a streaming setting
by exploiting online algorithms for inference and reusing parameters of our underlying
model.

4.3 Credibility Inference

This section presents a probabilistic model for fact checking (Section 4.3.1), before turn-
ing to mechanisms for incremental inference (Section 4.3.2) and the instantiation of a
grounding (Section 4.3.3).

4.3.1 A Probabilistic Model for Fact Checking

Sources of uncertainty. Claims are assessed by means of documents from Web sources.
These documents are encoded using a set of features. We abstract from the specific
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nature of these features, but take into account that the trustworthiness of a source and
the language quality of a document have a strong influence on the credibility of the
claims. We capture these features as follows. A source s ∈ S is associated with a feature
vector 〈fS1 (s), . . . , fSmS

(s)〉 of mS source features. In the same vein, 〈fD1 (d), . . . , fDmD
(d)〉

is a vector of mD document features, assigned to each document d ∈ D.
Features of sources and documents interact with each other, and with the credibility

of claims. A claim’s credibility depends on both, the trustworthiness of the source and
the language quality of the document, which we call a direct relation. A claim is more
likely to be credible, if it is posted by a trustworthy source using objective language.
Yet, the intentions of a source, and thus its trustworthiness, may change over different
contexts and hence documents. Therefore, we also reason about the credibility of claims
via an indirect relation, exploiting that documents of different sources may refer to the
same claim. For example, a source disagreeing with a considered credible by several
sources shall be regarded as not trustworthy.

6
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Documents

Claims ��

��

direct relation
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Figure 4.1: Relations in a probabilistic fact database.

The Conditional Random Field model. To model these relations, and eventually
derive the assignment of credibility probabilities, we rely on a Conditional Random Field
(CRF) [Elk08], see Figure 4.1. We construct a CRF as an undirected graph of three sets
of random variables, S,D,C for sources, documents, and claims. Here, S and D are sets
of real-valued variables that represent trustworthiness of sources and language quality of
documents, respectively, based on the aforementioned features. Set C is the set of binary
variables introduced in Section 4.2.1, each variable representing a claim’s credibility.
Direct relations are captured by relation factors in the CRF, also called cliques since
they always involve three random variables (source, document, claim). Any random
variable can be part in multiple cliques, reflecting the indirect relations. This implies a
factorization of cliques to compute the joint probability distribution.

In this model, S and D are observed variables. As an output variable, we consider
a categorical variable C that represents credibility configurations of claims. A possible
value o of C, called configuration, is an assignment o : C→ {0, 1}, such that each variable
c ∈ C is assigned the value o(c). Considering these variables, the model likelihood is
expressed in the form of a conditional distribution, tailored from the generic form of a
CRF [Elk08]:

Pr(C = o | D,S;W ) =
1

Z

∏
π={c,d,s}∈Π

φ(c = o(c), d, s;Wπ) (4.1)

where Π is the set of all cliques in the CRF; c, d, s are the claim, document, and source
of a clique π, respectively; Z =

∑
c∈C
∏
π∈Π φ(c = o(c), d, s;Wπ) is a normalisation
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constant to ensure that the probabilities over all configurations of C sum up to one;
and W =

⋃
π∈ΠWπ is the set of model parameters controlling the effects of individual

features. Using this model, we shall compute the conditional distribution of C, given
the source and document features. This is realised by the log-linear model (aka logistic
regression) that expresses the log of a potential function as a linear combination of
features, instantiated from its generic form [Elk08]:

log φ(c = o(c), d, s;Wπ) = wπ,o(c) +

mD∑
t=1

wD
π,t × fDt (d)

+

mS∑
t=1

wS
π,t × fSt (s). (4.2)

Hence, we have different weights for each configuration of C andWπ = {wπ,0, wπ,1, wD
π,t, w

S
π,t}

is the set of all weights.

The above formulation is motivated by the CRF being a special case of log-linear
models, which, extending logistic regression, are suitable for structured learning tasks [KBB80,
Elk08]. In our setting, the data has an internal structure via the relations between
sources, documents, and claims. Exploiting these relations, however, means that the
inference of model parameters becomes complex. Hence, the potential function needs
to be computationally efficient to enable user interactions in the validation process. A
log-linear model enables efficient computation, while, at the same time, provides a com-
prehensive model, in which the features of sources and documents are discriminative
indicators for the credibility of the related claims. The weights enable tuning of feature
importance, as features vary between applications and shall be learned from labelled
data.

Handling opposing stances. Documents may link the same claim with opposite
stances—support or refute it [HN14]—and a source is considered trustworthy, if it re-
futes an incorrect claim. A model that only captures that a claim is part of a document
would neglect this aspect. Yet, incorporating such information via a new type of random
variable would mean that the number of variables is larger than or equal to the number
of documents, which is much larger than the number of claims (see Section 4.8). We
therefore introduce an opposing variable ¬c for each claim c. Then, model complexity
increases only slightly: Configurations of C include opposing claims, W contains a dou-
bled number of parameters, and any document connects only to the positive or negative
variable of a claim. As c and ¬c cannot have the same credibility value, we enforce a
non-equality constraint:

Pr(c,¬c′) =

{
0 if c = c′

Pr(c,¬c′|D,S;W ) otherwise.
(4.3)

4.3.2 Incremental Inference with User Input

Using the above formalisation, we further distinguish the set CL ⊆ C of validated, or
labelled, claims. It contains all claims c for which, based on user input, we set P (c) = 1
in the probabilistic fact database. In the same vein, CU = C \CL is the set of unlabelled
claims. Based thereon, we define restricted variants of the categorical random variable
C that represents credibility configurations of claims: CU and CL are variables for
configurations involving solely the unlabelled claims of CU or the labelled claims of CL,
respectively. Then, we need to solve the following optimisation problem to infer model
parameters (as usual, Pr(X) is the probability of one value of a categorical random
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variable X), derived from the principle of maximum likelihood [Elk08]:

W ∗ = arg max
W

log Pr(CL | D,S;W ) (4.4)

= arg max
W

log
∑
CU

Pr(CL, CU | D,S;W ). (4.5)

The log-likelihood optimisation is convex, since the logarithm is monotonically increasing
and the probability distribution is in exponential form. However, the problem becomes
intractable due to the exponential number of configurations to consider for the random
variable CU . Moreover, upon receiving new user input, CL and CU , and hence CL and
CU change, so that re-computation is needed.

Requirements for model inference. To be useful in our setting, an inference algo-
rithm must meet two requirements. First, user input on correspondences should be a first
class citizen. By propagating which claims have been validated, credibility probabilities
can be computed for claims for no input has been sought so far. Second, each iteration
of the validation process changes the credibility of claims only marginally. Hence, infer-
ence should proceed incrementally and avoid expensive re-computation of the credibility
probabilities and model parameters in each iteration.

Existing inference algorithms. Various inference algorithms have been proposed in
the literature. Yet, none of them meets the aforementioned requirements. Traditional
CRF models, such as [PMSW17], operate in a static manner, in which model parameters
are inferred from a fixed set of labelled data by methods that incur high computational
effort (e.g., gradient descent or trusted region methods). Hence, credibility probabilities
and model parameters in our model would be computed from scratch every time new user
input arrives. Moreover, the instantiation of a grounding based on this model requires
another pass over the whole data. This makes it not suitable for interactive validation
process considered in our work.

iCRF algorithm. In the light of the above, we propose a novel incremental inference
algorithm, iCRF , which adopts the view maintenance principle by maintaining a set of
Gibbs samples over time. Estimation of credibility and model parameters exploits the re-
sults of the previous iteration of the validation process, thereby avoiding re-computation.
As we will show experimentally, this does not only increase inference efficiency, but also
yields a better approximation compared to random estimation.

Our iCRF algorithm implements the third step of the validation process introduced
in Section 4.2.3, i.e., the inference of the implications of user input on the probabilistic
credibility model. In the z-th iteration of the validation process, reasoning is based on
the probabilistic fact database of the previous iteration and the user input that has been
received in the z-th iteration. That is, if c is the claim validated in the z-th iteration, we
rely on the probabilistic fact database Qz−1 = 〈S,D,C, Pz−1〉, with CUz−1 and CLz−1 being
the sets of unlabelled and labelled claims, respectively, as indicated by Pz−1. Then,
these sets are updated, CUz = CUz−1 \ {c} and CLz = CLz−1 ∪ {c}, and inference returns a
new probabilistic fact database Qz = 〈S,D,C, Pz〉.

In each iteration of the validation process, our iCRF algorithm adopts the Expectation-
Maximization (EM) principle for inference. This choice is motivated by EM’s fast con-
vergence, computationally efficiency, and particular usefulness when the likelihood is an
exponential function (i.e., maximising log-likelihood becomes maximising a linear func-
tion). Specifically, we infer the values of the variables for unlabelled claims CU through a
configuration of CU and learn the weight parameters W . By relying on an EM-based ap-
proach, we can further naturally integrate user input on the credibility of specific claims.
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This is a major advantage compared to approaches based on gradient-descent [MW15]
that optimise model parameters, but do not enable the integration of user input and
constraints (e.g., on opposing claims).

Inference alternates between an Expectation (E-step) and a Maximization (M-step),
until convergence. EM-based inference is conducted in each iteration of the validation
process, while each EM iteration updates the model parameters W . Hence, in the z-th
iteration of validation, we obtain sequences W 0

z ,W
1
z , . . . ,W l

z and P 0
z , P

1
z , . . . , P

l
z of model

parameters and credibility probabilities.

E-step: We estimate the credibility probabilities from the current parameter values.
The first E-step of the z-th iteration of the validation process is based on parameters W 0

z ,

given as input from the previous iteration of the validation process, i.e., W 0
z = W

lz−1

z−1 ,
with lz−1 as the number of EM iterations in the z−1-th iteration of the validation process.
In the l-th E-step of the z-th step of the validation process, credibility probabilities are
computed as follows:

(1) A sequence of samples Ωl
z is obtained by Gibbs sampling according to the conditional

probability distribution:

qlz(C
U
z ) = Pr(CUz | CLz , D, S;W l

z)

∝
∏

π={c,d,s}∈Π

Prl−1
z (c)× φ(o(c), d, s;W l

z). (4.6)

We incorporate non-equality constraints (Equation 4.3) into Gibbs sampling using
an idea similar to [Sch09], which, based on matrix factorisation, embeds constraints
as factorised functions into the Markov chain Monte Carlo process. Note that Ωl

z

is a sequence, as any configuration of CU can appear multiple times. We weight
the influence of causal interactions (i.e., cliques) by the credibility of their contained
claims, so that user input is propagated via mutual interactions between the cliques.

(2) The probability for each claim c ∈ CU without user input is determined by the ratio
of Gibbs samples in which c is credible:

Prlz(c) =

∑
ω∈Ωt

z
ω(c)

|Ωtz|
. (4.7)

For all other claims c ∈ CL, the probability is fixed by the user input: We set
Prlz(c) = 1, if the user confirms a claim, and Prlz(c) = 0 otherwise.

M-step: We compute the new parameter values by maximising the expectation of
log-likelihoods as a weighted average of the probability distribution of current label
estimates. That is, in the l-th M-step of the z-th step of the validation process, we have:

W l+1
z = arg max

W ′

∑
CU

qlz(C
U
z ) logPr(CLz , C

U
z |D,S;W ′) (4.8)

This step is realised by a L2-regularized Trust Region Newton Method [LWK08], suited
for large-scale data, where critical information is often sparse (many zero-valued fea-
tures).

