
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Eleni TZIRITA ZACHARATOU

Présentée le 9 août 2019

Thèse N° 9637

Efficient Query Processing for Spatial and Temporal Data
Exploration

Prof. A. Argyraki, présidente du jury
Prof. A. Ailamaki, directrice de thèse
Prof. J. Freire, rapporteuse
Prof. Y. Ioannidis, rapporteur
Prof. K. Aberer, rapporteur

à la Faculté informatique et communications
Laboratoire de systèmes et applications de traitement de données massives
Programme doctoral en informatique et communications

In order to seek truth,
it is necessary once in the course of our life,

to doubt, as far as possible, of all things.
— René Descartes

To my parents, Giorgos and Aggeliki,
my sisters, Tonia and Nikoleta,

and my partner, Mickaël.

Acknowledgements

Foremost, I would like to thank my advisor, Prof. Anastasia Ailamaki, for her faith in me, for her
advice on research, career, and life in general, and for creating an amazing research environment.
Her strength, persistence and endless energy have been, and will continue to be, inspiring.

I would also like to thank Prof. Juliana Freire for a great internship and research experience, for
inspiring me to explore new research directions and helping me shape a significant part of my
thesis, and for being in my thesis committee.

I am also very grateful to Prof. Yannis Ioannidis and Prof. Karl Aberer for serving in my thesis
committee and for their invaluable feedback on my work. I want to also thank Prof. Katerina
Argyraki for giving generously her time to preside over my thesis committee.

I was lucky to have Prof. Thomas Heinis and Dr. Harish Doraiswamy as my mentors. This thesis
would not have been possible without their contribution. I would also like to thank Dr. Darius
Šidlauskas and Dr. Farhan Tauheed for the fruitful collaboration.

A big thanks goes to the DIAS lab family. I had the privilege of being surrounded by a great
group of people: Adrian, Angelos, Aunn, Ben, Cesar, Christina, Danica, Darius, Diane, Dimitra,
Erietta, Erika, Farhan, Foteini, Giorgos, Iraklis, Kostas, Lionel, Manos (×2), Matt, Miguel, Mira,
Odysseas, Panos, Periklis, Pinar, Radu, Raja, Rakesh, Renata, Satya, Sharareh, Snow, Stella,
Tahir, Utku, Victor, and Yannis. I thank you all for being amazing colleagues, and for always
providing thoughtful feedback and asking challenging questions. Giorgos has been the toughest
critic of my writings, helping me to significantly improve the quality of my text, this thesis
included. Thanks to Christina for making life on campus colorful by discovering all the fun
events around–especially those with free food. Thanks to Matt, for being Matt, for his generosity,
and his styling and social media advice. Mira and I shared the same PhD journey. She has been
my office mate since my very first day in the lab and my main brainstorm buddy. Seeing her
succeed gave me confidence that success was possible. Mira is much more than a colleague, she
is also a caring friend with whom I had great time outside the lab. Finally, special thanks to Erika
and Dimitra for their indispensable help with administrative issues.

I am fortunate enough to have a second “lab family” overseas, the VIDA lab at NYU. Thank you
all for making my internship an unforgettable experience.

v

Acknowledgements

Many friends supported me in this journey, and made life so much more fun. Florin provided
great feedback on this document, along with invaluable research, career, and traveling advice.
Ever since I met Georgia–remember our CrimeShield project?–she brought a lot of joy to my life
at and around EPFL. She has been a lunch and coffee buddy, a beer buddy, and a party buddy
in general, also serving as a personal photographer. Thank you for your friendship! Thanks to
Adrian, Daniel and Immanuel for taking me out for dinner when I was a newcomer in Lausanne,
and for giving me PhD advice. Thanks to the “GOT gang”, João, David, and Emeline. Although
the last season of GOT was bad, watching it with you made me relax when I needed it the most–in
the last month of writing this thesis. Thanks to the “Dinner Time gang”–Julie, Glenn, Solène,
Chris, Morgane, Jeremy, Loïc, Vishal, and Jean-Fabien–for all the delicious and fun dinners. I
also want to thank my long-term friends from NTUA, Konstantina, Erie, Argyro, Eleni and Fivi.
Thanks for always keeping in touch! Finally, special thanks to Nikos for his care and support.
Nikos has been instrumental in my decision to study computer science, and always gives me the
best coding advice.

Mickaël made Lausanne home for me. Having him by my side made this thesis possible. Thank
you for your love, for helping me remain calm in times of failure, and supporting me in any way
you could. Thanks are also due for your delicious cooking, and for making the best brownies for
my private thesis defense. I am looking forward to our future adventures!

Last, but definitely not least, I would like to thank my family–my father, Giorgos, my mother,
Aggeliki, and my two sisters, Tonia and Nikoleta–for their continuous support, guidance, advice
and encouragement throughout my studies. Thank you for your love, for believing in me, and for
always inspiring me to be a better person.

This research has been supported by grants from the School of Computer and Communication
Sciences, EPFL, the European Union Seventh Framework Programme Grants no. 604102
(FP7/2007-2013 - HBP) and 617508 (ERC-2013-CoG – ViDa), the European Union’s Horizon
2020 research and innovation programme under grant agreements no. 650003 and 720270
(Human Brain project), and the Moore-Sloan Data Science Environment at NYU.

Lausanne, 10 July 2019 Eleni Tzirita Zacharatou

vi

Abstract

Core to many scientific and analytics applications are spatial data capturing the position or shape
of objects in space, and time series recording the values of a process over time. Effective analysis
of such data requires a shift from confirmatory pipelines to exploratory ones. However, there is a
mismatch between the requirements of spatial and temporal data exploration and the capabilities of
the data management solutions available today. First, traditional spatial query operators evaluate
spatial relations with time-consuming geometric tests that oppose the interactivity expected from
exploratory applications, creating an undue overhead. Second, spatial access methods are built
on top of rough geometric object approximations that do not capture the complex structure and
distribution of today’s spatial data and are thus inefficient. Third, traditional indexes are typically
built upfront before queries can be processed and over single data attributes, thus precluding
interactive accesses to interesting data subsets that may be specified with constraints on multiple
attributes. Finally, existing access methods scale poorly with increasingly granular spatial and
temporal data originating from ever more precise data acquisition technologies and ever faster
computing infrastructure.

This thesis introduces a novel family of spatial and temporal access methods and query operators
that aim to bridge the gap between existing data management techniques and data exploration
applications. We show that spatial query operators can be decomposed into primitive graphics
operations that are efficiently executed by graphics hardware (GPU) and allow to trade accuracy
for interactivity. Furthermore, we design access methods that adapt to data characteristics, data
growth trends, and workload access patterns, thereby providing scalable performance for ad-hoc
queries over increasing data amounts. Specifically, we introduce a spatial approximation that
adapts to the structural properties and distribution of the data, and propose spatial and time series
access methods that leverage similarities between data items and support filtering over multiple
attributes. Finally, we present an approach that indexes data incrementally, using queries as hints
for optimizing data access.

Keywords: data management, database management systems, scientific data management, visual
analytics systems, data exploration, spatial data management, spatial data analytics, temporal
data management, multidimensional data access methods, time series access methods, geospatial
joins, GPU rasterization, spatial approximation, incremental indexing, bitmap indexing, quadtree
compression

vii

Résumé

Au centre de nombreuses applications scientifiques et analytiques sont des données spatiales qui
capturent la position ou la forme d’objets dans l’espace, et de séries temporelles qui contiennent
les valeurs d’un processus évoluant dans le temps. Analyser efficacement ces données requiert des
chaînes de traitement de passer d’un mode confirmatoire à un mode exploratoire. Il y a cependant
un décalage entre les exigences requises par l’exploration de données spatiales et temporelles et
les capacités des solutions de gestion de données disponibles de nos jours. Premièrement, les
opérateurs de requêtes spatiaux traditionnels évaluent les relations spatiales avec des tests géomé-
triques coûteux en temps qui s’opposent à l’interactivité désirée des applications exploratoires en
induisant un coût additionnel injustifié. Deuxièmement, les méthodes d’accès spatiales sont ba-
sées sur des approximations grossières de la géométrie des objets qui ne capturent pas la structure
et distribution complexes des données spatiales d’aujourd’hui et qui sont donc inefficaces. Troi-
sièmement, les index sont traditionnellement construits avant que les requêtes ne soient exécutées
et sur un unique attribut des données, excluant un accès interactif aux sous-ensembles d’intérêts
des données, éventuellement spécifiés par des contraintes sur des attributs multiples. Finalement,
les méthodes d’accès existantes se mettent difficilement à l’échelle de la granularité croissante
des données spatiales et temporelles provenant de technologies d’acquisition de données de plus
en plus précises et d’infrastructures de calculs de plus en plus rapides.

Cette thèse introduit une nouvelle famille de méthodes d’accès aux données spatiales et tempo-
relles et des opérateurs de requêtes qui ont pour objectif de combler l’écart entre les techniques de
gestion de données existantes et les applications d’exploration de données. Nous démontrons que
les opérateurs de requêtes spatiales peuvent être décomposés en opérations graphiques primitives
qui sont efficacement exécutées par des processeurs graphiques (GPU) qui rendent possible
l’interactivité en sacrifiant une part de précision. De plus, nous concevons des méthodes d’accès
qui s’adaptent aux caractéristiques des données, à leurs volumes croissants et aux schémas
d’accès des charges de travail, ce qui fournit aux requêtes ad-hoc des performances à l’échelle
des quantités grandissantes de données. Plus précisément, nous introduisons une approximation
spatiale qui s’adapte aux propriétés structurelles et à la distribution des données, et proposons
des méthodes d’accès aux données spatiales et aux séries temporelles qui s’appuient sur les
similarités entre les éléments de données tout en supportant le filtrage sur de multiples attributs.
Finalement, nous présentons une approche qui indexe incrémentalement les données, en utilisant
les requêtes comme indices pour en optimiser l’accès.

viii

Résumé

Mots-clés : gestion de données, systèmes de gestion de base de données, gestion de données
scientifiques, systèmes d’analyse visuelle, exploration de données, gestion de données spatiales,
analyse de données spatiales, gestion de données temporelles, méthodes d’accès aux données mul-
tidimensionnelles, méthodes d’accès aux séries temporelles, jointures géospatiales, rastérisation
(GPU), approximation spatiale, indexation incrémentielle, indexation de bitmaps, compression
d’arbres quaternaires

ix

Contents
Acknowledgements v

Abstract (English/Français) vii

Contents xiii

List of figures xviii

List of tables xix

1 Introduction 1
1.1 Motivating Applications . 2
1.2 Spatial and Temporal Data Exploration: The Data Management Perspective . . 3

1.2.1 Interactive Spatial Data Exploration 4
1.2.2 Ad-hoc Spatial Data Exploration . 4
1.2.3 Scalable Time Series Exploration . 4

1.3 The Inadequacy of Current Data Management Approaches 5
1.4 Thesis Statement and Contributions . 6
1.5 Thesis Outline . 8

2 Background 11
2.1 Spatial Data Representation . 11
2.2 Temporal Data Representation . 11
2.3 Processing Spatial Queries . 12
2.4 Spatial Access Methods (SAMS) . 13
2.5 Time Series Access Methods . 14

3 GPU Rasterization for Interactive Spatial Data Exploration 15
3.1 Introduction . 15
3.2 Related Work . 20
3.3 Background: Graphics Pipeline . 22
3.4 Raster Join . 23

3.4.1 Core Approach . 24
3.4.2 Bounded Raster Join . 25

xi

Contents

3.4.3 Accurate Raster Join . 28
3.5 Raster Join Extensions . 31
3.6 Implementation . 32

3.6.1 OpenGL Implementation . 32
3.6.2 Baseline: Index Join Approach . 34

3.7 Experimental Evaluation . 35
3.7.1 Experimental Setup . 35
3.7.2 Choice of GPU Baseline . 37
3.7.3 Scalability with Points . 37
3.7.4 Scalability with Polygons . 39
3.7.5 Adding Constraints . 41
3.7.6 Accuracy . 42
3.7.7 Performance on Disk-Resident Data 43

3.8 Integrating Raster Join into Urbane . 44
3.8.1 The Interface of Urbane . 44
3.8.2 Integrating with Raster Join . 46

3.9 Limitations and Discussion . 46
3.10 Chapter Summary . 47

4 Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration 49
4.1 Introduction . 49
4.2 Background and Context . 52
4.3 Related Work . 53
4.4 Eliminating Dead Space in MBBs . 54

4.4.1 The Clipped Bounding Box (CBB) 55
4.4.2 Object-situated Clip Points . 57
4.4.3 Point-spliced Clip Points . 58

4.5 CBB-based R-trees . 59
4.5.1 Layout and Structure of Clipped R-trees 59
4.5.2 Constructing Clipped Bounding Boxes 61
4.5.3 Querying a Clipped Bounding Box 63
4.5.4 Updating a Clipped Bounding Box . 64

4.6 Experimental Evaluation . 65
4.6.1 Environment and Experimental Setup 66
4.6.2 Data Sets and Queries . 66
4.6.3 Results and Discussion . 67

4.7 Reproduction of Prior Experimental Results 77
4.8 Chapter Summary . 78

5 Workload-Aware Indexing for Ad-hoc Spatial Data Exploration 81
5.1 Part I: An Index Structure for Multiple Spatial Data Sets 82

5.1.1 Introduction . 82
5.1.2 Motivation . 84

xii

Contents

5.1.3 Related Work . 86
5.1.4 STITCH Overview . 87
5.1.5 STITCH Indexing . 88
5.1.6 STITCH Query Execution . 93
5.1.7 Experimental Evaluation . 95
5.1.8 Discussion . 102

5.2 Part II: Incremental Indexing for Multiple Spatial Data Sets 103
5.2.1 Introduction . 103
5.2.2 Space Odyssey Overview . 104
5.2.3 Incremental Indexing . 105
5.2.4 Incremental Merging . 106
5.2.5 Space Odyssey Query Execution . 108
5.2.6 Experimental Evaluation . 109
5.2.7 Related Work . 113

5.3 Chapter Summary . 114

6 Quadtree-based Bitmap Compression for Scalable Time Series Exploration 117
6.1 Introduction . 117
6.2 Related Work . 119
6.3 Motivation . 121

6.3.1 Limitations of Related Work . 121
6.3.2 Motivating Application . 122

6.4 RUBIK Overview . 123
6.5 RUBIK Indexing . 125

6.5.1 Discretization/Binning . 126
6.5.2 Clustering Time Series . 126
6.5.3 Quadtree Index . 127

6.6 RUBIK Query Execution . 131
6.7 Experimental Evaluation . 132

6.7.1 Experimental Setup . 132
6.7.2 Experimental Methodology . 133
6.7.3 Comparative Analysis . 134
6.7.4 Scalability Analysis . 135
6.7.5 Indexing Time . 140

6.8 Discussion . 140
6.9 Chapter Summary . 141

7 Conclusion and Outlook 143
7.1 Looking Ahead . 143

Bibliography 160

Curriculum Vitae 161

xiii

List of Figures
3.1 Exploring urban data sets using Urbane: (a) visualizing data distribution per

neighborhood, (b) visualizing data distribution per census tract, (c) comparing
data over different neighborhoods. The blue line denotes the NYC average for
these data sets. 16

3.2 Rasterizing a triangle into pixels. 22
3.3 Example input. 25
3.4 The raster join approach first renders all points onto an FBO storing the count

of points in each pixel (a). In the second step, it aggregates the pixel values
corresponding to fragments of each polygon (b). 26

3.5 When the resolution required to satisfy the given ε-bound is greater than what is
supported by the GPU, the canvas used for drawing the geometries is split into
multiple small canvases, each having resolution within the GPU’s limit. 26

3.6 Visualizing the approximate (left) and accurate (right) results of the example
query in Figure 3.1. The ε-bound was set to 20m. Note that the two visualizations
are virtually indistinguishable from one another. 28

3.7 Accurate raster join performs PIP tests only on points that fall on the violet cells
in (a) that correspond to pixels forming the boundaries of the polygons. The
other points are accumulated in the green pixels (b), which are then added to the
polygons that are “drawn" over them. 29

3.8 Scaling with increasing input sizes for Taxi ./ Neighborhood when the data fits
in GPU memory. (Left) Speedup over single-CPU. (Right) Total query time.
Bounded Raster Join has the best scalability as it eliminates all PIP tests. Accurate
Raster Join performs fewer PIP tests than the Baseline. 37

3.9 Scaling with increasing input sizes for Taxi ./ Neighborhood when the data does
not fit in GPU memory. (Left) Speedup over single-CPU. (Right) Break down
of the execution time. Note that the memory transfer between CPU and GPU
dominates the execution time for the bounded approach. 38

3.10 [Best viewed in color] Neighborhoods of New York City (left). 4096 synthetic
polygons generated over the same area (right). 38

3.11 Scaling with polygons. (Top) Polygon processing costs. (Bottom Left) Total
query time when data does not fit in GPU memory. (Bottom Right) GPU process-
ing time. Note that increasing the number of polygons has almost no effect on
Bounded Raster Join. 39

xv

List of Figures

3.12 Scaling with number of attribute constraints. 40

3.13 Accuracy analysis. (a) Accuracy-time trade-off. (b) Accuracy-ε-bound trade-off.
The box plot shows the distribution of the percent error over the polygons for
different ε-bounds. (c) The scatter plot shows, for each polygon, the accurate
value against the approximate value for ε = 20 m. The red error bars indicate the
expected result intervals (see the enlarged highlighted region). 41

3.14 Scaling with points when data does not fit in main memory (Twitter ./ County).
(Left) Total query time. (Right) Processing time excluding memory access time. 43

3.15 Accuracy-Time trade-off (left) and ε-bound trade-off (right) using the Twitter data. 43

3.16 The map view of Urbane. The density of NYC taxi data (b) is visualized over the
neighborhood regions (a) for a chosen time range (c). The menu highlights this
selection. 44

3.17 Multi-resolution exploration. Neighborhoods having a high density of subway
stations are highlighted, and Financial District is selected for further analysis (a).
Exploring buildings in the selected region to identify opportunities for new
development (b). 45

4.1 Performance of four R-tree variants. 50

4.2 Concepts related to clipped bounding boxes. 55

4.3 An example of an R-tree before (a) and after (b) clipping, given 7 objects, o1–o7

and a range query, Q. 60

4.4 The physical layout of the R-tree from Figure 4.3a (a) and the auxiliary structure
(b) of clip points introduced in Figure 4.3b. The auxiliary table is indexed by
MBB id and gives the number of and pointer to the clip points for that MBB. The
bitmask of each (in this case 2d) clip point is followed by the two coordinate values. 61

4.5 Demonstration of the overlap approximation. The combined score of {p1, p2, p3}

overcounts the overlap of {p1, p2, p3} and undercounts the overlap of {p1, p3},
but these often correspond to the same area, a6. 62

4.6 Using dominance to test CBB intersections. 64

4.7 Clip points before (green) and after updates (blue). Deleting o3 creates a better
clip point c′, but c is still valid. On insertion, the blue corner of o3 dominates c′

with respect to the solid, black point, indicating that o3 invalidates c′. 64

4.8 Visualization of different bounding methods over the two leaf nodes from Figure
4.3a and their dead space (†). 67

4.9 Comparing different bounding methods w.r.t dead space (left) and storage re-
quirements (right). 68

4.10 Average dead space per node and R-tree for skyline- (above) and stairline-based
(below) clipping. 69

4.11 Average #leaf accesses in clipped R-trees w.r.t. their unclipped counterpart
(100%) for stairline-based clipping. 70

4.12 Expected number of re-clipped CBBs per insertion. 72

xvi

List of Figures

4.13 Average update runtime in clipped R-trees w.r.t. their unclipped counterparts
(100%) for stairline-based clipping. 73

4.14 CBB storage overhead. 74
4.15 Average query runtime in clipped R-trees w.r.t. their unclipped counterparts

(100%) for stairline-based clipping. 74
4.16 Index building and CBB computation overhead. 75
4.17 Querying 1 billion object data sets. 76
4.18 2d projections of the 3d axo03 and den03 data sets. 77
4.19 Reproduced “Figure 4” from [17] augmented with our workloads. 79

5.1 Scaling with an increasing number of categories in the category selection. 1-for-each
does not scale well as the number of categories increases, all-in-1 introduces
an overhead when only a small subset is queried, while queried-in-1 provides
the best performance, but is a practically infeasible solution. 85

5.2 STITCH links multiple data sets (categories) to the same index/reference space
(bottom center) and directs queries to the destination data sets via corresponding
links. 88

5.3 The partitioning procedure packs spatially close elements on the same disk page
(rectangle) and aligns the page boundaries as much as possible with the grid
boundaries (dashed lines) of the reference index. 91

5.4 STITCH’s data structures and their interaction: The disk-based reference index
stores the metadata records in its grid cells which point to the object pages.
STITCH also maintains an in-memory hash table indicating the non-empty grid
cells which is not shown in the Figure. 93

5.5 Scaling-up with the number of queried data sets. 97
5.6 Query execution time breakdown (left) and breakdown for the pages read per

query (the page size is 4KB) (right). 98
5.7 Total number of page reads per result element. 98
5.8 Overall time to index (left) and Index size (right). 99
5.9 Extending an existing index with a new data set. 100
5.10 Number of links (left) and Pages read per query (right) for increasing data set sizes.101
5.11 Amount of retrieved metadata (left) and percentage of empty space in objects

pages (right) for increasing grid resolution. 101
5.12 Number of links (left) and Pages read per query (right) for increasing query volume.102
5.13 Space Odyssey: components, data structures and a snapshot of the physical layout.104
5.14 Incremental indexing strategy (in 2D). 105
5.15 Clustered (red) and uniform (green) range queries on one neuroscience data set

(grey). 109
5.16 Performance when varying the number of queried data sets for each distribution. 111
5.17 Query times for each query in a sequence. 112

6.1 [Best viewed in color] Observing the temperature during a material deformation
simulation. 122

xvii

List of Figures

6.2 [Best viewed in color] Observing the voltage values during a neuroscience
simulation. Time series from neighboring neurons have a high degree of similarity.123

6.3 A two-dimensional time series bitmap. 124
6.4 A cluster of time series bitmaps, split along the time and observation dimension

with the purpose of identifying blocks enclosing the same bit value. 125
6.5 Coarse-grained discretization for clustering. 127
6.6 Example Quadtree built by RUBIK in main memory. 128
6.7 RUBIK splitting the example cluster in two steps. 129
6.8 Example of a definite result (left) and a potential result (right). 132
6.9 Sample (four time series) of the neuroscience data set (left) and the synthetic

data set (right). 134
6.10 RUBIK and FastBit index sizes (left), execution time (middle) and accuracy (right).135
6.11 RUBIK and FastBit index sizes (left), execution time (middle) and RUBIK execu-

tion time breakdown (right) depending on the number of time series (neuroscience
data set). 136

6.12 RUBIK index and data sizes depending on the number of time series (synthetic
data set). 137

6.13 RUBIK execution time breakdown depending on the number of time series
(synthetic data set). 138

6.14 RUBIK and FastBit index sizes (left) and query execution time (right). For
FastBitF the results from different partitions are superimposed. 139

6.15 RUBIK and FastBit index sizes (left), execution time (middle) and RUBIK execu-
tion time breakdown (right) depending on the number of time steps (neuroscience
data set). 139

6.16 RUBIK and FastBit index sizes (left), execution time (middle) and accuracy
(right) depending on the number of bins (neuroscience data set). 139

xviii

List of Tables
3.1 Polygonal data sets and processing costs. 35
3.2 Choice of GPU baseline. 37

4.1 Average improvement in % I/O reduction using skyline/stairline clipping for each
R-tree. 70

xix

1 Introduction

There is an explosion in the amount of spatial and temporal data being generated and collected
today. Billions of mobile devices, cars, social networks, satellites, sensors, scientific simulations,
and many other sources produce spatial and temporal data constantly. Uber, a popular Transporta-
tion Network Company (TNC), recently announced hitting 10 billion rides [151], doubling the
number of completed rides in roughly one year [152]. Furthermore, location-based services are
growing in popularity, generating a large amount of location data on a daily basis. Foursquare, a
mobile application that allows users to “check in” to places that they visit and provide recom-
mendations of local venues, contains over 105 million venues around the world and has more
than 12 billion check-ins to date [53]. Twitter generates approximately 10 million geo-tagged
tweets every single day [57]. City administrations all over the world are collecting and making
available increasing volumes of urban data containing spatial and temporal information, such as
transportation (taxi trips, bus, subway), reported crimes, and land-use data [113]. Scientists in the
Human Brain Project [73] build three-dimensional models of brain structures, and simulate them
over time, producing time series that capture brain activity. The ultimate goal is to simulate the
human brain that contains 86 billion neurons.

The value of this wealth of data is tied to its analysis. Analyzing the large amounts of spatial
and temporal data can lead to a variety of new discoveries, better services, and new products.
Uber uses data visualizations to generate insights on how to provide better service and make city
transportation more efficient [154]. The analysis of geo-tagged tweets can play an important role
in handling disasters by indicating locations that need food or medical supplies [111]. Domain
experts and city governments can make more informed policies and planning decisions by
exploring urban data [51]. In scientific simulations, analyzing structural and temporal information
allows to refine the models and re-calibrate the simulation parameters [106]. To empower domain
experts (without a data science background) to perform such analyses effectively, there is a
paradigm shift from batch-oriented analysis pipelines to exploratory ones.

Effective data exploration requires interactivity [99] and support for ad-hoc queries, ranging from
aggregations at different levels of resolution to simultaneous filtering over different data attributes.

1

Chapter 1. Introduction

Data management systems, however, face many challenges in supporting exploratory pipelines for
spatial and temporal data. Spatial objects can have arbitrarily complex geometries and can follow
complex spatial distributions. Queries over this data are computationally expensive, typically
more expensive than common relational queries, making it difficult to perform ad-hoc analyses at
interactive speeds. Time series can be arbitrarily long, making it hard to achieve scalable query
performance. In addition, the sheer amounts of data that modern applications need to process
intensify the above challenges. As a result, existing data management solutions fail to support
flexible interactive exploration and are often suitable only for batch-oriented computations. To
meet the requirements of spatial and temporal data exploration, new solutions are needed.

1.1 Motivating Applications

The evolution of computing power, combined with advances in data acquisition and the de-
creasing costs of storage infrastructure, have triggered the emergence of new applications with
spatial and temporal data at their core. These modern data-driven applications require rich data
exploration capabilities to enable their users to extract useful information and knowledge. In the
following, we discuss how leveraging massive-scale spatial and temporal data can (i) significantly
advance scientific discovery, and (ii) drastically improve our urban environments. Both of these
applications have motivated this thesis.

Scientific discovery. Scientific discovery is no longer solely based on theory and experimentation
- the two fundamental paradigms of science. Modern digital sensors and imaging instruments
combined with the affordability of high performance computing resources have sparked the
creation of additional, new paradigms in science. While theory and experimentation produce
mathematical models of the studied phenomena, computational simulations (called the third
paradigm) allow to further study these models and test how different rules and hypotheses
affect their state. Since even simple rules can generate a complex behavior, their understanding
relies on analyzing the simulation outputs. As a result, scientists are now overwhelmed by the
immense volume of the machine-generated data they need to manage and analyze. The fourth
paradigm [72] is about leveraging big scientific data generated by simulations, experiments or
sensors to push the boundaries of scientific discovery. To realize the fourth paradigm, we need
tools for managing and visualizing large amounts of scientific data.

Spatial and temporal data in particular are at the core of data-intensive science as scientists study
entities using their morphological or topological properties and examine how these entities evolve
over time [70]. In a typical simulation workflow, observational data originating from a variety
of input samples is first acquired using a variety of different instruments and techniques, such
as bright-field spectroscopy and Magnetic Resonance Imaging (MRI). The massive amounts of
collected observational data can then be used in the construction of spatial models of the studied
phenomenon. To extract the key properties to be incorporated into the models, scientists examine
the data in an exploratory fashion. Neuroscientists in the Human Brain Project (HBP) [106], for
example, build structural models that capture different aspects of the brain on different spatial

2

1.2. Spatial and Temporal Data Exploration: The Data Management Perspective

scales. Once a model is built, it is validated by computing statistical properties for different
regions and testing them against the observational data. Simulation tools then leverage the models
to foster in-silico experimentation which in turn generates large amounts of spatio-temporal
data. Accessing relevant parts of the simulation data quickly is key to scientific discovery; first,
potential simulation configuration problems are identified and then the selected data subset is
isolated and subjected to more extensive exploratory studies testing different hypotheses.

Urban planning. Urban planning concerns the organization of human activities in residential
areas. Specifically, it controls the development and organization of a city, determining the land
uses, the rules for building constructions, and the location of public facilities. Urban planning
decisions are critical in enabling sustainable and vibrant environments, especially in the face of
the rapidly growing urban population. However, urban planning is not simple: cities are complex
environments that are shaped by multiple factors [51]. As a result, making urban planning
decisions on the basis of experience, precedent and data analyzed in isolation is hard. Nowadays,
a growing number of sensors and mobile devices capture the city’s momentum and broadcast
resident activities, creating new opportunities for data-driven approaches through which the
stakeholders can make more informed decisions. At the same time, analyzing ever-increasing
volumes of spatio-temporal data from urban environments is challenging.

Visual analytics systems play a key role in the analysis of urban data. They generate comprehen-
sive visual representations (such as heatmaps and parallel coordinate charts [79]) that free up
limited cognitive resources allowing to focus on higher-level problems and obtain insights [99].
To support exploratory analyses effectively, visual analytics systems must provide interactive
response times, since high latency reduces the rate at which users make observations, draw
generalizations and generate hypotheses [99].

With an increasing demand for effective exploration of large spatial and temporal data in different
domains, data management infrastructure needs to advance. This thesis bridges the gap between
data management techniques and the requirements for low latency, flexibility and scalability in
exploratory analyses.

1.2 Spatial and Temporal Data Exploration: The Data Manage-
ment Perspective

Knowledge discovery and decision making are driven by questions. Answering these questions
involves data operations that are unknown beforehand and unpredictable. Ad-hoc queries are
executed to assess the problem space, unveil data characteristics, verify data quality, and examine
different hypotheses [44, 63, 77]. Due to often unclear requirements, designing data management
solutions for exploratory use cases is hard. In this thesis, we investigate different exploratory use
cases in visual analytics systems and scientific simulation pipelines, identify common types of
queries, and focus on designing efficient solutions to support them. The identified exploratory
use cases are described next.

3

Chapter 1. Introduction

1.2.1 Interactive Spatial Data Exploration

As described before, interactivity is key for the visual analysis of spatio-temporal data sets.
Among their features, visual analytics systems allow users to visualize data of interest at different
resolutions over varying time periods. At the same time, they also enable the visual comparison
of several data sets [45].

From a data management perspective, these visualizations are primarily accomplished through
spatial aggregation queries that compute an aggregate function over the result of a spatial join
between two data sets, typically a set of points and a set of polygons. In the context of a city, the
point data may for example correspond to taxi rides, 311 noise complaints, crime, subway or
restaurant locations, and the polygonal regions could be neighborhoods or zip codes. To support
exploratory analysis, visual analytics systems must be interactive and provide fast response
times, which is particularly challenging when we consider the massive volume and complexity of
today’s spatio-temporal data sets. Spatial aggregation is a fundamental operation in a variety of
applications other than visual tools (such as connected mobility applications) that also require
near real-time responses.

1.2.2 Ad-hoc Spatial Data Exploration

Data exploration tasks typically involve multiple data sets. The goal of the exploration is to
find data sets, and in them data subsets that are most relevant to the analysis. This ad-hoc
exploration allows to test a hypothesis on the chosen data subsets, validate statistical properties
of the simulated models or visualize certain regions in details [70].

From a data management perspective, the most common way of carrying out such exploratory
tasks is to execute a range query on different data sets simultaneously and obtain an answer for
each of them, to retrieve all the data related to the region of interest. For example, in the process
of comparing the statistical properties of their models against real tissues, neuroscientists use
three-dimensional range queries to extract data corresponding to the same brain region from
different observational data sources (such as MRI scans of different subjects). With the increase
in the number and size of the analyzed data sets the exploration process is significantly hampered.

1.2.3 Scalable Time Series Exploration

Time series data is becoming abundant in a wide range of applications. For instance, many
scientific spatial simulations produce time series as output. Typically, not all this data is interesting
or important. Ad-hoc exploration allows scientists to identify interesting time series, and in them
interesting time intervals, thereby understanding different phenomena that occurred during the
simulation. For example, a neuroscientist may only be interested in specific neurons that are
firing at specific time steps of the simulation.

4

1.3. The Inadequacy of Current Data Management Approaches

This exploration can be performed by issuing two-dimensional range queries (with the two
dimensions being value and time) that retrieve the data satisfying a value constraint (e.g., greater
than a certain constant threshold) for a specified time interval. As both the number and the length
of the time series increase, executing such queries on time series becomes more time-consuming.

1.3 The Inadequacy of Current Data Management Approaches

Spatial and temporal data management has been an important research direction for over four
decades [54, 67, 102, 119]. However, processing techniques and access methods have been
traditionally designed for batch queries [46] and thus fail to meet the requirements of spatial and
temporal data exploration. This thesis identifies the technical limitations due to which existing
approaches are unsuitable for exploratory applications as follows:

Costly geometric computations. Spatial query operators (such as spatial joins) rely on
computationally-intensive, time-consuming geometric tests that severely degrade query perfor-
mance, especially in regard to the massive volume and complexity of today’s data sets. For
efficient query processing, we need to minimize (or completely eliminate) these tests, while
ensuring the quality of the query results.

Imprecise spatial approximations. The purpose of spatial access methods is to exclude a large
subset of spatial objects from the result as early as possible. However, spatial indexes rely on
inaccurate filtering predicates (spatial approximations) to describe the data stored in index nodes
which has a severe impact on index selectivity. To minimize (or completely avoid) unnecessary
accesses to slow mediums (such as HDDs or SSDs) for retrieving objects, we need more effective
spatial approximations.

No indexing support for queries over multiple data sets. To support access to multiple data
sets, existing spatial techniques create an index either per data set or over the union of all data
sets. The first strategy does not scale well with an increasing number of queried data sets, and the
second is inefficient when only a small subset of the indexed data sets is queried. To reduce the
query cost and decouple it from the total number of indexed data sets, we need index structures
that inherently support multiple spatial data sets.

Wide data-to-query gap. Spatial access methods index entire data sets upfront in a time-
consuming process before queries can be executed. To enable interactive access to data, we need
incremental indexing techniques that minimize upfront costs and adapt to the workload.

No indexing support for queries over multiple data attributes. Time series access methods
use single-attribute indexes that index either the time or the value domain and thus cannot
effectively prune the search space using constraints on both attributes. For efficient and scalable
processing of time series, we need composite indexes that are both time- and value-aware.

5

Chapter 1. Introduction

1.4 Thesis Statement and Contributions

The goal of this thesis is to bridge the gap between the requirements of spatial and temporal data
exploration and the capabilities of existing data management systems. To that end, we focus on
query processing techniques and access methods, on which the performance of data management
systems depends, and revisit their design to eliminate bottlenecks that oppose the interactivity
and scalability requirements of exploratory applications.

Thesis Statement

Modern applications need to explore large amounts of spatial and temporal data at interactive
speeds, challenging traditional query processing techniques that rely on time-consuming com-
putations and inefficient access methods. Query operators that exploit specialized hardware
and workload-aware access methods enable scalable and interactive exploration of spatial and
temporal data.

To address the technical limitations of current approaches and cater for the needs of interactive
exploratory applications, this thesis introduces a novel family of spatial and temporal access
methods and query operators:

An efficient spatial aggregation operator. We exploit GPU rasterization to avoid costly geo-
metric tests and thereby enable interactive response times for ad-hoc spatial aggregation of a set
of data points over a set of arbitrary polygons. As part of the driver provided by the hardware
vendors, rasterization is optimized to make use of the underlying architecture and maximize the
occupancy of the GPU. Our approach, Raster Join, processes queries on-the-fly, which allows tak-
ing into account dynamic updates to query parameters, without requiring any memory-intensive
pre-computation. At the same time, it exhibits superior performance compared to index-based
approaches.

A bounding object for spatial data. We introduce a novel spatial data approximation method
called Clipped Bounding Box (or CBB). We combine a pre-existing and widely used approx-
imation, the Minimum Bounding Box (MBB), with few additional multi-dimensional points
that subtract out (clip away) large corner (hyper-)rectangles from the MBB. This improves the
approximation quality of the MBB with a low representation and complexity overhead because
(i) corners are the convergence points of the dimension-wise maxima/minima of the bounded
objects and thus are not fully covered by objects, as the data is distributed differently along the
various dimensions, (ii) being the extremities, corners are likely to unnecessarily overlap with
queries, and, (iii) clipped corners can be represented compactly. To compute the additional points,
we leverage Pareto optimality. We plugged the CBB in different R-tree variants, and achieved a
reduction of ≈ 26% in I/Os (across different variants and workloads).

6

1.4. Thesis Statement and Contributions

A data structure for multiple spatial data sets. We present STITCH, a novel data structure
that indexes multiple spatial data sets that are all enclosed in the same spatial universe. STITCH
allows to scalably select spatial regions of interest from a desired subset of indexed data sets,
outperforming the state-of-the-art by a factor of up to 12.3.

Incremental data layout organization and indexing of multiple spatial data sets. We present
a novel approach (Space Odyssey) that, driven by the actual query needs, minimizes the amount
of data that needs to be organized, and optimizes access to data sets frequently queried together.
Compared to the state-of-the-art, Space Odyssey accelerates exploratory analysis of spatial data
by substantially reducing data-to-query time.

Time- and space-efficient time series indexing. We propose RUBIK, a new indexing scheme
for time series data. RUBIK encodes time series values with bitmaps, and compresses the bitmaps
using a Quadtree, which allows executing queries with both value and time constraints directly
on the compressed representation. Compared to indexing schemes that compress bitmaps using
run-length encoding techniques, RUBIK accelerates queries by a factor of between 6 and 23,
while producing a more space-efficient index.

Note that the techniques presented in this thesis optimize system behavior in a single-node setting.
With multi-core and many-core processors, as well as hardware accelerators such as GPUs, single
nodes today have vast computing capabilities. In addition, optimizing single-node behavior is in
many cases orthogonal to distributing work to multiple nodes. Therefore our techniques could also
provide performance benefits in distributed settings. For instance, many distributed frameworks
for spatial data (e.g., Hadoop-GIS [4], SpatialHadoop [47], GeoSpark [171], Simba [169]) rely
on MBBs and R-trees for partitioning and indexing. They can thus benefit from our CBBs as
well as our workload-aware indexing strategy.

The aforementioned contributions serve as a platform to show the following key intellectual
insights:

• We show that GPU rasterization provides a means to evaluate spatial queries efficiently and
thus enable interactive data exploration. The rasterization operation converts a geometric
primitive (i.e., a polygon) into a fine-grained approximation in terms of pixels on-the-fly,
which allows to avoid expensive geometric computations in most cases.

• Minimum Bounding Boxes (MBBs) are compact to store and cheap to query, but approx-
imate poorly today’s complex real-world data. In contrast, other spatial approximations
proposed in prior work (such as the convex hull [26]) approximate data tightly, but are not
time- and space- efficient. We show that by subtracting out (clipping away) the corners of
MBBs, we obtain a tight yet simple spatial approximation.

• Workload-aware data layout organization and indexing are key in enabling exploratory
access to (multiple) spatial data sets. Organizing spatial objects not only based on their
spatial proximity, but also based on the data category (i.e., data set) that they belong to,

7

Chapter 1. Introduction

facilitates efficient access to categories and regions of interest. Furthermore, building
(partial) data structures incrementally only for the bits of the data needed decreases data-to-
query time.

• We argue that preserving spatial and temporal proximity in time series access methods
results in improving both space-efficiency and query performance. This is because (i) time
series (obtained through sensors, or produced by simulations) often exhibit similarity in
both space and time (i.e., values of consecutive time steps can be similar and time series
in the same spatial vicinity can have similar value patterns) and (ii) data access patterns
frequently align with temporal or spatial proximity.

1.5 Thesis Outline

This section outlines the thesis and summarizes the content of each chapter.

Chapter 2 presents general background information on the topics of this thesis. Each of the
subsequent chapters presents a solution for a data management problem related to the exploration
of spatial or temporal data. The addressed problem is introduced in detail in each chapter, along
with additional necessary background information and related work.

In Chapter 3 we describe Raster Join [149], a GPU-based approach that provides interactive
response times to computationally-intensive spatial aggregation queries over arbitrarily-shaped
regions, which is an essential operation in visual analytics systems. State-of-the-art techniques for
interactive exploration rely on pre-aggregation and are thus unsuitable in this setting because they
fix the query constraints and do not provide support for polygons of arbitrary shape. To address
this limitation, Raster Join converts a spatial aggregation query into a set of drawing operations
on a canvas. Interactive speeds are achieved by leveraging the rendering pipeline of the graphics
hardware (GPU), and in particular the rasterization operation, which converts a polygon into a
collection of pixels and is natively supported by GPUs. Raster Join evaluates queries on-the-fly,
allows to trade-off accuracy for response time by adjusting the canvas resolution, and can even
provide accurate results when combined with a polygon index. In this work, we make a case for
incorporating computer graphics techniques in spatial databases, based on the observation that
both domains address analogous problems.

In Chapter 4 we discuss challenges and performance bottlenecks associated with processing
spatially extended three-dimensional objects. The majority of spatial data processing techniques
use Minimum Bounding Boxes (MBBs) to represent a collection of spatial objects. The MBB
is the smallest axis-aligned box that encloses a given set of spatial objects. Access methods
of the R-tree family, for example, employ a hierarchy of MBBs to recursively enclose the
indexed spatial objects. Minimum Bounding Boxes have the benefits of being computation-
efficient (they are computed simply with linear cost, while overlap/intersection tests are cheap)
and space-efficient. However, fitting (groups of) spatial objects into a rough box often results
in a very poor approximation of the underlying data. The resulting MBBs contain a lot of

8

1.5. Thesis Outline

“dead space”—fragments of bounded area that contain no actual objects—that can significantly
reduce the filtering efficacy. To address this disadvantage of MBBs, we introduce the concept
of Clipped Bounding Boxes (CBBs) [135]. Essentially, a CBB augments a MBB by "clipping"
away dead space that is concentrated around the corners of the box. By doing so, the quality of
the approximation is improved, and unnecessary recursions in dead space are avoided, which
results in improved query performance.

Chapter 5 discusses the challenge of efficiently querying an arbitrary combination of spatial
data sets, while returning the query result on each data set. Indexing and querying the data sets
separately is only efficient when the number of queried data sets is small, while using a single
index for all data sets incurs considerable overhead when only a small subset needs to be retrieved.
To address this challenge, we introduce STITCH, an index structure for the scalable execution of
spatial range queries on multiple data sets. The leaf level of the structure is data set-aware: within
a leaf node, all the objects belonging to the same data set are groupped together. On the other
side, the internal levels are data set-oblivious; they only index the spatial universe that encloses
all different data sets. In addition, this chapter presents Space Odyssey [125], an incremental
indexing approach that continuously optimizes access to data sets frequently queried together
and thereby enables ad-hoc exploration.

