
1

ROS: Resource-constrained Oracle Synthesis for
Quantum Computers

Giulia Meuli∗ Mathias Soeken∗ Martin Roetteler† Giovanni De Micheli∗
∗ EPFL, Lausanne, Switzerland, †Microsoft Quantum, Redmond, WA, USA

Abstract—We present a complete automatic synthesis
framework for oracle functions—a central part in many quantum
algorithms. The proposed framework for resource-constrained
oracle synthesis (ROS) is an LUT-based hierarchical method
where every step is specifically tailored to address hardware
resource constraints. ROS embeds an LUT mapper designed
to simplify the successive synthesis steps: costing each LUT
according to the resources used by its corresponding quantum
circuit. In addition, the framework exploits a SAT-based quantum
garbage management technique. These characteristics give ROS
the ability to beat the state-of-the-art hierarchical method both in
number of qubits and in number of operations. The efficiency of
the framework is demonstrated by synthesizing quantum oracles
for Grover’s algorithm.

I. INTRODUCTION

Practical quantum computers are nowadays a realistic
prospect thanks to advances in fabrication technology and
the effort of the research community to revolutionize
computing [1], [2], [3]. Quantum systems enable computation
over superposition of states and are based on physical
phenomena that are fundamentally different from the ones
exploited in classical computing systems. For this reason, they
require the development of dedicated logic synthesis tools.

The peculiarities of quantum computation can be exploited
to solve problems that cannot be solved with standard
computers in a reasonable time, by running innovative
quantum algorithms. The possible applications span among
others factorization [4], quantum chemistry [5], and database
search [6].

Many quantum algorithms include combinational logic
operations. The large amount of resources necessary to
perform such computations can overcome the resources
available, hence preventing some algorithms to be computed
on a constrained quantum hardware. Therefore, there is a large
interest in finding synthesis methods that minimize the impact
of combinational logic on the cost of quantum algorithms.

Some automatic quantum circuit synthesis methods have
been proposed [7], [8], [9], [10], which can be applied on
relatively small logic designs. Hierarchical methods proved to
be applicable to larger designs, as they are based on multi-level
logic representations [11]. Among them, the LUT-based
hierarchical reversible logic synthesis (LHRS) framework has
been proposed in [12], and is currently part of the open
source project RevKit1. It exploits classical logic synthesis
methods to create quantum circuits of any given combinational

1https://github.com/msoeken/revkit

logic component. Objective functions of the synthesis are: the
number of qubits and the number of operations required to
perform the target function.

LHRS uses LUT mapping to decompose the target function.
The decomposition step is a crucial phase in this hierarchical
method, as it is the starting point of the synthesis process.
For this reason, it is of paramount importance to control its
behavior. The k-LUT mapping technique that is used in LHRS
originates from the open source logic synthesis tool abc [13]
and has been originally designed for the synthesis of classical
circuits.

In this work, we develop an alternative hierarchical
framework: Resource-constrained Oracle Synthesis (ROS). It
embeds a new quantum-aware LUT-mapper, that is specifically
designed for the application into a hierarchical synthesis
framework. Classical LUT-mappers, like the one used by
LHRS, aim at minimizing area and delay, but none of them
have an immediate direct counterpart in quantum circuit
synthesis. Instead, our mapper is designed to minimize metrics
that make each LUT easier to be synthesized into a quantum
circuit.

We show that the hierarchical flow that integrates our new
mapper achieves a consistent reduction in the number of gates
of the final circuits. We also integrate in the flow a method for
quantum garbage management that has been proposed in [14].
This method enables to efficiently uncompute intermediate
results, giving control on the number of extra qubits (ancillae)
of the circuit.

We show that our approach can effectively improve the
state-of-the-art both in number of qubits and in number of
operations. Rather than providing a method that generates
additional Pareto optimal synthesis results, our approach
systematically beats existing ones by improving the qubit
count while not increasing the gate count—and vice versa—by
improving the gate count while not increasing the qubit count.
We apply the ROS flow to synthesize quantum oracles, which
could be applied in algorithms such as Grover’s, and we
compare with the state-of-the-art hierarchical method (LHRS)
showing improved results.

