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Abstract. Recently there have been various attempts to construct light
weight implementations of the AES-128 encryption and combined encryp-
tion/ decryption circuits [2,13]. However no known lightweight circuit ex-
ists for AES-192 and AES-256, the variants of AES that use longer keys.
Investing in lightweight implementations of these ciphers is important
as we enter the post quantum era in which security is, by a rule of the
thumb, scaled down to the square-root of the size of the keyspace. In
this paper, we propose a single circuit that is able to offer functionali-
ties of both encryption and decryption for AES-128/192/256. Our circuit
operates on an 8-bit datapath and occupies around 3672 GE of area in
silicon. We outline the challenges that presented themselves while per-
forming the combinatorial optimization of circuit area and the methods
we used to solve them.

1 Introduction

In the past few years, lightweight cryptography has become a popular research
discipline. A number of lightwieght block ciphers have been proposed over the
years. Among them Clefia [17] and Present [6] are well-studied with respect
to their security and implementation. Both ciphers have been standardized in
ISO/IEC 29192 “Lightweight Cryptography”. Very recently the Simon and Speck
family of block ciphers [5] was proposed by the NSA with the goal of reducing
hardware area. While the above ciphers have mostly targeted optimization of
hardware area, there have been other block ciphers aimed at optimizing other
lightweight design metrics. For instance, the block cipher Prince [7] was designed
for low latency applications like memory encryption. Another example is Midori
[4] which was designed to optimize energy consumption. However, AES still re-
mains the de-facto encryption standard worldwide for a number of sectors like
banking and e-commerce. It is a part of several internet protocols like HTTPS,
FTPS, SFTP, WebDAVS, OFTP, and AS2.

There have been several lightweight implementations of AES proposed in
literature. In [16], the authors propose a 32-bit serial architecture with optimized
tower field implementation of the S-box and a combinatorial optimization of the
Mix Columns circuit. The size of this implementation was around 5400 GE (gate
equivalents, i.e. are occupied by an equivalent number of 2-input NAND gates).
The “Grain of Sand” implementation [12] by Feldhofer et al. constructs an 8-bit
serialized architecture with circuit size of around 3400 GE but a latency of over



1000 cycles for both encryption and decryption. The implementation by Moradi
et al. [15] with size equal to 2400 GE and encryption latency of 226 cycles is one
of the smallest known architectures for AES. In [14], the authors report an 8-bit
serial implementation that takes 1947/2090 GE for the encryption/decryption
circuits respectively. This implementation makes use of intermediate register files
that can be synthesized in the ASIC flow using memory compilers.

Very recently two further serial architectures have been proposed for AES-
128. The first, named Atomic AES [2], which was followed up by Atomic AES
v2.0. [3] uses the basic architecture of [15] along with a few tweaks to achieve
encryption and decryption functionalities in the same circuit. The circuit takes
around 2060 GE of area. [13] takes the design one step further, but proposing
the first bit serial architecture for AES in less than 1600 GE. However since the
architecture advances data one bit every clock cycle, it is around 8 times slower
than byte serial architectures.

1.1 Motivation and Challenges

One important thing to note is that the all papers [15,2,3,13] assume that the key
and data are input to the circuit arranged in a row-major fashion, i.e. bytes
of each individual rows are input to the circuit together. This is slightly odd
as AES specifications explicitly recommend column-major ordering and hence
implementing AES in the proper columnwise ordering of bytes is an important
challenge.

Secondly, there have surprisingly been no attempts made to implement AES-
192 and AES-256 in a lightweight fashion. These are the variants of AES that
use longer keys. Investing in lightweight implementations of these ciphers is
important as we enter the post quantum era in which security is, by a rule of
the thumb, scaled down to the square-root of the size of the keyspace, due to
Grover’s algorithm. Lightweight implementation of AES-192 and AES-256 is of
added importance as AES-256 is a core component of a number of candidates in
the NIST Post-quantum project for standardization of a quantum-secure public
key cryptosystem [1]. NIST targets three level of security in this standardization:
Level 1/3/5 respectively equivalent to AES-128/192/256 bit security. Out of 17
second round post quantum KEM candidate constructions, 9 candidates employ
AES in their constrcution: 8 of these use AES-256 in counter mode, making it a
preferred choice for generating pseudorandomness. Few candidates also propose
3 designs for 3 different security levels, therefore using all AES-128/192/256
instances at the same time. For signatures schemes, 2 out of 9 schemes make use
of AES-256.

However designing serial implementations of AES-192 and AES-256 is slightly
challenging due to reasons as outlined follows. One of the main reasons it is com-
paratively easy to implement AES-128 in a serial fashion is that the round func-
tion and key update operations are synchronized, which is to say that after every
round, the state and the current key are updated. Thus every round involves exe-
cuting the same operations on the state (except the last round MixColumns) and
key registers which can be iterated 10 times to get the encryption/decryption
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functionality. This is however not the case with either AES-192 or AES-256.
Since AES-192 uses a 192 bit key but only a 128 bit state, it requires only 8 full
key update operations, to produce sufficient key material for the 12 rounds rec-
ommended by the designers. In fact, in AES-192 state and key operations become
synchronized after 3 round functions and 2 key update operations. AES-256 uses
a 256 bit key and requires only 7 full key updates for 14 executions of the round
function. The key update operation of this cipher is also slightly different as
each key update requires S-box operation to be applied on 2 columns of the
current key instead of 1 in both AES-128 and AES-192. This asymmetry in the
round and key schedule operations make serial implementation of AES-192 and
AES-256 slightly more difficult.

