"This is the peer reviewed version of the following article: [J. Am. Chem. Soc. 2019, 141, 9827–9831] which has been published in final form at [Link to final article using the DOI: DOI: 10.1021/jacs.9b05337]. This article may be used for non-commercial purposes in accordance with the American Chemical Society Terms and Conditions for Self-Archiving."

A Molecular Complex of Tb in the +4 Oxidation State

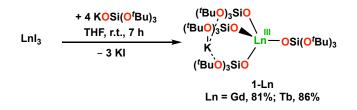
Chad T. Palumbo,^a Ivica Zivkovic,^b Rosario Scopelliti,^a and Marinella Mazzanti*

^{a.} Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

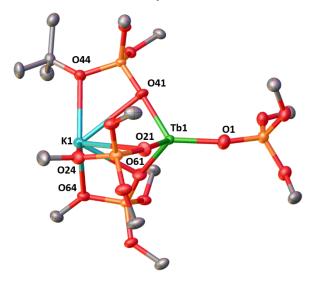
> ^{b.} Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Supporting Information Placeholder

ABSTRACT: Lanthanides (Ln) usually occur in the +3, or more recently the +2, oxidation states. The only example of an isolated molecular Ln⁺⁴ so far remains Ce⁴⁺. Here we show that the +4 oxidation state is also accessible in a molecular compound of terbium as demonstrated by oxidation of the tetrakis(siloxide)terbium(III) ate complex, [KTb(OSi(O^tBu)₃)₄], 1-Tb, with tris(4-bromophenyl)amminium the oxidant. $[N(C_6H_4Br)_3][SbCl_6],$ to afford the Tb4+ complex [Tb(OSi(O^tBu)₃)₄], **2-Tb**. The solid state structures of **1-Tb** and 2-Tb were determined by X-ray crystallography and the presence of Tb4+ was unambiguously confirmed by EPR and magnetometry. 2-Tb displays a similar voltammogram to the Ce4+ analogue but with redox events that are about 1 V more positive.

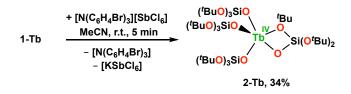

The chemistry of lanthanides (Ln) has been limited mostly to the + 3 oxidation state. Only recently it has been shown that the oxidation state + 2 is accessible for all lanthanides by using bulky supporting ligands and appropriate reaction conditions.¹ In contrast, molecular complexes of lanthanides in the oxidation state + 4 remain limited to the special case of the 4f⁰ cerium ion.² The high oxidizing power of Ce⁴⁺ (the Ce⁴⁺/Ce³⁺ redox potential ranges from 1.87 to -0.86 vs NHE depending on the solvent and supporting ligand)³ has led to the rapid application of its compounds in various fields ranging from organic syntheses to materials science.⁴ Ce⁴⁺ chemistry is well developed, but in order to avoid redistribution products, the rational synthesis of Ce⁴⁺ complexes requires a careful choice of oxidizing agent and solvent and careful consideration of cation effects and ligand exchange dynamics.^{3, 5}

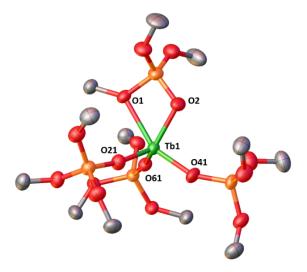
The terbium ion should have the next most accessible +4 oxidation state according to the calculated redox potential of 3.3 V vs NHE,⁶ but Tb⁺⁴ so far has only been observed in concentrated aqueous carbonate solutions⁷ and in a few inorganic solids such as metal oxides or fluorides.^{6a, 8} Further, Tb⁴⁺ in TbO₂ has been recently identified as a potential candidate for solar thermochemical reactions.⁹ While a molecular complex of the 5f analogue Bk⁴⁺ has been recently reported,¹⁰ attempts to produce Tb⁴⁺ in molecular compounds were so far not successful,¹¹ resulting in ligand rather than metal oxidation, leaving the question of the possibility of isolating complexes of Ln⁺⁴ other than Ce⁴⁺ open.^{2a}