Proposition 3. iCRF runs in linear time in the size of the dataset.

Proof. The E-step is implemented by Gibbs sampling, which takes linear time [CG92,
KN+99] in the number of claims. The M-step is implemented by the Trust Region
Newton Method, which also takes linear time in the dataset size [LWK08] .
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4.3.3 Instantiation of a Grounding

Once the user input of the z-th iteration of the validation process has been incorporated,
a grounding is instantiated. This corresponds to the fourth step of the validation process
in Section 4.2.3, i.e., deciding which claims are deemed credible. Since claims are not
independent, we take the configuration with maximal joint probability:

gz(c) =


1 if (c ∈ CLz ) ∨

(o(c) = 1 ∧ o = arg max
CU

z

Pr(CUz | CLz , D, S;Wz))

0 otherwise.

(4.9)

However, solving this equation is similar to solving a Boolean satisfiability problem.
Thus, we simply leverage the most recent Gibbs sampling result Ω∗z, obtained during
EM, for instantiation. This is defined by a function decide as follows:

gz(c) = decide(c,Ω∗z)

=


1 if (c ∈ CLz ) ∨

(o(c) = 1 ∧ o = arg max
CU

z

|{ω ∈ Ω∗z | CUz = ω}|)

0 otherwise.

(4.10)

Consider a set of claims C = {c1, c2, c3} and assume that the last Gibbs sampling com-
prised three configurations, ω1 = [1, 1, 0], ω2 = [1, 0, 0], ω3 = [1, 1, 0], where the i-th
vector element denotes the credibility of claim ci. Instantiation will return [1, 1, 0] as
this configuration appears most often, so that its probability is maximal.

4.4 User Guidance

Having discussed (i) inference based on user input and (ii) instantiation of a ground-
ing, we turn to strategies to guide a user in the validation. This corresponds to the
first step of the validation process presented in Section 4.2.3, i.e., the selection of a
claim for validation. We first define a measure of uncertainty for a probabilistic fact
database (Section 4.4.1). Then, two selection strategies are introduced (Section 4.4.2
and Section 4.4.3), before they are combined in a hybrid approach (Section 4.4.4).

4.4.1 Uncertainty Measurement

The model of a probabilistic fact database, as constructed above, enables us to quantify
the uncertainty related to credibility inference in order to guide a user in the validation
process. Let Q = 〈S,D,C, P 〉 be a probabilistic fact database. Recall that P assigns
to each claim c ∈ C the probability P (c) of it being credible, while C is the categorical
random variable that captures credibility configurations over all claims. We quantify the
overall uncertainty of the database by the Shannon entropy over a set of claims:

HC(Q) = −
∑
C

Pr(C;W ) logPr(C;W ) (4.11)

In our iCRF model, it can be computed exactly by [RN09, Rey13]:

HC(Q) = Φ(W )− EW [t(C)]TW (4.12)

where Φ(W ) =
∑

C

∏
π φ(o, d, s;W ) is called the partition function and EW [t(C)] =

∇Φ(W ). Since our model is an acyclic graph with no self statistics, the partition function
is computed exactly using Ising methods [Rey13], which run in polynomial time.
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We can further scale-up uncertainty computation by approximating the entropy in
linear time, as follows:

HC(Q) = −
∑
c∈C

[Pr(c) logPr(c) + (1− Pr(c)) log(1− Pr(c))] (4.13)

where the claim probabilities are obtained after each EM iteration (i.e., Equation 4.7
for unlabelled claims, or directly by the user input for labelled claims). However, this
approximation neglects the mutual dependencies between claims.

4.4.2 Information-driven User Guidance

A first heuristic to guide the selection of claims for validation aims at the maximal
reduction in uncertainty under the assumption of trustworthy sources. It exploits the
benefit of validating a claim using the notion of information gain from information
theory [RN03].

To capture the impact of user input on a claim c, we define a conditional variant
of the entropy measure introduced earlier. It measures the expected entropy of the
database under specific validation input:

HC(Q | c) = Pr(c)×HC(Q+) + (1− Pr(c))×HC(Q−) (4.14)

where Q+ = 〈S,D,C, P+〉 and Q− = 〈S,D,C, P−〉 are inferred from Q = 〈S,D,C, P 〉 by
iCRF (Section 4.3.2), under input that confirms the claim, P+(c) = 1, or labels it as
non-credible, P−(c) = 0.

To take a decision on which claim to select, we assess the expected difference in
uncertainty before and after incorporating input for a claim. The respective change in
entropy is the information gain that quantifies the potential benefit of knowing the true
value of an unknown variable [RN03], i.e., the credibility value in our case:

IGC(c) = HC(Q)−HC(Q | c). (4.15)

Using this notion, we chose the claim that is expected to maximally reduce the uncer-
tainty of the probabilistic fact database. This yields a selection function for information-
driven user guidance:

selectC(C) = arg max
c∈C

IGC(c) (4.16)

Note that we do not need to rank the opposing claim ¬c of a claim c, as their conditional
entropies in Equation 4.14 will be equivalent.

4.4.3 Source-driven User Guidance

User guidance as introduced above assumes that sources are trustworthy—an assumption
that is often violated in practice. To tackle this issue, we model source trustworthiness
by explicitly aggregating over all claims made by a source. More precisely, the likelihood
that a source is trustworthy is measured as the fraction of its claims that are considered
credible. The latter is derived from the grounding gz instantiated in the last, the z-th,
EM iteration:

Pr(s) =

∑
c∈Cs gz(c)

|Cs|
(4.17)

where Cs = {c ∈ C | (c, s) ∈ Π} is the set of claims connected to s in the CRF model.
Then, the uncertainty of source trustworthiness values is defined as:

HS(Q) = −
∑
s∈S

[Pr(s) logPr(s) + (1− Pr(s)) log(1− Pr(s))] (4.18)
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The conditional entropy when a claim c is validated is:

HS(Q|c) = Pr(c)×HS(Q+) + (1− Pr(c))×HS(Q−) (4.19)

where, as detailed above, Q+ and Q− are inferred from Q by iCRF under user input
that confirms or disproves the claim, i.e., setting P+(c) = 1 for Q+, or P−(c) = 0 for
Q−, respectively.

As for the first heuristic, we further capture the information gain as the difference in
entropy and, based thereon, define the selection function for source-driven user guidance:

IGS(c) = HS(Q)−HS(Q|c) (4.20)

selectS(C) = arg max
c∈C

IGS(c) (4.21)

Again, we do not need to rank opposing claims.

4.4.4 Hybrid User Guidance

There is a trade-off between the information-driven and the source-driven strategy for
user guidance. Focusing solely on the former may lead to contamination of the claims
from trustworthy sources by unreliable sources. An excessively source-driven approach,
in turn, may increase the overall user efforts significantly. Thus, we propose a dynamic
weighting procedure that to choose among the two strategies. This choice is influenced
by two aspects:

Ratio of untrustworthy sources. If there is a high number of unreliable sources, the
source-driven strategy is preferred. With little user input, detection of unreliable sources
is difficult, though, so that the information-driven strategy is favoured in the beginning.

Error rate. The grounding gi captures which claims are deemed credible in the i-
th iteration of the validation process. If gi turns out to be mostly incorrect, we have
evidence of unreliable sources and favour the source-driven strategy.

Initially, with little user input, we choose the strategy mainly based on the error
rate of the grounding. At later stages of the validation process, the number of inferred
unreliable sources becomes the dominant factor. The above idea is formalised based
on the ratio of unreliable sources in the i-th iteration of the validation process, which
is ri = (|{s ∈ S | Pr(s) < 0.5}|)/(|S|). The error rate of the grounding is computed
by comparing the user input for claim c in the i-th iteration with the credibility value
assigned to c in gi−1, i.e., in the previous iteration. Here, we leverage the probability
Pi−1(c) of the probabilistic fact database Qi−1 = 〈S,D,C, Pi−1〉, of the previous iteration.
The error rate is computed as:

εi =

{
1− Pri−1(c) gi−1(c) = 1

Pri−1(c) otherwise
(4.22)

Using the ratio of unreliable sources ri and the error rate εi, a we define a score for
choosing the source-driven strategy:

zi = 1− e−(εi(1−hi)+rihi) (4.23)

where hi = i/|C| is the ratio of user input. This score mediates the trade-off between
the error rate εi and the ratio of untrustworthy sources ri by the ratio of user input
hi. When the ratio hi is small, the ratio of untrustworthy sources has less influence and
the error rate is the dominant factor. When the ratio hi is large, the ratio of unreliable
sources becomes a more dominant factor.
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4.5 Complete Validation Process

Combining the techniques for credibility inference and instantiation of a grounding (Sec-
tion 4.3) with those for user guidance (Section 4.4), we define a comprehensive validation
process (Section 5.4). We further outline how robustness against erroneous user input
is achieved (Section 4.5.2).

4.5.1 The Algorithm

Our complete validation process for fact checking is defined in Algorithm 4.1. It instan-
tiates the general validation process outlined in Section 4.2.3 to address the problem
of effort minimisation (Problem 2). As long as the validation goal is not reached and
the user effort budget has not been exhausted (line 6), selection of the claim for which
user input shall be sought is done either by the source-driven or the information-driven
strategy. The choice between strategies is taken by comparing factor zi−1 to a random
number (line 8), which implements a roulette wheel selection. The second step (lines 10-
13) elicits user input for the selected claim and computes the error rate. The third step
incorporates the user input in the probabilistic model (line 14) and then conducts credi-
bility inference by means of our iCRF algorithm (line 15). This yields a new probabilistic
model Pi, along with the Gibbs sampling result Ω∗i of the last E-step. Based thereon, in
a fourth step, we decide on the new grounding gi capturing the facts that are considered
credible (line 16). The ratio of unreliable sources ri is calculated to compute score zi
(lines 17-18), used in the next iteration to choose between the selection strategies.

Proposition 4. An iteration of Algorithm 4.1 (lines 6-19) runs in linear time in the
size of the dataset.

Proof. The time complexity of the iteration of Algorithm 4.1 is dominated by the iCRF
algorithm, which infers the implications of new user input. Yet, iCRF runs in linear
time in the dataset size (Proposition 3).

Applying Algorithm 4.1 in practice, the computation of the information gain for the
information-driven or source-driven selection strategy becomes a performance bottle-
neck. Therefore, we consider two optimisations for this step:

• Parallelisation: The computation of information gain for different claims is inde-
pendent and thus done in parallel.

• Graph partitioning: Not all sources share the same claims and not all claims stem
from a single source. Hence, as a pre-processing step before seeking user input,
the graph representation of the CRF model can be decomposed into its connected
components [KFL01]. The resulting smaller CRF models can then be handled
more efficiently.

4.5.2 Robustness Against User Errors

When validating claims, a user may make mistakes, not because of a lack of knowledge,
but as a result of the interactions with a validation system [Rea90]. Assuming that a
user is confronted with the current inferred credibility of the claim to validate, along
with an assessment of related sources and documents, any decision to deviate from the
current most likely credibility assignment is typically taken well-motivated. Common
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Algorithm 4.1: Validation process for fact checking
input : sets of sources S, documents D, and claims C,

Cs ⊆ C being claims originating from a source s ∈ S,
a validation goal ∆, and a user effort budget b.

output: the grounding g.

