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Abstract
The accurate estimation of precipitation quantities arriving at the ground in complex terrain

such as the Alps is complicated by many factors. The orography interacts with atmospheric

flow and thus influences the spatial and temporal distribution as well as the microphysics

of precipitation. Although weather radar can provide high-resolution measurements of pre-

cipitation, their view is sometimes blocked by the relief in which case measurements from

higher altitudes need to be extrapolated to the ground level. When extrapolating the radar

measurements aloft for quantitative precipitation estimation (QPE) at the ground, these must

first be corrected for the vertical change of the radar echo caused by the growth and transfor-

mation of precipitation (VPR correction). Many existing operational algorithms for QPE and

VPR correction assume the vertical structure of precipitation to be spatially and temporally

homogeneous. However, given the variable nature of precipitation this assumption may not

hold, especially in mountainous areas. This thesis aims to contribute to the improvement

of QPE by radar in the Alps through the analysis of the spatio-temporal variability of the

polarimetric radar signals. More specifically, this is done through contributions to questions

on radar monitoring and stability, the characterisation of the spatio-temporal variability of the

melting layer and the study of the potential for the inclusion of polarimetric radar variables in

a more localised vertical profile correction approach. A method based on spectral analysis is

used to provide some new perspectives on radar hardware monitoring using the polarimetric

signals returned by a single bright scatterer. It is shown that valuable information on the state

and stability of the radar hardware can be obtained if different scales of variability and several

polarimetric variables are considered. The same approach is used for the characterisation

and comparison of the spatio-temporal variability of the melting layer on the relatively flat

Swiss plateau and in a large inner Alpine valley in the Swiss Alps. Based on the results of this

study it appears that the smaller spatial scales contribute more to the total spatial variability

of the melting layer in the case of the Alpine environment. Finally, building on the availability

of polarimetric data and a hydrometeor classification algorithm, a new framework for the

application of machine learning methods to study the vertical structure of precipitation in

Switzerland as well as a more localised vertical profile correction method is proposed. It is

shown that models which include information on hydrometeor proportions better represent

the observed patterns of vertical change in precipitation and that these models can predict

from altitudes between 500 to 1000 metres higher than models based on only reflectivity data.

Key words: QPE, polarimetric radar, spatio-temporal variability, remote sensing
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Résumé
L’estimation précise des quantités de précipitations arrivant au sol dans des régions avec une

topographie complexe tels que les Alpes est compliquée par de nombreux facteurs. L’oro-

graphie interagit avec les flux atmosphériques et influence donc la distribution spatiale et

temporelle ainsi que la microphysique des précipitations. Bien que les radars météorologiques

puissent fournir des mesures à haute résolution des précipitations, leur visibilité est parfois

bloquée par le relief, auquel cas les mesures prises à des altitudes plus élevées doivent être

extrapolées au niveau du sol. Lorsqu’on extrapole les mesures radar d’altitude pour une esti-

mation quantitative des précipitations (QPE) au sol, celles-ci doivent d’abord être corrigées

pour tenir compte de la variation verticale de l’écho du radar causée par la croissance et la

transformation des précipitations (correction VPR). De nombreux algorithmes opérationnels

existants pour le QPE et la correction VPR supposent que la structure verticale des précipita-

tions est homogène dans le temps et dans l’espace. Cependant, étant donné la nature variable

des précipitations, cette hypothèse pourrait être remise en question, particulièrement dans

des régions montagneuses. Ce thèse a pour objectif de contribuer à l’amélioration du QPE

par radar dans les Alpes à travers l’analyse de la variabilité spatio-temporelle des signaux

polarimétriques. Ceci a permis de contribuer aux questions relatives à la surveillance du

radar, la caractérisation de la variabilité spatio-temporelle de la couche de fusion et l’étude

du potentiel de l’inclusion des variables polarimétriques dans une approche plus localisée

de correction du profil vertical. Une méthode basée sur l’analyse spectrale est utilisée afin de

fournir de nouvelles perspectives sur la surveillance du radar hardware utilisant les signaux

polarimétriques renvoyés par une seul cible de forte rétrodiffusion. Il est montré que des

informations précieuses sur l’état et la stabilité du radar hardware peuvent être obtenues si

différentes échelles de variabilité et plusieurs variables polarimétriques sont prises en compte.

La même approche est utilisée pour la description et la comparaison de la variabilité spatio-

temporelle de la couche de fusion sur le plateau suisse, peu accidenté, et dans une grande

vallée intra-alpine. D’après les résultats de cette étude, les plus petites échelles spatiales contri-

buent davantage à la variabilité spatiale totale de la couche de fusion en environnement alpin.

Enfin, tirant profit de la disponibilité des données polarimétriques ainsi que d’un algorithme

de classification des hydrométéores, un cadre pour l’application de méthodes d’apprentissage

automatique permettant d’étudier la structure verticale des précipitations et une méthode

de correction de profil vertical plus localisée sont proposées. Il est montré que les modèles

qui incluent des informations sur les proportions des hydrométéores représentent mieux les

tendances de changement vertical des précipitations observées et qu’ils peuvent fournir des
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Résumé

prédictions depuis des altitudes variant entre 500 à 1000 mètres supérieures aux modèles

basés uniquement sur des données de réflectivité.

Mots clefs : estimations quantitatives des précipitations, radar polarimétrique, variabilité

spatio-temporelle, télédétection
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Samenvatting
De nauwkeurige schatting van de hoeveelheid neerslag die op de grond valt in regio’s met een

gevarieerd reliëf zoals de Alpen wordt gecompliceerd door vele factoren. Door hun effect op

atmosferische luchtstromingen beïnvloeden bergen de ruimtelijke en temporele verdeling

evenals de microfysica van neerslag. Hoewel weerradars neerslag metingen met hoge resolutie

kunnen bieden, wordt hun zicht soms geblokkeerd door het reliëf in welk geval de metingen

van grotere hoogtes naar het grondniveau moeten worden geëxtrapoleerd. Bij het extrapoleren

van de radarmetingen van bovenaf voor kwantitatieve neerslag schatting (QPE) op de grond,

moeten deze eerst worden gecorrigeerd voor de verticale verandering van de radarecho als

gevolg van de groei en transformatie van neerslag (VPR correctie). Veel bestaande algoritmes

voor QPE en VPR correctie nemen aan dat de verticale structuur van neerslag spatieel en

temporeel homogeen is. Gezien de variabele aard van neerslag kan deze veronderstelling

echter niet altijd en overal geldig zijn, en in het bijzonder niet in bergachtige gebieden. Dit

proefschrift heeft als doel bij te dragen aan de verbetering van neerslag schattingen door

weerradar in de Alpen door middel van de analyse van de spatio-temporele variabiliteit van

de polarimetrische radarsignalen. Dit wordt gedaan door middel van bijdragen aan kwesties

omtrent het monitoren van de stabiliteit van radar hardware en de karakterisering van de

spatio-temporele variabiliteit van de smeltlaag en door een studie van het potentieel van

polarimetrische radar variabelen in een meer gelokaliseerde methode voor verticale profiel

correctie. Een methode op basis van spectrale analyse van de polarimetrische signalen die

worden geretourneerd door één enkel helder doelwit, wordt gebruikt om een aantal nieuwe

perspectieven te bieden op het gebied van radar hardware monitoring. Er wordt aangetoond

dat waardevolle informatie over de toestand en stabiliteit van de radar hardware kan worden

verkregen als verschillende schalen van variabiliteit en verschillende polarimetrische varia-

belen in acht worden genomen. Dezelfde techniek wordt gebruikt voor de karakterisering

en vergelijking van de spatio-temporele variabiliteit van de smeltlaag op het relatief platte

Zwitserse plateau en in een breed dal in de Zwitserse Alpen. Op basis van de resultaten van dit

onderzoek lijkt het erop dat de kleinere spatiële schalen meer bijdragen aan de totale ruimte-

lijke variabiliteit van de smeltlaag in het bergachtige gebied. Ten slotte wordt, voortbouwend

op de beschikbaarheid van polarimetrische variabelen en een algoritme voor de classificatie

van hydrometeoren, een nieuw raamwerk voor de toepassing van kunstmatige intelligentie

voor het bestuderen van de verticale structuur van neerslag in Zwitserland evenals een meer

gelokaliseerde methode voor verticale profiel correctie gepresenteerd. Het wordt aangetoond

dat modellen die informatie bevatten over proporties van hydrometeoren de waargenomen
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Samenvatting

patronen van verticale verandering in neerslag beter weergeven en dat deze modellen kunnen

voorspellen vanaf hoogtes tussen 500 tot 1000 meter hoger dan modellen op basis van alleen

reflectiviteit.

Sleutelwoorden: Kwantitatieve neerslag schatting, polarimetrische radar, spatio-temporele

variabiliteit, teledetectie
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1 Quantitative precipitation estimation
in an Alpine context

Precipitation constitutes a key meteorological parameter for ecosystems and societies, both

as a primary input for freshwater resources and (in deficit or excess) as a potential threat to

human lives and infrastructure. Economic activities such as agriculture, hydropower and

(mountain) tourism depend critically on precipitation patterns (Arent et al., 2014; Kohler et al.,

2014). While water, precipitation and floods are embedded in many cultural and religious

aspects of societies. Conflicts over water usage are therefore not uncommon from the local up

to international scales (Gleick and Heberger, 2014).

Mountain regions such as the Alps, through their impact on atmospheric flow, influence the

spatial distribution of precipitation (Frei and Schär, 1998; Roe, 2005; Houze, 2012; Colle et al.,

2013) as well as precipitation growth processes and microphysics (Yuter and Houze, 2003;

Colle et al., 2005b; Stoelinga et al., 2013). But mountain climates and vegetation also control

runoff, water storage and glacier mass-balance (Beniston, 2005). Notably, the Swiss Alps

have been referred to as the "water tower of Europe" as they are the source region for 50% of

the water flowing through the Rhine, the Rhone and the Po rivers (Mountain Agenda, 1998;

Beniston et al., 2011). Thus, Alpine precipitation amounts and intensity not only affect the

Alpine area, but also the populated lowland regions that depend on mountain resources.

Recent changes in temperature have had observable impacts on mountain cryosphere and

ecosystems (Vaughan et al., 2013; Arent et al., 2014; NCCS, 2018). At the same time, it is

considered increasingly likely that climate change will also affect the frequency, intensity

and duration of precipitation events (Frei et al., 2006; IPCC, 2018). Accurate observations of

precipitation quantities are therefore important at many scales: from short-term predictions

to minimise disaster impact, to long term reliable estimations of fresh water resources.

Due to the socio-economic importance of precipitation, its measurement has a long history

dating back to antiquity. However, notwithstanding many technological developments, the

accurate measurement of precipitation still remains a challenge today, especially in moun-

tainous areas. Rain gauge networks are typically affected by poor spatial representativity,

wind-induced errors (especially in the case of solid precipitation (Nitu et al., 2018)) and practi-

cal difficulties related to access and maintenance. It was in the aftermath of World War II that
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the potential of radars (radio detection and ranging) to observe precipitation was recognised

and further developed (Marshall et al., 1947). Since then, radar technology has improved

significantly and many weather radars today are equipped with dual-polarisation and Doppler

capabilities thus providing additional information on the phase, homogeneity and shape of

hydrometeors as well as the radial velocity of the precipitation field.

The high spatial and temporal resolution of radar products, their three dimensional nature

as well as the possibility to distinguish precipitation types , gives radar networks significant

advantages over rain gauge networks, especially for nowcasting and severe weather warnings

(MeteoSwiss, 2016). However, quantitative precipitation estimation (QPE) by radar is still

subject to many sources of error such as ground clutter, hardware calibration, visibility reduc-

tion due to beam shielding and attenuation in heavy rain to name a few (Germann and Joss,

2004). Some of these errors are even more pronounced in mountainous terrain, where beam

shielding by relief allow weather echoes only to be detected at high altitudes. This, combined

with the shallow depth of precipitation during cold seasons implies that the radar can only

measure hydrometeors aloft, and not what is actually arriving at the ground level (Germann

and Joss, 2004; Koistinen et al., 2004; Gabella et al., 2014).

For areas with reduced visibility it is common practice to use the radar measurements made

higher up in the atmosphere to estimate precipitation quantities at the ground. The extrap-

olation of these high altitude measurements requires that these must first be corrected for

the vertical profile of precipitation in order to account for changes in size, phase and fall

speed of hydrometeors. Because these vertical profile corrections are typically based on and

applied to a single radar variable called reflectivity, this technique is called vertical profile

of reflectivity (VPR) correction. Moreover, the existing VPR correction schemes used in the

operational radar chains of most National Meteorological and Hydrological Services (NMHS)

assume spatio-temporal homogeneity of the vertical sctructure of precipitation. However, the

VPR shape is dependent on microphysical processes such as riming and aggregation (Fabry

and Zawadzki, 1995; Bell, 2000) as well as the vertical profiles of temperature and humidity

(Matsuo and Sasyo, 1981; Roe, 2005; Stoelinga et al., 2013) which may vary considerably in both

space and time. As such, the vertical structure of precipitation and thus the VPR profiles may

be expected to vary as well, especially in mountainous areas (Boodoo et al., 2010; Campbell

and Steenburgh, 2014).

In order to increase the availability of radar information, particularly in the inner Alpine

regions, MeteoSwiss has recently extended its operational weather radar network with two po-

larimetric C-band radars at high-altitude locations in the Swiss Alps (MeteoSwiss, 2016). This

poses a new challenge for the applicability of existing vertical profile correction techniques to

these high-altitude measurements but at the same time it also provides new opportunities

to use polarimetric radar variables for the improvement of QPE in these regions. This thesis

seeks to contribute to the improvement of QPE by radar in the Alps through the analysis of the

spatio-temporal variability of the polarimetric radar signals.
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1.1. Measurement of precipitation by polarimetric weather radar

1.1 Measurement of precipitation by polarimetric weather radar

Because the analyses presented in this thesis are performed on polarimetric radar signals, this

section will provide a brief introduction to radar hardware and measurements and how these

are used for precipitation observations. This section will focus exclusively on pulsed radars,

since the data presented in this work is collected by this type of radar. Furthermore, the term

“polarimetric radar” is used in this study to refer to dual-polarisation (pulsed) Doppler radars

operating in simultaneous transmission and reception mode. Radars cover a large interval

of frequencies, but the work in this thesis is based on measurements by operational C-band

radars (∼5.4 GHz) and mobile X-band radars (∼9.41 GHz).

1.1.1 A short overview of radar hardware

Because of the importance of radar hardware stability for accurate precipitation measurement

and because the monitoring of radar hardware is also addressed in this thesis, this section

will briefly describe some of the main components the radar system. The main sources for

the information presented in this section are the radar user manuals and the textbooks by

Rinehart (2004) and Fabry (2015). For more details, the reader may refer to these works.

Figure 1.1 – AMR-radar system block diagram taken from Vollbracht et al. (2014).
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Figure 1.1 illustrates the system architecture for the Antenna-mounted receiver (AMR) type

radars used in the Swiss operational C-band network. The design of C-band radars differs from

mobile X-band radars for example, which are much more compact. Unless mentioned other-

wise, the components described in this section are common to all types of dual-polarisation

(pulsed) Doppler radars.

The key components of the radar system interact in the following way:

1. the modulator switches the transmitter on and off

2. the transmitter generates a microwave signal of short duration and large amplitude

3. this signal is transported through the waveguide to the duplexer

4. the duplexer acts as a switch between the transmitter and receiver in order to protect

the receiver from the high power pulses generated by the transmitter

5. the signal then travels on through the waveguide towards the radar antenna

6. the antenna focuses the signal in one direction and into the atmosphere

7. the returned echoes from targets, the intensity of which is much smaller then that of

the signal which was emitted, are focused back into the radar system by the antenna,

past the duplexer, the TR-Limiter and into the radar receiver, where the RF signal at

intermediate frequency (IF) is digitised for signal processing

8. the signal processor then extracts as much raw data as possible from the received signals,

while the task of converting the raw data into radar products is usually performed by

software on computers not necessarily based at the radar site.

Here follow a few short descriptions of the roles of some of these key components of the radar

system:

Transmitter (consisting of a modulator and a magnetron): the purpose of the modulator is

to switch the transmitter on and off and therefore determines the shape and duration of the

transmitted pulse (i.e. the Dual Pulse Pair (DPP) or Fast Fourier Transform (FFT) modes). This

controls some important variables which will also be mentioned in the following sections

such as the Pulse Repetition Frequency (PRF) and the duration of the transmitted signal in

time (τ) or the pulse length in distance (hp ).

Duplexer, TR-Limiter or transmit / receive (TR) switch: radars can transmit between 1 kW

and 1 MW of power. The received power, however, is between 10−4 W down to 10−14 W. The

receiver therefore has to be sensitive to these very weak signals but would be destroyed by the

high power of the transmitted signal (a receiver is likely to be close to saturation at power levels
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around 10−4 W). The circulator directs the signal to the antenna when the transmitter is on. In

order to further protect the receiver during transmission, a TR-tube is placed between the

duplexer (circulator) and the receiver. The TR-Limiter acts as a switch, effectively blocking the

receiving path during pulse transmission. It is important to note that after pulse transmission,

the TR-Limiter needs a certain amount of time to fully reopen the receiver path. This time is

called recovery time and may vary between 1 and 10 µs which equals the first 150 to 1500 m

from the radar.

(Digital) Receiver: detects the echo signals in the presence of noise, interference or clutter.

Amongst other functions, it amplifies the incoming signal to usable levels, rejects out-of-band

interference through the band-select filter and shapes the signals and the noise to gain the

maximum signal-to-noise ratio (SNR) (Chen, 2013).

Analogue receiver and calibration unit: consists of four low noise amplifiers (LNAs) for the

high gain (HI) and low gain (LOW) paths for both polarisations, one or two down converter

channels for horizontal and vertical polarisation and two reference sources for calibration:

the first is an Internal CW Test Signal Generator (ITSG), used to guarantee receiver linearity

between the HI and LOW channels, thus over the entire dynamic range. The second, which

is specific to the MeteoSwiss operational C-band radars, is a reference noise source, used for

absolute calibration and monitoring.

The reference noise source signal (a stable, white noise reference signal) is injected every

5 minutes into the receiver path and used to correct for temperature dependent variations

affecting the analogue receiver components’ performance. This is possible due to the higher

temperature stability of the noise source used, with respect to the other components of the

analogue receiver, including the LNAs. In the MeteoSwiss operational network calibration

signals are injected every 5 minutes during higher elevation scans at ranges where no weather

echo is expected. More details on the use of noise source reference signals for radar calibration

can be found in Vollbracht et al. (2014).

1.1.2 Basic radar measurements and the radar equation

Weather radars transmit into the atmosphere electromagnetic (EM) waves at wavelengths

which vary from 1 cm to tens of centimetres. When travelling through a precipitation filled

medium, this signal is partly backscattered to the radar with an intensity and phase which

depends largely on the characteristics of the target (i.e. hydrometeor shape, size and phase)

but also on the environmental conditions of the medium through which the EM waves travel

(the atmosphere). This section describes how the range and radial velocity of the echoes

received by the radar can be obtained and how the reflectivity factor can be derived from the

received power. More detailed overviews of the principles presented here can be found in the

works by Rinehart (2004), Doviak and Zrnić (2006) and Fabry (2015).
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For a radar which transmits a pulse at time t0 which propagates through the atmosphere at

the speed of light in air c/n and arrives back at the radar at time t1 the range of the target

corresponding to the returned echo i can be determined using:

ri = c(t1 − t0)

2n
(1.1)

where n is the refractive index of the atmosphere (see also appendix A) and c/n accounts for

the speed of light in air. However, since n is very close to 1 (1.0003) near sea level, it will be

omitted in the remainder of this section. After some time ( f −1
r ) the radar transmits a new

pulse: the Pulse Repetition Frequency (PRF or fr ) determines the maximum unambiguous

range (rmax) up to which the radar can observe targets since echoes which arrive from further

ranges than the rmax can not be distinguished from echoes which were returned by targets at

closer ranges by a subsequent pulse:

rmax = c

2 fr
(1.2)

The phase of the returned signal φi can be obtained by adding the fraction of wavelength

((2r /λ)2π) to the initial phase of the transmitted signal φ0:

φi =φ0 + 4πri

λ
(1.3)

Where λ is the wavelength of the radar pulse which also depends on the transmit frequency

(λ= c/n fr ). Provided the transmit frequency fr and the refractive index n are constant, the

phase difference between the transmitted and received pulse can be related to the radial

velocity of the targets:

δφ

δt
= 4π

λ

δr

δt
(1.4)

Where δr /δt gives the radial velocity Vrad of the target. The frequency shift ft caused by a

moving target can then be obtained by expressing the angular frequency asΩ= δφ
δt = 2π ft :

ft = 2Vrad

λ
(1.5)

6



1.1. Measurement of precipitation by polarimetric weather radar

The following equations demonstrate how the reflectivity factor is derived from the power

measured by the radar. The measured power in the standard form of the radar range equation

for a point target is given by:

Pr = PtG2λ2σb

(4π)3r 4 (1.6)

Where Pr and Pt are the received and transmit power in W or mW, G is the gain of the radar

system (mostly the antenna gain), λ is the wavelength of the transmitted pulse in m, r is the

distance to the target in m and σb is the radar cross section (RCS) of the target in m2. The

RCS depends on the size of the target as observed by the radar. For a sphere which is large

compared to the wavelength of the radar for example, the RCS can be given by σ=πr 2
a where

ra is equal to the radius of the spherical target. When measuring precipitation however, the

radar volume is not filled by a single target but by approximately 109 to 1012 raindrops, and the

signal returned is the sum of all backscattering cross-sectional areas within the radar volume:

σb =V
k∑

i=1
σb

i =V
∫ Dmax

Dmin

σb(D)N (D)d(D) =V η (1.7)

Where N (D)d(D) is the expected number of hydrometeors with a diameter between D and

D +dD per unit volume according to the particle size distribution σb(D), η is the reflectivity

and V is the resolution volume:

V =πr 2θ3dBφ3dBhp

16ln(2)
(1.8)

Where θ3dB and φ3dB are the one-way half-power beam widths in elevation and azimuth, r is

again the range distance between the sample volume and the radar and hp is the pulse length

in space corresponding to the duration τ of the transmitted pulse: hp = cτ. The denominator

in Eq. 1.8 accounts for the two-way path of the signal and the power distribution within the

main lobe of the beam which is approximated to have a gaussian shape 1/(2ln(2)). It can also

be observed from Eq. 1.8 that the resolution volume increases with the square of the range

(r 2).

Substituting σb in Eq. 1.6 with the RCS for distributed targets in a radar volume, the following

7



Chapter 1. Quantitative precipitation estimation in an Alpine context

radar equation can be obtained:

Pr =
PtG2λ2πθ3dBφ3dBcτ

∑
σb

i

(4π)3r 216ln(2)
= PtG2λ2πθ3dBφ3dBcτ

∑
σb

i

1024ln(2)π3r 2 (1.9)

For most meteorological radars with wavelengths of 3 cm and larger, almost all hydrometeors

can be considered small (D < λ/16 ) so that scattering occurs in the Rayleigh regime. This

means that the RCS of a single hydrometeor increases with the sixth power of its diameter:

σb
i = π5|K |2D6

i

λ4 (1.10)

Where |K |2 is the dielectric constant of scatterers (typically |K |2 ≈ 0.93 in liquid water) and

is related to the complex index of refraction of the hydrometeor n(λ) via: |K |2 = |(n(λ)2 −
1)/(n(λ)2 +2|2.

Combining Eq. 1.10 with the definition of reflectivity η in Eq.1.7 gives:

η= π5|K |2
λ4

∫ Dmax

Dmin

D6N (D)d(D) = π5|K |2
λ4 Ze (1.11)

Here, Ze is defined because of the uncertainty about whether a target is a Rayleigh scatter or

not. It is called the equivalent reflectivity factor and is expressed in units of mm6m−3. Because

the equivalent reflectivity factor can span many orders of magnitude, it is more convenient to

express it in units of decibels (dB) of mm6m−3 such that: dBZ = 10log10(Ze ).