Our group¹² and others¹³ have reported the ability of tris(tertbutoxy)siloxide to stabilize lanthanide ions in various oxidation states. In particular, both the Ce³⁺ and the Ce⁴⁺ homoleptic tetrakis(tertbutoxy)siloxide complexes [KCe(OSi(O^tBu)₃)₄], **1-Ce**, and [Ce(OSi(O^tBu)₃)₄], **2-Ce**, were prepared and crystallographically characterized.^{12b} Here we show that the tris(tertbutoxy)siloxide ligand allows the synthesis and characterization of the first example of a molecular complex of Tb⁴⁺. The 4f⁷ terbium complex [Tb(OSi(O^tBu)₃)₄], **2-Tb**, was prepared by oxidation of the Tb³⁺ analogue, [KTb(OSi(O^tBu)₃)₄], **1-Tb**, using [N(C₆H₄Br)₃][SbCl₆] as the oxidizing agent. We have also prepared the isoelectronic 4f⁷ Gd³⁺ complex, [KGd(OSi(O^tBu)₃)₄], **1-Gd**, for comparison.

The potassium tetrakis(siloxide) Ln^{3+} complexes, [KLn(OSi(O^tBu)₃)₄] (Ln = Gd, Tb), **1-Ln**, were prepared from the reaction of KOSi(O^tBu)₃ with the anhydrous lanthanide triiodides GdI₃ and TbI₃ in 81% and 86% yield for Gd and Tb, respectively, Scheme 1.

Scheme 1. Synthesis of [KLn(OSi(O'Bu)₃)₄] (Ln = Gd, Tb), 1-Ln.


The NMR spectrum of 1-Tb (Figure S1) at 298 K shows only one broad resonance at -26 ppm in toluene- d_8 , indicating fluxional behavior of the siloxide ligands that is slowed down at low temperature. Several signals are observed at 193 K, and they coalesce at 223 K into two signals (Figure S2). At 263 K, the four siloxide ligands are equivalent on the NMR time scale (Figure S3). Crystals of 1-Tb characterizable by X-ray diffraction were grown upon storage of a concentrated toluene solution at -40 °C overnight, Figure 1. Complex 1-Tb is isostructural with the previously reported [KYb(OSi(OtBu)3)4] complex12a and presents a 4-coordinate Tb³⁺ ion with one κ^1 -OSi(O^tBu)₃ ligand and three μ - κ^2 :0,0-OSi(O^tBu)₃ ligands which bridge the Tb³⁺ and K⁺ cations. In contrast, in the previously reported [KCe(OSi(O^tBu)₃)₄] complex,^{12b} the Ce³⁺ ion is 5-coordinate with one κ^2 :0,0-OSi(O^tBu)₃ ligand and three μ - κ^2 :0,0-OSi(O^tBu)₃ ligands that bridge the Ce³⁺ and K⁺. The difference in structure is attributed to the larger ionic radius of Ce3+ compared to Tb³⁺ and Yb³⁺ (6-coordinate Shannon radii: Ce³⁺, 1.01 Å; Tb³⁺, 0.923 Å; Yb³⁺, 0.868 Å).¹⁴


Figure 1. Molecular structure of [KTb(OSi(O^tBu)₃)₄], **1-Tb**, with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms, methyl groups on the siloxide ligands, and a second molecule of **1-Tb** present in the unit cell have been omitted for clarity.

Treatment of **1-Tb** with AgI in either THF or CH₂Cl₂ gave no reaction. However, treatment of **1-Tb** with a stronger oxidizing agent, namely, the tris(4-bromophenyl)amminium hexachloroantimonate salt, ([N(C₆H₄Br)₃][SbCl₆]),¹⁵ resulted in an immediate color change and gave an intense orange colored solution. Removal of THF and recrystallization from hexane yielded bright orange single crystals of **2-Tb**, which were characterized by X-ray crystallography, Figure 2. The UV-visible spectrum generated from crystals of **2-Tb** dissolved in toluene shows a broad absorption at $\lambda_{max} = 371$ nm with a molar extinction coefficient ε of 4200 M⁻¹·cm⁻¹ (Figure S4). A similar feature ($\lambda_{max} = 365$ nm) was reported for electrochemically generated solutions of Tb⁴⁺ in 5.5M of K₂CO₃. Complex **2-Tb** is stable in toluene for several days, but in THF, the orange solution immediately begins to decolorize and within hours is completely colorless. We found that the synthesis of **2-Tb** is improved in MeCN, likely due to the higher stability of MeCN towards oxidation and to the lower solubility of **2-Tb** which allows it to precipitate from the reaction mixture and avoid side reactions. The optimized synthesis of **2-Tb** is shown in Scheme 2.

