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ABSTRACT: The mobility of water within the microstructure of
hardened cement paste has been at the center of a long-lasting
debate, motivated by the need to understand the fundamental
mechanisms that play a role in drying, shrinkage, creep, and thermal
expansion. Our 1H NMR results show for the first time that
externally applied pressure can lead to migration of water within the
microstructure (microdiffusion). Upon compression, the gel water
signal decreases. For the most part, this is accommodated by a
corresponding increase in the signal of water in larger, interhydrate,
and capillary spaces. However, there is also an increase in the signal
corresponding to the water in most confined spaces. Normally, such
tiny spaces are classified as hydrate interlayers. However, we do not
conclude that there is a significant increase in interlayer water. Rather, we attribute this part of the increase to a rearrangement
of the microstructure upon compression with some water confined in increasingly small gel pore spaces. These findings show
that the deformability of the microstructure (C−S−H gel) at the expense of gel porosity may explain part of the macroscopic
deformations due to short-term creep.

1. INTRODUCTION

Hardened cement paste is composed of different hydration
products, unhydrated cement (or, more generally, binder,
including also fillers or supplementary cementitious materi-
alsSCM), and porosity. The small pores in the cement paste,
with their high specific surface area, are responsible for the
strong interactions of cement paste with different fluids (pore
fluid, water vapor, liquid water, and other fluids or gases that
can penetrate from the outside).1−3 These interactions further
govern such important phenomena as shrinkage, creep, and
thermal deformation of cement-based materials like mortar or
concrete.2,4,5 In this regard, the porosity and the water within
the calcium silicate hydrate (C−S−H), the main hydration
product of Portland cement characterized by its very high
specific surface, are especially important. Although the
proposed sizes of spaces in which water is confined can vary
depending on the experimental method and theoretical models
of the microstructure of a hardened cement gel, a general
classification is mostly agreed upon. The smallest spaces in
which water is present as an intrinsic part of the hydration
products are the C−S−H interlayer spaces (also referred to as
the intra-C−S−H sheet pores6) between the backbone

C−S−H sheets. Above the scale of the C−S−H sheets,
water is present in the gel pores that form between the
agglomerates of the C−S−H sheets and are an intrinsic part of
the C−S−H gel.3 Larger pores are present between the needles
or globule flocks (depending on the adopted microstructural
model) of C−S−H and are referred to as the interhydrate
pores. Finally, capillary pores are formed as spaces from which
water is consumed in the hydration process and consequently
they are not filled with hydration products.1,6,7 The
nomenclature used in the cement research field will be used
in this paper. Please refer to Table 1 for the summary of pores/
spaces in cement paste and their sizes found in previous
studies.
Already in the 1960s, Powers referred to water adsorbed in

the narrowest spaces between solid hydrates, where the full
adsorption thickness cannot develop, as the “hindered
adsorption water”.15 According to recent experimental data
obtained with 1H nuclear magnetic resonance (NMR), these
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spaces correspond to part of the interlayer water in the
C−S−H and in small gel pores.6,11 The hindered-adsorbed
water was proposed by Powers to be subject to disjoining
pressure (see also the works of Wittmann and co-workers2,16)
and to act as load-bearing layers in the hydrated gel. Powers
further suggested that creep deformations of cement paste are
due to the transport of this water from the hindered adsorption
areas to larger capillary pores in a diffusion process.15,17 Such
microdiffusion would be triggered when the equilibrium is
upset locally by the application of external stress. According to
this description, Powers proposed that creep is in fact “stress-
induced shrinkage”.15 The concept of microdiffusion leading to
stress-induced shrinkage was further studied within a
thermodynamic framework by Bazǎnt and co-workers.18,19 A
distinction between the volumetric short-term creep (days to
few weeks) and deviatoric long-term creep has been observed
experimentally in the previous studies.20−22 Bernard et al.21

measured the fast contraction of the samples under hydrostatic
loading in very porous calcium-leached cement paste and
mortar. This contraction was attributed to water movement. It
is worth noting that the compaction of C−S−H (referred to as
the “increase of the packing density”) was observed also in
nanoindentation tests.23 Feldman24 proposed that the “seep-
age” of adsorbed water from interlayer spaces could be
responsible for short-term creep but should not be involved in
long-term creep, for which shear slippage was proposed (see
also the more recent micro-prestress theory of creep25).
Microdiffusion as the mechanism responsible for short-term
creep was later adopted in a number of models of concrete
creep,26−29 not least due to the ease of implementation in the
viscoelastic models with dashpot elements corresponding to
the diffusion process.
The microdiffusion process was proposed by Powers to

account also for delayed thermal deformations since a
temperature change would also cause a free energy potential
between water in pores of different sizes.17 This hypothesis was
later adapted by Bazǎnt and by Sellevold and Bjøentegaard.30,31

In a recent study,9 we observed immediate and reversible water
redistribution from interlayer C−S−H spaces to gel pores
during heating in the range of 20−38 °C.
The motivation of this study is to investigate experimentally

whether water redistribution (microdiffusion) takes place due
to mechanical loading and, if so, which populations of water
are involved.