A final challenge is implementing the functionalities of encryption and de-
cryption on the same circuit. Various modes of operations like CBC [11] and
E`MD [10], that use block ciphers as the underlying primitive, require access to
both its encryption and decryption functionalities. Thus it is useful to have an
implementation that achieves both functionalities of a block cipher with minimal
overhead.

1.2 Contribution and Organization

In this paper we present an 8-bit serial architecture that performs all encryption
and decryption operations of three instances AES-128, AES-192, AES-256. The
circuit thus supports six functionalities. We remove the requirement that bytes
be ordered in row-first fashion, and construct our circuit so that it can support
inputs when they are arranged in a column first fashion. The circuit occupies
area of around 3672 GE when synthesized with the standard cell library of the
STM 90nm CMOS logic process.

The paper is organized in the following manner. Section 2 gives some back-
ground on AES and some necessary definitions required to read the paper. Sec-
tion 3 describes the architecture and functioning of our circuit in detail and we
describe explicitly how we overcome some of the challenges presented in Sec-
tion 1.1. Section 4 tabulates all implementation results and compares synthesis
results for various standard cell libraries.

2 Background and Preliminaries

2.1 Encryption/Decryption Overview

Let r denote the number of rounds in the encryption/decryption function, n
denote the number of key expansion rounds, ` denote the byte size of the key for
a given AES instance. Note that, r, n, ` = (10, 10, 16), (12, 8, 24), and (14, 7, 32)
for AES-128, AES-192, and AES-256 respectively.

The encryption algorithm consists of multiple calls to AddRoundKey(·, ·),
SubBytes(·), ShiftRows(·) and MixColumns(·) layers where each input denoted
with ‘·’, as well as each output, is a 4 × 4 byte matrix. AddRoundKey takes the
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state information St and the round key Ki and returns the byte-wise XOR
of them. With SubBytes, each byte is substituted according to AES S-box.
ShiftRows rotates the i-th row by i position to the left (for i = 0, 1, 2, 3). During
MixColumns, each column [s4i, s4i+1, s4i+2, s4i+3]T of input sequence s is multi-
plied with a fixed 4×4 byte matrix M , where byte values are treated as elements
of GF(28). An important property of M is M4 = I, where I denotes the identity
matrix. We skip further details of these four layers, and refer the reader to [9].

Even though the block size in all 6 instances of AES is exactly 4×4 bytes and
thereby matches exactly with the input and output of the aforementioned layers,
the same cannot be said for the key. Namely, in AES-192, the key is arranged
in a 4 × 6 byte matrix and in AES-256 it is arranged in a 4 × 8 byte matrix.
As a consequence, the iterations of the key expansion algorithm, whose task is
to generate fresh 4 × 4 bytes of round key for each AddRoundKey operation,
desynchronize with the round operations performed on the state and it leads to
a great deal of complexity in our design. We briefly remind the details of the key
expansion algorithm below.

2.2 Key Expansion

Let S denote the AES S-box. Let RC1, . . . ,RC10 denote a sequence of round con-
stant bytes1. The key expansion generates a sequence of key bytes k0, . . . , k16r+15

given the bytes k0, . . . , k`−1 as input. At each iteration of key expansion, ` bytes
of fresh key is produced by XORing the original matrix with an additional offset.
For instance, with AES-128, the very first round of key expansion generates key
bytes k16, . . . , k31 from k0, . . . , k15 according to:

k16, k20, k24, k28
k17, k21, k25, k29
k18, k22, k26, k30
k19, k23, k27, k31

←

k0, k4, k8, k12
k1, k5, k9, k13
k2, k6, k10, k14
k3, k7, k11, k15

⊕

S(k13)⊕ RC1, k16, k20, k24

S(k14), k17, k21, k25
S(k15), k18, k22, k26
S(k12), k19, k23, k27


Similarly, with AES-192, the very first round of key expansion is:

k24, k28, k32, k36, k40, k44
k25, k29, k33, k37, k41, k45
k26, k30, k34, k38, k42, k46
k27, k31, k35, k39, k43, k47

←

k0, k4, k8, k12, k16, k20
k1, k5, k9, k13, k17, k21
k2, k6, k10, k14, k18, k22
k3, k7, k11, k15, k19, k23

⊕

S(k21)⊕ RC1, k24, k28, k32, k36, k40

S(k22), k25, k29, k33, k37, k41
S(k23), k26, k30, k34, k38, k42
S(k20), k27, k31, k35, k39, k43


However, AES-256 contains a slight tweak (denoted with blue):
k32, k36, k40, k44, k48, k52, k56, k60
k33, k37, k41, k45, k49, k53, k57, k61
k34, k38, k42, k46, k50, k54, k58, k62
k35, k39, k43, k47, k51, k55, k59, k63

←

k0, . . . , k28
k1, . . . , k29
k2, . . . , k30
k3, . . . , k31

⊕

S(k29)⊕ RC1, k32, k36, k40, S(k44), k48, k52, k56

S(k30), k33, k37, k41, S(k45), k49, k53, k57
S(k31), k34, k38, k42, S(k46), k50, k54, k58
S(k28), k35, k39, k43, S(k47), k51, k55, k59


The same operation is repeated for 10, 8, 7 times for AES-128/192/256 respec-

tively. Later, regardless of the instance and the initial key size, the subsequence
k16i, . . . , k16i+15 will act as the round key Ki for the i-th round. A key expansion
round can be seen as a proper combination of the following unit operations, each
of which processes one byte per clock cycle.