Scheme 2. Synthesis of [Tb(OSi(O^tBu)₃)₄], 2-Tb.

The complex **2-Tb** is isomorphous with the previously reported **2-Ce**.^{12b} Both Ln⁴⁺ ions are 5-coordinate and bound by three κ^{1} -OSi(O^tBu)₃ and one κ^{2} :0,0-OSi(O^tBu)₃ ligands despite a 0.11 Å difference in their Ln⁴⁺ ionic radii (6-coordinate Shannon radii: Ce⁴⁺, 0.87 Å; Tb⁴⁺, 0.76 Å) and the ability of **2-Ce** to bind an additional ligand.^{11c} The 0.09 Å difference in (Ln–O)_{avg} bond distances between **1-Tb** and **2-Tb** is less than the 0.15 Å difference in the 6-coordinate ionic radii, but if one considers the decrease in ionic radius from Tb³⁺ to Tb⁴⁺ (0.163 Å), and the increase in Shannon¹⁴ radii between coordination numbers *n* and *n*+1 (0.06 Å), the 0.09 Å difference is close to the 0.103 Å difference expected as a result of these influences. The metrical parameters of the **2-Ln** complexes are given in Table 1 together with those of their Ln³⁺ analogues **1-Ln**.

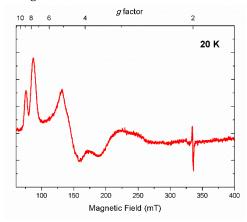
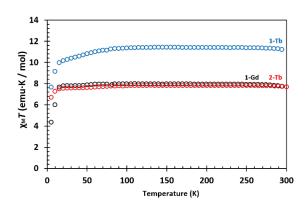
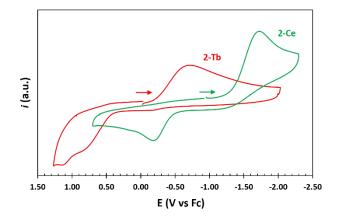

Figure 2. Molecular structure of [Tb(OSi(O^tBu)₃)₄], **2-Tb**, with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and methyl groups on the siloxide ligands have been omitted for clarity.

Table 1. Selected bond lengths (Å) and angles (°) of $[KLn(OSi(O'Bu)_3)_4]$, 1-Ln, and $[Tb(OSi(O'Bu)_3)_4]$, 2-Ln $(Ln = Ce, ^{12b} Tb)$.

	1-Tb	2-Tb	1-Ce ^{12b}	2-Ce ^{12b}
Ln–0 range	2.103(3)- 2.152(2)	2.023(3)- 2.093(3)	2.221(3)- 2.297(3)	2.084(2)- 2.160(2)
(Ln-O) _{avg}	2.13(2)	2.04(3)	2.26(3)	2.11(3)
Ln–O _{tBu} range	-	2.474(3)	2.721(3)- 2.764(3)	2.581


X-band electron paramagnetic resonance (EPR) spectra were measured at 20 K and 298 K on 1 mM solutions prepared by dissolving crystals of 1-Tb, 1-Gd and 2-Tb in toluene (Figures S5-S9 in the Supporting Information). The 1-Tb spectrum does not show intense features as expected for the non-Kramers Tb³⁺ (4f⁸) ion.¹⁶ In contrast, the 20 K spectrum produced from 2-Tb (Figure 3) shows strong features at g= 8.9, g= 7.7 and g = 5.0 that are consistent with spectra reported for fluoride phosphate glasses and silicates containing Tb4+.17-18 Complex EPR spectra with highly anisotropic g-values have been previously observed in complexes of 4f7 ions and have been interpreted in term of a large zero field splitting (ZFS).¹⁸⁻¹⁹ Similar strong features were observed in the EPR spectrum of the isoelectronic **1-Gd** complex. The differences in the spectra of the Gd³⁺ and Tb4+ complexes may be ascribed in part to differences in the 1-Ln and 2-Ln structures and the increased ZFS resulting from the more charged Tb⁴⁺ ion.¹⁸