To this end, the state of the water in white Portland cement
paste is measured by 1H NMR T2-relaxometry during the
application of hydrostatic pressure (up to 150 MPa) in a
pressure cell placed in an NMR magnet. 1H NMR relaxometry
is particularly useful for this purpose, thanks to the fact that it
enables nondestructive in situ measurements with water itself
(or, more precisely, hydrogen) in the cement paste acting as
the probe.13,32,33 Further, the measurements take advantage of
the fact that the proton experiences different relaxation rates,
which are proportional to the strength of interaction of the
water with the solids.6 This enables different populations of
water to be distinguished in different classes of pore sizes (or
chemophysically bound to solids in the case of the adsorbed or
interlayer water) and water migration between them to be
followed. 1H NMR relaxometry has been recently used for
studying the microstructure of C−S−H,6,11,34 pore-size-
resolved sorption isotherms,10,35 hydration of cement,36−38

kinetics of water migration in the microstructure during
wetting,39 self-desiccation,40 self-healing of cracks,41 drying,42

moderate temperature changes,9 or fire exposure.43 The
outcomes of many 1H NMR experiments regarding porosity,
sorption, and hydration process could be validated with
independent experimental techniques, e.g., mercury intrusion
porosimetry, X-ray diffractometry, or sorption isotherms.10,44,45

However, to the best of our knowledge, no complementary
experimental technique could directly follow the redistribution
of water in the wide range of pore sizes (see Table 1) during
the actual loading of the samples; this was possible uniquely
with the 1H NMR.

2. MATERIALS AND METHODS

2.1. Materials, Mixing, and Storage of the Samples.
Cement paste samples were prepared with white Portland
cement CEM I 52.5R (Aalborg) at a water-to-cement ratio (w/
c) by mass of 0.25, 0.40, and 0.50 by mixing cement with
deionized water. For the w/c 0.25 paste only, a polycarbox-
ylate-based liquid superplasticizer (VC 20HE by Sika) was
additionally used as partial water replacement in an amount of
0.4% by mass of cement. The plasticizer was necessary to mix
the low w/c paste and provide a homogeneous cement paste.
The oxide compositions of the anhydrous cement were (by

mass) as follows: SiO2 24.37%, Al2O3 1.97%, Fe2O3 0.32%,
CaO 68.48% (free CaO 1.35%), MgO 0.70%, K2O 0.09%,
Na2O 0.16%, SO3 2.07%. The phase composition of the

Table 1. Classification of Water-Filled Spaces and Pores in Hydrated Cement Paste According to Different Sources

pore/space populations description characteristic sizes
IUPAC

classification8

interlayer C−S−H spaces spaces between the backbone C−S−H sheets ≤1 nm9−12 micropores
1.5 nm6

1.8 nm13

<2 nm14

gel pores pores between the agglomerates (stacks or globules) of
the C−S−H sheets, intrinsic part of the C−S−H gel

1−3 nm (small gel pores)12 mesopores
3−12 nm (large gel pores between the globule flocks)12

2−3 nm9,10

7 nm13

2−8 nm14

interhydrate pores pores between the C−S−H needles ∼10 nm9,10

>8 nm14

50 nm13

capillary pores larger poresremained after consumption of water >8 nm14 macropores
≥100 nm9,10,13
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cement was as follows (by mass, quantitative X-ray
diffractometry): C3S 71%, C2S 21%, C3A 3.2%, C4AF 0.20%,
CH 0.50, anhydrite/gypsum 2.0%, calcite + dolomite 0.50%
(according to cement chemistry notation: C3S−3CaO·SiO2,
C2S−2CaO·SiO2, C3A−3CaO·Al2O3, C4AF−4CaO·Al2O3·
Fe2O3, CH−Ca(OH)2). The cement had a Blaine fineness of
3940 cm2/g and a density of 3.13 g/cm3. Thanks to the low
C4AF and C3A contents of the cement, the interference of the
paramagnetic impurities and of the crystalline hydration
products like ettringite, respectively, was minimized.
Cement pastes were mixed in batches of about 300 mL in a

500 mL vacuum mixer at 450 rpm for 2 min. After mixing, the
pastes were poured into hermetic plastic containers and stored
sealed for 16 ± 1 h. Next, miniature cylindrical samples
(diameter 7.5 + 0.01/−0.5 mm, height 10 ± 1 mm, mass about
0.9 g) were cored under water using a hardened steel bore. The
cylinders were either placed under lime water or kept in sealed
conditions (in hermetic plastic containers) until the age of 28 d
at 20.0 ± 0.3 °C. Afterward, the samples were conditioned at
different controlled relative humidities (RHs) or in sealed
conditions to study the effects of the residual moisture
conditions in the sample. To this end, the samples were
exposed to drying at different RHs in desiccators filled with N2
(to avoid carbonation) or kept continuously sealed for about 2
years. The RH in desiccators was controlled in the range of
75−98% by means of saturated salt solutions in a climate-
controlled room at 20.0 ± 0.3 °C. The masses of the samples
were determined at different stages of the conditioning
process. The initial (after underwater curing) and final
(directly prior to the NMR measurements) mass measure-
ments yielded a sorption isotherm, with reference to dry state
determined on the companion samples stored in a desiccator
with silica gel. The materials used, sample preparation, and
storage procedure were the same as in our previous NMR
study.9