1 CU ← C; CL ← ∅;
2 (P0,Ω∗0)← iCRF (S,D,C, (c 7→ 0.5, c ∈ C));
3 g0 ← (c 7→ decide(c,Ω∗0), c ∈ C);
4 z0 ← 0;
5 i← 1;
6 while not ∆ ∧ i < b do

// (1) Select a claim to validate

7 x← random(0, 1);
// Source-driven or information-driven strategy?

8 if x < zi−1 then c← selectS(CU ) ;

9 else c← selectC(CU ) ;

// (2) Elicit user input

10 Elicit user input v ∈ {0, 1} on c;

11 CU ← CU \ {c}; CL ← CL ∪ {c} ;
// Calculate error rate εi

12 if gi−1(c) = 1 then εi = 1− Pi−1(c) ;
13 else εi = Pi−1(c) ;

// (3) Infer implications of user input

// Update credibility of validated claim

14 P ← (c 7→ v ∧ c′ 7→ Pi−1(c′), c′ ∈ C, c′ 6= c);
// Conduct inference

15 (Pi,Ω
∗
i )← iCRF (S,D,C, P ) ;

// (4) Decide on grounding

// Instantiate grounding based on samples of last iCRF

16 gi ← (c 7→ decide(c,Ω∗i ), c ∈ C);
// Calculate ratio of unreliable sources

17 ri = 1
|S|

∣∣∣∣{s ∈ S |
∑

c∈Cs
gi(c)

|Cs|
< 0.5

}∣∣∣∣ ;

// Calculate score to choose selection strategy

18 zi = 1− e−
(
εi

(
1− i
|C|

)
+ri

i
|C|

)
;

19 i← i+ 1;

20 return gi−1

mistakes, thus, are accidental confirmations of a (wrong) inferred credibility value of a
claim.

Against this background, we incorporate a lightweight confirmation check, triggered
after a fixed number of iterations of the validation process. At some step i, for every
claim c that has been validated, a grounding gi∼c is constructed, using all information
of the probabilistic fact database except the validation of c. Then, the label for claim c
in gi∼c is compared with the respective user input v. If gi∼c(c) 6= v, then v is identified
as a potential mistake and updated accordingly. Intuitively, this check exploits that
additional user input may lead to a different inferred credibility value than the one
given earlier directly by the user. As inference is based on a large number of validated
claims, instead of a single one, it is considered more trustworthy. We will demonstrate
experimentally that this check is highly effective when trying to detect user mistakes.

4.6 Methods for Effort Reduction

Based on the validation process introduced so far, this section presents methods to
further reduce the required user effort. Detecting convergence of our probabilistic model,
we discuss when to terminate validation (Section 4.6.1). Reducing set-up costs of a user,
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we then target batching of claims (Section 4.6.2).

4.6.1 Early Termination

In practice, we can improve efficiency by terminating the validation process upon con-
vergence of the results. Below, we define several criteria that indicate such convergence
and, therefore, may be employed as additional termination criteria.

Uncertainty reduction rate. A first indicator is the effect of user input in terms of un-
certainty reduction. After each iteration in Algorithm 4.1, the probabilistic fact database
Qi becomes Qi+1. The rate of uncertainty reduction is measured as (HC(Qi)−HC(Qi+1))

HC(Qi)
.

The rate approaches zero upon convergence, so that validation is stopped once the rate
falls below a threshold.

The amount of changes. Instead of considering the probability values of all claims,
this indicator incorporates solely the configuration with the highest likelihood. With gi
and gi+1 as the groundings of two iterations of Algorithm 4.1, the amount of change is
quantified as |{c ∈ C | gi(c) 6= gi+1(c)}|. If this value becomes negligible, i.e., falls below
a threshold over several consecutive iterations, we conclude that the credibility of claims
has been determined.

Amount of validated predictions. Another indicator for a high quality model is the
ability to instantiate credibility assignments that are matched with user input. Exploit-
ing this idea, in each iteration of Algorithm 4.1, we assess whether the result of inference
and the user input are consistent. If this is the case for several consecutive iterations,
we conclude that the validation process may be stopped.

Precision improvement rate. A more direct way to assess convergence is to es-
timate the precision based on k-fold cross validation. Formally, in the i-th iteration
of Algorithm 4.1, the set of labelled claims CL is divided into k equal-size partitions,
E = E1 ∪ . . . ∪ Ek. Then, we repeat the following procedure k-times: (1) consider
the claims of the j-th partition Ej as non-validated; (2) conduct credibility inference
ignoring the user input for claims in Ej and instantiate a grounding g′j ; (3) compare
the credibility values for claims in Ej based on g′j with those given directly by the user:
AEj = (|{c ∈ Ej | g′j(c) = Pi(c)}|)/|Ej |. We then take the average of k runs as an overall

estimation of the model precision at step i, i.e., Ai = (
∑k

j=1AEj )/k. This yields a rate
(Ai −Ai−1)/Ai−1 of precision improvement at step i. This rate shall converge to zero,
thereby indicating when to terminate the validation process.

4.6.2 Batching

Batching of claims reduces the set-up costs of users, i.e., the time needed to familiarise
with a particular domain. Moreover, batching enables the definition of large validation
tasks, which is beneficial when involving multiple users working in parallel. We thus
adapt the approach defined in Algorithm 4.1, so that a set of claims, instead of a single
one, is checked per iteration. Below, we show how to lift claim selection to sets, assessing
the benefit of their joint validation.

Expected benefit. We measure the information gain of validating claims B ⊆ C by
the expected uncertainty reduction. With B as the categorical random variable that
represents credibility configurations of claims B, the uncertainty conditioned by user
input on B is:

HC(Q | B) =
∑
B

Pr(B)H(QB) (4.24)
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Here, QB denotes the probabilistic fact database constructed after incorporating the
given configuration of B. Note that a more complex cost model could be constructed
based on validation difficulty (e.g., implied by logical relations between claims) [BRLT+15].
Yet, this is orthogonal to our work. Using this measure, our validation process incor-
porates batching of claims by choose the top-k claims with maximal information gain
(breaking ties randomly):

selectB(C) = arg max
B⊆C,|B|=k

HC(Q)−HC(Q | B) (4.25)

However, the above optimisation problem is computationally hard, as, in practice, both
|C| and k are large. We therefore resort to an approximate computation of the benefit
and a greedy algorithm for the actual selection.

Approximating the expected benefit. We employ an alternative utility function
that combines the individual benefit of each claim with a redundancy penalty that
incorporates claim dependencies.

Individual benefit: The expected benefit of a claim c is computed as its information
gain IGC(c) as defined in Equation 4.15, which is tractable. Selecting claims one-by-
one based solely on their individual benefit, however, may be non-optimal, due to the
complex joint distribution of random variables for claims, documents, and sources.

Redundancy penalty: Neglecting the dependencies between the variables in the CRF
model may yield redundant validation effort. Therefore, when selecting claims, we aim
at low information overlap, which is quantified as the redundancy of a set of claims
B ⊆ C as:

R(B) =
∑
c,c′∈B

IGC(c)M(c, c′)IGC(c′) (4.26)

where M(c, c′) = 1
Z |{s ∈ S|c ∈ Cs ∧ c′ ∈ Cs}| is a correlation matrix that is based on the

number of sources that serve as the origin of both claims c and c′ and normalised to the
unit interval by Z = maxc,c′∈CM(c, c′).

Approximated benefit: The two aforementioned measures are combined to approxi-
mate the benefit of validating a set of claims B ⊆ C. The individual benefit, however, is
weighted by the importance of a claim. The idea is that claims stemming from a large
group of dependent claims have a high chance to propagate information. To exploit this
effect, we define q(c) =

∑
c′∈CM(c, c′)IGC(c′) as the importance of claim c. Putting

it all together, we employ the following utility function to approximate the benefit of
validating B:

F (B) = w
∑
c∈B

q(c)IGC(c)−
∑
c,c′∈B

IGC(c)M(c, c′)IGC(c′) (4.27)

where w ∈ R+ is a positive weight parameter to balance the terms related to individual
benefit and redundancy. Then, our utility function is used to guide the selection of the
top-k claims:

selectAB(C) = arg max
B⊆C,|B|=k

F (B) (4.28)

As discussed, computation of the utility function F is tractable. However, the above
optimisation problem (Equation 4.28) is not.

Theorem 4.6.1. Computing the result of selectAB is NP-complete.

Proof. F is a submodular set function. Maximization of such functions is known to be
NP-complete [NW81].
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Greedy selection. Exploiting the monotonicity and submodularity of the utility func-
tion F , we define a greedy algorithm with a performance guarantee of (1 − 1/e) ≈
0.63 [NW81]. We iteratively expand the set of claims in k iterations. In each itera-
tion, we traverse all unlabelled claims to identify the claim c∗ to maximise the gain
∆(c∗) = F (B′ ∪ {c∗}) − F (B′), where B′ is the set of claims selected in the previ-
ous iteration. Note that the gain can be updated incrementally. That is, ∆i+1(c) =
∆i(c)− 2IGC(c∗i )M(c, c∗i )IGC(c), where c∗i is the claim chosen in iteration i.

The time and space complexity of this heuristic strategy are O(|C|2+k|C|) and O(|C|2),
respectively. The quadratic term |C|2 in either complexity stems from the calculation
of the correlation matrix M(., .). The linear term k|C| is explained by k iterations, each
requiring consideration of the whole set of claims to select c∗.

4.7 Streaming Fact Checking

We now lift our approach to a streaming setting. Instead of checking a large set of claims
from scratch, we consider a potentially infinite stream of claims to validate.

Upon the arrival of new documents, sources, and claims, the model structure and its
parameters need to be updated. However, evaluating the parameters periodically based
on the complete database is not a viable option, as the database grows continuously.
Limiting the number of considered claims, in turn, may induce a loss of all claims
provided by a source. Since only a (small) subset of documents is observed per source,
operating on a subset of claims increases the risk of discarding trustworthy sources and
documents.

We therefore propose an online expectation-maximization algorithm that reuses and
updates the previous trained parameters, which accelerates convergence in the presence
of new data. We operate on one claim at a time, and both the claim and the associated
user input are discarded after validation. As such, we can only provide an educated
guess on the credibility of the claim at a later stage. However, this is a minor drawback,
since, in an online setting, claims are relevant only for a comparatively short interval.
How to decide on which claims to discard in a more elaborated manner, is an interesting
problem, see [NDW+17], yet orthogonal to our work.

Algorithm 4.2: Streaming fact checking
input : Probabilistic fact database Q = 〈S,D,C, P 〉 and its CRF representation Pr(C|D,S;W ),

A potentially infinite stream of claims c1, c2, . . ..