To facilitate the exploration of time series data, we provide support for time-bound threshold
queries. A time-bound threshold query returns all the values that occurred within specified time
bounds and are above a given threshold. Range-encoded bitmap indexes are state-of-the-art
when it comes to querying read-only data. However, the run-length encoding-based compression
schemes that are commonly applied to the bitmaps severely impact the performance of time-
bound threshold queries, as they disrupt the one-to-one mapping between time steps and bit
positions. In Chapter 6 we propose RUBIK [150], a technique that encodes time series values as
bitmaps and groups similar bitmaps together to exploit similarities between time series. It then
applies a quadtree-based compression scheme to each group, which leverages similarities within
the time series. As a result, RUBIK enables searching compressed bitmaps along both the value
and the time dimensions.

Chapter 7 summarizes the thesis and discusses future research directions.

9

2 Background

In this chapter, we introduce key terms and concepts in spatial and temporal data management.
We describe spatial queries involved in exploration tasks, the general design of spatial query
processing strategies, spatial access methods used to scale down the result search space, and time
series access methods used to efficiently retrieve time series data.

More detailed discussions of the state-of-the-art concerning specific problems addressed in this
thesis can be found in the respective chapters.

2.1 Spatial Data Representation

Spatial features are represented as either rasters or vectors. The raster format represents the study
area with a n-dimensional regular grid. The location of the features in the study area is depicted
by the values (e.g., intensity or color) in the cells overlaying the features. Vector data types on
the other hand, represent spatial features with their geometry. For example, geographic features
are represented using points, lines and polygons, while structures in scientific simulations can be
volumetric cones, and triangular or tetrahedral meshes. This thesis focuses on processing vector
data types, mainly in 2D and 3D. Therefore, the term spatial data is used to refer to data tuples
that contain a geometric component in a n-dimensional Euclidean space or a suitable subspace
thereof.

2.2 Temporal Data Representation

Temporal data denotes the evolution of an object characteristic over time. The time component
in temporal data can be either implicit or explicit. If the time is explicit, then each value is
associated with a time stamp. If the time is implicit, the actual time stamp is not important. What
is important is the ordering of the values, i.e., how the values are connected in a sequence. This
thesis focuses on a specific kind of temporal data, time series. Time series are sequences of

11

Chapter 2. Background

values generated (or collected) as time progresses and are frequently encountered in different
applications, from finance (e.g., stock prices) and meteorology to simulation sciences.

2.3 Processing Spatial Queries

The most common query types used in spatial data exploration are range queries, k-nearest
neighbor queries, and spatial joins.

Range Query. Range queries are typically defined by a n−dimensional hyperrectangle. Given
this hyperrectangle R, a set of spatial objects M, and a spatial predicate θ, a range query retrieves
all the objects of M that satisfy the predicate θ with respect to R. Typical spatial predicates are
intersection (getting all objects overlapping the hypervolume of R, fully or partially), containment
(objects strictly contained within the bounds of R), and enclosure (objects strictly enclosing R).
In scientific simulations, range queries are used to retrieve parts of the model data in particular
regions of interest.

k-Nearest Neighbor Query. Given a set of spatial objects M and a particular object o, a k-nearest
neighbor query returns (at most) k objects from M that are closest to object o.

Spatial Join Query. Given two sets of spatial objects M1 and M2 and a spatial predicate θ, a
spatial join query yields all pairs of objects (o1 ∈ M1, o2 ∈ M2) that satisfy θ. The most frequently
used spatial predicate θ is intersection, but containment or enclosure can also be applied. Spatial
joins are essential in many applications. For example, connected mobility companies such as
Uber need to join locations of passenger requests with a set of polygonal regions to display
available cars and enable dynamic pricing [153].

Processing spatial queries is challenging, mainly for two reasons. First, there is no total order
among spatial objects that preserves spatial proximity, i.e., it is impossible to totally order spatial
objects linearly, so that spatially close objects in the multidimensional domain, are also close in
the linear order. Consequently, algorithms designed for relational (one-dimensional) data cannot
be directly applied to handle spatial data. Second, spatial objects have an arbitrarily complex
structure. Even worse, different spatial objects can have very different structures (e.g., a point is
different from a polygon).

To address the lack of total ordering, specialized multidimensional access methods have been
proposed (see Section 2.4). To address the second challenge, spatial query processing is pre-
dominantly based on a two-step “filter and refine” approach [54]. The query is first solved
using approximations of the geometries, and then false matches are removed by examining the
actual geometries. The approximation usually serves as a general representation for different
geometries, which makes the filtering step geometry-oblivious. In addition, the approximation
has a significantly simpler structure than the actual object, which reduces computation and storage
costs.

12

2.4. Spatial Access Methods (SAMS)

The most widely used spatial object approximation is the Minimum Bounding Rectangle (MBR -
in 2D) or Minimum Bounding Box (MBB - in 3D). The MBR is the smallest axis-aligned rectangle
that encloses the complete geometry of an object and can represent objects (or sets of objects)
with different geometries (from points to complex volumetric shapes).

The refinement phase performs exact geometric tests. The performed tests depend on the object
geometries and the spatial predicate. Since real-world data often consists of points (e.g., GPS
locations) and polygons (e.g., geographical region boundaries), a commonly applied geometric
test is the point-in-polygon test that determines whether a given point lies inside a polygon. The
most widely used point-in-polygon test algorithm [116] (called ray casting, also known as the
crossing number algorithm or the even–odd rule algorithm) shoots a ray from the point, and
counts the number of proper intersections of the ray with the polygon edges. If the count is odd,
the point is inside the polygon. The complexity of this algorithm is linear with the size of the
polygon (number of vertices).

2.4 Spatial Access Methods (SAMS)

Spatial query processing relies on spatial access methods to achieve efficiency. Traditional tech-
niques designed for one-dimensional data could be applied to (extended) spatial objects by first
transforming the objects to points in some parameter space. However, this transformation does
not preserve the spatial neighborhood of objects in the original space, and thus the distribution of
parameter points can be extremely skewed, which harms query performance. Therefore, access
methods have been designed specifically for spatial data.

Spatial access methods are typically built on top of object approximations (e.g., MBRs) and
not the objects themselves. Consequently, they act as a filter, creating a candidate set that may
include false matches. Nevertheless, they still allow to filter out a large number of objects as in
general a small and locally restricted part of the space is relevant to the query.

Spatial indexes can be categorized in two classes according to the partitioning strategy that
they employ: space-oriented [6, 18, 80, 129, 155], and data-oriented [12, 15, 17, 66, 103, 131].
Space-oriented indexes partition the entire space enclosing the data into disjoint (i.e., non-
overlapping) regions. The objects are associated with each partition they intersect and thus
an object can be stored in many partitions. As a result of this multiple assignment strategy,
query performance may degrade significantly. This is because: 1) the same object might be
retrieved and processed multiple times, which increases the amount of data transferred and the
computational requirements, 2) some results may be detected more than once, and therefore
an additional post-processing step is needed for removing redundant results, 3) configuring the
partitioning resolution is challenging, because increasing the number of partitions also increases
the replication rate. In contrast, data-oriented indexes assign each object to exactly one region and
allow regions to overlap. This means that there may exist several regions potentially containing
the searched object.

13

Chapter 2. Background

2.5 Time Series Access Methods

Time series can be queried to retrieve, for example, specific sub-sequences, extrema points, or
points in time at which the time series had a specific value. To make these queries efficient, we
need index structures.

A time series can be seen as a point in a multi-dimensional space, where the number of dimensions
corresponds to the length of the time series. Consequently, a time series can be indexed using a
Spatial Access Method (SAM). However, approximating time series data with MBRs in SAMs,
does not capture well their sequential nature. The resulting MBRs are very wide, and have a
lot of overlap with empty space. This causes many queries to unnecessarily overlap with them.
In addition, typical time series are very long, which makes Spatial Access Methods suffer from
the curse of dimensionality. This problem is addressed by first performing a dimensionality
reduction on the time series before indexing them with a SAM. Even better, we can use indexes
specifically designed for higher-dimensional spaces (such as the X-tree [19]) to index the reduced
time series representation. Apart from techniques that rely on SAMs to provide efficient indexing,
specialized time series indexes have also been proposed [13, 30, 31].

Techniques that rely on dimensionality reduction cannot be applied for queries accessing specific
values of the time series that satisfy a user-defined condition, such as range queries that retrieve
time segments at any series with values above a given threshold. This is because in a reduced
feature space, the original intervals where the time series values are above a given threshold
cannot be generated.

To support ah-hoc queries accessing specific time series values, we can use a bitmap index.
Bitmap indexes are particularly useful for data that is read-only [34], which is the case in many
applications of time series. In scientific simulations, for example, once the simulation is over, the
generated results are not further updated. Bitmap indexes organize the data as a two-dimensional
table of 0’s and 1’s. Each row of the table represents a data record, and each column represents
a value or a range of values. At the intersection of rows and columns there is a single bit that
indicates whether the record of the corresponding row has the value (or is within the range of
values) denoted in the column. To be effective on large data, this table has to be compressed.
With some recent exceptions [94], bitmap compression algorithms typically employ variants of
run-length encoding [10, 168], i.e., they replace repeated runs of 0’s or 1’s in the columns of the
bitmap index by a single instance of the symbol and a run count.

14

3 GPU Rasterization for Interactive
Spatial Data Exploration

This chapter1 shows that interactive visual exploration of spatial data relies heavily on spatial
aggregation queries that slice and summarize the data over different regions. These queries
require computationally-intensive point-in-polygon tests that associate data points to polygonal
regions, challenging the responsiveness of visualization tools. This challenge is compounded by
the sheer amounts of data, requiring a large number of such tests to be performed. Traditional
pre-aggregation approaches are unsuitable in this setting since they fix the query constraints and
support only rectangular regions. Contrarily, query constraints are defined interactively in visual
analytics systems, and polygons can be of arbitrary shapes.

In this chapter, we convert a spatial aggregation query into a set of drawing operations on a canvas
and leverage the rendering pipeline of the graphics hardware (GPU) to enable interactive response
times. Our technique trades accuracy for response time by adjusting the canvas resolution, and
can provide accurate results when combined with a polygon index. We evaluate our technique
on two large real-world data sets, exhibiting superior performance compared to index-based
approaches.

3.1 Introduction

The explosion in the number and size of spatio-temporal data sets from urban environments
(e.g., [35,113,145]) and social sensors (e.g., [115,148]) creates new challenges for analyzing this
data. The complexity and cost of evaluating queries over space and time for large volumes of
data often limits analyses to well-defined questions, what Tukey described as confirmatory data
analysis [147], typically accomplished through a batch-oriented pipeline. To support exploratory
analyses, systems must provide interactive response times, since high latency reduces the rate at
which users make observations, draw generalizations and generate hypotheses [99].

1The material of this chapter has been the basis for the PVLDB 2017 paper GPU Rasterization for Real-Time
Spatial Aggregation over Arbitrary Polygons [149] and the SIGMOD 2018 demo paper Interactive Visual Exploration
of Spatio-Temporal Urban Data Sets using Urbane [45].

15

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Figure 3.1 – Exploring urban data sets using Urbane: (a) visualizing data distribution per
neighborhood, (b) visualizing data distribution per census tract, (c) comparing data over
different neighborhoods. The blue line denotes the NYC average for these data sets.

Not surprisingly, the problem of providing efficient support for visualization tools and interactive
queries over large data has attracted substantial attention recently, predominantly for relational
data [1, 14, 78, 83, 84, 98, 100, 139, 165]. While methods have also been proposed for speeding
up selection queries over spatio-temporal data [46, 173], these do not support interactive rates
for aggregate queries, that slice and summarize the data in different ways, as required by visual
analytics systems [9, 51, 117, 130, 141, 166].

Motivating Application: Visual Exploration of Urban Data Sets. In an effort to enable urban
planners and architects to make data-driven decisions, Ferreira et al. developed Urbane, a
visualization framework for the exploration of several urban data sets [51]. The framework allows
the user to visualize a data set of interest at different resolutions and also enables the visual
comparison of several data sets.

Figures 3.1(a) and 3.1(b) show the distribution of NYC taxi pickups (data set) in the month
of June 2012 using a heat map over two resolutions: neighborhoods and census tracts. To
build these heatmaps, aggregate queries are issued that count the number of pickups in each
neighborhood and census tract. Through its visual interface, Urbane allows the user to change
different parameters dynamically, including the time period, the distribution of interest (e.g.,
count of taxi pickups, average trip distance, etc.), and even the polygonal regions. Figure 3.1(c)
shows multiple data sets being compared using a single visualization: a parallel coordinate
chart [79]. In this chart, each data set (or dimension) is represented as a vertical axis, and each
region (neighborhood) is mapped to a polyline that traverses across all of the axes, crossing each
axis at a position proportional to its value for that dimension. Note that each point in an axis
corresponds to a different aggregation for the selected time range for each neighborhood, e.g.,
Taxi reflects the number of pickups, while Price shows the average price of a square foot. This
visual representation is effective for analyzing multivariate data, and can provide insights into the
relationships between different indicators. For example, by filtering and varying crime rates, users
can observe related patterns in property prices and noise levels over the different neighborhoods.

16

3.1. Introduction

Motivating Application: Interactive Urban Planning. Policy makers frequently rezone dif-
ferent parts of the city, not only adjusting the zonal boundaries, but also changing the various
laws (e.g., new construction rules, building policies for different building types). During this
process, they are interested in viewing how the other aspects of the city (represented by urban
data sets) vary with the new zoning. This operation typically consists of users changing polygonal
boundaries, and inspecting the summary aggregation of the data sets until they are satisfied with
a particular configuration.

In this process, urban planners may also place new resources (e.g., bus stops, police stations),
and again inspect the coverage with respect to different urban data sets. The coverage is com-
monly computed by using a restricted Voronoi diagram [20] to associate each resource with a
polygonal region, and then aggregating the urban data over these polygons. To be effective, these
summarizations must be executed in real-time as configurations change.

Problem Statement and Challenges. In this chapter, we propose new approaches to speedup
the execution of spatial aggregation queries, which, as illustrated in the examples above, are
essential to explore and visualize spatio-temporal data. These queries can be translated into the
following SQL-like query that computes an aggregate function over the result of a spatial join
between two data sets, typically a set of points and a set of polygons.

SELECT AGG(ai) FROM P, R

WHERE P.loc INSIDE R.geometry [AND filterCondition]*

GROUP BY R.id

Given a set of points of the form P(loc, a1, a2, . . .), where loc and ai are the location and attributes
of the point, and a set of regions R(id, geometry), this query performs an aggregation (AGG) over
the result of the join between P and R. Functions commonly used for AGG include the count of
points and average of the specified attribute ai. The geometry of a region can be any arbitrary
polygon. The query can also have zero or more filterConditions on the attributes. In general,
P and R can be either tables (representing data sets) or the results from a sub-query (or nested
query).

The heat maps in the Figures 3.1(a) and 3.1(b) were generated by setting P as pickup locations
of the taxi data; R as either neighborhood (a) or census tract (b) polygons; AGG as COUNT(*);
and filtered on time (June 2012). To obtain the parallel coordinate visualization in Figure 3.1(c),
multiple queries are required: the above query has to be executed for each of the data sets of
interest that contribute to the dimensions of the chart.

Enabling fast response times to such queries is challenging for several reasons. First, the point-in-
polygon (PIP) tests to find which polygons contain each point require time linear with respect to
the size of the polygons. Real-world polygonal regions have complex shapes, often consisting of
hundreds of vertices. This problem is compounded due to the fact that data sets can have hundreds
of millions to several billion points. Second, as illustrated in the examples above, when using
interactive visual analytics tools, users can dynamically change not only the filtering conditions

17

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

and aggregation operations, but also the polygonal regions used in the query. Since the query
rate is very high in these tools, delays in processing a query have a snowballing effect over the
response times.

Existing spatial join techniques, common in database systems, are costly and often suitable only
for batch-oriented computations. The join is first solved using approximations (e.g., bounding
boxes) of the geometries. Then, false matches are removed by comparing the geometries (e.g.,
performing PIP tests), which is a computationally expensive task. This two stage evaluation
strategy also introduces the overhead of materializing the results of the first stage. Finally, the
aggregates are computed over the materialized join results and incur additional query processing
costs. Data cube-based structures (e.g., [98]) can be used to maintain aggregate values. However,
creating such structures requires costly pre-processing while the memory overhead can be
prohibitively high. More importantly, these techniques do not support queries over arbitrary
polygonal regions, and thus are unsuitable for our purposes.

Last but not least, while powerful servers might be accessible to some, many users have no
alternative other than commodity hardware (e.g., business grade laptops, desktops). Having
approaches to efficiently evaluate the above queries on commodity systems can help democratize
large-scale visual analytics and make these techniques available to a wider community.

For visual analytics systems, approximate answers to queries are often sufficient as long as they
do not alter the resulting visualizations. Moreover, the exploration is typically performed using
the “level-of-detail" (LOD) paradigm: first look at the overview, and then zoom into the regions
of interest for more details [133]. Thus, these systems can greatly benefit from an approach that
trades accuracy for response times, and enables LOD exploration that improves accuracy when
focusing on details.

Our Approach. By leveraging the massive parallelism provided by current generation graphics
hardware (Graphics Processing Units or GPUs), we aim to support interactive response times
for spatial aggregation over large data. However, accomplishing this is challenging. Since the
memory capacity of a GPU is limited, data must be transferred between the CPU and GPU, and
this introduces significant overhead when dealing with large data. In addition, to best utilize
the available parallelism, GPU occupancy must be maximized. We propose rasterization-based
methods that use the following key insights to overcome the above challenges:

• Insight 1: It is not necessary to explicitly materialize the result of the spatial join since the final
output of the query is simply the aggregate value;
• Insight 2: A spatial join between two data sets can be considered as “drawing" the two data

sets on the same canvas, and then examining their intersections; and
• Insight 3: When working with visualizations, small errors can be tolerated if they cannot be

perceived by the user in the visual representation.

Insight 1 allows combining the aggregation operation with the actual join. The advantages of
this are twofold: (i) no memory needs to be allocated for storing join results, allowing the GPU

18

3.1. Introduction

to process more input data, and thus computing the result in fewer passes; and (ii) since no
materialization (and corresponding data transfer overhead) is required, query times are improved.
Insight 2 allows us to frame the problem of evaluating spatial aggregation as renderings, using
operations that are highly optimized for the GPU. In particular, it allows us to exploit the
rasterization operation, which converts a polygon into a collection of pixels. Rasterization is an
important component of the graphics rendering pipeline and is natively supported by GPUs. As
part of the driver provided by the hardware vendors, rasterization is optimized to make use of
the underlying architecture and thus maximize occupancy of the GPU. By allowing approximate
results, Insight 3 enables a mechanism to completely avoid the costly point-in-polygon tests,
and use only the drawing operations, thus leading to a significant performance improvement
over traditional techniques. Moreover, it allows an algorithmic design in which the input data is
transferred only once to the GPU, further reducing the memory transfer overhead.

Even though our focus in this work is to enable seamless interaction on visual analysis tools,
we would like to note that the spatial aggregation has utility in a variety of applications in
several fields. For example, this type of query is commonly used to generate scalar functions for
topological data analysis [36, 43, 108]. While these applications might not require interactivity
per se, having fast response times would definitely improve analysis efficiency.

Contributions. Our contributions can be summarized as follows:

• Based on the observation that spatial databases rely on the same primitives (e.g., points,
polygons) and operations (e.g., intersections) common in computer graphics rendering, we
develop spatial query operators that exploit GPUs and take advantage of their native support
for rendering.
• We propose bounded raster join, an efficient approximate approach, that by eliminating the

need for costly point-in-polygon tests provides close to accurate results in real-time.
• We develop an accurate variant of the bounded raster join that combines an index-based join

with rasterization to efficiently evaluate spatial aggregation queries.

To the best of our knowledge, this is the first work that efficiently evaluates spatial aggregation
using rendering operations. The advantages of blending computer graphics techniques with
database queries are amply clear from our comprehensive experimental evaluation using two real
world data sets– NYC taxi data (∼868 million points) and geo-tagged Twitter (∼2.2 billion points).
The results show that the bounded raster join obtains over two orders of magnitude speedup
compared to an optimized CPU approach when the data fits in main memory (note that the data
need not fit in GPU memory), and over 30X speedup otherwise. In fact, it can execute queries
involving over 868 million points in only 1.1 second even on a current generation laptop. We also
report the accuracy-efficiency as well as bound-error trade-offs of the bounded approach, and show
that the errors incurred using even a very coarse bound do not impact the quality of the generated
visual representations. This makes our approach extremely valuable for visualization-based
exploratory analysis where interactivity is essential. Given the widespread availability of GPUs
on desktops and laptops, our approach brings large-scale analytics to commodity hardware.

19

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

3.2 Related Work

Spatial Aggregation. To support interactive response times for analytical queries in visualization
systems, compact data structures such as Nanocubes [98] and Hashedcubes [118] have been
designed to store and query the CUBE operator for spatio-temporal data sets. These techniques
mainly rely on static pre-computation: they pre-aggregate records at various spatial resolutions
and store this summarized information in a hierarchy of rectangular regions (maintained using a
quadtree). To enable filtering and aggregation support over different attributes, these attributes
must be known at build-time to be included as a dimension of the cube. Also, the granularity
of the filtering depends on the number of discrete ranges the attribute is divided into. Thus,
supporting filtering and aggregation over arbitrary attributes not only entails substantial pre-
computation costs, but also exponentially increases the storage requirements, often making it
impractical for real-world, large data sets. More importantly, since these structures maintain
aggregate information over a hierarchy of rectangular regions, they have three key limitations:
1) the queries supported are constrained to only rectangular regions; 2) spatial aggregation has to
be executed as a collection of queries, one for each region, which is inefficient for a large number
of regions; and 3) the computed aggregates are approximate and the error cannot be dynamically
bounded (since the accuracy depends on the quadtree resolution). Supporting arbitrary polygons
and obtaining accurate results requires accessing the raw data (which might require additional
spatial indexes) and defeats the purpose of maintaining a cube structure.

Several algorithms have also been proposed by the database community to evaluate spatial
aggregate queries [143, 158]. For instance, the aRtree [121] enhances the R-tree [66] structure by
keeping aggregate information in intermediate nodes. These algorithms rely on annotated data
structures and thus suffer from the aforementioned key limitations. Besides, they only support a
spatial range selection predicate and do not support predicates on other attributes which makes
them unsuitable for a dynamic setting. Closest to our approach are online aggregation techniques
for spatial databases. However, prior work in the area [160] is also limited to range queries and
does not provide support for join and group-by predicates.

Spatial Joins on CPUs. Our work is closely related to spatial join techniques since the join
operation is the most expensive component of spatial aggregation queries. However, recall
that explicit materialization of the join results is not required. Spatial joins typically involve
two steps: filtering followed by refinement. The filtering step finds pairs of spatial elements
whose approximations (minimum bounding rectangles - MBRs) intersect with each other, while
the refinement step detects the intersection between the actual geometries. Past research on
spatial join algorithms has largely focused on the filtering step [28, 81, 122, 123]. To improve the
processing of spatial queries over complex geometries, the Rasterization Filter [176] approximates
polygons with rectangular tiles and serves as an additional filtering step that reduces the number
of costly geometry-geometry comparisons. This approximation is calculated statically and stored
in the database. In contrast, our approach exploits GPU rasterization to produce a fine-grained
polygonal approximation on-the-fly and completely eliminates MBR-based tests. Apart from
the aforementioned standalone solutions, several commercial and freely available DBMSs offer

20

3.2. Related Work

spatial extensions complying with the two-step evaluation process [40, 42, 50, 110, 127, 159].
While the filtering step is usually efficient, the refinement often degrades query performance
since it involves costly computational geometry algorithms [137]. As a point of comparison,
we performed a join between only 10 NYC neighborhood polygons and the taxi data using
a commercial database. The query took over ten minutes to execute. This performance is
not suitable for interactive visual analytics systems. More recently, distributed solutions such
as Hadoop-GIS [4] and Simba [169] were proposed for spatial query processing. Both these
solutions suffer from network bottlenecks which might affect interactivity, and also rely on the
presence of powerful clusters for processing. Hadoop-based solutions are further constrained due
to disk I/O. As we show in our experiments, our approach attains interactive speeds using GPUs
that are ubiquitous in current generation desktops and laptops.

Spatial Query Processing on GPUs. Over the past decade, several research efforts have
leveraged programmable GPUs to boost the performance of general, data-intensive opera-
tions [11, 49, 58, 69, 90]. Earlier techniques (e.g., [58]) employed the programmable rendering
pipeline to execute these queries. Due to a fixed set of operations supported by the pipeline,
it often resulted in overly complex implementations to work around the restrictions. With the
advent of more flexible GPGPU interfaces, there have been several full fledged GPU-accelerated
RDBMSs [24, 104]. MapD [104] accelerates SQL queries by compiling them to native GPU
code and leveraging GPU parallelism. It is a relational database that currently does not support
polygonal queries2. On the other hand, exploiting graphics processors for spatial databases
is natural, as it involves primitive types (geometric objects) and operations (spatial selections,
containment tests) that are similar to the ones used in graphics. However, there has been limited
amount of work in this area. Sun et al. [140] used GPU rasterization to improve the efficiency
of spatial selections and joins. In the case of joins, they used rasterization as part of the join
refinement phase to determine if two polygons do not intersect. However, this approach does
not scale with an increasing number of polygons since the GPU is only used to perform pairwise
comparisons. In contrast, the rasterization pipeline plays an integral part in our technique. By
exploiting the capabilities of modern GPUs, we are able to perform more complex operations at
faster speeds.

Closest to our work, Zhang et al. [172, 174] used GPUs to join points with polygons. They index
the points with a Quadtree to achieve load balancing and enable batch processing. In the filtering
step of the join, the polygons are approximated using MBRs. Zhang et al. [173] used the spatial
join technique proposed in [172] to pre-compute spatial aggregations in a predefined hierarchy
of spatial regions on the GPU. In contrast, we perform the aggregation on-the-fly, taking into
account dynamic constraints. More recently, they extended their spatial join framework [175] to
handle larger point data sets. As they materialize the join result, to optimize the memory usage,
they make the limiting assumption that no two polygons intersect, thus ensuring the join size
is at most the size of the input. Additionally, to improve efficiency, they truncate coordinates
to 16-bit integers, thus resulting in approximate joins as well. Because we focus on analytical

2MapD currently has only one GIS function: https://www.mapd.com/docs/latest/mapd-core-guide/dml/

21

https://www.mapd.com/docs/latest/mapd-core-guide/dml/

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

queries that do not require explicit materialization of the join result, we can use rasterization to
better approximate the polygons as well as combine the join with the aggregation operation.

Aghajarian et al. [3] employ the GPU to join non-indexed polygonal data sets. The focus of our
work, however, is aggregating points contained within polygonal regions. Doraiswamy et al. [46]
proposed a customized kd-tree structure for GPUs that supports arbitrary polygonal queries.
While the proposed index provides interactive response times for selection queries, the evaluation
of the join requires one selection to be performed for each polygon, and is thus inefficient when
the polygon data set is large.

3.3 Background: Graphics Pipeline

The most common operation in graphics-intensive applications (e.g., games) is to render a
collection of triangular and polygonal meshes that make up a scene. To achieve interactivity,
such applications rely heavily on rasterization and approximate visual effects (e.g., shadows) to
render the scenes. Modern GPUs exhibit impressive computational power (the latest Nvidia GTX
1080 Ti reaches 10.6 TFLOPS) and implement rasterization in hardware to speedup the rendering
process. The key idea in our approach is to leverage the graphics hardware rendering pipeline for
rasterization and the efficient execution of spatial aggregation queries.

Rasterization-based Graphics Pipeline. Rendering a collection of triangles is accomplished
in a series of processing stages that compose a graphics pipeline. First, the coordinates of
all the vertices (of the triangles) that compose the scene are transformed into a common
world coordinate system, and then projected onto the screen space. Next, triangles falling
outside the screen (also called viewport) are discarded, while those partially outside are clipped.

Figure 3.2 – Rasterizing a trian-
gle into pixels.

Parts of triangles within the viewport are then rasterized.
Rasterization converts each triangle in the screen space into
a collection of fragments. Here, a fragment can be consid-
ered as the data corresponding to a pixel. The fragment size
therefore depends on the resolution (the number of pixels in
the screen space). For example, a 800 × 600 rendering of a
scene has fewer pixels (480k pixels) than a high resolution
rendering (e.g., 1920 × 1080 ≈ 2M pixels), and thus has a
bigger fragment size. In the final step, each fragment is ap-
propriately colored and displayed onto the screen. Figure 3.2
shows an example where a triangle is rasterized (pixels col-
ored violet) at a given resolution.

OpenGL [134], a cross platform rendering API, supports
the ability to program parts of the rendering pipeline with
a shading language (GLSL), thus allowing for custom functionality. In particular, the custom
rendering pipeline, known as shader programs, commonly consists of a vertex shader and a

22

3.4. Raster Join

fragment shader. The vertex shader allows modifying the first stage of the pipeline, namely, the
transformation of the set of vertices to the screen space. The clipping and rasterization stages are
handled by the GPU (driver). Finally, the fragment shader allows defining custom processing for
each fragment that is generated. Both shaders are executed using a single program, multiple data
(SPMD) paradigm.

Rasterization. Given the crucial part it plays in the graphics pipeline, parallel rasterization has
had a long research history, as can be seen from these classical papers [109, 126]. Hardware
vendors optimize parallel rasterization by directly mapping computational concepts to the internal
layout of the GPU. While the details of the rasterization approaches used in current GPU hardware
are beyond the scope of this work, we briefly describe the key ideas.

Hardware drivers typically use a variation of the algorithm proposed by Olano and Greer [114].
As a key optimization, they focus on the rasterization of triangles instead of general polygons. The
triangle is the simplest convex polygon, and it is thus computationally efficient to test whether a
pixel intersects with it. The intersection tests are typically performed by solving linear equations,
called edge functions [114]. The rasterization algorithm allows to test whether pixels lie within a
given triangle in parallel, and thus is amenable to hardware implementation.

Triangulation. Rendering polygons on the GPU is often accomplished by decomposing them
into a set of triangles, an operation called triangulation. The problem of polygon triangulation
has a rich history in the computational geometry domain. The two most common approaches
for triangulation are the ear-clipping algorithm [20] and Delaunay triangulation, in particular,
a constrained Delaunay triangulation [132]. Delaunay-based approaches have the advantage
of providing theoretical guarantees regarding the quality of the generated triangles (such as
minimum angle), and are often preferred for generating better triangle meshes. In this work, we
employ constrained Delaunay polygon triangulation.

Frame buffer objects (FBO). Instead of directly displaying the rendered scene onto a physical
screen (monitor), OpenGL also allows outputting the result into a “virtual" screen. The virtual
screen is represented by a frame buffer object (FBO) having a resolution defined by the user. Even
though the resolutions supported by existing monitors are limited, current graphics generation
hardware supports resolutions as large as 32K × 32K. Each pixel of the FBO is represented by 4
32-bit values, [r, g, b, a], corresponding to the red, blue, green, and alpha color channels. Users
can also modify the FBO to store other quantities such as depth values. Since our goal is to
compute the result of a spatial aggregation, we do not make use of any physical screen, but we
make extensive use of FBOs to store intermediate results.

3.4 Raster Join

Existing techniques execute spatial aggregation for a given set of points and polygons in two steps:
(1) the spatial join is computed between the two data sets; and (2) the join results are aggregated.

23

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Such an approach has two shortcomings. The join operation is expensive, in particular, the PIP
tests it requires – in the best-case scenario, one PIP test must be performed for every point-
polygon pair that satisfies the join condition, and the complexity of each PIP test is linear with
the size of the polygon. Even when the PIP tests are executed in parallel on the GPU, queries still
require several seconds to execute even for a relatively small number of points (see Section 3.7 for
details). To compute the aggregate as a second step, the join must be materialized. Consequently,
given the limited memory on a GPU, the join has to be performed in batches, which incurs
additional memory transfer between the CPU and GPU.

In this section, we first discuss how the rasterization operation can be applied to overcome the
above shortcomings. We then propose two algorithms: bounded and accurate raster join, which
produce approximate and exact results, respectively.

3.4.1 Core Approach

The design of raster join builds on two key observations:

1. A spatial join between a polygon and a point is essentially the intersection observed when the
polygon and point are drawn on the same canvas.

2. Given that the goal of the query is to compute aggregates, if the join and aggregate operations
are combined, there is no need to materialize the join results.

Intuitively, our approach draws the points on a canvas and keeps track of the intersections by
maintaining partial aggregates in the canvas cells. It then draws the polygons on the same canvas,
and computes the aggregate result from the partial aggregates of the cells that intersect with each
polygon. The above operations are accomplished in two steps as described next. To illustrate our
approach, we use the following example. We apply the query:

SELECT COUNT(*) FROM Dpt, Dpoly

WHERE Dpoly.region CONTAINS Dpt.location

GROUP BY Dpoly.id

to the data sets shown in Figure 3.3, Dpoly with 3 polygons, and Dpt with 33 points.

Step I. Draw points: The first step renders the points onto an FBO as shown in Procedure 1.
We maintain an array A of size equal to the number of polygons, which is 3 for the example in
Figure 3.3. This array is initially set to 0. When a point is processed, it is first transformed into
the screen space, and then rasterization converts it into a fragment that is rendered onto an FBO.
In this FBO, we use the color channels of a pixel for storing the count of points falling in that
pixel. Instead of setting a color to that pixel, we add to the color of the pixel (e.g., the red channel
of the pixel is incremented by 1). OpenGL only allows specifying colors for a fragment in the
fragment shader. The way the specified color is combined with that in the FBO is controlled by a
blend function. We set this function such that the specified color is added to the existing color

24

3.4. Raster Join

in the FBO. This step results in Fpt, an FBO storing the count of points that fall into each of its
pixels. The FBO for the input in Figure 3.3 is illustrated in Figure 3.4a.

Procedure 1: DrawPoints
Require: Points Dpt, Point FBO Fpt

1: Initialize array A to 0
2: Clear point FBO Fpt

3: for each p = (x, y) ∈ Dpt do
4: (x′, y′) = transform(p)
5: Fpt(x′, y′) += 1 % can be any function, see Section 3.5
6: end for
7: return A, Fpt

Figure 3.3 – Example input.

Step II. Draw polygons: The second step renders all
the polygons and incrementally updates the query re-
sult. As explained in Section 3.3, the polygons are first
triangulated. All triangles corresponding to a polygon
are assigned the same key (or ID) as that polygon. As
before, the vertices of the polygons are transformed into
the screen space and the rasterization converts the poly-
gons into discrete fragments. The generated fragments
are then processed in the fragment shader (Procedure 2).
When processing a fragment corresponding to a polygon
with ID i, the count of points corresponding to this pixel
(stored in Fpt) is added to the result A[i] corresponding
to polygon i. Figure 3.4b highlights the pixels that are
counted with respect to one of the polygons. After all
polygons are rendered, the array A stores the result of
the query. As we discuss in Section 3.5, this approach can be extended to handle other aggregation
and filtering conditions.

Procedure 2: DrawPolygons
Require: Polygon fragment (x′, y′), Polygon ID i,

Point FBO Fpt, Array A
1: A[i] = A[i] + Fpt(x′, y′) % same function as in Procedure 1
2: return A

3.4.2 Bounded Raster Join

Raster join is an approximate technique that introduces some false positive and false negative
points. In this section, we show that the number of these errors depends on the resolution and
their 2D location can be bounded.

25

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

(a) (b)

Figure 3.4 – The raster join approach first renders all points onto an FBO storing the count
of points in each pixel (a). In the second step, it aggregates the pixel values corresponding
to fragments of each polygon (b).

Figure 3.5 – When the resolution required to satisfy the given ε-bound is greater than what
is supported by the GPU, the canvas used for drawing the geometries is split into multiple
small canvases, each having resolution within the GPU’s limit.

The introduction of false negatives is an artifact of the rasterization of the triangles that compose
a polygon: a pixel is part of a triangle only when its center is inside the triangle. As a result,
the points that fall in the intersection between a pixel and a triangle not containing the pixel’s
center are not aggregated. The pixels that intersect the polygon outline are considered to be part
of the polygon and they introduce false positives, as all the points contained in those pixels are
aggregated. In the example shown in Figure 3.4b, P1 is approximated by the violet fragments and
the false positive counts are highlighted in white. By increasing the screen resolution, the pixel
size decreases and thus pixels better approximate the polygon outline. As a result, the expected
number of both false positives and false negatives decreases. Clearly, with an appropriately high
resolution, we can converge to the actual aggregate result.

In real-world data, there is typically uncertainty associated with respect to the location of a point.
Similarly, polygon boundaries (which often correspond to political boundaries) are fuzzy, in the

26

3.4. Raster Join

sense that there is often some leeway as to their exact location. For example, the neighborhood
boundaries of NYC fall on streets, and in most cases, the whole street surface (rather than a
one-dimensional line) is considered to be the boundary. This means that when analyzing data
over neighborhoods, it is often admissible to consider data points falling on boundary streets to
be part of either of the two adjacent neighborhoods. In such cases, it is sufficient to compute the
aggregate with respect to a polygon i′ that closely approximates the given polygon i. Formally, a
polygon i′ ε-approximates the polygon i if the Hausdorff distance dH(i, i′) between the polygons
is at most ε, where

dH(i, i′) = max
{

max
p′∈i′

min
p∈i

d(p, p′),max
p∈i

min
p′∈i′

d(p′, p)
}

Here, d(p′, p) denotes the Euclidean distance between two points.

Given ε, raster join can guarantee that dH(i, i′) ≤ ε, by using a pixel side length equal to ε′ = ε√
2

(i.e., the length of the diagonal of the pixel is ε). Intuitively, this ensures that any false positive
(false negative) point that is present (absent) in the approximate polygon, and thus considered (or
not) in the aggregation, is within a distance ε from the boundaries of polygon i. For example,
the outline of the violet pixelated polygon in Figure 3.4b represents the approximation used
corresponding to P1. In the example of NYC neighborhoods, a meaningful aggregate result is
obtained by using a pixel size approximately equal to the average street width.

The required resolution onto which the points and polygons are rendered to guarantee the ε-bound
is w′ × h′ = w

ε′ ×
h
ε′ , where w × h are the dimensions of the bounding box of the polygon data

set. When ε becomes small, the required resolution w′ × h′ can be higher than the maximum
resolution supported by the GPU. To handle such cases, the canvas is split into smaller rectangular
canvases, and the raster join algorithm described in Section 3.4.1 is executed over each one of
them. This multi-rendering process is illustrated in Figure 3.5. Recall that during the rendering
process, the points or polygons that do not fall onto the canvas are automatically clipped by
the graphics pipeline. This ensures that every point-polygon pair satisfying the join is correctly
counted exactly once.

Typically, in a visualization scenario such as the motivating example in Section 3.1, it is perfectly
acceptable to trade-off accuracy for interactivity, and increase the query rate by performing only
a single rendering operation with a relatively low resolution. For example, Figure 3.6(left) shows
the number of taxi pick-ups that happened in the month of June 2012 over the neighborhoods of
NYC as obtained using the raster technique with a canvas resolution of approximately 4k × 4k
that corresponds to ε = 20 meters. Note that this approximate result is almost indistinguishable
from the visualization obtained from an accurate aggregation (right), but it can be computed at a
fraction of the time. Also, if we fix a resolution as is common in visualization interfaces, when
the user zooms into an area of interest, a smaller region is rendered with a larger number of pixels.
Effectively, this is equivalent to computing the aggregation with a higher accuracy without any

27

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Figure 3.6 – Visualizing the approximate (left) and accurate (right) results of the example
query in Figure 3.1. The ε-bound was set to 20m. Note that the two visualizations are
virtually indistinguishable from one another.

significant change in computation times (since the FBO resolution does not change). Thus, our
approach is naturally suited for LOD rendering.

3.4.3 Accurate Raster Join

While Bounded Raster Join derives good (and bounded) approximations for spatial aggregation
queries, some applications require accurate results. In this section, we describe a modification of
the core raster approach that obtains exact results through the addition of a minimal number of
PIP tests.

Consider the same point and polygon data sets described in the previous section, but as illustrated
in Figure 3.7a. Notice that certain fragments (pixels), colored green and white respectively, are
either completely inside one of the polygons, or outside all polygons. Grid cells colored violet
are on the boundary of one or more polygons. Recall that the errors from the raster approach are
due only to the points that lie in these boundary pixels. This observation can be used to minimize
the number of PIP tests: by performing tests just on these points, we can guarantee that no errors
occur. This is accomplished in three steps.

28

3.4. Raster Join

(a) (b)

Figure 3.7 – Accurate raster join performs PIP tests only on points that fall on the violet
cells in (a) that correspond to pixels forming the boundaries of the polygons. The other
points are accumulated in the green pixels (b), which are then added to the polygons that
are “drawn" over them.

1. Draw the outline of all the polygons: In this step, the boundaries of the set of polygons are
rendered onto an FBO. In particular, the fragment shader assigns a predetermined color to the
fragments corresponding to the boundaries of the polygons. The FBO is first cleared to have no
color ([0, 0, 0, 0]), thus ensuring that at the end of this step, only pixels on the boundary will have
a color. The outline FBO for the example data will consist of an image having only the violet
pixels from Figure 3.7.

2. Draw points: This step (Procedure 3) builds on the core raster approach described above.
As before, we maintain a result array A initialized to 0. When a point is processed, it is first
transformed into the screen space. If the fragment corresponding to the point falls into a boundary
pixel (which is determined by examining the pixel color in the Boundary FBO), the point is
processed with Procedure 4.

Procedure 3: AccuratePoints
Require: Polygon Index Ind, Points Dpt, Boundary FBO Fb

1: Initialize array A to 0
2: Clear point FBO Fpt

3: for each p = (x, y) ∈ Dpt do
4: (x′, y′) = transform(p)
5: if Fb(x′, y′) is a boundary then % test pixel color in FBO
6: execute Procedure JoinPoint(Ind, p, A)
7: else
8: Fpt(x′, y′) += 1 % same function as in Procedure 1
9: end if

10: end for
11: return A, Fpt

29

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Procedure 4: JoinPoint
Require: Polygon Index Ind, Point (x, y), Array A
1: P = Ind.query(x, y)
2: for each ri ∈ P do
3: if ri contains p then
4: A[i] = A[i] + 1 % same function as in Procedure 1
5: end if
6: end for
7: return A

This procedure first uses an index over the polygons to identify candidate polygons that might
contain the point, and then performs a PIP test for every candidate. Since our focus is on time
efficiency, we use a grid index that stores in each grid cell the list of polygons intersecting
it, thus allowing for constant O(1) lookup time. If a point is inside the polygons with IDs
I = {i1, i2, . . . , il}, l ≤ k, where k is the total number of polygons, then each of the array elements
A[i], i ∈ I, is incremented by 1.

If the fragment does not correspond to a boundary pixel, then this fragment is rendered onto a
second FBO. In this FBO, as in the core approach, we use the color channels of a pixel to store
the count of points falling in that pixel. This step results in two outputs: A, which stores the
partial query result corresponding to data points that fall on the boundary of the polygons; and
Fpt, an FBO storing the count of points that fall into each of its pixels (see Figure 3.7b).

3. Render polygons: The final step simply renders all the polygons and updates the query result
when processing the polygon fragments in the fragment shader (Procedure 5). The only difference
from the core approach in this procedure is checking if a fragment corresponding to a polygon
with ID i falls on a boundary pixel. If the fragment is on a boundary pixel, then it is discarded
since all points falling into that pixel have already been processed in the previous step. Otherwise,
all points that fall into the pixel are inside this polygon. Thus, the count of points corresponding
to the pixel (stored in Fpt) is added to the result A[i] corresponding to polygon i. Note that
when polygons intersect, fragments completely inside one polygon can be on the boundary of
another polygon. The white point in Figure 3.7a is one such example: it lies inside P1, but on the
boundary of P2. After all polygons are rendered, the array A stores the result of the query.