2.2. Applying Pressure on the Samples. A custom-built
pressure cell was used for applying the hydrostatic pressure on
cement paste samples during the NMR measurements. The
details of the pressure cell are briefly summarized in the
Supporting Information, Section S.1. After positioning a
cement paste specimen inside the cell and filling the cell
with the hydraulic fluid (Krytox GPL 103 fluorinated oil), the
cell was placed in the NMR magnet.
At this point, an initial pressure of about 1 MPa was applied

to ensure proper filling of the cell with the oil. Next, the NMR
coil was tuned with a tuning circuit. After collecting at least
two or three NMR measurement datasets, each taking about 17
min, the pressure was applied in a single fast step (shorter than
1 min) with a manual pump (Enerpac). The maximum
pressure applied was 150 MPa. Considering that the
hydrostatic pressure was applied, this stress level cannot
induce failure of the cement paste.46,47 After applying the
pressure, the NMR coil was again tuned (it was found that
pressurizing the oil led to a small increase of the NMR coil
frequency). Next, the measurements on loaded samples were
carried out. The pressure was held nominally constant from
about 1 h to about 16 h, depending on the case. Finally, the
samples were unloaded back to about 1 MPa. The loading/
unloading cycle was in some cases repeated.
The temperature inside the pressure cell, governed by the

temperature inside the bore of the magnet, was in the range of
14−16 °C (as measured immediately after removing the cell

from the bore of the magnet after having performed a series of
measurements).

2.3. NMR Measurements. The 1H NMR measurements
were carried out at 60 MHz using a setup operated at the
Department of Physics at the University of Surrey and
composed of a superconducting magnet (Magnex), an MRI
shim set (Otsuka Electronics) with three gradient amplifiers
(Techron), a spectrometer (Kea2 by Magritek), and a pulse
amplifier (American Microwave Technology). The magnet has
a horizontal bore (diameter 100 mm) accessible from two
ends, a feature necessary for accommodating the pressure cell
(with the capillary tube connected to the pump at one end and
the connection to the electronic control unit at the other end).
The NMR coil placed inside the pressure cell (see the

Supporting Information, Figure S1) was made of 4.5 turns of a
ø 1.5 mm copper wire. The coil had an internal diameter of 11
mm and a height of 12 mm.
During the measurements, shim coils in three directions

were used to compensate for the magnetic field inhomoge-
neity. The shim current was optimized using a dummy sample
made of rubber.
The NMR coil frequency was tuned and matched (the depth

of the NMR ‘Q’ tuning dip and its position were adjusted,
respectively) by means of the capacitors and an inductive coil
built into the tuning circuit.
The ‘mobile’ water present in the samples was measured

using the Carr−Purcell−Meiboom−Gill (CPMG) pulse
sequence. Depending on the sample measured, 192 or 256
linearly spaced echoes from 0.067 to 13 or 18 ms, respectively,
were recorded. The π/2 pulse length was typically equal to 5−
6 μs. With a repetition time of 1 s and 1024 averages recorded,
one CPMG measurement took about 17 min. The signal-to-
noise ratio of the measurements was typically above 2000.
More details on the CPMG measurements as applied here can
be found in the literature.35,48

In addition to measurements on the cell containing a cement
paste sample, also measurements with a cell without a sample
(but filled with oil) subject to different pressures were run. The
small residual signal from the pressurized cell (at 1 or 150
MPa) filled with oil (‘empty cell’) was subtracted from the
signals of the sample at the equivalent pressure.
The masses of the samples were determined before and after

the experiments. No change of mass was found for the
saturated sample, showing negligible replacement of water with
the denser and more viscous oil (density of about 1.9 g/cm3,
dynamic viscosity of about 150 MPa s). For other samples,
slight increments of the masses (typically below 5% by mass of
the residual water content) were found, likely due to the
penetration of the oil into the partially emptied pores. Due to
the negligible NMR signal of the oil and the fact that the oil
did not mix with the water (as shown by the saturated sample),
it can be assumed that the presence of the oil in the pores did
not affect the measurements other than by the effect of the
hydrostatic pressure.

2.4. Data Deconvolution. The deconvolution of the total
CPMG signal decay into different components due to water
confined in different pore populations, with their characteristic
T2-values and amplitudes (fractions of the total signal), has
proven to be one of the major issues met by 1H NMR. The
deconvolution of the noisy decay data is, in principle, an ill-
posed inversion problem, i.e., its solution is not unique.48,49

Among different methods for the CPMG data deconvolution,
inverse Laplace transform (ILT) or methods based on fitting
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the sum of single exponential decay components, i.e.,
multiexponential fitting (with different optimization criteria),
are commonly used.48−50

Considering that relatively small signal changes needed to be
followed, a deconvolution algorithm was required that would
provide low variance in the inverted solution between the
consecutive scans. Two different ILT algorithms were initially
tested,51,52 and their solutions, i.e., the obtained fractions of
different water populations, were significantly different from
each other. Moreover, artificial peaks at very low T2 were often
found, see Muller et al.,48 which seriously limited the number
of meaningful results.
On the other hand, a simple multiexponential fitting

inversion method (see also the previous studies9,42) could
provide very stable solutions between the consecutive scans.
In this approach, the total signal decay S(t) as a function of

experiment time t (here with linear spacing) is approximated as
the sum of the k exponential decay components (each
characterized by an amplitude Sk and a relaxation time T2,k)
that are characteristic of single water populations

i

k
jjjjj

y

{
zzzzz∑≈ −S t S

t
T

( ) exp
k

k
k1 2, (1)