Again, substituting the Rayleigh equivalent reflectivity factor into the radar equation Eq. 1.9

gives:

Pr = π3PtG2θ3dBφ3dBcτ|k|2Ze

1024ln(2)r 2λ2 (1.12)

Finally, all parameters associated with a specific radar (Pt , G , θ3dB, φ3dB, τ, λ) and all the

constants (π, c , 1024, ln(2), |K |2) in Eq. 1.12 can be combined into a single constant Cr , so that
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the radar equation can be greatly simplified into:

Pr = Cr Ze

r 2 (1.13)

The above equations describe the relationship between the power received by the radar (Pr ),

the characteristics of the radar (and constants) (Cr ) and the characteristics of the target (Ze

and η) as a function of the range between the radar and the targets (r ). However, as the EM

waves propagate through the atmosphere, they are both refracted and attenuated. Attenuation

of EM waves by liquid clouds and precipitation increases with the frequency of the radar signal,

the distance the EM wave travels through the atmosphere and the number of hydrometeors

it encounters over that distance. While attenuation may also affect radar QPE it is outside

the scope of this study and will not be addressed further. Atmospheric refraction influences

the direction of the EM waves as they travel through the atmosphere. The influences of

atmospheric refraction on the radar measurements is addressed in more detail in chapter 2

and appendix A.

1.1.3 Polarimetric radar observables

An important technological development in weather radar technology has been the addition

of dual-polarisation capabilities. Single-polarisation weather radars typically transmit linearly

and horizontally polarised EM waves. For such a horizontally polarised wave travelling in the x

direction in a (x,y ,z) space, the electric field oscillates in the horizontal (y) direction, while the

magnetic field oscillates in the vertical (z) direction (Fabry, 2015). Polarimetric weather radars,

on the other hand, can (simultaneously) transmit and receive waves at different polarisations.

Typically this is an orthogonal couple of horizontal (H) and vertical (V) linearly polarised

signals. This dual-polarisation technology is valuable firstly because the interaction of the EM

wave with targets occurs via the electric field of the wave, and secondly because hydrometeors

are not spherical targets: even raindrops for example, become more oblate with increasing

drop sizes (Beard and Chuang, 1987; Beard et al., 2010) and snowflakes have many complex

shapes and orientations (e.g. Schneebeli et al., 2013; Praz et al., 2017). Put simply, horizontally

polarised echoes are more related to the horizontal dimension of the targets and vertically

polarised echoes to their vertical dimension (Fig. 1.2). Many targets have different signatures

in the H and V polarised measurements and dual-polarisation can therefore provide additional

information on the nature of targets. A more detailed description of the physics and usage of

dual-polarisation can be found in for example Bringi and Chandrasekar (2001).

Horizontal (Vertical) reflectivity factor

The reflectivity factor Ze is related to the received power as expressed in Eq. 1.12, and the

horizontal (vertical) reflectivity factors ZH (ZV ) are the dual-polarisation equivalents of Ze .
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Figure 1.2 – Illustration of the electric field of oscillation at horizontal (blue) and vertical (red)
polarisation.

As has been described in the previous section, the reflectivity factor is commonly expressed

in dB units or dBZ. Like Ze , the values of ZH and ZV depend on the particle size distribution

(proportional to D6 (Eq. 1.11)), the incident wavelength and the dielectric properties of the

hydrometeors (i.e. between liquid water and solid ice, |K |2 varies by a factor of 5). ZH is

therefore related to the diameter and concentration of hydrometeors.

Differential reflectivity

Since the horizontal and vertical reflectivity measurements can give information on the

horizontal and vertical dimensions of the targets and many hydrometeors are non-spherical,

the most straightforward dual-polarisation variable is the difference between the H and V

reflectivity measurements (Seliga and Bringi, 1976). The differential reflectivity (ZDR ) is the

Log-transformed ratio between the copolar reflectivity measured at H and V polarisations in

dB:

ZDR = 10log

(
Zh

Zv

)
(1.14)

Where Zh and Zv are the horizontal and vertical reflectivity in linear units. The differential

reflectivity is independent of hydrometeor concentrations and can provide information on the

shape and orientation of hydrometeors. Typical values in rain are slightly positive and increase

with increasing drop size. Values for ZDR become close to zero when the radar is pointing

vertically because falling hydrometeors appear symmetrical to the radar when measured from

below.

10



1.1. Measurement of precipitation by polarimetric weather radar

Copolar correlation coefficient

The ZH and ZV values are typically obtained through the averaging of the values of several

pulses (how many pulses depends on the PRF and the amount of time the radar points in a

single direction). As such, the correlation coefficient between ZH and ZV calculated over all

these individual pulses can provide information on the heterogeneity of the hydrometeors in

the measured volume:

ρHV =

∣∣∣∣∫ Dmax

Dmin
s∗hh(D)s∗v v (D)N (D)dD

∣∣∣∣√
Zh ∗Zv

(1.15)

Where shh and sv v are the complex backscattering amplitudes of individual hydrometeors at

both polarisations in cm.

Thus, if targets in the radar volume have identical shapes, high ρHV values may be observed,

while if targets in the radar volume have varied shapes the fluctuations in the H and V channels

will become dissimilar and result in lower values for ρHV . Theoretically ρHV may range

between 1 (perfect correlation) and 0 (no correlation), though in practice values below 0.75

are rare. The observed ρHV values also depend on the signal-to-noise ratio (SNR) of the radar

measurements; since a high proportion of noise in the horizontal and vertical channels would

also influence the correlation between these. Therefore, before using the ρHV measurements,

measurements with low SNR values are typically filtered out.

Specific differential phase shift upon propagation

As opposed to the previous variables, the differential phase shift ψd p is not based on the

returned power of the targets but on the difference in the phase shift between the two or-

thogonal polarisation phases. This phase shift occurs because hydrometeors slow down the

transmitted EM waves and non-spherical hydrometeors will cause a different phase shift in

the two polarisations. The phase shift at a given range is given by:

ψd p =ϕH H −ϕV V = δco +Φd p +ψo (1.16)

Where δco (the backscattering phase delay) is the difference in delay introduced by the

backscattering of the transmitted wave, Φd p is the two-way differential propagation phase

and ψ0 is an offset value equal to the phase difference between the transmitted and received

H and V waves at zero range and which depends on the design of each radar.

The specific differential phase shift on propagation (Kd p ) is the one-way rate of increase

11
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of Φd p with range (in ◦ km−1). If δco is constant, derivatives of the smoothed ψd p can give

accurate Kd p estimates. However, the contribution of δco to the total differential phase shift

depends on the incident wavelength and the size of the targets. While this may be negligible at

C-band and for rain, at X-band δco may vary considerably in space. For the estimation of Kd p

at X-band, the effects of δco andΦd p can therefore be separated through Kalman filtering (e.g.

Schneebeli et al., 2014). Given that Kd p is a derivative in range of a difference in polarisation,

it is often very small and so difficult to measure accurately. However, since Kd p increases are

related to large amounts of liquid water (and the hydrometeor shapes and orientations) it can

be related to specific attenuation and rain rate (Zrnic and Ryzhkov, 1999).

Table 1.1 gives a short overview of the polarimetric variables here discussed.

Name Symbol Units Hydrometeor information

reflectivity factor H,V ZH(V ) mm6m−3 or dBZ diameter,concentration

differential reflectivity ZDR dB shape, orientation,

copolar correlation ρhv - heterogeneity

coefficient

total differential Ψd p deg concentration, shape

phase shift

specific differential Kd p deg km−1 concentration, shape

phase shift

Table 1.1 – Doppler and polarimetric variables obtained by weather radars

1.1.4 Relating reflectivity to rain rate

Although different radar variables (ZH , ZDR and KDP ) can be related to rain intensity, most

often and in operational contexts so-called Z-R relationships are used. These are power laws

relating the rain intensity R in mm h−1 to linear horizontal reflectivity:

R = aZ b
h (1.17)

where the parameters a and b are obtained by fitting the power law with observational data

from rain gauges or disdrometers. Because it was long believed that most of the errors in radar

QPE were due to improper Z-R relationships, much research has focused on finding the most

suitable Z-R relationship for each precipitation type (solid/liquid or stratiform/convective)

(Šálek et al., 2004). The number of existing Z-R relationships is therefore abundant, however

the most commonly used relationship is probably a = 200, b = 5/8 by Marshall and Palmer

(1948) which is valid for mid-latitude stratiform rain.
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1.1. Measurement of precipitation by polarimetric weather radar

Since the last two decades of the 20th century it has become increasingly clear that the Z-R

related error is relatively minor especially compared to errors related to the vertical profile of

reflectivity (Joss and Waldvogel, 1990). Indeed, Joss and Lee (1995) noted that a 500 m shift in

the vertical profile may result in a larger error than the entire variability in the Z-R relationship.

The next section will explain the principles of vertical profile correction in more detail and

briefly discuss existing vertical profile correction techniques.

1.1.5 Relating polarimetric variables to hydrometeor classes

The information that can be obtained from the polarimetric radar variables can further be

used for Radar-based hydrometeor classification. Existing methods can be broadly categorised

into supervised, unsupervised and semi-supervised classification. Within the context of this

work, the hydrometeor classes are obtained using a semi-supervised classification method

from Besic et al. (2016). This approach combines the more classical supervised hydrome-

teor classification approach based on both fuzzy logic and the presumed electromagnetic

behaviour of different hydrometeor types (e.g. Vivekanandan et al., 1999), and a new unsu-

pervised clustering approach (Grazioli et al., 2015). The drawback of the supervised method

is its dependency on uncertain scattering simulations, while the unsupervised method lacks

the constraints related to hydrometeor microphysics. By combining the two approaches

in a way that microphysical hypotheses can, to a degree, adjust the content of the classes

obtained statistically from the observations, the semi-supervised method can overcome these

disadvantages. The semi-supervised method can be separated into an offline and an online

phase: first, the method iteratively compares statistically obtained clusters with presumed

polarimetric properties and, where necessary, reiterates the statistical clustering in case of

non-identification. The thus obtained centroids of the multi-dimensional polarimetric signa-

tures of each hydrometeor class can then by applied online for the operational labelling of

different hydrometeors. For more details on the semi-supervised hydrometeor classification

approach, the reader is referred to Besic et al. (2016, 2018).

1.1.6 Polarimetric variables and the Melting Layer (ML)

The vertical structure of stratiform precipitation is typically marked by a significant increase in

ZH also called the bright band which highlights the presence of the melting layer; a transition

region from solid to liquid precipitation. This increase in ZH is due to the increase in effective

dielectric constant as relatively large solid hydrometeors are coated by a thin layer of water.

The increased heterogeneity of the hydrometeor types within the melting layer further causes

for a drop in ρHV . Because the melting layer is characterised by such a pronounced and well-

known signature in the polarimetric radar variables, it can be identified by automatic detection

algorithms. Most existing algorithms are applicable to Plan Position Indicator (PPI) scans

which are 360◦ azimuth, single elevation scans. The method proposed by Wolfensberger et al.

(2016), on the other hand, is specifically designed for application to Range Height Indicator

(RHI) scans (constant azimuth, varying elevation angle). The method is based on strong
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vertical gradients in ZH and ρHV and is divided into two parts. Taking the RHI scans projected

into Cartesian coordinates as an input, the method first identifies the top and the bottom of

the ML by finding the minimum and maximum vertical gradients of the combined, normalised

ZH and ρHV variables: IMcomb = ZH · (1−ρHV ). Then, the estimation of the ML top is refined

using only the vertical gradient of ZH . Small gaps in the detected ML are interpolated using

shape-preserving piecewise Hermite interpolation polynomials. More details on the melting

layer detection algorithm used for this study can be found in Wolfensberger et al. (2016).

1.2 Vertical profile correction

Ground clutter, earth curvature, beam shielding by relief or the height of the radar itself may

prevent the radar from directly measuring precipitation close to the ground, thus causing

holes in the radar image (Germann and Joss, 2004). At further ranges from the radar and

for areas with reduced visibility it is common practice to use the radar measurements made

higher up in the atmosphere to estimate precipitation quantities at the ground. However,

changes in the size, phase and fallspeed of hydrometeors cause the radar echo to also change

with height. Therefore, the extrapolation of these high altitude measurements to the ground

requires that these must first be corrected for the vertical changes in the radar echo. This

is called vertical profile correction, and because it often concerns exclusively the horizontal

reflectivity measurements of the radar, it is also called vertical profile of reflectivity (VPR)

correction.

Figure 1.3 – Schematic illustration of a radar measuring above the melting layer (left) and an
idealised vertical profile of reflectivity in stratiform precipitation (right) at close (black curve)
and further ranges (grey curves) from the radar.

Factors influencing the shape of the VPR include microphysical processes such as riming
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and aggregation (Fabry and Zawadzki, 1995; Bell, 2000) as well as the vertical profiles of

temperature and humidity (Matsuo and Sasyo, 1981; Roe, 2005; Stoelinga et al., 2013). Most

studies distinguish VPRs for stratiform (widespread, lower rainfall intensities) and convective

(more localised and with higher rainfall intensities) precipitation types. The typical profile

for stratiform precipitation is marked by a significant increase in ZH due to the presence of

the melting layer (Fig. 1.3). The VPR for convective precipitation on the other hand, typically

shows little variability of ZH with height: due to the vertical air motions more mixing of the

hydrometeors occurs leading to a less stratified vertical structure. This means that in general,

little profile correction is needed in convective precipitation and sometimes it is neglected

altogether (Zhang and Qi, 2010).

Orography influences the vertical structure and the spatial distribution of precipitation

through its various influences on precipitation mechanisms. At the large scale, it may force

air masses upwards leading to orographic enhancement of precipitation while at the smaller

scales the change in flow influences precipitation growth processes and microphysics (Yuter

and Houze, 2003; Colle et al., 2005b; Stoelinga et al., 2013). This is further complicated by

the wide range of spatial and temporal scales on which these effects take place. Because VPR

corrections are typically based on well-visible regions close to the radar, the effects of orogra-

phy are often neglected, with the notable exception of the UK Met. Office’s Nimrod system

which uses a VPR correction scheme which takes into account the anticipated orographic

enhancement based on the enhancement fields found by Hill (1983).

Existing VPR correction methods can be subdivided into four broad types (Germann, 2000;

Zhang and Qi, 2010) which are based on climatology, spatio-temporal averages, modelled

and local VPRs. Climatological VPRs are based on radar data averaged over long time periods

(days, years, seasons) and over a certain spatial area (radar volume or well-visible regions)

(Joss and Pittini, 1991; Joss and Lee, 1995). Advantages of these type of VPRs are that, once

calculated, they are computationally inexpensive, based on actual radar data and always

available. However, the climatological VPR assumes both spatial and temporal homogeneity,

while in reality important variations may occur. Operationally, the climatological VPR is often

used as a default VPR in case the real-time VPR is unavailable.

Compared to the climatological VPRs, spatio-temporally averaged VPRs can better capture

the temporal variations in reflectivity since these are based on a few volume scans only and

regularly updated. They remain computationally inexpensive and are therefore widely used for

operational VPR correction (Koistinen, 1991; Joss and Lee, 1995; Germann and Joss, 2002). In

the MeteoSwiss operational network profiles are calculated in well-visible (clutter free) regions

around the radar at the meso-beta scale (integrated over a few hours and within a range of

70 km). For the aggregation in space, the polar pixels are weighted by the area of the corre-

sponding pulse volume. For the aggregation in time, a precipitation- and volume weighted

exponentially decaying function is applied, with the profile of the most recent precipitation

event as a first guess. The aggregation time is variable, such that it is more regularly updated

for widespread rainfall while longer time aggregation is performed for intermittent rainfall in

order to smooth the profile (Germann and Joss, 2002). This technique has the advantage of

15



Chapter 1. Quantitative precipitation estimation in an Alpine context

always providing a vertical profile, with smooth transitions between subsequent radar scans

and within reasonable processing times.

An alternative method to better account for the spatial variability of profiles is to use a VPR

model to obtain a profile at each location (e.g. Kitchen et al., 1994; Kirstetter et al., 2013). These

can be determined using a set of physically based parameters in order to remain computa-

tionally inexpensive. The UK Met office for example, uses parameterisations for the melting

layer (NWP model freezing level height), orographic growth (Hill, 1983) and the cloud top

height (satellite infrared imagery) (Harrison et al., 2000). The parameterised vertical profile is

then weighed by the reflectivity factor measured just beneath the bright band (Harrison et al.,

2000). Though the VPR model has the advantage of providing a profile at each radar pixel,

some disadvantages include its dependency on the availability and quality of information

from external sources as well as on a priori assumptions on the shape of the VPR (i.e. the slope

of the VPR in the solid layer).

Another more localised VPR correction technique has been proposed by Vignal et al. (1999),

which uses the inverse method from Andrieu and Creutin (1995) to retrieve profiles in spatial

domains of 20x20 km. This local VPR has been evaluated to be slightly more successful in

improving radar-derived QPE than the mean VPRs, but it was also considered computationally

expensive and thus difficult to implement operationally (Vignal et al., 2000; Vignal and Krajew-

ski, 2001). Furthermore, the advantage of this inverse technique is still limited to well-visible

regions, while the dominant error in regions with complex terrain rather comes from applying

profiles which were identified in a well-visible region to a shielded region (Germann, 2000).

Though the profiles identified with the inverse technique better represent the narrow shape of

the bright band, such a profile can cause more error than profiles with smooth bright bands

if the height of the melting layer is incorrect. Given the spatial and temporal variability in

the melting layer height in the Alps, it would be necessary to apply the inverse technique at a

spatio-temporal scale of less than 30 minutes and 10 km (Germann, 2000).

Existing operational VPR correction schemes therefore often assume spatio-temporal homo-

geneity of the vertical structure of precipitation. Climatological VPR correction techniques

assume that for the same precipitation type (stratiform or convective) the shape of the VPR is

always more or less the same. Spatio-temporally averaged VPRs are slighly more elaborate

than climatological VPRs, but make the assumption that the VPR observed at a close range to

the radar, is also applicable to other (less visible) regions further away from the radar. Finally,

VPR models allow for much more localised corrections but either rely on some basic assump-

tions on the shape of the VPR or on information from external sources. All of these approaches

also rely heavily on the horizontal reflectivity measurements, while most operational radar

networks, including the Swiss network, now dispose of dual-polarisation capability.
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1.3 Building tools for the analysis of the spatio-temporal variability

of radar data

In this section, some methods which were developed or elaborated within the context of this

thesis will be briefly described and discussed. Firstly, the set-up of a spatial data base for

the exploitation and combination of data from different instruments, stored in different data

formats and measured at different frequencies, time intervals and scales will be described.

Although this tool will not be mentioned specifically in the remainder of this work, it consti-

tuted a useful inventory for existing relevant data sets, permitted the initial exploration of

these data sets and was the basis for many of the subsequently developed tools including

(small) contributions to and integration with the Pyrad/Py-ART framework (Helmus and Collis,

2016; Figueras i Ventura et al., 2017). The second part of this section will describe how, in the

context of this study, the so-called fraction of variance explained by component is derived

from the well-know Fourier method to analyse the spatio-temporal variability of the (polari-

metric) radar signals. The framework for the inclusion of information on hydrometeor classes

and the application of machine learning algorithms to the study of the vertical structure of

precipitation referred to in this thesis is the subject of chapter 4.

1.3.1 Development of a spatial data base and tools

An important technical challenge for the realisation of the work presented in this thesis was the

combination of data from different sources. These included the five operational MeteoSwiss

C-band radars, two mobile X-band (research) radars with changing scan strategies, several

disdrometers used during measurement campaigns as well as temperature, humidity and

wind speed data from the meteorological stations of the Swiss national ground network

(SwissMetNet). In order to facilitate the analysis of data from various instruments, stored

in different data formats with different metadata, measured at different frequencies, time

intervals and scales, a spatial data base and accompanying toolkit was set up. An important

requirement for this framework was that it would easily allow the addition of new instruments,

data and functions. The reusability of the program, the modularity of its components as well

as the possibility to use the components independently from each other were also important

requirements, which is why the choice was made to work with an object oriented, open source

programming language (Python).

The implementation consisted roughly of two parts: the creation of a PostgreSQL data base

(extended with Geographic Information System (GIS) capabilities) to store (a) information

on the instrument locations, spatial extent, timing and types of measurements and (b) the

calculated vertical profiles and associated meteorological data, as well as the construction of a

Python toolbox to work with the data base and automatise the processes. As part of this Python

toolbox for example, a DataBase class was created regrouping all of the functions which handle

the interactions between the Python toolbox and the PostgreSQL data base (Fig. 1.4). This

set up resulted in three important advantages, which also comply with the above mentioned
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requirements. Firstly, the data base can store the instrument metadata in a “standardised” way,

thus allowing to perform the same queries for data from different instruments. Secondly, the

addition of new instruments is facilitated because it merely requires extending the functions in

the DataBase class rather than rewriting whole parts of the program. And finally, the functions

designed to set up the data base, specifically search for instrument files within the given file

paths on the computer or server. This means that the data base can be set up on any computer

or server, that data can be easily and automatically added and that only data which is available

on the computer or server ends up in the data base, avoiding problems later on in the program.

Figure 1.4 – A schematic overview of the interactions between the spatial data base and the
toolboxes.

The GIS extension to the data base allows to perform spatial queries. That is, for a given spatial

coordinate point, a spatial range or shape around the coordinate point, and for a given time

(range), the program will give a list of available instruments and radar scans in the data base.

From this list, specific instruments and scans can be selected for further analysis. As Fig. 1.4

further illustrates, using information from the data base, py-ART Radar instances containing

data and metadata are created for each of the selected instruments via the pyARTInterface

class which handles the interaction between the toolbox developed for this study and the

py-ART toolbox1

1The py-ART ARM Radar Toolkit (py-ART) is a freely available Python toolbox containing a collection of al-
gorithms and utilities created by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for
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Finally, the toolbox can extract vertical profiles from the py-ART Radar instances, and based

on the initial spatial coordinates and time inputs of the spatial query (Fig. 1.4) average vertical

profiles are extracted for specific points, spatial ranges and time intervals.

1.3.2 Spectral analysis and the fraction of variance explained by component

Spectral analysis, similarly to variograms, is a frequently used tool to study the second-order

properties of a process. In meteorology, it has been used in fields ranging from boundary layer

meteorology (Van der Hoven, 1957; Stull, 1988), radar observations of turbulence (Crane, 1980),

the analysis of the spatial representativeness of precipitation forecasts (Harris et al., 2001) to

probabilistic nowcasting (Bowler et al., 2006; Nerini et al., 2017). Spectral analysis has also

been applied to reveal the scaling behaviour of precipitation over both temporal (Fraedrich

and Larnder, 1993) and spatial (Mandapaka et al., 2009) scales as well as the correlation of

these (Rysman et al., 2013). And the spectral slope (or β slope) values have been found to be

dependent on the underlying meteorological processes; convective rain processes for example,

having steeper spectral slopes than stratiform ones (Purdy et al., 2001; Nykanen and Harris,

2003; Nykanen, 2008). In this thesis, spectral analysis, or more specifically, the fraction of

variance explained by component obtained from the Fast Fourier Transform (FFT), is used to

study the the variability of polarimetric weather radar signals. This section will briefly describe

how the fraction of variance explained by component is obtained from the Fourier Transform

and how these relate to spectral slopes.