Magnetic susceptibility measurements as a function of temperature were performed on crushed crystalline samples of the 4f⁸ **1-Tb** and the 4f⁷ complexes, **2-Tb** and **1-Gd**, Figure 4. The $\chi_M T$ = 7.78 and 7.77 emu·K/mol measured at 294 K for **1-Gd** and **2-Tb**, respectively, are in agreement with the $\chi_M T$ = 7.88 emu·K/mol predicted for a 4f⁷ complex by a first approximation using *LS* coupling for 4f⁷ ion (*L* = 0, *S* = 7/2),^{6a} and both are significantly lower than the 11.2 emu·K/mol observed for 4f⁸ Tb³⁺ in **1-Tb** (predicted 11.8 emu·K/mol, *L* = 3, *S* = 5/2). For the isotropic Gd³⁺ ion in **1-Gd**, the $\chi_M T$ data are linear over the temperature range from 300 to 15 K.


Figure 3. X-band EPR spectrum (v = 9.397323 GHz, P = 0.6335 mW, modulation amplitude = 0.5 mT, T = 20 K) of **2-Tb**, recorded as a 1 mM solution in toluene.

At temperatures below 15 K, a sharp decrease of the magnetic moment is observed probably due to zero field splitting effects. The $\chi_M T$ versus T data measured for the **2-Tb** overlap with those measured for **1-Gd** in the temperature range 300 to 15 K as anticipated for an isoelectronic 4f⁷ ion.

Figure 4. Plot of $\chi_M T$ versus temperature data for ground crystalline samples of **1-Gd** (black), **1-Tb** (blue), and **2-Tb** (red) collected under an applied magnetic field of 1 T.

Cyclic voltammetry measurements were performed on the homoleptic tetrakis(siloxide) 2-Ce and 2-Tb complexes as 2 mM solutions in THF with 0.1 M [NBu4][B(C6F5)4] as the supporting electrolyte, Figure 5, Table 2. Cyclic voltammetry experiments previously reported in slightly different conditions (1 mM analyte, [ⁿPr₄N][B{Ar(3,5-CF₃)}₄] used as electrolyte) for 1-Ce and 2-Ce demonstrated irreversibility and wide peak separations for the Ce4+/Ce3+ redox couple which were attributed to ligand reorganization involving the switch between the κ^1 and κ^2 siloxide coordination modes.^{13a} The current–potential curves of 2-Tb are also characterized by irreversible redox events with wide peak separations between events at the cathodic and anodic electrodes ($\Delta E = 1.55$ V, **2-Tb**). The $E_{pc} =$ -0.70 V vs Fc reduction potential measured for 2-Tb is 1.02 V more positive than that observed for 2-Ce in the same conditions. Similarly, the E_{pa} = 0.85 V vs Fc oxidation event for **2-Tb** is 1.04 V more positive than the -0.19 V vs Fc event measured for 2-Ce, and is very close to the oxidation threshold for the THF solvent (see Figure S11 for the scan at 50 mV/s, where the E_{pc} redox event is better resolved). These data are consistent with the more positive potentials expected for Tb⁴⁺ compared to Ce⁴⁺ and suggest that ligand reorganization from the κ^2 binding mode in **2-Ln** to κ¹ binding in **1-Ln** is also occurring for the terbium system. The oxidation occurs at a potential significantly less positive compared to the calculated value for the Tb⁴⁺/Tb³⁺ redox couple (3.3 V vs NHE),⁶ suggesting a stabilizing effect of the Tb⁴⁺ oxidation state by the OSi(O^tBu)₃ ligand. The measured value in Table 2, however, is consistent with the applied potential that was reported to generate Tb4+ ions in concentrated carbonate solutions (1.3 V vs NHE).7

Figure 5. Cyclic voltammograms of 2 mM solutions of **2-Ce** (green) and **2-Tb** (red) measured in 0.1 M [NBu₄][$B(C_6F_5)_4$] in THF versus Fc with a glassy carbon working electrode. The measurements were done at room temperature and scanned at 250 mV/s.