1Since at most 10 elements of this sequence is used, we consider it as a lookup table.
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– ke0 (key expand 0) takes the byte from the second row and the last col-
umn of the current key, applies S-box, and XORs with the round constant
RCj . The result is added to the key byte in the first row and column e.g.
k16 ← k0 ⊕ S(k13)⊕ RC1 is computed in AES-128. Each key expansion round
contains exactly one ke0 operation.

– ke1 (key expand 1) takes the byte (from the next row) from last column
and applies S-box, and XORs with the next key byte in the first column,
e.g. k17 ← k1 ⊕ S(k14) is computed in AES-128. Each key expansion round
contains exactly three ke1 operations.

– ke2 (key expand 2) takes the byte from the last column and the same row,
applies S-box, and XORs with the original value, e.g. k48 ← k16 ⊕ S(k44) is
computed in AES-256. This operations is specific to AES-256 and is used
exactly four times for each round of key expansion.

– kxor (key xor) XORs the current key byte with the (`−4)th previous keybyte,
e.g. k20 ← k4 ⊕ k16. Each key expansion round contains 12, 20, 24 kxor
operations in AES-128, AES-192, AES-256 respectively.

The combination ke0, ke1, k1, ke1 performed for 4 consecutive clock cycles
helps complete the first stage of the key expansion in which the last column of the
current key is rotated, passed through the AES S-box, added to a round constant
and thereafter added to the 1st column of the key. For AES-128 a keyschedule
round consists of the following sequence of operations ke0, ke13, kxor12, where opi

denotes i successive executions of the operation op. For AES-192 the sequence is
ke0, ke13, kxor20 and for AES-256 the sequence is ke0, ke13, kxor12, ke24, kxor12.
As already mentioned, the key expansion round and the encryption/decryption
rounds are perfectly synchronized in AES-128, however the same cannot be said
for AES-192 and AES-256. This was one of the primary challenges we had to
overcome when designing a circuit that can perform all six instances together.

3 One Circuit to Rule Them All

3.1 Input, Output Formats

Our AES architecture is a sequential (clocked) one with 8-bit datapath. 8-bit
KeyIn for key, 8-bit DataIn for the plaintext (resp. ciphertext) data, 3-bit selector
Ins to choose among six instances (AES-128/192/256 encryption/decryption), a
reset signal Rst and a clock signal Clk are wired as input. Its output consists
of a 8-bit DataOut for the result (for the computed ciphertext or plaintext)
and a ready signal Rdy indicating the completion of the operation. Loading the
input values takes upto 16, 24, 32 cycles for AES-128/192/256 respectively, and
the reception of the output takes 16 cycles; whereas the encryption/decryption
operation takes on the order of few hundreds cycles.

We denote the data (i.e. the input plaintext/ciphertext) as a byte sequence
d0, . . . , d15. We denote the original key with k0, . . . , k`−1 where ` is 16, 24, 32 for
AES-128/192/256 respectively. Lastly, we denote the last ` bytes of round keys
used in AddRoundKey with k′0, . . . , k

′
`−1. Namely, these are the byte sequences
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k160, . . . , k175 in AES-128; k184, . . . , k207 in AES-192; and k208, . . . , k239 in AES-
256.

Loading Cycles. In AES-128, the key and the data has the same size, therefore
loading the both can be synchronized, i.e. ki (resp. k′i) and di are loaded at the
same clock cycle for encryption (resp. decryption). However, in AES-192/256,
the key is larger than the data, therefore we should clarify which bytes of the
key and the data are loaded at which cycles. For encryption, the data and the
first 16 bytes of key are loaded during the first 16 cycles. The remaining bytes of
the key, i.e. k16, . . . , k`−1, are loaded in the following 8 (resp. 16) cycles in AES-
192 (resp. AES-256). For decryption, first `−16 bytes of the last used round key
bytes (the sequence k′0, . . . , k

′
`−17) are loaded. Namely, first 8 (resp. 16) cycles are

used to load k′0, . . . , k
′
7 (resp. k′0, . . . , k

′
15) in AES-192 (resp. AES-256). Then, the

following 16 cycles are used to load k′`−16, . . . k
′
`−1 and d0, . . . , d15 simultaneously.

Input Format. For encryption, the key k0, . . . , k`−1 and the data d0, . . . , d15
are loaded. For decryption, the key byte sequence (see Section 2.2) k′0, . . . , k

′
`−1

is loaded instead of the original key k0, . . . , k`−1.

Result Cycles. The result data sequence c0, . . . , c15 (ciphertext for encryption
or plaintext for decryption) is observed at DataOut in the correct order. The
signal Rdy is also set to ‘1’ during the 16 cycles this result is available.

3.2 Components

– Enabled byte flip flop (henceforth referred as EFF) is a byte storage unit that
preserves its output during many cycles when enable signal is unset, i.e. its
value is frozen. When enable signal is set, its value (and thereby output) is
updated with the first rising edge of the clock signal. They are denoted with
shadowed white squares in Figure 1, and used in the key pipeline.