The solution is found by minimizing the squared error of fit. In
the least-squares optimization, the number of components and
their characteristic T2-relaxation times were constrained for
each sample, and their amplitudes (assumed to be the only
changing quantity between the consecutive scans) were fitted,
similarly as in the previous studies.9,42 The ILT analysis of the
multiple datasets was used to provide the best estimates of the
constraints. This yielded a number of peaks k = 4 (a small, fifth
peak found in some cases was attributed to noise and
neglected), in agreement with the previous studies,9,10,34 and
the peaks were thus considered to correspond to the C−S−H
interlayer water, gel water, interhydrate water, and capillary
water. The characteristic T2-times to be constrained were
averaged between the ILT times obtained from two pressures
(1 and 150 MPa). The assumption of the constant T2 at
different pressures is based on the fact that the relaxation rates
in porous materials are governed primarily by the interactions
of the paramagnetic solid surfaces (pore walls) and the proton
in the pore fluid.53 These interactions are hardly affected by
the pressure. Even if the pressure leads to some refinement of
the pores (and hence could affect relaxation according to the
surface relaxation mechanism), such slight change cannot be
resolved considering the measurement and deconvolution
uncertainty.
In fact, no significant trend due to pressurization that could

indicate a systematic change in T2 (and hence the change of
pore sizes) could be found except for the longest T2-
component (assigned to capillary water), where lower T2-
values were found at a higher pressure. However, the averaged
T2-values still allowed obtaining a good quality of fit.

3. RESULTS
3.1. First Loading Cycle and Reversibility. Clear

differences in water populations under pressure were observed
for samples preconditioned at 95% RH. These samples are
analyzed in this section, while the effect of internal RH is
analyzed in Section 3.2.
In Figure 1, the results of pressuring a sample from 1 to 150

MPa are presented. Here and throughout the paper, the

CPMG decay is presented after subtraction of the signal of the
‘empty’ (only oil-filled) cavity and phasing. The results of two
consecutive measurements at each of the pressures (1 and 150
MPa) are shown (with a time interval of about 17 min between
the scans) to indicate the very good repeatability of
consecutive measurements (note that the signals at a given
pressure, i.e., blue markers at 1 MPa or red markers at 150
MPa, practically overlap in Figure 1).
The data of the cell without the sample (‘empty cell’) is also

presented in Figure 1, showing a very low background signal
compared to that of the sample (note the logarithmic scale)
that was hardly affected by the application of pressure; the
pressure cell itself and the hydraulic fluid can be thus
considered to be almost transparent to NMR and not sensitive
to pressure.
The application of pressure led to a slight (about 10%)

increase in the overall signal amplitude of the sample. This is
attributed to the changed tuning of the coil, which varies the
Q-factor amplification of the signal. It does not, however, affect
the resolved change (redistribution) of the signal.
A clear effect of pressure application can be seen regarding

the shape of the decay curve; in particular, for times longer
than about 0.5 ms, the signal becomes higher. This already
suggests that the redistribution of water from smaller to larger
pores takes place due to applied pressure. The signal changes
can be approximately assessed if one considers the following
characteristic times that mark different pore size populations:
times longer than about 0.5 ms correspond to the interhydrate
and capillary pores, while times longer than 2 ms correspond to
large capillaries only.6 In this case, it can be seen that the
application of pressure causes an increase of the signal fraction
of the interhydrate and capillary pores from about 0.07 to 0.10
and of the signal fraction of the capillaries from almost zero to
about 0.016 (with the total CPMG signal equal to 1).
Further quantification is made after deconvolution of the

total signal with constrained multiexponential fitting (see
Section 2.4). As already discussed, this is done with four values
of the T2-times characteristic for different water populations
and fixed constant between different pressures within a
samplethe changes of amplitudes of different populations
are then resolved as an effect of pressure.

Figure 1. CPMG decay of the w/c 0.40 cement paste sample
preconditioned at 95% RH and subject to pressure change from 1
MPa (blue markers) to 150 MPa (red markers). Consecutive
(duplicate) measurements at each pressure are shown. The signals
of the cell without the sample at two different pressures are also
presented.
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In Figure 2a, an example of the multiexponential fit is
presented. In Figure 2b, signals for different water populations

and their changes due to applied pressure are presented (blue
bars correspond to 1 MPa and red bars to 150 MPa). Each bar
corresponds to a single measurement within a series. As seen in
Figure 2b, the application of pressure causes a decrease in the
gel water signal and an increase in signals of other water
populations. Part of the gel water is redistributed to larger
poresinterhydrate spaces and large capillary pores. In
particular, the capillary water, absent in the unloaded sample
at this RH (the capillary pores desaturate at high RH9,10),
appears when pressure is applied. The signal fraction (with all
mobile water equal to 1) of the water in large pores
(interhydrate + capillary water) increases directly after loading
from about 0.015 to about 0.053, i.e., more than three times.
Another effect related to the decrease of the gel water signal
fraction is the increase of the signal fraction corresponding to
the shortest resolved T2. Although this shortest T2-component
is attributed to the water under strongest interaction with the
solids, i.e., the C−S−H interlayer water, it should be
anticipated here that the increase of this signal fraction upon
loading does not necessarily mean that it is due to the amount

of the interlayer water that changed. Its major part is likely due
to the refinement of some part of the gel pores to a size
whereby they are resolved as the interlayer spaces. This is
consistent through all of the results presented thereafter and
will be discussed in detail in Section 4.
When the sample is unloaded, the changes in large pores are

practically fully reversible. This is not the case for the interlayer
signal fraction, where only part of the change is recovered.
As long as the shape of the signal decay curve between

consecutive measurements at 1 MPa is rather constant (see
blue bars in Figure 2b), the temporal evolution of the signal
can be seen after applying pressure. This is studied in detail in
Section 3.4.
The repeatability of the experiment has been also assessed

by testing thee samples of w/c 0.40 produced in different
mixings and all preconditioned at 95% RH. The tests were run
at different times (across a couple of months), i.e., with
different settings of the NMR magnet. The changes of the
signal after applying pressure presented in Figure 3 appear to

be fairly repeatable across different samples, indicating the
good repeatability of the experiment (in addition to good
repeatability for a single sample between consecutive measure-
ments, as already shown in Figure 1).