Table 2. Electrochemical data in V vs Fc [V vs NHE] of the 2-Ce and 2-Tb complexes (Figure 2).

	2-Ce	2-Tb
$E_{ m pc}$	-1.72 [-0.92]	-0.70 [0.10]
$E_{ m pa}$	-0.19 [0.61]	0.85 [1.65]
$\Delta E_{ m pc}/{ m E_{ m pa}}$	1.53	1.55

In conclusion, the utilization of the electron-rich tetrakis(tertbutoxy)siloxide ligand environment along with the tris(bromophenyl) amminium hexachloroantimonate oxidant has allowed the expansion of rare earth oxidation chemistry to a molecular complex of terbium(IV). The isolation of a molecular Tb⁺⁴ suggests that it may be possible to extend the +4 oxidation state to molecular complexes of the other lanthanide ions. In view of the broad range of applications of Ce⁺⁴, this finding should lead to further development of the redox chemistry of the lanthanides and to unusual oxidative chemistry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 1021/XXX and includes additional spectroscopic, electrochemical characterization, magnetism, and structural details for **1-Ln** (Ln = Tb, Gd) and [Tb (OSi(O^tBu)₃)₄], **2-Tb** (PDF). Crystallographic data in CIF format for **1-Tb** and **2-Tb** (CIF).

AUTHOR INFORMATION

Corresponding Author

*Email: marinella.mazzanti@epfl.ch

ORCID

Chad T. Palumbo: 0000-0001-6436-4602 Rosario Scopelliti: 0000-0001-8161-8715 Marinella Mazzanti: 0000-0002-3427-008X

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We acknowledge support from the Swiss National Science Foundation grant number 200021_ <u>178793</u> and the Ecole Polytechnique Fédérale de Lausanne (EPFL). We thank Dr. Euro Solari for performing the elemental analysis measurements, Dr. F. Fadaei-Tirani for important contributions to the X-ray single crystal structure analyses, and Dr. A. Sienkiewicz for EPR data collection.

REFERENCES

(a) Fieser, M. E.; MacDonald, M. R.; Krull, B. T.; Bates, J. E.; (1. Ziller, J. W.; Furche, F.; Evans, W. J., Structural, Spectroscopic, and Theoretical Comparison of Traditional vs Recently Discovered Ln(2+) Ions in the K(2.2.2-cryptand) (C5H4SiMe3)(3)Ln Complexes: The Variable Nature of Dy2+ and Nd2+. J. Am. Chem. Soc. 2015, 137, 369-382; (b) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V., Lanthanum does form stable molecular compounds in the+2 oxidation state. Angew. Chem. Int. Ed. Engl. 2008, 47, 1488-1491; (c) Xemard, M.; Jaoul, A.; Cordier, M.; Molton, F.; Cador, O.; Le Guennic, B.; Duboc, C.; Maury, O.; Clavaguera, C.; Nocton, G., Divalent Thulium Triflate: A Structural and Spectroscopic Study. Angew. Chem. Int. Ed. Engl. 2017, 56, 4266-4271; (d) MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J., Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis Of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 2013, 135, 9857-9868.

2. (a) Anwander, R.; Dolg, M.; Edelmann, F. T., The difficult search for organocerium(IV) compounds. *Chem. Soc. Rev.* **2017**, *46*, 6697-6709; (b) Kaltsoyannis, N.; Scott, P., *The f elements*. Oxford University Press: Oxford, 1999; (c) So, Y. M.; Leung, W. H., Recent advances in the coordination chemistry of cerium(IV) complexes. *Coord. Chem. Rev.* **2017**, *340*, 172-197.