– Enabled byte scan flip flop (henceforth referred as SEFF) is an EFF combined
with a multiplexer. Two separate bytes are wired as input, and its next value
is assigned to either one of them based on an additional selection signal. Its
value is updated on the next rising edge, if the enable signal is set. If enable
signal is unset, its value is preserved. They are denoted with grayed and
shadowed squares in Figure 1, and used mostly in the state pipeline.

– Control Logic is a finite-state machine which activates with the release of
the reset signal Rst, and computes either one of the six AES instances based
on Ins signal. It controls all flip flop enable signals, scan flip flop selectors,
mux selectors, mask AND selectors, S-box direction signal and Rdy.

– Mix Column takes 4-byte column [s4i, s4i+1, s4i+2, s4i+3]T as input and com-
putes M × [s4i, s4i+1, s4i+2, s4i+3]T over GF(28), where M denotes the AES
mixcolumn matrix [9]. Since M4 = I where I is the identity matrix, we can
use the same circuit to do InvMixColumns by performing MixColumns three
times. It outputs the 4-byte result.

– We use the Canright S-box architecture [8] that performs both the S-box/S-
box-inverse operation and has a very low hardware footprint. S-box S, as
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well as its inverse S−1. The direction of the operation is determined with an
additional selection signal.

– RC lookup table contains ten round constant bytes used in all three instances.
A 4-bit counter is also attached to choose the correct value from the table.

In order to minimize number of gates, we limit our design to a single two-
directional S-box (shared between SubBytes and KeyExpand), a single mix column
circuit (used for both MixColumns and InvMixColumns) and a series of EFF and
SEFF as two pipelines: one for the state and another for the key. Since the keysize
in AES-256 is 32-bytes, the key pipeline contains 32 byte flip flops.

3.3 High Level Description of the Design

Our design is fully described in Figure 1. Below, we refer to EFF/SEFF directly
though their two-digit addresses: for EFF/SEFF in the key pipeline we use 00,
and for SEFF in the state pipeline we employ the italic font 00.

State Pipeline. 16 SEFF are arranged in a upward-moving serial fashion, where
a byte value enters into the pipeline from 33, moves in the upwards direction to
30, then moves to 23, etc. and finally reaches to 00 in 16 clock cycles during
normal operation. This is done via vertical connections in the pipeline which
permit loading the state information in one-byte-per-clock fashion into the bus
for executing AddRoundKey and SubBytes operations simultaneously in 16 cycles.
Moreover, alternative lateral connections (e.g. from 30 to 00 ) allow each column
to be loaded into Mix Column circuit for MixColumns operation in 4 cycles. The
same lateral connections in the left direction allows us to do ShiftRows operation,
by carefully enabling and disabling rows in harmony in 3 cycles. With the help
of muxes connected to 30, 31, 32, 33, we can choose between ShiftRows and
MixColumns operations. Notice that the control logic determines the direction of
the flow by the select signals and whether or not some EFF/SEFFs are frozen by
enable signals. Partially or fully freezing is useful for ShiftRows or when another
operation is stalling the key pipeline.

Key Pipeline. It consists of 31 EFF and 1 SEFF to store the 32 byte key in
AES-256. The connections of the pipeline are tweaked through muxes 5, 6 in such
a way that:

– During AES-128 operations, from 20 to 53 are bypassed (disabled) and the
output of 60 is wired to 13 through mux 5. Therefore the key pipeline effec-
tively shrinks to 16 byte flip flops.

– During AES-192 operations, from 40 to 53 are bypassed (disabled) and the
output of 60 is wired to 33 through mux 6. The output of 20 is wired to 13
through mux 5. The key pipeline shrinks to 24 flip flops.

– During AES-256 operations, no EFF in the key pipeline is disabled and 40 is
wired to 33 through mux 6 and 20 is wired to 13 through mux 5.

In order to work in harmony with the state pipeline, the task of the key pipeline
is to provide the particular byte of key to the bus, so that AddRoundKey can be
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performed correctly with the byte coming from the state. This key byte from
the pipeline can be fetched from 00, 20 or 40 based on the selection signal of
mux 10, whereas the pipeline supports rotation through connections 00 → 73
through mux 12. As before, enable signals are configured by the control logic
and can freeze the pipeline when another operation is stalling the state pipeline.

Main Bus. Consists of two muxes 10, 7 to choose the source of key and data
bytes to be loaded into the bus. The crucial component in the bus is the S-
box, whose input and output is complemented with two byte XOR gates. The
XOR gate before S-box is useful for encryption, as the key addition precedes
the S-box, and the XOR gate after S-box is useful for decryption. The choice of
S-box/S-box-inverse functionality and the select signals of muxes are configured
by the control logic.

Key Expansion Logic. The most challenging part of our design by far is the
computation of proper round key for AddRoundKey operation for 6 different
instances on the same circuit. For this reason, a combination of XOR/AND
gates is connected to the key pipeline to execute KeyExpand on-the fly (while
the pipeline is moving to perform another operation). The gates highlighted
with lightgray background in Figure 1 connected to 00, 10 (positioned above key
pipeline) enables key expansion for the encryption and decryption, and the gates
connected to 13, 23, 33, 63, 73 (positioned below the key pipeline) enable key
expansion during decryption.