First, the spatial or temporal series of a measured variable are subjected to the one dimensional

Fast Fourier transform, such that for each variable A of length N the Fourier transform returns

N coefficients of FA(nc ) for every frequency nc . Any discontinuities in the series have to be

padded (filling of data gaps with artificial data points) before applying the transform. The

fraction of variance explained by each component nc can then be obtained by dividing the

square of the norm of the complex Fourier transform by the total variance:

|FA(nc )|2
σ2

A

(1.18)

Where the square of the norm of the complex Fourier transform for any frequency nc is

obtained by combining the real and imaginary parts:

|FA(nc )|2 = F 2
Re(nc )+F 2

Im(nc ) (1.19)

And the total variance of the original series is derived by summing the square of the norm

working with weather radar data.
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(|FA(nc )|2) over nc = 1 to N −1 (nc = 0 is excluded because |FA(0)| is the mean value):

σ2
A = 1

N

N−1∑
k=0

(Ak − A)2 =
N−1∑
nc=1

|FA(nc )|2 (1.20)

It should be noted that this is different from the discrete spectral density, which is calculated

as:

E A(nc ) =2×|FA(nc )|2, for nc = 1 to n f with N = odd

E A(nc ) =2×|FA(nc )|2, for nc = 1 to (n f −1) with N = even (1.21)

E A(nc ) =|FA(nc )|2, at n f

Where n f is the Nyquist frequency. From this, the spectral energy density can be approximated

using:

S A(nc ) = E A(nc )

∆nc
(1.22)

For a physical process which is scale-invariant in the space or time domain, the power spec-

trum S( f ) approaches the power law such that:

S( f ) ∝ f −β (1.23)

The β value, which is more commonly used in literature, can be found using linear regression

of the log-log plot of S( f ) and f (Davis et al., 1996; Harris et al., 1997; Purdy et al., 2001).

Since autocorrelation is the inverse Fourier transform of the power spectral density, the β

value shows how fast the autocorrelation decreases with lag. A higher β value corresponds

to a steep spectral slope and thus a highly correlated process for which the contribution to

the signal of low-frequency components is large in relation to the contribution from high-

frequency components. A low β value on the other hand, corresponds to a low spectral

slope, fast decreasing autocorrelation and a higher relative contribution from high-frequency

components. Theoretically, the β value is 0 for white noise and 2 for pure Brownian noise.

However, in the context of this study it was observed that fitting to single spectra of a single

realisation of the signal resulted in large uncertainties for the spectral slope values. Whereas

the averaging of the signals (i.e. for two-dimensional data typically some azimuthal averaging
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is performed) has the effect of smoothing the power in the low-frequency components leading

to spectral slopes which give very little information on the variability of the signal at the larger

spatial scales. This is why it was chosen to base the analyses in this study on the fraction

of variance explained by component. It has the advantage of summarising the information

on the spatial variability into a few components, showing the relative amount of variance

explained by each spatial or temporal lag. It thus allows for the comparison of individual

signals as well as the aggregation of data, while preserving information on the uncertainty

when presented, for example, in box plots. Still, as Eq. (1.22) and Eq. (1.23) demonstrate,

the fractions of variance explained by component are related to the spectral slopes, thus

facilitating comparison with existing literature.
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1.4 Thesis outline

The objective of this thesis is to contribute to the improvement of quantitative precipitation

estimation at the ground in the Alps, through the analysis of the spatial and temporal variability

of polarimetric weather radar signals. This is addressed in three steps: firstly, the topic of radar

monitoring and stability is considered, then the spatio-temporal variability of the melting

layer in an Alpine valley is characterised and finally, a more localised vertical profile correction

approach is proposed.

The accuracy of quantitative precipitation estimates depend on the accuracy and quality of the

polarimetric weather radar measurements which, in turn, depend critically on the calibration

and stability of the instrument. This stability may be affected by many different factors which

is why it is considered good practice to combine a variety of methods and to monitor different

parts of the radar chain. Chapter 2 describes a temporal monitoring approach based on

the spectral analysis of the polarimetric radar signals returned by a single bright scatterer.

Although the dispersion of the differential reflectivity values returned by this target is too large

for calibration purposes, it is shown that valuable information on the state and stability of the

radar hardware can still be obtained if different scales of variability and other polarimetric

variables are considered.

The spectral analysis method used in chapter 2 to analyse the temporal variability of the radar

signals, is further applied in chapter 3 to study the temporal and the spatial variability of the

melting layer (ML). The ML is a typical feature in radar observations of the vertical structure of

stratiform precipitation and designates the transition region from solid to liquid precipitation.

It is also characterised by a well-known signature in polarimetric radar variables, facilitating

its identification with automatic detection algorithms. The ML is often assumed spatially

and temporally homogeneous by algorithms for QPE and vertical profile of reflectivity (VPR)

correction, event though its variability remains poorly documented. Based on polarimetric

X-band radar scans from two measurement campaigns, chapter 3 characterises and compares

the spatio-temporal variability of the ML for summer precipitation on the relatively flat Swiss

plateau and for winter precipitation in a large inner Alpine valley in the Swiss Alps. Based

on the spectral analysis of the ML variables extracted from the Range Height Indicator (RHI)

scans of these two campaigns, it appears that smaller spatial scales contribute more to the

total spatial variability of the ML in the case of the Alpine environment.

The relative importance of the contribution of the smaller spatial scales (15 to 10 km) to the

total spatial variability of the ML in the Alpine area, further underlines the need to perform

vertical profile corrections at smaller scales. Building on the availability of polarimetric data

and a hydrometeor classification algorithm, chapter 4 proposes a new framework for the

application of machine learning methods to study the vertical structure of precipitation in

Switzerland and proposes a more localised vertical profile correction method. It is shown that

vertical cones extracted at 10 km intervals on a regular grid around the operational C-band

radar located at Albis (938 m a.s.l.) and with a 4 km diameter at the base and 500 m vertical
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resolution can well represent the vertical structure of different types (stratiform, convective,

snowfall) of precipitation events. Artificial Neural Networks (ANNs) are trained with reflectivity

data (dBZ only-model) and hydrometeor proportions (HC + dBZ-model) from the different

altitude levels of the extracted cones in order to predict the vertical change in reflectivity. The

information from the lower height levels is then gradually removed in order to test the ANN’s

ability to extrapolate the radar measurements from higher levels in the atmosphere.

Figure 1.5 depicts the challenges and processes related to precipitation in mountainous regions

as well as the contributions of the central chapters and how these are related to each other.

The final chapter, chapter 5, summarises the main contributions of this thesis and explores

perspectives for possible future research.

The presented thesis is a compilation of published or to be submitted articles and there-

fore may contain small repetitions in the chapters. Some of these, such as the repetition of

acronyms or the explanation of variables at their first mention in each chapter, have been

preserved on purpose to facilitate the readability of the individual chapters.

Figure 1.5 – Challenges and processes related to precipitation in mountainous regions and the
contributions of the individual chapters.
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2 Temporal monitoring of dual-
polarisation weather radar

This chapter has been adapted from the manuscript:

• van den Heuvel, F., M. Gabella, M. Sartori and A. Berne, 2019: Temporal monitoring of

dual-polarisation weather radar using a single bright scatterer. Journal of Atmospheric

and Oceanic Technology, in revision.

It presents the results of a temporal monitoring approach based on the Fast Fourier Transform

which was applied to the polarimetric radar signals returned by a single bright scatterer.
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2.1 Summary

Because of the multiple factors potentially affecting the stability of a weather radar signal,

it is considered good practice to combine a variety of methods to monitor different parts of

the radar chain. One such method is based on the use of known values for nearby areas of

spatially distributed ground clutter. The advantage of the single bright scatterer used within

the context of this study is that it is relatively close to the radar, well-known and subject to

little change. This work therefore aims to analyse the temporal variability of the polarimetric

signatures of the target in order to identify temporal scales of variability and to assess its

suitability for the monitoring of radar hardware. Six events of four consecutive clear-sky days

with environmentally stable conditions have been selected for this study and subjected to a

Fourier analysis. For one event the high observed variability in differential reflectivity ZDR

could be related to drops in copolar correlation coefficient ρHV associated with not hitting

the tower correctly due to environmental influences on beam propagation. Two other events

with high observed variability in ZDR also showed distinct diurnal cycles. The study of the

horizontal and vertical channels as well as the calibration test signals of these events pointed

to an instrumental issue in the receive path of the vertical channel. Based on the calibration

signal, the observed variability of the ZDR values can be compensated in these cases so that it

remains within usual limits.
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2.2 Introduction

The accuracy and quality of polarimetric weather radar measurements and especially their

potential use for applications such as quantitative precipitation estimation (QPE) depend

critically on the stability of the instrument. Due to the variety of factors (both internal and

external to the radar system) that may affect the radar signal, it is considered good practice

to combine several methods for testing different points in the radar chain (Melnikov et al.,

2003; Germann et al., 2015). Fortunately, the number of off-line and online approaches that

are available is abundant, but each has its specific advantages and limitations (Joe and Smith,

2001; Atlas, 2002; Williams et al., 2013).

Some calibration techniques allow to test specific parts of the radar chains such as the offline

Sun-tracking which allows to calibrate the receivers (Hubbert et al., 2003; Gabella et al., 2016)

or the insertion of test signals at specific parts in the chain (Germann et al., 2015). Other

techniques rely on the measurement of a target of which the size and backscattering properties

are more or less known. As such, the measured values can be compared with the expected

values for the target in question. The calibration of reflectivity (Z ) and differential reflectivity

(ZDR ) using a metallic sphere suspended from a tethered balloon for example, is a well-known

approach though it is also considered a challenging one; requiring the absence of ground

clutter, good meteorological conditions and substantial data analysis (Atlas and Mossop, 1960;

Joe and Smith, 2001). Furthermore, it is complex and time-consuming to set up and therefore

impractical for routine calibration (Melnikov et al., 2017). Within a radar network, it is pos-

sible to compare areas where two (or more) radars measure the same precipitation volume.

However, this relative calibration method does not guarantee absolute calibration of the Z

values (Melnikov et al., 2017). While absolute calibration could be achieved by the comparison

of radar measurements with ground based measurements such as rain gauges, the differences

in sampling volumes and the changes in the vertical profile of reflectivity (VPR) are sources

of high uncertainty, especially on the short term (Germann and Joss, 2001). Methods which

do not depend on any external instrumentation include the comparison of measured ZDR

values with climatological values (for example in light rain) and the performance of vertical

scans. The first method requires sufficient past measurements for comparison, can only be

performed in similar weather conditions and is sensitive to the presence of a small number of

big drops (Melnikov et al., 2017). The vertical scan method is based on the assumption that

in light rain and in the absence of strong wind shear, droplets are approximately spherical

and thus result, on average, in ZDR values close to zero when measured at vertical incidence

(Gorgucci et al., 1999; Bringi and Chandrasekar, 2001). This method further requires that the

radar scans at a 90 degrees inclination, which is often not performed in operational scanning

routines (Borowska and Zrnic, 2012; Dixon et al., 2017; Germann et al., 2015). It also requires

specific meteorological conditions which, in the case of the Swiss operational network where

several of the radars are located at high altitudes, are rarely or never satisfied. A possible

alternative to this is the snow method, which assumes the value of ZDR in snow to be 0.2 dB

at ∼60◦ elevation angles (Ryzhkov et al., 2005; Zittel et al., 2014; Dixon et al., 2017). This can

then be compared with the observed average measured values (or some chosen percentile)
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for ZDR in identified snow regions. However, this method assumes that the polarimetric data

quality is sufficient for the identification of snow regions in the first place. Furthermore, the

characteristics of snow particles above the melting layer are not sufficiently well-known to

guarantee the accuracy of this approach, and values of snow layers above the melting layer

may well exceed 0.2 dB (Melnikov et al., 2017).

The techniques described above aim at correcting both the receiver and the transmitter differ-

ential bias. If the radar is sensitive enough it is also possible to separate the biases associated

with the transmit and receiver paths by using the solar signal as a reference. Methods for the

daily monitoring of the on-reception ZDR during the operational scan are now running at

several national weather services. Holleman et al. (2010) have found for the French Trappes

radar a standard deviation of 0.20 dB during a 3-month quiet Sun period in 2008. Modern

dual-polarization receivers seem to outperform this benchmark: Gabella et al. (2015) have

obtained values of 0.05 dB (Albis radar) and 0.06 dB (La Dôle and Monte Lema radars) in

Switzerland for the first 224 days in 2014, which was an active solar period. Using additional

quality checks that remove weather echoes which may contaminate solar hits, Huuskonen

et al. (2016) found a standard deviation as low as 0.02 dB (this number refers to a 30-day period,

namely April 2015).

The identification and removal of ground clutter is an integral part of operational radar pro-

cessing. Although considered highly undesirable for hydrological applications, ground clutter

is increasingly used for radar hardware monitoring (Gabella, 2018). Though the idea of using

ground clutter in a constructive manner is not new, it is not a very common technique. Rine-

hart (1978) was the first to propose the day-to-day and year-to-year monitoring of the radar

calibration of reflectivity using an individual ground target which provided returns which

were found to be stable within 1 dB. He also proposed an approach based on the statistical

properties of multiple targets in order to better cope with changes in radar system timing and

range gate spacing. Ground clutter has been subsequently used to study the antenna beam

pattern (Rinehart and Frush, 1983), to estimate the attenuation at X-band caused by rainfall

(Delrieu et al., 1997), to estimate the refractive index of air (Fabry, 2004) and for the calibration

of spaceborne radars (Meneghini et al., 1983, 2000). Improved identification of ground clut-

ter areas thanks to dual-polarisation as well as increased computational power have further

opened up the possibility for the use of these for radar system monitoring. Near-real-time

relative calibration of reflectivity can be achieved based on probability distributions of the

returns from stable clutter areas located close to the radar (Silberstein et al., 2008; Borowska

and Zrnic, 2012; Wolff et al., 2015). With the exception of Rinehart (1978), who worked only

with reflectivity measurements, current proposed ground-clutter based calibration techniques

make use of areas of ground clutter which usually comprise several thousands of radar bins.

The advantage of using areas of ground clutter is that this method is more robust to offsets in

radar system azimuth pointing, timing and range gate spacing (Rinehart, 1978). A possible

disadvantage is that any temporal variability of the changes in the radar system may be masked

by the median or average of many, temporally varying scattering objects. Another advantage

of using a single bright scatterer is that the variability of the measured values is less influenced

by the variability of changes in the clutter reflection coefficient due to variations in foliage or
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snow cover for example. Of course, this advantage only holds if the scatterer which is used

is itself sufficiently stable. Although Gabella (2018) has shown that the polarimetric signals

of the Cimetta tower located in Locarno, Switzerland can be remarkably stable, the study

also concluded that the dispersion of the ZDR values for this single bright scatterer was too

large for calibration purposes. The results from the study by Gabella (2018) have motivated

the analysis of the temporal variability of the signal returned by the same bright scatterer in

order to evaluate whether it is possible 1) to identify periods within the day for which the

variability of ZDR values may be lower, and 2) to use the signal to identify hardware issues.

To our knowledge, this is the first study into the temporal variability of the returns of a single

ground target.

Section 2.3 will briefly introduce the bright scatterer, the dataset of clear-sky days, the (po-

larimetric) variables used in this study and the Fourier transform-based method to study the

temporal variability of these variables. A first assessment of the event-based variability will be

presented in section 2.4 followed by a more in depth analysis of the temporal variability of the

signal returned by the bright scatterer with a focus on events for which high variability was

observed. The potential of using this target for the identification of radar hardware issues is

evaluated in section 2.5 and the conclusions are presented in section 2.6.

2.3 Data and Methods

The bright scatterer under study is a metallic tower situated on top of the Cimetta mountain

at approximately 1632 m a.s.l. and 18.14 km distance from the Monte Lema radar. The tower

is 90 metres high and surrounded by grass (no trees) and a few small buildings. Based on

the analysis of five clear sky days, Gabella (2018) found median reflectivity values for the

Cimetta tower to be 81.5 (80.5) dBZ for horizontal (vertical) polarisation. Given a reflectivity

value of 81 dBZ, the radar cross section (RCS) of the tower can be estimated at 42.2 dB m2,

or approximately 16600 m2 which corresponds to an equivalent sphere of 73 m. This value

is reasonably close to the height of the tower, considering that it is not a spherical target. As

such, it can be considered the predominant target in the radar bin (Fig. 2.1).

For this work, four days out of the dataset of five clear sky days studied by Gabella (2018) (5

January 2015, 9 February 2015, 10 February 2015 and 18 January 2017) have been extended with

additional clear-sky days surrounding these, and two new sets of four consecutive clear-sky

days have been added, so that the dataset consisted of six sets of four day events. The choice

for the four day duration of the events was a trade-off between the need to have sufficiently

long samples to perform temporal analyses up to the 24 hour scale and the availability of

events with four consecutive days of clear-sky conditions. The events were selected from the

historical radar archive based on the criterion of zero precipitation accumulation over 96

hours within the Monte Lema radar umbrella.

The MeteoSwiss dual-polarisation Doppler C-band radar is located at 1625 m a.s.l. at Monte

Lema in the vicinity of Lugano (Switzerland). Like the other radars in the MeteoSwiss network,
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Figure 2.1 – The location of the Cimetta tower (a) and its immediate surroundings (b). The
blue line indicates the azimuth of the center of the radar bin under study and the red lines
indicate the ranges.

the Monte Lema radar performs 20 plan position indicator (PPI) scans at elevations ranging

from -0.2◦ to 40◦ within 5 minutes (Germann et al., 2015). The lowest elevation 360◦ PPI scan

takes 20 s to compute, and the radar points at each 1◦ azimuth angle for 1/18 s. The Cimetta

tower is measured by the lowest elevation beam of the radar for which the PRF is 600 Hz

which means that every 5 minute observation of the tower is based on the spectral analysis

of 600/18 ≈ 33 pulses (Germann et al., 2015; Gabella, 2018). For this study, the reflectivity

measured at the horizontal (ZH ) and vertical (ZV ) polarisations, differential reflectivity (ZDR )

and the copolar cross correlation coefficient (ρHV ) are used. The ZH and ZV data are stored

with 0.5 dBZ quantisation, while for ZDR data is stored within a range of 15.751 dB at 0.062

quantisation, centered around 0 dB.

For the monitoring and calibration of the radars in the MeteoSwiss network, several inde-

pendent sources of information are used. Automatic hardware calibration is partly achieved

through the use of a noise source signal which is inserted every 2.5 minutes in the receive path

of both polarisation channels (Germann et al., 2015). The measured values of this signal (the

noise source power on frontend h and v [dBadu]) as well as their ratio (differential noise source

power on frontend [dB]) will also be considered in this study and referred to as the CALdr signal.

The daily variances of ZDR , ZH and ZV as well as for the the noise source power on frontend h

and v and CALdr signal for all events are given in Table 2.1. It can be seen that the March 2015
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and January 2017 events stand out with a variance of ZDR which was uncharacteristically high

(typically 1 dB for the tower (Gabella, 2018)). More information on the calculation of the radar

observables, the scan strategy and operational radar calibration can be found in Vollbracht

et al. (2014), Germann et al. (2015) and Gabella (2018).

Polarimetric variables (var) noise source power on frontend (var * 1000)

Event ZDR [dB2] ZH [dBZ2] ZV [dBZ2] CALh[dBadu2] CALv[dBadu2] CALdr[dBadu2]

0.4 1.1 2.1 2.3 1.4 0.2
Jan 5-8 2015 0.4 1.1 1.4 5.2 3.2 0.3

0.7 1.1 1.6 2.6 1.5 0.2
0.5 1.0 1.6 3.1 1.6 0.4
0.5 0.4 0.7 2.3 0.5 0.9

Feb 9-12 2015 0.6 0.5 1.1 6.1 3.6 0.4
0.5 1.9 1.9 6.6 4.1 0.4
0.4 0.7 1.1 6.7 4.0 0.5
0.8 1.7 2.7 5.3 1.8 1.1

March 6-9 2015 3.8 2.9 9.6 1.5 0.3 0.7
1.3 1.1 3.2 5.5 2.5 0.7
1.1 6.4 8.2 5.4 2.7 0.5
1.0 0.6 1.1 0.6 1.7 0.5

Jan 18-21 2017 0.8 0.5 1.0 0.5 1.4 0.4
0.7 0.7 1.1 0.8 1.8 0.4
3.7 0.6 2.9 1.1 12.5 6.9
3.9 0.7 4.2 1.2 8.6 4.2

Jan 25-28 2017 4.2 0.7 4.3 1.3 8.4 4.0
1.7 1.7 1.9 0.3 2.5 1.2
4.2 1.3 5.2 0.6 10.2 6.5
1.4 0.9 2.5 10.2 10.9 0.1

Jan 11-14 2018 0.9 1.0 2.3 0.5 0.2 0.2
2.5 1.4 4.6 0.9 0.3 0.3
1.3 1.3 1.7 0.5 0.1 0.3

Table 2.1 – Daily variances of ZDR , ZH and ZV as well as for CAL signal H, V and H-V. For all
events, and ranking of event in Poor (>3.8), Intermediate (>2.2) or Good.

In order to avoid variability in the measurements of the Cimetta tower due to changes in

atmospheric refraction, non-normal propagation conditions were avoided as much as possible

by choosing clear-sky days and winter events. As Fig. 2.2 illustrates, under normal propagation

conditions (dN/dh = -40 km-1, where N is the refractivity and h is the height in km; see also

the appendix) the top part of the lowest elevation radar beam (-0.2 degrees) is occupied by

the tower. At these distances, the shift in the height of the center of the beam would be

approximately + 5 metres in the case of sub refraction (dN/dh = 0 km-1) and -20 metres in

the case of super refraction (dN/dh = -150 km-1). Consequently, in the best case the tower

occupies one-third of the height of the beam (beam width diameter equals approximately 316

metres at 18 km distance) and in the very worst case of super refraction one-fifth of the beam

height. As such, it may be expected that non-normal propagation should not greatly affect the

measured value for the tower. However, to ascertain that changes in the refractive index indeed

did not play a role during the selected events, dN/dh was calculated based on pressure, air

temperature and humidity measurements at the meteorological stations of Cimetta and Matro
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(situated ∼26 km North-East of Cimetta, at 2171 m a.s.l.). The median, standard deviation

and quartiles of the calculated refractivity are given in Table 2.2 and indicate that normal

propagation conditions were predominant during the selected events, with perhaps some

sub refraction which could have caused for the center of the radar beam to have hit the tower

slightly higher (but much less than 5 metres higher) than under normal conditions.

Figure 2.2 – Theoretical path of the center of the beam (-0.2 degrees elevation) for normal
propagation conditions (orange line), with the 3 dB beam width in shaded orange. The blue
line gives the top of the 3 dB beam (0.3 degrees elevation) under sub refractive conditions
and the red line the bottom of the 3 dB beam (-0.7 degrees elevation) under super refractive
conditions.

Event Median Std Q1 Q3

Jan 5-8 2015 -31.6 11.6 -41.7 -21.9

Feb 9-12 2015 -27.0 5.9 -32.9 -23.9

March 6-9 2015 -43.2 14.4 -53.5 -26.9

Jan 18-21 2017 -29.0 4.4 -31.9 -26.3

Jan 25-28 2017 -31.5 5.9 -36.1 -28.9

Jan 11-14 2018 -30.9 6.3 -34.6 -24.5

Table 2.2 – dN/dh calculated between Cimetta and Matro, median, standard deviation and
quartiles.

2.3.1 Fractions of variance explained by component

For the study of the temporal variability of the Cimetta tower’s backscattered signal the fraction

of variance explained by component is used. This can be obtained by dividing the square of
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the norm of the complex Fourier transform by the total variance of the signal:

|FA(n)|2
σ2

A

= F2
Re(n)+F2

Im(n)

σ2
A

(2.1)

In order to illustrate the type of information obtained from this method, the top panel in Fig.

2.3 shows the fraction of variance explained by component for 6 example signals generated

over a period of four days. The signals include 5 artificial signals and one temperature time

series measured at the Monte Lema radar for 25-28 January 2017. The artificial signals include

a Brownian noise signal which is based on the average of 9 random walks, one white noise

signal to which a linear trend was added and one regular white noise signal, one sine wave

with 2 periods and one sine wave with four periods. The bottom panel of Fig. 2.3 gives for the

same signals the more commonly used power spectra with the fitted spectral slopes (β values),

the values of which depend critically on the fitting process and pre-processing of the data. In

Fig. 2.3 for example, the slopes have been calculated on the first 12% of the data, while a fit

on all of the data would result in β values of 1.81 ± 0.05 for Brownian noise, 0.56 ± 0.06 for

white noise with a trend, 0.08 ± 0.06 for regular white noise, 1.04 ± 0.16 for a sine wave with 2

periods, 0.92 ± 0.16 for a sine wave with four periods and 2.10 ± 0.06 for the temperature data.