3. Piro, N. A.; Robinson, J. R.; Walsh, P. J.; Schelter, E. J., The electrochemical behavior of cerium(III/IV) complexes: Thermodynamics, kinetics and applications in synthesis. *Coord. Chem. Rev.* **2014**, *260*, 21-36.

4. (a) Schelter, E. J., Cerium under the lens. *Nat. Chem.* **2013**, *5*, 348-348; (b) Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P., Fundamentals and Catalytic Applications of CeO2-Based Materials. *Chem. Rev.* **2016**, *116*, 5987-6041; (c) Sridharan, V.; Menendez, J. C., Cerium(IV) Ammonium Nitrate as a Catalyst in Organic Synthesis. *Chem. Rev.* **2010**, *110*, 3805-3849; (d) Pham, T. A.; Altman, A. B.; Stieber, S. C. E.; Booth, C. H.; Kozimor, S. A.; Lukens, W. W.; Olive, D. T.; Tyliszczak, T.; Wang, J.; Minasian, S. G.; Raymond, K. N., A Macrocyclic Chelator That Selectively Binds Ln(4+) over Ln(3+) by a Factor of 10(29). *Inorg. Chem.* **2016**, *55*, 9989-10002; (e) Broderick, E. M.; Diaconescu, P. L., Cerium(IV) Catalysts for the Ring-Opening Polymerization of Lactide. *Inorg. Chem.* **2009**, *48*, 4701-4706.

(a) Crozier, A. R.; Bienfait, A. M.; Maichle-Mossmer, C.; Torn-5. roos, K. W.; Anwander, R., A homoleptic tetravalent cerium silylamide. Chem. Commun. 2013, 49, 87-89; (b) Drose, P.; Crozier, A. R.; Lashkari, S.; Gottfriedsen, J.; Blaurock, S.; Hrib, C. G.; Maichle-Mossmer, C.; Schadle, C.; Anwander, R.; Edelmann, F. T., Facile Access to Tetravalent Cerium Compounds: One-Electron Oxidation Using Iodine(III) Reagents. J. Am. Chem. Soc. 2010, 132, 14046-14047; (c) Levin, J. R.; Dorfner, W. L.; Carroll, P. J.; Schelter, E. J., Control of cerium oxidation state through metal complex secondary structures. Chem. Sci. 2015, 6, 6925-6934; (d) Robinson, J. R.; Qiao, Y. S.; Gu, J.; Carroll, P. J.; Walsh, P. J.; Schelter, E. J., The role of dynamic ligand exchange in the oxidation chemistry of cerium(III). Chem. Sci. 2016, 7, 4537-4547; (e) Casely, I. J.; Liddle, S. T.; Blake, A. J.; Wilson, C.; Arnold, P. L., Tetravalent cerium carbene complexes. Chem. Commun. 2007, 5037-5039; (f) Robinson, J. R.; Gordon, Z.; Booth, C. H.; Carroll, P. J.; Walsh, P. J.; Schelter, E. J., Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework. J. Am. Chem. Soc. 2013, 135, 19016-19024; (g) Damon, P. L.; Wu, G.; Kaltsoyannis, N.; Hayton, T. W., Formation of a Ce(IV) Oxo Complex via Inner Sphere Nitrate Reduction. *J. Am. Chem. Soc.* **2016**, *138*, 12743-12746.

6. (a) Cotton, S., *Lanthanides and Actinides Chemistry*. John Wiley & Sons: Chichester, 2006; (b) Soor, F. M.; Edelmann, F. T., *The Rare Earth Elements: Fundamentals and Applications*. John Wiley & Sons Ltd: Chichester, 2012.

7. Hobart, D. E.; Samhoun, K.; Young, J. P.; Norvell, V. E.; Mamantov, G.; Peterson, J. R., Stabilization of praseodymium(iv) and terbium(iv) in aqueous carbonate solution. *Inorg. Nucl. Chem. Letters* **1980**, *16*, 321-328.