3.4 Elementary Operations of Layers

In order to simplify the explanation of how our circuit operates, we conceptually
divide the control of the circuit into various operations. We also explain their
connection to four different layers (plus KeyExpand). Some of the operations
described below are computed on completely independent parts of the circuit,
hence they can be performed simultaneously by our hardware. We will squeeze
them into same cycles as much as possible. Each of the following instructions sets
particular control bits for given cycle to perform its corresponding operation. If
an operation does not explicitly mandate how a certain SEFF/EFF should behave,
then it is frozen by setting the enable signal to ‘0’. As before, 00 refers to the
top-left EFF of the key pipeline and 00 refers to the top-left SEFF in the state
pipeline.

add Both the key and the state pipelines are fully active, and two bytes from
each are loaded into the bus. The state byte is fetched from 00 of the state
pipeline. On the other hand, the key byte can be fetched either from 00, 20 or
60 of the key pipeline (note that key bytes are fetched from 20 and 60 during
AES-192 decryption). Exception to this is the initialization where the key and
the data are being loaded to the circuit: then, two bytes must come from
DataIn and KeyIn but not from the pipelines. If the chosen functionality of
the circuit indicated by Ins signal is encryption, the two bytes on the bus are
first XORed, and then passed through S-box (therefore AddRoundKey and
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Fig. 1: Circuit diagram for the 6AES architecture
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SubBytes are done concurrently). Otherwise (if Ins indicates decryption), the
state byte is passed through S-box-inverse, and then the addition is done
(therefore InvSubBytes and AddRoundKey are done concurrently). In either
case, the computed byte is stored to 33 of the state pipeline. Meanwhile, the
key pipeline rotates itself by connecting 00 to 73. Exception to this is again
initialization, during which 73 receives its next value from the bus.

sbox Muxes 11, 8 and S-box selection signal are configured accordingly so that
S-box can be computed.

isbox Muxes 11, 8 and S-box selection signal are configured accordingly so that
S-box-inverse can be computed. Both sbox and isbox are performed simulta-
neously with add during encryption/decryption operations respectively.

srow0 Rotates rows 1, 2, 3 of the state pipeline to left by one. The control logic
uses selection signal of scan flip flops to change the direction in the pipeline,
and freezes the unused state flip flops.

srow1 As before, but rotates rows 1, 2 of the state pipeline to left by one.

srow2 As before, but rotates rows 3 of the state pipeline to left by one. Notice
that consecutive srow0, srow1, srow2 operations (3 cycles) correspond to one
ShiftRows.

isrow0 As before, but rotates row 1 of the state pipeline to left by one.

isrow1 As before, but rotates rows 1, 2 of the state pipeline to left by one. Notice
that consecutive isrow0, isrow1, srow0 operations (3 cycles) correspond to one
InvShiftRows.

mixcol Muxes 0, 1, 2, 3 are configured to load the input from Mix Column circuit.
Again, the selection signal of all state flip flops are configured by the control
logic so that the pipeline moves in the left direction.

ke0 Performs the key expand operation as explained in Section 2.2. During ke0,
all flip flops of the key pipeline except columns 0 and 7 are frozen. Columns
0 and 7 rotate in the upwards direction. The state pipeline is also frozen.

ke1 The only difference from ke0 is that SelRC is set to 0, so that RC is removed
from the computation, 03 is loaded with S(71)⊕ 00.

ke2 Similar to ke0, but the input byte of S-box is not rotated, 03 is loaded with
S(70)⊕ 00.

kxor For key xor operation of the key expansion algorithm, the input select bits
of 03 and the mux 4 are configured to store 10⊕ 00 instead of barely 10 for
the next cycle.

ikxor For the inverse of key xor operation used in decryption we use the same
trick employed in [2] in which the last row of byte flip-flops in the key reg-
ister is controlled with additional and gates. The corresponding circuitry is
shown in a gray background in Figure 1. Sel1,Sel2,Sel3,Sel6,Sel7 are the
corresponding signals that are configured such that key XOR is done, e.g.
13 ← 10 ⊕ 20, only at selected clock cycles during decryption. Similar to
kxor, the key pipeline must be fully active, and state pipeline is frozen.

load Mux 10 is configured such that the key is loaded from the input to the
pipeline (necessary for AES-192, AES-256). The key pipeline is fully active,
and the state pipeline is frozen.
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rot The key is rotated in the pipeline, where the exiting byte 00 is fed back into
73. The key pipeline is fully active.

rxor Pseudonym for combination of rot and kxor. Therefore the key is updated
on the pipeline with key xor operation, as it rotates.

In the following two subsections, we will separate encryption/decryption
round functions performed on the state, completely from key expansion. Encryp-
tion and decryption round function operations are straightforward to implement
with the design given in Figure 1 and remains quite similar through six different
instances. However, the key expansion becomes a major challenge and due to its
instance-specific nature, requires significant effort.