1 while a new non-validated claim ct arrives do
2 CUt ← CUt−1 ∪ {ct} ;

3 if ct comes with a new document dt then Dt ← Dt−1 ∪ {dt} ;
4 else Dt ← Dt−1 ;
5 if ct comes with a new source st then St ← St−1 ∪ {st} ;
6 else St ← St−1 ;

7 Receive current model parameters W from Algorithm 4.1 ;

8 Compute Qt(W ) using Equation 4.29 ;

9 Compute Wt using Equation 4.30 ;

10 Feed new model parameters Wt to Algorithm 4.1 ;

In the online setting, we consider an EM algorithm with stochastic approximation
to update the likelihood with a new claim ct, a new source st, or a new document dt,
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rather than conducting re-computation. Specifically, the update rule is defined as:

Qt(W ) = Qt−1(W )+γt×
(

E
CUt |CLt ,Dt,St,Wt−1

[logPr(CUt , C
L
t , Dt, St;W )]−Qt−1(W )

)
(4.29)

where Q0(W ) = 0 and the sequence γ1, γ2, . . . is a decreasing sequence of positive step
sizes, i.e. limT→∞

∑T
t=1 γt = ∞ and limT→∞

∑T
t=1 γ

2
t < ∞. In practice, the step-size

yt may be adjusted using line searches to ensure that the likelihood is indeed increased
in each iteration [CM09]. As above, the model parameters W are estimated by max-
imizing the expectation of the likelihood via the L2-regularized Trust Region Newton
Method [LWK08]:

Wt = arg max
W

Qt(W ) (4.30)

We realise this idea in Algorithm 5.1. Given a stream of claims c1, c2, . . ., the algorithm
updates the model variables CUt , Dt, St (lines 2 to 6). It then performs the stochastic
approximation of the parameter estimates (lines 8 to 9). The returned parameters are
then fed to Algorithm 4.1 (line 10). Algorithm 5.1 can receive the current model param-
eters from Algorithm 4.1 (line 7), since both algorithms may run in parallel and influence
the parameters of one another. The respective parts of either algorithm are highlighted.
That is, user input in Algorithm 4.1 or the arrival of a new claim in Algorithm 5.1 may
change the model.

Proposition 5. Algorithm 5.1 runs in linear time.

Proof. The update of a new claim is implemented by Trust Region Newton Method,
which takes linear time [LWK08] in the dataset size.

4.8 Evaluation

We evaluate our approach experimentally, using real-world datasets. We first discuss
the experimental setup (Section 4.8.1), before turning to an evaluation of the following
aspects of our approach:

• The runtime performance of the presented approach (Section 4.8.2).

• The efficacy of the CRF model (Section 4.8.3).

• The effectiveness of user guidance (Section 4.8.4).

• The robustness against erroneous user input (Section 4.8.5).

• The effectiveness of early termination (Section 4.8.6).

• The benefits and trade-offs of batching (Section 4.8.7).

• The streaming setting of fact checking (Section 4.8.8).

• The real-world deployment for human validators (Section 4.8.9).
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4.8.1 Experimental Setup

Datasets. We utilise state-of-the-art datasets in fact checking [ZL18]:

• Wikipedia: The dataset contains proven hoaxes and fictitious people from Wikipedia [Wik17]
with 1955 sources, 3228 documents, and 157 labelled claims. The model has been
constructed by taking unique, curated claims from Wikipedia and using them as a
query for a search engine to collect Web pages as documents, while the originating
domain names indicate the sources. The top-30 retrieved documents are linked to
a given claim, except those that originate from wikipedia.org in order to avoid a
bias, as described in [PMSW17].

• Healthcare forum: The dataset contains 291276 claims about side-effects of drugs
extracted from 2.8M documents of 15K users on healthboards.com [Dat17a]. We
consider 529 claims of 48083 documents from 11206 users, which have been labelled
by health experts. The model has been constructed using domain-specific rules to
extract RDF triples from forum texts, i.e. documents. Each user of the forum
is considered as a source. Various pattern mining and data cleaning routines
are used to ensure that the resulting set of claims does not contain duplicates,
see [MWDNM14b].

• Snopes: This dataset [dat17b] originates from the by far most reliable and largest
platform for fact checking [VRA18], covering different domains such as news web-
sites, social media, and e-mails. The dataset comprises 80421 documents of 23260
sources that contain 4856 labelled claims. The model has been constructed as
described above for the wikipedia dataset: A duplicate-free set of curated claims
of the Snopes’ editors was used to collect Web pages that links to these claims,
see [PMSW17].

For these datasets, we derive features as follows. If a source is a website, we rely on
centrality scores such as PageRank and HITS. If a source is an author, features include
personal information (age, gender) and activity logs (number of posts). Language quality
of documents is assessed using common linguistic features such as stylistic indicators
(e.g., use of modals, inferential conjunction) and affective indicators (e.g., sentiments,
thematic words) [OPLA13].

We follow common practice [MSF+14, AGK10, HTWA15c, NNM+14, HTT+17] and
use the ground truth of the datasets to simulate user input. Model parameters are
initialised with 0.5, following the maximum entropy principle.

Evaluation measures. In addition to the uncertainty of a probabilistic fact database,
see Section 4.4, we measure:

User effort (E): the ratio of validated claims |CU | and all claims |C|, i.e., E = |CU |/|C|.

Precision (Pi): the correctness of the grounding. Let g∗ : C → {0, 1} be the correct
assignment of credibility values. Then, we measure precision of grounding gi in
the i-th iteration of the validation process as Pi = |{c ∈ C | gi(c) = g∗(c)}|/|C|.
This definition of precision is different from the one in information retrieval and
binary classification [RN03]. As the user interest is a trusted set of facts, the
correctness of obtained facts is evaluated.

Precision improvement (Ri): a normalised version of precision, measuring relative im-
provements to illustrate the effect of user input. With P0 as the initial precision,
the measure is defined at the i-th iteration by Ri = Pi − P0/1− P0.

71



4. Misinformation Validation: The Case of Minimal-Effort Fact-Checking

Experimental environment. Our results have been obtained on an Intel Core i7
system (3.4GHz, 12GB RAM). All except the experiments on early termination (Sec-
tion 4.8.6) ran until the actual termination of the validation process.

4.8.2 Runtime Performance

We first measures the response time, denoted by ∆t, of our approach during one iteration
of Algorithm 4.1, i.e., the wait time of a user. This includes the time for inference and
claim selection.

wiki health snopes
Dataset
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Figure 4.2: Time vs. dataset
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Figure 4.3: Time vs. effort

Figure 4.2 shows the observed response time, averaged over 10 runs, when using
the plain algorithm (origin), with uncertainty estimation as introduced in Section 4.4.1
(scalable), and with the computational optimisations of Section 5.4 (parallel+partition).
With larger dataset size (wiki to snopes), the response time increases. However, with
computational optimisations, the average response time stays below half a second, which
enables immediate user interactions. Figure 4.3 further illustrates for the largest dataset,
snopes, how the response time evolves during validation when averaging the response
time over equal bins of relative user effort. The response time peaks between 40% and
60% of user effort, since at these levels, user input enables the most conclusions on
credibility values.

4.8.3 Efficacy of the CRF Model

Next, we assess the estimated probabilities of credibility assignments. Since we use
probabilistic information to guide validation, the probabilities should reflect the ground
truth, i.e., the true credibility values of claims. For each claim, our model should assign a
higher probability to correct credibility values than to incorrect ones. In the experiment,
we keep track of the correct assignments (if a claim is correct, we plot Pr(c = 1) and
otherwise, we plot Pr(c = 0)) and their associated probabilities, while varying the user
effort (0%, 20%, 40%).

Figure 4.4 shows a histogram over all datasets, illustrating how often the probability
assigned to a claim falls into a specific bin. Increasing the amount of user effort, the
range covering most of the correct credibility values shifts from lower probability bins to
higher ones. Even with little user effort (20%), the number of correct assignments with
a value ≥ 0.5 is high. This highlights that user input indeed enables a better assessment
of the credibility of claims.
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Figure 4.4: Guidance benefits
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4.8.4 Effectiveness of User Guidance

Relation between uncertainty and precision. We verify our assumption that
the uncertainty of a fact database, see Section 4.4, is correlated with the precision of
the grounding. In this experiment, the information-driven guidance was applied to all
datasets (100 runs each), until precision reaches 1.0. Figure 4.5 plots the observed val-
ues for precision and normalised uncertainty (i.e., uncertainty divided by the maximum
value of the run). There is a strong correlation between both measures (Pearson’s coeffi-
cient is −0.8523, a highly negative correlation). Hence, uncertainty is indeed a truthful
indicator of correctness of the credibility assignments.

Guidance strategies. In this experiment, we mimic the user by the ground-truth, until
precision reaches 1.0. We compare our approach (hybrid) with four baseline methods:
random, which selects a claim randomly; uncertainty, which selects the most ‘problem-
atic’ claim, in terms of the entropy of its probability; info, which uses the information-
driven user guidance only; and source, which uses the source-driven user guidance only.
Figure 4.6 shows the results for all datasets. Our approach (hybrid) clearly outperforms
baseline techniques. For example, using the snopes dataset, our approach leads to a
precision value > 0.9 with input on only 31% of the claims, whereas the other methods
require validation of at least 67% to reach the same level of precision.
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Figure 4.6: Effectiveness of guiding

4.8.5 Robustness Against Erroneous User Input

Detecting erroneous input. We evaluate our approach to detect erroneous input by
simulating user mistakes. With a probability p, we transform correct user input into an
incorrect assessment.

The confirmation check (Section 4.5.2) is triggered after each 1% of total validations.
Table 4.1 shows the detected mistakes (%) when increasing parameter p. Across all
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Table 4.1: Detected mistakes

Dataset
p : probability of mistake

0.15 0.20 0.25 0.30

wiki 100 100 96 89
health 100 100 94 86
snopes 100 95 87 79

datasets, the majority of inserted mistakes is detected.

User guidance with mistakes. We further study the effect of user mistakes on the
relation between user effort and precision. Again, the confirmation check is triggered
after each 1% of total validations. Upon a detected mistake, the user reconsiders the
input, which adds to the invested effort. Figure 4.7 illustrates that this implies that more
user interactions are required to reach perfect precision. However, the precision curves
obtained with our approach are still much better than with other baseline methods.
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Figure 4.7: Guiding with erroneous user input

Effects of missing user input. A user may skip the validation of a claim due to
being unsure or preferring to check another claim first. We consider such scenarios by
a probability pm with which a claim is skipped, meaning that the second-best claim is
validated. We test pm ranging from 0.1 to 0.5, while running the validation process until
a precision value of 0.7, 0.8, or 0.9 is reached. Figure 4.8 shows the saved efforts (%),
computed as the relative difference in user effort between the normal process and the
one with skipping, needed to reach the respective precision. As expected, skipping at
the beginning of the validation process (precision level of 0.7) affects the saved effort,
as selecting the second-best candidate leads to worse inference results. Later, this effect
becomes smaller.
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Figure 4.8: Effects of missing user input
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4.8.6 Benefits of Early Termination

Using the snopes dataset (wiki and health show similar trends), we evaluate our indica-
tors for early termination of the validation process (see Section 4.6.1): the uncertainty
reduction rate (URR); the amount of changes (CNG); the amount of validated predic-
tions (PRE ); and the precision improvement rate (PIR). Figure 4.9 plots user effort and
precision improvement and, on the secondary Y-axis, the values of the above indica-
tors. Overall, the indicators are aligned with the convergence of the validation process.
For example, using the URR indicator, validation can be stopped at an URR value of
20%. Then, at 40% of user effort, large relative improvements of precision (> 80%) have
materialised already.
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Figure 4.9: Effectiveness of early termination criteria

4.8.7 Benefits of Batch Validation

Next, we evaluate the benefits of selecting the top-k claims for validation. Here, high
values of k lead to larger savings of user set-up costs. Yet, increasing k also implies less
accurate estimation of potential benefit, due to our greedy algorithm (Section 4.6.2).
To explore this trade-off, we capture the costs saved (CS) as a function of k: CS(k) =
1 − 1/kα, where α is the rail factor to control the increased cost of validating sets of
claims. The chosen function form enables us to capture both linear and non-linear cost
models in human validation practice.