Procedure 5: AccuratePolygons
Require: Polygon fragment (x′, y′), Polygon ID i,

Boundary FBO Fb, Point FBO Fpt, Array A
1: if Fb(x′, y′) is not a boundary then % test FBO pixel color
2: A[i] = A[i] + Fpt(x′, y′) % same function as in Procedure 4
3: end if
4: return A

30

3.5. Raster Join Extensions

3.5 Raster Join Extensions

In this section, we discuss how our approach can be extended to handle different aggregations and
filtering clauses, as well as data larger than GPU memory. We also describe how accurate ranges
can be computed for the aggregate results. While the bounded approach provides guarantees with
respect to the spatial region to take into account the uncertainties in the spatial data, providing
bounds over the query result can be also useful for a more in-depth analysis.

Aggregates. Aggregate functions are categorized into distributive, algebraic and holistic [62].
Distributive aggregates, such as count, (weighted) sum, minimum and maximum, can be com-
puted by dividing the input into disjoint sets, aggregating each set separately and then obtaining
the final result by further aggregating the partial aggregates. Algebraic aggregates can be com-
puted by combining a constant number of distributive aggregates, e.g., average is computed as
sum/count. Holistic aggregates, such as median, cannot be computed by partitioning the input.
The description in this chapter focuses on count queries, while our current implementation also
supports sum and average. However, note that our solutions apply to any distributive or algebraic
(but not to holistic) aggregates in a straightforward manner. When computing the average, as
with the count function, one of the color channels in the FBO (e.g., red) is used for counting the
number of points while another channel (e.g., green) is used to sum the appropriate attribute.
Similarly, instead of a single output array A, we use two arrays A1 and A2 to maintain the sum
and count values when the polygons are processed (or when PIP tests are performed in the
accurate variant). After all polygons are drawn in the final step of the algorithm, the query result
is obtained by dividing the elements of the sum array A1 by the elements of the count array A2.
Note that the data corresponding to the aggregated attribute is also transferred to the GPU.

Query Parameters. When query constraints are specified, they can also be tested on the GPU
for each data point. The constraint test is performed in the vertex shader before transforming the
point into screen space. The vertex shader discards the points that do not satisfy the constraint
by positioning them outside the screen space so that they are clipped and they are not further
processed in the fragment shader. We currently support the following constraints: >,≥, <,≤, and
=. Note that the data corresponding to the attributes over which constraints are imposed is also
transferred to the GPU.

Out-of-Core Processing. When the data points do not fit into GPU memory, they are split into
batches that fit into the GPU. Then the query is executed on each of the batches and the results
are combined. Thus, a given point data set has to be transferred to the GPU exactly once. Current
generation GPUs have at least a few GB of memory that can easily fit several million polygons
(depending on their size). Thus, we assume that the polygon data set fits into GPU memory and
does not need to be transferred in batches.

Estimating the Result Range. We extend the bounded variant to compute a range for the
aggregate result at each polygon. This is accomplished using the boundary pixels corresponding
to the polygons as follows. Given a polygon i, let P+

i (P−i) be the set of pixels on its boundary that

31

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

contain false positive (negative) results. Since only these pixels contribute to the approximation,
counting the points contained in them provides loose bounds on the result range. In particular,
the sums ε+

i =
∑

(x,y)∈P+
i

Fpt(x, y) and ε−i =
∑

(x,y)∈P−i
Fpt(x, y) are used to compute the worst case

lower and upper bounds respectively, resulting in the interval [A[i] − ε+
i , A[i] + ε−i] with 100%

confidence.

Independent of the actual data distribution, since the region corresponding to a pixel covers a very
small fraction of the spatial domain, we can reasonably assume that the spatial and value-domain
distribution of the data points within each pixel is uniform. Under this assumption, we provide
tighter expected intervals by computing the intersection between the boundary pixels and the
polygons. In particular, let fi(x, y) denote the fraction area of the pixel (x, y) that intersects
polygon i. Then the expected lower and upper bounds, respectively, are computed as before
using:

ε+
i =

∑
(x,y)∈P+

i

fi(x, y) × Fpt(x, y)

ε−i =
∑

(x,y)∈P−i

fi(x, y) × Fpt(x, y)

The corresponding intervals for sum and average can be computed in a similar fashion.

3.6 Implementation

In this section we first discuss the implementation of the raster join approaches using OpenGL3.
We then briefly describe the GPU baseline used for the experiments.

3.6.1 OpenGL Implementation

We used C++ and OpenGL for the implementation. We make extensive use of the newer OpenGL
features, such as compute shaders and shader storage buffer objects (SSBO). Compute shaders
add the flexibility to perform general purpose computations (similar to cuda [112]) from within
the OpenGL context while making the implementation (hardware) manufacturer independent.
SSBOs enable shaders to write to external buffers (in addition to FBOs). For memory transfer
between the CPU and GPU, we use the newly introduced persistent mapping that is part of
OpenGL’s techniques for Approaching Zero Driver Overhead.

3https://github.com/vida-nyu/raster-join

32

https://github.com/vida-nyu/raster-join

3.6. Implementation

Polygon Triangulation. To triangulate polygons, we use the clip2tri library [38], which imple-
ments an efficient constrained Delaunay-based triangulation strategy. Triangulation is accom-
plished in parallel on the CPU and the set of triangles is transferred to the GPU during query
execution.

Bounded Raster Join. Each of the two steps of the bounded approach, i.e., drawing points
followed by drawing polygons, is composed of two shaders – a vertex shader and a fragment
shader.

When drawing points, we transfer them to the GPU by copying them to a persistently mapped
buffer that is used as a vertex buffer object (VBO). Each vertex shader instance takes a single data
point from the VBO and transforms it into screen space (Line 4 in Procedure 1). The transformed
point is processed in the fragment shader, which essentially updates the FBO at the given location
(Line 5 in Procedure 1). Note that the memory for the FBO is allocated directly on the GPU.

When drawing polygons, the triangle coordinates are passed to the GPU as part of the VBO,
and the vertex shader again transforms the endpoints to screen space. The rasterization is
accomplished as part of the OpenGL pipeline, and each fragment resulting from this operation is
processed in the fragment shader (Procedure 2). Since the FBO from the previous step is already
on the GPU, it is simply bound as a texture to the fragment shader, thus ensuring there is no
unnecessary data transfer between the CPU and GPU. The result array A is maintained as an
SSBO, and atomic operations are used when updating it. An advantage of SSBOs is that they
allow processing intersecting polygons in a single pass thus avoiding unnecessary, additional
processing.

Computing Result Ranges. Recall that the boundary pixels that contribute to both false positives
and false negatives have to be identified to compute the result intervals. False positive pixels
are identified by simply drawing the outline of a polygon. Identifying false negative pixels,
however, is less straightforward. To accomplish this, we use conservative rasterization that
allows rendering all partially covered pixels: the outline is drawn using conservative rasterization,
and pixels that are not part of the regular rasterization form the false negative pixels. Conservative
rasterization is supported via a custom OpenGL extension (GL_NV_conservative_raster) on
Nvidia GPUs. On non-Nvidia GPUs, conservative rasterization can be accomplished by drawing
a thicker outline and discarding pixels that do not intersect with the drawn polygon.

Deriving the tighter expected result interval requires computing the intersection between a pixel
and its corresponding polygon. To do this efficiently, in the vertex shader, in addition to the
transformed coordinates, we output the edge that is being drawn. We then use the Cohen-
Sutherland line clipping algorithm [52] in the fragment shader to compute the fraction of the
pixel that intersects with the polygon.

Accurate Raster Join. The first step of the accurate variant (drawing polygon boundaries) is
again implemented as a vertex and fragment shader, where the boundaries are stored in an FBO.
Conservative rasterization is used to ensure that no boundary pixels are missed. The second step

33

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

(lines 4–9 in Procedure 3) is implemented using compute shaders. As before, persistent mapped
buffers are used for sharing data between the CPU and GPU. In addition to the data points, this
step also requires a grid index on the query polygons. This index is created on-the-fly on the
GPU as described next. The implementation of the third step (Procedure 5) is similar to that of
the bounded raster join.

Polygon Index. We implemented a grid index that stores a polygon identifier in all the grid cells
intersecting the bounding box of that polygon. The grid is represented as an array of linked lists,
one for every grid cell. Each linked list stores all polygons that are assigned to a grid cell. We
build the index on the GPU on-the-fly for every query in two passes. Given a grid resolution, the
first pass computes the number of cells each polygon intersects with to estimate the size of the
index. The second pass assigns the polygons to their corresponding cells. Since dynamic memory
allocation is not supported on the GPU, we allocate the required memory directly on the GPU as
a single contiguous region and implement a custom linked list. This memory is discarded after
the query is executed.

Query Options. We chose to pass attributes as part of the VBO rather than regular buffers to
allow for an efficient stratified access to the data when processing the vertex information in the
vertex shader. However, this imposes the restriction that the size of each vertex must be fixed at
compile time. As a result, in our implementation, we support constraints (which are conjunctions)
over a maximum of 5 attributes. We can increase this constant up to the hardware limit in the
shader code.

3.6.2 Baseline: Index Join Approach

As we show in the next section, using current GPU-based spatial join techniques [175] to execute
the spatial aggregation is not very efficient mainly due to the materialization of the spatial
join prior to the aggregation. To have a better baseline to compare our rasterization-based
approaches, we extend existing index-based techniques to combine the spatial join operation with
the aggregation so as not to explicitly materialize the join.

The key idea is to use an index on the polygon data to identify polygons on which to perform
PIP tests. As with the accurate raster join, we use the grid index for this purpose. The query is
executed as shown in Procedure 6. As with the raster join variants, the result array A is initialized
to 0. Then the algorithm processes each point p(x, y) ∈ Dpt using Procedure 4. Note that in the

Procedure 6: IndexJoin
Require: Polygon Index Ind, Points Dpt

1: Initialize array A to 0
2: for each p = (x, y) ∈ Dpt do % Can be run in parallel
3: execute Procedure JoinPoint(Ind, p, A)
4: end for
5: return A

34

3.7. Experimental Evaluation

Table 3.1 – Polygonal data sets and processing costs.

Region
Nr of

polygons
Text file

size
Triangu-

lation
Index Creation

GPU
Multi-
CPU

Single-
CPU

NYC neigh-
borhoods

260 877 KB 20 ms 10 ms 0.57 s 2.15 s

US counties 3945 20 MB 0.66 s 14 ms 23.34 s 37.05 s

case of accurate raster join, this Procedure is executed only for a subset of points that are within a
small distance from the polygon boundaries. After all points are processed, the array A contains
the query result. Similar to the accurate raster join variant, the above query is implemented using
a compute shader.

3.7 Experimental Evaluation

In this section, we first describe the experimental setup and then present a thorough experimental
analysis that demonstrates the benefits of our raster join approach using two real-world data sets.
Sections 3.7.3–3.7.5 discuss the scalability of the approaches when data fits in main memory. The
goal of these experiments is threefold: 1) demonstrate the benefits of exploiting the parallelism
of GPU; 2) verify the scalability of the approaches with increasing input sizes; and 3) show
that the bounded variant outperforms all the other approaches in terms of query performance.
Section 3.7.6 provides an in-depth analysis of the accuracy trade-offs of the bounded raster join
approach. Finally, Section 3.7.7 presents experiments on data sizes larger than the main memory.

3.7.1 Experimental Setup

Hardware Configuration. The experiments were performed on a Windows laptop equipped
with an Intel Core i7 Quad-Core processor, running at 2.8 GHz, 16 GB RAM and 1 TB SSD, and
an NVIDIA GTX 1060 mobile GPU with 6 GB of GPU memory.

Data Sets. We use two real-world data sets for our experiments: NYC yellow taxi and Twitter.
The NYC Taxi data set contains details of over 868 million yellow taxi trips that occurred in NYC
over a 5 year period (2009 - 2013). The data is available [145] as a collection of csv files, which
when converted to binary occupy 72 GB. Each record corresponds to a taxi trip and consists of
two spatial attributes (pickup and drop-off locations), two temporal attributes (pickup and drop-off

times), as well as other attributes such as fare, tip, and number of passengers. The data is stored as
columns on disk and the required columns (attributes) from the Taxi data set are loaded into main
memory prior to performing any experiments. The Twitter data set was collected from Twitter’s
live public feed over a period of 5 years. It consists of over 2.29 billion geo-tagged tweets in the

35

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

USA formatted as json records. Each tweet record has attributes corresponding to the location
and time of the tweet, the actual text, and other information such as the favorite and retweet
counts. When converted to binary, the data (excluding the text) occupies 69 GB on disk. Note that
both data sets are skewed. Taxi trips are mostly concentrated in Lower Manhattan, Midtown, and
airports, while there is a denser concentration of tweets around large cities. Sections 3.7.2–3.7.6
use the taxi data set. To perform the join queries, we also use two polygon data sets, summarized
in Table 3.1. These data sets contain complex polygons commonly used by domain experts in
their analyses.

Queries. For the experimental evaluation, we use Count() as the most representative aggregate
function. Unless otherwise stated, no filtering is performed on additional attributes. To vary the
input sizes, we first divided the data into roughly equal time intervals. The input size of a query
was then increased by using data from increasing number of time intervals.

CPU Baseline: Index Join Approach. In addition to the GPU approaches, we also implemented
the Index Join Approach on the CPU (described in Section 3.6). We further optimized the
approach by assigning a polygon only to those grid cells that the actual geometry intersects. That
is, we build the polygon index by first identifying all the cells intersecting with the MBR of
the polygon, and then perform cell-polygon intersection tests. The algorithm was implemented
in C++. We also implemented a parallel version with OpenMP, where we used #pragma omp
parallel for to parallelize the PIP tests (Line 2 in Procedure 6). To avoid locking delays, each
thread maintains the aggregates in a thread-local data structure, and all the aggregates are merged
into a single result array in the end. The building of the polygon index was also parallelized (each
polygon was processed independently).

Processing Polygon Data. Recall that both rasterization variants require the polygons to be
triangulated (Section 3.3), while the accurate variant, and the CPU as well as GPU baselines
require the creation of an index. For all the GPU approaches, our implementation computes the
triangulation (in parallel on the CPU) and the indexes (on the GPU) on-the-fly for each query.
On the other hand, since the CPU computation is much slower, the indexes were pre-computed.
Table 3.1 shows the time taken for each of these cases. To be consistent, we do not include the
polygon processing time in the reported query execution time. However, note that even if these
time were included, they would have a minimal effect on the performance of the GPU approaches.

Configuration Parameters. We limited the GPU memory usage to 3 GB, and the maximum
FBO resolution to 8192 × 8192. Unless otherwise stated, the default ε-bound for NYC polygons
is 10 m, and 1 km for US polygons. The resolution of the grid index for the neighborhood
polygonal data set was set to 10242. For US counties, the GPU approaches use a grid index
with 10242 cells, while the CPU baselines use 40962 cells. The index resolution for the GPU
approaches was chosen based on the total time, including index creation time, since this was part
of the query execution. The overall performance of using a 10242 index far outweighed that of
using a 40962 index on the GPU. On the other hand, since we pre-computed the index for the
CPU implementation, we chose the resolution that provided best query performance.

36

3.7. Experimental Evaluation

Figure 3.8 – Scaling with increasing input sizes for Taxi ./ Neighborhood when the data
fits in GPU memory. (Left) Speedup over single-CPU. (Right) Total query time. Bounded
Raster Join has the best scalability as it eliminates all PIP tests. Accurate Raster Join
performs fewer PIP tests than the Baseline.

3.7.2 Choice of GPU Baseline

Table 3.2 compares our GPU index-based approach (Index Join) with state-of-the-art work on
GPU join/aggregation4 [175]. Our implementation performs 2-3× faster, mainly due to avoiding
the materialization of the join result. We could not perform experiments with bigger input sizes
as the provided code ran out of GPU memory. In the remaining experiments, given its clear
advantages, we use our Index Join as the GPU baseline.

Table 3.2 – Choice of GPU baseline.

Input Size (#points)
Zhang et al. [175]
(total time - ms)

Index Join Baseline
(total time - ms)

57,676,723 1060 344
111,659,661 1649 651
168,368,285 2129 999

3.7.3 Scalability with Points

In-Memory Performance. Figure 3.8 (left) plots the speedup of the parallel approaches (GPU
and CPU) relative to our single-threaded CPU baseline when the point data sets fit in the GPU
memory (i.e., the GPU memory holds the entire data set and data need not be transferred from the
CPU to the GPU). Figure 3.8 (right) plots the total time against input size. The rasterization-based
approaches are over two orders of magnitude faster than the single-core CPU implementation.
Moreover, the bounded variant is over 4 times faster than the accurate versions. Given that

4Code made available by the authors at http://geoteci.engr.ccny.cuny.edu/zs_supplement/zs_gbif.html

37

http://geoteci.engr.ccny.cuny.edu/zs_supplement/zs_gbif.html

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Figure 3.9 – Scaling with increasing input sizes for Taxi ./ Neighborhood when the data
does not fit in GPU memory. (Left) Speedup over single-CPU. (Right) Break down of the
execution time. Note that the memory transfer between CPU and GPU dominates the
execution time for the bounded approach.

Figure 3.10 – [Best viewed in color] Neighborhoods of New York City (left). 4096 synthetic
polygons generated over the same area (right).

our test system has a quad-core processor (with a total of 8 threads), the multi-core CPU
implementation provides a 5× speedup over the single-core CPU implementation. Thus, for the
same laptop the GPU offers at least an order of magnitude more parallelism.

Out-of-Core Performance. While significant speedups are obtained for in-memory queries,
large speedups are achieved even when the data does not fit in GPU memory. As illustrated in
Figure 3.9, the GPU approaches still obtain over an order of magnitude speedup over the CPU
implementation while bounded raster join has a speedup of over two orders of magnitude. Note
that, since the query times in this case are in milliseconds, the speedups are affected by even
small fluctuations in the time (e.g., due to other windows background processes). The scalability
observed for the different approaches is similar to that when data fits in GPU memory. By
eliminating the costly polygon containment tests, the bounded approach significantly outperforms
the other approaches. Even when the input size is around 868 million points, query execution

38

3.7. Experimental Evaluation

Figure 3.11 – Scaling with polygons. (Top) Polygon processing costs. (Bottom Left) Total
query time when data does not fit in GPU memory. (Bottom Right) GPU processing time.
Note that increasing the number of polygons has almost no effect on Bounded Raster Join.

takes only 1.1 seconds. The linear scaling also shows that the computation time is typically
not affected by the number of additional passes required in the out-of-core scenario. To better
understand the reduced speedup attained by the out-of-core technique compared to in-memory,
we broke down the total execution time into the different components of query evaluation, i.e.,
processing and data transfer. The data transfer has a significant contribution in the overall time,
especially in the case of bounded raster join where it dominates the execution time.

3.7.4 Scalability with Polygons

Generating Polygons. Since real-world polygonal data consists of a small number of polygons
(100’s to 1000’s), we generated polygonal data to test the scalability of our approaches with the
number of polygons. Real-world polygonal data sets have a combination of simple as well as
complex-shaped (concave and arbitrary) polygons with varying sizes, as seen in Figure 3.10 (left).
Our goal was to generate synthetic polygons with properties similar to the real ones. To accom-
plish this, we use the Voronoi diagram to generate a collection of convex polygons of varying

39

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Figure 3.12 – Scaling with number of attribute constraints.

sizes (based on the location of the points) and then ensure that concave and more complex shapes
are generated by merging multiple adjacent convex polygons. More specifically, to generate n
polygons, we first randomly generated 4n points within the rectangular extent of the data. We then
computed the constrained Voronoi diagram over these points. This generates a collection of 4n
convex polygons partitioning the rectangular region. Next, we randomly chose two neighboring
polygons and merged them into a single polygon. We repeated this step until only n polygons
remained. While on average 4 polygons are merged into one, there are cases where a higher
number of polygons are merged (creating complex shapes), as well as cases where the simpler
convex shapes are retained, thus mimicking the real-world scenario. The generated polygons are
shown in Figure 3.10 (right).

Polygon Processing Costs. Figure 3.11 (top) shows the cost of processing the polygons (i.e.,
triangulation and index creation). As with the neighborhood data, we build a grid index with
10242 cells. Recall that the bounded variant requires only triangulation, the baseline only grid
index creation, and the accurate variant both. As expected, triangulation time increases with an
increasing number of polygons. When building the index, since the polygons partition the space,
we touch all cells of the grid index one or more times depending on the polygons’ structure.
That explains the small drop at the beginning of the plot: even though the number of polygons
increases, the sizes of their bounding boxes become smaller and each grid cell needs to be
processed fewer times. As the number of polygons further increases, each grid cell intersects
more polygon bounding boxes and needs to be processed more times thus increasing the building
time. Note that even 64K polygons are processed in milliseconds. Thus, in dynamic settings
where the polygons are not known a priori, they can be efficiently processed on-the-fly.

Performance. Figure 3.11 (bottom left) plots the total time when joining with 600 M points that
do not fit in GPU memory. Figure 3.11 (bottom right) focuses on the time spent on the GPU. The
performance gap between the accurate variant and the baseline is much smaller in this scenario.

40

3.7. Experimental Evaluation

Figure 3.13 – Accuracy analysis. (a) Accuracy-time trade-off. (b) Accuracy-ε-bound trade-
off. The box plot shows the distribution of the percent error over the polygons for different
ε-bounds. (c) The scatter plot shows, for each polygon, the accurate value against the
approximate value for ε = 20 m. The red error bars indicate the expected result intervals
(see the enlarged highlighted region).

Given the large number of polygons, the polygon outlines cover a significantly higher number of
pixels, thus requiring more PIP tests to be performed. In the worst case, if the polygonal data
set is very dense, the accurate variant degenerates into the baseline. Current generation GPUs
can handle millions of polygons at fast frame rates. Since the bounded variant decouples the
processing of points and polygons, increasing the number of polygons has almost no effect on the
query time. The performance of the in-memory scenario is similar to that of Figure 3.11 (bottom
right), which shows the GPU processing times.

3.7.5 Adding Constraints

As mentioned in Section 3.1, users commonly change query parameters interactively as they
explore a data set. To test the efficiency of our approach in this scenario, we incrementally apply
constraints on different attributes of the taxi data. Figure 3.12 shows the total execution time of

41

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

these queries for two input sizes, the first fitting in GPU memory (85 M points) and the second not
(226 M points). The out-of-GPU-core breakdown shows that increasing the number of constraints
increases the memory transfer time, as more data corresponding to the filtered attributes has to
be transferred. However, the processing time is sometimes reduced with a higher number of
constraints, because points that do not satisfy the constraints are discarded in the vertex shader,
before performing any processing, thus reducing the amount of work done by the GPU.

3.7.6 Accuracy

Accuracy-Time Trade-Off. Figure 3.13(a) plots the trade-off between accuracy and query time
for a query involving 600 M points (out-of-core). As the value of ε decreases, the number of
rendering passes increases quadratically, thus the query time increases. After some point, the
bounded variant becomes slower than the accurate. Analyzing this trade-off can help a query
optimizer to automatically select a variant based on the value of ε.

Accuracy-ε-Bound Trade-Off. Figure 3.13(b) shows the effect of the specified ε-bound on the
accuracy of the query results. The whiskers of the box plot represent the extent that is within 1.5
times the interquartile range of the 1st and 3rd quartiles, respectively. Decreasing the ε-bound
decreases the error range converging towards the accurate values. The error range for the default
value of ε = 10 m is small, with a median of only about 0.15%. To show the actual differences
in the aggregation results, we also plot the accurate vs. the approximate value for each of the
polygons, using the coarsest bound (ε = 20 m) in Figure 3.13(c). The fact that all the points lie
very close to the diagonal indicates that even for a coarse bound a very good approximation is
obtained. The bars in these plots denote the expected result interval that is computed (being very
small, it is not clearly visible on the complete scatter plot). As seen in the highlighted region,
our approach provides a tight interval even for a coarse ε value. The overhead of computing the
intervals is negligible; computing them even for the costliest bound of ε = 1 m required only an
additional 140 ms. The accuracy trade-offs of the in-memory setup have a similar behavior.

Effect on Visualizations. Figure 3.6 shows side-by-side the visualizations computed through the
bounded and accurate variations respectively. Note that the two visualizations are perceptually
indistinguishable. The quality of the approximations can also be formally verified using just-
noticeable difference (JND), a quantity used to measure how much a color should “increase"
or “decrease" before humans can reliably detect the change [39]. In particular, sequential color
maps used in the above visualizations can have a maximum of 9 perceivable color classes [68],
resulting in a JND equal to 1

9 . A human can perceive the difference between the approximate and
accurate visualizations, only when the difference between the corresponding normalized values is
greater than 1

9 . However, the maximum absolute error between the normalized values even for
the coarsest error bound (ε = 20 m) is less than 0.002 � 0.11, clearly showing that the difference
from the visualization obtained using the bounded variation is not perceivable.

42

3.7. Experimental Evaluation

Figure 3.14 – Scaling with points when data does not fit in main memory (Twitter ./

County). (Left) Total query time. (Right) Processing time excluding memory access time.

Figure 3.15 – Accuracy-Time trade-off (left) and ε-bound trade-off (right) using the Twitter
data.

3.7.7 Performance on Disk-Resident Data

Figure 3.14 shows the performance of the different approaches when the data does not fit into
the main memory of the system. We use the twitter data for this purpose, and aggregate over
all counties in the USA. The increase in query time is primarily due to disk access times. Our
implementation simply reads data from disk as and when required to transfer to the GPU, and
does not apply any I/O optimizations such as parallel prefetching, which are beyond the scope of
this work. Our focus was on the design of an efficient operator to perform spatial aggregation
that can be integrated into any existing DBMS which efficiently handles such scenarios. In spite
of this increase, the GPU approaches still provided over an order of magnitude speedup over the
CPU baseline. When looking at only the processing times (time spent by the GPU), note that the
timings are consistent with those when data fits in main memory. Even when executing a query
with close to 2.3 billion points and over 3,900 polygons, the GPU processing time with Bounded
is less than 5 seconds. Since the counties data spans the whole USA, we chose ε = 1 km for the

43

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

Figure 3.16 – The map view of Urbane. The density of NYC taxi data (b) is visualized
over the neighborhood regions (a) for a chosen time range (c). The menu highlights this
selection.

above experiments. Figure 3.15 shows the accuracy-time as well as accuracy-ε-bound trade-off

for 1.8 billion points. The scatter plot visualizing the accuracy of the query is similar to the taxi
experiments, with the points falling close to the diagonal.

3.8 Integrating Raster Join into Urbane

In this section, we provide some more details about Urbane [51], and describe how we integrated
Raster Join into Urbane to speedup the visual exploration.

3.8.1 The Interface of Urbane

The visual interface of Urbane is comprised of two components: the Map View and the Data
Exploration View.

Map View. This view is composed of a map rendering component (see Figure 3.16). The various
menus and panels are overlaid on the map. Navigation and operations on map view such as
panning, zooming, and rotating the view are accomplished through mouse interactions. The
main menu (right side of map view in Figure 3.16) allows users to control all the functionalities
of the system. This includes loading or deleting urban data sets as well as polygonal regions
that define the different resolutions. Users can then choose the data set to be visualized along
with the visualization resolution. For example, in Figure 3.16, the NYC taxi data is chosen

44

3.8. Integrating Raster Join into Urbane

Figure 3.17 – Multi-resolution exploration. Neighborhoods having a high density of sub-
way stations are highlighted, and Financial District is selected for further analysis (a). Ex-
ploring buildings in the selected region to identify opportunities for new development (b).

to be visualized and the aggregation is performed over the neighborhoods of NYC (chosen
polygonal regions). The menu also allows users to toggle the data exploration view that enables a
comparative exploration of the different data sets.

Data Exploration View. The main goal of the data exploration view is to support the analyses
of urban data at two different resolution levels—region and building. This view consists of two
components—a parallel coordinates chart (PCC) and a data table (see Figure 3.17). At the region
level, the PCC allows users to visually analyze and compare multiple data sets across different
polygonal regions (selected via the menu), and the data table shows the aggregate values for each
of the regions. In the PCC, each data set (or dimension) is represented as a vertical axis, and
each region is mapped to a polyline that traverses across all of the axes, crossing each axis at a
position proportional to its aggregate value for that dimension. Users can also filter regions by
brushing the desired range of values on individual axes of the PCC. This updates the map by
highlighting all regions that satisfy the filter constraints (Figure 3.17(a)).

Users can also drill down into the building level by selecting a region of interest from the data
table, and choosing the building option. At the building level, users can perform a similar
exploration as above, i.e., visualize and analyze the different data sets, but in the context of each
of the buildings within the selected region. This operation is illustrated in Figure 3.17(b). Here,
the value for each building is computed by aggregating the data within a fixed radius of the
building.

45

Chapter 3. GPU Rasterization for Interactive Spatial Data Exploration

3.8.2 Integrating with Raster Join

Urbane generates spatial aggregation queries for two different operations: visualizing on the map,
and visualizing on the PCC. At the region level, the polygonal data set corresponds to the different
regions chosen by the user. At the building level, the polygons used in the join correspond to
circles centered around the different buildings within the selected region. The accuracy (ε-bound)
can be controlled by the user, with 20 meters being the default value for NYC. The Raster Join
approach primarily takes as input a set of points and a collection of polygons, and computes the
spatial aggregation as the output. Even though it also supports filtering the data over multiple
attributes, it could still become inefficient to execute Raster Join over an entire data set due to the
memory transfer overhead between the CPU and the GPU. Thus, to reduce this overhead, we store
the different urban data sets in a 3D grid index of fixed size, where the dimensions correspond to
the location (lat/long coordinates) and time. The extent of the grid in time is provided as a hint by
the user, while in space it depends on the city that is being explored. To handle outlier points that
lie outside the defined extent, we simply associate them with the closest grid cell. Based on the
query parameters—the time range and the extent of the polygonal data sets, only data from the
appropriate grid cells are transferred to the GPU for further processing. In practice, this approach
significantly reduces the amount of data that is being transferred to the GPU. Other indexing
methods could also be employed to efficiently perform this pre-filtering.

In a system like Urbane, spatial aggregation queries can be generated at high rates based on the
user interactions. Bounded Raster Join provides efficient support for these queries. As we showed
in the previous section, Bounded Raster Join can execute on-the-fly queries involving over 868
million points in only 1.1 second on a current generation laptop. Therefore, by integrating Raster
Join into Urbane, we allow users to interactively explore, over space and time, several urban
data sets at multiple resolutions. Finally, we note that Raster Join is not specific to Urbane or
visualization systems. It is an efficient operator to perform spatial aggregation that has utility in
a variety of applications in different fields and can be integrated into any system .

3.9 Limitations and Discussion

Worst-Case Scenario for the Accurate Approach. When the polygonal data set is very dense,
every pixel of the FBO will fall at the boundary of some polygon and the accurate variant
essentially becomes the baseline index-based approach. In fact, in this case, the accurate variant
will take more time than the baseline, as it performs additional drawing (rendering) operations.
This can also happen if the data is skewed such that all points fall close to the boundaries of the
polygons.

Choice of Color Maps. We assume that continuous color maps are used for visualizations. In
the case of categorical color maps, for values that fall around the boundary of two colors, even a
minute error can completely change the color of the visualization.

46

3.10. Chapter Summary

Choosing Between the two Raster Variants. Setting a very small bound can result in the
accurate variant becoming faster than the bounded variant of the raster join. This is because of
the high number of renderings required to satisfy the input bound. We intend to add an estimate
of the time required for the two variants, so that an optimizer can choose the best option based on
the input query.

Performing Multiple Aggregates. Our current implementation performs only one aggregate per
query. For multiple aggregates, multiple queries have to be issued. However, the implementation
can be extended to support multiple aggregate functions by having multiple color attachments to
the FBO. Similar to the multiple constraints scenario, this will increase the memory transfer time.

3.10 Chapter Summary

In this chapter, we propose efficient algorithms to evaluate spatial aggregation queries over
arbitrary polygons, which is an essential operation in visual analytics systems. By efficiently
making use of the graphics rendering pipeline and trading-off accuracy for performance, our
approach achieves real-time responses to these queries and takes into account dynamic updates
to query parameters without requiring any memory-intensive pre-computation. In addition, the
OpenGL implementation makes the technique portable and easy to incorporate as an operator in
existing database systems.

By showcasing the utility of computer graphics techniques in the context of spatial data processing,
we believe this work opens new opportunities to make use of advanced graphics techniques for
database research, especially in the context of the ever increasing spatial/spatio-temporal data.
For example, spatial joins between 3D data sets could greatly benefit from the use of ray casting
and collision detection approaches. These approaches could also be applied to perform more
complex spatio-temporal joins.

47

4 Clipping Minimum Bounding Boxes
for Efficient Spatial Data Exploration

The majority of spatial data processing techniques rely heavily on approximating groups of spatial
objects by their minimum bounding box (MBB). As each MBB is compact to store (requiring
only two multi-dimensional points) and intersection tests between MBBs are cheap to execute,
these approximations are used predominantly to perform the (initial) filtering step of spatial
data processing. However, fitting (groups of) spatial objects into a rough box often results in
a very poor approximation of the underlying data. The resulting MBBs contain a lot of “dead
space”—fragments of bounded area with no actual objects—that can significantly reduce the
filtering efficacy.

This chapter1 introduces the general concept of a clipped bounding box (CBB) that addresses the
principal disadvantage of MBBs, their poor approximation of spatial objects. Essentially, a CBB
“clips away” dead space from the corners of a MBB by storing only a few auxiliary points. On
four popular R-tree implementations (an ubiquitous application of MBBs), we demonstrate how
auxiliary CBB points can be exploited to avoid many unnecessary recursions into dead space
with minor modifications to the query algorithm. Extensive experiments show that clipped R-tree
variants substantially reduce I/Os: clipping the state-of-the-art revised R*-tree, for instance,
eliminates on average 19% of I/Os.

4.1 Introduction

Spatial data is growing at an alarming rate, prompting all major database system vendors to
add spatial extensions that explicitly target spatial data analysis. From Oracle Spatial [91] and
IBM Informix [74] to PostGIS [127] and HyPerSpace [120], these extensions rely heavily on the
R-tree [66] spatial index. The fundamental component of the R-tree and all its variants, and in
fact most spatial processing techniques, is the minimum bounding box (MBB). Consequently,
even minor improvements to MBBs can have a broad impact.

1The material of this chapter has been the basis for the ICDE 2018 paper Improving Spatial Data Processing by
Clipping Minimum Bounding Boxes [135].

49

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

Minimum Bounding Box. The MBB is the smallest axis-aligned rectangle that encloses its
d-dimensional data. Being in a conservative class of approximations [26], it can represent
any set of spatial objects (from simple points to complex volumetric shapes or other MBBs).
Generally, a group of spatially-near objects are stored together (inside index nodes or buckets)
and approximated by their MBB, offering three advantages: MBBs (i) are computed simply,
with linear cost, (ii) are very compact to store, needing only two spatial points, and (iii) are very
cheap to compare to each other for overlap/intersection. This is critical, as MBB intersection
tests are the most dominant operation in spatial indexing: R-trees rely heavily on them during
both the building and querying phases, while many other spatial tasks use them for filtering, e.g.,
traversing quadtrees [129] or performing spatial joins [28, 122].

rea02 axo03

Dataset

0

20

40

60

80

100

A
v
g
.
o
v
e
rl
a
p
 w
it
h
in
 a
 n
o
d
e
 (
%
) QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(a) Overlap

rea02 axo03

Dataset

0

20

40

60

80

100

A
v
g
.
e
m
p
ty
 s
p
a
ce
 p
e
r
n
o
d
e
 (
%
) QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(b) Dead space

rea02 axo03

Dataset

0

20

40

60

80

100

O
p
ti
m

a
l/
A
ct

u
a
l
#

le
a
fA

cc
 (
%

) Qry selectivity:

high

medium

low

Qry selectivity:

high

medium

low

(c) I/O optimality

Figure 4.1 – Performance of four R-tree variants.

Overlap, coverage, and “dead space”. The quality of spatial data partitioning is classically
measured by the overlap and coverage of the resultant MBBs. High overlap (i.e., large amount of
area covered by multiple MBBs) decreases the filtering precision. This is particularly crucial for
R-trees [23]: if a query rectangle intersects overlapping MBBs, the query must follow several
paths in the tree. Reducing coverage (i.e., avoiding unnecessarily large MBB volume), however,
is also important. Over-coverage increases the likelihood that a query rectangle will intersect
a MBB, independent of the likelihood of intersecting the constituent objects. There has been
extensive research on minimizing the overlap in R-trees, resulting in the proposal of several
variants (R+-tree [131], R*-tree [15], RR*-tree [17] to name a few).

In general, existing techniques minimize overlap quite well. In Figure 4.1a, we use two real-word
data sets (described in Section 4.6.2), including a novel and challenging brain axon data set, to
construct four popular disk-based R-tree variants (including the state-of-the-art, RR*-tree [17])
and measure the amount of overlap. Indeed, on both data sets and all four variants, just 8–30% of

50

4.1. Introduction

the area of a node, averaged over all internal nodes, is overlapped by two or more of its children.
However, Figure 4.1b is less encouraging. It shows what we call dead space, i.e., the percentage
of the volume of a node that does not contain any objects. While one expects unnecessary
coverage in higher dimensions due to the curse of dimensionality, we see a staggering amount,
circa 74% and 94%, of dead space already in these 2d (rea02) and 3d (axo03) spatial data sets.
This demonstrates the difficulty in bounding real objects such as road networks (rea02) and
brain axons (axo03) with MBBs, even if they are easily separable.

Finally, Figure 4.1c illustrates that these hardly-overlapping but mostly empty MBBs indeed have
a negative effect on query performance. We query the (state-of-the-art) RR*-tree [17] under three
settings of query selectivity that return a couple (high selectivity), about ten (medium), or roughly
one hundred (low) objects. The plot reports the fraction of leaf node accesses—the major I/O
bottleneck—that actually contribute to the query result (i.e., contain at least one spatial object
within the query range). High/medium selectivity queries, common in spatial joins [28, 122],
are particularly affected; the query intersects just dead space in 21% (2d) and 64% (3d) of the
accessed leaf nodes. For the other three R-tree variants (not shown), the results are even more
discouraging.

Our clipping proposal. Certainly, we are not the first to observe the limitations of bounding
boxes; various polygons [65, 82] and conics [41, 87, 157, 164] have been proposed and com-
pared [26, 27]. However, these are limited by: (a) the complexity of their representation, (b) the
complexity of their intersection tests, and/or (c) the lower bound on their dead space imposed by
their convexity.

In contrast, we propose simple, non-convex polygons obtained by rectangularly clipping off the
corners of MBBs (c.f., Figure 4.2 on the next page). Incidentally, the corners are the convergence
points of the dimension-wise maxima/minima of the bounded objects and thus where much of
the dead space is concentrated. Each clip requires only one d-dimensional point (and a d-bit flag)
because the corner of the original MBB provides the opposing corner of the rectangular clipped
area. Testing intersection with a clipped corner (we will show) is even cheaper than the preceding
intersection test with the MBB. Finally, because the clipped corners are supplemental to the
original MBBs, we can implement the proposal as a plugin-like addition for any R-tree variant:
we store clip points in a small, auxiliary data structure, post-process MBBs at construction time,
and minimally expand the query algorithm.

Clipping MBBs removes dead space and thereby achieves both classic objectives of spatial data
partitioning: coverage is assuredly reduced by not representing dead space in the corners; overlap
is potentially reduced by bounding the objects more tightly. Ideally we introduce very few clips
that eliminate most dead space. We propose two means of generating clip points, based on the
idea of Pareto optimality (i.e., skylines [22] in database literature), that trade-off complexity for
pruning power. Our experiments with benchmark R-tree queries show that these proposals reduce
leaf node accesses by 14% and 26%, while introducing a storage overhead of just 3.2% and
6.5%, respectively (averaged across seven data sets of 2–3 dimensions and four R-tree variants).

51

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

Moreover, for two classic spatial join strategies, the Index Nested Loop Join and the Synchronised
Tree Traversal, we eliminate 46% and 18% of I/Os, respectively (averaged across four R-tree
variants).

Contributions and outline. In this chapter, we propose low-overhead improvements to minimum
bounding boxes (MBBs) to improve their ability to represent complex, real spatial objects. While
Section 4.3 details related work and Section 4.8 concludes, our main contributions include:

• Introducing the general concept of clipped bounding boxes (CBBs) along with two particu-
lar instantiations of the concept (Section 4.4);

• Demonstrating that our CBBs can be plugged into any R-tree variant with a small auxiliary
data structure and minor modifications to the construction, query, and update algorithms
(Section 4.5);

• Experimentally showing that with three-fold fewer corners, our CBBs can prune more area
than the convex hull, while providing average I/O savings of 29 %, 29 %, 27 %, and 19 %
when plugged into the QR-tree, HR-tree, R*-tree, and RR*-tree, respectively. In addition
we are showing that our CBBs can save up to 53% of I/Os for the state-of-the-art spatial
join strategies when plugged into R-tree variants (Section 4.6).

4.2 Background and Context

R-trees [66] are arguably the most popular spatial indexes. They are height-balanced (with all leaf
nodes at the same level) hierarchical structures designed for organizing a set of d-dimensional
rectilinear rectangles (or MBBs). The MBB approximations of data objects are stored in leaf
nodes and intermediate (directory) nodes are built by grouping rectangles at the lower level (up to
a maximum node capacity M). Rectangles at each level can be overlapping, covering each other,
or completely disjoint. Since R-trees partition the actual data (into nodes), they obey the actual
spatial object shapes and are particularly attractive for indexing spatially-extended (volumetric)
objects (as opposed to space-partitioning indexes, e.g., Quadtree [129]).

In a disk-based setting, M is usually set to match the disk page size (e.g., 4 KB) or a small factor
thereof and the minimum occupation of a node (thereafter denoted by m) is set to ≤ dM/2e. Upon
insertion, if a node becomes overfull (i.e., already contains M objects), a dedicated node splitting
algorithm is triggered that is responsible for distributing the objects into two (or more [23])
groups. Upon deletion, if a node contains less than m objects, a node merging algorithm is
triggered. Both algorithms are crucial in maintaining nodes with both minimal coverage and
overlap. As such, there has been a plethora of research resulting in R-tree variants that mainly
differ in their strategy for distributing rectangles within and across nodes.

52

4.3. Related Work

The originally proposed quadratic R-tree [66] uses solely the criterion of minimum coverage.
The R*-tree [15] uses multiple criteria including minimizing dead space and margin in each
node as well as the overlap between nodes. The state-of-the-art revised R*-tree [17] employs
further more sophisticated techniques (e.g., switching between perimeter- and volume-based
optimizations) to drive the insertion strategy. The Hilbert R-tree [85] imposes a linear ordering on
the rectangles (by transforming them to one-dimensional, locality preserving Hilbert values) and
uses this ordering to distribute rectangles to nearby nodes. However, the latter is mainly for static
scenarios (i.e., requires a predefined data space). More details are in Section 4.3. Nonetheless,
despite these differences, the physical layout (c.f., Figure 4.4a) and general construction/query
algorithms are the same for all variants.

Nowadays, as scientists in various disciplines no longer rely solely on studying subjects of interest
in their laboratory or in nature, but complement their understanding of the phenomena by building
spatial models of increasing details, spatial data sets are ever-growing. Furthermore, scientific
and other similar applications give rise to spatial data that does not conform well to rectangular
bounding. As we have shown above, one example of such challenging data is 3d brain models
built by neuroscientists. Since neurons tend to be elongated and non axis-aligned, it is inherently
difficult to fit them into rough rectangular boxes.