3.2. Second Loading Cycle. The second loading cycle
was applied to the same sample, as presented in Section 3.1
(w/c 0.40, preconditioned at 95% RH). After the first
unloading back to 1 MPa, two CPMG measurements were
run (light blue bars presented in Figure 2b) and the sample
was again loaded to 150 MPa. After taking three further
CPMG measurements, the pressure was reduced to 100 MPa
and next again to 1 MPa. The signal changes during the second
loading cycle were similar to those during the first loading
cycle, as shown by the comparison in Figure 4. The results of
the second cycle as revealed by the multiexponential fitting are
presented in the Supporting Information, Figure S2.
It can be seen that the redistribution of water populations

due to loading/unloading pressure is repeatable during
subsequent cycles. However, unloading to only 100 MPa did
not lead to any visible effect compared to that of 150 MPa (see
Figure S2 in the Supporting Information). It was also found on
a number of samples at different RHs (results not presented
here) that loading a sample from 1 to 100 MPa or further to
120 MPa did not lead to any significant change in the signal

Figure 2. (a) CPMG decay of the w/c 0.40 cement paste sample
preconditioned at 95% RH (the same data as in Figure 1) (markers)
and the fitted curves obtained with constrained multiexponential
fitting (with four fixed T2-components), and (b) results of data
deconvolution with multiexponential fitting. Each bar corresponds to
a single CPMG measurement (each measurement lasted about 17
min). Blue bars correspond to 1 MPa and orange-red bars to 150
MPa. Times in the data for 150 MPa denote the time from pressure
application to the end of each CPMG measurement.

Figure 3. Changes in signal fractions (with total CPMG signal equal
to 1) of different water populations at increasing pressure from 1 to
150 MPa obtained with constrained multiexponential fitting for
triplicate samples of the w/c 0.40 cement paste preconditioned at 95%
RH.
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(while the change occurred after subsequently increasing the
pressure to 150 MPa). The possible reasons are further
discussed in Section 4.
3.3. Effect of Residual RH on Redistribution Under

Pressure. Samples of the w/c 0.40 cement paste at different
RHs were tested: 75, 85, 95, and 98%, and stored under water
(nominally saturated). In Figure 5, the effect of pressure on the

redistribution of water populations is presented as a function of
the internal RH in the samples (assumed equal to the RH at
which the samples were conditioned prior to the experiments).
The continuous lines show the water populations as revealed
by multiexponential fitting on the CPMG scans collected at 1
MPa (in the last scan before increasing the pressure), and the
dashed lines were obtained from the CPMG scans directly after
applying the 150 MPa pressure (i.e., the first CPMG
measurement starts about 15 min from changing the pressure).
The change at 95% RH is that presented already in Section 3.1,
Figure 2b. The total signal amplitudes at each RH are
normalized based on the desorption isotherm obtained from
mass measurements on duplicate samples conditioned in the
desiccators prior to the NMR measurements. The error bar in

Figure 5 represents the standard deviation resulting from the
joint average variances of the NMR measurements and the
gravimetric measurements. The former was obtained from the
variance of the consecutive NMR measurements (after
deconvolution) of single samples at 1 MPa pressure and the
latter from the variance in mass change measurements of
duplicate samples.
As can be seen in Figure 5, the redistribution of water signal

under pressure is similar in the samples in the range of 75−
95% RH. At higher RH (98% and in saturated samples), the
redistribution was lower and limited only to the change of
signal from gel to interlayer water.

3.4. Temporal Evolution of Signal After Loading.
Despite its relatively low magnitude, a clear temporal evolution
of the signal could be observed in most of the samples. In
Figure 6, it is presented for the samples conditioned at 95, 85,
and 75% RHs. The corresponding deconvolution of the signal
with multiexponential fitting is presented in the Supporting
Information, Figure S3a−c, respectively. According to the
deconvolution results, the temporal evolution of the signal
corresponded to both the redistribution between the gel water
and water in larger pores (interhydrate + capillary) and
between the gel water and water in smaller pores (resolved as
the interlayer water). The analysis of the changing signal for
the exemplary case of the sample conditioned at 85% RH,
Figure 7, shows that the water changes can be well fitted with
linear trends in the short time range observed here. For other
samples conditioned at 75 and 95% RHs, the rates of signal
change were similar to those presented in Figure 7
(approximately linear in time).
The change under pressure and the temporal evolution of

the signal were also observed for a w/c 0.25 sample cured in
sealed conditions (i.e., undergoing self-desiccation), Figure 8.
The corresponding deconvolution of the signal is presented in
the Supporting Information, Figure S3d. In this sample, a
residually low amount of water in larger pores with a signal
fraction of around 0.012 increased to 0.022 after loading (this
value was stable over 17 h). Even though a clear temporal
evolution could be observed in the CPMG decays during the
first hour after loading, it corresponds to very small changes in
the deconvoluted data. After about 17 h under load,
redistribution from gel to interlayer signal could be observed.
The recovery upon unloading regarded only the largest pores.
It should be noted that the relaxation behavior in the w/c

0.25 paste may have been affected by the presence of the
superplasticizer. The plasticizer adsorbed on the solid surfaces
(pore walls) hinders the access of the pore fluid to the surfaces
(hydrophobic effect).54,55 This should lead to lower relaxation
rates of protons in the pore fluid.56,57 Further, a contribution of
the proton in the superplasticizer is possible and should be,
however, less significant considering the small concentration of
the organic superplasticizer in the mixing water (1.6% by
mass). At the same time, such systematic effects should be
uniform at different pressures. Hence, the net effect of
pressurizing on water redistribution should be still valid and
independent from the altered surface relaxivity.