Static batch size. When conducting validation with batching, the obtained precision
will be lower, since inference is conducted only once the input for the whole batch has
been incorporated. We measure this effect by the precision degradation, the relative dif-
ference in precision between the validation processes without batching and with batches
of size k, varied between one and 20. Figure 4.10 plots precision degradation (%) relative
to the cost saving (%) using batching under cost models with α = 0.25, 0.5, 1. As ex-
pected, larger batches lead to lower precision, but increased cost savings. Medium-sized
batches (k = 5, 10) appear to be beneficial, as they yield potentially large cost savings
with a graceful reduction in precision.
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Figure 4.10: Effects of static batch size
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Dynamic batch Size. We further explore a dynamic selection of the batch size k,
with the goal to maximizes cost savings and precision. We consider different precision
thresholds (0.8,0.9) and count the validated claims after each user interaction needed
to reach that threshold. For a cost model with α = 2/3, Figure 4.11 shows box plots
of the user effort (%) relative the cost savings (%). Observing the same trade-off as in
Figure 4.10, the specific results suggest how to choose k dynamically: Initially, a small k
shall be used, which is increased once a sufficient amount of claims has been validated.
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Figure 4.11: Effects of dynamic batch size

4.8.8 Streaming Fact Checking

Update time. We measure the response time during one iteration of Algorithm 5.1,
i.e., the update time of the model when a new claim arrives. We run the update process
from 0% to 100% of claims in the order of their posting time, for each dataset. The
average update time for the wiki, health, and snopes datasets are 0.34s, 0.61s, and 1.22s
respectively. As such, the response times turn out to be similar to those of Algorithm 4.1,
as implied by Proposition 4 and Proposition 5.

Preservation of validation sequence. As explained in Section 4.7, the algorithms for
streaming fact checking (Algorithm 5.1) and validation (Algorithm 4.1) run in parallel
and update the model parameters. This leads to the question of how to interleave both
algorithms: Validating claims early may not be beneficial as later arriving claims help
in user guidance. To answer this question, we compare the validation sequences between
the offline setting and the streaming setting as follows. We run the streaming algorithm
from 0% to 100% of claims in the order of their posting time, and periodically invoke
the validation process, where a claim is selected from the existing claims for validation
(hybrid strategy, current model parameters provided by the streaming algorithm). We
record the validation sequence and compare it with the offline setting using Kendall’s τβ
rank correlation coefficient [Agr10]. It ranges from −1 (reverse order) to 1 (same order),
quantifying the similarity of the ranking in two validation sequences.

Table 4.2: Preservation of validation sequence (Kendall’s τβ)

Dataset
validation period

5% 10% 20% 30%

wiki 0.23 0.46 0.78 0.84
health 0.19 0.42 0.71 0.78
snopes 0.12 0.38 0.59 0.67

Table 4.2 presents the result when varying the validation period from 5% to 30%
(e.g., validation is invoked after every 5% of new claims arrive). Increasing this period,
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the validation sequence of streaming fact checking becomes more similar to the static
setting, as more information is accumulated in each period.

4.8.9 Real-world Deployment

Finally, we investigate practical issues when deploying our validation framework. A chal-
lenge for such an evaluation is that it is difficult to find experts that are knowledgeable
in the domains covered by the annotated datasets. Therefore, we consider a setting that
features supporting information for the validation. To derive this supporting informa-
tion, we queried the Google search engine with the text of each claim and extracted the
first ten search results as a list of documents. The list of documents is then shuffled for
each validation task to avoid biases by the search engine or the user. Due to budget
constraints, we selected 50 claims randomly for each dataset. Then, we considered two
different types of users:

Experts (E): We implemented a validation interface for expert users, which records
the time spent on validation and computes the average accuracy by comparing the
answers with the ground truth. We asked three senior computer scientists to complete
the validation tasks, with the option to pause between handling different claims.

Crowd workers (C): While it is not the primary use case for our work, crowdsourcing
enables scaling of manual validation tasks with the risk of lower result quality due to
different levels of worker reliability [HTTA13]. We used FigureEight [Eig18] and its web
templates to deploy our validation tasks. We prepared a budget of 1500 HITs (Human
Intelligence Tasks) in total with a financial incentive of 0.1$/HIT. We recorded the time
spent on validation and computed the consensus of the answers among crowd workers
using existing algorithms that include an evaluation of worker reliability [HTTA13]. The
consensus answer is then compared to the ground truth.

Table 4.3: Avg. time and accuracy of experts and crowd workers

Dataset Expert Time Crowd Time Expert Accuracy Crowd Accuracy

wiki 268s 186s 0.99 0.88
health 1579s 561s 0.94 0.83
snopes 559s 336s 0.96 0.85

Table 4.3 summarises the obtained results. Experts validate claims more accurately
than crowd workers, but take more time to complete. Moreover, the system also re-
ports that the experts do not validate all the claims in one shoot; the validation process
spanned 3-7 days. Note that in our setting, experts and crowd workers already had sup-
porting information in place. Without it, they would have to retrieve such information
on their own, which may further increase the validation time. The trade-offs illustrated
in Table 4.3, however, point to the potential benefit of combining the input of experts
and crowd workers to achieve efficient, yet accurate fact checking.

4.9 Summary

In this chapter, we proposed an approach to overcome the limitations of existing methods
for automatic and manual fact checking. We introduced an iterative validation process,
which, based on a probabilistic model, selects claims for which validation is most benefi-
cial, infers the implications of user input, and enables grounding of the credibility values
of claims at any time. We further proposed methods for early termination of validation,
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efficient batching strategies, and a streaming version of our framework. Our experiments
showed that our approach outperforms respective baseline methods, saving up to a half
of user effort when striving for 90% precision.
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Chapter 5
Misinformation Visualisation: The Case
of Minimal-Regret Data Stream Retaining

Retaining Data from Streams of
Social Platforms with Minimal
Regret

IJCAI 2017

Today’s social platforms, such as Twitter and Facebook, continuously generate mas-
sive volumes of data. The resulting data streams exceed any reasonable limit for perma-
nent storage, especially since data is often redundant, overlapping, sparse, and generally
of low value. This calls for means to retain solely a small fraction of the data in an
online manner. In this chapter, we propose techniques to effectively decide which data
to retain, such that the induced loss of information, the regret of neglecting certain
data, is minimized. These techniques enable not only efficient processing of massive
streaming data, but are also adaptive and address the dynamic nature of social media.
Experiments on large-scale real-world datasets illustrate the feasibility of our approach
in terms of both, runtime and information quality.

5.1 Introduction

Current social platforms such as Twitter, Facebook, and Yelp, produce data streams
with an unprecedented rate. For example, about half a billion tweets are generated
every day [MK10]. To make sense of these streams, one can typically only retain a small
fraction of the data for analysis, due to storage limits and the cognitive load induced by
the sheer data volume.

Against this background, traditional methods for the analysis of social platforms per-
form data summarization, e.g., based on relevance detection or measures of information
diversity [CTY+16, ZRH+16]. However, these approaches are inherently limited to a
static setting: The data is crawled and stored, before the top-k most important data
items are selected as a data summary. Even if feasible, such an approach incurs high
storage cost and does not avoid the problem of retaining only a fraction of the data once
its volume exceeds a storage limit.

In this work, we consider the natural setting of social platforms, where data is dy-
namic and available as a stream. Then, retaining of data becomes more challenging
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compared to one-off summarization, as data selection has to be repeated every time
new data arrives. Instead of considering the whole historical data, summarization now
works on the retained data (i.e., a previous summary) and the new data. This further
degrades the informativeness of the original data since the summary of the retained data
already induces some loss of information. Specifically, the lack of historical data leads
to a biased assessment of data importance: Data that was considered unimportant and
thus discarded in the past may retrospectively turn out to be important.

To minimize the regret of discarding important data, two requirements have to be
met. First, a compact data sketch needs to be maintained, in addition to the actual data
summary, to capture the long-term history of data and enable a precise assessment of
data utility over time. Yet, for data stemming from social platforms, this sketch needs
to be adaptive to changes in the data stream. Second, a protocol needs to be specified
to decide which data items to retain and to discard, such that the total regret in data
utility is minimal. To cope with the data stream volume and velocity of social platforms,
this protocol needs to be very efficient.

Our approach. In this chapter, we tackle these requirements and propose a novel
statistical model, which does not only capture the traditional context of social data
(importance of topics, user influence, information diffusion) [MWDNM14b, ZRH+16],
but also embeds the dynamics of this context over time. For example, topics are not
considered to be static. They may emerge or disappear over time and relate to recurring
events. Striving for online processing of streaming data, we develop a scalable learning
mechanism to quickly update the model with new data. We further show how the
statistical model is used to define a utility function to assess the representativeness of
a data summary. Minimizing the regret of discarding data then becomes the problem
of minimizing the difference between the utility of the retained data and the utility of
whole historical data. Finally, we present a progressive algorithm to select which data
to retain, with guarantees on the induced regret factor. This algorithm scales linearly
in time and space, solely in the size of the data summary (not the whole data stream).

Our contributions and the chapter structure are summarized as follows. After outlin-
ing the retaining problem with minimal regret (Section 5.2), we present (i) a statistical
model to sketch data properties; (ii) a utility function to assess data representativeness
(Section 5.3); and (iii) a progressive algorithm to solve the retaining problem (Sec-
tion 5.4). Using diverse datasets derived from Twitter, we demonstrate improvements
of five orders of magnitude in efficiency and up to 42% in information quality of our
approach over state-of-the-art baselines (Section 5.5). We then conclude the chapter
(Section 5.6).

5.2 Problem Statement

We model the stream of data stemming from a social platform by an infinite set of
textual data items E = {e1, e2, . . .}. The items are totally ordered based on their
occurrence time, denoted by the subscript. By Et = {e1, . . . , et}, we denote the set of
items until time t. Acknowledging that not all items from E can be stored permanently,
a representative subset of E of size k shall be retained. Here, the parameter k depends
on the application context and typically reflects the storage limit. We further postulate
a non-negative function f : 2E → R≥0 to quantify the utility of a set of items S ⊆
E, capturing how well S represents E according to some objective. Given that E is
continuously extended with new data items, the retaining problem with minimal regret
is to select k items, such that the regret ratio—the normalized difference between the
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utility of the retained items and the utility of the whole data stream—is minimal.

Problem 3 (Retaining Problem with Minimal Regret). Given a data stream Et until
time t, a current set of retained items St ⊆ Et, a window of new data items W =
{et+1, . . . , et+|W |}, the problem is to construct a new set of retained items St+w, such
that:

St+w = arg min
S⊆(St∪W ), |S|=k

f(Et ∪W )− f(S)

f(Et ∪W )
. (5.1)

The problem setting is illustrated in Figure 5.1. Upon the arrival of a window of new
items, the set of retained items is updated. This is done by selecting items from the old
set of retained items and from the window.

The figure further illustrates why the retaining problem with minimal regret cannot
be addressed by applying traditional data summarization each time a window of new
data items arrives. Traditional summarization would consider solely the current set of
retained items and the items of the new window. Yet, the data stream history in terms of
items discarded in the past would be neglected. Consequently, when constructing a new
set of retained items, the utility of possible candidate sets cannot be assessed accurately.

As illustrated in Figure 5.1, therefore, a concise sketch of historical data needs to be
maintained. It captures essential properties of data items that have been discarded in
the past, thereby enabling an accurate assessment of the regret ratio of a potential set
of retained items. To realise such a sketch, Section 5.3 presents a statistical model and
also shows how to assess the representativeness of an item set using an utility function.
In Section 5.4, we then present a progressive algorithm to solve the retaining problem
with minimal regret under this model.