3.5 Generic Encryption/Decryption Overview

First, for the sake of argument, suppose that the key pipeline always contains
the necessary round key Ki at round i, with which AddRoundKey is being done.
Then we can readily convert the encryption algorithm into a sequence of op-
erations. AddRoundKey and SubBytes can be done simultaneously through add
and sbox operations in 16 cycles. Then for ShiftRows, it suffices to run srow0,
srow1, srow2 subsequently in 3 cycles. Then, in 4 cycles of mixcol, we complete
MixColumns. This sequence corresponds to one round of operation in the en-
cryption algorithm, and can be repeated as many times as necessary, as long as
the key pipeline handles the key expansion and provides the correctly aligned
key bytes during AddRoundKey. The same line of reasoning also applies to de-
cryption, where InvSubBytes and AddRoundKey can be done with isbox and add
simultaneously in 16 cycles, InvShiftRows can be done with isrow0, isrow1, srow0
in 3 cycles; and InvMixColumns can be done in 12 cycles of mixcol (as explained
before InvMixColumns is 3 repetitions of MixColumns).

Therefore, what remains is to continuously refresh the key in the pipeline, by
removing dirty key bytes (i.e. already used with AddRoundKey), and replacing
with fresh bytes (not yet used) of key. By refreshing we mean computing the next
round key in encryption, and previous round key in decryption (since decryption
starts with the last ` key bytes of the last round and computes the round keys
in the reverse direction). In the following section we describe how key bytes are
managed in the key pipeline, and how its operations are interleaved with the
four layers of encryption and decryption.

3.6 Key Expansion Details

AES-128 Encryption: The detailed chronology of operations is given in Fig-
ure 2. During the first 16 cycles, muxes 7, 10 are configured such that the key
and the data are loaded to the bus through inputs DataIn, KeyIn, instead of the
pipelines. At the same time, AddRoundKey and SubBytes operations are done
simultaneously, where the computed state is loaded into the state pipeline, and
the key is loaded into 00-13, 60-73.
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Fig. 2: The chronology of operations in AES-128 encryption (on top) and AES-
128 decryption (below). The numbers in the boxes indicate the number of cycles
over which the operation is executed.

A round takes 23 cycles to complete. At the beginning of the round, all the
keys in the pipeline are dirty. Therefore, we use the first 4 cycles to refresh the
key bytes in column 0 with running ke0, ke1, ke1, ke1 sequentially. ShiftRows and
MixColumns are also performed in parallel, since they have no effect on the key
pipeline. At the end of 7 cycles (after ke0, ke13), the key pipeline still contains
12 dirty key bytes contained in 10-13, 60-73. These bytes are refreshed in 12
cycles with kxor as the pipeline moves, as they are loaded into 03. Therefore,
it is merged with add and sbox, which takes 16 cycles. At the end of a round,
all bytes in the key pipeline are again dirty. In the final round, MixColumns is
skipped, and the ciphertext is available during the very last 16 cycles.

AES-128 Decryption: We remind that for decryption, KeyIn loads the very
last 16 bytes of key used with the last AddRoundKey, but not the original key
used for encryption. The rounds can be seen as the symmetrically opposite ver-
sions of encryption.

A round takes 31 cycles to complete. At the beginning, all bytes in the key
pipeline are fresh. At the end of 12 cycles, the key pipeline contains only 4 fresh
bytes. Then, ikxor is enabled through 13, 63, 73 (by setting Sel13, Sel63, Sel73
to ‘1’) for 4 cycles. Therefore at cycle 16, the key pipeline contains exactly 12
bytes of fresh key contained in 10-13, 60-73. The remaining dirty key column is
refreshed by ke0, ke1, ke1, ke1 operations are in the next 4 cycles. Therefore, at
the end of the round, all bytes in the key pipeline are fresh. As before, the output
of decryption, i.e. the plaintext becomes available during the last 16 cycles.

AES-192 Encryption: The detailed chronology of operations is given in Fig-
ure 3. Performing the key expansion in AES-192 becomes quite challenging given
the fact that each key expansion round generates 24 bytes of new round key,
whereas only 16 of them are used for each encryption round. This leads to mis-
alignment and desynchronization issues between the state pipeline and the key
pipeline.
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Fig. 3: The chronology of operations in AES-192 encryption (on top) and AES-
192 decryption (below). The numbers in the boxes indicate the number of cycles
over which the operation is executed.

We overcome them by interrupting AddRoundKey and SubBytes operations
and running key expansion algorithm in the middle. This leads to three different
types of rounds: (1) first type of round has no fresh key byte in the pipeline at
the beginning and has to run a key expansion round algorithm before addition,
(2) the second type of round has 4 leftover fresh bytes in 00-03 and 4 dirty
bytes in 10-13 that can be refreshed with kxor as the pipeline moves. This means
that AddRoundKey and SubBytes have to run for 8 cycles, then pause for key
expansion, and later resume for 8 more cycles (3) third type of round has 4 fresh
bytes in 00-03, and 12 dirty bytes in 10-33 that can be refreshed with kxor as
the pipeline moves.

During the first 16 cycles, AddRoundKey and SubBytes is simultaneously per-
formed as before. The next 8 cycles are used to load the rest of the key into the
key pipeline. Then, in order to align the key properly, the key pipeline is rotated
for 16 cycles with rot. Thereby, at the end, 8 fresh bytes are located at 00-13,
and the dirty bytes are at 20-33, 60-73.