II. PRELIMINARIES

A. Quantum circuits

Quantum computing processes qubits. A qubit can be in one
of the “classical” logic states, 0 and 1, or in any superposition
of these states. The state of a qubit q can be defined by the
linear combination of the classical states using two complex

2

coefficients, q = a0|0〉 + a1|1〉, with a0, a1 ∈ C and |a0|2 +
|a1|2 = 1.

The Bloch sphere is a powerful representation of a qubit
state. The two poles of the sphere represent the two classical
states, while all the points of the sphere represent superposed
states. On the equator of the Bloch sphere there are all
superposed states with |a0|2 = |a1|2 = 1/2 characterized by
different angles with respect to the Z-axis.

A 2-qubit system can be defined as: q = a00|00〉 +
a01|01〉 + a10|10〉 + a11|11〉, with a00, a01, a10, a11 ∈ C and
|a00|2 + |a01|2 + |a10|2 + |a11|2 = 1. As a consequence,
4 complex coefficients are needed to represent a two-qubit
state, while 8 complex coefficients are necessary to describe
a 3-qubit system. In general, to represent the state of n qubits
and to simulate the quantum system behavior on a classical
computer, 2n complex coefficients are required.

While modeling a combinational functionality for the use
in a quantum computation, it is possible to consider all the
inputs as Boolean values—even when embedded as part of a
quantum algorithm where entangled states in superposition are
being applied.

The state of a qubit can be modified by applying quantum
operations. All possible operations are reversible and can be
represented by unitary matrices. Both single-qubit operations
and 2-qubit operations are available, the latter changing the
state of a qubit according to the state of a second one.

There are different universal sets of quantum operations,
targeting different technologies. In this work, we refer to the
set that consists of the following operations: Controlled-NOT
(CNOT), Hadamard (H) and rotations of an arbitrary angle
θ over the Z-axis of the Bloch sphere (Rz(θ)). This is
the set supported by IBM quantum computers. All quantum
operations can be represented by unitary matrices of dimension
2n × 2n, where n is the number of qubits affected by the
operations. For the selected universal set, the representative
matrices are:

CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
, H =

1√
2

(
1 1
1 −1

)
, Rz(θ) =

(
1 0
0 eiθ

)
A quantum oracle is defined as a “black box” operation

performing a multi-output Boolean function f : Bn → Bm.
The effect of an oracle O performing the operation f over two
registers, one of n qubits to store the inputs, |x〉, and one of
m qubits to store the outputs, |y〉, can be described as follows:

O(|x〉 ⊗ |y〉)→ |x〉 ⊗ |y ⊕ f(x)〉
The cost of a quantum circuit depends on the number

of qubits required for the computation, and the number of
operations that are performed. Automatic tools can be used to
take into account technology constraints by synthesizing low
cost quantum circuits.

B. Rademacher-Walsh spectrum
We define a function f : Bn → B, where B = {0, 1}, a

Boolean function over n variables. A Boolean function can be
represented by its truth table in the [1,−1] encoding, which
is a bitstring b2n−1b2n−2 . . . b0 of size 2n where

bx = (−1)f(x1,...,xn) when x = (x1x2 . . . xn)2

The Hadamard transform matrix over n variables is defined
as:

Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, H0 = 1

Each row of the Hadamard transform matrix is equal to
the truth table of the parity function between a subset of the n
variables. For example the last row of an n-variable Hadamard
matrix will be the truth table of the parity function p = x1 ⊕
x2 ⊕ · · · ⊕ xn.

The Rademacher-Walsh spectrum S of the function f
expressed as a truth table in the [1,−1] encoding F is defined
as:

S = HnF

Each coefficient of the spectrum represents the correlation
with a parity function of a subset of the inputs.

Example 1: Given the 3-input majority Boolean function
f(x1, x2, x3) = 〈x1x2x3〉, its truth table is:

F =
(
1 1 1 −1 1 −1 −1 −1

)
The Rademacher-Walsh spectrum of f is:

S = H3F =
(
0 4 4 0 4 0 0 −4

)
We later make use of the fact that one can derive a

quantum gate implementation for a Boolean function from the
function’s spectral coefficients [9], [10].