5.3 Model and Approach

Below, we first propose a statistical model to sketch the historical data of a stream,
before turning to the question of how to assess the utility of a set of retained data items.
Finally, we discuss a simple strategy to solve the retaining problem.

5.3.1 A statistical model for social data

For textual data items that originate from social platforms, topics are a fundamental
concept to understand the co-occurrence relations of words [CSG09, CBHC13]. We thus

Data item in stream

Retained data item

Set of retained items

Window of new items

Sketch of 
historical data

Figure 5.1: Illustration of the retaining problem (k = 5, |W | = 3).
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capture information on topics as a statistical means to select representative data items
from important clusters of words. However, the dynamic nature of streaming data from
social platforms prevents us from knowing a specific distribution of topics in some future
state. Rather, we face the following phenomena:

• Emergent topics: In a streaming setting, new topics may emerge over time. Hence,
topic modelling techniques such as LDA [BNJ03] or pLSI [Hof99] that fix a pre-
defined number of topics are not applicable. A small number of topics may lead
to information loss, as different words might end up in the same cluster, whereas
a large number of topics may imply sparse clusters, destroying data regularities.

• Emergent vocabulary : An evolving collection of topics implies that the vocabulary
of words changes over time. Words may only be invented at a specific time [ZBG13]
(e.g., ‘brexit’ during the events in the UK in June 2016). A fixed vocabulary as
in traditional topic models [BNJ03, GT04] does not capture these dynamics and
tends to be inefficient due to unused and redundant words.

• Recurring topics: Traditional data summarization typically spans a short period
of time [CP11, ZRH+16], due to data storage limits. In contrast, when processing
data streams of social platforms, a long history of data items is considered, so
that topics will recur over time [HD14] (e.g., the topic of ‘football’ shows seasonal
patterns). Such effects influence the decision of which data items to retain.

Against this background, we propose a non-parametric [HWC13] probabilistic model to
sketch the properties of past data items. It features a potentially unbounded number of
topics and words that are learned from textual data items over time. It also considers
recurrent topics by means of temporal cluster variables, for which the time granularity
can be customised.

Formally, a textual data item e is modelled as a multiset of words {v1, . . . , v|e|},
where vi is a word from a dynamic vocabulary V . A multiset of words further defines
a semantic topic z. We model the dynamics of words per topic by means of a Dirichlet
process to generate the word distribution φz and the vocabulary ρz of a topic z. Further,
at time t, a topic distribution θ is used to generate the topics of a new data item et. To
ensure that the temporal aspect of evolving topics is reflected in the generation, we use a
hierarchical Dirichlet process to establish the link between data items in terms of topics.
This yields a a concise and consistent set of topics rather than a sparse and unnecessarily
large one. Finally, we model the recurring topics by means of temporal clusters, whose
number is unbounded in general. To this end, a Chinese restaurant process [BGJ10] τ
is used to non-parametrically generate a temporal cluster label ct for each data item et.
The model is summarised in Figure 5.2.

Generative process. The generative process for our model is defined as follows. For
each item et ∈ E at time t:

(1) Generate the lengths (number of words) of et from a Poisson distribution:
Ne ∼ Poiss(ε)

(2) Generate the topic of et from a categorical distribution:
ct ∼ Cat(τ)

(3) Generate the temporal cluster label of et from a multinomial distribution:
ht|ct, π ∼Mult(πct)
where the value of ht depends on the granularity according to which the topic dis-
tribution is captured for the data stream (e.g., ht has a value of 31 to model topics
per day of a month).

(4) For each of the i = 1 . . . Ne word indices of et:
a. Generate a topic from a multinomial distribution:

82



5.3 Model and Approach

Em
er
ge
nt
 v
oc
ab

ul
ar
y

Em
er
ge
nt
 to

pi
cs

Recurring topics

Figure 5.2: Model to sketch historical data. Shaded/blank circles are observed/latent
variables, non-circles are model parameters.

zi|ct, θ ∼ p(z|t) ,Mult(θct)
b. Generate a word vi from zi via a multinomial distribution:
vi|zi, φ, ρ ∼ p(v|z) ,Multρzi (φzi)
where ρz is a vocabulary generated from an n-gram model and φz is the proba-
bility of selecting ρz for word vi [ZBG13].

Model parameters. The sketch of historical data is designed by parametrising the
model as follows. The sketch is denoted by Θ = (α,G0, λ, γ, ζ, η, ε), a vector of parame-
ters for:

• The Dirichlet process [Fer73] to generate ρ and φ:
ρzk, φzk ∼ DP (α,G0), for t = 1, 2, . . . and k = 1, 2, . . ..
• The hierarchical Dirichlet process [TJBB06] to generate θ:
β ∼ GEM(γ), θc ∼ DP (λ, β), for c = 1, 2 . . .
• The Chinese restaurant process [BGJ10] to generate τ :
τ ∼ CRP (ζ)
• The Dirichlet distribution [Fer73] to generate π:
πc ∼ Dir(η), for c = 1, 2, . . .

This parametrisation of the model yields a compact, light-weight sketch of historical data.
Since it contains solely single-variable parameters, it has constant-space requirements.
In Section 5.4, we will show how to update the model parameters based on a data stream
by means of an incremental inference mechanism.

5.3.2 Utility of retained data

To judge how well a set of retained data items stemming from social platforms rep-
resents a whole data stream, we argue that the following aspects shall be considered:
First, semantic information such as topics and word frequencies has to be incorporated,
see [BNJ03, MPLC13, ZRH+16]. Second, the importance of data from social platforms
is influenced by the social context (e.g., the authors of a textual statement) and its fresh-
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ness, as the interestingness of social data degrades over time. Given the above sketch of
historical data Θ(t) at time t, these incorporate these aspects in the assessment of data
utility as follows.

On semantic information. We first consider the probability p(v, e) for observing a
word w in a data item e at time t. It is defined based on the evolution of topics over
time as

p(v, e) = Ep(z|Θ(t))p(v|z)

where p(v|z) represents the probability distribution of words given a topic, and p(z|Θ(t))
represents the probability distribution of topics at time t. The latter is derived from
sketch Θ by the aforementioned generative distributions.

Based thereon, the probability of an item e being semantically important is defined
as

p(e|Θ(t)) =
∏
v∈e

p(v, e|Θ(t)) =
∏

v∈V (t)

p(v, e)n(v,e)

where V (t) is the vocabulary at time t (maintained based on Θ(t) in constant space [ZBG13])
and n(v, e) denotes the frequency of a word v ∈ V (t) in item e.

On freshness and social context. To model that the interestingness of data degrades
over time, we define a monotonic decreasing function g(t). Specifically, the decay in
interestingness of past data is described by an exponential form:

g(e) = exp−λ(t−t(e))

where λ is the decay rate and is set to 0.5 (maximal entropy principle), t is the current
time and t(e) is the time of e. Following [MWDNM14b, ZRH+16], we further associate
each item e with a vector of social features (h1(e), . . . , hm(e)). Then, the aggregation of
these features, denoted by h(e), describes the social context of a data item.

A utility measure. In social data, topics with highly frequent words may dominate
other topics. To avoid such vocabulary bias, we define the utility of a set of items S
as the log-likelihood over its items based on the information entropy. This measure
of utility incorporates the above notions of semantic information, freshness, and social
context:

f(S) =
∑
e∈S

∑
v∈V

n(v, e)p(v, e) log
1

p(v, e)
g(e)h(e) (5.2)

Using this formulation, an algorithm to select data items will prefer sets with high
entropy, i.e., sets with items that cover diverse topics and preserve the evolving topic
distribution. As proven below, the above measure is monotonic (selecting more items in-
creases utility) and submodular (marginal gains by selecting more items start to diminish
due to saturation of the utility objective).

Proposition 1. f(.) is a monotonic function.

Proof (Sketch). Let E be a sequence of items, S ⊂ E is a selection, and e ∈ E \S is from
a set of non-selected tweets. Then it holds that: f(S ∪ {e}) ≥ f(S). Indeed, we denote
all the words that occurs in e but not in the selection S as the set of words e \VS . Then
we have

f(S ∪ {e})− f(S) =
∑

v∈e\VS

n(v, e)p(v, e) log
1

p(v, e)

, which is non-negative.
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Proposition 2. f(.) is a submodular function.

Proof (Sketch). Let E be a sequence of items, S a selection, and e, e′ ∈ E\S from a set of
non-selected tweets. Then it holds that: f(S∪{e})−f(S) ≥ f(S∪{e, e′})−f(S∪{e′}).
Similar to the proof of monotonicity, we expand the inequality to:∑

v∈e\VS

n(v, e)p(v, e) log
1

p(v, e)
≥

∑
v∈e\VS∪{e′}

n(v, e)p(v, e) log
1

p(v, e)

, which is equivalent to
∑

v∈e′ n(v, e)p(v, e) log 1
p(v,e) ≥ 0. The equality happens if and

only if e ∩ e′ = ∅.

5.3.3 A simple retaining algorithm

A straight-forward approach to solve Problem 3 under the above model applies tradi-
tional data summarization [ZRH+16] on the retained items and the content of a new
window. Then, the new set of retained items is selected as:

max
S⊆St∪W,|S|=k

f(S) (5.3)

which is equivalent to Equation 5.1 since the value of f(Et+w) is constant in terms of
selecting any S. However, this problem is known to be NP-complete [ZRH+16, NW81,
HTWA15c]

Due to the computational complexity, greedy approximation algorithms (inspired by
the knapsack problem) are commonly employed. They start with the empty set S(0) = ∅,
and at each iteration i over the current data, choose an item e ∈ St ∪W maximizing the
utility, i.e.,

S(i) = S(i−1) ∪ arg max
e∈St∪W

f(S(i−1) ∪ e)− f(S(i−1)) (5.4)

For a monotonic and submodular function (as our utility function defined above), this
greedy algorithm yields a (1 − 1/e) ≈ 0.63 approximation [NW81]. However, this algo-
rithm has an update time complexity of O(k(k+|W |)), which is undesirable for streaming
applications. Also, the update process needs to be repeated every time new data arrives.

5.4 A Progressive Retaining Algorithm

Given the above results on hardness of the retaining problem and the time complexity of
a simple greedy algorithm, we now present a progressive algorithm. It is tailored to the
stream processing setting and shows linear time and space complexity. The algorithm
comprises of (i) an incremental inference mechanism to update the sketch of historical
data; and (ii) a mechanism to select a new set of retained items.

5.4.1 Updating the data sketch

To update the parameters Θ of our model, we realise an online learning mechanism.
When data arrives, we compute the observed variables and propagate back the informa-
tion to the model parameters. Once the parameters have been updated, the conditional
and marginal probabilities for the utility function are computed following the generative
process.

Many online learning techniques have been developed based on Markov chain Monte
Carlo sampling (e.g., incremental Gibbs sampling [CSG09]). However, these techniques
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either reduce model complexity (loosing the guarantee to converge for the complete
model) or have a space complexity that is linear in the number of items to anal-
yse [HBB10]. To overcome these issues, we rely on stochastic variational inference [HBWP13].
Here, the idea is to minimize the evidence lower bound (ELBO) of the expected difference
between the observed distribution and the latent distribution, defined as:

L(Z) = Eq(Z)[ln
p(Z,E)

q(Z)
]

where Z is the set of all latent variables in the model (except model parameters and
observed variables); and q(Z) is an approximate distribution of p(Z|E), which can be
factorised over the distributions of model parameters in the generative process. Then, we
apply stochastic optimisation to the ELBO function over a data stream, which basically
updates the new parameter values from the previous ones following the direction of the
ELBO gradient of new data with a fixed step size. The more data is received, the more
the model parameters will converge to minimize the ELBO function.