4. DISCUSSION
4.1. Summary of the Results. The presented results show

that the redistribution of water (microdiffusion) between
different classes of pores within the microstructure of hardened
cement paste takes place under mechanical (here hydrostatic)
loading.

Figure 4. CPMG decay of the w/c 0.40 cement paste preconditioned
at 95% RH during the first and the second loading cycles.

Figure 5. Signal fractions of different water populations in the w/c
0.40 cement paste measured at 1 MPa (continuous lines) and in the
first CPMG measurement after changing the pressure to 150 MPa
(dashed lines) as a function of internal RH prior to the experiment.
The total signals of different samples were normalized based on
gravimetric sorption isotherm measurements. 100 %RH corresponds
to samples stored under water.
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Upon applying hydrostatic pressure, the shapes of the
CPMG decay curves change, suggesting the movement of
water to larger pores. After a more detailed analysis of the
CPMG decays with constrained multiexponential fitting, it can
be seen that pressurizing the unsaturated (i.e., preconditioned
at below 98% RH) samples leads to a clear reduction of the gel
water signal. This signal becomes redistributed into the
following signals: (1) corresponding to water in the

interhydrate and capillary pores, i.e., larger pores, and (2)
corresponding to water with relaxation time shorter than that
for the gel pores, i.e., smaller pores. Process (1) can be readily
interpreted as due to migration of water from smaller (gel) to
larger pores. This part of the signal change is almost fully
reversible. Process (2) is resolved in the signal deconvolution
as an increase in the interlayer C−S−H water signal and is only
partially reversible after first unloading. In samples close to
saturation (preconditioned at 98% RH or under water),
redistribution of the signal under pressure is much lower and
regards only the increase of the interlayer water signal at the
expense of the gel signal.
Even though the amount of water redistributed upon loading

is in absolute terms rather small (a couple of percentage of all
water), it is not negligible, especially considering its relative
magnitude compared to the residual amount of water in the

Figure 6. CPMG decays: effect of applying pressure (150 MPa) on
the w/c 0.40 cement paste preconditioned at (a) 95% RH, (b) 85%
RH, and (c) 75% RH. The temporal evolution of the signal after
loading can be seen. Each curve corresponds to a single consecutive
CPMG measurement. Blue curves correspond to 1 MPa and orange-
red curves to 150 MPa. Times in the data for 150 MPa denote the
times from pressure application to the end of each CPMG
measurement. The deconvolution of the signal is presented in the
Supporting Information, Figure S3a−c.

Figure 7. Change of the signal fractions in time of different water
populations in a w/c 0.40 sample preconditioned at 85% RH
occurring after the first CPMG measurement at 150 MPa pressure, as
revealed by the multiexponential fitting (the deconvoluted results are
presented in the Supporting Information, Figure S3b). Time for each
data point is the time between the application of pressure and the end
of each measurement. Note that the signal changes found in the first
CPMG measurement after increasing the pressure (i.e., between zero
and the first point on the curves at about 30 min) were: gel −0.095,
interlayer +0.062, interhydrate +0.034, capillary 0.000.

Figure 8. CPMG decays of the w/c 0.25 cement paste preconditioned
in sealed conditions. Each curve corresponds to a single consecutive
CPMG measurement. Blue curves correspond to 1 MPa and orange-
red bars to 150 MPa. Times in the data for 150 MPa denote the time
from pressure application to the end of each CPMG measurement.
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largest pores to which the water migrates. In fact, in the
capillary pores that are emptied of water already at about 95%
RH (see the NMR desorption experiments by Muller et al.10),
water reappears when the sample is compressed. In general, in
the range of 75−95% RH, the amount of water in the largest
pores (interhydrate + capillary) increased to about 2−3 times
upon loading. It should be stressed here that the distinction
between the two classes of the largest pores, interhydrate and
capillary, is subject to high uncertainty.
The process of redistribution was time-lapsed; the

quantification of the rates is, however, hardly possible due to
the relatively short times of the experiments on one hand and
the coarse temporal resolution of the NMR measurements on
the other hand, not allowing to resolve the initial (supposedly
fast) redistribution kinetics. All analyzed samples precondi-
tioned at different RHs (75−100%) had similar rates of signal
change.
4.2. Proposed Mechanism. Based on the results

presented above and on previous works,58,59 we postulate the
following mechanism to explain the water redistribution upon
hydrostatic loading. In a saturated sample, no redistribution to
large pores is possible as these pores are already filled with
water and no further transport is possible under hydrostatic
loading. Additionally, the small amounts of water that might
migrate between different sizes of the largest pores (should
part of them be empty prior to loading) can probably not be
detected with the present method. This effect likely contributes
also to the relatively small redistribution seen at 98% RH.
On the other hand, when the sample is unsaturated (below

98% RH), water in the saturated part of the gel pores can
diffuse when stressed to available free spaces, i.e., larger pores.
These are previously unsaturated capillary voids (at high RH)
or interhydrate spaces (at intermediate RH). This generally
validates the hypothesis of microdiffusion in the form put
forward previously.4,24