While in the above we exemplify the motivating problem using R-trees, the general problem is
that of the poor representation of a collection of spatial objects using minimum bounding boxes.
Consequently, it is present in many MBB-based filtering techniques in spatial data processing
(e.g., spatial join [28, 122]).

4.3 Related Work

The R-tree family. The R-tree [66] is a disk-based multi-dimensional index structure consisting
of a hierarchy of minimum bounding boxes (MBBs) which recursively enclose data objects.
Indexing and query processing with R-trees in spatial databases have received a lot of research
attention [103] and several variants of the original approach have been proposed. To increase
robustness against different data distributions, the R*-tree [15] incorporates an improved node
split algorithm and the removal and reinsertion of spatial objects of an overflowing node. It
employs multiple optimisation criteria at every split, attempting to minimise the dead space and
the margin in each node as well as the overlap between nodes. The RR*-tree [17] introduces
more adaptive optimisation strategies in order to further reduce I/O costs and enhance search
performance.

Bulk loading can optimise the partitioning of data in the R-tree during initial construction.
The HR-Tree [85] uses the Hilbert space filling curve to identify spatially close objects, while
STR [95] recursively sorts the objects along each dimension for spatial proximity. To better
handle extreme data, the PR-Tree [12] groups all objects with extreme coordinates in the same
dimension in the same node.

53

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

All the above and many other access methods [54] operate on MBBs and thus our proposed
clipping techniques can be applied orthogonally to boost their query performance.

Space-oriented partitioning. Instead of grouping objects hierarchically based on their location,
another family of spatial indexing methods splits space using hyperplanes into a set of disjoint
partitions that are stored flatly [6] or in a hierarchical structure [80, 129]. To achieve good
storage utilization, the hB-tree [101] does not require that nodes are split by hyperplanes; instead,
it allows them to represent hyperrectangular regions with hyperrectangular holes. Note that,
similarly to CBBs, the hole can be located at the corner of the node. However, in such cases, the
corner region is not a dead area, but is in fact guaranteed to contain data objects. By definition,
space-oriented partitions do not minimally bound the enclosed data objects and therefore contain
dead space.

Bounding objects. Instead of using minimum bounding boxes to represent a collection of objects,
other geometries have been proposed in the past. The Sphere-tree [157] is a hierarchical structure
similar to the R-tree with the exception that it uses minimum bounding spheres. The Sphere-
tree requires less storage space than the R-tree but the computation of the minimum bounding
sphere is more expensive [163]. The SS-tree [164] indexes multidimensional points and employs
bounding spheres having as center the centroid of the underlying points for the region shape. The
SR-tree [87] integrates both bounding spheres and bounding boxes to reduce the volume that
an index node occupies and increase search efficiency. However, the SR-tree has lower fanout
(its nodes contain both a sphere and a box) and higher creation cost compared to the SS-tree.
The eR-tree [41] is a variant of the R-tree that employs minimum volume covering ellipsoids.
Ellipsoids cover less dead space on sparse clustered data but their advantage is suppressed on
dense data. Moreover, they cover more dead space than polygonal alternatives [26, 27]. The
P-tree [82], another generalization of the R-Tree, uses a hierarchy of polygon containers that are
mapped into rectangles of a higher dimension. The use of additional hyperplanes results in a
better approximation, but it increases the size of the entries (i.e., reduces the fanout of interior
nodes). The Cell Tree [65] is a hierarchy of nested convex polyhedra that are subspaces of a
binary space partitioning and aims to handle objects of arbitrary shape. In contrast, our work is
not proposing an alternative geometry, as MBBs have been tremendously successful in practice.
Instead, we extend MBBs using clip points that adhere to the same basic, rectilinear concept.

Recently, [161] tackled the same challenge, “over-coverage” of MBBs, focusing solely on stream-
ing observational data where a group of (successive) points can be represented as line segments.
Our proposal is more general, supports points (lines/planes) as well as volumetric spatial objects,
and does not imply any restrictions on the data (e.g., value-continuity of observations).

4.4 Eliminating Dead Space in MBBs

Figure 4.2 gives an example that runs over the next two sections. It depicts a set O = {o1, . . . , o5}

of five (gray) spatial objects and the (black) box that minimally bounds them. It is clear that

54

4.4. Eliminating Dead Space in MBBs

o1

o2

o3
o4 o5

R00

R01

R10

R11
×

×

×

�

�

c

o11
1

o11
3

×

×

×
×

�

�

�

×

×
×�

o00
4

- MBB
- Spatial objectid

× - Skyline point
� - Stairline point

- Skyline space
- Stairline space

︷ ︸︸ ︷
corner-coloured

Figure 4.2 – Concepts related to clipped bounding boxes.

most of the space inside this MBB is not covered by an object, but is instead “dead space”. We
show in this section how to eliminate a lot of that dead space using only a few well-chosen points
and bitmasks. These points “clip away” corners of the MBB, producing what we call a clipped
bounding box. Section 4.4.1 introduces the general concept and Sections 4.4.2–4.4.3 define two
specific implementations.

4.4.1 The Clipped Bounding Box (CBB)

High-level concept. Intuitively, a lot of the dead space in an MBB is tucked into the corners,
where the most extreme values of all the objects converge. Incidentally, the rectangular area A
adjacent to a corner is also the cheapest to represent: A, like any box, is defined by two points,
one of which is the corner point; so, a single d-dimensional point and a d-bit flag to identify the
targeted corner are sufficient to fully characterise A. Our proposed clipped bounding box (CBB)
augments an MBB with pairs of additional points and corner flags to clip away excess area near
the corners of the MBB. The reduction in dead space can be quite profound. In Figure 4.2 for
example, one can store the point c with the bitmask b = 11 to represent the rectangle

〈
c,R11

〉
,

which contains no objects. If this region was not part of the MBB, one would have an equally
correct, but more representative, bounding object. Moreover, the cost of intersecting a query
region Q with this clipped rectangle is low: we need only compare Q to the MBB (which, anyway,
would be necessary), and then to point c.

In general, there are many choices for c and we need not select only one. Choosing the right
points is, unsurprisingly, non-trivial and thus the subject of Sections 4.4.2–4.4.3. First, however,
we formalise this high-level intuition by introducing notation and definitions.

Notation. An MBB in d dimensions is a hyperrectangle, which we denote by R = 〈l, u〉. The two
points defining R, l and u, represent the minimum and maximum extent of R, respectively. We
express coordinates of a point p = (p[1], . . . , p[d]) and the bits of a bitmask b = 〈b[1] . . . b[d]〉 in

55

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

array notation. The minimum bounding box (MBB) of a set of m objects O = {o1, . . . , om} is the
smallest possible rectilinear box R = 〈l, u〉 that contains all objects in O; i.e., for each dimension i,
l[i] = mino j∈O o j[i] and u[i] = maxo j∈O o j[i]. We frequently refer to specific corners of bounding
boxes (hyperrectangles). For hyperrectangle R a unique superscripted bitmask b specifies the
corner of interest: a set bit b[i] indicates that the corner maximises the i’th dimension; i.e.,

Rb[i] =

u[i], if b[i] = 1

l[i], if b[i] = 0.

The four corners of R, the MBB in Figure 4.2, are labeled with this notation. For example, the
top-left corner is R01 and the top-right corner is R11. Similarly, the top-right corner of object o1 is
denoted o11

1 and the bottom-left corner of object o4 is denoted o00
4 .

Formalisation. In general, an MBB is an imperfect approximation of a set of objects O, which a
CBB improves. The extra, empty space that an MBB uses to bound O we call dead space and
define as the part of R not occupied by any oi of O (Definition 1):

Definition 1 (Dead space). Let R be the MBB of objects O = {o1, . . . , om}. The dead space of
R, denoted †(R), is:

†(R) = {p ∈ R : ∀oi ∈ O, p < oi}.

A CBB augments an MBB with extra points that we call clip points (Definition 2). A clip point is
a pair consisting of a point p ∈ R and an orientation mask b and has the property that no object
oi ∈ O occupies the space between p and its relevant corner Rb. (Observe that the space between
p and Rb is exactly the MBB of the two points {p,Rb}.)

Definition 2 (Clip point). Let R be the MBB of objects O = {o1 . . . , om} and b be a bitmask of
length d. We say that 〈p ∈ R, b〉 is a clip point iff the area between p and Rb is entirely dead
space; i.e., if R′ denotes the MBB of {p,Rb}, then p is a clip point iff:

∀q ∈ R′,∀oi ∈ O, q < oi.

For example, 〈c, 11〉 is a clip point in Figure 4.2, because the area enclosed by the dashed blue
lines is empty. On the other hand,

〈
o00

4 , 11
〉

is not a clip point, because it would clip away objects
o4 and o5: the area between o00

4 and the top-right corner, R11, is not entirely dead space.

We denote the volume that clip point 〈p, b〉 clips away by VolR(〈p, b〉). In general, we clip away
several parts of an MBB using a set of 〈pi, bi〉 pairs, but take care not to double-count regions
clipped away by multiple clip points. That is to say, given a set of clip points P = {〈pi, bi〉},
VolR(P) =

⋃
〈pi,bi〉∈P VolR(〈pi, bi〉).

56

4.4. Eliminating Dead Space in MBBs

This leads us to our core concept, a clipped bounding box (CBB), that we informally introduced
at the beginning of this subsection and that we formally define in Definition 3:

Definition 3 (Clipped Bounding Box (CBB)). Given a set of objects O, a clipped bounding
box is a pair 〈R, P〉, where R is the MBB of O and P is a set of clip points in R.

Naturally, a CBB, 〈R, P〉, is a better approximation of O than another CBB, 〈R, P′〉, if it retains
less volume; i.e., VolR(P) > VolR(P′). While a clip point introduces very little overhead, a large
set of clip points is cumbersome. Thus, we only want to select ≤ k of the clip points that we
propose in the following subsections, while still maximising VolR(P).

4.4.2 Object-situated Clip Points

High-level concept. Given an MBB R, we can obtain good clip points quickly by taking them
from the objects O bounded by R. Consider Figure 4.2 again; (a discretisation of) the set of
possible clip points is depicted by small, gray dots. For the most part, the best clip points (i.e.,
the dots farthest from their respective corners) lie on the outer surface of some object oi. This is
intuitive: the dead space arises specifically because the MBB corner is too far from the objects,
so clipping R with a rectangle that borders an object oi will naturally improve the approximation
of O.

With respect to a corner Rb, we do not consider all (infinitely many) points on the surface of each
object oi ∈ O, but rather just its closest corner, ob

i . This is most likely to be a valid clip point.
In fact, if

〈
ob

i ,R
b
〉

is not a clip point, then no point in oi can be a clip point with respect to Rb.

Considering, for example, corner R11 in Figure 4.2, we see that
〈
o11

3 ,R
11

〉
is not a clip point (it

would clip away part of o4 and o5), so the entirety of o3 would also clip away part of o4 and o5

and therefore similarly not be clip points.

We also do not necessarily consider all objects oi ∈ O, because we recognise that, for corner Rb,
the subset of {

〈
ob

i ,R
b
〉
} that are clip points is precisely the well-studied concept of a skyline [22],

computed over {ob
i }. Thus, the idea for our object-based CBB is to compute for each bitmask b

the skyline of the M object corners {ob
i } and pick from those the few points that clip away the

most dead area. Thus the clip points are all actually represented in the set of underlying objects,
O. To formalise this intuitive description, we will state the definition of a skyline as it relates to
this context.

Oriented skyline of objects. The skyline [22] is based on the concept of dominance, which is
highly related to our notion of clip points. A point p dominates a distinct point q with respect to
b if it is at least as close to Rb as q on each dimension independently. More precisely, let bp�q

denote a bitmask with bit i set iff p[i] � q[i]. Then we have Definition 4:

57

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

Definition 4 (Dominance). Given points p and q, and bitmask b, p dominates q w.r.t. b, denoted
p ≺b q, iff:(

bp≤q & ∼b = bp≤q
)
∧

(
bq≤p & b = bq≤p

)
∧ bp,q , 0.

For example, given b = 00 in Figure 4.2, o00
4 ≺b o00

5 because it is closer to R00 in both the x and
the y direction. In the context of MBBs, one could express dominance equivalently by letting R′

denote the MBB of {q,Rb} and stating that p ≺b q iff p ∈ R′. Using the same example, observe
that the point o00

4 indeed lies in the MBB created by the point it dominates, o00
5 , and R00. The

oriented skyline of a set of points P, given orientation mask b, is simply the subset of points
p ∈ P not dominated by any other point q ∈ P:

Definition 5 (Oriented skyline). Given point set P and orientation mask b, the skyline Sb(P) is:

Sb(P) = {p ∈ P : @q ∈ P, q ≺b p}.

Considering an MBB R and a set of object corner points P = {ob
i }, a pair 〈p ∈ P, b〉 is clearly a

clip point iff p ∈ Sb(P). If a point p < Sb(P) is dominated by some other point q ∈ P, then q
lies in the MBB of {p,Rb} which implies that 〈p, b〉 would clip away the object from which q
was derived. On the other hand, if p ∈ Sb(P), then no other point q ∈ P lies in the MBB R′ of
{p,Rb}. Since P contains the closest point to Rb from every object oi ∈ O, the entirety of

〈
p,Rb

〉
must contain dead space. Thus, the clip points in {

〈
ob

i , b
〉
} are in one-to-one correspondence with

Sb({ob
i }).

We see this in Figure 4.2. Considering corner b = 00, for example, we obtain a skyline of
{o00

1 , o
00
2 , o

00
3 , o

00
4 }. Point o00

5 is dominated by both o00
3 and o00

4 ; meanwhile the clip point
〈
o00

5 , b
〉

would clip away part of o3 and o4.

4.4.3 Point-spliced Clip Points

High-level concept. We can find more aggressive clip points by splicing the skyline points
proposed in Section 4.4.2. Recall the possible clip points in Figure 4.2. Skyline point o11

4 clips
away a lot of dead space relative to R11, but the point c that combines the y-coordinate of o11

4
with the x-coordinate of o11

1 clips away significantly more dead space. In fact, c clips away the
most dead space (of those that could form valid clip points). c is not an arbitrary point in R2, but
a combination of the coordinates of o11

1 and o11
4 : this splicing provides a generative mechanism

of strong clip points that may not lie on any object at all, and comprises our second instantiation
of CBBs. It clips away much more dead space than our first CBB proposal, but requires an
expensive extra processing step.

58

4.5. CBB-based R-trees

Stairline points. We define stairline points, which, intuitively, are the points “between” skyline
points, farthest from a corner Rb of the MBB. To find them, we introduce the splice point concept,
which mixes the coordinates of source points p, q (thereby still being adjacent to child MBBs):

Definition 6 (Splice point). Given two points p and q with MBB R, their splice point with
respect to b is �b(p, q) ≡ Rb.

Stated alternatively, �b(p, q)[i] has value max(p[i], q[i]) if b[i] is set; otherwise, it takes the value
min(p[i], q[i]). For example, c in Figure 4.2 is equal to �00(o11

1 , o
11
4), i.e., takes the smallest x

and y values from its source points o11
1 and o11

4 , as the bitmask b = 00 specifies to minimise both
dimensions.

We must be careful when splicing points to not clip away occupied area, i.e., to ensure the
generated clip points are “valid.” Producing valid clip points in 2d is straight-forward: we
can totally order all skyline points by x and then splice each consecutive pair. However, it is
non-trivial in higher dimensions to efficiently extract all sets of neighbouring points.

Thus, we propose an unfortunately-cubic algorithm that is still practically reasonable given the
small input sets (< M). We generate splice points using bitmask ∼b from every pair of skyline
points, some of which are invalid; to ascertain validity, we check that no other skyline point (and
thus child MBB) is in the space that this splice point would clip away.

Definition 7 (Oriented stairline). Given a set of points P and a bitmask b, the oriented stairline
is the subset of splice points, {�∼b(p ∈ P, q ∈ P)}, p , q, that are clip points w.r.t. b. A point in
the stairline is called a stairline point.

Stairline points necessarily clip away more dead space than the skyline points p, q from which
they are spliced, because they take coordinates from both p and q such that they are farthest from
the corner Rb.

4.5 CBB-based R-trees

Section 4.4 introduced the concept of clipped bounding boxes (CBBs) and two approaches to
defining clip points for them. Here we describe how to integrate them into arbitrary R-tree
variants. Recall that the R-tree variants vary in how they determine the contents of their nodes,
but not in their general layout; thus, our extensions here apply to any variant.

4.5.1 Layout and Structure of Clipped R-trees

Figure 4.3 extends the example of Figure 4.2, contrasting a classic MBB-based R-tree (a) with a
clipped one (b). In Figure 4.3a, the seven spatial objects (o1–o7) are indexed using the traditional
R-tree with M = 5 and m = 2, which results in a two-level hierarchy of MBBs. The root
node (in black) corresponds to R0, which minimally bounds the two leaf nodes (in green). The

59

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

o1

o2

o3
o4 o5

o6

o7

R0

R1

R2Q

root

objects

leaves

(a) A two-level R-tree

o1

o2

o3
o4 o5

o6

o7

MBB points

Clip points

(b) A clipped R-tree

Figure 4.3 – An example of an R-tree before (a) and after (b) clipping, given 7 objects,
o1–o7 and a range query, Q.

R-tree distributes the objects into nodes well, as the leaves have zero overlap. The range query,
Q, intersects two spatial objects: it fully covers o6 and it partially intersects o7. Nevertheless,
because Q intersects all MBBs in the R-tree, all three nodes must be scanned, which unfortunately
includes the node of R1, inside which Q only overlaps dead space.

The clipped R-tree, for contrast, is shown in Figure 4.3b. Each of the MBBs (with corner points
depicted by solid circles) from Figure 4.3a is independently augmented with clip points (depicted
by hollow circles). Six clip points are introduced: two in R0 (the black ones), three in R1, and
one in R2. While Q still intersects R0 and R2 as they contain objects that are within Q’s range,
the excess leaf-node scan of R1 is averted.

Figure 4.4a illustrates a typical R-tree data structure. The directory nodes (in this case just the
root) contain an array with an MBB (R0) followed by a list of between m and M children. For
each child, its MBB and a pointer to the child node are given. The leaves contain an array with an
MBB and a list of pointers to actual objects. To clip the R-tree, we retain this original structure
exactly and augment it with the structure in Figure 4.4b that contains the clip points. A directory
table is indexed by the ids of the R-tree nodes: entry 1 corresponds to R1. It contains a length,
since we adaptively determine the variable number of clip points per node, and a pointer to an
array. Inside the array, the bitmask of the clip point is given first and the actual coordinates of the
point are given next. The clip points are ordered by the volume that they clip away in order to
detect non-intersection as quickly as possible.

60

4.5. CBB-based R-trees

R0 R1 R2 R3 R4 R5

o5o4o3o2o1R1 R2 o6 o7 o3 o4 o5

20:

31:

12:

11 �00(R11
1 ,R

11
2) 01 �10(R01

1 ,R
01
2)

11 �00(o11
1 , o

11
4) 00 �11(o00

2 , o
00
3) 00 �11(o00

1 , o
00
2)

11 �00(o11
6 , o

11
7)

(a)

(b)

Figure 4.4 – The physical layout of the R-tree from Figure 4.3a (a) and the auxiliary struc-
ture (b) of clip points introduced in Figure 4.3b. The auxiliary table is indexed by MBB id
and gives the number of and pointer to the clip points for that MBB. The bitmask of each
(in this case 2d) clip point is followed by the two coordinate values.

4.5.2 Constructing Clipped Bounding Boxes

In Section 4.4, we described two types of clip points, giving rise to two different clipped bounding
boxes. Here, we describe how to compute those CBBs. In particular, we focus on the challenging
problem of selecting k clip points from a set of choices that grows with M. We discuss this
k-selection problem first, then turn to the high-level clipping algorithm.

Selecting k clip points. Determining the optimal selection of k clip points would incur exponen-
tial cost, because there is no known algorithm for ≥ 3d better than enumerating all possible size-k
subsets [25]. However, we can avoid this cost with three reasonable simplifying assumptions:
(1) each corner of a CBB is independent; (2) the point that independently clips away the most
volume is among the k choices; and (3) if multiple points clip away area in the same corner, the
overlap of that area is small and/or covered by the point in assumption (2).

We make assumption (1) because if clip points p and q arise from different corners, they can
only clip away area that overlaps each other if there is substantial dead space. In that case,
optimality is not crucial: greedily selecting k clip points will prune a lot of dead area, anyway.
The simplification permits linearly combining the solutions from the 2d corners, rather than
computing cross-corner overlap.

Figure 4.5 illustrates the intuition behind assumptions (2) and (3). Three potential clip points,
p1–p3, for corner R00 are shown, along with the area that each would clip away, area(pi). If
we pick multiple clip points for this corner, assumption (2), accurately in this case, asserts that
p2 would be in the optimal solution. Assumption (3) asserts that the overlap in clipped area
among the multiple points will be contained in {a2, a4, a5, a6} or very small. More specifically
we assume that the point clipping away the largest volume (in this case p2) will be selected and
will clip away the overlap for all chosen points. Thus we assume that for another pi, it will
contribute area(pi)− area(pi∩ p2) to the overall union. Whereas exact computation would require
invoking the exponential-cost inclusion-exclusion principle, we simply add these scores together
to approximate the clipped area.

61

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

o1

o2

o3
o4 o5

p3

p2

p1
a1

a2

a3

a4

a5a6R00
1

area(p2) = {a2, a4, a5, a6}
area(p1) = {a1, a4, a6}
area(p3) = {a3, a5, a6}

score(p3) = area(p3) − {a5, a6}
score(p1) = area(p1) − {a4, a6}
score(p2) = area(p2)

Figure 4.5 – Demonstration of the overlap approximation. The combined score of
{p1, p2, p3} overcounts the overlap of {p1, p2, p3} and undercounts the overlap of {p1, p3},
but these often correspond to the same area, a6.

Algorithm 7: Clip: (node N, k, τ) −→ set of clip points C
1: L← empty list of clip points
2: for each bitmask b ∈ 0 . . .

(
2d − 1

)
do

3: P← Sb({ob
i : oi ∈ N.children})

4: if using stairline points then
5: for each si, s j ∈ P do
6: if ∀sk ∈ P,�∼b(si, s j) 6≺b sk then
7: P′ ← P′

⋃
{�∼b(si, s j)}

8: end if
9: end for

10: P← P′

11: end if
12: assign scores ∀p ∈ P as in Figure 4.5
13: for each p ∈ P, with p.score > τ × area(N) do
14: L.append(〈p, b〉)
15: end for
16: end for
17: return the min(k, |L|) clip points in L with highest score

In this example, our approach produces the exact score. This occurs because p1 and p3 lie on
opposite sides of p2, which commonly happens: the point clipping away the most area is likely to
lie on the diagonal and the next best choices (for small k) are likely to be on either side. Even
when this intuition fails, the error of approximation is bounded by the intersection of the smaller
rectangles, which itself is small.

As a last optimisation, we elect to only store clip points that clip away an additional ≥ τ % of the
volume; otherwise, they increase our storage cost without having a high likelihood of containing
a query rectangle. Thus, we could end up with fewer than the intended number of k clip points if
they do not prune much dead space, anyway.

62

4.5. CBB-based R-trees

Algorithm 8: Intersection Test: (R,C,Q, selector) −→bool
1: if Q ∩ R = ∅ then
2: return FALSE
3: end if
4: for each c ∈ C do
5: if Qselector⊕c.mask ≺c.mask c.coord then
6: return FALSE
7: end if
8: end for
9: return TRUE

The clipping algorithm. To construct a clipped R-tree, we apply Algorithm 7 to every tree node
and store each result with an entry in the auxiliary structure (Figure 4.4b). We iterate over the
corners of the MBB independently (Line 2 and assumption 1), computing for each the skyline of
the object corners (Line 3). We optionally splice the skyline points (Lines 4–10) to clip away
more area. Then, we determine which clip point clips away the most area and assign approximate
scores to the rest (Line 12 and assumptions 2 and 3). We finish processing the corner by keeping
only the clip points passing the τ threshold (Lines 13–14). After iterating every corner, we sort
the clip points by score and return the k highest-scoring.

4.5.3 Querying a Clipped Bounding Box

Range queries. Since CBBs use the corners of their MBBs, intersection can be done very
efficiently, as shown in Algorithm 8. Lines 3–5 transform a typical MBB intersection test into a
clipping-enabled one. Given clip points C, we simply check dominance (Definition 4) between
the corner of the query rectangle Qb ∈ Q obtained by Q∼c.mask and each clip point c ∈ C. (For
queries, selector is fixed to 2d − 1: the xor expression (⊕) is equivalent to negating c.mask. Its
purpose will be clarified in Section 4.5.4.) Intuitively, it is the least “competitive” query corner
that can dominate a given clip point. If any clip point is dominated by Q, then the CBB and Q
are disjoint.

We query each leaf node of our running example in Figure 4.6. In Figure 4.6a, we compare Q
to the first clip point, which is paired to corner R11

1 . (The clip points, recall, are sorted by the
volume-based score.) Because Q00 dominates the clip point, relative to R11

1 , we know that the
part of Q inside the MBB lays inside dead space and avoid scanning R1. On the other hand, in
Figure 4.6b, Q00 does not dominate the (single) clip point; so, we can conclude that Q intersects
the CBB of R2.

Spatial join. R-tree indexes are also leveraged for performing spatial joins. When only one data
set is indexed, the spatial join can be evaluated by probing the index for each object of the other
data set (Index Nested Loop Join evaluation). In this case, we are essentially performing range
queries (one per object), therefore clip points are exploited as described above.

63

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

o1

o2

o3
o4 o5

R11
1Q00

(a) Querying the bottom node.

o6

o7

R11
2

(b) Querying the top node.

Figure 4.6 – Using dominance to test CBB intersections.

o1

o2

o3
o4 o5c

c′

(a) Deleting object o3.

o1

o2

o3
o4 o5

c′

R00
1

(b) Inserting object o3.

Figure 4.7 – Clip points before (green) and after updates (blue). Deleting o3 creates a better
clip point c′, but c is still valid. On insertion, the blue corner of o3 dominates c′ with respect
to the solid, black point, indicating that o3 invalidates c′.

When both data sets are indexed, the join can be evaluated using the Synchronised Tree Traversal
(STT) strategy. This strategy recursively restricts the search space only to the intersection of the
MBBs of the corresponding sub-trees [28]. To benefit from clip points, we recursively restrict the
search space to the intersection of the CBBs of the corresponding sub-trees and apply dominance
tests to check whether a child CBB falls within it (comparison of the CBB of a child with the
intersection of the CBBs of the parent level).

4.5.4 Updating a Clipped Bounding Box

An update to a memory-resident CBB is cheap, as a disk write to persist the changes in the
underlying data is always coincident. Still, many unnecessary updates can be avoided.

First, we observe that any update that affects x MBBs can affect at most x + 1 CBBs. Unlike with
the boundaries of MBBs, the changes to clip points do not need to propagate up the tree, because

64

4.6. Experimental Evaluation

each MBB is clipped independently. If the last MBB change occurs at level l of the tree, then the
next shallower level, l + 1, is the last level at which clip points may change, as the clip points are
based on the MBBs of the level below. Moreover, a split/merge that does not change an MBB
also does not change the corresponding CBBs.

In general, if the MBB of node n changes, we recompute the clip points of n, because our
thresholding with τ and our top-k ordering and selection are both distorted by the change: one
must re-examine all candidate clip points for at least one corner, anyway. Below, we discuss
how to avoid the additional x + 1’st CBB change for deletions and insertions. Modifications are
handled by deleting and then re-inserting the object.

Deletions. Deletions are the easiest case, because they generate new dead space; thus, we can
handle them “lazily”. Figure 4.7a illustrates the deletion of object o3 from our running example,
which affects the CBB, but not the MBB, of the bottom node. Prior to the deletion, clip point c is
in C. After the deletion, we could replace c with c′, which prunes the new dead space. However,
if we continue to use clip point c instead of c′, we obtain accurate query results with the same
pruning rate as prior to the deletion. Moreover, a subsequent insertion (as shown next), of either
a new object or a reinsertion of o3 (in the process of modifying it), only needs to be handled if it
intersects the dead space pruned by the previous point c. Therefore, on deletions we never need
to change a CBB if the MBB is unaffected.

Insertions. Insertions remove dead space, potentially invalidating our clip points; so, we handle
them “eagerly”. For each insertion, we check whether it invalidates one of our top-k clip points.
If so, we recompute the CBB. If not, we are certain that our top-k selection is still correct, because
the score of every other candidate clip point is either lowered or unaffected by the insertion.
Figure 4.7b illustrates the insertion of o3 (had it not been there before). Observe that c′ prunes
away space occupied by o3, yielding incorrect query results. This can be detected by testing
whether the blue corner 00 of o3 dominates c′ with respect to the black corner R00

1 of the MBB.

The validity test is identical to our query in Algorithm 8, except that it selects a different corner
of the “query” rectangle, o3, by fixing selector to 0 (i.e., selecting the same corner as c.mask).
Whereas a query checks whether an entire rectangle is contained in the dead space pruned by a
single clip point, an insertion checks whether any part of a rectangle is contained in that dead
space. If the intersection test returns FALSE, then the newly inserted object dominates the clip
point (i.e., part of the object is prunned away by the clip point) and thus is invalid. (Inserts
propagate up from the leaves, so always Q ∩ R , ∅.) If the intersection test returns TRUE, the
top-k clip points are unchanged and the CBB does not need to be updated.

4.6 Experimental Evaluation

We incorporate our clipping algorithms from Section 4.5 into a variety of R-tree variants of the
existing benchmark for multi-dimensional indexes [16]. The benchmark has been used in many

65

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

spatial indexing studies (e.g., [17]). We then evaluate query/update performance, overhead, and
spatial join performance relative to unclipped (i.e., unmodified) R-trees.

4.6.1 Environment and Experimental Setup

Spatial indexes. We use C implementations of four popular R-tree variants [17], including
the quadratic R-tree (QR-tree) [66], Hilbert R-tree (HR-tree) [85], R*-tree (R*-tree) [15], and
revised R*-tree (RR*-tree) [17]. We modify each implementation to construct clip points (as
per Algorithm 7) for each node prior to flushing the node to disk and to utilise the clip points
for intersection tests (as per Algorithm 8). We configured each index using the values for min
and max node capacities (M and m) as described in [17]. We observe minimal effect from
varying k and τ; they are set to values of k = 2d+1 and τ = 2.5%. (Figure 4.10 illustrates the
effect of k nonetheless, but we lack space to also vary τ.) To differentiate the two CBBs, we
denote the skyline-only approach from Section 4.4.2 as Csky and the point-splicing approach
from Section 4.4.3 as Csta.

Hardware. All experiments use a commodity desktop with a quad-core Intel Core i7-3770 3.4
GHz CPU, 16GB of physical memory, and a 500GB 7200RPM hard disk. The desktop runs
Ubuntu 16.04 LTS (kernel version 4.4.0) and the code is compiled with gcc (version 5.4.0).

4.6.2 Data Sets and Queries

Data sets. For the main evaluation, we use seven spatial data sets in 2 and 3 dimensions. Four
challenging (two real and two synthetic) data sets are taken from the existing benchmark [16].
The real data sets include: rea02 (a 2d data set of 1 888 012 rectangles and points representing
street segments in California) and rea03 (a 3d data set of 11 958 999 points representing three
floating point attributes in a biological data file). The synthetic data sets are par02 and par03
containing 1 048 576 2d and 3d boxes, respectively. The objects are generated with a very large
variance in size and shape, which makes them challenging to approximate.

In addition to the above data sets, we add three new data sets stemming from our main use case
and collaboration with neuroscientists in the Human Brain Project [106]. The data sets contain
volumetric boxes representing different spatial objects in a 3d brain model: 2 570 016 segments
of axons (axo03), 1 288 251 dendrites (den03), and 3 858 267 neurites (neu03). We show 2d
(x-y) projections of the new axo03 and den03 data sets in Figure 4.18 (neu03 is a combination
of both). The visualisations give a quick intuition as to how drastically the new data sets differ
from any of the 14 data distributions available in [16]. Compared to the rectangular objects in
our synthetic data sets and the street segments in rea02, the neuroscience objects do not visually
suggest being approximated well by (unclipped) MBBs.

In Section 4.7, we extend our evaluation to 28 data sets (also of higher dimensionality), inclusive
of those in the main evaluation, in order to reproduce the entire experimental study of [17].

66

4.6. Experimental Evaluation

Queries. We query data as in [16]. Given data set D and number of result objects |R| as input, the
generator produces queries originating from the dithered centers of the objects in D. |R| object
centers are chosen randomly so that the most dense data regions are also most actively queried.
For each data set, we produce three query profiles of varying selectivity: QR0, QR1, and QR2
retrieve approximately 1, 10 and 100 objects, respectively, per query.

4.6.3 Results and Discussion

(a) MBC

† = 79%

† = 69%

(b) MBB

† = 64%

† = 42%

(c) RMBB

† = 63%

† = 42%

(d) 4-C

† = 54%

† = 31%

(e) 5-C

† = 51%

† = 29%

(f) CH

† = 48%

† = 29%

(g) CBBsky

† = 59%

† = 42%

(h) CBBsta

† = 34%

† = 8%

Figure 4.8 – Visualization of different bounding methods over the two leaf nodes from
Figure 4.3a and their dead space (†).

Bounding object comparison. We begin by evaluating how well the clip points (CBBsky

and CBBsta) eliminate dead space, relative to six alternative bounding objects (studied earlier
in [26, 27]). Figure 4.8 illustrates each shape on our running example. We compute minimum
bounding circles (MBC) as per Welzl [163] and rotated minimum bounding boxes (RMBB) by
iterating the edges of the convex hull (CH) and computing the minimum bounding box with
the same orientation as each edge. The m-corner polygons (4-C and 5-C) are the smallest-area
polygons with ≤ m corners that fully bound the children, computed similarly to [2]. Finally,
the convex hull (CH) is computed using Graham Scan [61]. Observe the extremes that apply
in general: CH lower bounds the dead space for all the convex polygons but has the highest
representation overhead (O(n) corners). MBC and MBB have the lowest representation overheads
(≤ two points) but coarsely approximate their contents.

67

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

par02 rea02

Dataset

0

20

40

60

80

100

A
v
g
.
d
e
a
d
 s
p
a
ce
 (
%
)

(a)
MBC

MBB

RMBB

4-C

MBC

MBB

RMBB

4-C

par02 rea02

Dataset

0

2

4

6

8

10

12

#
p
o
in
ts

(b)
5-C

CH

CBBSKY

CBBSTA
5-C

CH

CBBSKY

CBBSTA

Figure 4.9 – Comparing different bounding methods w.r.t dead space (left) and storage
requirements (right).

Figure 4.9 contrasts the eight bounding objects in terms of area (left) and representation overhead
(right). Following [26, 27], we restrict to 2d data sets (just this figure), as we know of no way
to calculate minimum bounding m-corner polytopes in higher dimensions. The simplicity with
which MBC, MBB, and CBB generalise to higher dimensions is a clear advantage.

For each data set, we built a RR*-tree. The RR*-tree benefits the least from CBBs compared
to the other R-tree variants. For each node of the RR*-tree, we replace the MBB with a new
minimum bounding shape and measure its area. Figure 4.9(a) reports the percentage of this area
that is empty, averaged over all nodes, for each bounding shape. The number of points used
is reported in Figure 4.9(b). As expected, the convex polygons prune more dead space as the
number of corner points increases. CBBsky is generally competitive with 4-C using only one or
two clip points on average. (The reported cost in Figure 4.9(b) includes the two corner points of
the original MBB.) CBBsta, using up to 3.4 clip points on average, outperforms even CH, which
uses on average 12.5 and 11.8 points.

Remaining dead space. Figure 4.10 expands the previous experiment by evaluating the coverage
of CBB in all four R-tree variants and more data sets (with some still omitted for space 2). The
total height of each bar, relative to the y-axis indicates the percentage of the MBB that is dead
space; the height of the top (clear) part of the bar indicates the fraction of the dead space that is
clipped away by the skyline (top) or stairline (bottom) points. If the solid, lower part of the bar is
comparably short, then most dead space is eliminated.

Along the x-axis, we vary three parameters: the highest granularity groups correspond to a
given data set; the four groups within that are colour- and pattern-coded by R-tree variant; at the

2The point-only rea03 data set essentially occupies zero volume; so, the entire MBB is dead space at the leaf
node level and the experiment is not very informative. The results for den03 and neu03 are very similar to axo03.

68

4.6. Experimental Evaluation

par02 par03 rea02 axo03

(a) Dataset and k, number of CSKY-clip points used

0

20

40

60

80

100
D
e
a
d
sp
a
ce
/n
o
d
e
 v
o
lu
m
e
 (
%
)

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 4 8 1216k=

Total node volume
QR-tree HR-tree R*-tree RR*-tree Deadspace: CSKY-clipped RemainingDeadspace: CSKY-clipped Remaining

(a) Skyline-based clipping (described in Section 4.4.2)

par02 par03 rea02 axo03

(b) Dataset and k, number of CSTA-clip points used

0

20

40

60

80

100

D
e
a
d
sp
a
ce
/n
o
d
e
 v
o
lu
m
e
 (
%
)

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 4 8 1216 1 4 8 1216 1 4 8 1216 1 4 8 1216k=

Total node volume
QR-tree HR-tree R*-tree RR*-tree Deadspace: CSTA-clipped RemainingDeadspace: CSTA-clipped Remaining

(b) Stairline-based clipping (described in Section 4.4.3)

Figure 4.10 – Average dead space per node and R-tree for skyline- (above) and stairline-
based (below) clipping.

smallest granularity, we vary k, the maximum number of clip points stored per node. We vary k
from 1 to 2d+1 (i.e., up to twice the number of corners), although reiterate that this is a maximum
bound per node: clip points with a score less than τ = 2.5 % are not indexed.

Analysis. We first consider broad trends across data sets. All R-tree variants produce bounding
boxes on the neuroscience data set (axo03, far right) that are mostly dead space. In fact, for all
four data sets, nodes on average contain ≥ 60 % dead space. The increase from the 2d synthetic
par02 data set to the similarly generated 3d data set illustrates the known fact that bounding
boxes become poorer approximations of their contents as the dimensionality increases. Despite
different packing algorithms, the QR-tree, R*-tree, and RR*-tree produce similar occupancy
rates in their bounding boxes. This is generally less than the HR-tree (the exception being the
neuroscience data set where all four have extremely high dead space rates). We observe that
most of the dead space is caused by (the much more frequent) leaf-level nodes (not shown
independently), which must bound the actual spatial objects using a rough box; at higher levels
of the tree, the MBBs more tightly bound other MBBs. Overall, such voluminous dead space
across R-tree variants and data sets strongly motivates this research.

Turning to the ratio of clipped dead space to remaining dead space (i.e., fraction of each bar that
is filled in), we see more variation across data sets, but consistency across R-tree variants. It is
more difficult to clip away dead space from the street segments (rea02), which is quite intuitive:
we expect street segments to “wrap around” some of the dead space, particularly in cities with
grid patterns. Nonetheless, even on this least promising data set, we clip away more than a fifth

69

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

QR0 QR1 QR2 Total
QR-tree 24/44 16/29 7/13 16/29
HR-tree 25/42 18/30 8/14 17/29
R*-tree 21/38 15/28 7/14 14/27
RR*-tree 15/28 11/21 4.5/9.5 10/19
Total 21/38 15/27 6.5/13 14/26

Table 4.1 – Average improvement in % I/O reduction using skyline/stairline clipping for
each R-tree.

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

A
v
g
.
#
le
a
fA
cc
 w

.r
.t
.
o
ri
g
in
a
l
(%

)

(a) QR0 QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(a) QR0

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

A
v
g
.
#

le
a
fA

cc
 w

.r
.t
.
o
ri
g
in

a
l
(%

)

(b) QR1 QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(b) QR1

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

A
v
g
.
#
le
a
fA
cc
 w

.r
.t
.
o
ri
g
in
a
l
(%

)

(c) QR2 QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(c) QR2

Figure 4.11 – Average #leaf accesses in clipped R-trees w.r.t. their unclipped counterpart
(100%) for stairline-based clipping.

of the dead space. For the 3d data sets, we clip away more than 60%, irrespective of the packing
method.

Perhaps most encouraging is the fraction of dead space pruned by the first (ordered) clip point
(i.e., at k = 1). With just one point, 26%, 23%, 22%, and 22% of dead space is clipped away by
QR-tree, HR-tree, R*-tree, and RR*-tree, respectively (on rea02). Since we order clip points by
the (heuristic) volume of dead space that they clip away, the effect of each subsequently added
clip point diminishes and eventually flattens out. Nevertheless, we observe that with k = 2d the
CBBs still eliminate substantial portions of dead space. This suggests that k can certainly be large
enough to produce one clip per corner. Overall, clipping with up to two points per corner (i.e.,
k = 8 in 2d and k = 16 in 3d), eliminates almost half of all dead space: 58%, 60%, 49%, and
48% is clipped away in QR-tree, HR-tree, R*-tree, and RR*-tree, respectively. Since the number
of actually stored clip points is often lower (recall τ = 2.5%), we set k = 2d+1 to this maximum
bound in the following experiments.

To compare skyline- and stairline-based clipping, observe that the difference lies in the fraction
of the bars that are filled in; the total height (i.e., amount of dead space) is dependent only on the
data set and packing algorithm. It is clear, as asserted in Section 4.4.3, that the stairline points
clip away much more dead space, eliminating on average almost 50% more for the same k.

Range query performance. While the first experiments show that we clip away a lot of dead
space, the real objective is to improve query performance. Removing dead space is only useful if

70

4.6. Experimental Evaluation

that is where the query rectangle intersects the MBB. Here we evaluate how well clipping reduces
I/Os. Following numerous studies on disk-based indexing (e.g., [17]), we assume that internal
(non-leaf) nodes are memory-resident and measure the number of leaf-level nodes accessed as
our default I/O metric. (Later we remove this assumption.)

Figure 4.11 reports I/Os for stairline-based clipped R-trees. Query selectivity decreases in the
subfigures from left to right. Within each subfigure, four vertical bars corresponding to each
R-tree variant are grouped by data set. The bar height reports the percentage of I/Os relative to
not clipping.

Analysis. We focus on stairline clipping, but similar (dampened) trends apply to the skyline
points. For example, skyline/stairline points clip away 20%/39% of RR*-tree volume, reducing
I/Os by 10%/19%, i.e., Csta performs ≈ 2× better.

On the most selective queries (a), we consistently reduce I/Os by ≥ 10%, even exceeding 50%
in some cases. The gains are particularly pronounced on the neuroscience data sets (axo03,
den03, and neu03), where we save 40–50 % of I/Os. While the difference in the amount of dead
space clipped away in Figure 4.10 was relatively small between the HR-tree and the other R-tree
variants, here we observe a much larger difference. The RR*-tree gains somewhat less query
performance from clipping than the other variants (19% versus 27–29% as an average over all
query profiles). We attribute that to its already strong query performance (shown in [17]).

The observed performance gains diminish with decreasing query selectivity. This is expected,
as the fraction of spatial objects that are around the query boundary decreases with larger query
ranges (i.e., lower selectivity). Nevertheless, HR-tree and QR-tree still benefit appreciably (circa
20%) on the rea02/rea03 and neuroscience data sets, respectively. The RR*-tree gains relatively
less than the other variants as query selectivity decreases, and on QR2, the difference between
variants is not very pronounced.