Fitting to the entire spectra reduces the uncertainty of the fit, but also gives more weight to

the high frequency values with the effect of flattening the β slope. Similarly, detrending and

tapering the data before performing the Fourier transform also have the effect of respectively

decreasing the spectral energy in the low / high frequencies and thus of decreasing / increasing

the spectral slopes. While it is usually recommended to perform detrending and tapering

before performing the spectral analysis (Stull, 1988), it was not deemed necessary for this

study since the polarimetric signals of the Cimetta tower showed little to no trend over the

course of four clear-sky days. Thus pre-processing the data would incur a risk of introducing

artefacts in the signals.

Finally, Fig. 2.3 shows another advantage of using the fraction of variance explained by

component over the spectral slope values: while it is immediately clear that the temperature

data displays a diurnal cycle, this is not at all apparent from the β value of this signal. The

artificial signals have been included for illustration purposes. Brownian noise, for example,

typically has a β of 2, while white noise has a β of 0. In the fractions of variance explained

by component, the white noise signal displays equal amplitudes across the whole frequency

range. The Brownian noise signal (much like a signal with a trend in this case) is considered

as a signal with a time period which is longer than the sampling period and is thus fit by the

Fourier transform with waves of the fundamental period and shorter. Hence, a spike at the

lowest frequency and leakage to higher frequencies can be observed in the fraction of variance

explained by component plots. Finally, the two sine waves show how waves with two and four

periods appear with a single spike at the second and fourth component.

33



Chapter 2. Temporal monitoring of dual-polarisation weather radar

Figure 2.3 – Top: fraction of variance explained by component for example signals. Bottom:
folded spectra of the same signals.

This study will also present results using the non-normalised variance explained by compo-

nent. The reason for this is that there were cases where, for example, the ZDR demonstrated

high variance, and as such the absolute values are also of interest. The non-normalised vari-

ance is simply |FA(n)|2 or the discrete variance (or energy) spectrum (Stull, 1988). Finally,

it should be kept in mind that the first component of the fraction of variance explained by

component is based on a single realisation of four days, and thus also has a larger uncertainty

than subsequent components.

2.4 Data analysis and results

In the first part of this section, the overall distributions of ZDR , ZH and ZV on an event-basis,

as well as the more general sub-daily variability will be discussed. The second part will focus

specifically on the events displaying large variability.
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2.4.1 Event and sub-daily variability

Figure 2.4 – Violin plots for ZDR (top panel) and ZH /ZV (bottom panel) on an event basis.
Boxplots of the combined ZH /ZV data are represented in black inside the violin plots with a
white dot indicating the median value, the box indicating the interquartile range (IQR) and
the black lines representing the whiskers extending towards 1.5*IQR.

The distributions of ZDR , ZH and ZV on an event basis are shown in the violin plots in Fig. 2.4.

It appears that the median ZDR values (top panel) of the Cimetta tower are around 1 dB as

reported in Gabella (2018) for the first two events, but higher (around 2 dB) for the last four

events. The the tails of the distributions in the March 2015 and January 2017 events are longer,

with more positive outliers for the March 2015 event and more negative ZDR values for the

January 2017 events. The bottom panel of Fig. 2.4, which shows the separate distributions for

the H and V channels, indicates that the variability of the vertical channel is higher overall and

especially for March 2015. Since this study seeks to evaluate the potential of using the Cimetta

tower for monitoring of the Monte Lema radar hardware, it is important to consider whether

there are periods in the day during which the variability of the measurements is higher. Three

hour periods were chosen, and because each event consists of four days and the tower is

sampled every five minutes, this results in 144 samples for each three hour time period.

Figure 2.5 shows the violin plots for the individual events, subdivided into 3 hour time periods.

With the exception of the March 2015 and January 2018 events, the figures show a relatively

good stability in the H channel (right-most column, blue plots) with values which remain

within 0.9 dB from the median (81.5 dBZ). The double-peakedness in, for example, the 3-6

hours period in the H channel for the 9-12 February 2015 event (Fig. 2.5, 2nd row, 2nd column)

can be attributed to the quantisation of the values. It can also be observed that ZDR decreases

(to around 0 dB and -1.5 dB) for the two January 2017 cases in the periods from midday
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to 18:00 hours and in both cases due to an increase in the values measured by the vertical

channel, while the horizontal channel remains unchanged (Fig. 2.5 4th and 5th rows). For the

March 2015 and January 2018 cases, ZDR is higher (2.5 dB) especially in the time period from

09:00 to 21:00 due to a decrease of roughly 3 dB in the vertical channel in these same time

periods which is partly (but not completely) offset by a decrease in the values measured in

the horizontal channel (Fig. 2.5, on the 3rd and 6th rows). This is in line with what can also

be observed in Table 2.1, and which is expressed in equation 2.2 that if the variability in both

channels is high, this can still result in low variability in ZDR provided that the two channels

co-vary. However, if one of the channels performs poorly (high variability) and the other is

reasonably stable, covariance between the channels will also be lower and variability in ZDR

will increase.

Var[H−V] = Var[H]+Var[V]−2Cov[H,V] (2.2)

Where H and V are arrays of discrete temporal series of reflectivity samples in dBZ.

The typical values for reflectivity reported by Gabella (2018) were 81.5 dBZ (±0.90 dB) for

the horizontal channel and 80.5 dBZ (±1.21 dB) for the vertical channel. The additional data

presented here corroborate the higher values for the H channel as well as the higher variability

of the V channel. However, though the event medians in Fig. 2.4 indicate that values in the

horizontal channel may vary between 79.0 dBZ and 82.0 dBZ and between 77.0 dBZ and 80.5

dBZ in the vertical channel1, the within event variability of both channels in Fig. 2.5 shows a

more complex picture with periods of low variability (±0.9 dB) and periods of high variability

(in the order of ±3 dB) within the day. These temporal scales will be investigated in more detail

in the following section.

1the lowest values reported in this study are related to the January 2018 case which was not included in the
paper by Gabella (2018)
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Figure 2.5 – Violin plots for events (top to bottom), ZDR , ZV /ZH (left to right) and specific time
periods (x-axes).
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2.4.2 Typical scales of variability

The daily variances in ZDR for the March 2015 and January 2017 events well exceeds the daily

variances of the January 2015 and February 2015 events (Table 2.1). The variability observed

during the clear sky days in January seems to be concentrated during daytime (9.00 to 21:00 in

March) and specifically in the afternoon (12:00 to 18:00 in January). The time series and the

variance explained by component based on the Fourier transform were therefore analysed in

order to better identify the presence of possible daily cycles in the measurements. Figure 2.6

shows the variances explained by temporal lags ranging from almost four days to 10 hours.

The 25-28 January 2017 event displays a very strong diurnal component in ZDR and ZV with a

peak in power at the 24 hour scale. The 12 hour peak of the same event is related to a reversal

or dip of the ZDR signal within the 24 hour cycles (Fig. 2.7, lowest panel). A less pronounced

diurnal cycle can be observed in the 18-21 January 2017 event while the March 2015 event

shows pronounced daily cycles in ZH and ZV resulting in a more negligible daily cycle in ZDR .

The other events show behaviour more or less similar to white or Brownian noise signals.

The full time series of the three events are shown in Fig. 2.7 with ZDR , ZV and the differential

noise source power on frontend (CALdr signal) in the top panels of each plot and the internal

and external temperature values and copolar correlation coefficient (ρHV ) in the bottom

panels of the plots. It is clear that the diurnal cycles observed in ZDR for the two January 2017

events are caused by variability in the vertical channel, and that the peaks in ZV are slightly

lagged (∼2 hours) with peaks in the outside temperature. The vertical noise source power on

frontend test signal seems to be affected by the same phenomenon as the vertical channel.

Clearly, the variability observed in ZDR for the March 2015 event is not affected by the phe-

nomenon highlighted in the two January 2017 events, which manifests itself as a high corre-

lation (< 0.5) between the CALdr signal and ZDR . As already indicated by the FFT output in

Fig. 2.6, the diurnal signal in ZDR is much smaller and the CALdr signal behaves normally. The

ρHV values have therefore been plotted as a proxy for how well the beam hits the Cimetta

tower. The copolar correlation coefficient is the module of the complex correlation coefficient

between two complex numbers which represent the magnitude of the backscattered signals of

the orthogonal polarisation (Fabry, 2015). Hence, it ranges between 1 for perfect correlation

and 0 for no correlation. If targets in the radar volume have identical shapes, the fluctuations

in the returned radar signal will be identical at both polarisations thus resulting in a ρHV close

to 1. If targets in the radar volume have varied shapes, the fluctuations in the H and V channels

will become dissimilar and result in higher variability in ZDR and lower values for ρHV (Bringi

and Chandrasekar, 2001; Fabry, 2015).
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Figure 2.6 – Stem plots of the amounts of variance in the ZDR (top) ZH (middle) and ZV

(bottom) measurements explained by each temporal lag, for all of the events.
39



Chapter 2. Temporal monitoring of dual-polarisation weather radar

Figure 2.7 – Timeseries of ZDR , ZV , CALdr signal, Outside temperature and ρHV for 6-9 March
2015, 18-21 January 2017 and 25-28 January 2017. The outside temperature values for the
March time series had a constant bias and have been corrected with values from a nearby
station.
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While the shape of the Cimetta tower remains unchanged, the radar beam may hit the tower

somewhat differently from one pulse to the next over the total of 33 pulses (which can be

expected for a moving antenna). As such, the shape of the Cimetta tower as observed by

the radar will change between subsequent pulses, and it will change differently for the two

channels which will lead to a reduction in correlations between the two channels. Typical

ρHV values for ground clutter are between 0.75 and 0.95 (Fabry, 2015), however, the Cimetta

tower being a single target, daily median ρHV values ranging between 0.9941 and 0.9985 have

been obtained (Gabella, 2018). During the March 2017 event, periods of increased variability

in ZDR and ZV coincide clearly with periods of reduced ρHV (ρHV > 0.98) (Fig. 2.7). For the

two January 2017 events, if there is any such a coincidence between ρHV drops and variability

in ZDR and ZV it is drowned out by the daily cycles.

In order to summarise the above mentioned relationships between ZDR , ZV and the CALdr

signal, the outside temperature and drops in ρHV , correlation coefficients are given in Table

2.3. The correlation coefficient is a type of normalised covariance and therefore also gives a

measure of the linearity of the relationship between two variables. Multiplying the correlation

coefficient with the standard deviations of the two signals would result in the covariance

(and thus refers back to the relationship described in eq. 2.2). The two January events show

much lower correlations between the H and V channels and much higher correlations with

outside temperature than all the other cases, while the March event has the highest correlation

between ZV and ρHV of all events. Interestingly, the correlation between ZV and temperature

increases when the temperature is shifted two hours forward indicating a lag in the relationship

between the two. Fitting of the two signals on each individual 24 hour period of the events

indicated that even higher correlations (up to 0.8 for 24 hour periods) could be found for

temporal shifts between 2 to 4 hours. This shift was not necessarily incremental or decremental

over the four day period, so that a buildup of heat inside the radome or inside the receiver box

can not be affirmed (and is also not visible in any the temperature measurements recorded

inside the radar (Fig. 2.7)).

Event [ZH , ZV ] [ZV ,T ] [ZV ,T+2H ] [ZV ,RHO] [ZDR ,C ALdr] [ZDR , ZH ] [ZDR , ZV ]

Jan 5-8 2015 0.797 -0.08 -0.16 0.41 -0.39 0.12 -0.49

Feb 9-12 2015 0.729 -0.04 -0.11 0.25 -0.29 0.16 -0.54

March 6-9 2015 0.819 -0.39 -0.28 0.64 -0.25 -0.20 -0.72

Jan 18-21 2017 0.392 0.32 0.54 -0.05 -0.83 0.32 -0.73

Jan 25-28 2017 0.394 0.40 0.61 -0.16 -0.91 0.19 -0.82

Jan 11-14 2018 0.625 -0.09 -0.09 0.44 -0.35 0.08 -0.71

Table 2.3 – Correlation coefficients ZDR /ZV , ZV /CALdr, ZV /temperatures and ZV /ZH

The advantage of the fraction of variance explained by component is that temporal shifts do

not matter such that the similarity or dissimilarity in the degrees of variation of the signals

within specific time lags can be better assessed. Figure 2.8 shows the fractions of variance
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Chapter 2. Temporal monitoring of dual-polarisation weather radar

explained for all the events and for all the signals under study. Under normal circumstances,

for the CALdr signal something similar to a white noise signal or a Brownian noise signal in

case of a small drift could be expected. Similarly, it seems reasonable to expect for ρHV a

randomly varying (white noise) signal around the value 0.99 (Gabella, 2018). If less than 5%

explained variance for a specific time lag is considered negligible, and the first component is

neglected (as it is based on a single realisation) the purple line in Fig. 2.8 indicates that this is

indeed the case for many of the clear-sky days with the most notable exception of 6-9 March

2015 and 11-14 January 2018. For both events, it can be observed that the principle scales of

variability for ρHV are on the 48 and 24 hour time scales (Fig. 2.8).

For most of the clear-sky events the CALdr signal also shows a small peak in the variability

at the 24 hour scale, which is most pronounced for the March 2015 event (Fig. 2.8). These

diurnal cycles are also well visible in the time series in Fig. 2.7 and should in most cases be

related to its function of correcting for temperature variations inside the receiver box.

In the following section all these different sources of information will be combined for the

evaluation of the potential of the Cimetta tower for radar hardware monitoring.
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Chapter 2. Temporal monitoring of dual-polarisation weather radar

2.5 Discussion

A previous analysis by Gabella (2018) of the polarimetric values returned by a single bright

target which is the Cimetta tower, indicated that this object could be used to monitor the

hardware of the operational dual-polarisation Doppler C-band radar at Monte Lema. This

study has extended the analysis conducted by Gabella (2018) with 19 more days, and by

looking at the temporal variability of the signals, focusing on the observed variability of ZDR

for three specific events. Borowska and Zrnic (2012) list a number of influences on Z and ZDR

measurements from clutter, the nature of which can be further subdivided into environmental

(env) or instrumental (instr):

1) changes in transmitted power (instr)

2) changes in receiver gains (instr)

3) antenna settling time (scan to scan changes in elevation) (instr)

4) scan to scan differences in azimuth pointing (instr)

5) variation of clutter reflection coefficient (env)

6) atmospheric refraction and beam propagation (env)

7) changes in attenuation due to precipitation (env)

The authors further note that if the variations of, and the correlation between the measure-

ments in the H and V channels is high, there is probably a common cause affecting both chan-

nels such as a change in the transmitted power or some environmental influence (Borowska

and Zrnic, 2012). While if the correlation between the two channels is low, they are not equally

affected and thus variability is more likely to be caused by an instrumental issue in the receiv-

ing channel. As Borowska and Zrnic (2012) indicate, the radar should only be adjusted when it

is certain that the discrepancies observed are caused by an instrumental issue. Table 2.3 shows

that for most events in this study the correlation between the H and V channel is high (>0.6)

with the exception of the two January 2017 events for which it is significantly lower (>0.4).

For the March 2015 event on the other hand, correlations between the two channels are the

highest of all six events. Changes in the transmitted power only affect Z measurements since

the magic-T splits the power equally over the H and V channels. It can therefore be considered

unlikely that the observed variability in ZDR is related to any changes in the transmitted power.

Since the analysis is based on only clear sky days and the tower is located relatively close to the

radar, changes in attenuation can also be excluded. Due to the nature of the Cimetta tower, it is

also unlikely that variability in the radar measurements may have been caused by variation in

the clutter reflection coefficient. Even if the tower was wet, the resulting change in reflectivity

should be negligible compared to the total reflectivity of the metallic tower and also similar

in both channels. This leaves number 2,3 and 4 type issues from the instrumental influences

and number 6 type issues from the environmental ones (notwithstanding the careful selection

of events). To the aforementioned criteria this study also adds the high ρHV criterion on the

grounds that if the target is not hit correctly over the full length of the 33 pulses, the data
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should not be considered for hardware monitoring.

The high correlation between the H and V channels for the March 2015 and January 2018

events seems to indicate that the variability observed in ZDR for this period is caused by a

common factor influencing both channels (albeit the V channel more than the H channel). The

high correlation between the V channel and the drops in ρHV (Table 2.3) further indicates that

not hitting the Cimetta tower correctly seems to be the main factor causing these variations.

Indeed, when data values for ρHV < 0.989 are removed, the daily variances in the vertical

channel (Table 2.1) are lowered to 2.7, 5.8, 2.6 and 4.7 for the March 2015 event, and to 1.3,

1.26, 4.0 and 1.6 for the January 2018 event. The fractions of variance explained by component

for the unfiltered data in Fig. 2.8 show distinct peaks in the ρHV variability for the 48 hour and

24 hour components (0.15 and 0.05 respectively) suggesting an environmental issue rather

than an instrumental one. The refractivity calculations do not indicate any abnormal prop-

agation for this day (Table 2.2), so refractivities using stations at lower and higher altitudes

were also calculated (Fig. 2.9). Interestingly, these show considerably more variation, and

more specifically at the 48 hour timescale for the higher altitudes and the 24 hour timescales

for the lower altitudes. The absolute value of the refractivity between Magadino (203 m asl)

and Locarno-monti (367 m asl) is influenced by the very different nature of the two sites:

Magadino is located close to the lake within the valley and subject to thermal inversions in

wintertime while Locarno-monti is located on the mountain side and more exposed to the

sun. The time series for the refractivity calculated between these two stations (blue lines) have

been included as an indication of the relative stability of the lower part of the atmosphere

between events, though it does not influence the trajectory of the radar beam which is well

above these altitudes.

Finally, it can be noted that the CALdr signal also shows a small peak at the 24 hour component

for the March 2015 event in Fig. 2.8 and that this CALdr signal variation co-fluctuates with the

internal temperature variations (Fig. 2.7) and thus performs its normal corrective function of

compensating for temperature variations inside the receiver box.

The significantly lower correlations between the H and V channels for the January 2017 events

seem to indicate that the observed variability in ZDR for these events was caused by an

instrumental issue rather than an environmental one. Table 2.3 shows the high correlation

between ZV and outside temperature and Fig. 2.8 illustrates the distinct diurnal cycle observed

in ZDR , ZH and ZV . While no correlations (Table 2.3) or diurnal cycles (Fig. 2.8) could be

observed for ρHV and the atmosphere appears to have been relatively stable at all altitudes

(Table 2.2 and Fig. 2.9). The diurnal cycle is also visible in the CALdr signal (differential noise

source power on frontend) which was probably the result of the different behaviour of the low

noise amplifiers (LNAs) of the H and V channels with respect to the temperature changes in

the receiver box. The temperature change was ∼ 2◦C, with an overall excursion of 0.15 dB for

the H channel and 0.3 dB for the V channel. While the change in measured noise source power

in the horizontal channel (∼ 0.07 dB/K) is still acceptable, the changes in the vertical channel

are too important (Vollbracht et al., 2014).
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Figure 2.9 – Calculated refractivity time series (left) and their corresponding fraction of variance
explained by component (right).

46



2.5. Discussion

In order to operate on a broad dynamic range, the radar receiver system consists of four LNAs

for the high gain (HI) and low gain (LOW) paths, and for both polarisations. Whereas the

calibration (CAL) signals (∼-90 dBm) are amplified by the HI sensitivity channel, the strong

Cimetta echo (∼-30 dBm) is necessarily amplified by the LOW sensitivity channel. Because in

the January 2017 events both the returns from the Cimetta tower and the CALdr signal seem to

be affected, the problem must have been situated in the receive path of the HI and the LOW

sensitivity channels and most likely at the receivers. This finding is different from the findings

by Borowska and Zrnic (2012), who also detected diurnal cycles in the ZDR measurements

of areas of ground clutter for the KOUN radar located in Oklahoma. In their case, the events

coincided with high correlations between the H and V channels and were related to the diurnal

cycle in the refractivity profile.

2.5.1 Possible correction of the diurnal cycle

The observations of the Cimetta tower can only be used for radar hardware monitoring if

1) it is certain that the center of the radar beam hit the tower correctly over the observation

period (low correlation between ZDR and ρHV and/or ρHV > 0.985), and 2) the observed

variability in the ZDR signal is related to an instrumental issue (low correlation between ZH

and ZV ). As such, situations with low correlations between ZH and ZV , high correlations

between ZDR , ZV (or ZH ) and the CALdr signal, as well as a high 24 hour component (>0.15)

in the FFT analysis for these three signals, can be considered as indicative of hardware issues.

Since in the presented cases the CALdr signal is affected by the same phenomenon (high

negative correlation between ZDR and CALdr (Table 2.3)), it can be used to compensate for

the variability in the ZDR values, if it can be assumed that the CALdr signal should have been

more or less constant over this period. Since the problem appears to have occurred in the

vertical channel in the observed cases (as can be inferred from the high correlation between

ZV and ZDR ) the CALdr signal needs to be added to the ZDR signal for the compensation (and

subtracted in case of a faulty horizontal channel). Finally, an amplification factor a for the

CALdr signal is needed and calculated based on the ratio of the standard deviations of the ZDR

and CALdr signals:

ZDRc = ZDR +CALdr ∗a (2.3)

where ZDR and CALdr are in dB, and a is obtained by:

a = σZDR

σC ALdr

(2.4)

The a values calculated for the 18-21 January and 25-28 January events were 26.5 and 29.45
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respectively. This compensation takes care of most of the observed 24 and 12 hour cycles (Fig.

2.10) and reproduces a ZDR signal of the Cimetta tower with variances of 0.5, 0.4, 0.4, and 0.5

for the four days of the first January 2017 event and 0.5, 0.6, 0.6 and 0.5 for the four days of

the second January 2017 event which can be considered reasonable when compared with the

values in Table 2.1.

Figure 2.10 – Variance explained by each temporal lag for original and corrected ZDR time
series for the January 2017 events (top) and the time series for the corrected ZDR (bottom).

2.6 Conclusions

The Cimettta tower represents a unique and stable bright scatterer which allows to perform

temporal analysis of the polarimetric signals of the object and thus has the potential to be

used for the temporal monitoring of the radar hardware. Based on observations of the Cimetta

tower with the dual-polarisation Doppler C-band radar from the MeteoSwiss operational

network for six events with four consecutive clear-sky days, this study seeks to identify periods

within the day for which the variability of Z DR is lower and analyses the potential of the tower

for radar hardware monitoring. For the events analysed in this study it was found that the

sub-daily variability in ZDR measurements could be as low as ±0.9 dB for some three hour
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periods and as high as ±3 dB for other three hour periods.

Three of the events were analysed in more detail because of the observed high temporal

variability of the ZDR measurement of the tower within the four day period. The FFT analysis

of the time series further indicated a pronounced diurnal cycle in the ZDR signal for two

of these events. This diurnal cycle could be related to the noise source power on frontend

calibration signal (CALdr) and temperature. The low correlation between the H and V channels

for these two events was considered indicative of an instrumental problem rather than an

environmental one, while the high correlation between ZDR and ZV suggests that some

problem in the receive path of the vertical channel may have caused the observed variability

in ZDR .

In the case of the event which did not display a distinct diurnal cycle in the FFT analysis of the

ZDR signal, the variability in the measurements could be related to variations in ρHV which

was used in this study as an indicator for the quality of the measurement. The time series of

refractivity just below the Cimetta tower showed variability at the 12 hour scale while the time

series of refractivity in the air mass just above the Cimetta tower showed more variability at the

48 hour scale which was possibly related to more synoptic scale variability. It is possible that

variations in the refractivity profile caused for the beam not to hit the Cimetta tower correctly

over the course of this event. Because the horizontal and the vertical channels were equally

affected, the correlation between these was high, although in absolute terms this resulted in

lower measured values in the vertical channel causing an increase in ZDR . Since this event

was related to environmental factors rather than an instrumental problem, it was considered

unfit for variance reduction using eq. 2.3. It is worth noting that this conclusion holds for the

four day event as a whole. The spectral analysis presented in this study however, has shown

that a daily time scale is probably optimal to emphasise hardware issues which are subject to

diurnal variations (and are mainly linked to temperature variations inside the receiver box).