During round 1, we have to interrupt AddRoundKey and SubBytes after 8
cycles, at which point all the bytes in the key pipeline are dirty. The 4 bytes of
key that requires to be updated by key expand 0 and key expand 1 operations
are located at 00-03, therefore we run ke0, ke1, ke1, ke1 in the following four
cycles. The remaining 20 dirty key bytes are refreshed as they are loaded into
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03, by running kxor alongside add and sbox operations, and it overflows into
the next round. Of this 8 are done in the current encryption round and 12 are
deferred to the next round. Note that since 8 AddRoundKey operations are done
simultaneously, at the end of this round the number of fresh bytes in the key
pipeline is 4 + 8− 8 = 4.

At the beginning of rounds 2, 5, 8, 11 (which are type (3) rounds) the pipeline
contains only 4 bytes of fresh key, but the following 12 dirty bytes can be re-
freshed with kxor. Therefore, to align correctly, one should run kxor during the
first 12 cycles of AddRoundKey and SubBytes. At the end of this round, all fresh
bytes are therefore used up.

At the beginning of rounds 3, 6, 9 (which are type (1) rounds); the key in
the pipeline is completely dirty and the first column requires key expansion 0
and key expansion 1 operations. Therefore ke0, ke1, ke1, ke1 are run in the first 4
cycles. The following 20 bytes of key can be easily refreshed with kxor alongside
add and sbox. Of this 16 is executed in the current round and 4 are deferred to
the next round.

At the beginning of rounds 4, 7, 10 (which are type (2) rounds) there are 4
bytes of fresh keys followed by 4 bytes of dirty keys that can be refreshed with
kxor in the key pipeline. However, the following column of key requires the key
expand 0 and key expand 1 operations, so add and sbox is interrupted as before
for key expansion. The remaining 8 bytes of addition continues after 4 cycles
of ke0, ke1, ke1, ke1. The ciphertext is available in DataOut during the last 16
cycles.

AES-192 Decryption: A second obstacle that arises during the decryption is
that fresh bytes in the key pipeline are not necessarily always start from 00. Re-
call that for decryption, the last 24 bytes of used round keys are loaded initially,
therefore we have to run the key expansion algorithm in the reverse order. There-
fore, we have to start refreshing key columns starting with the highest index,
i.e. whichever column of key was used last in the encryption should be removed
first. At the same time, due to flow direction of the pipeline, the lowest indexed
key column occupies 00-03, whereas during various stages of operation the key
columns to be used in key addition are located at 20-23 or 60-63. Our solution
is to connect pipeline exits Key20, Key60 to mux 10, so that even if the next
fresh key byte is misaligned in the key pipeline, we can continue AddRoundKey,
InvSubBytes operations without requiring additional cycles for rotation. This
irregular exit of key bytes from the pipeline is only necessary for AES-192 de-
cryption.

Since the last 24 bytes of round key is loaded into the circuit (k184 to k207),
8 cycles are used for loading the first 8 bytes of this key. Then the following
16 cycles are used for add. During the last four cycles of add, ikxor is also per-
formed through 33, 63, 73 (but not 03, 13, 23). Therefore, at cycle 24, the key
pipeline contains 20 fresh bytes (8 unused from the initial load and 12 from
ikxor), where the 4 dirty bytes are stored in 20-23 and they can only be refreshed
with ke0, ke1, ke1, ke1. Therefore, we will wait until this key moves into 00-03.
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At the beginning of rounds 1, 4, 7, 10; the key pipeline contains 20 fresh
bytes. However the next 8 fresh bytes to be used for add are located at 60-73,
whereas the remaining 8 bytes required for add are located at 00-13. Therefore
we fetch the next byte key into the bus from Key60, and at the same time rotate
the pipeline by connecting 00 → 73. After 8 cycles, we interrupt isbox and add
because the dirty column of key that requires the key expand 0/1 operations to
update now reaches 00-03, so we can perform ke0, ke1, ke1, ke1. After refresh-
ing this column of keys in 4 cycles, we resume fetching key bytes from 60 for
AddRoundKey and InvSubBytes. Concurrently, at the last 4 cycles, we do ikxor
with 03, 13, 23, 33 to obtain 16 fresh bytes for the next round. All the 24 bytes
in the pipeline after this are completely fresh.

At the beginning of rounds 2, 5, 8, 11; the key pipeline is completely fresh.
However the next 16 bytes of key to be used with add are located at 20-33 and 60-
73. Therefore, key bytes are fetched from Key20 into the pipeline, and the pipeline
is rotated as before. During the last 4 cycles of add, ikxor is performed over 13.
After the 16 add cycles, the bytes of key that require update by key expand 0/1
arrive at 00-03, and therefore ke0, ke1, ke1, ke1 is executed to generate 4 fresh
bytes. At the end, the key pipeline contains 16 fresh key bytes in 00-33.

At the beginning of rounds 3, 6, 9; the key pipeline contains 16 fresh bytes
starting from 00, and they are aligned with the state pipeline for add. In order
to arrange future key bytes, we still perform ikxor on 33, 63 for the first 4 cycles,
and 33, 63, 73 for the last 4 cycles. At the end, the key pipeline contains 4 dirty
bytes located at 20-23.