The fact that the signal resolved as the interlayer water also
increases at the expense of the gel water cannot be readily
explained with the creation of new C−S−H with its interlayer
water in a hydration process. First, such a process could only
explain the irreversible part of the signal change (bear in mind
that about half of the interlayer signal increase is reversible
upon unloading). Although it is, in principle, possible that the
hydrostatic pressure could enhance the dissolution of the
remaining anhydrous cement and hence provoke some further
hydration while under load,60 we stress that the irreversible
increase of the signal fraction occurred also in samples that
were relatively short under load, about 1 or 3 h. Hence,
considering a relatively high residual hydration degree, one can
expect very little increase of hydration in such short time.
Instead, we suggest that the increase of the interlayer signal

fraction is not due to the actual increase in the interlayer water,
but due to the refinement of small gel pores that are similar in
size and hence in the corresponding T2 (within the resolution
limit of the deconvolution method) to the interlayer spaces.
Note that exponential fitting allows only a discrete number of
T2-components to be assigned rather than a continuous
distribution. The partially irreversible signal redistribution can
be explained by a possible permanent rearrangement of the gel
porosity.
According to recent observations,34 gel pores are spaces

formed between the stacks of C−S−H sheets. We postulate
that when the gel water migrates under compression to
capillary pores, the opposite walls of the gel pores move toward

each other, possibly creating finer pores close in size to the
C−S−H interlayers. In an extreme situation, opposite stacks of
C−S−H sheets separated by a deformable gel space (with
water kept inside) come together as the water is expelled to
form a thicker stack with entrapped interlayer-like water. In
any case, the gel pores might be compressed and water
confined in them may reach a relaxation time similar to that of
the interlayer or adsorbed water, thus increasing the signal of
the latter. The reason for the refinement of the gel pores may
be not only due to the water migrating out but at the same
time also due to the intrinsically viscoelastic behavior of the
solid gel. It should be noted that the rates of the increase of the
signal of the interlayer C−S−H water are similar to those of
the large (capillary + interhydrate) pores; thus, it appears that
the two effects, i.e., water migrating out of gel porosity and its
confinement, are linked through one diffusion process.
We note that we see a small effect upon loading at 150 MPa

but did not see an effect at loading from 1 to 100 or 120 MPa.
One could attribute this to the small size of the change and
sensitivity of the measurement. However, it is curious that
Maruyama et al.61 have recently reported that cavitation in
cement paste during desorption occurs at a pressure of −140
MPa. This observation aided with the Laplace equation led to
the conclusion that the larger gel pores are constricted by neck
entrances of sizes below about 2 nm (i.e., very small gel pores).
The changes seen here somehow “switched on” somewhere
between 120 and 150 MPa. It may be that these results are
connected if we assume the following hypothetical mechanism.
We see a clear change in water populations only once the
pressure of about 120−150 MPa is exerted because only then
the pressure in the (supposedly) gel water becomes high
enough for the water to be pressed out through small (below
about 2 nm) neck entrances and emerge as different water
population (interlayer or capillary water).

4.3. Water Migration and Changes of RH. The process
of fast migration of water primarily to large pores under
loading is in line with the macroscopic measurements of RH in
mortars under uniaxial compression.58,59 It was found that the
compression of the w/c 0.30 mortar samples caused an
immediate increase of RH (about 2% at 30 MPa) and that the
change in RH was proportional to the applied stress. The
process was reversible upon unloading. The increase of RH
was explained (based on the hypothesis proposed originally by
Powers15,17) by water moving to larger pores from hindered
adsorption areas, thus decreasing the curvature of the menisci.
We now complement this hypothesis by stating that the
observed RH changes under pressure are caused by water
moving primarily from gel pores to interhydrate spaces
(according to the pore size classification by 1H NMR).
In our previous study,9 we focused on the influence of

temperature on water redistribution. It was found that heating
causes an immediate redistribution of the NMR signal from the
interlayer to primarily gel pores and to a lesser extent to the
interhydrate and capillary pores. The movement of water
toward larger pores could explain the increase of RH upon
heating (similarly as here the increase under compression is
explained by migration). The larger fraction of water
undergoing redistribution due to temperature compared to
that observed here during mechanical loading is in line with
the fact that temperature changes cause larger changes of the
RH (about 0.5%/°C62) than the mechanical loading.
The difference of the source pores (interlayer upon heating

and larger gel pores upon compression) during migration can
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be due to different driving forces. The water confined in the
interlayer spaces has lower entropy compared to the gel and
capillary water that can be both treated as bulk water and
should possibly have similar entropy.30,31,63 When the
temperature increases, a difference of chemical potential is
therefore established between the interlayer water and gel
water that exist in its immediate vicinity, which causes an
almost instantaneous migration from the interlayer to gel
spaces.9 Additionally, opening up of interlayer spaces to form
larger (gel) voids could take place as backbone sheets of
C−S−H deform upon heating and water confined between
them expands due to thermal deformation (similarly to the
“unzipping” of C−S−H observed upon rewetting42).9

On the other hand, when the microstructure is compressed
(here hydrostatically), the deformation will locally take place
primarily at the expense of pores filled with the least dense
species, i.e., first empty pores and pores filled with bulk water.
The load-bearing water confined in the C−S−H interlayers
should possibly have higher density64 and strongly interact
with the solids. Consequently, the C−S−H interlayer spaces
should have lower compressibility, leading also to lower
mobility of the confined water under mechanical loading. The
low deformability of the C−S−H interlayer spaces was
reported by Geng et al.,65 who at a hydrostatic pressure of 1
GPa (i.e., 1 order of magnitude higher than applied here)
observed strains in C−S−H lattice equal to a fraction of
percent only.
4.4. Water Migration and Creep. An important question

is how the observed migration of water relates to short-term
creep. As discussed in the introduction, time-lapsed micro-
diffusion of load-bearing water was often proposed to explain
the short-term, reversible creep component.22,24,26−29