Table 4.1 averages the performance gains of Figure 4.11 across all data sets. For QR0, average
relative I/Os drops to 56%, 58%, 62%, and 72% for QR-tree, HR-tree, R*-tree, and RR*-tree,
respectively. In total, clipping MBBs results in an average reduction of 26% in I/Os, considering
all data sets, query profiles, and R-tree variants.

Update cost. Next, we quantify how effective are the Section 4.5.4 strategies for avoiding
unnecessary re-clipping of CBBs. Recall that we never re-clip on a deletion if the MBB is not
changed, so this experiment focuses on insertions.

We first randomly choose 90 % of the input file to batch-construct the clipped R-tree variants.
Then, we execute our insertion routine for each of the remaining 10 % of objects. We report
on the y-axis of Figure 4.12 the expected number of re-clips per insertion: i.e., the number of
nodes that we re-clip divided by 0.1× the input file size. Along the x-axis, we vary data set and
R-tree variant. Each stacked bar shows the cause of the re-clip: at the bottom are node splits,
which always force an MBB recomputation. In the middle are MBB changes without a node split,

71

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
p
e
ct
e
d
 #
re
cl
ip
s/
in
se
rt

QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

CBB changes

MBB changes

Node splits

Figure 4.12 – Expected number of re-clipped CBBs per insertion.

which force a CBB change. The top part shows CBB changes with no corresponding change to
the MBB, i.e., when Algorithm 8 returns FALSE.

Analysis. Without the strategy for avoiding unnecessary re-clips presented in Section 4.5.4, the
number of CBB changes per insert would be exactly 1.0 higher than the number of MBB changes.
However, we observe far fewer re-clips than this worst case. Averaging across all data sets,
≤ 0.35 of a node needs to be re-clipped per insert, with the exception of the R*-tree (discussed
below). Generally, ≈½ the re-clips are caused by underlying MBB changes. The challenging
neuroscience data sets give the highest re-clip rates, where we still avoid ≈ 60 %.

With respect to d, the 2d data sets have lower re-clipping rates than their 3d counterparts (observe
par0* and rea0*). The neuroscience data sets, with long, thin objects, have similar re-clipping
rates to rea03. The R*-tree consistently suffers the most re-clips because of its reinsertion policy:
a node split re-inserts every entry of that node; thus, single-object inserts often cause many
MBB/CBB changes.

Time complexity for updates. To quantify the in-memory computation overhead during insertion
into the clipped R-trees, we configure buffer sizes so that the R-trees are memory-resident and
then measure the resultant insertion time (of 10% of objects as in Figure 4.12).

Figure 4.13 shows the results. While for 2d data sets, the overhead is negligible, 3d updates are
at least ×2 more expensive in clipped variants. The trends also comply with the results in Figure
4.12: the extra (though greatly reduced by our proposed algorithm) CBB overhead (red portion
of the bars) still dominates the other costs.

We note that this work focuses on a static setting, driven by the neuroscience use case where the
entire 3d brain model is built on a supercomputer and dumped to file(s) prior to being investigated
by analytical queries. To support more dynamic workloads, most likely we would rely on batching

72

4.6. Experimental Evaluation

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

100

200

300

400

A
v
g
.
in
se
rt
 t
im
e
 w
.r
.t
.
o
ri
g
in
a
l
(%
)

QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

Figure 4.13 – Average update runtime in clipped R-trees w.r.t. their unclipped counter-
parts (100%) for stairline-based clipping.

or lazy update strategies that aim to make vanilla R-trees more dynamic [21, 93, 170]. All these
techniques are applicable to our clipped variants but we have not investigated them in this work.

Extra storage cost. Figure 4.14 reports the increased storage requirements for clipped RR*-trees
(k = 2d+1, τ = 2.5%). Each bar decomposes the percentage of bytes devoted to directory nodes,
leaf nodes, and clip points. For each data set (x-axis), we show results for Csky (left) and Csta

(right). As we only retain clip points with scores ≥ τ, we report atop each bar the average number
of clip points that are stored.

Analysis. Overall, the CBB overhead is quite low and storage is dominated by the far more
frequent leaf nodes. The storage dedicated to clip points never exceeds 2% (2d data sets) nor 9%
(3d data sets), irrespective of which method (skyline or stairline) is used to generate them. This
confirms that clip points and internal nodes can generally be memory-resident, as they contribute
just a few percent of the total storage.

No data set averaged all k = 2d+1 clip points. As few as 6 (Csky) and 13 (Csta) clip points are
stored per node in the 3d neuroscience data sets; the 2d data sets have ≤ 3 clip points on average.
This reflects that some objects are often near to MBB corners; dead space is not uniformly
distributed.

Csky produces fewer clip points than Csta as its clip points prune less area, often < τ. Thus, Csky

has a smaller overhead than Csta (3-fold on rea03), but worse I/O performance.

73

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

S
to
ra
g
e
 b
re
a
kd

o
w
n
 (
%
)

1.8 3.4 4.7 11 1.2 2.6 4.8 14 6.6 13 6.4 13 5.8 12

CSKY-RR*-tree

CSTA-RR*-tree

CSKY-RR*-tree

CSTA-RR*-tree

Clip points

Leaf nodes

Dir nodes

Figure 4.14 – CBB storage overhead.

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

120

Q
u
e
ry
 r
u
n
-t
im
e
 w
.r
.t
.
o
ri
g
in
a
l
(%
)

(a) QR0 QR-tree

HR-tree

R*-tree

RR*-tree

QR-tree

HR-tree

R*-tree

RR*-tree

(a)

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

120

Q
u
e
ry
 r
u
n
-t
im

e
 w

.r
.t
.
o
ri
g
in
a
l
(%

)

(b) QR1

(b)

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

20

40

60

80

100

120

Q
u
e
ry
 r
u
n
-t
im

e
 w

.r
.t
.
o
ri
g
in
a
l
(%

)

(c) QR2

(c)

Figure 4.15 – Average query runtime in clipped R-trees w.r.t. their unclipped counterparts
(100%) for stairline-based clipping.

CPU overhead in querying CBBs. To quantify the in-memory computation overhead in query-
ing CBBs, we configure buffer sizes for all R-trees so that they are completely memory-resident
and then measure the resultant querying time. Results are shown in Figure 4.15. For each
stairline-based clipped R-tree, this figure reports the querying time relative to the unclipped
variant (100%) on the y-axis. Data sets are varied along the x-axis. The reported CPU overhead
is at most 23% for all data sets. In some cases (e.g., in 2d data sets under QR0 and QR1 query
profiles) querying CBBs is cheaper, even in this in-memory setup, due to better pruning already
at the intermediate level nodes.

We note that efficient main memory computation is not the focus of this work, i.e., the current
implementation lacks in-memory optimizations. For example, we observe that the average node
capacity utilization across the R-tree variants is around 70%. The unused 30% is more than
enough to store all node’s clip points. This way, most of the time we could avoid chasing a
pointer to our auxiliary data structure and thus save at least one cache miss. Additionally, current
CPUs support wide SIMD instructions that enable to perform dominance tests between a query
corner and multiple clip points at once (data parallelism). Finally, when the MBB is fully covered

74

4.6. Experimental Evaluation

par02 par03 rea02 rea03 axo03 den03 neu03

Dataset

0

50

100

150

200
B
u
ild

-t
im

e
 w

.r
.t
.
R
R
*-

tr
e
e
 (
%

)
222 247 313 345 298

HR-tree

R*-tree

CSKY-RR*-tree

CSTA-RR*-tree

HR-tree

R*-tree

CSKY-RR*-tree

CSTA-RR*-tree

Building

CBB comput.

Figure 4.16 – Index building and CBB computation overhead.

by a range query (which is likely for large queries, e.g., the QR2 profile), the CBB intersection
tests become unnecessary and can be skipped completely.

Clipping CPU cost. During construction, we recommend to clip an R-tree node in main memory
just before flushing it to disk so that the CPU cost is masked by that of the disk write. Nevertheless,
for completeness, we quantify the main memory overhead for clipping. To do so, we configure
buffer sizes for all R-trees so that they are completely memory-resident and then measure the
CPU time.

Figure 4.16 reports the CPU construction time relative to an unclipped RR*-tree (100%). Data
sets vary along the x-axis. The HR-tree is generally the fastest to build (due to its bulk-loading)
and the R*-tree is generally the slowest to build (due to its forced reinsertion of items during
node split). These two unclipped variants provide context for interpreting the clipping overhead.
The shaded part (above the dashed line) of the stacked bars for the clipped RR*-trees shows the
component of the construction time devoted to clipping. When exceeding 200%, the value is
written above the bar.

Analysis. As k grows exponentially with d, so does the overhead of CBB computation. For
the spatial data sets (i.e., d ≤ 3), Csky adds < 7% extra computation time. Csta clipping is more
expensive, adding up to 4% and 30% of extra computation in 2d and 3d data sets.

Spatial join performance. We perform a join using axo03 and den03, resulting in 1 985 969
pairs, using stairline points and two join strategies: Index Nested Loop Join (INLJ) and Synchro-
nised Tree Traversal (STT).

Analysis. In the INLJ evaluation, we build an index on the larger data set (axo03) and probe it
with every object from den03 (essentially one range query per den03 object). The results mirror

75

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

par02 par03
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
vg

. q
ue

ry
 ti

m
e

(s
ec

.)

(a) QR0
HR
CSKYHR
CSTAHR

HR
CSKYHR
CSTAHR

par02 par03
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b) QR1
RR
CSKYRR
CSTARR

RR
CSKYRR
CSTARR

par02 par03
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(c) QR2

Figure 4.17 – Querying 1 billion object data sets.

those of the range query experiments: clipping reduces I/Os by 40%, 53%, 50%, and 39% in the
HR-tree, QR-tree, R*-tree, and RR*-tree, respectively.

For the STT strategy, we measure leaf accesses for both trees and observe a 17%, 20%, 20%,
and 16% reduction in I/Os in the HR-tree, QR-tree, R*-tree, and RR*-tree, respectively. Note
that the obtained reduction is lower than in the case of INLJ, but STT performs significantly
better than INLJ, having a lower total number of accesses. E.g., in the case of the RR*-tree,
INLJ with clipping incurs around 4 × 106 leaf accesses whereas STT with clipping only around
106. Intuitively, the intersect area of two tree nodes in STT is larger than the intersect area of a
tree node with a single data object in INLJ and thus there is a lower chance that it will be fully
enclosed within dead space.

Scalability experiment. Our last experiment scales up the synthetic data to 230 objects so that it
exceeds our machine’s 16 GB of physical memory (yielding 71 GB and 96 GB for the par02 and
par03 RR*-tree index disk dumps, respectively, with similar sizes for HR-tree). Starting with all
indexed data on disk and nothing buffered we measure the query time for 500 random queries on
each query profile, allowing the OS to cache paths for previously touched nodes. The average
query runtimes are reported in Figure 4.17 for each selectivity.

Analysis. Both skyline and stairline CBBs boost query performance in the HR-tree and R*-tree.
Similarly to the I/O performance in Figure 4.11, Csta clipping is 2× more efficient than Csky on
average. Interestingly, a Csta-clipped HR-tree matches (in QR0 and QR1) or even outperforms
(in QR2) an unclipped RR*-tree. In all, spatial search with CBBs, even for 1 billion objects,
reaches interactive times—200 ms or less.

76

4.7. Reproduction of Prior Experimental Results

(a) (b)

Figure 4.18 – 2d projections of the 3d axo03 and den03 data sets.

4.7 Reproduction of Prior Experimental Results

This section presents the reproduction of all the experiments given in “Figure 4” of [17] using
the data sets and queries shared by the authors. There are 28 data sets in total: 21 generated
synthetically and 7 drawn from real-world applications. There are 7 groups of synthetic data sets
using different data distributions: absolute (abs), power-law (bit), diagonal (dia), parcel (par),
p-edges (ped), p-haze (pha), and uniform (uni). Each group contains a 2d, 3d and 9d data set
that follows the same data distribution. The real (rea) data sets correspond to 2d, 3d, 5d, 9d,
16d, 22d and 26d distributions. As before, distribution and dimensionality are encoded into the
data set name, e.g., uni02 and rea05 stand for 2d uniform and 5d real data sets, respectively.

For each data set, three query profiles, QR0, QR2, and QR3, are synthetically generated to
retrieve ≈ 1, 100, and 1000 objects, respectively, producing a total of 84 query files. Each query
file follows the corresponding data set’s distribution (except ped where queries are generated
uniformly to intentionally touch the empty parts of the data space, i.e., to mimic exploratory
queries). A detailed specification of all data sets and queries, with visualisations of the data
distributions, can be found in [16].

The reproduced results are shown in Figure 4.19. The bottom horizontal axis represents a query
index (file), while the top axis additionally labels the data sets queried. For each data set, there
are 3 ticks on the bottom axis corresponding to 3 query files (in order QR0, QR2, and QR3).
The vertical axis shows the average number of leaf accesses (in percent) in relation to that of the
original RR*-tree which is set to 100% for each query file. We exclude query performance for
very high-dimensional real data sets (rea16, rea22, and rea26), i.e., queries at indexes 76–84.
Instead, we show the performance of the two new real 3d data sets (detailed in Section 4.6.2).

In addition to our skyline and stairline clipped variants of the Hilbert R-tree (Csky- and Csta-HR-
tree) and RR*-tree (Csky- and Csta-RR*-tree), Figure 4.19 depicts query performance of the four

77

Chapter 4. Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration

original indexes: the quadratic R-tree [66], the R*-tree [15], the original RR*-tree [17], and the
Hilbert R-tree [85]. To make Figure 4.19 less cluttered, we plot the performance of our clipped
R-tree variants only if it is at least 5% better in performance compared to its original counterpart.
(For example, no red markers for any of the clipped RR*-tree variants from query 1 to 27 implies
that clipping improvement is below 5% under these data sets/queries.)

We have obtained the same query performance for all four indexes as reported in the original
study [17]. We observe that the RR*-tree is superior for most of the data sets and query profiles.
Interestingly, though, this is not the case under our newly added three data sets. The RR*-tree is
outperformed by the HR-tree under all new queries (at indexes 76–81, far right) with the biggest
gap on query 82 (by 37%).

Our clipped variants do not offer large performance gains for most synthetic data sets except for
the more complex distributions in par02/par03, ped02/ped03, and pha09. Also, as mentioned
above, query files for ped are generated uniformly (and thus touch a lot of dead space) and both
clipped variants are able to benefit from that compared to the original counterparts.

We re-observe two trends from Section 4.6. First, as expected, the Csta variant always outperforms
Csky. Second, smaller queries yield higher performance gains, i.e., QR0 benefits more than QR2
which benefits more than QR3. This is expected as larger query ranges have a smaller fraction of
objects located at the query boundaries.

4.8 Chapter Summary

Minimum bounding boxes (MBBs) are ubiquitously used in spatial indexing to represent a
set of spatial objects. However, they often enclose significant “dead space” that contains no
actual objects. This chapter proposed clipping away empty corners of MBBs with a lightweight
overhead. Each auxiliary “clip point” defines a large, empty rectangular area that can be discarded
with a single point comparison. The resultant bounding shapes are simple but non-convex, thereby
pruning more area than previously proposed alternatives to MBBs.

We plugged our skyline- and stairline-based clipping strategies into four R-tree variants of a
well-known experimental benchmark. Compared to unclipped R-trees, the (2×) more aggressive
stairline points removed ≥ 27% of the dead space. Irrespective of R-tree variant, this translated
into ≈ 26% I/O reduction on average across all workloads. With a storage overhead of a few
percent, clipped bounding boxes are highly effective for accelerating spatial data processing.

78

4.8. Chapter Summary

Figure 4.19 – Reproduced “Figure 4” from [17] augmented with our workloads.

79

5 Workload-Aware Indexing for Ad-hoc
Spatial Data Exploration

Efficiently querying multiple spatial data sets is a growing challenge for scientists. Astronomers
query data sets that contain different types of stars (e.g., dwarfs, giants, stragglers) while neu-
roscientists query different data sets that model different aspects of the brain in the same space
(e.g., neurons, synapses, blood vessels). The results of each query determine the combination of
data sets to be queried next. Not knowing a priori the queried data sets makes it hard to choose
an efficient indexing strategy.

In the first part of this chapter, we show that indexing and querying the data sets separately
incurs considerable overhead but so does using one index for all data sets. We therefore develop
STITCH, a novel index structure for the scalable execution of spatial range queries on multiple
data sets. Instead of indexing all data sets separately or indexing all of them together, the key
insight we use in STITCH is to partition all data sets individually and to connect them to the
same reference space. By doing so, STITCH only needs to query the reference space and follow
the links to the data set partitions to retrieve the relevant data. With experiments we show that
STITCH scales with the number of data sets and outperforms the state-of-the-art by a factor of
up to 12.3.

In the second part of this chapter, we argue that in some cases indexing all the data upfront
is unlikely to pay off because scientists do not need to analyze it all. Nevertheless, tools and
methods to analyze only data subsets are rather rare. We therefore present Space Odyssey1, a
novel approach enabling scientists to efficiently explore multiple spatial data sets of massive size.
Without any prior information, Space Odyssey incrementally indexes the data sets and optimizes
access to the ones frequently queried together. As our experiments show, through incrementally
indexing and adapting the data layout on disk, Space Odyssey accelerates exploratory analysis of
spatial data by substantially reducing query-to-insight time compared to the state-of-the-art.

1The material of this part has been the basis for the ExploreDB 2016 paper Space odyssey: efficient exploration of
scientific data [125].

81

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

5.1 Part I: An Index Structure for Multiple Spatial Data Sets

5.1.1 Introduction

In several real-life applications data is naturally divided into distinct categories and users are
often interested in a subset of them. Additionally, users issue queries that explore different
combinations of categories as they rarely know a priori which categories need to be combined
to answer a particular question or test a specific hypothesis. To build an anatomically accurate
spatial atlas of the human brain, for example, the neuroscientists in the Human Brain Project
(HBP) [106] study the structure and shape of neurons using bright-field microscopy, and whole
brain images using magnetic resonance imaging (MRI). This process results in different data
sets that contain data originating from different observational sources, potentially representing
different types of neurons or other brain structures (e.g., synapses and blood vessels). Inspecting
the same brain regions in these data sets allows to verify that a given region contains the correct
ratio and distribution of different brain structures, and is key to building a brain atlas. There is
consequently the need to efficiently retrieve the same spatial region from a number of different
data sets, stored on disk due to their size. This problem is challenging because the queried data
sets are chosen ad-hoc depending on the results of previous queries and thus cannot be predicted.
As more observational sources are added, the problem becomes increasingly challenging.

Formally, let D be a set of N spatial objects. Each object has a spatial extent2 and a tag that
denotes the object’s category. Categories have application-specific semantics; for example the
different categories can correspond to neurons of different types, or to the same neurons obtained
from different samples.

Definition 1 (Bundled Spatial Range Query). Let c be the number of distinct categories; each
tag thus is represented as an integer in {1, 2, ..., c}. Denote by Di (1 ≤ i ≤ c) the set of objects in
D having category tag i. Every object has exactly one tag, and thus D1,D2, ...,Dc are mutually
disjoint and

⋃
i∈c Di = D. Given an axis-aligned range query r defined as a three dimensional

interval r = [l1, u1] × [l2, u2] × [l3, u3] and a non-empty set Q ⊂ {1, 2, ..., c}, a bundled spatial
range query returns, for each i ∈ Q, all objects d ∈ Di intersecting with r. We call the query
parameter Q a category selection. Note that Q can be any non-empty subset of {1, 2, ..., c}, i.e., a
combination of categories. The total number of possible Q is 2c − 1.

Existing spatial indexing approaches can be applied, but not knowing a priori which combination
of categories will be queried together renders them inefficient. Using a single index for all
categories is only efficient when a query is executed on all categories. Otherwise the I/O overhead
can be considerable as data not belonging to the categories of interest needs to be retrieved
from disk and filtered out. On the other extreme, using multiple indexes, one for each category,
becomes inefficient when the number of categories is large, as the same spatial region has to be
repeatedly located within different index structures (that typically suffer from over-coverage, i.e.,
dead space, and overlap of minimum bounding boxes [66]). Overall, the dominant cost of using

2The description in this paper focuses on 3D objects but the proposed techniques also work on 2D data.

82

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

(i) a single index is retrieval and filtering of unnecessary data and (ii) multiple indexes is repeated
traversal of index structures.

To achieve the best of both worlds, we introduce a new indexing approach that exhibits superior
performance by eliminating unnecessary I/O operations. Our approach consists of two phases.
The first phase is category-oblivious; it simply uniformly divides the reference space that en-
compasses all the categories. The second phase is category-aware and segments each individual
category into partitions in a data-driven manner. To enable pinpoint access to regions in the
queried categories, the category partitions are linked to the uniform partitions of the reference
space. With this strategy, our approach retrieves from each category precisely the data needed
without incurring the undue overhead of querying separate indexes.

Note that we target scientific use cases where all the raw data (or at least most of it) is available
before querying. We thus focus on developing a bulkloading approach.

Contributions. To the best of our knowledge, we are the first to study in-depth the problem
of bundled spatial range queries and to identify the lack of a solution that provides efficient
access to individual categories (or data sets) that are all enclosed within the same spatial volume.
Given the importance of this problem in real-world applications, we advocate that specialized
efforts are required to improve the performance of existing spatial indexing approaches. The
main contribution of this work is the development of a spatial indexing approach that scales with
an increasing number of categories, yet without penalizing performance when the number of
categories is small.

The design of our approach is based on the key observations that most overhead in baseline
approaches originates from (a) traversing (hierarchical) index data structures repeatedly and
unnecessarily and (b) from late pruning results from unnecessary categories.

We therefore develop an index which is based on a simple, flat, grid-based reference space. With
this, query execution can quickly assess which areas are likely to be in the query result without
traversing one or multiple hierarchical index structures repeatedly. Furthermore, to enable early
pruning irrelevant categories in the query execution, we store information on where and how to
retrieve category specific data within the grid, in a data structure that enables efficient filtering
based on categories. As a result, our approach scales with an increasing number of categories,
avoiding the retrieval of an excessive amount of index related data structures as well as irrelevant
results. Our approach also allows to incrementally add new categories with only limited updates
to the reference space (and no updates to other categories) because each category is treated,
partitioned and stored independently.

To showcase these techniques, we develop STITCH, a bundled spatial index that achieves efficient
query execution while scaling with an increasing number of categories. Albeit we base STITCH
on simple ideas, these ideas prove to be effective. As our experiments on real-world data show,
STITCH achieves a speedup of ∼ 4.5× compared to indexing each category separately with a
state-of-the-art index, and 1.3× - 12.3× compared to indexing all categories with a single index.

83

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

5.1.2 Motivation

Spatial data is at the core of many scientific processes as scientists study entities using their
morphological or topological properties. Observational data is acquired using a variety of
different instruments and techniques and originates from a variety of input samples, resulting in
multiple data sets describing the same spatial volume. Given these data sets, scientists need to
efficiently perform ad-hoc queries collecting data from only a subset of them. Querying a certain
combination of data sets that are arbitrarily chosen from a pool of tens or hundreds of data sets is
the general problem that drives the design of STITCH.

Use Cases. The main motivation behind our work stems from our collaboration with the Human
Brain Project (HBP) [106]. Neuroscientists in the Human Brain Project aim to build an atlas of
the human brain which will serve as a unifying “spatial scaffold” for studying different aspects
of the brain. The input to create this atlas is observational data collected using a variety of
light microscopy modalities (such as laser-scanning, wide-field epifluorescence, and bright-field
microscopy) and magnetic resonance imaging (MRI). Scientists then need to ensure that their
spatial model is biorealistic. To do so, they compute statistical properties for different regions
in the model and compare them with the observational data. Overall, in both the building and
the validation phase, scientists need to retrieve complementary information about a given spatial
region from a subset of the data sources that are available to them in an exploratory fashion. The
bulk of the data used in this analysis is static, as scientists incorporate new information by adding
new data sources rather than updating existing ones. With the increase in the number and size of
the analyzed data sets, the exploration process is significantly hampered.

In other disciplines (e.g., cosmology [92] and seismology [5]) scientists simulate phenomena on
a large scale. The outcome of the simulations are several data sets, each containing a different
representation of the simulation result and, in the analysis of the result, parts of different data sets
need to be combined. In cosmology, for example, N-body simulations of different particle types
(dark matter, gas, stars, etc.) are used to study the evolution of the universe. Each resulting data
set stores the locations of one particle type and for the final analysis, astronomers need to query
different data sets together without knowing a priori the exact combination.

Data Management Challenge. There are three straightforward strategies for evaluating bundled
spatial range queries using existing spatial indexes. The first strategy, 1-for-each, builds a
dedicated spatial index (e.g., R-Tree [66]) for each category. A bundled spatial range query is
evaluated by searching the |Q| spatial indexes on the categories in Q. Adding a new category
incurs negligible overhead as it simply entails building an index for the new category. The
second strategy, all-in-1, builds a single index structure containing all categories. Given
a bundled spatial range query, it traverses the index to get a set of spatial objects potentially
qualifying the query predicates, it filters out irrelevant items that do not belong to any of the
queried categories in Q, and finally evaluates the spatial predicate on the remaining items. New
categories are added by updating the index, which can incur substantial overhead. The third
strategy, queried-in-1, takes the all-in-1 strategy to the extreme and builds indexes for

84

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.1 – Scaling with an increasing number of categories in the category selection.
1-for-each does not scale well as the number of categories increases, all-in-1 introduces
an overhead when only a small subset is queried, while queried-in-1 provides the best
performance, but is a practically infeasible solution.

all possible category combinations. That way, we can answer a bundled spatial range query
by searching the specific index that contains the exact combination of queried categories (and
nothing but those).

We implement all strategies using the R-Tree [66] spatial index, which is arguably the most widely
used index structure for spatial data. In a motivation experiment we index 100 neuroscience data
sets (categories) representing the same brain volume, ∼ 1GB each, and measure the total number
of I/Os (i.e., disk pages read) for 200 range queries corresponding to different brain regions of
size 10−3% of the total volume. To evaluate the performance of the queried-in-1 strategy, we
create indexes that contain exactly the combination of the 25, 50, 75, and 100 categories that are
queried together. The precise experimental setup is described in Section 5.1.7.

The results of the motivation experiment in Figure 5.1 demonstrate the trade-offs of each strategy
as the number of categories in the category selection increases. The all-in-1 strategy achieves
the same consistent performance regardless of the number of queried categories, while the
performance of 1-for-each is linearly decreasing with the growing number of categories. This
is expected, as the former always has to inspect the same (big) index, while the latter has to
probe an increasing number of (smaller) indexes. Interestingly, none of these two strategies
achieves the best performance in all cases and the crossing point clearly indicates what strategy
is preferred for what scenario. As expected, queried-in-1 provides the best performance,
minimizing the query cost irrespective of how many categories are queried. Note, however, that
this strategy is unrealistic because the cost of constructing and storing indexes for all possible
category combinations (2100 − 1 in our example) is prohibitively high.

85

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

The goal of this work is to develop an indexing approach that has the same querying behavior
as if there was a dedicated index for the queried combination, without building indexes for all
possible combinations a priori. As we will show next, this is achieved by physically bundling the
indexes for different categories.

5.1.3 Related Work

Data-oriented Partitioning. Arguably the seminal spatial index structure is the R-tree [66]. The
R-tree is a disk-based index consisting of a hierarchy of minimum bounding boxes (MBBs) which
recursively enclose data objects. By doing so, the R-Tree is resilient to data skew, but faces the
problems of over-coverage and overlap of MBBs, which results in multiple (partial) paths being
explored during querying. Many extensions to the basic approach have been proposed to address
these issues and optimize the node MBBs during dynamic index maintenance. To increase
robustness against different data distributions, the R∗-tree [15] employs multiple optimization
criteria to choose the node into which a new object should be inserted. In addition, it removes and
reinserts the spatial objects of an overflowing node in an attempt to minimize the dead space and
the margin in each node. The improved query performance comes at the expense of higher update
costs. The RR∗-tree [17] introduces more adaptive optimization strategies to further reduce I/O
costs and enhance search performance. The R+-Tree [131] creates non-overlapping nodes by
inserting objects into multiple leaves, which makes the index larger. The cR-tree [23] considers
the R-tree node splitting procedure as a typical clustering problem: upon a node overflow, the
well-known k-means clustering algorithm is applied to find a good split. To find real clusters, and
not just two groupings of the node data, the two-way node splitting property is relaxed. Instead
of modifying the index structure or the splitting procedure, the approach presented in Chapter 4
proposes to solve the problem of over-coverage by improving MBBs. It converts node MBBs to
CBBs (Clipped Bounding Boxes) by clipping away dead space that is concentrated around the
MBB corners.

Since our data sets are massive and known a priori, we focus on bulkloaded R-Trees. Bulkloading
approaches group spatially close objects and store them on the same disk page to improve locality
and reduce overlap between nodes. Then, an R-Tree is built on top of those disk pages, typically
bottom-up. The Hilbert R-Tree [85] uses the Hilbert space-filling curve to order the objects
according to their spatial proximity. Sort-Tile-Recursive (STR) [95] recursively tiles the space,
sorts the objects in a tile along each dimension and thereby also guarantees spatial proximity as
well as small MBBs, outperforming the Hilbert R-Tree [85]. In contrast, the Top-down Greedy
Split (TGS) [56] works top down: it splits the data set into partitions so that on each level the area
of each partition is minimized. This process continues recursively until each partition fits on a disk
page. While bulkloading with TGS takes much longer than with other approaches, the resulting
R-Tree outperforms the Hilbert R-Tree and STR on extreme data sets (with respect to skew and
aspect ratio). The Priority R-Tree (PR-Tree) [12] groups all objects with extreme coordinates in
the same dimension in the same node, thereby reducing the area and overlap of the remaining
nodes. This improves performance on extreme data sets, making the PR-Tree outperform TGS.

86

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

As recently shown [144], R-Tree-based approaches still suffer considerably from unnecessary
I/Os caused by overlap. FLAT [144] consequently adds connectivity (neighborhood) information
so that the R-Tree is only used to locate any single data object inside a query volume and the
remaining objects are found by crawling through neighbors.

Space-oriented Partitioning. Instead of grouping objects hierarchically based on their proximity
and allowing groups to overlap, another family of spatial indexing methods splits the space
using hyperplanes into a set of disjoint partitions that are stored flatly [6] or in a hierarchical
structure [18, 80, 155]. The simplest space-oriented indexing technique is the uniform grid [6],
where a predefined area is divided into rectangular cells. Each cell stores together all the objects
that overlap with it. In contrast, the KD-Tree [18] divides the space hierarchically in a data-driven
manner. At each level, it splits the objects along one dimension in two partitions such that each
partition contains approximately the same number of objects.

Finally, we note that the term category in this work simply refers to a group of objects (e.g., a
data set) rather than a textual attribute. Thus, research on keyword search (i.e., [96]) is not related
to this work.

5.1.4 STITCH Overview

To overcome the aforementioned challenges, the proposed method STITCH avoids the repeated
traversal of multiple index structures on disk and the retrieval of unnecessary data. This is
achieved by combining data-oriented partitioning with space-oriented indexing.

First, similar to the 1-for-each and unlike the all-in-1 strategy, spatial objects belonging to
different categories are stored in separate data files to enable retrieval of data from precisely the
categories needed. To retrieve data from each file efficiently, spatially close objects are stored on
the same disk page. The assignment of spatial objects to disk pages is achieved by applying a
data-oriented partitioning method which adapts to the distribution of objects in each individual
category.

Second, unlike the 1-for-each but similar to the all-in-1 strategy, instead of using one index
per category to index the minimum bounding boxes (MBBs) of the pages, STITCH builds a single
index on the reference space (the common universe that encloses all the underlying objects from
all categories). To make access to this reference index efficient, STITCH avoids a hierarchical
structure and organizes it in a uniform grid. The grid cells store links to the categories, i.e.,
each cell stores links to the category pages it overlaps with. To have more pruning power in
the reference index, along each page link, the cell also stores the page MBB. Within each cell,
the links (and corresponding page MBBs) are ordered, such that links to a specific category can
efficiently be accessed. Specifically, all links for category i precede any link for category j for i <

j. Figure 5.2 shows the overview structure of STITCH.

87

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Reference

Space

Dataset A Dataset E

Dataset B

Link Link

Dataset D

Dataset C

Figure 5.2 – STITCH links multiple data sets (categories) to the same index/reference space
(bottom center) and directs queries to the destination data sets via corresponding links.

With the reference index and the category pages, the result of range queries is computed in
two phases. STITCH first probes the reference index to find all grid cells overlapping with the
query range and retrieves all the page MBBs from those cells for the queried categories. This
phase is based on the key insight that unlike data-oriented hierarchical indexes, our reference
index does not suffer from overlap. Furthermore, STITCH avoids traversing multiple index
structures because all the categories are mapped to the same reference index. In the second phase,
STITCH discards the page MBBs that do not fall in the queried area and only visits the qualifying
disk pages by following the corresponding links. That way, STITCH retrieves spatial objects
from exactly those categories needed and for the queried area, thereby avoiding the retrieval of
unnecessary data. Comparing to existing grid-based indexing approaches, STITCH suffers less
from the problem of data replication and can thus accommodate categories having objects of
varying sizes without the need for expensive fine-tuning of the grid configuration. This is because
the uniform grid in STITCH does not index the spatial objects themselves but the page MBBs -
the actual spatial objects are organized using a data-oriented space partitioning strategy which is
resilient to data skew. As we discuss in more details in the following, we adapt the data-oriented
partitioning strategy to reduce the amount of replicated data even further.

5.1.5 STITCH Indexing

We segment the entire space of each category into partitions, each partition corresponding to one
disk page. We then create a link between a partition P and a grid cell C of the reference index
if and only if at least one element contained in P overlaps C. The created link is essentially the
pointer to the partition P (i.e., the location on disk where P is stored) and is stored in grid cell C.

88

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

In theory, any partitioning method can be used to partition the categories. Nevertheless, to
avoid the problem of replication associated with space-oriented partitioning, STITCH follows a
data-oriented partitioning strategy. In particular, we base our partitioning strategy on an existing
algorithm, Sort-Tile-Recursive (STR [95]). STR first sorts the spatial objects in the x-dimension
and partitions them along this dimension into fixed sized partitions. Each such partition is
subsequently sorted and partitioned in the other dimensions (y, and then z). The partition sizes in
each dimension are chosen so that the final partitions contain at most as many spatial objects as
can be stored on a single disk page.

To minimize partial overlap with the grid cells of the reference index, STITCH extends STR
to align the data partitions with the (conceptual) cell boundaries. This is achieved by adding
spatial objects in the sorted order to partitions in each dimension until: (i) a grid boundary is
crossed, or (ii) the current partition is full. The first condition makes the partitioning grid-aware
and minimizes the number of cells that a final category partition overlaps with (thus minimizing
the number of replicated links in the reference index). While doing so may underfill disk pages,
i.e., less than the maximum elements are stored in a partition, our strategy proves effective in
reducing replicated links and providing fine-grained data access. The strategy ultimately trades
disk space for performance.

We call our grid-aligned data-oriented partitioning strategy Sliced Data-Oriented Partitioning
(Sliced-DOP). Sliced-DOP has the same complexity as STR, as it does not introduce any
additional passes over the data. The pseudocode of Sliced-DOP is given in Algorithm 9. Note
that the only information needed to detect a grid boundary crossing is the grid resolution, defined
by the input parameter g. Also note that the linking is performed alongside the partitioning and it
is based on object overlap and not on page MBB overlap: if the intersection between a page and
a grid cell does not contain any objects (dead space), the cell is not linked to the page.

89

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Algorithm 9: Sliced-DOP
Input: D: array of spatial objects

g: # of uniform grid cells in the reference space
ps: partition size (e.g., # objects per disk page)

Output: P: array of all partitions (stored on disk)
L: reference index (stored on disk)

// Init. running partitions for each dimension:
1 Px ← ∅; Py ← ∅; Pz ← ∅;
2 C ← ∅ // set of grid cells overlapping a running partition

// partition sizes:
3 s = 3

√
|D|/ps; sx = |D|/s; sy = sx/s; sz = sy/s;

4 sortByX(D); // sorts by x-coord.of object centers
5 tilex ←cellNrAtX(g, D[0]); // current tile at x-dim.
6 foreach i ∈ D do
7 nextT ilex ← cellNrAtX(g, i);
8 if tilex == nextT ilex then
9 Px ← Px ∪ {i};

10 if |Px| == sx or tilex , nextT ilex then
11 sortByY(Px);
12 tiley ← cellNrAtY(g, Px[0]);
13 foreach j ∈ Px do
14 nextT iley ← cellNrAtY(g, j);
15 if tiley == nextT iley then
16 Py ← Py ∪ { j};
17 if |Py| == sy or tiley , nextT iley then
18 sortByZ(Py);
19 tilez ← cellNrAtZ(g, Py[0]);
20 foreach k ∈ Py do
21 nextT ilez ← cellNrAtZ(g, k);
22 if tilez == nextT ilez then
23 Pz ← Pz ∪ {k};

// Keep track of overlapping cells:
24 C ← C∪ cellNr(g, k);
25 if |Pz| == sz or tilez , nextT ilez then
26 P← P ∪ {Pz}; // ready partition
27 foreach c ∈ C do
28 store in cell c of L the pointer to Pz and the MBB of Pz ; // linking

29 tilez ← nextT ilez; Pz ← ∅; C ← ∅;

30 tiley ← nextT iley; Py ← ∅;

31 tilex ← nextT ilex; Px ← ∅;

32 return P, L

90

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.3 – The partitioning procedure packs spatially close elements on the same disk
page (rectangle) and aligns the page boundaries as much as possible with the grid bound-
aries (dashed lines) of the reference index.

Figure 5.3 illustrates the intuition behind our partitioning technique for an example in 2D. This
example assumes that each partition contains at most 4 spatial elements — the same number
a disk page can store. Since there are 16 objects in total, they are first divided in x-partitions
of maximum 8 objects each along the x dimension, and then they are further divided in the y
dimension so that the final partitions contain at most 4 objects. The conceptual grid boundaries are
shown with dashed lines. When dividing in the x dimension, partition P1 contains the maximum
number of objects, as it is fully enclosed in a single grid x-tile (X1). On the other hand, even
though P2 is not full, we do not add the next elements in the sorted order (shown with solid color)
in it, so that it remains fully enclosed in the first grid x-tile (X1). The remaining six elements are
then inserted in P3. Similarly, when dividing in the y dimension, although P11 is not full, we do
not extend it with the two elements shown with solid grey color so that it remains fully enclosed
in C1, and a new page, P12, starts in C2. The same logic applies in the division of P3.

The links introduced in the reference index are the following: C1 is linked to page P11, C2 is
linked to pages P12, P13 and P2, C3 is linked to P31, and lastly C4 is linked to P31 and P32.
This example also highlights that in some cases, avoiding link replication is not possible: P31
contains two objects that overlap with both C3 and C4. As a result, both cells need to contain
a link pointing to P31. The impact of replication, however, is significantly smaller compared
to existing grid-based indexing approaches which replicate individual objects. This is because
replication happens at the disk page level and typically objects overlapping the same neighboring
cells are stored in the same page.

Note that Sliced-DOP is not equivalent to first applying uniform grid partitioning and then
performing STR within each grid cell. The difference is that Sliced-DOP sorts the objects

91

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Algorithm 10: STITCH Indexing Algorithm
Input: datasets: array of multiple spatial data sets, each corresponding to a distinct category

g: # of uniform grid cells in the reference space
ps: partition size (e.g., # objects per disk page)
ht: in-memory hash table storing the disk offsets of non-empty grid cells

foreach D ∈ datasets do
P← Sliced-DOP(D, g, ps);
foreach partition p ∈ P do

calculate (based on resolution g) the grid cells c that overlap with p;
store the pointer to p and the MBB of p in each of the grid cells c;

foreach grid cell c do
store in the header page of c the number of pointers in c;
store in the ht the disk offset of the header page of c;

globally in each dimension, not locally within each grid cell. As a result, Sliced-DOP preserves
the relative one-dimensional distances between objects across grid cells.

The pseudocode for indexing in STITCH, taking into account multiple categories, is given in
Algorithm 10.

Data Structures

This section discusses how we store the partitioning and linking information to support efficient
query execution with STITCH. In particular, we discuss STITCH’s core data structures, the
metadata records containing information about each object page, the reference index used to
retrieve the metadata records in the queried range, and finally object pages storing the actual
spatial elements.

1) Metadata: A metadata record refers to a particular object page and contains a link (pointer) to
the object page and the page MBB. By recording the MBB with each link, the data partitions that
do not overlap query volumes can be filtered immediately without the need of reading the disk
page(s) storing the actual objects.

2) Reference Index: To start query execution, the reference index must return all the metadata
records that fall inside the query range. In STITCH we use a disk-based uniform grid to organize
all the metadata records for all the categories in the reference index. A metadata record is stored
in a grid cell if the corresponding object page contains at least one object that overlaps with the
grid cell. Real simulation data sets have a skewed data distribution and as a result the number of
metadata records stored with each grid cell can vary significantly, while a majority of the grid
cells are empty. STITCH therefore also maintains an in-memory hash table to store the disk
offsets of all the non-empty grid cells. Additionally, the header disk page of each grid cell records
the number of links that fall in the grid cell for each category. The links are ordered per category,

92

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.4 – STITCH’s data structures and their interaction: The disk-based reference
index stores the metadata records in its grid cells which point to the object pages. STITCH
also maintains an in-memory hash table indicating the non-empty grid cells which is not
shown in the Figure.

so that all links for category i precede any link for category j for i < j. The metadata records of
each grid cell are flushed to disk sequentially. Spatially close records are very likely to be stored
on the same grid cell and thereby on the same disk page, resulting in good disk locality for fast
retrieval of the metadata.

3) Object Pages: On each disk page, Sliced-DOP packs the maximum possible number of
elements while at the same time ensuring that in most cases an object page is linked with only
one grid cell of the reference index. The exact number of elements that a page can hold depends
on their size, e.g. for an axis aligned box with an id the size is 6 floats plus 1 integer. Spatial
locality is preserved by storing spatially close objects on the same page.

All data structures and their relations are illustrated in Figure 5.4: several metadata records are
stored on each grid cell of the reference index and each metadata record contains a link to an
object page.

5.1.6 STITCH Query Execution

STITCH answers a query on a subset Q of all categories in two phases: it first retrieves the set of
links that overlap with the query range and point to the queried categories and then, by following
those links, it retrieves the actual objects.

More precisely, STITCH first probes the reference index and finds the cells overlapping the query
volume. It reduces the search space instantly and only fetches the links to partitions as well as the
partition’s MBB from the grid cells for each of the categories q ∈ Q queried. STITCH initially

93

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Algorithm 11: STITCH Querying Algorithm
Input: L: reference index

g: # of uniform grid cells in the reference space
query: spatial range query
datasets: set of queried spatial data sets, each corresponding to a distinct category

Output: ob jects: result set of objects

// set of grid cells overlapping the query:
C ← cellNr(g, query);
foreach dataset D ∈ datasets do

P← ∅ ; // set of qualifying links
foreach c ∈ C do

fetch from cell c of L the metadata_records of D;
foreach m ∈ metadata_records do

if m.MBB does not overlap query then
discard m;

else
P = P ∪ m.link;

foreach p ∈ P do
retrieve the disk page pointed by p;
foreach object o on the disk pages do

if o overlaps query then
ob jects = ob jects ∪ o;

return ob jects

purges any duplicate links retrieved from different grid cells that intersect with the same data
partition. In a next step STITCH further reduces the number of category data pages needed to be
retrieved by discarding the links associated with an MBB that does not overlap with the query
volume. With the set of remaining links, STITCH retrieves the disk pages that contain the actual
objects. In a last filtering step, STITCH discards the objects whose MBB does not overlap with
the query volume. The pseudo code of the complete STITCH querying algorithm is described in
Algorithm 11.