This hypothesis has been verified and it was indeed found that on the first two days of the

March 2015 event it is possible to successfully reduce the variance of ZDR using the proposed

eq. 2.3.

Hence it can be concluded that according to the results of this study, the Cimetta tower can

be used successfully for radar system monitoring. It has been shown that there are cases for

which an excess in variability of the ZDR of the Cimetta tower can be related to an excessive

compensation of the dual-polarisation LOW sensitivity channels. This important conclusion

was reached by observing that in such cases the ZDR signal of the tower is anomalously

correlated with the online correction of the dual-polarisation HI sensitivity channel. If it

can be assumed that the HI and LOW sensitivity channels are subject to a similar response

to temperature (i.e. that these are correlated) then the differential echo from the Cimetta

tower can be compensated based on the calibration (CAL) information related to the HI

sensitivity channel (in the absence of such information for the LOW sensitivity channel). As

demonstrated in this study, for the two events concerned the observed diurnal signal in ZDR

could be compensated using the information related to the calibration signals multiplied

with an amplification factor. After this compensation, the daily variances of the ZDR series

were back to normal values (< 1 dB2). As stated, the compensation method assumes that the
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operational amplifier of the LOW sensitivity channel, which amplifies the Cimetta echo, is

subject to the same diurnal (and temperature dependent) fluctuations as the HI sensitivity

channel, which is calibrated using the noise source signal. However, this compensation was

based on only eight days of measurements and should be tested with more events. Also, the

results of this study were based on clear-sky days and further research may be conducted on

the stability of the signal in days of continuous rain. Though a lack of four day events with

non-interrupted rain would probably require such a study to be done on smaller temporal

scales. The improved knowledge of the signature of the Cimetta tower does allow for further

analysis of case studies of particular meteorological conditions such as the presence of a

melting layer at the height of the Cimetta tower. Finally, this study has focused on signatures in

ZH , ZV , ZDR and to a lesser extent ρHV . Any further analysis could also include the temporal

variability of the Cimetta tower signatures for other polarimetric variables.
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3 Characterisation of the melting layer
variability

This chapter has been adapted from the manuscript:

• van den Heuvel, F., M. Gabella, U. Germann and A. Berne, 2018: Characterisation of the

melting layer variability in an Alpine valley based on polarimetric X-band radar scans.

Atmospheric Measurement Techniques, 11 (9), 5181-5198, doi: 10.5194/amt-11-5181-

2018.

It presents the characterisation and comparison of the spatio-temporal variability of the

melting layer based the Fast Fourier Transform method applied to X-band radar data from a

location on the Swiss plateau and a location in the Swiss Alps.
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3.1 Summary

The melting layer designates the transition region from solid to liquid precipitation, and is

a typical feature of the vertical structure of stratiform precipitation. As it is characterised

by a well-known signature in polarimetric radar variables, it can be identified by automatic

detection algorithms. Though often assumed to be uniform in space and time for applications

such as vertical profile correction, the spatial variability of the melting layer remains poorly

documented. The work presented in this chapter undertakes to characterise and quantify

the spatial and temporal variability of the melting layer using a method based on the Fourier

transform, which is applied to high resolution X-band polarimetric radar data from two

measurement campaigns in Switzerland. It is first demonstrated that the proposed method

can accurately and concisely describe the spatial variability of the melting layer and may

therefore be used as a tool for comparison. The method is then used to characterise the

melting layer variability in summer precipitation on the relatively flat Swiss plateau and in

winter precipitation in a large inner Alpine valley (the Rhone valley in the Swiss Alps). Results

indicate a higher contribution of smaller spatial scales to the total melting layer variability in

the case of the Alpine environment. The same method is also applied on data from vertical

scans in order to study the temporal variability of the melting layer. The variability in space

and time is then compared to investigate the spatio-temporal coherence of the melting layer

variability in the two study areas, which was found to be more consistent with the assumption

of pure advection for the case of the plateau.
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3.2 Introduction

Quantitative precipitation estimation (QPE) with radar in complex terrain such as the Alps,

is complicated by many factors amongst which partial and total beam shielding by terrain,

the influence of orography on the dynamics and microphysics of precipitation as well as the

shallow depth of precipitation during cold seasons (Germann and Joss, 2004; Roe, 2005; Houze,

2012; Colle et al., 2013). In order to avoid the problem of shielding, radar measurements

are often collected at higher elevations. The measurements made aloft are then usually

extrapolated to the ground level to compensate for the lack of direct visibility with the radar

(Joss and Pittini, 1991; Joss and Lee, 1995; Andrieu and Creutin, 1995; Vignal et al., 1999;

Germann and Joss, 2002; Gray et al., 2002; Vignal et al., 2000; Zhang and Qi, 2010; Kirstetter

et al., 2013). These extrapolated values are commonly corrected with the vertical profile of

reflectivity (VPR) which represents the vertical change in the radar reflectivity measurement

due to changes in size, phase and fallspeed of hydrometeors. Many VPR correction techniques

used operationally, are based on mean VPRs extracted in well-visible regions of the radar

(Koistinen, 1991; Joss and Lee, 1995; Germann and Joss, 2001, 2002). Other broad categories

include climatological VPRs (Joss and Pittini, 1991; Joss and Lee, 1995; Gray et al., 2002),

inverse VPRs (Andrieu and Creutin, 1995; Andrieu et al., 1995; Vignal et al., 1999; Vignal and

Krajewski, 2001) and model derived VPRs (Mittermaier and Illingworth, 2003; Zhang and

Qi, 2010; Kirstetter et al., 2013). A typical feature of VPRs in stratiform precipitation is the

melting layer (ML) or bright band signature which designates a transition region from solid

precipitation to liquid precipitation. It is characterised by a high horizontal reflectivity factor

(ZH ) due to the increase in effective dielectric constant as solid hydrometeors are coated by a

thin layer of water, as well as a decrease in the copolar correlation coefficient (ρHV ) due to

the presence of heterogeneous hydrometeor types (Battan, 1973; Zrnic et al., 1993; Fabry and

Zawadzki, 1995; Brandes and Ikeda, 2004). Other polarimetric signatures in the melting layer

include an increase in differential reflectivity (ZDR ) which is usually smaller in the solid phase

and higher in the liquid phase (Doviak and Zrnić, 2006) and large linear depolarisation ratio

(LDR) values which may be related to broader distributions of canting angles due to increased

spinning of the hydrometeors (Brandes and Ikeda, 2004). However, layers with single pristine

crystals such as dendrites which are often present above the melting layer may cause a similar

increase in ZDR values (Matrosov et al., 2007), which is why many melting layer detection

algorithms are based on ZH and ρHV or LDR measurements.

Algorithms for QPE and VPR extraction often assume that the melting layer is spatially and

temporally homogeneous, however as the VPR shape is dependent on microphysical processes

such as riming and aggregation (Fabry and Zawadzki, 1995; Bell, 2000; Roe, 2005; Stoelinga

et al., 2013), as well as on the vertical profiles of temperature and relative humidity (Matsuo

and Sasyo, 1981; Stoelinga et al., 2013), this assumption may not necessarily hold for events

with rain-snow transitions or in an orographic context (Boodoo et al., 2010; Campbell and

Steenburgh, 2014). Multiple studies have shown that the melting layer can dip a few hundred

metres downwards in the proximity of terrain (Lumb, 1983; Marwitz, 1983; Houze and Medina,

2005; Medina et al., 2005; Marigo et al., 2008; Stoelinga et al., 2013). And the melting layer

53



Chapter 3. Characterisation of the melting layer variability

depth, for example, may vary with a factor of three depending on snowflake density (Matsuo

and Sasyo, 1981; Stoelinga et al., 2013). Indeed, based on observational data, Wolfensberger

et al. (2016) found significant dependencies between melting layer thickness and the presence

of rimed particles above the melting layer. The authors related this to the longer distances

travelled by rimed particles before complete melting due to the higher densities and fall

velocities of these types of hydrometeors. Other important identified factors explaining the

variability of the melting layer included the reflectivity gradient in the solid phase and copolar

correlation coefficient values inside the melting layer (Wolfensberger et al., 2016).

As a result, individual VPRs at the near and far range can be highly variable with respect to the

average VPR even in non-mountainous terrain (Jordan et al., 2000; Bellon et al., 2005; Berne

et al., 2004). Though the variability of the melting layer and the freezing level height has been

extensively studied at seasonal and large spatial (Harris et al., 2000; Thurai et al., 2003; Das

et al., 2011; Rudolph and Friedrich, 2013) and temporal (Fabry and Zawadzki, 1995) scales,

information on and quantification of the small scale spatial variability remains relatively

sparse. Das et al. (2011) for example, studied the seasonal variability of the melting layer

height at two different locations in India and found that the higher latitude location showed

more monthly variability. For Mediterranean precipitation Berne et al. (2004) found that

point-scale VPRs have a spatial representativeness which is limited to 6 km distances from

the radar for 15 minutes integration times. Whereas Fabry et al. (1994b) reported a melting

layer height change of 1500 metres within 3 hours in Montreal (Canada), Cluckie et al. (2000)

found no more than 600 meters deviation in the melting layer height in the region of Middle

Wallop (England) and this only in conditions with significant convection. However, none of

these studies were conducted in an Alpine environment.

Mohymont and Delobbe (2008) first evaluated the ability of variograms to assess the spatial

variability of the vertical profile of reflectivity in volumetric radar data in Belgium. They found

that the variations of variograms of VPRs up to 200 km from the radar were caused by the non-

uniform nature of the vertical structure. Variograms of reflectivity were also used by Germann

and Joss (2001) to quantify the spatial variation of Alpine precipitation, which was found to

be considerable for various types (convective and stratiform) of precipitation. Though the

differences in reflectivity at all spatial ranges were lower for stratiform precipitation than

for convective precipitation, the authors also found that the variation was weaker above the

melting layer than below, indicating that the variation in reflectivity aloft can not fully explain

the variation observed at ground levels. The vertical structure of radar-observed precipitation

in Switzerland was also studied by Rudolph and Friedrich (2013). Based on characteristic

seasonal patterns in the vertical structure, the authors could perform a seasonal classification

of storms. The authors further related the vertical structure to dynamic and thermodynamic

environmental parameters, showing that the radar-observed vertical structure of precipitation

in the vicinity of Locarno, Switzerland, is correlated with synoptic patterns, integrated water

vapour flux, atmospheric stability and the vertical profiles of temperature, moisture and wind

(Rudolph and Friedrich, 2014). They could predict the vertical storm structure type with

reasonable accuracy based on these parameters.

To increase the availability of radar information, MeteoSwiss has recently extended its weather
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radar network with two polarimetric C-band radars at high altitude locations (∼3000 m asl)

in the Swiss Alps (Germann et al., 2015). This poses a new challenge of the applicability of

existing vertical profile correction techniques to these high-altitude measurements but also

provides new opportunities to use polarimetric radar variables for the improvement of QPE

in these regions. Thus, information on, and the quantification of the spatial variability of

the vertical structure of polarimetric radar variables in mountainous terrain is an important

first step to the improvement of QPE and the estimation of its uncertainty in the Swiss Alps.

Two measurement campaigns were conducted in very different though highly representative

regions in Switzerland in order to study the structure and variability of precipitation. The

use of mobile radars allowed to study the lower part of the troposphere in places of interest

and with reduced visibility from the operational C-band radars. The melting layer detection

algorithm designed by Wolfensberger et al. (2016) has been applied to the RHI (range-height

indicator) scans from these campaigns to extract information on various characteristics of the

melting layer. The study presented in this chapter seeks to quantify and compare the spatial

variability of these melting layer characteristics at different spatial scales using a method based

on the Fourier transform. The chapter is structured as follows; section 3.3 briefly presents

the datasets and study areas, section 3.4 describes the pre-processing and how the Fourier

transform method has been applied for the quantification of the spatial variability, section 3.5

presents an evaluation of the method as well as the results and discussion of the melting layer

statistics from the two study areas and section 3.6 contains the main conclusions.

3.3 Dataset description

Most of the RHI scans used in this work were performed by the EPFL-LTE X-band Doppler

dual polarization radar (MXPol) which was deployed in two distinct areas in Switzerland. First

within the context of the PaRaDIso (PAyerne RADar and ISOtopes) campaign on the Swiss

plateau in Payerne from the end of March to the beginning of July 2014 (Fig. 3.1), where it

was co-located with another X-band radar (DX50). This location was of particular interest

because it represents the climate conditions of a large, and most densely populated part of

Switzerland and because of the presence of various other (disdrometers, radars, profilers,

sounding) instruments in the area. MXPol was then deployed at the ground level (460 m asl)

near Martigny in the main valley of the Swiss Alps for the 2016-2017 winter season. This area

has the advantage of being both a very deep and long valley, thus providing both relatively

good visibility with the mobile X-band radar and the possibility of studying precipitation

characteristics in an Alpine valley.

3.3.1 Data PaRaDIso campaign

The MXPol radar operated in Payerne from the 21st of March until the 14th of May within the

context of the PaRaDIso campaign (hereafter Payerne campaign). It was offline for mainte-

nance for one week between the 21st and the 28th of April, but no significant precipitation
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Figure 3.1 – Locations of the study areas (Payerne and Martigny) within Switzerland (top left
panel) and the scan directions for the RHI scans during the Valais campaign (lower left panel).

events occurred during this period. Datasets from this campaign include RHI scans from the

MXPol radar as well as those from a similar X-band radar (DX50), located approximately 3.7 km

away from MXPol. The scanning strategy of the MXPol radar during this campaign consisted

of two RHIs (one in the direction of the DX50 radar) a Plan Position Indicator (PPI) scan at 5◦

elevation and a vertical PPI scan (rotating 360 degrees). The DX50 performed 3 RHIs (one in

the direction of the MXPol), 3 PPIs and also a vertically pointing scan. The scan strategies of

both radars were repeated every 5 minutes. There are a total of 10 significant events for which

data were recorded by both radars, representing over 170 hours of precipitation during which

a total of 61.5 mm of rain was recorded in the nearby rain gauge. In addition to this, there

were 4 medium intensity events, which represent over 29 hours of data and for which 5.4 mm

of rain was recorded in the gauge. Data from both radars is also available for 5 low intensity

events. All these events constituted the basis for the selection of the radar data for continuous

and sufficiently long melting layers. About 460 RHI scans per azimuth were retained, each

event containing at least 20 RHI scans. More information on this campaign can also be found

in Figueras i Ventura et al. (2015).

The left most panel in Fig. 3.2 shows the average number of days with precipitation in Payerne

for the period of March until May 2014 compared to the average conditions at that location

for the same period. March 2014 for example, was relatively dry, whereas May was slightly

wetter than usual. The middle panel shows the number of scans with a detected melting

layer for each month; there is a clear over-representation for the month of May, mainly due

to the fact that this is a rainier month both in terms of number of rainy days (left panel) and
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Figure 3.2 – Meteorological conditions in Payerne during the campaign compared to clima-
tology; with the average number of days with precipitation for each month (left panel), the
number of retained scans with a detected melting layer (middle panel) and a climatogram
(right panel).

precipitation amounts (right panel). The climatogram in the right panel indicates average

monthly precipitation sums (blue) and temperatures (green, with the quartiles in different

shades) as compared with the measurements over the period of the Payerne campaign. The

observed precipitation sums have been subdivided into the contributions of four classes of

precipitation intensity. The total precipitation sums for the month of May did not exceed the

climatological average, even though the number of wet days was higher. The average observed

monthly temperatures are represented with red dots and are well within the climatological

limits.

3.3.2 Valais 2016-2017 campaign

The set-up of a mobile X-band radar near Martigny scanning under the operational MeteoSwiss

C-band radar located at Plaine Morte (∼40 km distance) was specifically intended to study

precipitation in an orographic context and in wintertime, which are the conditions known to

be most challenging to the quantitative estimation of precipitation in Switzerland (Germann

and Joss, 2004; Koistinen et al., 2004; Germann et al., 2006; Montopoli et al., 2017). The MXPol

radar measured precipitation in the Valais from the 3rd of November 2016 to the 24th of May

2017. From this period, only the measurements between November 2016 and March 2017 are

taken into account in order to restrict the analysis as much as possible to winter precipitation.

The main characteristics of the MXPol radar and the principal scanning strategy performed

during the Valais campaign are given in Table 3.1. Because the radar was located in a deep

valley, no non-vertical PPI scans were performed. The scan strategy changed once early during

the campaign; before that, the radar performed 3 RHI scans in Dual Pulse Pair (DPP) mode

in the main axis of the valley and one vertical PPI scan (rotating 360 degrees). The scanning

strategy described in Table 3.1 turned for the remainder of the campaign and performed one

RHI scan in the direction of the Plaine Morte (47◦), one hemispheric RHI in the axis of the
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main valley (54◦), one RHI in Fast Fourier Transform (FFT) mode in the direction of Pierre Avoi

mountain (90◦), one RHI which made a cross section of the main valley (147◦) and the vertical

PPI scan in FFT mode. Both FFT mode scans were performed at 30 metres resolution and the

DPP mode scans were performed with 75 metres resolution.

Radar parameters

Wavelength 3.2 cm

Diameter 185 cm, 183 cm

Range 35 km

3dB beamwidth 1.43◦ / 1.27◦1

Peak power 7.50 kW per channel

Radial Resolution 30, 75 m

Polarization Simultaneous H-V

Scan strategy

3 Range Height Indicator (RHI) 47, 90, 147◦ azimuth

1 emispheric RHI 90◦ azimuth

1 PPI for ZDR calibration 90◦ elevation

Scanning Dual Pulse Pair mode

FFT mode

Sequence duration 3 minutes 45 seconds

DPP mode

PRI 1 (Pulse Repetition Interval) 800 µ sec

PRI 2 1000 µ sec

Group interval 1000 µ sec

Clutter averaging 9

Post averaging 3

Scan velocity 12 deg/s

FFT mode (PPI)

PRI 1 700 µ sec

PRI 2 700 µ sec

Group interval 1200 µ sec

Clutter averaging 2

Post averaging 2

Scan velocity 16 deg/s

Table 3.1 – Characteristics of the MXPol radar and scanning strategy during the Valais cam-
paign.

1Due to a change in antenna for the Valais campaign
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During the considered time period, a total of 403 hours of precipitation were recorded at the

ground station in Martigny. Roughly 16 precipitation events could be identified on the basis of

more or less continuous precipitation and similar synoptic conditions, representing a total

of 324 hours of precipitation. These 16 events constituted the basis for the selection of the

radar data for continuous and sufficiently long melting layers. Eventually, 1651 RHI scans per

azimuth direction were retained, with each event containing at least 50 RHI scans.

Figure 3.3 – Meteorological conditions in Sion (~20 km from MXPol) during the campaign
compared to climatology; with the average number of days with precipitation for each month
(left panel), the number of retained scans with a detected melting layer (middle panel) and a
climatogram (right panel).

The left panel in Fig. 3.3 shows the average number of days with precipitation in Sion (∼20 km

distance from MXPol) compared with the observed number of days with precipitation at this

location during the Valais campaign. While December and January were unusually dry, the

other months were slightly wetter. The middle panel in Fig. 3.3 shows the number of scans

with a detected melting layer for each month. The month of March is slightly over-represented

due to the higher number of wet days and the higher precipitation sums for that month (right

panel). The climatogram in the right panel indicates average monthly precipitation sums

(blue) and temperatures (green, with the quartiles in different shades) as compared with the

measurements over the period of the Valais campaign. The observed precipitation sums have

been subdivided into the contributions of four classes of precipitation intensity. Precipitation

sums for the months of May and November exceeded by far the climatological average, while

February and March were relatively warm.

3.4 Methodology

3.4.1 Pre-processing

MXPol applies an automatic Doppler filter on non-vertical scans, and all the radar data from

the measurement campaigns have been further subjected to the same pre-processing routine
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including a filtering of the data based on the signal-to-noise ratio threshold of 5 dB (10 dB for

all phase based data)2 and a copolar correlation coefficient (ρhv ) threshold of 0.6. Horizontal

reflectivity (ZH ) and differential reflectivity (ZDR ) have been corrected for attenuation in rain

using the constrained method by Testud et al. (2000). For the Payerne data a single ZDR

calibration coefficient, based on observations from previous campaigns, was applied. For the

Valais campaign, due to increased variability of the ZDR likely related to higher temperature

variations on site, the calibration coefficient was updated more frequently and calculated

based on data from the solid phase similar to the approach described by Dixon et al. (2017).

The specific differential phase (Kd p ) was estimated from the total differential phase shift (Ψd p )

using the multistep method described by Vulpiani et al. (2012)3.

All the RHI scans from the 16 identified precipitation events were subjected to the melting

layer detection algorithm developed by Wolfensberger et al. (2016), which was run using the

ARM Radar Toolkit (Py-ART (Helmus and Collis, 2016)). The algorithm uses the gradients of

reflectivity and copolar correlation coefficient to detect the melting layer top and bottom;

more information on the algorithm can be found in section 1.1.6 and Wolfensberger et al.

(2016). Before applying the algorithm, the lowest elevation angles and the furthest gates of the

scans were cut off to avoid contamination from ground clutter and mountains. In addition to

this, the RHIs were subjected to a texture based clutter filter from the Py-ART toolbox. In order

to limit the effects of beam broadening, the melting layer detection algorithm has been set to

detect up to a maximum distance of 10 km from the radar, holes in the detected melting layer

tops and bottoms were interpolated up to a maximum length of 1500 metres such as to obtain

continuous, non interrupted data series. Otherwise, the default settings found to be optimal

and described by Wolfensberger et al. (2016) were used, including interpolation of the RHI

scans on a 25 m resolution Cartesian grid.

3.4.2 Calculation of the power spectra of melting layer variables

From the output of the melting layer detection algorithm various variables have been extracted

and calculated such as the heights of the top and bottom of the melting layer, the thickness or

depth of the melting layer and the height of the reflectivity peak within the melting layer. Figure

3.4 shows the melting layer detection algorithm output with the corresponding extracted and

derived variables for an idealised vertical profile.

Before subjecting the data to the Fourier transform, it was conditioned following the indica-

tions in Stull (1988). More specifically, the melting layer variables were first de-trended and

then tapered to avoid red noise and leakage. The tapering was done with a bell taper for which

2for the Payerne data thresholds were 0 dB and 5 dB respectively
3Kalman-filtering was used for the Payerne data
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Figure 3.4 – Melting layer detection algorithm output superimposed on the reflectivity values
(left upper panel) and on copolar correlation coefficient values (left lower panel) and the
extracted and derived variables (right) indicated for an idealised vertical profile of reflectivity
(VPR). The bending of the melting layer towards the ground is probably related to the trapping
of cold air in the valley and the observed negative temperature gradient towards the East (in
the direction of the scan).

the window weight is given by:

W (k) =


sin2(5πk/N ) for 0 ≤ k ≤ 0.1N

1 elsewhere

sin2(5πk/N ) for 0.9N ≤ k ≤ N

(3.1)

The variables were then subjected to a one dimensional Fast Fourier transform, such that

for each melting layer variable A of length N the Fourier transform returned N coefficients

of FA(nc ) for every frequency nc . Since only continuous melting layers were taken for the

analysis, padding (filling the gaps with artificial data points) was not necessary. The fraction

of variance explained by each component (or spatial scale) nc was obtained by dividing the

square of the norm of the complex Fourier transform by the total variance such as described in

section 1.3.2. The effects of the conditioning of the data on the fractions of variance explained

by component were monitored, and are briefly discussed in the following section.
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3.5 Results

In the subsections below the extent to which the method can describe the individual melt-

ing layers, and how the fractions of variance explained by component are affected by the

conditioning of the data are treated first. Then the results from the study areas on the Swiss

plateau and in the Swiss Alps are compared, first based on general statistics of the melting

layer and then based on the fractions of variance explained by component for the spatial

analysis. Finally, the spatio-temporal coherence of the melting layer variability is assessed for

the two sites.

