Files

Abstract

The recently proposed concept of metamaterials has opened exciting venues to control wave-matter interactions in unprecedented ways. Here, we demonstrate the relevance of metamaterials for inducing acoustic birefringence, a phenomenon which has already found its versatile applications in optics in designing light modulators or filters, and nonlinear optic components. This is achieved in a suitably designed acoustic metamaterial which is non-Eulerian, in the sense that at low frequencies, it cannot be homogenized to a uniform acoustic medium whose behavior is characterized by the Euler equation. Thanks to the feasibility of engineering its subwavelength structure, such a non-Eulerian metamaterial allows one to desirably manipulate the birefringence process. Our findings may give rise to the generation of novel devices such as tunable acoustic splitters and filters.

Details

Actions

Preview