Clearly, STITCH avoids the repeated traversal of the index structure because we query the
reference index only once. In addition, using a uniform grid as the reference index enables
efficient query execution: STITCH can readily calculate the intersection between the query and
the grid cells and obtain the offsets of those intersecting grid cells on disk by performing a hash
lookup. Finally, STITCH avoids retrieving unnecessary data because it reduces the number
of links effectively by first only retrieving links pointing to categories that are queried for and
ultimately discarding the links associated with MBBs that do not overlap with the query range.

94

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

5.1.7 Experimental Evaluation

In the following section we describe the experimental setup & methodology and demonstrate the
benefits of STITCH using real neuroscience workloads. We compare STITCH against the two
strategies described before, 1-for-each (one index per category) and all-in-1 (a single index
for all categories), and present a detailed breakdown of the performance. Lastly, we conduct a
sensitivity analysis where we vary specific data set, workload and configuration parameters to
better understand STITCH’s behavior.

Experimental Setup

Hardware Configuration. The experiments are run on a Linux Ubuntu 12.04 machine equipped
with 2x Intel Xeon Processors each with 6 cores running at 2.8GHz, with 64kb L1, 256KB L2 and
12MB L3 cache and 48GB RAM at 1333MHz. The storage consists of 2 SAS disks of 300GB
capacity each.

Software Setup. We implemented all the approaches single-threaded in C++ and compiled with
g++ with the maximum optimization level. We set the disk page to 4KB for all the approaches
and for both metadata and data files. All the indexes have the same memory footprint during
the index building phase (1GB) and we use only one disk during the experiments (i.e., no RAID
configuration). For all experiments we assume cold system caches so the OS caches and disk
buffers are cleared (overwritten with an empty file) before each query is executed.

Competing Approaches. We experimentally compare STITCH against the following spatial
indexes: FLAT 1-for-each, FLAT all-in-1 and GRID (1-for-each). We omit com-
parisons against the R-Tree because it is outperformed by FLAT [144]. For our workload,
FLAT 1-for-each answers queries by up to 2× faster compared to R-tree 1-for-each, and
FLAT all-in-1 is ∼ 6× faster than R-tree all-in-1. We use the original implementation of
FLAT [144] that the authors made available to us and our own implementation of a uniform
disk-based grid index. Given that it is unrealistic to index an entire data set in-memory before
flushing the data to disk, GRID inherently writes data for each grid cell to disk individually (and
thus distributed) when the memory buffer becomes full, which can result in random reads during
the querying phase. Similarly to STITCH, GRID maintains an in-memory hash table storing the
disk offsets of all the non-empty grid cells. To avoid replicating objects that overlap with multiple
grid cells, in our GRID implementation we adopted the following strategy proposed in [138]:
each object is assigned only to the grid cell that encloses its center. During querying, to ensure
that all the objects intersecting a grid cell are retrieved, the query range is enlarged by the width
of the biggest object in each dimension.

Configuration. Given the absence of heuristics, we perform a parameter sweep to identify the
best performing configuration for STITCH and GRID. For GRID, the configuration with 603

cells balances the number of objects retrieved and disk spatial locality. STITCH performs best
with 1003 cells for the reference index.

95

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Experimental Methodology

Data Sets. We use data sets that model a small part of the brain with a surface mesh consisting of
3D triangles in a volume of 285 µm3. Each neuron type forms one category. Different categories
are stored in different data sets (similarly to the cosmology use case described in Section 5.1.2).
In other words, each data set we use in our experiments (10 data sets in total) corresponds to
a subset of the neurons that are contained in the same brain volume. We approximate the 3D
triangles with axis aligned MBBs and store only these MBBs along with an object identifier in
the object partitions. All approaches therefore only test for overlap between the stored MBBs and
the query volume. The coordinates of the MBBs are represented using double precision floating
point numbers while the object identifier is an integer. Each data set occupies ≤ 5 GB on disk,
and in total the indexed data is ∼ 45 GB.

Benchmark. Lastly we define a benchmark which consecutively executes 200 spatial range
queries of varying sizes. The size, aspect ratio and the location of each query is randomly chosen.
The average query volume in the benchmark is 10−6% of the entire universe. This benchmark
is derived from our neuroscience use-case where specific subvolumes are retrieved with range
queries for analysis purposes. As different subregions in the brain vary significantly in volume,
the size of the issued queries varies accordingly.

Comparative Analysis

We first perform a comparative analysis among all competing approaches. For each experiment,
we execute the same 200 queries taken from our real neuroscience benchmark to compare the
total query execution time and the total amount of data retrieved. Additionally, we compare the
time to build the indexes and the storage space required for each approach. Lastly, we compare
the cost of adding a new data set in each approach. In each experiment, we increase the number
of data sets that are queried to show how each approach scales as scientists increase the number
of data sets (thus the total amount of data that is queried increases as well).

Query Execution Time. Figure 5.5 shows the query execution time as we increase the number of
data sets queried, when all 10 data sets have been indexed a priori. In the same figure we also plot
the line which shows the optimal strategy based on FLAT, i.e., indexing precisely the data sets
needed for each query combination (queried-in-1, see Section 5.1.2). STITCH executes the
queries fastest because the majority of the time (∼ 53%) is spent on useful work, i.e., retrieving
objects, not on traversing index structures or retrieving metadata information as other index
structures do.

FLAT on the other hand incurs a higher overhead for retrieving metadata information. As Figure
5.6 shows, querying the index can take up to ∼ 90% of the total time for FLAT 1-for-each.
The FLAT all-in-1 strategy requires roughly the same time as the same number of objects
are always retrieved irrespective of how many data sets are queried. In addition to the cost of

96

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.5 – Scaling-up with the number of queried data sets.

navigating the FLAT index, FLAT all-in-1 retrieves all the objects within the query volumes
from all data sets, as Figure 5.6 shows.

As a consequence, STITCH is 12.3× faster than FLAT all-in-1 when only a single data set
needs to be queried. When all data sets are queried, STITCH performs comparably to the
all-in-1 strategy, but is still 1.3× faster. Crucially, the trends in Figure 5.5 do not imply a
crossover point where STITCH is outperformed by FLAT all-in-1 if we add more data sets: the
only reason why the query execution for FLAT all-in-1 remains constant is because it always
indexes 10 data sets throughout the experiment. If we add more data sets, the query execution
time for FLAT all-in-1 will increase (i.e., the flat black line corresponding to all-in-1 will
move higher up in the graph).

The 1-for-each approach scales poorly compared to the other approaches. In particular,
compared to STITCH, FLAT 1-for-each performs ∼ 4.5× slower on average. The key reason
is that the cost of navigating each FLAT index grows due to having a separate index for each data
set as shown in Figure 5.6. GRID 1-for-each performs ∼ 5× slower on average compared to
STITCH. The primary reason is that the skew in the data sets results in grid cells that contain
many objects and a lot of unnecessary data is retrieved during querying as Figure 5.6 indicates.

Data Retrieved. Comparing the measurements in the left side of Figure 5.6 with the respective
approaches in the right side of the same figure, we can see that the data retrieved from disk
correlates with the total query execution time and therefore is the most significant factor that
defines the trend of performance for each approach (i.e., the execution time for all approaches is
I/O bound). Operations such as testing overlap between partitions and querying MBBs - as well
as filtering objects in case of the all-in-1 approach - are performed while the data resides in
memory and therefore do not significantly affect query execution. Although GRID retrieves by
far the largest amount of data compared to all the other approaches, the query execution time is
not affected severely because the access pattern is mainly sequential.

97

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Figure 5.6 – Query execution time breakdown (left) and breakdown for the pages read per
query (the page size is 4KB) (right).

Figure 5.7 – Total number of page reads per result element.

To further study the different index structures and quantify their overheads, we measure the
number of page reads per result element as we increase the number of data sets, focusing on
FLAT and STITCH. Figure 5.7 shows that STITCH has a fixed overhead irrespective of the
number of data sets. FLAT all-in-1 has a big overhead when only 1 data set is queried out
of the 10 indexed data sets, but it converges to STITCH’s performance when all 10 data sets
are queried. Finally, FLAT 1-for-each has a higher overhead than STITCH which is slightly
increasing with more data sets.

Index Time. Considering index building, the all-in-1 approach is the most time-consuming.
FLAT index building requires (externally) sorting the data on each dimension to create partitions,
building a tree on top of the partitions and then using the tree to find neighboring partitions.
Building many smaller indexes is more efficient, mostly because each index operates on a smaller

98

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.8 – Overall time to index (left) and Index size (right).

data set and thus requires fewer (or even zero) external passes for sorting. In our experiments,
1-for-each outperforms all-in-1 by ∼ 40% as shown in Figure 5.8. STITCH indexes faster
than FLAT, because virtually no time is required for creating a grid index on the reference space
and constant time is required for computing the overlap between the grid cells and the data
partitions. Therefore STITCH spends only 1% of the time for linking the reference index and the
data sets while the remaining 99% is spent on partitioning the data sets. GRID indexes the fastest
because it simply partitions the data uniformly and does not require an external sort.

Index Size. If we compare the storage space needed by all indexes in each approach, we see that
the majority of the space is taken by the objects themselves (partitioned data sets), roughly 45 GB
for all 10 data sets. STITCH requires the least amount of space (∼1 GB) to store the metadata
information. Both FLAT all-in-1 and 1-for-each have virtually the same index structure
and therefore require a similar amount of space - around 3GB for 10 data sets while GRID does
not need to store any index structure at all. In terms of the space needed to store the objects, both
GRID and mainly STITCH introduce some empty space in the object pages, requiring 16% and
31% more space compared to FLAT respectively. In the case of STITCH, this extra space enables
more fine-grained filtering and thus results in faster overall query execution.

Index Update. Scientists often acquire more data of the phenomena being studied. Providing
indexing support for newly added data sets is therefore important. We thus analyze the cost
of adding a new data set in each approach. We initially index 9 out of our 10 data sets, and
measure the time for adding the 10th data set (of size 4.9 GB). FLAT is designed for bulkloading
and therefore it is more efficient to re-build all-in-1 from scratch. 1-for-each only requires
to build the index for the new data set and is therefore much cheaper as shown in Figure 5.9.
STITCH needs to partition the new data set and link the partitions to the reference index which
is a faster process than building the whole index in 1-for-each. Overall STITCH finishes the

99

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Figure 5.9 – Extending an existing index with a new data set.

update about 35% faster than 1-for-each. GRID is the fastest approach as it simply partitions
the new data set uniformly without the need to sort it first.

Sensitivity Analysis

In the following, we perform an analysis of STITCH to understand the impact of different
workload and configuration characteristics on the performance. The following experiments are
performed using the same query workload described in Section 5.1.7 and indexing 4 neuroscience
data sets while querying all 4 of them.

Scaling with Data Set Size. In this experiment we execute the same queries on data sets with
increasing size and we study the impact on the number of links between the reference space and
the category partitions. We define three cases: (1) we index and query successively four small
sized data sets (a total size of 9 GB), each one containing a small set of neurons, (2) we use four
data sets of medium size (a total size of 18 GB) and (3) we query four big data sets (a total size of
40 GB) containing a large set of different types of neurons. For a fair comparison, the granularity
of the reference index is not adjusted to the size of the data sets (1003 cells are used as in the
previous experiments). As all the data sets are contained within the same reference space, adding
more neurons results in increasingly denser data sets. The overlap between the grid cells and the
category partitions thus increases. As shown in Figure 5.10 (left), for a given grid cell, there are
more links to category partitions outside the query range. The number of replicated links (links
retrieved from multiple grid cells) and the number of links that point to the actually overlapping
category partitions (hits) increase as well (because the query size is constant). The right side of
Figure 5.10 shows that as the data set size increases, there are more objects in the query result,
and retrieving them becomes the dominant factor.

Grid Resolution. The number of grid cells has an impact on the number of links that need to
be retrieved from disk to evaluate a query. When the grid resolution is too low, the grid cannot

100

5.1. Part I: An Index Structure for Multiple Spatial Data Sets

Figure 5.10 – Number of links (left) and Pages read per query (right) for increasing data
set sizes.

Figure 5.11 – Amount of retrieved metadata (left) and percentage of empty space in objects
pages (right) for increasing grid resolution.

effectively prune the links to the category partitions that fall outside the query volume. Figure
5.11 shows that the amount of data retrieved from the reference index (left-hand side) decreases as
the resolution increases from 100 to 160 cells per dimension. However, increasing the resolution
further does not help in reducing the amount of retrieved data. The right-hand side of Figure 5.11
shows the impact of the grid resolution on the category partitions. As the resolution increases,
Sliced-DOP leaves more empty space in the object pages (i.e., creates category partitions with a
smaller number of objects), resulting in an overhead of up to 40% for 200 cells per dimension.

Query Volume. In this experiment, we increase the volume of the queries from 10−6% to 10−4%
of the entire universe volume. Since the grid resolution is fixed, when bigger queries are executed,
an increasing number of grid cells overlap the query. However, not all the links inside those cells
are pointing to a category partition that overlaps the query. As Figure 5.12 shows, the increase in

101

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

0	

50	

100	

150	

200	

250	

300	

350	

400	

Small	 Medium	 Big	

#l
in
ks
	(x
	1
03
)	

Query	Volume	(%	universe)	

Replicated	

Hits	

Outside	the	query	range	

0	

100	

200	

300	

400	

500	

600	

700	

Small	 Medium	 Big	

Av
er
ag
e	
Pa

ge
	R
ea
ds
	P
er
	Q
ue

ry
	

Query	Volume	(%	universe)	

Metadata	 Objects	

10-6 10-5 10-4 10-6 10-5 10-4

Figure 5.12 – Number of links (left) and Pages read per query (right) for increasing query
volume.

the number of overlapping cells results in an increasing number of links that do not overlap the
query volume. The same figure (right) shows that as the query volume (and the number of cells
that overlap with the query) increases, more pages are read for both metadata and objects, but
retrieving objects is the dominant factor.

5.1.8 Discussion

Using space-oriented partitioning in the reference space, we cover the entire universe of all
categories without having a priori knowledge of the data distribution, and thus ensure that all
category partitions (even those of future categories) are “stitched” to at least one partition in the
reference space. In particular, STITCH employs a uniform grid which provides fast access to the
query region and allows to link new categories efficiently. However, the grid resolution has to be
defined statically. Alternatively, other space-partitioning indexes could be used as the reference
index, such as octrees [80] or kd-trees [18].

102

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

5.2 Part II: Incremental Indexing for Multiple Spatial Data Sets

5.2.1 Introduction

In astronomy, biology, neuroscience and other disciplines, scientists are increasingly overwhelmed
by the amount of data they have at their disposal. With advances in sensor technology and
supercomputing for large-scale simulations, the amounts of data scientists have to analyze grow
rapidly. Today’s tools are frequently inadequate to analyze this large data and answer key
questions: executing even simple queries (such as spatial range queries) is time-consuming. Data
sets can, of course, be indexed a priori to accelerate access, but the areas analyzed are rarely
known beforehand and also only represent a small subset of the entire data set, making upfront
indexing an undue overhead.

In neuroscience, for example, scientists need to explore multiple massive data sets originating
from different sources [106] to investigate particular areas of the human brain. The data in
this use case is spatial and originates from different instruments (e.g., patch clamp, brightfield
spectroscopy, MRI) of different resolutions. To perform an analysis, they need to query small
parts of different combinations of data sets, each of a size in the order of terabytes. What areas
of the data sets they need to access and what combinations of them are not known a priori. It is
consequently unclear what parts of what data sets need to be indexed. It is however clear that
fully indexing all data sets introduces considerable overhead which is unlikely to pay off.

More formally, the problem is the efficient exploratory analysis of multiple spatial data sets
through the execution of spatial range queries: given n data sets and a m−sized subset of data
sets (m ≤ n), scientists need to efficiently execute a spatial range query q on each of the m data
sets. What combinations of m data sets will be queried together and what spatial ranges q will be
accessed is not known beforehand. The challenges thus are twofold (a) what areas in the data sets
are accessed and (b) what data sets are accessed together.

Multiple spatial indexes have been developed to accelerate access to spatial data sets addressing
the first challenge [54]. All of them, however, require the entire data set to be indexed at
once. Incremental approaches to indexing (or reorganising data layout) have been developed for
relational data stored in main memory [75, 76], but not for spatial data on disk. To the best of our
knowledge, incrementally indexing spatial data on disk and accelerating access to multiple data
sets queried together, are two challenges that remain unaddressed in literature

Space Odyssey, the approach we develop, addresses both challenges and enables the efficient ex-
ploration of multiple spatial data sets. While the spatial data sets are being queried, Space Odyssey
indexes them incrementally to accelerate access to the data sets in general and to the frequently
queried areas in particular. At the same time, Space Odyssey reorganises the data layout on disk
so that parts of the data sets queried together can be retrieved more efficiently. By incrementally
indexing and reorganising the data, Space Odyssey accelerates explorative analysis of spatial
data, substantially reducing query-to-insight time: it answers up to several hundred queries (more

103

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

than half the queries of our benchmark, see 5.2.6) by the time the fastest existing approach has
merely indexed the data.

5.2.2 Space Odyssey Overview

Space Odyssey enables exploratory access to multiple spatial data sets without pre-processing
the data. Instead, Space Odyssey uses incoming queries as hints for reorganizing the physical
data layout to better serve queries.

First, to enable efficient access to precisely the areas queried in individual spatial data sets,
Space Odyssey indexes the data sets incrementally. Second, to better support querying the same
areas in different data sets, it adapts the physical layout on disk, storing together the areas that are
queried together to accelerate retrieval.

Q:	{A;	DS1…DSn}	

Query	
Processor	

Adaptor	 Merger	

Sta4s4cs	
Collector	

P1:	C1…Cn		
	
…	
	
Pn:	C1…Cn		
		
	

DS1	

DS2	

DS3	

		DSn	

DS4	
DS5	

Space	Odyssey	

Figure 5.13 – Space Odyssey: components, data structures and a snapshot of the physical
layout.

Figure 5.13 illustrates the architecture of Space Odyssey – its components, data structures and
a snapshot of the physical layout. The Adaptor is responsible for the incremental indexing and
the Merger performs operations related to the physical layout. Finally, the Query Processor
orchestrates the overall query execution process using information provided by the Statistics
Collector.

104

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

5.2.3 Incremental Indexing

Indexing all data sets a priori has the major drawbacks that (a) scientists must wait until all
data is indexed before they can start querying and (b) data that is never queried is indexed in a
time-consuming process.

Space Odyssey therefore uses incremental indexing where in every step (with every query) it
further refines the index structure in the frequently queried “hot” areas to accelerate future queries.
To keep the overhead of incremental indexing low, it employs space-oriented partitioning, which
has a lower processing overhead compared to data-oriented partitioning [54].

Q1

p3

p22

p4

p1 p2

Q3

Q2
p24

Figure 5.14 – Incremental indexing strategy (in 2D).

Data Structure. More precisely, Space Odyssey incrementally builds an Octree [54] on each
data set queried. The Octree is the index of choice since we want to introduce minimal overhead
during the query execution and thus, we split each dimension to a minimal number of partitions
which corresponds to 2d partitions in a d-dimensional space. Figure 5.14 illustrates the indexing
process with d = 2, i.e., 4 partitions per level. The indexing process starts with the first query
Q1 where Space Odyssey partitions the space uniformly into four partitions (p1, p2, p3, and p4).
It scans the data set and assigns each object to the partitions it overlaps with. When the second
query arrives (Q2), Space Odyssey identifies the partitions that it intersects with (only p2 in our
example), refines these partitions, i.e., divides p2 into four sub-partitions (p21, p22, p23, and
p24), and reassigns their objects to the new partitions. In the same process it checks whether the
objects of the qualifying new partitions are inside Q2. Space Odyssey applies the same procedure
for query Q3 and all subsequent queries.

Space Odyssey refines partitions to curb the amount of data retrieved and checked for intersection
with the query. Intuitively, for efficient performance, we want the partition size to approximate
the query size. Then, in the best case, a query hits only one partition which covers just the
queried range so that a single sequential scan of the partition retrieves all required objects. In
the worst case, the query intersects 2d partitions. Refining a partition further than approximately
the query size only incurs unnecessary processing overhead (for the actual refining as well
as retrieving and scanning multiple resulting partitions). Therefore, to control the degree of

105

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

refinement, Space Odyssey uses a refinement threshold (rt). A partition is refined following the
execution of a query if Vp

Vq
> rt where Vp and Vq are partition and query volumes, respectively.

The incremental refinement strategy spreads the overhead of building the index and reorganizing
the data on disk over several queries. Areas frequently queried will be indexed fully at a fine
granularity, such that range queries in these areas are executed as efficiently as if executed on a
fully built Octree. Areas untouched by past queries will be partitioned at a coarser granularity
thus future queries in these areas can also benefit from the adaptive partitioning.

Optimizations. In case the query size is significantly smaller than the size of the partition it
hits, a considerable number of queries may be executed before the partition is refined sufficiently.
The number of queries that need to hit a partition before it reaches the finest level of refinement
determined by the refinement threshold are given by the following equation:

logppl (Vp/(Vq×rt))

where ppl is the number of partitions per level and ppl = 2d in a standard Octree. To converge
faster, a bigger ppl can be used.

Since we use space-oriented partitioning, a spatial object can intersect with several partitions
which introduces additional intersection tests. To avoid object replication and eliminate unneces-
sary tests while curbing the memory footprint, we translate the problem of indexing volumetric
objects to indexing point data using the query window extension technique [138]. Space Odyssey
assigns each object o to a partition based on its center and keeps track of the maximum object
extent (maxExtent) in each dimension. Then, to answer a query correctly ensuring that all in-
tersecting objects are retrieved, the query range is extended by maxExtent and all the cells the
extended query overlaps with are inspected.

Finally, Space Odyssey performs the updates in-place, i.e., it reads a partition p, refines it and
reuses the disk pages where partition p was stored for the newly created partitions. If there is not
enough space in the pages initially storing p, new disk pages are allocated and appended at the
end of the file.

5.2.4 Incremental Merging

By building data structures incrementally we can significantly decrease the data-to-query time.
At the same time we have the opportunity to optimize the placement of data structures on disk to
accelerate the queries executed.

Particularly in the case where multiple data sets are analyzed, apart from building an index
structure incrementally for each data set, Space Odyssey also rearranges the data on disk to store
together the areas in different data sets that are frequently queried together. Doing so allows

106

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

Space Odyssey to avoid random disk accesses for retrieving the same area in different files and
thereby accelerate queries.

Merging Partitions. While executing queries Space Odyssey keeps statistics about the data sets
queried together and the partitions retrieved from them. More precisely, given queries of the form
Q = {A; C} where A is the area queried and C ⊂ {DS 1, . . . ,DS n}, it will store: 1) how often a
given combination C is accessed and 2) what partitions are retrieved from C, i.e., what partitions
p ∈ P overlap with A.

Once the number of retrievals for a particular combination C of data sets exceeds a preset merging
threshold (mt), Space Odyssey merges the data for all the partitions p ∈ P retrieved in the context
of C. It iterates over all partitions that have been queried for in C, retrieves them from every data
set DS i ∈ C (1 ≤ i ≤ n) and merges them on disk. Note that some of the merged partitions may
be retrieved less frequently by past queries than others, but the overhead of including them in the
merged file is minimal while there is a benefit in case they are accessed more frequently in the
future.

Lastly, Space Odyssey merges data only for combinations of size |C| ≥ 3 because merging is
more beneficial for bigger combinations as it prevents (random) accesses to a large number of
data sets.

Physical Layout. Space Odyssey creates a new merge file where it stores the partitions P from
different data sets queried together in a combination C so they can be read sequentially and hence
more efficiently once they are again queried together. The partitions in the merge file are copies,
meaning that Space Odyssey also keeps the original partitions to support efficient querying on an
individual data set DS .

For a given partition p ∈ P, the merge file physically stores the objects contained in p from
each data set DS i ∈ C (1 ≤ i ≤ n) sequentially. Given for example data sets DS x,DS y,DS z

(1 ≤ x < y < z ≤ n), Space Odyssey stores objects from DS x on the first disk pages, followed
by objects from DS y followed by DS z. Doing so allows to retrieve efficiently only the objects
belonging to a queried subset of all data sets merged (e.g. DS x and DS z) by reading them
sequentially while skipping over the rest (DS y). The merge file is append-only, i.e. new partitions
are always added at the end of the file.

Space Odyssey incrementally builds index structures per data set and the same regions in different
data sets may thus have a different level of refinement. In data set DS x, for example, the area may
still only be covered by one partition p while it is divided into eight partitions in DS y. Including
copies of the unrefined partition p in merge files adds the challenge of having to refine all the
copies once refinement of p is triggered by a new query, thereby introducing substantial overhead.
Space Odyssey addresses this issue by only merging partitions which are at the same level of
refinement. Additionally, in our current implementation the merged partitions are not refined any
further.

107

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

Managing Storage Space. Space Odyssey maintains a space budget for merge files (and thus
replicated partitions). Once the space budget is exceeded it removes the least recently used merge
files to adhere to the budget.

Open Issues. Building a merged index for the hot areas where multiple data sets are queried
together significantly accelerates queries but several challenges need to be addressed to fully
automate the merging and maximize the performance gains. In particular, we plan to develop a
cost model which indicates how to adapt the parameters (minimum size of combination to be
merged |C| and mt) at runtime based on the workload. Additionally, we plan to investigate the
benefits of merging partitions at different refinement levels and examine alternative strategies
for doing so, e.g., should all partitions be refined to the same level as the finest partition before
merging or as the coarsest, or shall we allow multiple refinement levels to coexist in the merged
index. Lastly, we plan to improve disk space management to avoid the replication of a data set
which is used in several different combinations whenever possible.

5.2.5 Space Odyssey Query Execution

To efficiently execute queries and take advantage of merge files, i.e., to decide whether to retrieve
areas from individual data sets DS i (1 ≤ i ≤ n) or from merge files, Space Odyssey maintains a
directory where it keeps information about what partitions of what combinations of data sets are
stored together.

Once a query Q = {A; Cq} (Cq ⊂ {DS 1, . . . ,DS n}) is issued, Space Odyssey checks what
partitions intersect with A and whether these partitions are stored in a merge file. There are four
possibilities:

1. Exact merge file: if the exact combination Cq is stored in a merge file and contains the
partitions intersecting with A, then it is used to retrieve those partitions sequentially.

2. Superset: if a superset C ⊃ Cq is stored, i.e. the merge file contains more data sets than
the ones requested, then the merge file will still be used. Using the merge file is more
efficient than accessing individual data sets thanks to the internal organization of merge
files: the objects from each data set are organized sequentially, meaning that they can
be read efficiently but also that if data from a particular data set is not needed it can be
skipped.

3. Subset: if a subset C ⊂ Cq is stored, i.e. the merge file contains fewer data sets than the
ones requested, then Space Odyssey uses the merge file to retrieve all data from the subset
C as well as other merge files or individual files to retrieve the remaining data sets Cq \C.
The decision which of the merge files to use is based on maximizing the number of data
sets already stored in a merge file and thus minimize (random) access to individual files.

4. No merge file: if no merge file exists for a combination C, individual files are used.

108

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

Figure 5.15 – Clustered (red) and uniform (green) range queries on one neuroscience data
set (grey).

5.2.6 Experimental Evaluation

In this section we first describe the experimental setup and methodology and then demonstrate the
behavior of Space Odyssey by comparing it against state-of-the-art spatial indexing approaches
using real neuroscience data sets.

Experimental Setup

Hardware Configuration. The experiments are run on a Linux Ubuntu 12.04 machine equipped
with 2x Intel Xeon Processors each with 6 cores running at 2.8GHz, with 64kb L1, 256KB L2 and
12MB L3 cache and 48GB RAM at 1333MHz. The storage consists of 2 SAS disks of 300GB
capacity each.

Competing Approaches. We have implemented Space Odyssey and set its configuration param-
eters rt = 4, ppl = 64, and mt = 2. Also, we consider the following two approaches:

FLAT: the state-of-the-art indexing technique for spatial range queries for which we obtained
the source code from the authors [144]. FLAT relies on data-oriented partitioning, more
specifically the Sort Tile Recursive algorithm (STR [95]). As we need to index multiple
spatial data sets, we implemented two strategies: 1-for-each (1fE) and all-in-1 (Ain1).
The first strategy, 1fE, builds one index for each data set. To perform a query, all the indexes
corresponding to the queried data sets are probed and the union of the retrieved results forms
the final answer. The second strategy, Ain1, builds only one index structure containing all

109

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

the spatial objects from all the data sets. To perform a query, the index is probed and items
belonging to data sets which are not queried are filtered.

Grid: a static, uniform grid-based technique where the indexed space is uniformly partitioned
into a fixed number of cells (space-oriented partitioning). We use our own implementation.
The objects are assigned to the grid cells in-memory and flushed to disk when the memory
buffer becomes full. Similarly to Space Odyssey, replicating objects to multiple grid cells
is avoided by using the query window extension technique [138]. The configuration is
set to 603 cells, which we determine through a parameter sweep, given the absence of
heuristics. When indexing with a Grid, the partitioning is fixed and does not depend on
the data so there is essentially no distinction between the two strategies (1-for-each and
all-in-1). Therefore, we only implemented the 1-for-each (1fE) strategy.

Software Setup. All implementations are written in C++, they are single-threaded and compiled
using g++ (v4.9.2) with the -O3 optimization flag. The disk page size is set to 4KB. To obtain
realistic runtimes, and simulate a scenario where data set sizes are significantly larger than the
main memory size, all techniques are restricted to have the same main memory footprint (1GB).
For all experiments only one disk is used (i.e., no RAID configuration) while the OS caches and
disk buffers are cleared (overwritten with an empty file) before each query is executed (i.e., to
avoid caching effects).

Data Sets. We use 10 real neuroscience data sets that we obtained from our collaboration with
neuroscientists in the Human Brain Project [106]. Each data set represents a subset of neurons
contained in the same brain volume. The neurons are modeled with a 3D surface mesh. Figure
5.15 shows a 2D projection of one brain area. An identifier is attached to each object to distinguish
items belonging to different data sets. Each data set requires approximately 5 GBs of storage on
disk, resulting in ∼ 50 GBs of data in total.

Queries. Based on the previously described use cases, we synthetically generate queries each
having a fixed volume (qvol) of 10−4% of the total brain volume. We use a clustered distribution
and choose a number of clustercenters (|clusterscenters| = 10). Query centers are distributed
around the cluster centers following the Gaussian distribution (µ = 0, σ = qvol×10). For
completeness and to test non-skewed cases, we also generate uniformly distributed query centers.
Figure 5.15 illustrates the query ranges of both distributions.

To determine the subset of data sets that are queried for each spatial range, we use a synthetic
distribution generator based on Gray et al. [64]. The distributions we use are: (1) heavy hitter, (2)
self-similar, (3) Zipf, and (4) uniform. These distributions have been used in other studies for
similar purposes (e.g.,, in [37, 136]). In the heavy hitter distribution, one combination of queried
data sets accounts for 50% of all possible combinations, while the other queried combinations
are chosen uniformly from the remaining ones. The self-similar distribution uses an 80–20
proportion, and the Zipf distribution uses an exponent of 2. For the non-skewed scenarios where

110

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

Figure 5.16 – Performance when varying the number of queried data sets for each distri-
bution.

the centers of the spatial ranges are uniformly distributed in space, the combinations of data sets
queried together are also chosen randomly from a uniform distribution.

Experimental Analysis

Total Processing Cost. Figure 5.16 depicts the total workload processing time when the number
of queried data sets increases from 1 to 9. The x−axis in the graphs also shows the number
of different combinations that are queried. Note that the combinations actually queried are
often fewer than the total number of possible combinations and depend on the distribution. For
Space Odyssey’s competitors, the processing time is additionally broken down into indexing
and querying. For Figures 5.16a, b, and c, we fix the query range distribution to clustered. For
Figure 5.16d we uniformly choose both the query ranges as well as the queried data sets in order
to demonstrate the worst-case performance where neither hot areas nor popular combinations
exist.

We make the following observations. First, building FLAT takes at least 2 times longer than
processing the entire workload of 1000 queries with Space Odyssey. Indexing with FLAT is up
to ×5 slower comparing to the simple uniform Grid3. As such, only Grid is competitive in terms

3Favoring Grid, we assume that the optimal configuration is known. Otherwise, several builds of Grid are required
to tune it.

111

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

0 200 400 600 800 1000
10-2

10-1

100

101

102

103

Ti
m
e
pe

r q
ue

ry
, s

ec

a) query ranges: clustered, dataset ids: self-similar, #datasets queried: 5 (out of 10) FLAT-Ain1
Grid-1fE
Odyssey

0 200 400 600 800 1000
10-2

10-1

100

101

102

103

Ti
m
e
pe

r q
ue

ry
, s
ec

b) query ranges: uniform, dataset ids: uniform, #datasets queried: 5 (out of 10) FLAT-Ain1
Grid-1fE
Odyssey

0 200 400 600 800 1000
Query sequence (query id)

10-2

10-1

100

101

102

103

Ti
m

e
pe

r q
ue

ry
, s

ec

c) query ranges: clustered, dataset ids: zipf, #datasets queried: 5 (out of 10) Odyssey w/o merging
Odyssey

Figure 5.17 – Query times for each query in a sequence.

of overall data-to-query time when compared to Space Odyssey. Nevertheless, by the time Grid
finishes indexing the data, Space Odyssey has already answered half of the queries on average.

Second, once the related approaches have indexed the data, they may process individual queries
faster than Space Odyssey. While FLAT is the slowest to build, its variants report the fastest query-
ing times compared to other approaches – up to ×6, and ×9 faster than Grid, and Space Odyssey,
respectively (considering just the querying time for static approaches and the total time for
Space Odyssey). The important aspect of Space Odyssey however is that it has the lowest data-
to-query time, because there is no need to build complete indexes for all the data sets in advance.

Third, Space Odyssey is a middle ground between the 1-for-each and the all-in-1 strategies.
The 1-for-each (1fE) strategy accesses individual (smaller) indexes and only for the data sets
queried. Consequently, the query processing cost increases with the number of queried data sets.
The all-in-1 (Ain1) strategy, on the other hand, always operates on a huge index structure
and suffers from unnecessary data accesses. As such, when the number of queried data sets
is less than 5, 1fE is preferred over Ain1. Space Odyssey follows a hybrid strategy, where the
individual data sets are indexed adaptively (similarly to 1fE) but hot areas from different data sets
are merged together (similarly to Ain1).

Finally, while all related approaches are insensitive to skew in the workload, the adaptive
mechanisms in Space Odyssey are able to exploit it. For example, in Figure 5.16, when the
queried data set combinations are coming from the very skewed zipf (a) and heavy-hitter (b)

112

5.2. Part II: Incremental Indexing for Multiple Spatial Data Sets

distributions, Space Odyssey quickly refines the hot areas, merges the partitions of the popular
data sets together, and is often able to perform most of the queries before even Grid finishes
building. This is not the case with the less skewed self-similar distributions (Figure 5.16c), where
Grid (once its building phase is over) answers individual queries faster than Space Odyssey most
of the time. When both query ranges and queried data sets are uniformly distributed (Figure
5.16d), Space Odyssey cannot benefit from adaptive refinement and thus takes longer than Grid
to process the entire workload of 1000 queries.

Query Performance. In Figure 5.17 we show the response time for each query in a sequence
when 5 data sets are queried. In Figure 5.17a the queries are clustered and the queried com-
binations are chosen from the self-similar distribution while in Figure 5.17b both the queries
and the combinations are chosen from a uniform distribution. We study Space Odyssey and two
approaches that were previously identified as the most competitive ones (in terms of querying
performance): FLAT-Ain1 and Grid-1fE. In both cases, the very first query is the most expensive
for Space Odyssey as it fully scans and partitions at the first (coarsest) level the raw data files
for all 5 data sets in the combination. Nevertheless, we observe that Space Odyssey converges
to the speed of the fully indexed case under both skewed (Figure 5.17a) and uniform (Figure
5.17b) scenarios. As expected, however, the convergence is slower in the uniform scenario.
FLAT-Ain1 has consistently better and more robust performance than Grid-1fE because it is less
sensitive to data skew. Once Space Odyssey has converged, its querying performance is between
FLAT-Ain1 and Grid-1fE, while it performs some queries even faster than FLAT-Ain1. Finally,
when an area that has not been previously refined and/or merged is queried, the querying time for
Space Odyssey is still higher.

Effect of Merging. Lastly, to isolate the effect of merging partitions that are often queried
together, we run Space Odyssey with and without merging enabled. In this experiment, clustered
queries are produced using 5 instead of 10 clustercenters to increase the likelihood that the
queries will benefit from merging. In Figure 5.17c, we plot the times only for the queries that
request the most popular combination (for the zipf distribution, this combination is queried 751
times). While completely diffrent ranges (e.g., in different clusters) may be requested for the
same combinations, we see that eventually Space Odyssey benefits from the merged partitions
for the majority of queries. We observe 25% performance gain on average for queries accessing
the merged partitions.

5.2.7 Related Work

Several approaches have been developed in recent years to adapt the data layout in response to
incoming queries. To accelerate data access, database cracking [75, 76] iteratively refines the
physical data layout in memory with each query, essentially amortizing the cost of index building
over query processing. Similarly, incremental indexing strategies [59, 60] choose the indexes and
create them as a side-effect of query processing. A user neither configures or creates indexes nor
does she provide a representative workload. Instead, based on the queries executed, an adaptive

113

Chapter 5. Workload-Aware Indexing for Ad-hoc Spatial Data Exploration

index is only partially materialized and optimized such as to fit the current workload and storage
budget. As queries arrive, the index is adapted on the physical level to suit the workload. Known
adaptive indexing techniques, however, require all data to be loaded upfront. Finally, several
approaches skip pre-processing to reduce the cost of raw data querying. NoDB [7] accesses CSV
data in situ to adaptively build positional and binary caches as a side-effect of query execution.
RAW [86] extends NoDB and adapts its access layer using code generation techniques.

Numerous approaches have been developed to index spatial data [54]. Almost all spatial indexes,
however, require the entire data set to be loaded upfront and do not adapt to the query workload.
One representative exception are adaptive index structures [142] which rearrange the nodes of
data-oriented hierarchical indexes (including the spatial R-Tree [54]) in response to queries so
that they can be accessed sequentially on disk. However, this reorganisation is performed only
after the index has been fully built. More recently, a query-aware incremental index has been
proposed [124] for main memory workloads.

5.3 Chapter Summary

In this chapter we identify the challenge of efficiently exploring multiple spatial data sets with
the same range query—a common task across scientific applications. Not knowing a priori which
data sets will be queried makes it particularly challenging to accelerate access: indexing all
possible combinations of data sets is not feasible as it takes too long and requires too much space
leaving us to choose between two extremes – indexing each data set individually and using one
index for all data sets. As we show in the first part of this chapter, neither of the two extremes
is efficient: the first does not scale well with an increasing number of queried data sets, and the
second is inefficient when only a small subset of the indexed data sets is queried.

Based on these key insights we develop STITCH, a novel disk-based index which combines
data-oriented partitioning with space-oriented indexing. By using data-oriented partitioning for
the data sets we can effectively address skew in the distribution of spatial objects. At the same
time we refrain from using a hierarchical structure to access the partitioned data sets (and thus
avoid the associated overhead) and instead link the data set partitions to a central space-oriented
index. In particular, STITCH employs a uniform grid for its efficiency in building, querying and
updating with new categories. Links are stored for all intersecting pairs of grid cells with data set
partitions. Key to the approach is the use of Sliced Data-Oriented Partitioning (Sliced-DOP): to
avoid storing and ultimately following an excessive number of links, the uniform grid guides the
partitioning of the data sets. Our extensive experimental analysis shows that with these measures
our approach outperforms the state-of-the-art by up to a factor of 12.3 for a real neuroscience
workload.

In the second part of this chapter, we show that state-of-the-art methods require to index all data
a priori including the parts never analyzed. As a consequence we develop Space Odyssey, an
approach which incrementally indexes the bits of the data needed and that adapts the physical

114

5.3. Chapter Summary

layout of the data on disk to efficiently support the queries executed. This novel approach to
incrementally indexing and reorganizing spatial data on disk shows benefits in decreasing the
data-to-insight time.

115

6 Quadtree-based Bitmap Compression
for Scalable Time Series Exploration

An increasing number of applications from finance, meteorology, science and others are producing
time series as output. Analyzing the vast amount of time series is key to understanding the
phenomena studied, particularly in the simulation sciences, where the analysis of time series
resulting from simulation enables scientists to refine the simulated models. The challenge we
are addressing in this chapter1 is to efficiently find time series where the observed value exceeds
or falls below a threshold during a given time interval. The desired threshold is not known a
priori and therefore scientists perform an exploratory analysis where the result of each threshold
query drives the formulation of the subsequent one. Existing time series access methods use
single-attribute indexes, that index either the time or the observation value domain. On the other
hand, threshold queries involve constraints on both time and value.

In this chapter, we transform a threshold query on the time series into a two-dimensional bitmap
problem so that queries with time and observation constraints can be efficiently executed as
two-dimensional spatial range queries. The size of the bitmap is reduced by applying Quadtree
decomposition and grouping similar time series into clusters. We demonstrate that due to
collectively processing a group of time series and exploiting the pruning power of the Quadtree,
the execution of threshold queries is decoupled from the growth of the data (size and number of
time series).

6.1 Introduction

Time series are becoming increasingly ubiquitous in many applications across different domains,
ranging from finance (e.g., stock information) to science (e.g., sensor readings). Increasingly
powerful hardware, e.g., precise instruments or sensors and more powerful computers, lead to ever
more and longer time series being recorded. In the simulation sciences, the increasingly powerful
supercomputers and the large storage capacity encourage scientists to simulate consistently more

1The material of this chapter has been the basis for the SSDBM 2015 paper RUBIK: Efficient Threshold Queries
on Massive Time Series [150].

117

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

detailed models for longer periods of time. Already today scientists are overwhelmed with this
deluge of time series data and tools for their efficient analysis are pivotal to enable scientific
breakthroughs [106].

Efficiently querying the wealth of time series data is crucial to extract knowledge. In the
simulation sciences, analyzing time series enables the scientists to refine their models and to
make them more realistic. Unfortunately not all data resulting from a simulation can be analyzed
in great detail, but luckily not all data is equally interesting or important either. Typically scientists
are interested in particular events and they only need to select a smaller subset of the time series
for further analysis. These interesting events can be identified in an exploratory process using
threshold queries: searching for time series where the observed value exceeds or falls below a
threshold. Subsequently, the interesting subsets can be analyzed in detail with state-of-the-art
analysis methods.