Instead of single-item update, our approach considers multiple observations per up-
date to reduce noise [HBWP13], which also aligns with window-based processing to avoid
order distortion in data streaming settings. Receiving data as a series of windows Wb,
b = 1, 2, . . ., of items, we proceed as follows:

1. We update the local parameters of the variational distribution of the word-topic
variable z and the topic-cluster variable c. This requires us to maintain additional
Mz local parameters for possible values of z, and Mc local parameters for possible
values of c. Here, Mc,Mz are ‘prior beliefs’ on the maximum number of topics and
recurring topic clusters. Yet, their effects are marginal, as the updates are dominated
by the observed information, so that they can be safely set to large constant values
(e.g., 1000).

2. We compute the natural gradients using previous parameter values Θ(t−1) and the
above local parameters of the ELBO function decomposed over each item e ∈ Eb [HBB10].
Formally, we obtain ∇Θ(t−1)Le as a vector of gradients for each parameter in Θ(t−1).

3. The new values for model parameters are computed from their previous value:

Θ(t) = Θ(t−1) + wb
1

|Wb|
∑
e∈Wb

∇Θ(t−1)Le (5.5)

where wb is the learning rate to control the learning quality and convergence of the
inference. wb is often modelled as a power function of b with a forgetting rate
r [HBWP13]. Setting r ∈ (0.5, 1] guarantees convergence [HBWP13], while larger
values often lead to higher learning quality and faster convergence (but not monoton-
ically).

Note that windows of large size reduce the number of updates, but may lead to a poor
estimation of model parameters. To further improve scalability, updating of model pa-
rameters can be parallelised by exploiting the conditional independence property. When
the global variables (i.e., the most outer parameters in the model) are given, the up-
dates to local variables (i.e., inner parameters) become independent and can thus be
computed concurrently. Also, the computation of semantic information, decay in inter-
estingness, and social features per data item, see Section 5.3.2, is independent once the
model parameters are updated and thus can be parallelised.
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5.4 A Progressive Retaining Algorithm

5.4.2 Retaining data items

We now turn to the selection of data items to retain. In essence, at each step, a new
set of items is selected as the one with the highest utility among all candidate sets.
The candidate sets are created by swapping at most one new item with a retained
item, if the utility increases. However, the arrival of a new item may change the model
parameters, influences the decay in interestingness of old items, and may introduce new
social features. Hence, the utility of the retained set of items has to be updated, before
the swapping procedure is started.

Retaining algorithm. Our progressive retaining algorithm is formalised in Algo-
rithm 5.1. We illustrate the algorithm with a window size of |W | = 10 (line 6). The
algorithm starts with the empty set S0 = ∅. As long as no more than k elements e1, . . . , et
have arrived, all of them are kept, i.e., St = St−1 ∪ {et}, for t ≤ k. For each new item
et, where t > k, we update the utility value of f(St−1) and compute the semantic im-
portance p(et), the decay in interestingness g(et) and the social features h(et). Then, we
check whether swapping this item and an item in St−1 will increase the utility value. If
so, the one that maximizes the utility is selected for swapping.

Theorem 5.4.1. Algorithm 5.1 does a single pass over data stream, uses O(k) memory,
and has O(k) update time per item.

Proof (Sketch). The proof is straightforward from the algorithm. The loops in line 2
and line 4 pass over the data stream only once. We need to maintain a frequency matrix
and a probability matrix for n(v, e) and p(v, e) for all v ∈ V and e ∈ St where |St| = k.
Other maintenance of g(e) and p(e) take only O(k) memory. Considering the number of
model parameters as constant yields the required memory as O(k) and the update time
per each loop in line 14 as O(k|W |). Since |W | is often small (|W | � k) and can be
considered as constant, the update time complexity becomes O(k).

Correctness of Algorithm 5.1 is established as follows: First, the decay in interest-
ingness is a monotonic decreasing function. Thus, an optimal selection remains optimal
after the utility has been updated. Also, even if a new item does not increase utility
in terms of entropy and social features, the algorithm still swaps it with an old item to
preserve the freshness of the retained set of items. Second, adding a new item increases
the entropy of the topic distribution. Thus, while the algorithm favours new items, it
still preserves topics by ensuring an even distribution of the selected items across all
topics (old and new). Moreover, an optimal selection remains optimal as the entropy
increases for all old items.

Incremental utility computation. The above complexity result assumes that the
computation of utility (line 14), when swapping data items, is done in constant time.
This indeed holds true, since utility can be computed incrementally, i.e., f(Si) is derived
from f(Si−1) in constant time as follows:

f(Si−1 \ {e} ∪ {e′}) = f(Si−1)−
∑
v∈V

n(v, e)p(v, e) log
1

p(v, e)
g(e)h(e)

+
∑
v∈V

n(v, e′)p(v, e′) log
1

p(v, e′)
g(e′)h(e′).

Here, values p(., .), n(., .), g(.), h(.) have been computed already in the previous steps of
the algorithm (lines 9 to 13).
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Algorithm 5.1: A Progressive Retaining Algorithm
input : An infinite sequence E of data items
output: A selected set St of size k of data items at any time t

1 S0 = ∅;
2 for t = 1 to k do St = St−1 ∪ {et} ;
3 W = ∅; . Sliding Window
4 for t = k + 1 to |E| do
5 W = W ∪ {et};
6 if |W | < 10 and t < n then
7 St = St−1;
8 continue;

// Incremental learning of model parameters

9 Compute Θ(t) from Θ(t−1) and W ;

10 Update p(v, e) and n(v, e) by new parameter Θ(t), ∀v ∈ V, e ∈ St−1;
11 Update g(e) ∀e ∈ St−1;
12 Update f(St−1);

// Prepare computation of utility of new items

13 Compute p(v, e′), n(v, e′), g(e′), h(e′) for all e′ ∈W and v ∈ V ;

// Find swapping pair

14 e∗, eb = arg maxe∈St−1,e′∈W f(St−1 \ {e} ∪ {e′});
15 if f(St−1 \ {e∗} ∪ {eb}) ≥ f(St−1) then
16 St = St−1 \ {e∗} ∪ {eb};

17 else St = St−1 ;
18 W = ∅; . Reset for new window

5.5 Empirical Evaluation

Below, we first elaborate on the experimental setup, before we analyse our method’s
efficiency and effectiveness.

5.5.1 Experimental Setup

Datasets. We extracted datasets using the Twitter Streaming API [ZRH+16]. Over a
year, we considered five different domains (climate change, vaccination, processed food,
genetically modified organism, general public) and randomly selected 1 million English
tweets per domain. Furthermore, a total of five important social features (e.g., user
influence, retweet score, and affective language) had been extracted for each data item
using existing frameworks [ZRH+16].

Baselines. We compare our approach with several baselines:

• Traditional summarization: a state-of-the-art summarization technique [ZRH+16]
for social data.

• Greedy : the simple greedy algorithm (see Section 5.3.3) to select the items to
retain.

• Offline learning : an iterative algorithm to compute model parameters using de-
terministic variational inference [JGJS99, BJ+06], which requires a full pass of the
data in each iteration.

• Static: our retaining algorithm tailored to the traditional, static setting of data
summarization: offline learning to compute the sketch of historical data and the
greedy algorithm to select the items to retain.

Environment. All results have been obtained on an Intel i7 3.8GHz system (4 cores,
16GB RAM). Following [HBWP13, HBB10], we vary the forget rate in (0.5, 1], choose a
stable window size = 10 and report average values.
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5.5 Empirical Evaluation

5.5.2 Efficiency

We evaluate the update time of our approach, when new data arrives. To assess the
average time per window needed to update the model parameters, we compare our online
learning algorithm with its offline version. The latter considers the whole data received
so far when computing the parameters upon the arrival of a new window. Figure 5.3
illustrates the results averaged over all datasets, reporting the average update time until
100K, 500K, and 1M data items are received. Here, the update time of our progressive
approach remains constant and small (< 0.01s), whereas the baseline yields a high and
increasing runtime (up to 103s).
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Figure 5.3: Model update
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Figure 5.4: Retaining data

Focusing on how to select the items to retain, we compare the efficiency of our
progressive algorithm (fast) with the greedy algorithm. We realise the online setting as
above and vary the size of the set of retained items (k = 0.2% to 1%). Figure 5.4 depicts
the update time of the algorithms, averaged over all datasets. Our progressive algorithm
outperforms the greedy one. It also scales better to large data summaries.

5.5.3 Effectiveness

We compare the quality of model parameters, in terms of utility, obtained with our online
learning algorithm and its offline version. To mitigate the randomness of the Twitter
streaming API, we select 100K items Ẽ from the original datasets and construct a set
of retained items S as the k = 1% oldest items in Ẽ. We stream Ẽ and learn model
parameters online (ΘẼ). Offline learning considers all data received so far, the result
being Θ′

Ẽ
. We then assess the relative difference in utility of S, computed with either

method, i.e.,
|fΘ(S)−fΘ′ (S)|

fΘ′ (S) .
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Figure 5.5: Effectiveness relative to amount of processed data

89



5. Misinformation Visualisation: The Case of Minimal-Regret Data Stream Retaining

The difference in utility relative to the amount of processed data is shown in Fig-
ure 5.5a (averaged over 100 runs of different Ẽ and the five datasets). Due to the
stochastic property of online learning (data is needed to converge in the model param-
eters), the utility increases initially. Also, the difference between the online and offline
learning results is less than 15% in general, underlining the usefulness of our approach.

We further compare the utility of retained items selected by the greedy and our
progressive algorithm. Similar to the above setting, we stream all data and use online
learning to update the model parameters. Both algorithms start from the set of k = 1%
old items and update it upon the arrival of a new window. We then measure the relative
difference of the obtained sets of retained items at each step. The results in Figure 5.5b
(averaged over 100 runs and the five datasets) show that the utility difference increases
with the arrival of data. This is because the progressive algorithm accumulates some
loss of information. However, the difference is small (≤ 15%) and converges with more
data. As such, data quality is not compromised too much.

Table 5.1: Overall utility ratio

k climate vacc food gmo public

1%

static 0.84 0.83 0.84 0.81 0.86
dynamic 0.70 0.74 0.73 0.74 0.76
sum 0.72 0.70 0.69 0.71 0.71

.1%

static 0.74 0.76 0.73 0.72 0.75
dynamic 0.69 0.67 0.68 0.65 0.68
sum 0.51 0.53 0.48 0.51 0.52

Finally, we compare the overall utility ratio (utility of output over utility of whole
data) of our retaining algorithm (dynamic) and two baselines: the static version of
our algorithm and traditional summarization (sum). The utility ratios obtained after
processing all data of the five datasets are shown in Table 5.1, for different sizes of the
set of retained items (k = 0.1% and k = 1%). While the static approach outperforms
traditional summarization (sum), we need to acknowledge that both, static and sum,
are inapplicable for streaming data. However, the results of the dynamic technique are
relatively close to those of the static approach, highlighting its usefulness for online
processing. Also, its decrease in utility for a smaller number of retained items (k) is less
drastic compared to traditional summarization.