3.5.1 Evaluation of the method

In order to evaluate the extent to which the method can describe the melting layer variability

and how many components are needed, the performance on individual melting layers was

analysed. Figure 3.5 shows a selection of three melting layer tops from the Payerne campaign

and two melting layers tops from the Valais campaign. The blue line is an artificial melting

layer created by adding white noise to a linear trend. For the fraction of variance explained

by component (panel b), only the first ten spatial frequencies are given (here represented in

wavelength (1/ f )) for representational purposes. The largest wavelengths (or spatial scales)

correspond to distances of 20-15 km for melting layers which spanned almost the entire

hemispheric scan. Panel c gives the cumulated sum of the fractions of variance explained

by component from the 5000 m distance lag down to the Nyquist frequency (two times the

resolution of the data). Since the spectra have not been folded back such as for the calculation

of the discrete spectral density, the maximum fraction of explained variance is at 0.5. As a

scaling break can be observed around the 500 m wavelength at minimum (indicated with a

vertical dashed line) and since the most important differences between the melting layers are

concentrated in the first few components, higher frequencies are considered to approach the

noise related either to the melting layer detection algorithm or the resolution of the data. This

is also close to the 750 m distance lag found by Fabry et al. (1994a) as the separation between

variability due to measurement noise and weather. Moreover, as the panel c in Fig. 3.5 as

well as calculations over the entire dataset indicate, at this distance the cumulated explained

variance is 50% or more of the total variance in most of the melting layer tops.

The fractions of variance explained by component in panel b of Fig. 3.5 indicate how the indi-

vidual melting layer tops can be distinguished; melting layer tops with less spatial variability

(two of the three Payerne cases) have most of their variance explained by the first component

and then equal amounts of variance explained by all of the subsequent components. This

means that the corresponding melting layer tops either vary only at the largest spatial scale

or at even larger scales not resolved by the obtained spatial frequencies. Melting layer tops

which are spatially more variable have higher contributions to the total variance from smaller

spatial scales, though here as well some leakage to the neighbouring frequencies is possible.

It must be borne in mind that the larger spatial scales also have a higher associated uncertainty;
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Figure 3.5 – Examples of observed melting layer tops (a), their corresponding fractions of
variance explained by component (b), the cumulated fractions of variance explained (c) and
one original melting layer with the reconstituted melting layer from the first ten components
(d) from the Valais campaign (green), from the Payerne campaign (red) and for a constructed
melting layer consisting of white noise with a drift (blue). The vertical dashed line in panel c
indicates the location of the scaling break at wavelengths of 500 m and the horizontal dashed
line indicates the location where 50% or more of the total variance is explained.

the first component for example, is based on only one realisation of the series. Therefore,

as an example, the ability of the first ten components to reconstitute a single melting layer

top is given in panel d in Fig. 3.5. These first ten components represent 50% of the total

variance of this signal as indicated by the dashed lines in panel c of Fig. 3.5. The high spikes in

the original melting layer (green line in panels a and d) are artefacts from the melting layer

detection algorithm, and some beam effects can also be observed at further distances (around

7000 m distance from the radar). Nevertheless, the series are rather well reconstituted by the

first ten components, giving credibility to the accuracy of the method. Furthermore, for the

comparison of the data from the two campaigns the individual fractions of variance explained

by component have been regrouped into box plots in order to account for the uncertainties at

the larger spatial scales.

The effects of de-trending and tapering the data before performing the Fourier transform

are shown for the melting layer tops of both campaigns in Fig. 3.6. De-trending reduces the

amount of variance explained by the first component as it decreases the amount of red noise;
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a linear trend acts as an infinite wavelength wave which manifests itself with noise at low

frequencies. As mentioned, some of the melting layers may still have signals which are longer

than 20 kilometres. The fact that these have been truncated at a set distance may also result in

some additional red noise at the lower frequencies. However, the fact that the first component

does not always explain most of the variance and the ability of the components to reconstitute

the original melting layer indicates that red noise does not dominate the fractions of variance

explained by component. With the exception of the echo tops, where slopes were slightly

higher, the values of the trends that have been subtracted from the data were very similar for

all datasets and were for the melting layer tops between -0.2 and 0.2; more than 50% of these

remained within the -0.1 and 0.1 limits. Artefacts from the melting layer detection algorithm

or noise from the original measurement may have some influence on the spectral slopes,

which is why Fig. 3.6 also shows the effects of performing an additional median filtering of the

melting layers before de-trending and tapering. It appears that the effect of median filtering on

the fractions of variance explained by component is minor, and that de-trending and tapering

of the melting layers is sufficient.

Figure 3.6 – Box plots illustrating the effects of median filtering, de-trending and tapering on
the original melting layer tops for Payerne data (purple) and Valais data (green).

3.5.2 Melting layer statistics

After running the melting layer detection algorithm on the retained scans, the outputs and

derived variables as illustrated in Fig. 3.4 could be computed and descriptive statistics were

calculated using the data over the entire scan. The resulting distributions of the melting layer

tops, bottoms and depths, the highest reflectivity value and the lowest copolar correlation

coefficient value within the melting layer and the height difference between these two values

for all datasets are given in Fig. 3.7. A summary of these statistics including statistics of other

polarimetric variables is given in Table 3.2. For comparability with the Fig. 3.7, the statistics in
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Table 3.2 have been calculated on the log-transformed values. The comparison between DX50

values and MXPol values in Payerne allows to evaluate to what extent the observed differences

in the statistics may be attributed to the different radar systems. The melting layer tops and

bottoms display a bimodal distribution in the Valais with an approximately 400 metre shift

to the lower values due to the lower zero degrees isotherm in this region and season. The

distributions of the heights of the melting layer tops and bottoms for the DX50 and MXPol

radars (for the same events) are comparable, with some second-order differences which could

be explained by the different locations of the radar. Distributions of the melting layer depths

are slightly skewed with a mode around 300 metres. The histograms of the melting layer tops,

bottoms and depths show remarkable coherence in that the height distributions on the same

location are very similar, that there is a shift towards the lower heights for the Valais data

and that the melting layer depths remain the same between locations. The bimodality of the

Valais data may be explained by the exceptional character of the 2016-2017 winter season

with unseasonally high temperatures and perhaps the inclusion of data from early spring

notwithstanding our careful selection of the data. Nevertheless, they are comparable to the

results from Cluckie et al. (2000) in Salford England, where a bimodal distribution of melting

layer heights with peaks at 650 metres and 1850 metres was found. The melting layer tops are

also within the limits of the values found by Fabry et al. (1994b) in Montreal, which ranged

between 200 and 3800 metres in spring and 0 and 3900 metres in winter. The observed melting

layer depths are thicker than those observed by Cluckie et al. (2000) but comparable to the

depth ranges reported by Fabry et al. (1994b). Similarly to the results in Cluckie et al. (2000)

and Wolfensberger et al. (2016), melting layer thickness seems to be independent of season,

climate or topography. It thus appears that at least in these datasets there is no indication

of a relationship between melting layer thickness and melting layer height as suggested in

Fabry et al. (1994b). Instead, as found by Fabry and Zawadzki (1995) it is more likely that there

is some positive correlation between the melting layer thickness and the reflectivity of rain

below the melting layer. Though distributions of the reflectivity values also seem very similar

between the datasets, the Valais dataset is slightly shifted towards higher reflectivity values.

This may be an effect of sampling (as the Payerne dataset is smaller) or due to the presence of

higher precipitation intensities in the Valais dataset, but is also conform with the results from

Wolfensberger et al. (2016) where a shift between the Payerne data and the Davos data (also a

mountainous area) can be observed.

The distributions of the lowest values of the copolar correlation coefficient in the melting layer

show much lower values for the DX50 than for the MXPol radar; this is a known deviation for

this radar, but does not affect the melting layer detection algorithm which is based on scaled

gradients of ρhv and ZH (Wolfensberger et al., 2016). The Valais dataset, like the Davos dataset

in Wolfensberger et al. (2016) shows a larger presence of lower ρhv values within and above

the melting layer but similar overall distributions. Lower ρhv values could be associated with

enhanced riming and depositional growth above the melting layer. These processes result

in the presence of a higher variety of particle types and can be expected to be the dominant

growth mechanisms in a winter orographic environment and in situations with a low melting
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Figure 3.7 – Distributions of the characteristic melting layer variables.

layer (Colle and Zeng, 2004b,a; Colle et al., 2005a,b; Stoelinga et al., 2013; Schneebeli et al.,

2013). Finally, the distance between the reflectivity maximum and the copolar correlation

coefficient minimum shows a similar distribution across all datasets.

Variable Statistic DX50 MXPol MXPol Variable Statistic DX50 MXPol MXPol

(pay) (pay) (val) (pay) (pay) (val)

ZH Mean 22.19 23.14 22.84 ρhv Mean 0.9125 0.9256 0.9301

St.Dev 8.72 8.45 8.82 St.Dev 0.0727 0.0618 0.0595

Q10 11.5 11.90 11.77 Q10 0.8111 0.8457 0.8506

Q50 22.0 23.25 22.36 Q50 0.9331 0.9421 0.9465

Q90 34.0 34.0 35.02 Q90 0.9803 0.9841 0.9874

ZHpeak Mean 27.18 28.49 30.18 ρhvmin Mean 0.8245 0.8854 0.8785

St.Dev 7.73 7.11 7.23 St.Dev 0.0796 0.0633 0.0637

Q10 16.5 18.83 20.44 Q10 0.7047 0.7971 0.7912

Q50 27.5 28.95 30.47 Q50 0.8386 0.9039 0.8937

Q90 37.5 37.15 39.49 Q90 0.9173 0.9437 0.9430

ZDR Mean 1.04 0.6 1.11 Kd p Mean 0.06 0.098 0.099

St.Dev 1.13 0.86 1.06 St.Dev 0.5 0.2 0.2

Q10 -0.13 -0.3 0.05 Q10 -0.5 -0.13 -0.045

Q50 0.90 0.47 0.92 Q50 0.05 0.09 0.03

Q90 2.47 1.76 2.39 Q90 0.61 0.32 0.33

Table 3.2 – Statistics of the polarimetric variables related to the melting layer for the DX50 and
MXPol in the Payerne and Valais campaigns.
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3.5.3 Spatial variability

The fractions of variance explained by component have been calculated for each separate RHI

scan; which acts as a type of normalisation since each fraction represents the fraction of the

total variability of the detected melting layer in that scan. Because the detected melting layers

do not all have the same length, the fractions of variance explained by component have been

regrouped into spatial scales based on their corresponding frequency values. As demonstrated

in Eq. (1.20), the fractions of variance explained by component only give values of one side

of the Fourier spectrum, in order for the fractions to sum to 1, the spectra should be folded

(i.e. multiplied by 2). Figure 3.8 shows the box plots for the melting layer tops; both the DX50

and the MXPol data from the Payerne campaign show higher fractions of variability explained

for the first components (larger spatial scales) and an exponential decline of the fractions of

variance explained towards the smaller spatial scales. The box plots for the Valais data on the

other hand, display a much less pronounced decline in these fractions towards the smaller

spatial scales indicating, on average, a higher relative importance of the variability at smaller

spatial scales in the Alpine winter environment. Random sub-sampling of the Valais dataset

indicated that these results are robust also for a smaller number (460) of scans. And analysis

of the spatial variability at the event scale showed similar behaviour of the components across

events. Moreover, the first ten components shown in the box plots explain, on average and

for the folded spectra, 43%, 42% and 36% of the total variance for the DX50, MXPol (Payerne)

and MXPol (Valais) data respectively. The difference between the Valais and Payerne datasets

decreases when the first 20 components are considered to 54%, 53% and 50%.

Figure 3.8 – Fractions of variance explained by component for the melting layer tops (left
panel) and the melting layer depths (right panel) for the DX50 (red), MXPol in Payerne (purple)
and MXPol in the Valais (green) (fractions of individual melting layers have been binned based
on their corresponding frequency values).

The levelling out of the variability after the fifth component (the subsequent component corre-

sponds to spatial scales of 2000 - 1500 metres) is comparable to the findings in Wolfensberger

et al. (2016) who noted that the variogram of the melting layer tops reaches decorrelation

distance at around 1500 metres. As can be seen in the box plots in Fig. 3.8 the intra campaign

variability remains quite large. In fact, the first component is not always the most important
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component in terms of fractions of variance explained. And subsequent components are more

often the most important component in the Valais data then in the Payerne datasets (Fig. 3.9).

Figure 3.9 – Distribution of the binned spatial component with the highest fraction of explained
variance per scan for the DX50 (red), MXPol in Payerne (purple) and MXPol in the Valais
(green).

This intra campaign variability can be separated into inter event variability and intra event

variability. Figure 3.10 shows the parallel coordinates plots of the fractions of variance ex-

plained for the binned spatial scales (on the vertical parallel y-axes) for each individual RHI

scan (coloured lines) of the separate events (grouped on the first vertical y-axis). A single

event has been highlighted on the first vertical y-axis such that the variability of the values

for the components in a single event (intra-event variability) becomes evident. On the third

y-axis from the left, 10% of the explained variability of the second component has also been

highlighted to illustrate the inter-event variability. The inter event variability of the fractions of

variance explained by component appears to be larger for the Payerne data, as is illustrated by

the many different colours in the selected 10% of the second component. This may well be due

to a sampling effect as the dataset is much smaller and thus the weight of the individual scans

is much more important. For the Valais data, the intra-event variability and the inter event

variability appear more similar. The high intra-event variability in the fractions of variance

explained by component suggests that the melting layer variability is not necessarily consis-

tent for similar synoptic conditions. Notwithstanding this inter and intra event variability, the

box plots of the fractions of variance explained by component at the event scale indicate a

typical behaviour namely that the variability in space at the larger scales is always smaller in

the Valais data, and in the Payerne data most of the total variance is always explained by the

first component (i.e. the larger scales). The coordinate plots also show that the larger spatial

scales (20-15 km) are equally well represented in both campaigns even though for the Valais

campaign these only occurred in the first two events because of a change in scan strategy

which hindered the visibility in the 0-23 degrees elevations afterwards.
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Figure 3.10 – Parallel coordinates plots illustrating the intra and inter event variability of the
fractions of variance explained by component of the melting layer tops, for the MXPol in
Payerne (top panel) and the MXPol in the Valais (bottom panel); highlighted for a single event
(number 7, indicated in pink on the first y-axis, and event lines are orange for Payerne and
yellow for Valais) and highlighted for 10% of the explained variance for the second component
(indicated in pink on the third y-axis).

The fractions of variance explained by the melting layer bottoms are more similar for both

campaigns and showed higher values for the larger spatial scales in the Valais data than for

the melting layer tops. This has been commented on in Wolfensberger et al. (2016) and is

thought to be related to the fact that the detected melting layer bottom is smoother than the

tops because the detection of the melting layer top is solely dependent on reflectivity which

is more influenced by large hydrometeors, while the detection of the bottom depends on

both reflectivity and the copolar cross-correlation coefficient. The box plots of the fractions

of variance explained by component of the melting layer depths (thickness) show very little

spatial variability and indicate the opposite behaviour as compared to the melting layer tops.
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For the Valais data, the larger spatial scales explain most of the variance, whereas for the

Payerne data, the 20 - 15 km and the 15-10 km (15-10 km and 10-5 km for the ρhv minimum)

lags are equally important. This may be related to the presence of more convective pockets

in the Payerne dataset. Overall, the statistics are more similar for the two locations (and

for the three radars) for the melting layer depths than for the melting layer tops, indicating

that the variability in the melting layer depth is more consistent over flat areas and complex

topography.

3.5.4 Spatio-temporal coherence of the melting layer variability

For the analysis of the temporal variability, a number of events have been selected based on

their duration (at least 5 hours of quasi continuous precipitation). As such, from the Payerne

campaign 4 events with a total duration of 26.5 hours were selected, and from the Valais

campaign 4 events with a total duration of 94 hours were selected. In order to increase the

temporal resolution, the data extracted at vertical incidence from the RHI scans were added to

the vertical PPI scans, creating blended RHI/PPI time series of at least 1.66 minute resolution.

The melting layer detection algorithm was then applied to the temporal series which were

de-trended over the duration of the entire event, thus preserving the within-event variability.

The removed absolute trends varied depending on the length of the time series; the highest

removed trend was 112 metres/hour for the shortest event and the lowest removed trend was

3 metres/hour for the longest event. The 112 metres/hour trend may seem large, but has

been related to the passage of a small occluded front, and remains lower than the observed

height change in a time series from Fabry et al. (1994b), who recorded a change of 1.5 km in 3

hours. From the de-trended data, periods of one hour were selected with a sliding window

of 12 minutes. The lengths of the sub selected time series were roughly the same, but they

have nevertheless been re-binned into set time lags. Figure 3.11 shows the resulting box plots

of the fractions of variance explained by component for both the spatial components (in

purple and green) and the temporal components (in orange and red) for the two campaigns.

Figure 3.11 suggests that in Payerne, the spatial and temporal variabilities are very similar

at the investigated scales. The slightly lower values for the temporal data may be attributed

to the fact that it was more difficult to ascertain continuous precipitation in the temporal

data and discontinuities have the effect of diminishing the spectral slope and as such also

the fractions of variance explained for the larger scale components (De Montera et al., 2009;

Verrier et al., 2011; Rysman et al., 2013). Still, variability observed at spatial scales of 20 to 15

kilometres is very similar to the variability observed at the 1 hour scale. Indeed, considering

that the average wind speed measured by a meteorological station on site during the time

periods of the selected events was 11.0 km/h ± 3.7 km/h, it may well be that the air mass

scanned by the RHI scans up to 10 km from the radar was very similar to the air mass scanned

above the radar within the hour. This is also comparable to the findings of Rysman et al.

(2013), who found similar spectral slopes for the 20-45 minutes temporal range and the 7-20

km spatial range for summer months in the Mediterranean region. The authors related the

spectral slope at these temporal ranges to the expected value for velocity within a turbulent
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flow, indicating that at these scales rain is driven by turbulence. Whereas in the Mediterranean

case the spectral slope for the 20-45 minute time lag was the same for all months (except

during fall), the Payerne and Valais datasets show more discrepancies. For the Valais data at

the one hour scale (red box plots in the right panel of Fig. 3.11), the larger time lags seem

to be responsible for about twice as much of the temporal variability than the larger spatial

scales. One the one hand, this could be consistent with the influence of the more variable

small-scale topography in the Valais affecting the RHI scans. On the other hand, the wind

speeds during the Valais events were also much more variable with an average of 4.2 km/h and

a standard deviation of 5.3 km/h. The slower wind speeds and longer time series of the Valais

events justifies an analysis at longer temporal scales. The right panel in Fig. 3.11 also shows

the box plots for the temporal components for spatial scales up to 2 (dark orange) and three

(orange) hours. Though some differences with the spatial components can still be observed,

the temporal components are much more similar at the 2 hourly and 3 hourly scales. The

difficulty of finding spatio-temporal coherence in the Valais data may also partly be explained

by the wintertime results from Rysman et al. (2013) where spectral slopes showed that a unique

scaling regime characterised the rainfall scaling behaviour from 3 to 70 km scales (and from 5

minute to 3 hourly scales), meaning that the fractions of variance explained by component

can be expected to be very similar at these scales.

Figure 3.11 – Box plots of the fractions of variance explained by component (binned) for the
melting layer tops of the selected events for MXPol data in Payerne (left panel) and MXPol
data in the Valais (right panel). Spatial components are in purple and green and temporal
components are in orange for the Payerne data and in hues of red for the Valais data to
distinguish the different time periods of 1, 2 and 3 hours.

In order to assess the influence of the topography, a similar analysis has been applied by

extracting data from a digital elevation model with a resolution of 3 arc second (∼90 m) in

the horizontal, and 16 metre vertical accuracy (Jarvis et al., 2008; Smith, 2003). The DEM

was sampled at a 25 metres resolution in the azimuth direction of the RHI scans, and in the

directions of neighbouring azimuths within ±5◦ angles, resulting in a total of ten transects.

While for Payerne a clear dominance could be observed at the 20 - 15 km scale, for the Valais

data, the 10 - 5 km scale was almost equally important as the 20 - 15 km scale (Fig. 3.12).

Though these results indicate a higher importance of the smaller scale topography along the
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transect of the RHI in the Valais, it is difficult to link these to the melting layer variability due to

the many other factors (i.e. wind speeds and hydrometeor fall velocities) that may play a role.

Figure 3.12 – Box plots of the fractions of variance explained by component (binned) for the
ten transects extracted from the DEM data in the direction of the RHI scans (± 5 degrees
azimuth) with in the right hand panels the first and last transect of the DEM in clockwise
direction (measurement direction -5◦ and measurement direction +5◦ azimuth).
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3.6 Conclusions

This chapter presented the characterisation and quantification of the spatial variability of the

melting layer at different scales using a method based on the Fourier transform. It is demon-

strated that the proposed method is able to accurately describe the variability in individual

melting layers and that it constitutes a useful basis for comparison of the variability of the

observed melting layer at different spatial scales in different regions or from different data

sources. The method has been applied to data from measurement campaigns conducted in

two very different though highly representative regions in Switzerland, namely on the relatively

flat Swiss plateau during summer and in a large inner Alpine valley in the Swiss Alps in winter.

The descriptive global statistics of the melting layer tops, bottoms and depths have been found

to display remarkable coherence; with a seasonal shift in the distributions of the heights while

distributions of the melting layer thickness remained the same independent of season or

location. The values and distributions found in this study are consistent with those found in

previous studies at other locations. However, the performed Fourier analysis of the spatial

variability of the melting layer tops indicated a higher importance of variability at smaller

spatial scales in the case of the Alpine environment, possibly related to the influence of the

small-scale topography. The investigation of the variability of the topography in the dominant

wind directions of the considered regions also suggested a larger importance of the small

scales in the Valais region, but will require further research in order to establish a more direct

link. According to the results of this study, there is little difference in the spatial variability of

the melting layer thickness in the two regions suggesting that it is less affected by topography.

Finally, the method was also applied to time series of the melting layer height of sufficiently

long events in order to study the spatio-temporal coherence of the melting layer variability.

For the Swiss plateau, the variability at the 1 hourly temporal scale corresponded well with

the spatial variability at the 15-20 km scales, which is also consistent with results from other

studies. The average wind speeds during these events varied little around 11 km/h suggesting

that the hypothesis of pure advection is quite valid for this region and during spring time.

Due to more variable wind speeds and directions, the presence of small-scale topography

and the possible scale invariance of wintertime precipitation conditions, it was more difficult

to relate the scales of spatial and temporal variability in the Alpine environment. If any, it is

possible that the spatio-temporal coherence in this region occurs at larger scales than could

be measured with an X-band radar.

It should be noted that the results of this study are restricted to very specific locations and

conditions as well as to temporal scales of up to 3 hours and spatial scales of 20 km and less.

Nevertheless, the presented results indicate that for some regions the descriptive global statis-

tics of the melting layer height may hide some important spatial variability of the melting layer.

Current operational vertical profile correction techniques still assume spatial homogeneity of

the melting layer, and the results of this study further indicate the necessity of a correction

technique which takes this variability into account, and give an indication of the relative

contributions of various scales.

73



4 Learning about the vertical structure
of radar reflectivity

This chapter has been adapted from the manuscript:

• van den Heuvel, F., L. Foresti, M. Gabella, U. Germann and A. Berne, 2019: Learning

about the vertical structure of radar reflectivity using hydrometeor classes and neural

networks - going beyond an average profile in the Swiss Alps. Atmospheric Measurement

Techniques, in preparation.