C. k-LUT mapping

Lookup table (LUT) mapping is a decomposition method
that has originally been used to map a logic design into
components of FPGAs (Field Programmable Gate Array)
capable of computing any Boolean function up to a
given number of inputs, i.e., lookup tables. Later, LUT
mappers found a successful application in logic synthesis
and circuits optimization [15], as they allow to decompose
large functionality into smaller functions. Several efficient
state-of-the-art mappers are available and they are traditionally
designed to minimize delay and area of the resulting circuit.

Starting from a multi-level representation of a function, the
mapper decomposes the function into k-feasible cuts. A cut
is defined for each node n and a set of leaves l1, . . . , ln such
that each path from n to a primary input includes one of the
leaves. A k-feasible cut is a cut that has at most k leaves.
Leaves are nodes or primary inputs of the network. Fig. 1(a)
shows a generic multi-level logic network over the set of inputs
x1, x2, and x3, performing the logic operation f(x1, x2, x3). If
we perform k-LUT mapping with k = 2 we obtain the 2-LUT
network shown in Fig. 1(b).

It is evident how the mapping process controls the number
of nodes of the k-LUT network and the complexity of the
function performed by each LUT.

D. k-LUT based hierarchical reversible synthesis

Automatic quantum circuit synthesis methods transform a
high level Boolean function representation into a quantum
circuit, exploiting a reversible circuits as intermediate

3

representations. These circuits are composed by single target
gates, that are generalizations of the multiple-controlled
Toffoli gates. A single-target gate Tf ({x1, . . . xn}, xk) is
characterized by: a set of controls x1, . . . xn, a control function
f : Bn → B and a target xk. The value of xk is
complemented if the function f(x1, . . . , xn) evaluates to one.
Efficient methods are known for the decomposition of these
reversible gates into quantum operations [16], [17], [18].

Hierarchical methods for the synthesis of quantum circuits
have shown the ability to synthesize large functions and
enable to explore the trade-off between number of operations
and number of qubits. Hierarchical means that the method
starts from a multi-level representation of the function, i.e., a
graph. Inputs to the function are stored on a set of existing
qubits. Additional qubits are used to store intermedite results
computed by each node of the graph. Finally, the output results
are available on some of the additional qubits.

Among the hierarchical reversible logic synthesis methods,
LHRS [12] exploits a state-of-the-art area-oriented LUT
mapper, called mf that is part of the logic synthesis framework
abc [13] to generate a LUT network that is used as starting
representation for the synthesis flow.

The flow of LHRS is shown in Fig. 2(a). The first step
of the flow, i.e., the k-LUT mapping, has a large impact
on the final result, as it defines: (i) the number of required
qubits, and (ii) the complexity of each sub-network. Fig. 1(a)
show an input network that is transformed by the mapper
into the 2-LUT network in Fig. 1(b). In the successive step,
the k-LUT network is transformed into a reversible circuit, a
network made of single-target gates (STG network). In this
reversible representation, each line corresponds to a single
qubit. This step is performed by exploiting the one-to-one
correspondence between nodes of the k-LUT network and
reversible single-target gates. This step could transform the
network in Fig. 1(b) into one of the STG networks in
Fig. 1(c) and (d). The Gray synthesis method [9], [10]
decomposes each single-target gate with control function f
into a quantum circuit that consists of the following quantum
operations: CNOT, H , Rz(θ). The method is characterized
by a direct dependence between nonzero coefficients in the
Hadamard-Walsh spectrum of the function f and number
of CNOT and Rθ gates to be synthesized. This method is
performed right after the k-LUT mapping, this means that
by modifying the mapping we get some control on the
characteristics of the control functions in the LUT network,
that are input to the Gray synthesis.