5.6 Summary

This chapter proposed a technique to retain a representative set of items from a stream
of social data. That is, we acknowledge the online nature of data produced by social plat-
forms, which prevents us from storing the complete data stream. This led the retaining
problem with minimal regret, where a protocol decides which data to retain, such that
the loss of utility is minimized. To address this problem, we proposed a light-weight,
adaptive sketch of historical data and a progressive algorithms for the selection of data
items. Experiments on large-scale real-world data showed that our approach is efficient
(five orders of magnitude faster than the baseline) and effective (less than 15% reduction
in the utility ratio).
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Chapter 6
Conclusion

6.1 Summary of the Work

With the help of Web technologies, the penetration of social platforms in general and
social media in particular into our lives have increased, enabling both ordinary users and
professionals to consume news in a real-time fashion. While the proliferation of these
information diffusion channels help modern society to overcome communication barriers,
the unverified nature of social data gives birth to misinformation both intentionally and
unintentionally, ranging from “honest” journalists’ negligence, to large-scale orchestrated
campaigns. Since malicious contents are generally crafted to resemble a genuine news
offer, it is hard for the public to distinguish fake news from legitimate articles without
proper alerts from algorithmic models. This creates direct threats to democratic political
processes and social values including health, finance and scientific findings. Developing
resources to understand and mitigate the impact of fake news is, therefore, of tremendous
importance [VRA18].

Misinformation propagation on social platforms could largely affect our daily lives.
Governments across the world are considering misinformation as a cyber threat to digital
democracies. For example, the European Union and the Australia Cybersecurity Centre
expressed concerns that social media users were over-exposed to extremist and terrorist
content online [gov, Cen]. UK parliament is also formulating stricter regulations on the
tech giants such as Facebook due to their recent failure against some fake news [BBC].
Researchers and media giants are concerned that misinformation on the Web can alter
public opinions against verified scientific reports. A popular example is climate change
denial [Gua], in which repeated targeted attacks from climate change sceptics through
Facebook can make users highly susceptible to commercial bias.

Although many misinformation studies have become increasing popular [VRA18,
CGL+18, ZAB+18, Zea18], debunking online misinformation is an endless battle due
to the evolving traits of misinformation stories. More and more forms of falsehoods
arise such as rumours, false claims, post-truths, clickbaits, and fake news. A complete
misinformation debunking framework that incorporates both algorithmic models and
human experts to fight misinformation attacks in a systematic and adaptive manner is
still missing. Towards this goal, this thesis presented solutions to typical misinformation
domains related to the cornerstones of such framework, including Detection, Validation,
and Visualisation. While the first one will discuss how to develop automatic algorithms
for online setting, the last two will show how to involve and support humans in the
automatic processes.
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6. Conclusion

Misinformation Detection – The Case of Rumour Detection. Chapter 3 pro-
posed an approach for rumour detection that is grounded in anomalies in the data of a
social platform. We presented methods to detect anomalies at both, the local and global
level of a social graph. Local anomalies are based on historical data and similarities
between entities. They serve as the basis to characterise global anomalies that represent
rumours through the combination of information of different modalities. Our experi-
ments showed that our method is effective and efficient, and detects rumours early and
accurately. In particular, it outperforms several baseline methods, which are limited to
a single modality of social data.

Misinformation Validation – The Case of Fact Checking. In Chapter 4, we
proposed an approach to overcome the limitations of existing methods for automatic
and manual fact checking. We introduced an iterative validation process, which, based
on a probabilistic model, selects a claim for which validation is most beneficial, infers the
implications of the user input on the fact database as a whole, and enables grounding
of the credibility values of claims at any time. We further proposed different strategies
to guide users and presented optimisations that increase the efficiency and robustness of
the validation process. Our evaluation showed that our approach outperforms respective
baselines methods significantly, saving up to 53% of user effort when striving for 90%
result precision.

Misinformation Visualisation – The Case of Streaming Data. In Chapter 5,
we study the problem of retaining representative data over social media streams. We
motivate a “truly” online setting where data has to be chosen to retain or discard rather
than being stored somewhere and processed later on in a streaming fashion. This setting
is natural in the Big Data era, where the volume of data is much higher than user storage
limit or data arrives in a very fast pace that does not allow much time to store the data.
This leads to the minimal regret problem, where we need to design a protocol to retain
the data such that the loss of utility is minimized. We show that such a problem can
be solved by using a light-weight compact structure to incrementally adapt with the
dynamics information of data and a fast progressive swapping mechanism to increase
the utility when new data arrives. Experiments on real social data extracted from
Twitter Streaming API show the efficiency of our approach (five orders of magnitude
faster than the baseline), while proving an acceptable quality for user (less than 15% of
utility regret).

6.2 Novelty and Limitations

This thesis is the first attempt towards building a continuous misinformation debunking
framework by integrating algorithmic models and human validation in a closed loop pro-
cess, where detection algorithms flag suspicious information waves for human attention,
so that these waves are evaluated by human judges to make detection more accurate.

• A novel graph-based data representation model is developed to advance the gran-
ularity of existing techniques in handling misinformation signals. It leverages net-
work structures of users, social links, and interactions as well as their dynamics to
enable a more precise assessment of potential targets of misinformation waves.

• A novel non-parametric probabilistic model is developed to detect misinformation
candidates based on inconsistencies that indicate an abnormal or unexpected evo-
lution of the information waves. In particular, the model enhances the system
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6.3 Future Directions

robustness to different types of misinformation by a Bayesian method that uses
statistical tests rather than data distribution assumptions.

• A novel cost-effective human validation process on top of existing human validation
platforms is developed to minimise validation costs and speed-up system response,
paving the way for the development of resilience plans to mitigate the spread of
misinformation.

• A novel data stream visualisation protocol is designed to address the issues of high
velocity and high volume with massive social streams.

While our studies are limited to typical misinformation domains such as rumours
and Web claims, the thesis outcomes are a series of computational algorithms, tools,
pipelines, and guidelines extensible for several forms of misinformation such as fake
news, malicious rumours, scams, and propaganda. While the thesis focuses on the
particular effort minimisation problem of human validators, it will stimulate further
research in unlocking the power of human computation, particularly expert knowledge,
in the Big Data era. While important issues of misinformation detection, validation, and
visualisation have been addressed in the thesis, further developments need to be done
at the engineering level to enhance the public trust, to guard social media connected
businesses from agenda-based attacks, and to protect policy makers from misinformation
fuelled disruptions such as harmful protests, political echos, public opinion manipulation
and altered election outcomes.

6.3 Future Directions

We recognize that the novel approaches described in this dissertation can be strengthened
in a number of ways and open many opportunities for future work. We suggest the
following research directions.

Misinformation Mitigation. While debunking misinformation is shown as a formidable
challenge in this thesis, it is only a first step in preventing the spread of misinformation in
social networks [Zea18]. From a practical perspective, the experimental findings in this
thesis will help policy makers to identify where the issues are and formulate regulations
accordingly. From a computational perspective, the developed graph-based detection
method (Chapter 3), in particular understanding the echo chamber effect, will facilitate
the developments of resilience plans, including:

• Monitoring and blocking in real-time the propagation paths of misinformation
waves in a social network.

• Investigating and handling most influential users first to maximise the mitigation
effect with minimal effort.

• Guiding and supporting social users participate in the debunking process by, e.g.,
letting them vote/rate a misinformation flag.

• Providing contextual information and evidences so that users can confidently coun-
terargue a misinformation-related social post (e.g. by comments)

• Recommending reliable sources for users to explore about the topics they are most
vulnerable because of their political biases and prior knowledge.
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6. Conclusion

Transdisciplinary Framework. Our and existing misinformation studies are generally
limited to a particular social network data and a misinformation domain (e.g. rumours,
fake news) [VRA18, CGL+18]. Towards a robust and adaptive misinformation debunking
framework, it is necessary to perform analyses across and combining different domains,
platforms, traits, languages and topics of misinformation. Such holistic approach will
enable the following advantages:

• Provide deep insights of social patterns (e.g. propagation, lexical, temporal) to
understand the unique dynamics of each misinformation story.

• Overcome the sparsity issue when handling an individual misinformation domain
alone by, e.g., combining all social posts, users, and social interactions in the same
graph model. It also helps to identify social communities with multiple interests,
facilitating more fine-grained credibility assessment and recommendations.

• Leverage the advances of machine learning, particularly deep learning, to imple-
ment effective prediction model using random forests and deep neural networks.
In particular, the new representation learning enabled by deep learning architec-
tures such as convolutional neural networks and recurrent neural networks helps to
reduce the effort of heuristic-based feature engineering by automatically learning
high-dimensional and discriminative features from large-scale and dense data.

Explainable Algorithmic Outputs. Existing algorithmic models stop at giving a
classification result of a social unit is misinformation or not without further explanation.
While they are the heart of Big Data Analytics today, giving them the right to decide
the social outcomes could harm digital democracy. On the other hands, there is a gap of
domain experts in understanding the behavior of generic algorithm models, making the
integration of human knowledge and machine power difficult. To facilitate such problem,
the following research directions could be explored:

• What-if analysis: algorithmic models are often sensitive to the parameter set-up
and the discriminative features on which they are based. Predicting the outcomes
of algorithmic models with synthesized settings could help to understand why they
make that classification output and how the misinformation is fabricated. Tech-
niques such as what-if analysis [NZW+18b] can help to analyse such sensitivity.

• Evidence mining: Computing explanations for an algorithmic decision is an estab-
lished research direction [TM07]. In particular for social data, mining arguments
to provide evidences for a given claim is an important step for users to understand
the contexts, related scientific findings, and cross-checking information [HDT+17].

• Partial misinformation: Online information generated by social users has grown
quickly in terms of volume and format. For example, Twitter doubled the char-
acter limit of tweets and allowed the attachment of multimedia such as images
and videos. This leads to various types of information correctness, including par-
tially sound information (e.g. only part of a social post contains false information)
and partially complete information (e.g. a given social post does not report all
aspects around an information story). To enable a more fine-grained insight and
facilitate fairness, more research efforts have been spent for misinformation local-
ization [CGL+18] and partial truth computation [HVT+18].
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Peir, the personal environmental impact report, as a platform for par-
ticipatory sensing systems research. In MobiSys, pages 55–68, 2009. 19

[MS13] Krikamol Muandet and Bernhard Schölkopf. One-class support measure
machines for group anomaly detection. arXiv preprint arXiv:1303.0309,
2013. 12

[MSF+14] Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan, and
Samuel Madden. Scaling up crowd-sourcing to very large datasets: A
case for active learning. In VLDB, pages 125–136, 2014. 20, 71

[MW15] Subhabrata Mukherjee and Gerhard Weikum. Leveraging joint inter-
actions for credibility analysis in news communities. In CIKM, pages
353–362, 2015. 10, 61

[MWDNM14a] Subhabrata Mukherjee, Gerhard Weikum, and Cristian Danescu-
Niculescu-Mizil. People on drugs: Credibility of user statements in
health communities. In KDD, pages 65–74, 2014. 9

[MWDNM14b] Subhabrata Mukherjee, Gerhard Weikum, and Cristian Danescu-
Niculescu-Mizil. People on drugs: credibility of user statements in health
communities. In KDD, pages 65–74, 2014. 21, 44, 54, 71, 80, 84

108



BIBLIOGRAPHY

[MZ11] Hamid Mousavi and Carlo Zaniolo. Fast and accurate computation of
equi-depth histograms over data streams. In EDBT, pages 69–80, 2011.
22
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