We postulate that the fast migration of water (occurring
likely within seconds but measured with NMR only at a
temporal resolution of about 15−30 min) is likely responsible
for the very short-term creep occurring already from the time
instant of loading. The fast redistribution and corresponding
change of RH were proposed to be responsible for the static
Young’s modulus being lower than the dynamic modulus.58

As for the time-lapsed diffusion of water responsible for
short-term reversible creep, we can cautiously confirm this
hypothesis based on our data. A possible alternative
mechanism needs to be, however, mentioned. In this
mechanism, the migration of water is merely the effect of the
intrinsically viscoelastic deformation of the solid gel that
contracts and refines (leading to the resolving part of the gel
water now as the interlayer water) and forcing part of the water
to larger voids, but without any contribution of such water to
bearing stress and hence to deformation.
It should also be stressed that, despite confirming the time-

lapsed migration of water, drawing detailed conclusions and
quantification of the microdiffusion rate is currently impossible
due to the very small magnitude of the NMR signal change and
the uncertainties related to data deconvolution.
The applied hydrostatic loading used in our test was

different from the uniaxial compressive loading used in most
creep tests. The higher strength in triaxial compression46,47

(here hydrostatic) allowed us to use pressures of up to 150
MPa without failure of the samples (note that at a pressure of
about 100 MPa, no effect of redistribution could be observed;
hence, such high pressure was necessary). A question is how
the hydrostatic load corresponds to the uniaxial load in terms
of the deformations (and water redistribution) at the

microstructural level. The hydrostatic load applied here most
likely led to higher volumetric deformation (contraction) than
the uniaxial load used commonly in the creep tests. To the best
of our knowledge, large volumetric deformations under
hydrostatic loading leading to the reduction of porosity (and
supposedly to water migration out of the compacted pores)
were reported only in a paper by Bernard et al.21 At the same
time, even though deviatoric strains can be expected at the
microscopic level even under the hydrostatic load,21 they
would be still higher in the case of the uniaxial load. The initial
fast reduction of porosity (until about 2 h from loading)
measured by Bernard et al. was followed by slower reduction
that ceased at about 23 d.21 Our observations of water
migration (both the confirmation of the process and possibly
also its temporal evolution) are therefore consistent with the
available hydrostatic creep data.21 Considering that volumetric
creep (contraction) was found to be smaller under deviatoric
loading,21 the magnitude of water migration may be smaller
under uniaxial compression than reported here for the
hydrostatic compression.

5. CONCLUSIONS

We used 1H NMR to study the redistribution of water in
cement pastes under a hydrostatic loading of up to 150 MPa.
During compression of unsaturated samples (w/c 0.25 after
sealed curing or w/c 0.40 after storage at 75−95% RH), water
redistribution from gel pores to larger (interhydrate and
capillary) pores takes place (i.e., from smaller to larger
mesopores and macropores, respectively, according to the
IUPAC classification8). Due to this redistribution, the NMR
signal fraction due to the largest pores increases even 2−3
times. This process is almost fully reversible upon unloading.
At the same time, an increase of the signal attributed to the
shortest relaxation time, i.e., the signal interpreted as the
interlayer water, was observed with a magnitude similar to that
of the increase in the largest pores. We propose that this is
primarily due to rearrangement of the gel upon compression
and refinement of the part (around 5−10%) of the gel porosity
as water stored in it is expelled during compression. As a
consequence, smaller gel pores are created that are close in size
to the interlayer spaces (and hence, water in them experiences
similar relaxation time). Such a process is partially reversible,
while the irreversible part could be due to a permanent
rearrangement of porosity. Although it is virtually possible that
the irreversible part of the increase in the interlayer water
signal fraction is due to the advanced hydration under pressure,
we find such a process unlikely considering a relatively short
time under pressure. A verification of the possible increase of
hydration degree would require solid-echo measurements that
could resolve solid-like hydrogen (with a relaxation time T2 of
about 10−20 μs) present in the crystalline hydration
products.66 Such measurements could not be carried out in
our study due to a too long spectrometer dead time in the
NMR setup used.
In samples close to saturation (preconditioned at 98% RH

and under water), the changes in the signal were considerably
lower and regarded only small redistribution between the gel
and interlayer signals, i.e., rearrangement/refinement of gel
porosity likely took place. This is likely because larger pores
were full of water prior to applying pressure and hence could
not accommodate any more water from gel pores under
hydrostatic pressure.
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Most of the water is displaced, and most of the refinement of
gel porosity takes place immediately after loading (before the
first measurement is concluded after about 30 min), followed
by time-lapsed redistribution and refinement that could be
observed during several hours under load. Precise quantifica-
tion of the time-lapsed migration is not possible due to the
small amounts of water involved in the process and the
uncertainties of the data inversion methods. Nevertheless, the
process could be qualitatively confirmed.
These results are in line with the previous observations of

porosity reduction over time in hydrostatically compressed
pastes or mortars. Our results allow us to confirm the
hypothesis that quasi-immediate water redistribution to larger
pores is responsible for RH increase upon compression.
Further, our results appear to support the hypothesis of water
migration (microdiffusion) as responsible for short-term creep.
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