The challenge we are addressing in this chapter is to find the interesting time series and, in them,
interesting periods of time. More formally, we define a time series as a discrete set of observations
X = x1, x2, ...xn at consecutive time steps t = 1, 2...n that are ordered in time. Examples of time
series include temperature measurements over time, stock tickers, electrocardiograms and others.
Given a set of time series XN = {X1, X2, ...Xm} and a query q with a threshold o for the observation
as well as an upper and lower bound tu and tl with tu ≥ tl for time, we want to find all time
series Xi ∈ XN (1 ≤ i ≤ m) where xt satisfies the following conditions: xt ≥ o and tl ≤ t ≤ tu
(time-bound threshold query). The data management problem is to support efficient time-bound
threshold queries, such that query execution scales with an increase in the number of time series
and the number of time steps.

Most state-of-the-art time series indexing approaches have been designed to support time series
mining tasks, such as testing for similarity and subsequence matching [29, 30, 48, 55, 89, 107].
These indexing techniques typically index time series segments (groups of consecutive time
steps) rather than the values at individual time steps, and therefore they cannot be used to answer
time-bound threshold queries which need to compare the value at each time step within the
time bounds to the threshold value. Bitmap indexes are particularly useful for query-intensive
applications and ad-hoc queries on read-only data [34] because they can answer queries by
performing efficient bitwise logical operations on the bitmaps. FastBit [167] is a bitmap indexing
framework for scientific data that implements Word-Aligned Hybrid Compression (WAH [168]),
the state-of-the-art bitmap index compression algorithm which is based on run-length encoding.
Compared to other bitmap compression schemes, WAH strikes a good balance between space
and time efficiency. However, WAH cannot maintain a one-to-one mapping from a given time
step to a specific bit position inside the compressed bit sequence. A condition on the observation
value therefore cannot be evaluated in combination with a condition on the time steps without
decompressing the bit sequence, which creates a performance overhead for threshold queries.

RUBIK, the approach we develop, compresses the bitmaps that encode the time series without
disrupting the mapping from time steps to bit positions inside the compressed representation.

118

6.2. Related Work

Instead, RUBIK exploits that many time series are, in general and in the simulation sciences in
particular, very similar to each other. RUBIK therefore groups similar time series bitmaps together,
and compresses them by applying Quadtree decomposition. Queries can then be efficiently
executed on the compressed Quadtree as two-dimensional spatial range queries. Exploiting the
similarity between time series and representing them using a Quadtree allows for a substantially
more effective compression that preserves time resolution and is thus query-efficient. Using
the same space budget, RUBIK executes queries up to 9 times faster than the state-of-the-art
on a brain simulation micro-benchmark (see Section 6.7.3), and the trend indicates that query
execution time with RUBIK will increase considerably slower than related approaches as data
sets grow rapidly.

The main contribution of RUBIK consequently lies in transforming a time series threshold
query problem into a two-dimensional bitmap problem. Thanks to the representation as a
Quadtree, queries with time and observation value predicates can be translated into efficient
spatial range queries. Doing so enables the evaluation of both predicates at the same time
while the query execution in related work evaluates predicates sequentially, losing early filtering
power. Additionally, by grouping time series and decomposing each group collectively using a
Quadtree, RUBIK exploits the similarity within and between time series to reduce the size of the
bit representation while maintaining high precision.

The remainder of this chapter is organized as follows. In Section 6.2 we review related work on
time series indexing and querying methods and in Section 6.3 we motivate RUBIK. We give an
overview over RUBIK in Section 6.4 and then discuss in detail the indexing process in Section
6.5 as well as query execution in Section 6.6. Before demonstrating the performance of RUBIK
in Section 6.7 we discuss configuration considerations. We finally discuss potential extensions in
Section 6.8 and draw conclusions in Section 6.9.

6.2 Related Work

Indexing time series has received considerable attention in recent years [128]. In most analysis
tasks the major cost factor is accessing the time series stored on the disk. The general framework
consequently is to use a compressed in-memory representation of the time series to answer
queries approximately, i.e. a representation providing all the results that satisfy the query (there
are no false dismissals) but possibly including some false hits in the answer. The false hits are
then dismissed by accessing the candidate time series on the disk. Clearly there is a trade-off

between the size of the representation and the number of disk accesses required to refine the
approximate answer.

The majority of the work for indexing time series has focused on determining similarity between
time series and pattern/subsequence matching. Almost all approaches for similarity-based
time series retrieval index the time series with high-dimensional indexes where the number
of dimensions corresponds to the number of time steps (length of the time series). To ensure

119

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

efficiency – indexes do not scale well to very high dimensions [71] – many approaches to time
series mining reduce the number of dimensions, i.e., they divide the time series into segments
(along the temporal dimension) and summarize each segment. Summarizing the time steps to
reduce dimensionality also compresses the time series.

Data adaptive approaches encode time series individually to minimize the error of the encoding.
APCA [89], for example, divides each time series into segments of variable length along the time
dimension and encodes each segment with its mean. SAX [30, 97] (and iSAX) builds on the
idea of PAA [88] and APCA but uses vertical segmentation of the series (i.e., the definition of
breakpoints) to minimize the error for each segment (and thus for the entire time series). SAX
also uses a symbolic representation of time series which has the advantage of lower error bound
guarantees, i.e., the distance measure on the representation is always equal or smaller than the
distance measure on the real data. Many data mining approaches can thus be used directly on the
representation as they will only provide false positives, but no false dismissals. To compute the
similarity between time series, MVQ [107] identifies frequent subsequences, i.e., codewords, in
the time series and assigns each of them a symbol. Each subsequence in time series can then be
represented by the codewords (or their symbol) its subsequences resemble the most, yielding a
very compact encoding. Because it is difficult to find a suitable resolution (codeword length),
MVQ uses several resolutions and organizes the encoding hierarchically, i.e., each frequent
subsequence contains shorter frequent subsequences. The distance, or similarity, between two
time series is computed based on the weighted frequency of the occurrence of codewords in
either time series. GAMPS [55] uses the insight that many time series, particularly resulting from
sensors, are similar or at least use similar templates (a subdivision of time series into segments
of consecutive time steps). To compress the time series, GAMPS identifies frequent templates
among them. It finally represents each time series as a collection of templates (using scaling),
considerably reducing their size.

Non data adaptive approaches encode all time series with the same encoding (independent of their
individual characteristics). Approaches based on the discrete fourier transformation (DFT) [48]
or on discrete cosine transformation (DCT) attempt to preserve the main characteristics of the
time series. Fourier transformation is used to extract dominant features (and to reduce the
dimensionality) that are then indexed with a spatial index (e.g., an R*-Tree [15]). To perform
a subsequence match, the main features from the subsequence are also extracted with DFT
and are used to query the spatial index. Chebyshev approximation [29] interpolates time series
(or trajectories) with chebyshev polynomials that are easy to compute and have lower bound
guarantees. Chebyshev polynomials outperform APCA and PAA for smooth trajectories [29].

Arguably the most renowned indexing approach using compression [168] for scientific data
as well as time series is FastBit [167]. FastBit creates bitmap indexes for high-cardinality
attributes by applying binning (i.e., discretization) on the time series and encoding the binned
values. The resulting bitmaps are compressed using word-aligned hybrid (WAH) compression.
Compared to other bitmap compression schemes, WAH strikes a good balance between space and
time efficiency. Threshold queries can be executed on the compressed bitmaps but the binning

120

6.3. Motivation

introduces false positives and so candidate time series have to be retrieved and tested in detail.
Detrimental to performance, however, is that the time information has to be indexed separately.
Queries on the observation values therefore cannot exploit the pruning power of the time predicate
early and vice versa.

6.3 Motivation

Scientific applications produce so much data today that we can no longer afford to analyze all
of it in great detail. All the more important are threshold queries to find interesting events in
the deluge of time series originating from scientific applications that can then be analyzed in all
necessary detail. Executing these threshold queries efficiently is crucial for explorative access to
time series data.

6.3.1 Limitations of Related Work

The state-of-the-art for indexing time series has been primarily designed for time series mining,
i.e., testing for similarity and subsequence matching. To avoid the curse of dimensionality, time
series mining approaches [29, 30, 48, 89, 107] typically reduce the dimensionality by segmenting
each time series and approximating each segment with a value a (e.g., in PAA [89] a is the
average of all observations in the segment).

Both segmentation and approximation, however, make the aforementioned approaches unsuitable
for answering time-bound threshold queries q because they lead to many false positives, and
most importantly, can also cause false dismissals. This is because even if the approximation a
satisfies the observation threshold of q, this does not guarantee that the individual values at the
qualifying time steps satisfy the observation value constraint as well. To avoid false dismissals,
the observation threshold o of q needs to be adjusted with the error e, the biggest difference
between any observation and the approximation a of its segment. Relaxing the observation
threshold o to o − e, however, leads to considerably more false positives.

Compression approaches like GAMPS [55] also rely on segmentation and approximation and
thus inherit the same problem as the time series mining approaches discussed before. Approaches
like FastBit [167], on the other hand, do not index temporal information per se, meaning that a
separate index on time steps needs to be built. Clearly the pruning power of the time predicate
cannot be used when executing the query using the observation value predicate and vice versa.
Further detrimental to the performance of FastBit is that it uses run-length encoding, making the
evaluation of the time predicate directly on the compressed data impossible. As a consequence,
two separate queries have to be executed on either index directly and the result needs to be
combined. Additionally, FastBit and other bitmap-based approaches do not exploit the full
potential of compression because they treat time series individually.

121

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

As already the work in the context of GAMPS [55] shows, time series frequently have considerable
similarity between them and thus compressing them jointly results in improved space efficiency
compared to other state-of-the-art approaches. Preserving temporal resolution and avoiding
coarse approximation is key to executing time-bound queries without the undue overhead of false
positives. As a consequence, RUBIK compresses similar time series jointly while also exploiting
similarities within each individual time series, without reducing the temporal resolution (through
segmentation).

6.3.2 Motivating Application

Many spatial simulations produce time series as output. In a spatial simulation of material
deformation based on a mesh [8], for example, the observed temperature (as well as the change
in position) of every mesh vertex is recorded over time. If the temperature increases at a vertex v
in the mesh as a result of the deformation, the temperature at neighboring vertices N connected
to v in the mesh via edges will increase as well. The time series measuring temperature at each
neighboring vertex n ∈ N of v will consequently resemble each other. Figure 6.1 illustrates this
with a temperature snapshot from a deformation simulation: neighboring vertices have a similar
temperature (color).

Figure 6.1 – [Best viewed in color] Observing the temperature during a material deforma-
tion simulation.

Similarly, the simulation of earthquakes [146] based on meshes produces multitudes of time
series with a high degree of similarity. More interestingly to us, and driving the development of
RUBIK, are the time series resulting form the simulation of brain activity. We collaborate with
neuroscientists in the Blue Brain project (BBP [105]) who simulate the propagation of voltage
through very fine-grained models of the neocortex populated with millions of neurons. Also in
this scenario, voltage recordings at two neighboring neurons (connected through synapses over
which the voltage leaps) are correlated in time and consequently the time series from neighboring
neurons will be similar (Figure 6.2).

Crucial for making any approach to time series analysis scale in the future is to compress along
both dimensions where time series are growing, i.e., the number of time steps and the number of

122

6.4. RUBIK Overview

Figure 6.2 – [Best viewed in color] Observing the voltage values during a neuroscience
simulation. Time series from neighboring neurons have a high degree of similarity.

time series. When growing the models, scientists not only increase the size (spatial extent) of
their models, but also increase their resolution by orders of magnitude [70] as the same shapes
will be represented with meshes featuring a substantially higher number of vertices (and edges).
The trend to higher resolution models will also lead to more time series (typically one time series
per vertex). The resulting time series will, however, have a high degree of similarity because the
vertices are closer in space and compression methods must exploit the similarity to achieve good
compression in face of growing models.

At the same time, a scalable approach to threshold query execution must compress along the time
dimension to address increasingly long-running simulations and the resulting time series. To
tackle this growth, exploiting the similarity between consecutive time steps in a time series is
pivotal. Time series in a broad range of applications, particularly resulting from the observation
or simulation of natural phenomena (e.g., brain simulations, earthquakes, meteorology etc.), are
in general smooth, i.e., the observation values of most consecutive time steps only differ by a
little, but they may have some massive spikes.

6.4 RUBIK Overview

To enable efficient and scalable threshold query execution in the face of growing time series
(number and length), RUBIK takes advantage of the similarity within time series and between
time series in general and of time series resulting from the simulation sciences in particular.
Given a specific time step t, the values across different time series are similar at t; also inside a
given time series, the values between consecutive time steps do not vary much except for spikes
(sudden surges, e.g., of voltage, movement etc.). RUBIK exploits the similarity of time series by
discretizing them as well as indexing and compressing them with a Quadtree. Threshold queries
based on time and observation value predicates used to find interesting time series can then

123

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

be translated into efficient two-dimensional range queries on the Quadtree. Crucially, RUBIK
preserves the time resolution completely and thereby avoids considerable overhead due to false
positives.

More precisely, RUBIK first discretizes/bins the time series along the observation dimension (the
time dimension is already implicitly discretized). Each binned time step ts of a time series is then
range encoded: all bins below the observation value o at ts are set to 1 while the bins greater
or equal to o are set to 0. Doing so for all time steps in a time series essentially translates the
time series into a two-dimensional bitmap with the area under the curve filled with 1’s. The time
dimension is implicitly discretized already due to the discrete time steps in simulations or due to
epochs in sensor network deployments. Figure 6.3 shows the binning and range-encoding of a
time series. By discretizing and range-encoding the time series, RUBIK essentially pre-computes
a set of answers for threshold queries that align with the discretization.

Figure 6.3 – A two-dimensional time series bitmap.

Binning and range-encoding the time series is crucial for compression as otherwise time se-
ries almost always differ slightly, rendering efficient compression impossible. Inspired by the
Quadtree-based decomposition of bitmap images [33], we notice that Quadtree decomposition
can be applied to compress the bitmaps representing the time series. However, this technique
compresses each bitmap individually and does not exploit the similarity between the time series.
To overcome this limitation, we make clusters of binned time series, i.e., each cluster comprises
of several binned time series (in fact the bitmaps corresponding to the time series). Doing so
essentially results in the creation of a three-dimensional bitmap where the third dimension is the
number of time series in the cluster. Ultimately, we apply the Quadtree decomposition strategy
collectively on the whole cluster of bitmaps, that is we hierarchically divide each cluster into
four blocks of equal size. The Quadtree decomposition strategy is adapted to accommodate
the additional third dimension (number of time series). If a 3D block of bits contains 0’s and

124

6.5. RUBIK Indexing

1’s (in any of the three dimensions), then it is recursively subdivided further in the time and
the observation dimension. If, on the other hand, it only contains either 1’s or 0’s then it is no
longer divided. Figure 6.4 illustrates (using the red lines) how the cluster of time series is divided
into two along the time and the observation dimension. RUBIK compresses beyond binning
and, in case a block only contains 0’s and 1’s, only stores this information. Using Quadtree
decomposition on a 3D bitmap can lead to cases where a block cannot be further subdivided in
the time and the observation dimension, yet contains 0’s and 1’s. To efficiently deal with such
mixed blocks and improve space efficiency, RUBIK compresses them with Word Aligned Hybrid
compression (WAH [168]).

Observa,on%
Bin%

Time%%%

Number%of%
%Time%Series%

1% 1% 1% 1%

1% 1% 1% 1%

1% 1% 1% 1%

1% 1% 1% 1%

1% 1% 1% 1%

Figure 6.4 – A cluster of time series bitmaps, split along the time and observation dimen-
sion with the purpose of identifying blocks enclosing the same bit value.

To execute a threshold query with observation and time predicates, RUBIK translates it into
a two-dimensional range query bounded by the time and observation predicates, that can be
evaluated on the Quadtree. During query execution, RUBIK first discretizes the observation
threshold and then traverses the Quadtree performing query execution on the compressed data. If
the bin b where the query observation threshold falls is enclosed in blocks that contain only 1’s
for all the time steps inside the query range, all the time series are returned. If a mixed WAH
compressed block is encountered, only the time series that contain a 1 in b are returned. Like
many related approaches, RUBIK also works on a lossy compression/representation of the time
series data, thus retrieves approximate results (containing false positives but no false negatives)
and consequently has to verify a subset of the results by reading the exact time series from disk.

6.5 RUBIK Indexing

Indexing with RUBIK has three basic steps: (i) binning & encoding each time series, (ii) grouping
similar time series into clusters, and (iii) indexing (as well as compressing) each time series
cluster with a Quadtree.

125

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

6.5.1 Discretization/Binning

Each time series is discretized along the observation dimension into n bins B where each bin
b ∈ B has an upper and lower boundary bu and bl. RUBIK uses range encoding to encode the
discretized values as bitmaps, i.e., given the observation value v at a specific point in time, all bins
b ∈ B with both boundaries smaller than v will be set to 1 whereas all bins with any boundary
greater than v will be set to 0. Algorithm 12 illustrates the discretization process with pseudocode.
For the purpose of efficiency, RUBIK’s implementation wraps the binning/encoding into the
building of the Quadtrees, thereby accelerating the indexing process.

Algorithm 12: RUBIK Algorithm for Discretization of one Time Series
Input: ts: array containing a time series

l: number of time steps of time series
binshigh: array of higher bin boundaries
b: number of bins

Output: bitmap: discretized time series (two-dimensional array)
1 for i = 0; i < l; i++ do
2 for j = 0; j < b; j++ do
3 if ts[i] ≥ binshigh[j] then
4 bitmap[i][j] = 1;

5 else
6 bitmap[i][j] = 0;

7 return bitmap

The sizes of the bins can vary, depending on the data set, the query workload or both. If, for
example, the observation thresholds of queries are frequently in the same range, the precision of
the index can be improved if the bins in the range are chosen smaller than outside. Similarly, if
the time series have all or most of their observation values in a small range at most points in time,
precision can be equally improved by using more (but smaller) bins in this range, thereby taking
advantage of RUBIK’s ability to use bins of variable width.

6.5.2 Clustering Time Series

To achieve further compression, RUBIK groups similar time series into clusters and indexes
each cluster individually. Several approaches have been developed in the past to determine
similarity between time series. All of these approaches can be used to group similar time series
into clusters. GAMPS [55], for example, clusters time series based on shared subsequences. A
simpler approach is to use the inherent local similarity in the time series. As we argued previously,
time series from nearby locations in simulation data sets are frequently very similar and so it
suffices to use the distance between the locations where the time series have been recorded to
compute the clusters.

126

6.5. RUBIK Indexing

Figure 6.5 – Coarse-grained discretization for clustering.

RUBIK determines the similarity between time series by using coarse grained binning. In essence
RUBIK calculates for each time series a coarse grained binning in both dimensions corresponding
to the Quadtree representation at a certain level of resolution (an example is shown in Figure 6.5)
and assigns all time series with identical representations to a cluster. A minimum cluster size is
set beforehand so that very small clusters (or single time series) are grouped together as one.

The number of clusters (and consequently also their size) is therefore a crucial configuration
parameter. With smaller clusters, the time series in them are more similar, and the compression
rate for the cluster is higher (despite WAH not compressing small clusters as well as bigger ones).
At the same time, however, with more clusters, the data structures (e.g., the Quadtree hierarchy)
occupy more space and more Quadtrees need to be queried. Clearly there is an interesting
trade-off to be explored between improved compression ratio that the Quadtree decomposition
can achieve in each cluster and increased overhead for querying and storing several Quadtrees.

6.5.3 Quadtree Index

RUBIK’s indexing process builds a compressed Quadtree-like structure by recursively splitting
the cluster of bitmaps representing the time series along the observation and time dimension.

Data Structure

While indexing, RUBIK builds a Quadtree that stores information about the enclosed bits of the
bitmap (i.e., whether they are only 1’s, only 0’s or both) in each node. More precisely, if a node
only contains 1’s, it is labeled All 1 and there is no need to store all the enclosed individual bits.
Similarly, if a node contains only 0’s, it is labeled All 0 and the enclosed bits do not need to be
stored individually. In either case, the node in fact becomes a leaf node as there is no need to
partition it further. However, nodes containing both 0’s and 1’s are labeled Mixed and RUBIK
splits them in both the observation and time dimension. If a Mixed node cannot be split further,
RUBIK stores the bit values in a mixed leaf node. To reduce the size of the mixed leaf nodes,
RUBIK compresses them with WAH.

127

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

Mix% All%0% All%1%

All%0% All%1% All%1%

All%1%

Mix%

0%

0%

0%

1%

0%

Mix%

Bi
t%B

uc
ke
t%

Figure 6.6 – Example Quadtree built by RUBIK in main memory.

Figure 6.6 shows an example of the data structure used in memory: the leaf nodes either store a
(compressed) bit bucket, or the information that all bits are 1’s or 0’s. When writing the Quadtree
to disk, RUBIK translates it to a leafless Quadtree where each internal node contains its children.
To avoid storing pointers (from nodes to their children), the leafless Quadtree on disk has fixed
sized nodes, making nodes directly addressable through the calculation of their address. Mixed
nodes are stored in a separate file on disk. A hashmap maps a mixed node in the tree to an offset
in the mixed nodes file.

Indexing Algorithm

RUBIK indexes the discretized time series by recursively splitting the cluster of bitmaps (rep-
resenting time series) along the observation and time dimension into blocks of equal size. If a
block only contains either 1’s or 0’s, it is not split any further and it is stored in a compressed
format (labeled as all 1’s or all 0’s) in the tree structure. The corresponding node in the tree
is a leaf node as it will not be split any further. If, on the other hand, the block is mixed, it is
split in both dimensions again. The corresponding node in the tree is labeled as mixed. Once a
mixed node can no longer be split further because it has length one in either the observation or
time dimension, its literal representation is compressed with Word Aligned Hybrid compression
(WAH) and is stored in the tree as a leaf node.

Figure 6.7 illustrates how the cluster of discretized, range-encoded time series is split in two
steps. Starting with the cluster depicted at the top, the tree is built recursively until the blocks can

128

6.5. RUBIK Indexing

Figure 6.7 – RUBIK splitting the example cluster in two steps.

no longer be divided (after two splits in this example). Each node in the example is connected
to the block it represents (dashed line). All blocks are compressed in the Quadtree, except one
mixed block that is compressed in the end using WAH.

Algorithm 13 illustrates the process in pseudocode: the cluster of discretized time series is
recursively split into smaller blocks until either all blocks are uniform (contain either only 1’s or
only 0’s) or cannot be split any further. The procedure (Algorithm 13) takes as input the cluster
and a null root node.

Clearly, determining efficiently whether a block is uniform is crucial. RUBIK computes the
type of a block as follows. It maintains two vectors TimeS tepMin[] and TimeS tepMax[], each
having a length equal to the number of time steps. Then, RUBIK scans all the time series in the
cluster and, for each time step ti, stores in TimeS tepMin[ti] the bin number that corresponds to
the minimum value for that time step among all the time series, and stores in TimeS tepMax[ti]
the bin number that corresponds to the maximum value found for that time step. In other words,
the two vectors record the bin numbers of the minimum and maximum value for each time step
among all the time series, respectively. Given a block between time steps t1 and t2 (t1 < t2) and
observation bins b1 and b2 (b1 < b2), RUBIK iterates over [t1, t2]. If every TimeS tepMax[ti]
is less than or equal to b1, all the bins of this block have value 0 according the encoding that
RUBIK uses; or if every TimeS tepMin[ti] is greater than b2, all the bins of this block have value
1; otherwise, the block has mixed values of 0 and 1.

129

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

Algorithm 13: RUBIK(block, node) Indexing Algorithm
Input: block: three dimensional array containing the clustered time series

parent: parent node in the Quadtree structure
Output: tree: tree structure representing the compressed cluster

1 node = new node
2 if (parent == null) then
3 parent = node

4 else
5 attach node to parent

6 if all_one(block) then
7 label node as all 1’s

8 else if all_zero(block) then
9 label node as all 0’s

10 else
11 if block can be split then
12 label node as mixed

split block into 4 blocks along time and observation dimension
RUBIK(block1, node)
RUBIK(block2, node)
RUBIK(block3, node)
RUBIK(block4, node)

13 else
14 apply WAH compression to block

label node as mixed
attach compressed block to node

130

6.6. RUBIK Query Execution

Discussion. In a sense, RUBIK is similar to run-length encoding. Run-length encoding identifies
a maximum run (consecutive bits) that have the same bit value and represents them with their bit
value and a count instead of storing every bit separately. With RUBIK we attempt to do the same
but in three dimensions, i.e., we find 3D areas with the same bit value. To simplify the procedure,
we use a Quadtree which essentially predefines the maximum lengths of the runs in two out of
the three dimensions. Remaining areas that are mixed (i.e., contain 1’s and 0’s) are compressed
with WAH (in one dimension). This ability of the Quadtree to identify runs in three dimensions
by adapting its decomposition strategy for a cluster of bitmaps is the main reason why we chose
it as a core component of our approach.

RUBIK could also use an Octree or a KD-Tree to encode the cluster and treat splitting as a
three dimensional problem. Either approach would presumably decrease the depth of the tree
as splitting in the third dimension (the number of time series) would allow to identify uniform
sub-clusters of time series and would eliminate the need to subdivide nodes with bit values
differing only in the third dimension. This would therefore also decrease the number of mixed
bit buckets that need to be compressed individually. Initial experiments, however, showed that
the potential of further compression is small whereas the size of the tree structure increases
(additional nodes for splitting along the third dimension). For example, splitting a block that only
contains 1’s (or 0’s) in the third dimension (after it is already split in the observation and time
dimension) unnecessarily increases the size of the tree structure without bringing any benefits.

6.6 RUBIK Query Execution

To execute a threshold query, RUBIK maps the query on the observation and time dimension and
executes it on the Quadtree which summarizes a cluster of bitmaps (which represent time series).
More precisely, RUBIK executes a spatial query which is bounded by the upper and lower bound
tu and tl of the time predicate in the temporal dimension. In the observation dimension, the upper
observation bound of the query is bin b, the bin in which the observation threshold falls. The
lower bound is b − 1, i.e., the bin just below b.

The first step of query execution consists of performing the spatial query on the Quadtree. The
result of this step is a set of nodes that intersect with the query range. The second step of
answering a threshold query consists of using the retrieved nodes to determine a set of potential
and definite results. Any bitmap (i.e., time series) in the Quadtree that contains a 1 in bin b
will definitely be in the final result as a 1 signifies that the actual value is bigger or equal to
the upper bound of the bin. Any bitmap in the Quadtree that contains a 0 in bin b but a 1 in
bin b − 1 potentially is a result as the actual value is bigger than the lower bound and smaller
than the upper bound of bin b. Potential results need to be verified by inspecting the actual time
series as the precise information is lost due to binning. All results which have a 1 in b will also
have a 1 in b − 1, i.e., all definite results will also be reported as potential results. To ensure
efficient computation of the result, RUBIK thus first identifies the definite result and then the
potential result to finally only inspect difference of the two sets in detail (retrieving time series

131

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 1 1 0 0

b
b - 1 b

b - 1

Definite result Potential result

Figure 6.8 – Example of a definite result (left) and a potential result (right).

from disk and analyzing them), i.e., the potential results without the definite ones. Figure 6.8
shows examples of a definite result with a 1 in b (left) and a potential result with a 0 in b and a 1
in b− 1 (right). While the two examples correspond to the same time series, the threshold queries
are different (use different thresholds) resulting in two different spatial queries (shaded).

During query execution, RUBIK benefits significantly from the clustering of the bitmaps, as
in the case of uniform nodes all the enclosed bits of the bitmaps have the same value and thus
there is no need to examine them one by one. Operating on the WAH compressed bit buckets to
determine the values of the individual bits is undoubtly more expensive. However, in case the
query is only asking whether any time series exceeds the threshold but does not need to know
which one does, decompressing and iterating over a bit bucket is not necessary, as the very fact
that a node is labeled mixed implies that there must be at least one 1.

6.7 Experimental Evaluation

In this section we empirically evaluate the performance of RUBIK. We first describe the setup,
the methodology and the configuration of the experiments. Then we use a real neuroscience
data set to test and evaluate the performance of RUBIK on a real-world example, while we also
compare it against FastBit. We focus on FastBit as it is the most broadly used index for the
execution of threshold queries on time series. As a final test, we use a synthetically generated
data set, where we can control some basic characteristics of the time series.

6.7.1 Experimental Setup

Hardware Configuration. The experiments are run on Red Hat 6.3 machines equipped with
2 quad CPUs AMD Opteron, 64-bit @ 2700 MHz, 32 GB RAM and 4 SAS disks of 300GB
(10000 RPM) capacity as storage. We only use one of the disks for the experiments, i.e., no
RAID configuration is used.

Software Setup. RUBIK was implemented single-threaded in C++. Additionally a single-
threaded application was implemented in C++ on top of the FastBit 2.0.1 API which loads the

132

6.7. Experimental Evaluation

data, builds the indexes and queries them. To achieve a fair comparison with RUBIK, FastBit
was compiled without memory map support (using defined macros).

Competing Approaches. We experimentally compare FastBit’s bitmap indexing approach
against RUBIK. We have implemented two different approaches to execute time-bound threshold
queries in FastBit. The first option is to use two separate indexes, one for the time dimension and
one for the observation value. The second option is to use only one index for the observation
value and filter the returned result according to the queried time-bound. This is possible as we are
dealing with time-stepped data which allows to map bits to time steps. The additional filtering is
applied directly on the bitvectors. The choice between these two options is a trade-off between
storage and computation, because the bitmap index for the time dimension used in the first option
can be considered as a set of pre-computed filtering masks while in the second option the required
mask is computed on-the-fly according to the queried time boundaries.

As discussed in section 6.5, different strategies could be used to choose the bin boundaries. Since
the discretization step is common for both FastBit and RUBIK, the same binning strategy is used
for both approaches for a fair comparison. All bitmap indexes are range-encoded, so essentially
a bitmap index contains bitvectors that are pre-computed answers to threshold queries with a
specified precision configured at building time.

All the structures are initialized and the whole index is loaded in memory before querying.
Therefore, the measurements do not include I/O operations. Before each experiment, we clear
OS caches.

6.7.2 Experimental Methodology

Neuroscience Data Set. The primary data set used in our experiments is obtained from the
simulation of brain activity, provided by the neuro-scientists in the Blue Brain Project(BBP [105]).
The data set represents the 6th layer of a rat neocortical column and contains 312349 time series.
The electrical (action potential) simulation is carried out for 1000 time steps which is thus the
length of each time series. In particular, each time series records sequentially the voltage value of
a neuron at each time step within a given period of time. An important property of this data set is
that time series resulting from neighboring neurons have similar overall patterns. A sample (four
time series) of this data set is shown in Figure 6.9. The size of the binary file containing the time
series is 1.2GB.

Synthetic Data Set. To test RUBIK further we generated synthetic data that mimics the simulated
brain activity. Many models have been proposed for different neuron responses. Some of them
are able to reproduce spiking and bursting behavior of known types of cortical neurons based
on ordinary nonlinear differential equations. We use a model more similar to our real data, i.e.,
we use a so-called resonate model. For producing simulated neuron responses we employed the
model proposed by A. Watson [162] for temporal sensitivity in visual perception. Specifically,

133

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

Figure 6.9 – Sample (four time series) of the neuroscience data set (left) and the synthetic
data set (right).

we used the impulse response of the model, when the excitation is a spike. A sample (four time
series) of this data set is shown in Figure 6.9.

Micro-benchmark. The micro-benchmarks used in our experiments consist of 60 two-dimensional
threshold queries which attempt to retrieve the time series of interest. Each threshold query has a
time predicate specifying a time period between two time steps and a voltage predicate specifying
a value range greater than a value selected randomly from all the possible voltage values.

Approach. To obtain accurate results, the query processing consists of two phases, querying the
index and then filtering to eliminate any false positives that the binning has introduced. We are
focusing only on the first phase, which essentially calculates two sets of results, one with definite
results and one with potential results. The potential results determine which entries need to be
verified by testing the full time series. The query execution time reported in all the experiments
consists of the time required to count the number of definite results and the number of potential
results. The time for identifying the exact location of the candidate results and filtering them is
not included.

6.7.3 Comparative Analysis

In this section, we compare the performance of RUBIK and FastBit when a fixed space budget
is provided. The space budget allocated to the indexes is fixed to 155MB. We chose this space
budget because it allows RUBIK to maintain an accurate in-memory index (128 bins) for our data
set. For FastBit, we evaluate three different variants by using two indexes and varying the number
of bins dedicated to the time information in {10, 25} and by using only one voltage index and
removing the returned results that are outside the time range. We refer to them as FastBit<10>,
FastBit<25> and FastBitF respectively. First we build the indexes on the brain simulation data
set for both RUBIK and FastBit and measure the index sizes to make sure that they respect the
space budget. Then we run all the 60 threshold queries in the micro-benchmark and measure the
total query execution time for all the approaches.

134

6.7. Experimental Evaluation

Figure 6.10 – RUBIK and FastBit index sizes (left), execution time (middle) and accuracy
(right).

Index Size. Figure 6.10 shows the index size of RUBIK and of the three FastBit variants. All the
indexes have a similar size due to the limitation of the space budget. For FastBit the size of the
time index increases as the number of bins used for the time information increases, which results
in the opposite trend for the voltage index, which is forced to sacrifice its resolution (going from
39 to 14 bins) in order to fit in the allocated budget. FastBitF and RUBIK exploit all the available
space budget for the voltage information. As RUBIK compresses more, it uses 128 bins, while
FastBitF can only use 54.

Query Execution Time. Figure 6.10 shows the total execution time of 60 threshold queries. The
experiment shows that FastBit<25> is slower than FastBit<10>. This is because FastBit<10>

does not always use the available time index because of its limited filtering power that renders it
useless for some queries. Also, FastBitF is slightly slower than FastBit<25> as building the mask
used to filter on-the-fly incurs some processing overhead. Most importantly, however, RUBIK
runs 6 to 9 times faster than the different variants of FastBit as it has more pruning power in both
the time and the voltage dimension.

Accuracy. Figure 6.10 shows the percentage of hits (results that do not need to be verified) and
the percentage of candidates (results that have to be verified by inspecting the time series) with
respect to the total number of returned results. We observe that the choice of how the available
budget is split among the time and the voltage information in FastBit does not have any significant
impact on the accuracy. FastBitF exploits all the available budget for the voltage index, and
subsequently filters out some of the candidates. Consequently, FastBitF is the FastBit variant
with the best accuracy. However, the accuracy is still not as good as RUBIK’s, because FastBitF
uses a smaller number of bins for the voltage index.

6.7.4 Scalability Analysis

In this section, we study the impact of parameter configurations and data set characteristics on
RUBIK. We vary, respectively, the number of time series, the length of time series, and the
number of bins which allows us to test RUBIK with larger data sets, measure how its performance
changes accordingly and how it compares to FastBit. For the following experiments, no fixed

135

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

Figure 6.11 – RUBIK and FastBit index sizes (left), execution time (middle) and RUBIK
execution time breakdown (right) depending on the number of time series (neuroscience
data set).

space budget is used. Instead, we use the same precision for both FastBit and RUBIK, i.e. both
approaches use an equal number of bins with the bin boundaries being the same, and we measure
the difference in the index size. Our previous experiment shows that the overall best FastBit
variant is FastBitF, as for the same space budget it offers increased accuracy, while being only 1.4
times slower than the fastest variant (FastBit<10>). Consequently, in the rest of the experiments
we only compare against FastBitF.

Scaling with Data Volume (increase in the number of Time Series) - Neuroscience Data Set

To scale our original data set with respect to the number of time series, we use interpolation.
Starting with 312349 time series, we generated two data sets containing double and four times
the amount of time series respectively.

Figure 6.11 (left) shows the sizes of the resulting indexes for each data set. RUBIK’s index size
scales sub-linearly with the number of time series, that is, the compression rate increases as the
number of time series increases. Consequently, the larger the size of the original time series data
set is, the more compression gain RUBIK achieves.

Figure 6.11 (middle) shows the total query execution time for FastBitF and RUBIK. As RUBIK
groups time series, it scales well with the increase in their number because with only one Quadtree
traversal the threshold condition is tested on an increasing number of time series. FastBit on the
other side has to execute the query on increasingly longer bitvectors. As a result, the achieved
speedup over FastBitF increases from 8.5 to 23.

Figure 6.11 (right) shows a breakdown of the total execution time for RUBIK. The quadtree
traversal stands for the time to perform a 2D spatial range query on the Quadtree (first step of
query execution). The bitmap operations stands for the time to compute an upper and a lower
bound of the number of results (second step of query execution). The quadtree traversal time
remains roughly constant, as adding more time series (which fall in the already existing clusters)
does not affect the structure of the tree. On the other hand, the bitmap operations time increases

136

6.7. Experimental Evaluation

Figure 6.12 – RUBIK index and data sizes depending on the number of time series (syn-
thetic data set).

alongside with the increase in the data size, as each one of the tree nodes is now bigger and
consequently the number of returned results that have to be counted is now higher.

Scaling with Data Volume (increase in the number of Time Series) - Synthetic Data Set

To test the performance more thoroughly, we performed the previous experiment for RUBIK
using the synthetic data set. We first obtained a base data set of 2.1GB containing 543900 time
series, which we scaled up with interpolation. The sizes of the generated data sets are shown in
Figure 6.12.

Figure 6.12 shows the size of the indexed data and the index size. Clearly, as the data set size
increases, the compression ratio increases as well.

The query execution breakdown of Figure 6.13 exhibits the same trends as in Figure 6.11. As
mentioned above, the bitmap operations time increases because the number of results that need to
be counted increases as more time series are added.

To perform a comparison with FastBit on a bigger data set, we also built FastBitF on the 8GB
data set which contains around 2 million time series. Due to the large size of the raw data and the
restricted amount of memory available in the machine used for the experiment, to build the index,
FastBit needs to first split the input in smaller partitions. It then builds one index per partition.
Figure 6.14 shows the index sizes and the query execution results. For FastBitF the results from
different partitions are superimposed. In this case, RUBIK achieves a speedup of 20, while using
half the space that FastBitF does (for the same binning).

137

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

Figure 6.13 – RUBIK execution time breakdown depending on the number of time series
(synthetic data set).

Scaling with Temporal Resolution (increase in the number of Time Steps)

To scale our original neuroscience data set with respect to the number of time steps we used
interpolation to generate longer time series. Starting with time series that have 1000 time steps,
we generated two data sets with time series that have 1999 and 3997 time steps respectively.

Figure 6.15 (left) shows index sizes. We observe that FastBit’s WAH compression is able to
exploit the increased similarity in the time dimension.

Figure 6.15 (middle) shows the query execution time. We note that the time ranges of the queries
in our micro-benchmark are also stretched proportionally to the length of the time series. As
FastBitF scales better than RUBIK with the increase in the number of time steps, RUBIK’s
speedup decreases from 8.5 to 5.5.

Figure 6.15 (right) shows a breakdown analysis of RUBIK’s query execution. The increase in
the number of time steps results in a deeper Quadtree (as bitmaps become longer in the time
dimension and more subdivision steps are required), which causes the quadtree traversal time to
increase.

Scaling with Observation Value Resolution (increase in the number of bins)

We build the index of RUBIK on the entire brain simulation data set with three different configu-
rations of number of bins, namely, 128, 256, and 512.

138

6.7. Experimental Evaluation

Figure 6.14 – RUBIK and FastBit index sizes (left) and query execution time (right). For
FastBitF the results from different partitions are superimposed.

Figure 6.15 – RUBIK and FastBit index sizes (left), execution time (middle) and RUBIK
execution time breakdown (right) depending on the number of time steps (neuroscience
data set).

Figure 6.16 – RUBIK and FastBit index sizes (left), execution time (middle) and accuracy
(right) depending on the number of bins (neuroscience data set).

Figure 6.16 (left) shows the sizes of the different indexes built for both FastBitF and RUBIK as
the number of bins increases. Remarkably, the index size of RUBIK with 256 bins is only slightly
bigger than the one that FastBitF builds using only 128 bins. Also, we observe that the index size
of FastBitF with 512 bins is 1.4G which is actually bigger than the indexed data itself (1.2G).

139

Chapter 6. Quadtree-based Bitmap Compression for Scalable Time Series Exploration

In Figure 6.16 (middle) we observe that FastBitF’s query execution time is independent of the
number of bins. No matter how many bitvectors the bitmap index has, FastBit only retrieves two
of them during query execution (the bin b where the threshold falls as well as the immediately
lower bin b − 1). RUBIK on the other side is influenced by the number of bins, because those
have an impact on the internal structure of the tree (the bitmaps become longer in the observation
dimension).

Figure 6.16 (right) shows the accuracy (i.e., percentage of hits and candidates) of each config-
uration. Since both approaches use the same binning, their accuracy is the same (but FastBitF
requires a larger index). We observe that when more bins are used, the chance of hitting the exact
time series increases and conversely the chance of checking the candidates decreases quickly, as
higher-resolution binning results in higher indexing precision.

6.7.5 Indexing Time

RUBIK’s indexing process consists of the following main steps: after performing one pass over
the data, the skeleton of the Quadtree is built in-memory, then WAH compression is applied to
the mixed bit buckets and both the compressed bit buckets as well as the Quadtree structure are
serialized on disk. Compared to the different FastBit variants, RUBIK requires more time to index
the data sets (building time can take from 20 minutes for the smallest data set tested and up to 2
hours for the largest one). However, at the same time, the index needs significantly less space for
the same targeted precision. Additionally, in our use cases, indexing is done once the simulation
output becomes available and could be performed in an incremental fashion. Alternatively, the
different clusters could be indexed in parallel as they are completely independent. Ultimately, we
believe there is room for improving RUBIK’s indexing performance.

6.8 Discussion

A bitmap index is constructed in three steps: (i) binning/discretization, (ii) encoding, and (iii)
compression. The choices for each of these steps are independent from each other. The choice
of the encoding scheme is mainly dictated by the targeted queries and the data. RUBIK uses
range encoding to encode the discretized values. However, the quadtree-based compression
scheme proposed in RUBIK is not tied to a particular encoding scheme. The time series values
could be encoded using other bitmap encoding schemes proposed in the literature (e.g., interval
encoding [32]). The encoding scheme simply determines how the bitmap is populated with 0’s
and 1’s, or in other words which bits are set to 0 and which bits are set to 1 in each bitmap of the
index. The Quadtree compression strategy then takes these 0’s and 1’s and combines them in
blocks.

Quadtree compression exploits uniform blocks in the bitmap index, thus its performance depends
directly on the presence of such uniform blocks. As a result, the effectiveness varies for different

140

6.9. Chapter Summary

groupings of the data values as well as for different orderings of the data values within each group,
since both the grouping and the ordering affect uniform blocks. In this work, we propose a simple
clustering algorithm that groups the time series in a way that enables effective compression.
Investigating how to re-order and partition data tuples in order to produce bitmaps that are
compressible with Quadtrees, is an interesting avenue that could potentially enable using Quadtree
compression for data other than time series.

In this work, we show the benefits of RUBIK for what we call time-bound threshold queries of
the form: xt ≥ o and tl ≤ t ≤ tu. The implementation of RUBIK can be extended to support
more operators in the value domain other than ≥, that is <,≤, and >. It can also be extended
to support two-sided range conditions and equality conditions on the time series values. Even
though RUBIK can support queries that have a condition only in the time or only in the value
dimension (and leave the other dimension unbounded), to fully take advantage of the pruning
power that the Quadtree structure offers in both dimensions, it is preferable to use RUBIK for
evaluating queries with 2D range conditions.

Finally, we note that RUBIK’s compression scheme can be seen as complementary to run-length
encoding (WAH). Essentially, RUBIK first attempts to find correlations in more dimensions
within the bitmap. When that fails, RUBIK resorts to WAH to compress bits in one dimension.