In LHRS, k-LUT mapping is performed considering metrics
as delay and area, that have no immediate correlation in this
application; so when k-LUT mapping is used in the context
of quantum circuit synthesis, the classical metrics must be
changed to context-related ones. In this work we address this
criticality by integrating in ROS a new quantum-aware k-LUT
mapper that aims at minimizing the number of gates required
to synthesize the quantum circuit of each LUT using the Gray
synthesis method.

n1

n3 n2

n4

x1 x2

x3

f

(a)

n1 n2

n3

n4

x1 x2 x3

f

(b)

x1

x2

x3

0
0
0
0

n1

n2n3

n4

n3
n2

n1
x1

x2

x3

0
0
0
f

(c)

x1

x2

x3

0
0
0

n1

n3

n1

n2

n4

n2

n1

n3

n1
x1

x2

x3

0
0
f

(d)

Fig. 1. (a) a 3-input multi-level logic network performing the Booelan
function f ; (b) an example of 2-LUT network for f ; (c) the reversible circuit
for the 2-LUT network obtained using the Bennett clean-up strategy; (d) the
reversible circuit for the 2-LUT network obtained using the quantum garbage
management clean-up strategy [14].

E. Quantum memory management

Quantum circuits are required to be garbage free, that
is, any intermediate result needs to be accessible from the
outputs. Otherwise, as many states can be entangled together,
measurement of intermediate results may compromise the
computation. Recently, a method for quantum memory
management has been proposed that is based on solving
instances of the reversible pebbling game [14]. This technique
can grant control on the number of qubits that are used in the
clean-up process, exploiting a state-of-the-art SAT solver [19].
In [14], the authors show how the problem of uncomputing
intermediate results corresponds to the reversible pebbling
game.

Consider Fig. 1(c), here the k-LUT network is mapped
into qubits, and each node is transformed in its corresponding
reversible gate. The intermediate result is stored on a qubit
that was initialized to |0〉. After the result is computed, all
the intermediate values n1, n2, and n3 must be uncomputed.
This is done by performing the same operation twice. The
order in which nodes are computed and uncomputed is a
clean-up strategy, in Fig. 1(c) the strategy used is called
Bennett strategy [20]. The SAT-based method described in [14]
is capable of finding clean-up strategies that reduce the number
of required qubits by computing and uncomputing the same
reversible operation more than once. An example is shown in
Fig. 1(d).

III. RESOURCE-CONSTRAINED ORACLE SYNTHESIS

Even if quantum computing is promising to beat its classical
counterpart in many applications, quantum device technology
is still developing and is fairly new with respect to standard
CMOS technology. With our tool we aim at providing the

4

mapping
into qubits
(Bennett)

AIG k-LUT
network

STG
network

quantum
circuit

k-LUT
mapping

Gray
synthesis

(a)

SAT-based
memory management

(pebbling)
XAG k-LUT

network
STG

network
quantum
circuit

quantum-aware
k-LUT

mapping

Gray
synthesis

(b)

Fig. 2. (a) state-of-the-art hierarchical synthesis framework; (b) proposed hierarchical synthesis framework.

designer with the capability to tune the synthesis with respect
to the available hardware.

We propose ROS, a hierarchical synthesis framework built
to leverage the quantum circuit cost, both in terms of number
of qubits and number of gates. ROS’s synthesis flow is shown
in Fig. 2(b). It introduces two main contributions with respect
to the state-of-the-art flow (see Fig. 2(a)).

• First, it embeds a new k-LUT mapper that is used to
decompose the initial functionality into LUTs, in such
a way to minimize the cost of each LUT. Such cost is
defined according to the complexity of the LUT function
to be synthesized by the Gray algorithm. If we analyze
the result of this mapper against the state-of-the-art
mf mapper, we get in general more LUTs, each one
corresponding to fewer gates.

• Second, it exploits the quantum garbage management
technique presented in [14] to control the increase in the
number of qubits.

We claim that by using those two techniques together with
the Gray synthesis method, we can beat the state-of-the-art
results both in number of qubits and number of gates. Fig. 3
shows a qualitative description of the performance advantages
we expect to obtain using ROS. In the plot, the state-of-the-art
result is the one marked as M/B (corresponding to the
LHRS synthesis framework). If we only apply the memory
management technique in [14], but not the new mapper, we
will obtain a circuit with fewer qubits and more gates, that
correspond in the figure to M/P . If instead we embed into
LHRS our quantum aware k-LUT mapper, but no quantum
memory management, we can obtain a circuit with fewer
gates but more quantum qubits: S/B. Only by combining both
techniques (S/P), we can beat the state-of-the-art tool in both
qubits and gates. In fact, we can tune the approach to only
improve qubit count while not increasing gate count, or vice
versa. This qualitative description is supported by the results
in Section V.