It presents a more localised vertical profile correction technique using reflectivity data and hy-

drometeor proportions extracted within vertical cones as inputs for artificial neural networks.
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4.1 Summary

The use of radar for precipitation measurement in mountainous regions is complicated by

many factors, especially beam shielding by terrain features, which, for example, reduces the

visibility of the shallow precipitation systems during the cold season. When extrapolating

the radar measurements aloft for quantitative precipitation estimation (QPE) at the ground,

these must be corrected for the vertical change of the radar echo caused by the growth and

transformation of precipitation. Building on the availability of polarimetric data and a hy-

drometeor classification algorithm, this work applies machine learning methods to study the

vertical structure of precipitation in Switzerland and proposes a more localised vertical profile

correction. It first establishes the ground work for the use of machine learning methods in

this context: from volumetric data of 30 precipitation events vertical cones with 500 m vertical

resolution are extracted. It is shown that these cones can well represent the vertical structure

of different types (stratiform, convective, snowfall) of precipitation events. The reflectivity

data and the hydrometeor proportions from the extracted cones constitutes the input for the

training of artificial neural networks (ANN), which are required to predict the vertical change

in reflectivity. Lower height levels are gradually removed in order to test the ANN’s ability to

extrapolate the radar measurements to the ground level. It is found that ANN models using

the information on hydrometeor proportions can predict from altitudes between 500 and

1000 metres higher than the ANN based on only reflectivity data. In comparison with more

traditional vertical profile correction techniques the ANNs show less prediction errors made

from all height levels up to 4000 m a.s.l., above which the ANNs lose predictive skill and the

performance levels off to a constant value.
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4.2 Introduction

Precipitation constitutes a key meteorological variable for ecosystems and societies; both

as a primary input for freshwater resources and (in deficit or excess) as a potential threat to

infrastructure and human lives. Mountainous regions such as the Alps, through their impact

on the flow and stability of air masses, influence the spatial distribution of precipitation (Frei

and Schär, 1998; Roe, 2005; Colle et al., 2013) as well as precipitation growth processes and

microphysics (Yuter and Houze, 2003; Colle et al., 2005b; Stoelinga et al., 2013).

Nevertheless, measuring precipitation in the Alps remains a challenge: while ground rain-

gauge networks are typically affected by poorer spatial representativity, wind-induced errors

(especially in the case of solid precipitation (Nitu et al., 2018)) and practical difficulties related

to access and maintenance, the quantitative precipitation estimates (QPE) by radar are also

limited by many factors (Germann and Joss, 2002). While the errors induced by ground clutter,

hardware calibration and - to a certain extent - attenuation (Germann, 2000; Germann et al.,

2006, 2015; Gabella et al., 2016), can be satisfactorily dealt with within the Swiss polarimetric

C-band radar network, reduced visibility and the correction for the changes in the vertical

profile of precipitation remain important challenges (Germann and Joss, 2002). Visibility

reduction due to partial and total beam shielding by mountainous terrain is partly overcome

by the higher elevation locations of the Swiss radars (between ∼900 and ∼3000 m a.s.l.) but

this also exacerbates the effects of overshooting due to earth curvature. As a result, the radars

cannot measure in the lowest layers of the atmosphere. For areas with reduced visibility it is

common practice to use radar measurements from aloft to estimate precipitation quantities

at the ground level. These measurements must first be corrected for the vertical profile of

precipitation (VPP) which includes changes in size, phase and fall speed of hydrometeors. And

because vertical profile corrections are typically based on and applied to the radar reflectivity

measurements, this technique is called the vertical profile of reflectivity (VPR) correction.

Existing operational VPR correction schemes often assume spatio-temporal homogeneity and

rely heavily on the reflectivity measurements (section 1.2). Due to the spatial variability of

precipitation microphysics, of temperature and humidity profiles as well as the growth and

decay processes (Matsuo and Sasyo, 1981; Fabry and Zawadzki, 1995; Bell, 2000; Roe, 2005;

Stoelinga et al., 2013) VPP and thus VPR profiles may be expected to vary considerably in space

and time, especially in an orographic context (Boodoo et al., 2010; Campbell and Steenburgh,

2014).

The aim of this study is to propose a more local vertical profile correction technique using

machine learning algorithms (MLA) and information on hydrometeor proportions to predict

the vertical change in reflectivity or growth and decay (GD). To the best of the our knowledge,

MLA have not been used for the investigation of the vertical structure of precipitation and

therefore an important part of the presented work is to establish the foundation for the use

of MLA in this context. Artificial Neural Networks (ANN) are a type of MLA which are well-

established in the geo- and environmental sciences and are also used for this study. The

selection of events, preparation and extraction of the data will be addressed in Sect. 4.3,
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while more details on the set up and the training of the ANN are given in Sect. 4.4. The main

objective of this work will be addressed through the following steps: firstly, the ANN is used to

learn about the contribution of hydrometeors to potentially improve QPE in Switzerland, then

information at lower height levels is gradually removed in order to test the ANN’s ability to

extrapolate the radar measurements to the ground level. And finally, the ANN predictions will

be evaluated and compared with the current operational VPR correction technique. Sect. 4.5

presents the exploratory data analysis, the results of the machine learning predictions and

their verification, while Sect. 4.6 puts the contribution of this study into a broader perspective.

4.3 The vertical cone database

The data used in this study are extracted from high-resolution volumetric radar data acquired

by the Albis radar located at ∼900 m a.s.l on the Swiss plateau. The radar has good visibility

from the South West to the East and some regions with ground clutter in the South due to the

presence of the Bernese Alps (Fig. 4.1). Of the five Swiss radars, the Albis radar is situated at

the lowest altitude and can thus provide measurements of the lowest parts of the atmosphere.

Moreover, the Albis radar has been stably producing high quality data over the past years,

allowing the ANN to be trained with the best available quality data.

Figure 4.1 – Location of the Albis radar within Switzerland and the regular grid for the vertical
cone extraction.

4.3.1 Radar data pre-processing

Like the other radars in the Swiss operational network, the Albis radar performs 20 plan

position indicator (PPI) scans within five minutes at elevations ranging from -0.2◦ to 40◦

(Germann et al., 2015) with an interleaved sweep pattern. For this study the high resolution
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data with a range resolution of 83.33 m was used.

The processing of the radar data was performed using the Python-based open source software

Pyrad/Py-ART (Helmus and Collis, 2016; Figueras i Ventura et al., 2017). The signal-to-noise

ratio (SNR) of the horizontal channel was calculated based on the estimated receiver noise

at high-elevation angles (40◦ or 35◦). Subsequently the SNR, and the ratio of the receiver

noise in the horizontal and vertical channels were used to minimise the effect of noise on

the co-polar correlation coefficient (ρHV ) (Gourley et al., 2006). Clutter was identified and

removed using a filter based on textures of reflectivity factor at horizontal polarisation (ZH ),

differential reflectivity (ZDR ), copolar cross correlation coefficient (ρHV ), total differential

phase shift (ψd p ) and the value of ρHV . Gates with an SNR below the threshold of 10 dB were

filtered out before performing a double window moving median filter on ψd p . The filtered

differential phase (φd p ) was then used to estimate the specific attenuation (Ah) using the ZPHI

algorithm (Testud et al., 2000) in order to correct for attenuation induced by precipitation, and

to derive the specific differential phase shift on propagation (Kd p ) using the method described

by Vulpiani et al. (2012).

The filtered and corrected polarimetric variables were then used as input for the semi-

supervised hydrometeor classification developed by Besic et al. (2016, 2018). This method

uses ZH (-10 - 60 dBZ, influenced by particle concentration, size and density), ZDR (-1.5 - 5 dB,

influenced by particle shape, orientation and density), Kd p (-0.5 - 5 deg km−1, influenced by

particle concentration and shape), ρhv (0.7 - 1, influenced by particle homogeneity) and a

liquid/melting/ice phase indicator to distinguish nine classes of hydrometeor types. These

classes consist of: aggregates (AG), ice crystals (CR), light rain (LR), rimed particles (RP), rain

(RN), vertically-oriented ice crystals (VI), wet snow (WS), melting hail (MH), ice hail-high

density graupel (IH/HDG) and no classification (No valid radar data - NC). Within the context

of this study, light rain and rain were aggregated into a single rain class and vertical ice was

aggregated into the crystals class.

4.3.2 Vertical cone extraction

Because this study aims to propose a more localised vertical profile correction technique,

the filtered and corrected volumetric radar data needs to be sampled at scales small enough

to capture the spatio-temporal variability and large enough to give a robust estimate of the

vertical profile at each location. Also, rather than extracting a vertical column of a certain

size, vertical cones such as illustrated in Fig. 4.2 were extracted. The motivation for this is

twofold: on the one hand it accounts for the decrease in the number of measurements at

higher altitudes by increasing the sampling size of the cone, and on the other hand it follows

the assumption that precipitation observed at a certain point of interest x, y on the grid (Fig.

4.1), may have originated from a much wider region aloft. As described in Roe (2005), the

terminal fall speed of hydrometeors varies between 1 m s−1 for snow and 10 m s−1 for heavy

rain (excluding hail stones). This implies that when taking into account a range of horizontal

wind speeds from 5 to 30 m s−1, a hydrometeor originating at 3 km altitude may get advected
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Figure 4.2 – Cones are extracted in well-visible regions of the radar and used to train the ANN.
The trained ANN model can then be used to extrapolate to the ground level in regions with
reduced visibility.

anywhere between 1.5 and 90 km before reaching the surface. However, the choice in the size

of the base and top of the cones is also related to grid spacing: as will become clear, in this

study we have chosen cone sizes which do not overlap or touch at the base and partly overlap

at the top. The cone size is furthermore related to the maximum distance of the grid and

the vertical resolution of the cone through the number of available samples at each altitude.

Considering that for the lowest elevation angle the 1◦ beam width diameter exceeds 1 km

at distances further than 60 km, we estimate that a 500 m vertical resolution is the highest

possible. Given the 500 m vertical resolution and distances of >60 km from the radar, it was

estimated that cones with a 4 km radius at the base and a 10 km radius at the top, would have

sufficient samples at each height level (Table 4.1). In order to preserve some spatio-temporal

consistency and to further increase the number of samples at each height level, the cones at

each location were aggregated over up to 30 minutes (6 previous scans).

The variables (hydrometeor class (HC) proportions and ZH ) were extracted within height level

bands of 500 m at levels ranging from 1500 m to 10 km altitude. The lowest available level

(1000 m a.s.l.) was considered the “ground” reference. For ZH the average reflectivity within

each height band was calculated, including measures of dispersion and location (standard

deviation, percentiles 16, 25, 50, 75 and 84). For the hydrometeor classes the number of

pixels pertaining to each class was counted and these were transformed into proportions

after the temporal averaging. The temporal averaging was performed as a last step so that

each individual cone could still be stored and examined and such that experiments could be

performed with shorter temporal averaging.
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hb [m] h [m] 20-30 km 40-50 km > 60 km

750

1250 1000 154 141 122

1750 1500 178 171 158

2250 2000 215 201 131

2750 2500 191 182 163

3250 3000 218 204 205

3750 3500 214 181 47

4250 4000 279 177 152

4750 4500 251 174 100

5250 5000 365 251 189

5750 5500 301 194 94

6250 6000 371 343 294

6750 6500 339 273 129

7250 7000 392 353 255

7750 7500 379 354 239

8250 8000 393 379 276

8750 8500 409 363 296

9250 9000 401 379 293

9750 9500 384 380 344

10250 10000 406 383 350

Table 4.1 – Median number of pixels for 500 m height intervals (boundaries in first column) at
increasing distances from the radar based on geometry for a single volume scan and a cone
with 4 km radius at the base and a 10 km radius at the top. The altitudes given in the first two
columns are in metres above sea level.

The target value y which the ANN was required to predict was chosen to be the vertical growth

and decay (GD) of precipitation which was derived after the temporal averaging and for each

height level h:

y =GDh−1 km = 10∗ log10

(
Zh km

Z1 km

)
[dB] (4.1)

The choice for trying to predict growth and decay was based on the accurate definition of

the learning problem at hand; here we are interested in predicting the vertical change in

reflectivity between the lowest visible height level and the ground, rather then in predicting

the exact reflectivity value at the ground level. As such, the ANN had to be trained with the

correct input data.
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4.3.3 Selection of precipitation events

Since the calculation of the variables inside the cones is a costly operation in terms of comput-

ing time, there is some trade-off between the number of cones to be extracted per scan, and the

number of precipitation events for which cones can be extracted within a reasonable amount

of time. For this study 30 precipitation events over the course of three years (2016, 2017 and

2018) and covering a broad range of microphysical situations were selected. Within each event,

one scan per hour was randomly selected, and for each scan the 6 previous scans (equalling 30

minutes in time) were also extracted. The temporal spacing between the extracted scans was

adopted in order to avoid strong correlations between successive temporally averaged cones

and allowed to further limit processing time. Details of the events are given in Table 4.2. Due

to the higher frequency and duration of stratiform events these are slightly over represented in

the data. This study will therefore also apply some event stratification.

Date GWTWS Duration max / µ Daily Date GWTWS Duration max / µ Daily

Type [hours] Windspeed [m/s] Precip [mm] Type [hours] Windspeed [m/s] Precip [mm]

08-01-2016 W (A) 11 5.8 / 1.6 11.1 28-06-2017 SW (A) 14 11.0 / 2.1 26.3

31-01-2016 NW (A) 10 11.4 / 2.7 11.1 10-07-2017 SW (A) 6 19.1 / 1.8 23.7

23-02-2016 W (A) 7 12.1 / 3.2 7.8 18-08-2017 SW (A) 4 9.9 / 1.5 35.7

02-03-2016 W (A) 7 21.0 / 2.35 7.1 31-08-2017 SW (A) 20 5.8 / 1.5 29.4

17-04-2016 SW (A) 17 9.8 / 1.9 17.6 01-09-2017 SW (A) 16 7.5 / 2.6 24.2

12-05-2016 LP (C) 21 10.4 / 2.6 31.9 12-11-2017 W (A) 9 23.5 / 3.3 14.6

23-05-2016 SE (A) 22 8.0 / 2.6 25.0 22-01-2018 NW (A) 22 9.4 / 2.2 29.1

16-06-2016 SW (A) 12 7.5 / 1.9 20.9 17-02-2018 W (A) 14 5.8 / 1.5 16.4

12-07-2016 SW (A) 19 6.6 / 1.4 47.9 28-03-2018 W (A) 13 9.9 / 2.2 6.1

25-10-2016 W (A) 20 5.9 / 1.2 20.8 30-04-2018 SW (A) 3 15.3 / 2.4 1.2

31-01-2017 NW (A) 23 5.7 / 1.3 34.7 14-05-2018 E (A) 7 6.8 / 1.7 9.6

09-03-2017 NW (A) 17 5.7 / 1.6 16.3 15-05-2018 N (A) 9 7.0 / 2.0 7.6

18-03-2017 NW (A) 11 9.8 / 1.7 11.1 22-05-2018 FP (C) 6 9.7 / 1.5 39.8

25-04-2017 W (A) 15 10.7 / 1.9 24.4 30-05-2018 HP (C) 2 9.5 / 1.8 0.0

12-05-2017 LP (C) 4 10.8 / 1.6 6.6 04-06-2018 FP (C) 2 13.9 / 1.8 0.8

Table 4.2 – Statistics for the precipitation events used in this study. Daily precipitation sums
and wind speeds are from the ground station Cham at approximately 15 km distance from
the Albis radar. For the GWT weather type classification (Weusthoff, 2011), LP, HP and FP
represent High Pressure, Low Pressure and Flat Pressure situations respectively, the other
acronyms are abbreviations of GWTWS flow directions. The letters A and C indicate advective
or convective types.

4.4 Neural network and experimental setup

Machine learning algorithms are tools which, compared to traditional statistical data models,

are fully non-parametric and designed to solve regression tasks in high-dimensional input

spaces. This means that MLAs aim to obtain the best possible performance without making

strong assumptions about the distributions of or dependency between the variables (see e.g.

Kanevski et al. 2009). Artificial Neural Networks (ANN) are a type of MLA which are particularly

well adapted to treating multi-dimensional input data and resolving non-linear problems and
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the MultiLayer Perceptron (MLP) model used in this study is a feedforward ANN.

MLP models are typically composed of one input layer, one or more hidden layers and one

output layer (Fig. 4.3). The neurons in the input layer correspond to the input variables

(predictors), and the neurons in the output layer to the target variables (predictands). Each

neuron is connected to the other neurons of the network with synaptic weights wi (which can

be positive or negative). The neuron itself integrates the input signals from the synapses si

and applies a bounded, non-linear sigmoid activation function (typically logistic or hyperbolic

tangent) to control the output of the neuron oi . The combined effect of the hidden layer is

that it performs a non-linear transformation on the weighted linear summation of the values

coming from the input neurons.

Figure 4.3 – Example of a multi-input single-output MLP model and set-up as used in this
study. The number of input variables M equals the number of V variables (reflectivity, HC
proportions) × H height levels used.

The training of the MLP is then achieved by performing an iterative optimisation of the network
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4.4. Neural network and experimental setup

weights w to minimise the mean squared error loss function between the predicted and the

target values in the output neuron:

EMSE (w ) = 1

N

N∑
i=1

(
yobs

i − y pr ed
i (x , w )

)2
(4.2)

Linking individual neurons with sigmoid shaped functions in a network has the advantage

of creating a system which is able to model complex non-linear behaviour (Cybenko, 1989).

Whereas a single neuron merely fits a sigmoid-shaped function, the weighted combination of

several neurons (or sigmoid functions) can reproduce the complex, non-linear dependency of

the data. This also means that provided that there are a sufficient number of neurons and a

non-constant, non-decreasing activation function at each hidden neuron, an ANN can model

any function with the desired precision (Cybenko, 1989; Hornik et al., 1989). This means

that the architecture of the network may lead to potential overfitting. Overfitting and the

presence of multiple minima may lead to the inability of the ANN to generalise the learnt

patterns. While overfitting may be addressed by early stopping or using separate training

and validation datasets, local minima can be avoided by using stochastic gradient descent

optimisation algorithms.

Thus, the hyper-parameters of MLP models are the number of hidden layers, the number

of hidden neurons within these layers, the type of activation function and the learning rate

for the update of the weights. The last parameter influences the speed at which the MLP

converges. Given enough iterations, these are not as important for the performance of the

MLP as the network architecture. The number of hidden layers and neurons must therefore be

tuned accordingly. Models with different network architectures can then be compared based

on their performance on new data, but also based on their complexity.

The training of the MLP, as well as the evaluation of its performance is achieved by using differ-

ent datasets. Typically the dataset is split up into training (60%), validation (20%) and testing

(20%) datasets. While the model is trained with the training dataset to find the appropriate

weights to minimise the training error, it is simultaneously applied to the validation dataset

in order to evaluate the predictive performance of the MLP. The training error will continue

to decrease, however as soon as the model starts overfitting the training data, the validation

error will start to increase. The set of weights with the lowest training and validation error is

retained as the best model.

Finally, the testing dataset can then be used as a completely impartial dataset to evaluate the

models. In this study, all three datasets contain cones from separate precipitation events with

as a constraint that each dataset includes at least one event from every season.
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Chapter 4. Learning about the vertical structure of radar reflectivity

4.5 Exploratory data analysis and results

The goal of exploratory data analysis (EDA) is the extraction of some useful information before

applying MLAs to the dataset. The efficiency and accuracy of MLA methods depend critically

on the quality and quantity of the data. EDA may therefore be useful for the identification of

relevant variables, existing patterns and outliers or errors in the dataset.

4.5.1 EDA: Vertical profiles of hydrometeor proportions

In order to evaluate the ability of the vertical cones to capture the vertical structure of precipi-

tation and as a part of the EDA, the vertical profiles of hydrometeor proportions, reflectivity

and GD have been plotted. Figure 4.4 shows the medians and quartiles of the vertical profiles

for different events calculated over the entire spatial domain and for a single 30 minute time

step. The profiles of hydrometeor proportions show some distinctly different features for

events with snow at the ground, stratiform and convective events. For the event with snow

until the ground level (left panel Fig. 4.4) high proportions of aggregates and rimed particles

can be observed at lower altitudes, while above 5500 m a.s.l. only crystals are present. For the

stratiform event, crystals also dominate at altitude levels above 5500 m a.s.l., but a distinct

increase in wet snow around 2000 m a.s.l. indicates the presence of a melting layer and rain

dominates at the lower altitude levels. For the convective event, rain dominates up until 3000

m a.s.l. and important proportions of crystals, aggregates and rimed particles can be observed

until at least 10 km altitude.

The vertical profiles of hydrometeor proportions in Fig. 4.4 indicate that a) different event

types can be distinguished with the HC proportions from the cones, b) the sampling strategy

(cones size, grid spacing) is sufficient to differentiate between events and c) some types of

events may benefit more than others from information from aloft.

Vertical profiles were also calculated for each single cone location and averaged over the entire

dataset. This was done to exclude cones with consistently missing data at certain height

levels due to geometrical constraints; this is different from the information in Table 4.1 which

shows the theoretical median number of pixels within cones at different ranges from the radar.

Indeed, based on this analysis 85 coordinates situated at typical angles with respect to the

radar and mostly at further distances from the radar were removed from the dataset. The

reasons for removing these data points were that MLAs can not handle missing data values

and that these cones resulted in extreme GD values in the observation dataset. For the same

reasons, cones which were less than 10% filled in the bottom 4000 metres of the cone were

also removed, such that a total of 17123 cones remained for input in the ANN models.
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4.5. Exploratory data analysis and results

Figure 4.4 – Examples of vertical profiles of hydrometeor proportions for three different events.
The thick lines show the average value and the shading represents the quartiles calculated
over the entire spatial domain for a single 30 minute time step.

4.5.2 Results: ANN predictions of growth and decay

Two main types of ANN models were trained and tested within the scope of this study: one

model was trained with only values of average reflectivity at each height level (“dBZ-only

model”) and the second was trained with the average values of reflectivity and HC proportions

of rain, wet snow, rimed particles, aggregates and crystals at each height level (“HC + dBZ-

model”). Occurrences of hail and melting hail were so rare in the considered dataset that

these were not used as input variables. For each of these two ANN types, separate models

starting at different height levels have been trained (i.e. starting at 1500 m a.s.l. and upwards,

starting at 2000 m a.s.l. and upwards etc.). Because the number of input neurons was equal

to the number of variables × the number of altitudes, the dBZ-only model for example had

20 neurons in the input layer for the ANN starting at 1500 m a.s.l, 19 neurons for the ANN

starting at 2000 m a.s.l. and so forth. For the HC + dBZ-model these numbers were 110 and

104 respectively.
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Chapter 4. Learning about the vertical structure of radar reflectivity

The 2D histogram plots in Fig. 4.6 show the observed (x-axes) and predicted (y-axis) GD for

the HC + dBZ-models (top row) and dBZ-only (bottom row) trained with data from different

altitudes and upwards (columns). As predictions are made from increasingly higher altitudes,

both the observations and the predictions move towards growth, as can be expected. The

colouring of the plots indicates the point density, and while the blue points are single observa-

tions and thus show more scatter, the areas with high point density (red/orange) fall better

along the identity line for the HC + dBZ-model than for the dBZ-only model. Especially for

predicting GD from 2500 m a.s.l and aloft, the dBZ-only models seem to have difficulty with

predicting growth values higher than 10 dB.

The 2D histogram plots in Fig. 4.6 are summarised in Fig. 4.5 which shows the Root Mean

Squared Error (RMSE) and correlation coefficient (ρ) of the models. It can be observed that

the model with HC proportions performs consistently better than the model without HC

proportions (i.e. at equal RMSE values, the HC + dBZ model can predict from altitudes

between 500 and 1000 metres higher than the dBZ only model). The RMSE for both model

types seems to level off for ANNs trained with data starting from 4000 m a.s.l. and aloft,

indicating that the models show no skill for predictions made from these height levels. At

the lowest height level (1500 m a.s.l.) the dBZ-only model and the HC + dBZ-model seem to

result in the same amount of error. A possible explanation for this is that for the prediction of

GD between the ground and 500 metres aloft, the average reflectivity at 1500 m a.s.l. is the

dominant variable also for the HC + dBZ-model. The differences between the models and

observations at this and subsequent height levels is analysed in more detail in the following

section.