AES-256 Encryption: The detailed chronology of operations is given in Fig-
ure 4. AES-256 remains simpler to achieve than AES-192, because each key ex-
pansion round produces enough keys for two AddRoundKey operations. During
the first 16 cycles, add, sbox is performed. We spend other 16 cycles to load the
rest of the key. Then the key expansion is performed with ke0, ke1, ke1, ke1, and
key is rotated for 16 cycles to move the fresh key bytes to 00-33. During the first
12 cycles of this period, we also enable kxor (named rxor for convenience) so that
old keys are refreshed as they rotate through the pipeline.

At the beginning of round 1, the key pipeline is completely fresh, therefore
there are sufficient bytes of keys for round 2 as well. Therefore, no key expansion
operation is done during the first two rounds.

At the beginning of rounds 3, 5, 7, 9, 11, 13; the key pipeline is completely
dirty, and the bytes at 00-03 require 4 cycles of ke2. Then at the first 12 cycles
of add, kxor is also enabled so that the following 12 dirty bytes can be refreshed.

The rounds 4, 6, 8, 10,12 work exactly same, except the special key column
requires ke0, ke1, ke1, ke1 rather than 4 cycles of ke2. The ciphertext is available
in the last 16 rounds of the final round.

AES-256 Decryption: Since the last 32 used bytes of key are loaded into the
circuit, we use first 16 cycles to load the first half of this key. The next 16 cycles
receives the data and the second half of the key at the same time, therefore
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Fig. 4: The cycle arrangement of AES-256 encryption (on top) and AES-128 de-
cryption (below). The numbers in the boxes indicate the number of cycles over
which the operation is executed.

performs the add operation. At the beginning of rounds 1, 3, 5, 7, 9, 11, 13; the
first 16 bytes of the key pipeline are fresh and the rest is dirty. At the last 4
cycles of add, ikxor is performed through 13, 23, 33 so that 12 bytes are refreshed.
The following 4 bytes are also refreshed with ke0, ke1, ke1, ke1. The rounds 2,
4, 6, 8, 10, 12 work exactly same except the key column requiring update by
key expand 2 is refreshed with 4 cycles of ke2 instead of ke0, ke1, ke1, ke1. The
plaintext is available in the last 16 rounds of the final round.

4 Performance Evaluation and Conclusion

In order to perform a fair performance evaluation, we implemented the circuit
using VHDL. Thereafter the following design flow was adhered to for all the
circuits: a functional verification at the RTL level was first done using Mentor
Graphics Modelsim software. The designs were synthesized using the standard
cell libraries of the CMOS logic processes listed in Table 1, with the Synop-
sys Design Compiler, with the compiler being specifically instructed to optimize
the circuit for area. A timing simulation was done on the synthesized netlist
to confirm the correctness of the design, by comparing the output of the tim-
ing simulation with known test vectors. The switching activity of each gate of
the circuit was collected while running post-synthesis simulation. The average
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Table 1: Performance Comparison of 6AES architecture (E: Encryption, D: De-
cryption). Power is reported at a clock frequency of 10 MHz. TPmax denotes the
maximum throughput achievable on the circuit.
Library Area Power Variant Latency Energy TPmax Variant Latency Energy TPmax

(GE) (µW) (cycles) (nJ) (Mbps) (cycles) (nJ) (Mbps)
STM 90nm 3672 189.5 AES-128E 243 4.605 75.8 AES-128D 315 5.969 58.5

AES-192E 322 6.102 57.2 AES-192D 400 7.580 46.0
AES-256E 371 7.030 49.6 AES-256D 454 8.603 40.6

TSMC 90nm 4760 95.4 AES-128E 243 2.318 71.8 AES-128D 315 3.005 55.4
AES-192E 322 3.072 54.2 AES-192D 400 3.816 43.7
AES-256E 371 3.539 47.1 AES-256D 454 4.331 38.5

UMC 90nm 5009 192.9 AES-128E 243 4.687 101.3 AES-128D 315 6.076 78.1
AES-192E 322 6.211 76.4 AES-192D 400 7.716 61.5
AES-256E 371 7.157 66.3 AES-256D 454 8.758 54.2

TSMC 180nm 4680 1209.9 AES-128E 243 29.400 71.5 AES-128D 315 38.112 55.1
AES-192E 322 38.959 53.9 AES-192D 400 48.396 43.4
AES-256E 371 44.887 46.8 AES-256D 454 54.929 38.2

6AES (3672 GE)

Key Register - 1183 GE

State Register - 829 GE

Mixcolumn - 255 GE

S-box - 255 GE

Mux/Xor/And - 464 GE

Control System - 686 GE

32.4%

22.4%
7.0%

6.9%

12.6%

18.7%

Fig. 5: Area requirements of the individual components

power was obtained using Synopsys Power Compiler, using the back annotated
switching activity.

We outline some of the essential lightweight metrics of the 6AES architec-
ture in Table 1. In Figure 5, we present a component-wise breakdown of the
circuit size when synthesized with the STM 90nm logic process. A significant
area is required for generating the control signals, as accommodating 6 different
functionalities in a single circuit requires more fine-grained control over specific
circuit components. This is because both the structure (wrt sequence of opera-
tions) and duration (wrt number of clock cycles) of a single round shows a wide
range of variations as the size of the key changes. To the best of our knowl-
edge, this is the first work that aims ot minimize the size of the circuit while
implementing all the 3 versions of the AES circuit. The circuit offers flexibility to
designers who want to move to higher levels of security in the near future, and
implement modes of operation that would require simultaneous access to block
cipher encryption/decryption circuits.
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