IV. QUANTUM-AWARE k-LUT MAPPING

A main contribution of this work is to develop a k-LUT
mapper designed to reduce the resources needed to synthesize
the quantum circuit of each LUT. As explained in Section II-D,
LUT mapping is used to decompose a logic design that is too
large to be synthesized into a quantum circuit by the existing
methods. In this section, we describe how to perform this
decomposition to facilitate the successive synthesis steps.

#q
ub

its

#gates

S/B

M/B

M/P

S/P

S/P

S: spectral mapper (new)
M : mf mapper (state-of-the-art)
P : memory management technique
(state-of-the-art)
B: Bennett (state-of-the-art)

Fig. 3. qualitative description of ROS’s capability

A. Cut enumeration and costing

An Xor-And Graph, or XAG, is input to the k-LUT mapping
process. This is a graph where each node performs the XOR or
the AND operation, and where edges can be complemented to
perform inversion. The choice of this particular data structure
is not accidental, but reflects the fact that it is relatively
cheap to perform the XOR operation in fault tolerant quantum
circuits. Only one CNOT gate is needed to perform the XOR
between two qubits, and in general m − 1 CNOT gates are
needed to perform the CNOT of an m-input XOR gate. If the
result should be stored on a free ancilla line, m CNOT gates
are needed in total.

Once the input is defined, we first perform cut enumeration.
This step consists of enumerating all possible cuts for each
node of the input graph, traversing the graph from the bottom
to the top. Only the best p cuts are stored for each node,
a technique called “priority cuts” to reduce the memory
requirement of cut enumeration [21]. During cut enumeration
each node is assigned to a cut set of p cuts that are ordered
following a user defined cost criteria. In our case, as we aim
at integrating the mapper into a quantum synthesis framework,
we use as cost function the number of nonzero spectral
coefficients of the function performed by the selected cut. As
pointed out in the preliminaries, the Gray synthesis method
generates smaller quantum circuits when the input function
presents a spectrum with many zeros. At the end of the cut
enumeration step, each node of the XAG is assigned with an
ordered set of p cuts, with the order criteria defined by the
spectrum of the cut’s function.

B. XOR-block matching

We chose XAG graphs as logic representation, due to the
inexpensive implementation of the XOR operation in fault
tolerant quantum circuits. Following this idea we modify the

5

f1 f2 f3

f

(a) XOR LUT

0
0
0
0

f1 f2 f3

f

f3 f2 f1

0
0
0
0

(b) Conventional mapping

0

f1 f2 f3

f

f3 f2 f1

0

(c) Improved mapping

Fig. 4. Mapping LUTs that represent the XOR function

mapping algorithm to identify and select cuts that performs
the parity function. They can be synthesized as multiple-input
XOR gates.

After we perform cut enumeration we refine the cuts,
looking for multi-input XOR blocks. In fact, if all leaves of
the cuts have a fan-out size of 1, i.e., they only fan-in into the
XOR gate, we can apply an alternative mapping strategy that
leads to reduction of qubits and gates.

Fig. 4 illustrates the improved mapping strategy for an XOR
cut with three inputs. In Fig. 4(a) this LUT is drawn as an
XOR symbol. The conventional mapping, shown in Fig. 4(b),
maps each child in to a clean ancilla, and then uses another
clean ancilla to map the result of the XOR cut. The result
of that cut, f , can then be used by its parents in subsequent
gates. We illustrate this fact by simply annotating the circuit
line where it represents the value f . However, since in this
case the child cuts f1, f2, and f3 are composed via the XOR
operator, one can directly map them in to a single qubit without
the need of requiring an additional ancilla for each child LUT,
see Fig. 4(c).

Note that the size of the XOR gates does not need to be
bounded by the LUT size k. In order to build XOR blocks
in XAGs, we first detect 2-input XOR gates. Afterwards,
sub-trees of XOR gates are grouped together. Finally, we
adjust cut enumeration such that XOR cuts are assigned with
cost 0, in order to force the LUT mapping to prefer XOR
blocks.