Figure 4.5 – RMSE and Pearson correlation coefficient for dBZ only-models and HC + dBZ-
models trained with data starting from increasing altitude levels. The thick lines indicate the
average values and the shading the quartiles calculated over ten model runs using different
combinations of events for the training, validation and testing datasets.
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Chapter 4. Learning about the vertical structure of radar reflectivity

Results: 2D histogram matrices of growth and decay

The matrices in Fig. 4.7 show the 2D histograms for GD based on combinations of HC pro-

portions and average reflectivity values at the lowest height levels (1500 m a.s.l. and 2500

m a.s.l.) for the observed data (left column), the HC + dBZ-model (middle column) and the

dBZ-only model (right column). The GD values were calculated based on the reflectivity

at that height level and the 1000 m a.s.l. reference level. The 2D histogram matrices allow

to distinguish different GD patterns for different combinations of variables. Overall, higher

average reflectivity values at any altitude h lead to observed decay between that altitude h

and the ground reference and, inversely, lower reflectivity values at altitude h lead to more

observed growth. This is also reflected by the models. However, more specific patterns can also

be observed, such as the pronounced growth values for cones with low to average reflectivity

values at altitude h and high proportions of aggregates or any presence of rimed particles at

that same altitude h. While these patterns are also visible in the HC + dBZ-model output, the

dBZ-only model is unable to reproduce these.

In order to evaluate how well the models reproduce the observed GD patterns, figures 4.8

and 4.9 show the 2D histogram error matrices for predictions from 1500 m and 2500 m

a.s.l. respectively. For each of the combinations of variables the binned 2D histogram for

the observations was subtracted from the binned 2D histograms of the model outputs such

that positive values in figures 4.8 and 4.9 show model overestimation and negative values

correspond to model underestimation.

Overall, the errors for the dBZ-only model have a greater amplitude than the errors for the HC

+ dBZ-model (figures 4.8 and 4.9). Most notable is the overestimation by the dBZ-only model

for cases where Crystals are present, for example the RMSE for combinations of Crystals and

average reflectivity at 1500 m a.s.l. for the HC + dBZ-model is 3.05 dB while for the dBZ-only

model it is 4.64 dB. The dBZ-only model also particularly underestimates for cases with Rimed

Particles and high proportions of Aggregates. The HC + dBZ-model also underestimates cases

with Rimed Particles, though only when predicting from 1500 m altitude levels and less so

than the dBZ-only model (combinations of Rimed Particles and average reflectivity at 1500

m a.s.l. result in an RMSE of 2.23 dB for the HC + dBZ-model and 2.90 dB for the dBZ-only

model). Overall, the HC + dBZ-only model shows less patterns in the errors and the highest

errors are located at the edges of the distributions and thus more likely related to outliers in

the observations.
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Chapter 4. Learning about the vertical structure of radar reflectivity

Figures 4.10 and 4.11 show the same types of 2D histograms as in Fig. 4.6 but for the binned

statistics shown in figures 4.7, 4.8 and 4.9. The numbers mentioned in the discussion below are

for 1500 m a.s.l. but the observations are also valid at 2000 m a.s.l. For the HC + dBZ-model the

observed and predicted GD for combinations of average reflectivity and any hydrometeor class

show good agreement with high regression coefficients (0.94<β< 1.22) and correlation coeffi-

cients (>0.76). For combinations of hydrometeor classes, and especially Rain + Aggregates or

Rain + Rimed Particles the performance of the HC + dBZ-model is not as good (correlations

drop to 0.63 and 0.58 respectively) though this could also be related to the more complicated

and less frequent nature of situations with these combinations of hydrometeor classes. For

the dBZ-only model, the agreement between observed and predicted GD for combinations of

average reflectivity and hydrometeor class is much lower than for the HC + dBZ-model. For

combinations of hydrometeor classes the dBZ-only model gives similar predictions for the

whole range of observed GD values.

Comparison ANN predictions with traditional methods

The comparison between the ANN model outputs and traditional VPR correction techniques

is made by adding the predicted GD to the lowest reflectivity measurement and comparing

the predicted reflectivity at the ground level with the observed reflectivity:

RMSE = 1

N

N∑
i=1

(
dB Z obs

i −dB Z pr ed
i

)2
(4.3)

Where dB Zpr ed for the ANN models is obtained by:

dB Zpr ed = dB Zh +GDh−1 km (4.4)

The traditional models considered are:

1) performing no correction or assuming vertical stationarity by taking the lowest available

reflectivity measurement:

dB Zpr ed = dB Zh (4.5)

2) a simple spatially averaged profile, obtained by taking the average GD from all the cones (C )
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4.5. Exploratory data analysis and results

within the study area for a single time step

dB Zpr ed = dB Zh + 1

C

C∑
c=1

(
GDh−1 km

c

)
(4.6)

3) the meso-beta profile correction factor which is calculated operationally. For each altitude

h the correction factor is extracted from the profiles and applied to the average reflectivity

value at altitude h from the cone. More details on the calculation of the correction factor can

be found in Germann and Joss (2002).

Altitude vertical spatial meso-beta dBZ-only HC + dBZ

[m a.s.l.] station. average profile ANN ANN

1500.0 5.62 | 0.82 8.67 | 0.82 5.14 | 0.84 3.55 | 0.85 3.47 | 0.86

2000.0 5.85 | 0.70 7.43 | 0.70 5.45 | 0.74 4.75 | 0.72 4.78 | 0.73

2500.0 6.12 | 0.60 7.20 | 0.60 5.47 | 0.71 5.48 | 0.59 4.95 | 0.68

3000.0 7.81 | 0.50 10.93 | 0.50 5.64 | 0.63 5.90 | 0.50 5.08 | 0.66

3500.0 9.27 | 0.41 13.98 | 0.41 5.96 | 0.55 6.25 | 0.43 5.78 | 0.53

4000.0 10.70 | 0.40 17.70 | 0.40 6.69 | 0.46 6.12 | 0.43 6.00 | 0.47

4500.0 12.95 | 0.37 22.72 | 0.37 7.95 | 0.39 6.20 | 0.40 6.27 | 0.39

5000.0 15.84 | 0.29 28.78 | 0.29 10.14 | 0.30 6.43 | 0.32 6.37 | 0.34

5500.0 18.57 | 0.25 34.63 | 0.25 12.41 | 0.26 6.54 | 0.28 6.37 | 0.32

6000.0 19.98 | 0.21 37.58 | 0.21 13.69 | 0.21 6.63 | 0.24 6.53 | 0.29

Table 4.3 – RMSE and Pearson correlation coefficient scores for various VPR correction tech-
niques applied to an independent test dataset of 3884 cones.

The RMSEs for each of these VPR models as well as the dBZ-only and HC + dBZ models were

calculated over a completely independent test dataset of 3884 cones and are given in Table

4.3. The spatially averaged profile based on the averaged cones shows the worst results, while

assuming vertical stationarity may be feasible at lower elevations but results in large errors

when the lowest visible elevations are higher then 2000 m a.s.l. The operational meso-beta

profile is extracted from the well-visible regions close to the Albis radar and gives a correction

factor with respect to the reference altitude used operationally and which is set to 1500 m a.s.l.

for Albis. Since the meso-beta profiles have no information at 1000 m a.s.l. altitude, the initial

error for predictions from 1500 m a.s.l. to 1000 m a.s.l. is approximately 1.6 dB higher than

for the ANN models. Because the meso-beta profile correction factors are calculated such as

to obtain a more or less constant rain rate in the vertical, the RMSE of the meso-beta profile

also remains quite constant up to 4000 m a.s.l. The increase in RMSE at higher altitudes is

probably because the required correction exceeds the maximum threshold for the operational

correction factor. Compared to the meso-beta profile the ANNs show some improvement:

95



Chapter 4. Learning about the vertical structure of radar reflectivity

the dBZ-only model for height levels up to 2000 m a.s.l. and the HC + dBZ-only model for all

height levels. As was observed in Fig. 4.5 the error levels off around 4000 m a.s.l. for both ANN

models. This may be partly explained by some over representation of stratiform events in the

dataset which are less developed in the vertical so that the models have very little information

available at these altitudes.

4.6 Conclusions

The aim of this study was to propose a more localised vertical profile (VPR) correction tech-

nique by making use of machine learning algorithms (MLA) and by exploiting polarimetric

radar information through the use of hydrometeor types and their proportions. An important

part of the work consisted of establishing the foundations for the use of MLA for the investiga-

tion of the vertical structure of precipitation. Vertical cones were extracted on a regular grid

up to 60 km distances and in the well visible regions of the Albis radar. The cones were divided

into height levels from 1500 m a.s.l. up to 10 km a.s.l. with a 500 m vertical resolution. For each

500 m height level band, the average reflectivity values and hydrometeor proportions were

calculated and used as inputs for the Artificial Neural Network (ANN) model. The target value

or predictand for the ANN model was the vertical change in reflectivity (or growth and decay

(GD)) between each height level and the ground level (1000 m a.s.l.). A total of 30 precipitation

events were randomly split into training, validation and testing datasets, each containing data

from separate events. The ANN was then trained with the training and validation datasets and

its performance could be evaluated with a completely independent test dataset.

Exploratory data analysis (EDA) of the vertical cone data allowed to further filter the dataset

and to exclude cones with consistently missing values at certain height levels due to the geo-

metrical constraints related to the scan strategy. EDA also allowed to verify that the cones could

successfully capture the vertical structure and hydrometeor proportions of the precipitation

events.

In order to evaluate the potential of information on hydrometeor classes (HC) to improve

quantitative precipitation estimates (QPE) in Switzerland, two main types of ANN were trained:

one with the average reflectivity values at different height levels (dBZ only-model) and one

with the average reflectivity values and hydrometeor proportions at each height level (HC +

dBZ-model). The ability of each model to extrapolate the radar measurements to the ground

level was then assessed by progressively removing information at the lower height levels of the

vertical cones and retraining the ANNs. It was found that, for equal values of RMSE, the HC +

dBZ-model could predict from altitudes between 500 and 1000 metres higher than the dBZ

only-model. A more in-depth analysis of the GD patterns as a function of hydrometeor types,

indicated that the dBZ-only model overestimated (underestimated) GD especially in cases

where Crystals (Aggregates) were present.

Finally, the ANN models were compared to simplified traditional VPR correction techniques by

adding the ANN predicted GD to the lowest observed reflectivity value. The other approaches
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considered were vertical stationarity of reflectivity, a spatially averaged profile and the op-

erational meso-beta profile which was extracted for each time step and applied to the cone

data. It was found that the dBZ only-model had lower RMSEs at altitudes up to 2000 m a.s.l.

while the HC + dBZ-model performed better at all height levels. The higher error observed for

the meso-beta profile correction technique may have been partly caused by the fact that this

method uses 1500 m a.s.l. as the reference level, and not 1000 m a.s.l. The performance for

both the dBZ only-model and the HC + dBZ-model levels off above 4000 m a.s.l., suggesting

that the models have little or no predictive skill above this altitude. In order to better eval-

uate and compare the proposed ANN models to existing techniques, it would be valuable

to also compare their outputs with rain gauge estimates at the ground level. In this case, a

rainfall rate calculated on the basis of the predominant hydrometeor class could substitute

the reflectivity-rainfall rate relationship. Future work should also include a sensitivity analysis

of the contributions of the input variables, as this would allow to remove redundant predictors

and so further improve the models. Similarly, an evaluation of the influence of the geometry

and spacing of the cones on the final result (within the aforementioned constraints related

to processing time, the resolution of the radar measurements and visibility at lower height

levels) would allow to further improve the results of this method. The here presented cone

extraction and evaluation of the method has been performed entirely on data from the Albis

radar. It would be interesting to perform and compare the vertical cone correction method on

one of the high altitude radars in Switzerland.
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5 Conclusions and outlook

5.1 Summary

The objective of this thesis was to contribute to the improvement of quantitative precipitation

estimation at the ground in the Alps, through the analysis of the spatial and temporal variability

of polarimetric weather radar signals. This topic was addressed in three main chapters which

covered radar monitoring and stability, the spatio-temporal variability of the melting layer in

the Alpine regions and the potential for the inclusion of polarimetric radar variables in a more

localised vertical profile correction approach.

Errors in quantitative precipitation estimates by radar are caused by many factors, and the

accuracy and quality of the polarimetric weather radar measurements which, in turn, depend

critically on the calibration and stability of the instrument, is highly important. Numerous

methods for radar calibration and monitoring, including methods based on ground clutter

returns, exist. However, these are based on the probability distributions of the returns from

large clutter areas (e.g. Silberstein et al., 2008) and any temporal variability of the changes

in the radar system may be masked by the median or average of many, temporally varying

scattering objects. Chapter 2 provided some new perspectives on radar hardware monitoring

using spectral analysis on the polarimetric radar signals returned by a single bright scatterer.

Although the dispersion of the differential reflectivity values returned by this target was

considered too large for calibration purposes, it was shown that valuable information on

the state and stability of the radar hardware can still be obtained if different scales of variability

and several polarimetric variables are considered. The better characterisation of the temporal

variability of the returns of this target may benefit, for example, more in-depth case studies of

the two-way attenuation of the signal returned by the single bright scatterer in the melting

layer.

Nowadays it is considered that errors in radar QPE are predominantly caused by the vertical

profile of reflectivity. A typical feature of the VPR in stratiform precipitation is the melting layer

which is characterised by a dramatic increase in ZH . The ML is often assumed spatially and

temporally homogeneous by algorithms for QPE and VPR correction even though it is strongly
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related to other factors (such as the vertical profile of temperature) which are variable in space

and time. Moreover, the variability of the ML is quite poorly documented and limited to a few

qualitative observations. The spectral analysis method which was used in chapter 2 to analyse

the temporal variability of the radar signals, could be further extended and applied in chapter

3 to study the temporal and the spatial variability of the ML. It was shown that this method

could be used to reliably describe the typical scales of variability of the ML. Then, based on

polarimetric X-band radar scans from two measurement campaigns, the spatio-temporal

variability of the ML could be characterised and compared for summer precipitation on the

relatively flat Swiss plateau and for winter precipitation in a large inner Alpine valley in the

Swiss Alps. Based on the results of this study it appears that the smaller spatial scales (15

to 10 km) contribute more to the total spatial variability of the ML in the case of the Alpine

environment.

The findings in chapter 3 further emphasised the need to perform vertical profile corrections

at smaller scales then currently considered by the operational methods. In addition to this,

the relatively new dual-polarisation capability of the Swiss operational radar network could be

better exploited in such a new approach. Thus, building on the availability of polarimetric

data and a hydrometeor classification algorithm, chapter 4 proposed a framework for the

application of machine learning methods to study the vertical structure of precipitation in

Switzerland as well as a more localised vertical profile correction method. It was found that

models which included information on hydrometeor proportions better represented the

observed patterns of vertical change (growth and decay) in precipitation. More importantly,

these models could predict from altitudes between 500 to 1000 metres higher than the models

based on only reflectivity data. By providing a framework for analysis and showing the added

value of the inclusion of hydrometeor proportions, this work thus opens up new possibilities

to improve the currently operational algorithms for QPE and VPR correction at MeteoSwiss.

5.2 Contribution of this thesis

The main contributions of this thesis are:

* The application of fraction of variance explained by component as a method to inter-

pret the spatial and temporal scales of variability of weather radar signals. Compared

to the more commonly used spectral slopes, these have the advantage of being less

compromised by averaging or conditioning of the input data and better summarising

the contribution of each individual component.

* Some new perspectives on radar hardware monitoring using a single bright scatterer.

It was shown that the combination of different sources of information based on the

correlation between, and the spectral analysis of polarimetric signals can help better

distinguish between environmental and instrumental influences.

* The characterisation and comparison of the spatio-temporal variability of the melting
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layer for two different locations in Switzerland. The results indicated a higher contribu-

tion of smaller spatial scales to the total melting layer variability in the case of an Alpine

environment.

* The combination of spatial and temporal scales of melting layer variability. From

observational data it was inferred that whereas on the Swiss plateau the assumption

of pure advection seems adequate, the small-scale topography does not allow to link

spatial and temporal scales of melting layer variability in the Swiss Alps.

* A framework for the inclusion of information on hydrometeor classes and the applica-

tion of machine learning algorithms to the study of the vertical structure of precipitation.

It was found that models which included information on hydrometeor proportions

better represented the observed patterns of vertical growth and decay of precipitation.

* A more localised vertical profile correction technique exploiting the polarimetric capa-

bilities of the radar network through the inclusion of hydrometeor proportions. It was

shown that for a given error, the artificial neural network model trained with hydrome-

teor proportions can predict from altitudes between 500 to 1000 metres higher than the

model based on only reflectivity data.

5.3 Perspectives

Many aspects of the research presented in this thesis deserve further attention and devel-

opment. The radar hardware monitoring using a single bright scatterer for example, would

benefit from the analysis of more events. The difficulty here is partly in finding periods of

four uninterrupted clear-sky days in the radar repository, especially because high resolution

radar data of clear-sky events is not stored indefinitely due to the costs related to data storage.

Further research should also be conducted on the stability of the signals in continuous rain,

although four consecutive days of uninterrupted precipitation is such a rare event in the study

region that such an analysis would probably have to be performed on smaller temporal scales.

From a more technical point of view, the relationship between the noise source signal and the

reflectivity measurements as well as the response of the low noise amplifiers to variations in

temperature, more specifically daily temperature cycles, deserves further testing. Finally, the

improved knowledge of the signature of the bright scatterer in clear-sky conditions may allow

for the analysis of particular case studies and perhaps even the quantification of melting layer

attenuation.

The characterisation of the melting layer variability presented in chapter 3 is restricted to the

two Swiss locations at which the measurement campaigns were conducted with a mobile

X-band radar (Payerne and Martigny). Although Payerne could be considered representative

for conditions on the Swiss plateau, the data from the measurement campaign covered a

period from March 2014 until May 2014 and thus did not include winter time conditions at

this location. The campaign conducted in the Swiss Alps covered winter and spring conditions
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in a very deep and long Alpine valley. Though it can not be argued that this location was

representative for all Alpine valleys, performing a similar measurement campaign elsewhere

would be complicated by topography: in smaller valleys the radar would likely not have

an unimpeded view over sufficiently long ranges. For the same reasons, the results of the

presented chapter 3 are also restricted to temporal scales of up to 3 hours and spatial scales of

20 km and less. Performing the analysis on the operational C-band radar data would not only

allow for the description of the melting layer variability at much larger spatial and temporal

scales, but also constitute a more representative characterisation for Switzerland. However

such an endeavor would require the application of a melting layer detection algorithm to PPI

scans and although such algorithms exist, the edges of the melting layer are much less clear

and well-defined in the PPI scans. Furthermore, the data from the operational C-band radars,

although available for much longer spatial ranges, is also subject to beam broadening and

a decrease in resolution with distance such that it would still constrain the maximum range

up to which the analysis could be performed. Finally, the altitudes of the operational C-band

radars which are located in the Alps (> 2850 m a.s.l.) means that these will practically always

measure above or within the melting layer.

The localised vertical profile correction technique described in chapter 4 along with the

developed framework for the application of machine learning algorithms and the inclusion of

other (polarimetric) variables to the study of the vertical structure of precipitation opens up

many perspectives for further analysis. Firstly, the analysis of the contributions of the input

variables (predictors) would provide even more information on the relevance of (combinations

of) hydrometeor classes and the different height levels. There are more and less complicated

ways to tackle this problem and while simple solutions (such as performing predictions while

randomising each of the variables in turn) may not be able to fully take into account the

complex non-linear relationships between the variables, more complex methods (such as

recursive feature elimination) requires many iterations for the training of the neural networks

and are thus computationally more expensive. Similarly, a full sensitivity analysis of the

obtained results with respect to the chosen cone parameters (diameters of the base and top,

vertical resolution and the grid spacing of the cone locations) for example, was outside of the

scope of the presented study. And although the choices in the parameters were subject to

many constraints related to processing time, the resolution of the radar measurements and

visibility at lower height levels, it would be valuable to estimate the optimal cone parameters

within these constraints. Naturally, the current dataset of 30 precipitation events could be

further extended and other machine learning methods such as convolutional neural networks

or random forests may be applied to the data. Part of the objective of this study was to better

exploit the polarimetric capabilities of the radar network, and this was done indirectly by

including information hydrometeor proportions. The inclusion of polarimetric variables,

other radar derived products or information from other instruments (i.e. satellite data) or

meteorological models is also among the possibilities for future work. The verification of the

proposed vertical profile correction technique was done by adding the predicted change in

reflectivity to the lowest observed reflectivity measurement. The thus obtained predicted
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values could be compared with the observed reflectvity values at the ground level and also with

other, more traditional profile correction techniques. It would be interesting to also evaluate

the performance of the correction schemes by comparing them with rain gauge estimates

at the ground level. In this case, a rainfall rate calculated on the basis of the predominant

hydrometeor class could substitute the reflectivity-rainfall rate relationship. Finally, one of the

motivations for the presented study was the extrapolation of high-altitude radar measurements

to the ground level. An interesting extension of this work would be to apply the correction

technique to data from one of the high-altitude radars. For the Plaine Morte radar based in

the Valais, the correction technique could be verified with the X-band radar scans from the

2016-2017 winter campaign presented in chapter 3.

In terms of the improvement of the current operational QPE and VPR correction techniques,

this thesis has opened up some new perspectives. Notably, it appears that the variability of the

melting layer and thus the vertical structure of precipitation is more important at small (15

to 10 km) spatial scales in an Alpine environment than in a flat area. In practice this means

that the meso-beta profile which is extracted within a range of 70 km from the radar and

integrated over a few hours will not capture well enough the spatio-temporal variability of the

precipitation in the Alpine environment. The more localised correction approach proposed in

this thesis has the merit of applying the vertical profile corrections at the 10 km scale and has

further demonstrated the additional value of including polarimetric information through the

use of hydrometeor proportions. However, the requirements for operational use are stringent

and so the potential of the proposed method should also be evaluated in the light of these

requirements. Firstly, any operational correction method should be able to function at all

times. The method based on the vertical cone correction for example could fail if for some

reason one of the polarimetric variables is unavailable or compromised. One way to assure

that a profile correction can always be applied in current strategies is through the inclusion of

a climatological profile. In the case of the vertical cone correction, the dBZ-only model could

substitute the HC + dBZ-only model when necessary. A potential limitation of such a change

between models is that it may lead to some discontinuities from one radar image to the next,

and some aggregation in time may be needed to resolve such issues. Also, at time t0 some

profile would have to be used as a first guess and the vertical cone correction technique does

not propose such a profile yet. In terms of processing costs, once the cones are extracted and

the model is trained, the application of the ANN models to existing data should be relatively

fast. Since average reflectvity values and hydrometeor proportions have been used, the model

could be applied at different spatial scales. It may even be considered to apply the correction

to larger scales in some regions such as the Swiss plateau and to smaller scales in other regions

such as the Alps.
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A Calculation of refractivity

As the radar beam propagates through the atmosphere it is both attenuated and refracted.

Variations in the refractive index n of the atmosphere cause for the beam to change direction.

Because this change in refractive index usually occurs gradually with height above the surface,

this also causes for the beam to curve gradually. The refractive index is defined as the ratio

of the speed of light in vacuum c and the phase velocity of light in the medium (in this case

the atmosphere) v , and is thus dimensionless. In this study pressure, air temperature and

relative humidity measurements from meteorological ground stations were used to calculate

the refractive index:

n = 1+10−6 ∗ (
0.776∗P

T
+ 3.73∗103 ∗P w

T 2 ) (A.1)

where the first term is known as the “dry” term and the second as the “wet” term, P is the

atmospheric pressure in Pa, T is the absolute temperature in K and Pw is the vapour partial

pressure in Pa calculated using:

P w = RH

100
∗e77.3450+0.0057∗T−7235/T /T 8.2 (A.2)

where RH is the relative humidity. Typical values for n near sea level are around 1.0003, or 300

ppm over 1. This is only slightly larger than unity and it is therefore deemed more practical to

use refractivity N which is the exceedance from unity of the refractive index, amplified by 60

dB:

N = (n −1)∗106 (A.3)
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Appendix A. Calculation of refractivity

Normally, N decreases with height in the atmosphere leading to a downward bending of the

radar beam. In order to calculate the variation of N with height (dN/dh), the refractivity values

were calculated for various ground stations located at different altitudes surrounding Cimetta.

For more details on refractivity calculations and beam propagation the reader is referred to

Kerr (1987).
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