6.9 Chapter Summary

In this chapter, we present RUBIK, a novel approach for indexing time series data. RUBIK
transforms threshold queries on time series into a two-dimensional bitmap problem. By de-
composing the time series using a Quadtree, RUBIK reduces the size of the bit representation
while maintaining high precision as otherwise the number of false positives imposes an undue
penalty on the query execution. Thanks to the representation as a Quadtree, queries with time
and observation value predicates can be translated into efficient spatial range queries.

The Quadtree representation along with the use of WAH for compression also exploit that time
series in many application domains and particularly in the simulation sciences are often similar
to each other. By using both, Quadtree and WAH, RUBIK can efficiently compress similar time
series and scales particularly well with time series resulting from increasingly detailed simulation
models as our experiments show.

Crucially, our experimental evaluation shows that, because RUBIK can collectively represent
and process a group of time series as well as exploit the pruning power of the Quadtree, it
outperforms the state-of-the-art by a factor of 6 to 23 for query execution while producing a more
space-efficient index.

141

7 Conclusion and Outlook

Spatial and temporal data exploration leads to knowledge discovery. However, there is a gap
between the capabilities of existing data management approaches and the requirements of spatial
and temporal data exploration. To bridge this gap, in this thesis we advocate for spatial query
operators that leverage GPU rendering and a workload-aware design of access methods.

To enable interactive exploration, we decompose spatial query operators into graphics primitives
executed on graphics hardware (GPU) (Chapter 3). To accelerate spatial data processing, we
improve the approximation precision of existing bounding predicates by subtracting out bounded
areas that are empty (Chapter 4). To enable ad-hoc exploration of multiple spatial data sets, we
design an index structure that leverages both spatial proximity as well as data set membership
(Chapter 5 - Part I), and propose to incrementally index subsets from different data sets that are
frequently queried together (Chapter 5 - Part II). To enable scalable time series exploration, we
introduce an access method that allows evaluating queries with both value and time constraints,
and leverages similarity within and across time series (Chapter 6).

We conclude with a brief discussion on research directions related to this thesis.

7.1 Looking Ahead

Computer Graphics and Spatial Databases. Chapter 3 showcases the utility of computer
graphics techniques in the context of spatial data processing. Since spatial databases rely on the
same primitive types (geometric objects such as points and polygons) and operations that are
similar to the ones used in graphics (e.g., spatial selections and containment tests), we expect
further opportunities to exploit advanced graphics techniques and hardware in the design of new
spatial data management solutions. For instance, spatial joins in three dimensions can be framed
as a collision detection problem in graphics. Detecting collisions between graphical objects
in real-time is critical for several graphics applications such as virtual reality, and it has thus
attracted a lot of attention in the computer graphics community, resulting in techniques that could
be exploited to evaluate spatial joins in three dimensions at interactive speeds.

143

Chapter 7. Conclusion and Outlook

Approximation-based Spatial Data Processing. Spatial approximations have been traditionally
used in spatial databases to accelerate processing of complex geometric operations. However,
approximations are only used as a first filtering step to determine a set of candidate spatial objects
that may fulfill the query condition. To provide accurate results, the exact geometries of the
candidate objects are tested against the query condition. Nevertheless, in many applications (such
as visualization tools) approximate results are often sufficient. Besides, real-world geospatial
data is inherently imprecise. GPS positions are typically accurate to within a 4.9 m radius under
open sky [156]. Geographical region boundaries are usually fuzzy, in the sense that adjacent
regions are separated by an extended zone (e.g., a street surface) rather than a one-dimensional
line. Given the uncertainty associated with spatial data and the relaxed precision requirements of
many applications, we need spatial data processing techniques that omit exact geometric tests
and provide final answers solely on the basis of (fine-grained) approximations. The employed
approximations should allow to control the precision and trade accuracy for performance.

Exploiting Large Main Memory Capacity of Modern Hardware. Traditional spatial query
processing approaches rely on a two-step “filter and refine” strategy [54] where the query is
first evaluated using spatial approximations and then false matches are eliminated with exact
geometric tests. This strategy is based on the underlying assumption that main memory is scarce,
and thus sacrifices precision for a more compact approximation. However, modern machines have
large main memory sizes that can go up to multiple terabytes. Therefore, we can afford to increase
the precision (and size) of spatial approximations in exchange for better performance. We believe
that developing new fine-grained spatial approximations alongside with query-efficient index
structures that maintain these approximations in main memory is a promising research direction.

Distance-based Error Bounds for Approximation-based Spatial Data Processing. In chap-
ter 3, we employ a distance-based error bound that controls the maximum distance between the
partners of a false positive/negative join pair. To the best of our knowledge, we are the first to
introduce a formal distance-based error bound for spatial data processing. Spatial data processing
techniques evaluate relations between objects in space (e.g., intersection, containment). Therefore,
we believe that for meaningful analyses, approximate techniques should provide bounds on the
spatial distance between false or missing and exact results.

GPU Rasterization for Real-Time Approximation. As we discuss in Chapters 3 and 5 (Part
II), in data exploration applications users can change dynamically not only the parameters of their
queries, but also the input data. Therefore, it is not always feasible to rely on pre-processing for
efficiency. We need methods to process spatial data fast on-the-fly. The use of GPU rasterization
is a promising step in that direction. Being a crucial component of the graphics rendering pipeline,
rasterization is natively supported by GPUs and is performed at interactive speeds. By rasterizing
geometric primitives (i.e., polygons) we convert them into a collection of pixels on-the-fly. This
collection of pixels essentially forms a fine-grained uniform grid approximation of the geometric
primitive and can be leveraged to process queries efficiently (as we show in Chapter 3).

144

7.1. Looking Ahead

In Chapter 4, we use Pareto optimality to determine the area that is empty around the corner
of a Minimum Bounding Box. For two-dimensional data, instead of Pareto optimality, GPU
rasterization could be used to determine empty areas within a Minimum Bounding Box. This
would significantly reduce the time for generating and updating Clipped Bounding Boxes.

Clipped Bounding Boxes as first-class citizens. In Chapter 4, we advocate for clipping Mini-
mum Bounding Boxes (MBBs) and plug the clipped boxes into different R-tree variants. Currently,
we perform the clipping as an afterthought during R-tree construction, leaving the construction
algorithms unmodified. The main procedures performed during R-tree construction are (i) choos-
ing the most suitable sub-tree at every level to accommodate a newly inserted object, and (ii)
splitting objects among two nodes upon a node overflow [15]. The goal of those procedures
is to produce nodes with both minimal coverage and overlap, which are measured on the basis
of MBBs. However, there is the opportunity to produce a better index structure if we modify
the R-tree construction algorithms to take into account the possibility of clipping empty MBB
corners. Alternatively, we could design an entirely new index structure on the basis of Clipped
Bounding Boxes.

145

Bibliography

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and
Ion Stoica. BlinkDB: Queries with Bounded Errors and Bounded Response Times on
Very Large Data. In Proceedings of the ACM European Conference on Computer Systems
(EuroSys), pages 29–42, 2013.

[2] Alok Aggarwal, J. S. Chang, and K. Yap Chee. Minimum area circumscribing Polygons.
The Visual Computer, 1(2):112–117, 1985.

[3] Danial Aghajarian, Satish Puri, and Sushil Prasad. GCMF: An Efficient End-to-end Spatial
Join System over Large Polygonal Datasets on GPGPU Platform. In Proceedings of the
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
2016.

[4] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and
Joel H. Saltz. Hadoop-GIS: A High Performance Spatial Data Warehousing System over
MapReduce. PVLDB, 6(11):1009–1020, 2013.

[5] Volkan Akcelik, Jacobo Bielak, et al. High resolution forward and inverse earthquake
modeling on terascale computers. In Proceedings of the ACM/IEEE Conference on
Supercomputing, page 52, 2003.

[6] Varol Akman, William Randolph Franklin, Mohan Kankanhalli, and Chandrasekhar
Narayanaswami. Geometric computing and uniform grid technique. Computer-Aided
Design, 21(7):410–420, 1989.

[7] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Aila-
maki. NoDB: Efficient Query Execution on Raw Data Files. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2012.

[8] Guillaume Anciaux, Srinivasa B. Ramisetti, and Jean François Molinari. A finite tempera-
ture bridging domain method for MD-FE coupling and application to a contact problem.
Computer Methods in Applied Mechanics and Engineering, 205-208(1):204–212, 2012.

[9] Gennady Andrienko, Natalia Andrienko, Christophe Hurter, Salvatore Rinzivillo, and
Stefan Wrobel. Scalable Analysis of Movement Data for Extracting and Exploring

147

Bibliography

Significant Places. IEEE Transactions on Visualization and Computer Graphics (TVCG),
19(7):1078–1094, 2013.

[10] Gennady Antoshenkov. Byte-aligned bitmap compression. In Proceedings of the Confer-
ence on Data Compression (DCC), 1995.

[11] Naiyong Ao, Fan Zhang, Di Wu, Douglas S. Stones, Gang Wang, Xiaoguang Liu, Jing
Liu, and Sheng Lin. Efficient parallel lists intersection and index compression algorithms
using graphics processing units. PVLDB, 4(8):470–481, 2011.

[12] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The Priority R-tree: A
Practically Efficient and Worst-case Optimal R-tree. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 347–358, 2004.

[13] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The TS-tree: Efficient
Time Series Search and Retrieval. In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages 252–263, 2008.

[14] Leilani Battle, Michael Stonebraker, and Remco Chang. Dynamic reduction of query result
sets for interactive visualization. In Proceedings of the IEEE International Conference on
Big Data, pages 1–8, 2013.

[15] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 322–331, 1990.

[16] Norbert Beckmann and Bernhard Seeger. A Benchmark for Multidimensional Index
Structures. http://www.mathematik.uni-marburg.de/~seeger/rrstar/.

[17] Norbert Beckmann and Bernhard Seeger. A Revised R*-tree in Comparison with Related
Index Structures. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 799–812, 2009.

[18] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM (CACM), 18(9):509–517, 1975.

[19] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-tree: An Index Structure
for High-Dimensional Data. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), 1996.

[20] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA,
3rd edition, 2008.

[21] Laurynas Biveinis, Simonas Šaltenis, and Christian S. Jensen. Main-memory operation
buffering for efficient R-tree update. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 591–602, 2007.

148

http://www.mathematik.uni-marburg.de/~seeger/rrstar/

Bibliography

[22] Stephan Börzsönyi, Donald Kossman, and Konrad Stocker. The skyline operator. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages
421–430, 2001.

[23] Sotiris Brakatsoulas, Dieter Pfoser, and Yannis Theodoridis. Revisiting R-tree construction
principles. In Proceedings of the European Conference on Advances in Databases and
Information Systems (ADBIS), pages 149–162, 2002.

[24] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter Saake.
GPU-Accelerated Database Systems: Survey and Open Challenges. In Transactions on
Large-Scale Data- and Knowledge-Centered Systems XV, pages 1–35. Springer, 2014.

[25] Karl Bringmann, Tobias Friedrich, and Patrick Klitzke. Two-dimensional Subset Selection
for Hypervolume and Epsilon-Indicator. In Proceedings of the Annual Conference on
Genetic and Evolutionary Computation (GECCO), pages 589–596, 2014.

[26] Thomas Brinkhoff, H.-P. Kriegel, and Ralf Schneider. Comparison of approximations
of complex objects used for approximation-based query processing in spatial database
systems. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE), pages 40–49, 1993.

[27] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step
processing of spatial joins. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 197–208, 1994.

[28] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient Processing of
Spatial Joins Using R-trees. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 237–246, 1993.

[29] Yuhan Cai and Raymond Ng. Indexing Spatio-Temporal Trajectories with Chebyshev Poly-
nomials. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2004.

[30] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. iSAX 2.0: Indexing
and Mining One Billion Time Series. In Proceedings of the IEEE International Conference
on Data Mining (ICDM), 2010.

[31] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and Eamonn
Keogh. Beyond one billion time series: Indexing and mining very large time series
collections with iSAX2+. Knowledge and Information Systems, 39, 2014.

[32] Chee-Yong Chan and Yannis E. Ioannidis. An Efficient Bitmap Encoding Scheme for
Selection Queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 215–226, 1999.

[33] Yung-Kuan Chan. Block image retrieval based on a compressed linear quadtree. Image
and Vision Computing, 22(5):391–397, 2004.

149

Bibliography

[34] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing and OLAP
Technology. ACM SIGMOD Record, 26:65–74, 1997.

[35] Chicago Open Data. https://data.cityofchicago.org/.

[36] Fernando Chirigati, Harish Doraiswamy, Theodoros Damoulas, and Juliana Freire. Data
Polygamy: The Many-Many Relationships Among Urban Spatio-Temporal Data Sets. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 1011–1025, 2016.

[37] John Cieslewicz, Kenneth A. Ross, Kyoho Satsumi, and Yang Ye. Automatic Contention
Detection and Amelioration for Data-intensive Operations. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2010.

[38] Using clipper and poly2tri together for robust triangulation. https://github.com/raptor/
clip2tri, 2015.

[39] Stanley Coren, Lawrence M. Ward, and James T. Enns. Sensation and Perception. Wiley,
2003.

[40] Oracle Corporation. Oracle Spatial and Graph: Advanced data management. Technical
report, Oracle, 2014.

[41] Ondrej Danko and Tomáš Skopal. Elliptic indexing of multidimensional databases. In
Proceedings of the Australasian Database Conference (ADC), pages 85–94, 2009.

[42] Judith R. Davis. IBM’s DB2 Spatial Extender: Managing Geo-Spatial Information with
the DBMS. IBM White Paper, 1998.

[43] Harish Doraiswamy, Nivan Ferreira, Theodoros Damoulas, Juliana Freire, and Cláudio T.
Silva. Using Topological Analysis to Support Event-Guided Exploration in Urban Data.
IEEE Transactions on Visualization and Computer Graphics (TVCG), 20(12):2634–2643,
2014.

[44] Harish Doraiswamy, Juliana Freire, Marcos Lage, Fabio Miranda, and Cláudio T. Silva.
Spatio-Temporal Urban Data Analysis: A Visual Analytics Perspective. IEEE Computer
Graphics and Applications (CG&A), 38(5):26–35, 2018.

[45] Harish Doraiswamy, Eleni Tzirita Zacharatou, Fábio Miranda, Marcos Lage, Anasta-
sia Ailamaki, Cláudio T. Silva, and Juliana Freire. Interactive Visual Exploration of
Spatio-Temporal Urban Data Sets using Urbane. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 1693–1696, 2018.

[46] Harish Doraiswamy, Huy T. Vo, Cláudio T. Silva, and Juliana Freire. A GPU-based index
to support interactive spatio-temporal queries over historical data. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE), pages 1086–1097, 2016.

150

https://data.cityofchicago.org/
https://github.com/raptor/clip2tri
https://github.com/raptor/clip2tri

Bibliography

[47] Ahmed Eldawy. SpatialHadoop: Towards flexible and scalable spatial processing using
MapReduce. In SIGMOD, PhD Symposium, pages 46–50, 2014.

[48] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast Subsequence Match-
ing in Time-series Databases. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 1994.

[49] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on graphics proces-
sors. PVLDB, 3(1-2):670–680, 2010.

[50] Yi Fang, Marc Friedman, Giri Nair, Michael Rys, and Ana-Elisa Schmid. Spatial indexing
in microsoft SQL server 2008. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1207–1216, 2008.

[51] Nivan Ferreira, Marcos Lage, Harish Doraiswamy, Huy Vo, Luc Wilson, Heidi Werner,
Muchan Park, and Cláudio Silva. Urbane: A 3D framework to support data driven decision
making in urban development. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 97–104, 2015.

[52] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1990.

[53] Foursquare. https://foursquare.com/about.

[54] Volker Gaede and Oliver Günther. Multidimensional Access Methods. ACM Computing
Surveys, 30(2):170–231, 1998.

[55] Sorabh Gandhi, Suman Nath, Subhash Suri, and Jie Liu. GAMPS: Compressing Multi
Sensor Data by Grouping and Amplitude Scaling. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2009.

[56] Yván J. García R, Mario A. Lopez, and Scott T. Leutenegger. A greedy algorithm for bulk
loading R-trees. In Proceedings of the ACM International Symposium on Advances in
Geographic Information Systems (GIS), pages 163–164, 1998.

[57] Making the most detailed tweet map ever. https://blog.mapbox.com/

making-the-most-detailed-tweet-map-ever-b54da237c5ac.

[58] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha. Fast
computation of database operations using graphics processors. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 215–226, 2004.

[59] Goetz Graefe and Harumi Kuno. Adaptive Indexing for Relational Keys. In Workshops
Proceedings of the IEEE International Conference on Data Engineering (ICDEW), 2010.

151

https://foursquare.com/about
https://blog.mapbox.com/making-the-most-detailed-tweet-map-ever-b54da237c5ac
https://blog.mapbox.com/making-the-most-detailed-tweet-map-ever-b54da237c5ac

Bibliography

[60] Goetz Graefe and Harumi Kuno. Self-selecting, Self-tuning, Incrementally Optimized In-
dexes. In Proceedings of the International Conference on Extending Database Technology
(EDBT), pages 371–381, 2010.

[61] Ronald L. Graham. An Efficient Algorithm for Determining the Convex Hull of a Finite
Planar Set. Information Processing Letters, 1(4):132–133, 1972.

[62] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[63] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and
Gerd Heber. Scientific Data Management in the Coming Decade. ACM SIGMOD Record,
34(4):34–41, 2005.

[64] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Weinberger.
Quickly Generating Billion-record Synthetic Databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1994.

[65] Oliver Gunther. The design of the cell tree: An object-oriented index structure for
geometric databases. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 598–605, 1989.

[66] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. ACM SIGMOD
Record, 14(2):47–57, 1984.

[67] Ralf Hartmut Güting. An introduction to spatial database systems. The VLDB Journal,
3(4):357–399, 1994.

[68] Mark Harrower and Cynthia A. Brewer. ColorBrewer.org: An Online Tool for Selecting
Colour Schemes for Maps. The Cartographic Journal, 40(1):27–37, 2003.

[69] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and Pedro
Sander. Relational joins on graphics processors. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 511–524, 2008.

[70] Thomas Heinis, Farhan Tauheed, and Anastasia Ailamaki. Spatial Data Management
Challenges in the Simulation Sciences. In Proceedings of the International Conference on
Extending Database Technology (EDBT), 2014.

[71] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On the Analysis
of Indexing Schemes. In Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), 1997.

[72] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, Redmond, Washington, 2009.

152

Bibliography

[73] The Human Brain Project. https://www.humanbrainproject.eu.

[74] IBM Informix Dynamic Server v12.1 Information Center. IBM Informix R-tree Index,
User’s Guide, 2013.

[75] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database Cracking. In Proceed-
ings of the Conference on Innovative Data Systems Research (CIDR), 2007.

[76] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. Merging What’s
Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9):586–597, 2011.

[77] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of Data Explo-
ration Techniques. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 277–281, 2015.

[78] Jean-François Im, Félix Giguère Villegas, and Michael J. McGuffin. VisReduce: Fast and
responsive incremental information visualization of large datasets. In Proceedings of the
IEEE International Conference on Big Data, pages 25–32, 2013.

[79] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates. In Human-Machine Interac-
tive Systems, pages 199–233. Springer, 1991.

[80] Chris L. Jackins and Steven L. Tanimoto. Oct-trees and their use in representing three-
dimensional objects. Computer Graphics and Image Processing, 14(3), 1980.

[81] Edwin H. Jacox and Hanan Samet. Spatial Join Techniques. ACM Transactions on
Database Systems (TODS), 32(1), 2007.

[82] H. Vi Jagadish. Spatial search with polyhedra. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 311–319, 1990.

[83] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. M4: A
Visualization-Oriented Time Series Data Aggregation. PVLDB, 7(10):797–808, 2014.

[84] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. Distributed
and interactive cube exploration. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 472–483, 2014.

[85] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An improved R-tree using fractals.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages
500–509, 1994.

[86] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Ailamaki.
Adaptive Query Processing on RAW Data. PVLDB, 7(12):1119–1130, 2014.

[87] Norio Katayama and Shin’ichi Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 369–380, 1997.

153

https://www.humanbrainproject.eu

Bibliography

[88] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Dimension-
ality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge
and Information Systems, 3(3), 2001.

[89] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J. Pazzani. Lo-
cally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
2001.

[90] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen, Tim
Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey. FAST: fast architecture
sensitive tree search on modern CPUs and GPUs. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 339–350, 2010.

[91] Ravi Kanth V. Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and R-tree indexes
in oracle spatial: a comparison using GIS data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 546–557, 2002.

[92] YongChul Kwon, Dylan Nunley, Jeffrey P. Gardner, Magdalena Balazinska, Bill Howe,
and Sarah Loebman. Scalable clustering algorithm for N-body simulations in a shared-
nothing cluster. In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM), pages 132–150, 2010.

[93] Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik Teo. Supporting
frequent updates in R-trees: a bottom-up approach. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 608–619, 2003.

[94] Daniel Lemire, Gregory Ssi Yan Kai, and Owen Kaser. Consistently faster and smaller
compressed bitmaps with Roaring. Software Practice and Experience, 46(11):1547–1569,
2016.

[95] Scott T. Leutenegger, Mario Lopez, and Jeffrey Edgington. STR: A simple and efficient
algorithm for R-tree packing. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 497–506, 1997.

[96] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa Wang.
IR-Tree: An Efficient Index for Geographic Document Search. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 23(4):585–599, 2011.

[97] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX: A Novel
Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 15(2),
2007.

[98] Lauro Lins, James T. Klosowski, and Carlos Scheidegger. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 19(12):2456–2465, 2013.

154

Bibliography

[99] Zhicheng Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual Analy-
sis. IEEE Transactions on Visualization and Computer Graphics (TVCG), 20(12):2122–
2131, 2014.

[100] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time Visual Querying of Big
Data. Computer Graphics Forum (CGF), 32:421–430, 2013.

[101] David B. Lomet and Betty Salzberg. The hB-tree: A Multiattribute Indexing Method
with Good Guaranteed Performance. ACM Transactions on Database Systems (TODS),
15(4):625–658, 1990.

[102] Nikos Mamoulis. Spatial Data Management. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[103] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and Yannis
Theodoridis. R-Trees: Theory and Applications. Springer, 2005.

[104] Mapd technology. https://www.mapd.com/.

[105] Henry Markram. The Blue Brain Project. Nature Reviews Neuroscience, 7(2):153–160,
2006.

[106] Henry Markram et al. Introducing the Human Brain Project. Procedia Computer Science,
7:39–42, 2011.

[107] Vasileios Megalooikonomou, Qiang Wang, Guo Li, and Christos Faloutsos. A Multireso-
lution Symbolic Representation of Time Series. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2005.

[108] Fabio Miranda, Harish Doraiswamy, Marcos Lage, Kai Zhao, Bruno Gonçalves, Luc
Wilson, Mondrian Hsieh, and Cláudio T. Silva. Urban Pulse: Capturing the Rhythm of
Cities. IEEE Transactions on Visualization and Computer Graphics (TVCG), 23(1):791–
800, 2017.

[109] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classification
of parallel rendering. IEEE Computer Graphics and Applications (CG&A), 14(4):23–32,
July 1994.

[110] MySQL 5.0 Reference Manual (11.5 Extensions for Spatial Data), 2015.

[111] Tahora H. Nazer, Guoliang Xue, Yusheng Ji, and Huan Liu. Intelligent Disaster Response
via Social Media Analysis - A Survey. ACM SIGKDD Explorations Newsletter, 19(1):46–
59, 2017.

[112] Nvidia. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide,
2007.

[113] NYC Open Data. http://data.ny.gov.

155

https://www.mapd.com/
http://data.ny.gov

Bibliography

[114] Marc Olano and Trey Greer. Triangle Scan Conversion Using 2D Homogeneous Coordi-
nates. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, HWWS, pages 89–95, 1997.

[115] Yahoo labs. https://webscope.sandbox.yahoo.com/.

[116] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, New York,
NY, USA, 1994.

[117] Thomas Ortner, Johannes Sorger, Harald Steinlechner, Gerd Hesina, Harald Piringer,
and Eduard Gröller. Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for
Visibility-Aware Urban Planning. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 23(2):1139–1151, Feb 2017.

[118] Cícero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, and João L. D. Comba.
Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data. IEEE
Transactions on Visualization and Computer Graphics (TVCG), 23(1):671–680, 2017.

[119] Themis Palpanas. Big Sequence Management: A glimpse of the Past, the Present, and the
Future. In Proceedings of the International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume 9587, pages 63–80. Springer, 2016.

[120] Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer, Thomas Neumann, and
Alfons Kemper. High-Performance Geospatial Analytics in HyPerSpace. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages 2145–2148,
2016.

[121] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient OLAP Operations in
Spatial Data Warehouses. In Proceedings of the International Symposium on Advances in
Spatial and Temporal Databases (SSTD), 2001.

[122] Jignesh M. Patel and David J. DeWitt. Partition Based Spatial-Merge Join. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 259–270,
1996.

[123] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anastasia
Ailamaki. TRANSFORMERS: Robust spatial joins on non-uniform data distributions. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages
673–684, 2016.

[124] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki. QUASII:
QUery-Aware Spatial Incremental Index. In Proceedings of the International Conference
on Extending Database Technology (EDBT), pages 325–336, 2018.

[125] Mirjana Pavlovic, Eleni Tzirita Zacharatou, Darius Sidlauskas, Thomas Heinis, and Anas-
tasia Ailamaki. Space Odyssey: Efficient Exploration of Scientific Data. In Proceedings
of the ACM SIGMOD/PODS International Workshop on Exploratory Search in Databases
and the Web (ExploreDB), 2016.

156

https://webscope.sandbox.yahoo.com/

Bibliography

[126] Juan Pineda. A Parallel Algorithm for Polygon Rasterization. SIGGRAPH Proceedings of
the Annual conference on Computer Graphics and Interactive Techniques, 22(4):17–20,
1988.

[127] PostGIS: Spatial and geographic objects for PostgreSQL. http://postgis.net/.

[128] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. An Updated Bibliography
of Temporal, Spatial, and Spatio-temporal Data Mining Research. In Proceedings of the
International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining (TSDM).
Springer, 2001.

[129] Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys, 16(2):187–260, 1984.

[130] Roeland Scheepens, Niels Willems, Huub van de Wetering, Gennady Andrienko, Natalia
Andrienko, and Jarke J. van Wijk. Composite Density Maps for Multivariate Trajectories.
IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12):2518–2527,
2011.

[131] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-tree: A dynamic index
for multi-dimensional objects. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 507–518, 1987.

[132] Jonathan Richard Shewchuk. Delaunay Refinement Algorithms for Triangular Mesh
Generation. Computational Geometry: Theory and Applications, 22(1-3):21–74, 2002.

[133] Ben Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages
336–343, 1996.

[134] Dave Shreiner, Graham Sellers, John M. Kessenich, and Bill M. Licea-Kane. OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version 4.3. Addison-
Wesley Professional, 8th edition, 2013.

[135] Darius Šidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anastasia Ailamaki. Im-
proving Spatial Data Processing by Clipping Minimum Bounding Boxes. In Proceedings
of the IEEE International Conference on Data Engineering (ICDE), pages 425–436, 2018.

[136] Darius Šidlauskas, Christian S. Jensen, and Simonas Šaltenis. A Comparison of the Use
of Virtual Versus Physical Snapshots for Supporting Update-intensive Workloads. In
Proceedings of the ACM SIGMOD/PODS International Workshop on Data Management
on New Hardware (DaMoN), 2012.

[137] Bogdan Simion, Daniel N. Ilha, Angela Demke Brown, and Ryan Johnson. The price
of generality in spatial indexing. In Proceedings of the ACM SIGSPATIAL International
Workshop on analytics for Big Geospatial Data (BigSpatial), 2013.

157

http://postgis.net/

Bibliography

[138] Emmanuel Stefanakis, Yannis Theodoridis, Timos Sellis, and Yuk-Cheung Lee. Point
Representation of Spatial Objects and Query Window Extension: A new Technique for
Spatial Access Methods. International Journal of Geographical Information Science
(IJGIS), 11(6), 1997.

[139] Chris Stolte and Pat Hanrahan. Polaris: A System for Query, Analysis and Visualization
of Multi-Dimensional Relational Databases. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 8(1):52–65, 2002.

[140] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware Acceleration for Spatial
Selections and Joins. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 455–466, 2003.

[141] Guo-Dao Sun, Ying-Cai Wu, Rong-Hua Liang, and Shi-Xia Liu. A Survey of Visual
Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges.
Journal of Computer Science and Technology (JCST), 28(5):852–867, 2013.

[142] Yufei Tao and Dimitris Papadias. Adaptive Index Structures. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2002.

[143] Yufei Tao, Dimitris Papadias, and Jun Zhang. Aggregate Processing of Planar Points. In
Proceedings of the International Conference on Extending Database Technology (EDBT),
pages 682–700, 2002.

[144] Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Schürmann, Henry Markram,
and Anastasia Ailamaki. Accelerating Range Queries For Brain Simulations. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE), pages 941–952,
2012.

[145] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml,
2015.

[146] Tiankai Tu and David R. O’Hallaron. A computational database system for generating
unstructured hexahedral meshes with billions of elements, 2004.

[147] John Wilder Tukey. Exploratory Data Analysis. Pearson, 1977.

[148] Twitter API. https://dev.twitter.com/.

[149] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláudio T. Silva, and
Juliana Freire. GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary
Polygons. PVLDB, 11(3):352–365, 2017.

[150] Eleni Tzirita Zacharatou, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. RU-
BIK: Efficient Threshold Queries on Massive Time Series. In Proceedings of the In-
ternational Conference on Scientific and Statistical Database Management (SSDBM),
2015.

158

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://dev.twitter.com/

Bibliography

[151] 10 Billion. https://www.uber.com/newsroom/10-billion/.

[152] Uber Hits 5 Billion Rides Milestone. https://www.uber.com/en-SG/blog/

uber-hits-5-billion-rides-milestone/.

[153] Uber geofence. https://eng.uber.com/go-geofence/.

[154] Engineering Intelligence Through Data Visualization at Uber. https://eng.uber.com/

data-viz-intel/.

[155] Thatcher Ulrich. Loose octrees. Game Programming Gems, 1:434–442, 2000.

[156] Frank van Diggelen and Per Enge. The world’s first GPS MOOC and worldwide laboratory
using smartphones. In Proceedings of the International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+), pages 361–369, 2015.

[157] Peter van Oösterom and Eric Claassen. Orientation insensitive indexing methods for
geometric objects. In Proceedings of the International Symposium on Spatial Data
Handling (SDH), pages 1016–1029, 1990.

[158] Ines Fernando Vega Lopez, Richard T. Snodgrass, and Bongki Moon. Spatiotemporal Ag-
gregate Computation: A Survey. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 17(2):271–286, 2005.

[159] Maarten Vermeij, Wilko Quak, Martin Kersten, and Niels Nes. Monetdb, a novel spatial
columnstore dbms. In Academic Proceedings of the Free and Open Source for Geospatial
(FOSS4G) Conference, OSGeo, 2008.

[160] Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. Spatial Online Sampling and Aggre-
gation. PVLDB, 9(3):84–95, 2015.

[161] Sheng Wang, David Maier, and Beng Chin Ooi. Fast and Adaptive Indexing of Multi-
dimensional Observational Data. PVLDB, 9(14):1683–1694, 2016.

[162] Andrew B. Watson et al. Temporal sensitivity. Handbook of perception and human
performance, 1:6–1, 1986.

[163] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New
Trends in Computer Science, pages 359–370, 1991.

[164] David A. White and Ramesh Jain. Similarity indexing with the SS-tree. In Proceedings of
the IEEE International Conference on Data Engineering (ICDE), pages 516–523, 1996.

[165] Hadley Wickham. Bin-summarise-smooth: a framework for visualising large data. Techni-
cal report, had.co.nz, 2013.

[166] Niels Willems, Huub Van De Wetering, and Jarke J. Van Wijk. Visualization of vessel
movements. Computer Graphics Forum (CGF), 28(3):959–966, 2009.

159

https://www.uber.com/newsroom/10-billion/
https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone/
https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone/
https://eng.uber.com/go-geofence/
https://eng.uber.com/data-viz-intel/
https://eng.uber.com/data-viz-intel/

Bibliography

[167] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. Geddes,
J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret, J. Meredith, P. Messmer, E. Otoo,
V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger,
G. Weber, and W. M. Zhang. FastBit: Interactively Searching Massive Data. Journal of
Physics: Conference Series, 180(1), 2009.

[168] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing Bitmap Indices with Efficient
Compression. ACM Transactions on Database Systems (TODS), 31(1), 2006.

[169] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba: Efficient In-
Memory Spatial Analytics. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 1071–1085, 2016.

[170] Xiaopeng Xiong and Walid G. Aref. R-trees with update memos. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE), pages 22–22, 2006.

[171] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. GeoSpark: a cluster computing framework
for processing large-scale spatial data. In Proceedings of the SIGSPATIAL International
Conference on Advances in Geographic Information Systems, volume 70, pages 1–4, 2015.

[172] Jianting Zhang and Simin You. Speeding up large-scale point-in-polygon test based
spatial join on GPUs. In Proceedings of the ACM SIGSPATIAL International Workshop on
analytics for Big Geospatial Data (BigSpatial), pages 23–32, 2012.

[173] Jianting Zhang, Simin You, and Le Gruenwald. High-performance online spatial and
temporal aggregations on multi-core CPUs and many-core GPUs. In Proceedings of the
International Workshop on Data Warehousing and OLAP (DOLAP), pages 89–96, 2012.

[174] Jianting Zhang, Simin You, and Le Gruenwald. High-Performance Spatial Join Processing
on GPGPUs with Applications to Large-Scale Taxi Trip Data. Technical report, The City
College of New York, 2012.

[175] Jianting Zhang, Simin You, and Le Gruenwald. Efficient Parallel Zonal Statistics on
Large-Scale Global Biodiversity Data on GPUs. In Proceedings of the ACM SIGSPATIAL
International Workshop on analytics for Big Geospatial Data (BigSpatial), pages 35–44,
2015.

[176] Geraldo Zimbrao and Jano Moreira de Souza. A Raster Approximation For Processing of
Spatial Joins. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 558–569, 1998.

160

Eleni Tzirita Zacharatou
Curriculum Vitae

Education
2013–2019 Ph.D. in Computer Science, École Polytechnique Fédérale de Lausanne (EPFL).

Thesis Efficient Query Processing for Spatial and Temporal Data Exploration
Advisor Prof. Anastasia Ailamaki

2007–2013 Diploma in Electrical & Computer Engineering, National Technical University
of Athens (NTUA).

Thesis Automatic Music Transcription
Advisor Prof. Petros Maragos

GPA 9.06/10

Employment
09/2013–
08/2019

Research Assistant, EPFL, Switzerland.
{ Member of the Data-Intensive Applications and Systems (DIAS) laboratory
{ Research on spatial and temporal data management for exploratory applications

07/2016-
10/2016

Visiting Scholar, NYU, USA.
{ Member of the Visualization, Imaging and Data Analysis Research Center (VIDA)
{ Project: Real-Time Spatial Aggregation using GPU Rasterization
{ Supervisors: Prof. Juliana Freire and Dr. Harish Doraiswamy

01/2013-
08/2013

Intern, EPFL, Switzerland.
{ Member of the Data-Intensive Applications and Systems (DIAS) laboratory
{ Project: Efficient Time Series Bitmap Indexing through Quadtree-based Compression
{ Supervisors: Prof. Anastasia Ailamaki and Prof. Thomas Heinis

Publications
Conferences

VLDB 2018 E. Tzirita Zacharatou, H. Doraiswamy, A. Ailamaki, C. Silva and J. Freire, GPU
Rasterization for Real-Time Spatial Aggregation over Arbitrary Polygons, 44th

International Conference on Very Large Data Bases, Rio de Janeiro, Brazil, 2018.
ICDE 2018 D. Sidlauskas, S. Chester, E. Tzirita Zacharatou and A. Ailamaki, Improving

Spatial Data Processing by Clipping Minimum Bounding Boxes, 34th International
Conference on Data Engineering, Paris, France, 2018.

SSDBM 2015 E. Tzirita Zacharatou, F. Tauheed, T. Heinis and A. Ailamaki, RUBIK: Effi-
cient Threshold Queries on Massive Time Series, 27th International Conference on
Scientific and Statistical Database Management, San Diego, California, USA, 2015.
EPFL IC IINFCOM DIAS BC 245 – Station 14, CH-1015 Lausanne

B eleni.tzirita.zacharatou@gmail.com
Í www.linkedin.com/in/eleni-tzirita-zacharatou 161

ECESCON
2013

E. Tzirita Zacharatou and P. Maragos, Signal Processing Methods for Automatic
Transcription of Piano Music, 6th Annual Conference of Students of Electrical &
Computer Engineering, Athens, Greece, 2013.
Demonstrations

SIGMOD
2018

H. Doraiswamy, E. Tzirita Zacharatou, F. Miranda, M. Lage, A. Ailamaki, C. Silva
and J. Freire, Interactive Visual Exploration of Spatio-Temporal Urban Data Sets
using Urbane, International Conference on Management of Data, Houston, Texas,
USA, 2018. Best Demonstration Award.
Workshops

ExploreDB
2016

M. Pavlovic, E. Tzirita Zacharatou, D. Sidlauskas, T. Heinis and A. Ailamaki,
Space Odyssey - Efficient Exploration of Scientific Data, 3rd International Workshop
on Exploratory Search in Databases and the Web, San Francisco, USA, 2016.

Awards
2018 Best Demonstration Award, ACM SIGMOD Conference.
2016 ExploreDB Workshop (co-located with SIGMOD/PODS) Travel Award.

Conference Presentations and Invited Talks
07/2019 GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Poly-

gons, HDMS, Athens, Greece.
02/2019 Interactive and Exploratory Spatio-Temporal Data Analytics, DIMA Research

Seminar, TU Berlin, Germany.
08/2018 GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Poly-

gons, VLDB, Rio de Janeiro, Brazil.
06/2018 Interactive Exploration of Urban Data with GPUs, Short Presentation, IC

Research Day, EPFL, Switzerland.
04/2018 Improving Spatial Data Processing by Clipping Minimum Bounding Boxes,

ICDE, Paris, France.
06/2017 Real-Time Spatial Aggregation using GPU Rasterization, EcoCloud Annual

Event, Lausanne, Switzerland.
09/2016 Indexing the brain, Data Science Lunch Talk, NYU Center for Data Science, New

York, USA.
06/2015 RUBIK: Efficient Threshold Queries on Massive Time Series, SSDBM, San

Diego, USA.

Student Supervision
Fall 2018 Vlad Mihaescu (2nd year Master’s at EPFL)
Project Evaluating range queries on interval and range encoded time series data with RUBIK

Summer 2018 Maria Ilina (Summer Intern at EPFL)
Project Efficient bitmap indexing via partitioning, reordering and compression

EPFL IC IINFCOM DIAS BC 245 – Station 14, CH-1015 Lausanne
B eleni.tzirita.zacharatou@gmail.com

Í www.linkedin.com/in/eleni-tzirita-zacharatou162

Summer 2018 Parand Alizadeh (Summer Intern at EPFL)
Project Devising a density-driven packing strategy for efficient spatial data access

Summer 2015 Chenxi Sun (Summer Intern at EPFL)
Project Benchmarking Spatial Queries in PostGIS

Teaching Assistantships
2017, 2018 Database Systems
2014, 2018 Information, Computation, Communication

2017 Programming I (in C)
2016 Probability and Statistics
2015 Computer Architecture
2015 Introduction to Database Systems
2014 Introduction to Object Oriented Programming (in Java)

Professional Activities
2018 Program Committee Member, CIKM, Short Research Papers Track
2017 External Reviewer, ICDE, Research Track

In The News
2018 Student-teacher Duo from EPFL Wins Best Demonstration Award at SIGMOD

2018 , Ecocloud News.
2018 Tandon Team Takes Home Top Honors at Association for Computing Machinery

Conference, Tandon School of Engineering News.

Languages
Greek Native proficiency

English Full professional fluency
French Full professional fluency
German Elementary proficiency

Extracurricular
2010 Piano Teaching Diploma (Ptychio), Grade Excellent, Athenaeum Conservatory
2005 Certificate in Classical Harmony, Heraklion Conservatory

1996 - 2009 Studies in violin, Heraklion Conservatory & Athenaeum Conservatory
2001 - 2010 Participation in choirs and orchestral ensembles

EPFL IC IINFCOM DIAS BC 245 – Station 14, CH-1015 Lausanne
B eleni.tzirita.zacharatou@gmail.com

Í www.linkedin.com/in/eleni-tzirita-zacharatou 163

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	Introduction
	Motivating Applications
	Spatial and Temporal Data Exploration: The Data Management Perspective
	Interactive Spatial Data Exploration
	Ad-hoc Spatial Data Exploration
	Scalable Time Series Exploration

	The Inadequacy of Current Data Management Approaches
	Thesis Statement and Contributions
	Thesis Outline

	Background
	Spatial Data Representation
	Temporal Data Representation
	Processing Spatial Queries
	Spatial Access Methods (SAMS)
	Time Series Access Methods

	GPU Rasterization for Interactive Spatial Data Exploration
	Introduction
	Related Work
	Background: Graphics Pipeline
	Raster Join
	Core Approach
	Bounded Raster Join
	Accurate Raster Join

	Raster Join Extensions
	Implementation
	OpenGL Implementation
	Baseline: Index Join Approach

	Experimental Evaluation
	Experimental Setup
	Choice of GPU Baseline
	Scalability with Points
	Scalability with Polygons
	Adding Constraints
	Accuracy
	Performance on Disk-Resident Data

	Integrating Raster Join into Urbane
	The Interface of Urbane
	Integrating with Raster Join

	Limitations and Discussion
	Chapter Summary

	Clipping Minimum Bounding Boxes for Efficient Spatial Data Exploration
	Introduction
	Background and Context
	Related Work
	Eliminating Dead Space in MBBs
	The Clipped Bounding Box (CBB)
	Object-situated Clip Points
	Point-spliced Clip Points

	CBB-based R-trees
	Layout and Structure of Clipped R-trees
	Constructing Clipped Bounding Boxes
	Querying a Clipped Bounding Box
	Updating a Clipped Bounding Box

	Experimental Evaluation
	Environment and Experimental Setup
	Data Sets and Queries
	Results and Discussion

	Reproduction of Prior Experimental Results
	Chapter Summary

	Workload-Aware Indexing for Ad-hoc Spatial Data Exploration
	Part I: An Index Structure for Multiple Spatial Data Sets
	Introduction
	Motivation
	Related Work
	STITCH Overview
	STITCH Indexing
	STITCH Query Execution
	Experimental Evaluation
	Discussion

	Part II: Incremental Indexing for Multiple Spatial Data Sets
	Introduction
	Space Odyssey Overview
	Incremental Indexing
	Incremental Merging
	Space Odyssey Query Execution
	Experimental Evaluation
	Related Work

	Chapter Summary

	Quadtree-based Bitmap Compression for Scalable Time Series Exploration
	Introduction
	Related Work
	Motivation
	Limitations of Related Work
	Motivating Application

	RUBIK Overview
	RUBIK Indexing
	Discretization/Binning
	Clustering Time Series
	Quadtree Index

	RUBIK Query Execution
	Experimental Evaluation
	Experimental Setup
	Experimental Methodology
	Comparative Analysis
	Scalability Analysis
	Indexing Time

	Discussion
	Chapter Summary

	Conclusion and Outlook
	Looking Ahead

	Bibliography
	Curriculum Vitae