V. APPLICATIONS AND RESULTS

We have implemented our algorithms into the C++ library
for hierarchical quantum synthesis caterpillar2, that is one
of the EPFL logic synthesis libraries [22]. In this section
we illustrate the efficiency of our proposed approach by
synthesizing oracles, which can be used in algorithms such as
Grover’s search algorithm [6], which is capable of computing
a satisfying assignment for a quantum oracle optimally with
a quadratic speedup.

2https://github.com/gmeuli/caterpillar

For our benchmarks we suppose that we want to perform
equivalence checking between two designs. Equivalence
checking is a well-known problem in logic synthesis that has
been addressed by many logic synthesis tools, as for example
abc [13]. We need to synthesize an oracle quantum circuit
of the function f , where f is satisfied when the two graphs
perform a different operation. The algorithm would either
prove that the two circuit are equivalent, or would provide
the input set for which the two functions evaluate differently.

Our benchmark consists of XAG graphs. Each graph is an
equivalence checking miter of two circuits that perform the
same function but using a different network structure. The
miter of two networks is a network built by joining their input
sets and by computing the 2-input XOR between their outputs.
Further, one or more injected faults (a node performing a
different computation) are injected in one of the two circuits.
We consider three type of benchmarks: addassoc, where
the algorithm should verify the validity of the associativity
property of addition; multassoc, where the two designs should
be equivalent thanks to the associativity of the multiplication,
and multdistr, to prove the distributivity of the multiplication.
Each benchmark is considered with bitwidths from w = 4 to
10 bits. Consequently, each benchmark has 3w inputs and 1
output.

Our experimental results are reported in Table I. The first
two columns show the results of the state-of-the-art (M/B)
synthesis flow, that uses a classic k-LUT mapper and the
Bennett strategy to deal with garbage results.

As expected, data shows that by only changing the k-LUT
mapper (S/B) we always reduce the number of gates, paying
in an increased number of qubits. On the other hand, by only
applying the quantum garbage management technique (M/P),
the number of qubits is always reduced, and the number of
gates increased.

In the S/P_match_q experiment we have used ROS, setting
the number of qubits to match M/B. In most of the cases
we obtain an improvement in both qubits and gates, with
the exception of multassoc5, multdistr6 and multassoc6. For
the latter cases, the SAT solver that is used in the quantum
garbage management technique had reached our limit of 50000
conflicts. For this reason, we needed to slightly increase the
number of qubits, still obtaining in all cases a reduction in
gates with respect to M/B.

In the S/P_match_g experiment, we start from the results
in S/P_match_q and try to beat them, by decrementing the
number of qubits, as long as the number of gates does not
exceed the one in M/B. Also here ROS manages to obtain
better results than the state-of-the-art flow both in gates and
qubits.

Most of the synthesis runs completed within a few seconds,
none required more than one minute in the worst-case.

VI. CONCLUSION

In this work we introduce ROS: a hierarchical quantum
synthesis flow based on k-LUT networks. ROS exploits a
k-LUT mapper that has been specifically designed for this
application. This mapper is capable of generating LUTs that

6

TABLE I
COMPARISON BETWEEN ROS AND LHRS

M/B S/B S/P_match_q S/P_match_g M/P

gates qubits gates qubits gates qubits gates qubits gates qubits

addassoc4 1376 25 1029 34 1141 25 1371 22 1904 19
addassoc5 2987 36 1586 49 1798 36 1804 31 5365 24
addassoc6 2394 43 1445 58 1513 42 1729 35 8268 26
addassoc7 3243 51 1941 70 2201 50 2361 44 4383 36
addassoc8 3221 62 2018 79 2312 57 2430 49 4787 40
addassoc9 3603 70 2385 89 2453 67 2773 56 5569 42
addassoc10 4528 80 2835 97 3575 70 3549 58 6142 50
multassoc4 6682 34 2751 60 3057 34 3193 33 10834 19
multassoc5 10519 54 4811 104 5321 55 5321 55 16687 31
multassoc6 17653 93 7395 172 8565 96 8565 96 22933 53
multassoc7 25395 138 11099 240 15425 135 14607 128 37717 74
multassoc8 32443 181 13781 323 20713 179 22997 166 51757 94
multassoc9 37599 212 17881 394 34305 203 32489 200 66267 110
multassoc10 47795 289 22843 525 41825 281 41081 262 101627 143
multdistr4 4812 29 2368 54 3262 29 3694 25 5034 19
multdistr5 9011 54 4569 94 5441 54 5441 54 22717 25
multdistr6 13327 78 6092 143 7138 80 7138 80 15169 46
multdistr7 18268 110 8771 200 13849 109 13849 109 21746 63
multdistr8 26151 149 11888 276 17896 149 17520 143 39449 81
multdistr9 30427 184 14477 332 22917 182 22445 181 43819 99
multdistr10 37571 226 17808 414 29714 214 31570 219 55583 122

S/P vs M/B average results -32.31% -1.86% -29.77% -8.38%

are easy to be synthesized by the Gray synthesis method, and
leads to a quantum circuit with fewer gates if compared with
existing mappers, i.e. mf from abc. In addition, ROS exploits
a SAT-based quantum memory management technique to gain
control over the number of qubits of the generated circuits. In
our experiments we apply ROS to the synthesis of quantum
oracles for Grover’s algorithm, proving its ability to break the
border of the pareto-point synthesis results and beating the
existing framework in both qubits and number of gates.

Acknowledgments: This research was supported by the Swiss
National Science Foundation (200021-169084 MAJesty).

REFERENCES

[1] S. Debnath et al., “Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, 2016.

[2] P. J. J. O’Malley et al., “Scalable quantum simulation of molecular
energies,” PRX, 2016.

[3] E. A. Martinez et al., “Real-time dynamics of lattice gauge theories with
a few-qubit quantum computer,” NATURE, 2016.

[4] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science, Nov 1994, pp. 124–134.

[5] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and
A. Aspuru-Guzik, “Exponentially more precise quantum simulation of
fermions in second quantization,” New Journal of Physics, vol. 18, no. 3,
p. 033032, 2016.

[6] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing. ACM, 1996, pp. 212–219.

[7] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation
based algorithm for reversible logic synthesis,” in Design Automation
Conference, 2003. Proceedings. IEEE, 2003, pp. 318–323.

[8] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact
multiple-control Toffoli network synthesis with SAT techniques,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 5, pp. 703–715, 2009.

[9] M. Amy, P. Azimzadeh, and M. Mosca, “On the cnot-complexity of
cnot-phase circuits,” arXiv preprint arXiv:1712.01859, 2017.

[10] N. Schuch and J. Siewert, “Programmable networks for quantum
algorithms,” Physical review letters, vol. 91, no. 2, p. 027902, 2003.

[11] M. Rawski, “Application of functional decomposition in synthesis
of reversible circuits,” in International Conference on Reversible
Computation. Springer, 2015, pp. 285–290.

[12] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “LUT-based
hierarchical reversible logic synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 24–40.

[14] G. Meuli, M. Soeken, M. Roetteler, N. Bjorner, and G. De Micheli,
“Reversible pebbling game for quantum memory management,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2019, 2019.

[15] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware aig
rewriting a fresh look at combinational logic synthesis,” in Proceedings
of the 43rd annual Design Automation Conference. ACM, 2006, pp.
532–535.

[16] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 6, pp. 818–830, 2013.

[17] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review
A, vol. 93, no. 2, p. 022311, 2016.

[18] G. Meuli, M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli,
“A best-fit mapping algorithm to facilitate ESOP-decomposition in
Clifford+T quantum network synthesis,” in Proceedings of the 23rd Asia
and South Pacific Design Automation Conference. IEEE Press, 2018,
pp. 664–669.

[19] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Springer Berlin Heidelberg, 2008.

[20] C. H. Bennett, “Time/space trade-offs for reversible computation,” SIAM
Journal on Computing, vol. 18, no. 4, pp. 766–776, 1989.

[21] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 240–253, 2007.

[22] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli, “The EPFL
logic synthesis libraries,” May 2018, arXiv:1805.05121.