8. (a) Minasian, S. G.; Batista, E. R.; Booth, C. H.; Clark, D. L.; Keith, J. M.; Kozimor, S. A.; Lukens, W. W.; Martin, R. L.; Shuh, D. K.; Stieber, S. C. E.; Tylisczcak, T.; Wen, X. D., Quantitative Evidence for Lanthanide-Oxygen Orbital Mixing in CeO2, PrO2, and TbO2. *J. Am. Chem. Soc.* **2017**, *139*, 18052-18064; (b) Doi, Y.; Ninomiya, K.; Hinatsu, Y.; Ohoyama, K., Structure and magnetic properties of the two-dimensional antiferromagnet Na2TbO3. *J. Phys. Condens. Matter* **2005**, *17*, 4393-4401.

9. Naghavi, S. S.; Emery, A. A.; Hansen, H. A.; Zhou, F.; Ozolins, V.; Wolverton, C., Giant onsite electronic entropy enhances the performance of ceria for water splitting. *Nat. Commun.* **2017**, *8* (285).

10. Deblonde, G. J. P.; Sturzbecher-Hoehne, M.; Rupert, P. B.; An, D. D.; Illy, M. C.; Ralston, C. Y.; Brabec, J.; de Jong, W. A.; Strong, R. K.; Abergel, R. J., Chelation and stabilization of berkelium in oxidation state plus IV. *Nat. Chem.* **2017**, *9*, 843-849.

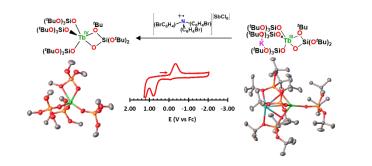
11. (a) Gregson, M.; Lu, E.; Mills, D. P.; Tuna, F.; McInnes, E. J. L.; Hennig, C.; Scheinost, A. C.; McMaster, J.; Lewis, W.; Blake, A. J.; Kerridge, A.; Liddle, S. T., The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. *Nat. Commun.* **2017**, *8* (14137); (b) Kim, J. E.; Bogart, J. A.; Carroll, P. J.; Schelter, E. J., Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry. *Inorg. Chem.* **2016**, *55*, 775-784.

12. (a) Andrez, J.; Pecaut, J.; Bayle, P.-A.; Mazzanti, M., Tuning Lanthanide Reactivity Towards Small Molecules with Electron-Rich Siloxide Ligands. *Angew. Chem. Int. Ed. Engl.* **2014**, *53*, 10448-10452; (b) Kelly, R. P.; Maron, L.; Scopelliti, R.; Mazzanti, M., Reduction of a Cerium(III) Siloxide Complex To Afford a Quadruple-Decker Arene-

Bridged Cerium(II) Sandwich. Angew. Chem. Int. Ed. Engl. 2017, 56, 15663-15666.

13. (a) Friedrich, J.; Qiao, Y. S.; Maichle-Mossmer, C.; Schelter, E. J.; Anwander, R., Redox-enhanced hemilability of a tris(tert-butoxy) siloxy ligand at cerium. *J. Chem. Soc.-Dalton Trans.* **2018**, *47*, 10113-10123; (b) Lapadula, G.; Conley, M. P.; Coperet, C.; Andersen, R. A., Synthesis and Characterization of Rare Earth Siloxide Complexes, M OSi(OtBu)(3) (3)(L)(x) where L is HOSi(OtBu)(3) and x=0 or 1. *Organometallics* **2015**, *34*, 2271-2277; (c) Friedrich, J.; Maichle-Mossmer, C.; Anwander, R., Synthesis and derivatisation of ceric tris(tert-butoxy)siloxides. *Chem. Commun.* **2017**, *53*, 12044-12047.

14. Shannon, R. D., Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr A* **1976**, *32*, 751-767.


15. Connelly, N. G.; Geiger, W. E., Chemical redox agents for organometallic chemistry. *Chem. Rev.* **1996**, *96*, 877-910.

16. (a) Abragam, A.; Bleaney, B., *Electron Paramagnetic Resonance of Transition Ions*. Clarendon Press: Oxford, 1970; (b) Hinatsu, Y., Magnetic-susceptibility and electron-paramagnetic resonance studies of tetravalent terbium ions in BaTbO3 AND SrTbO3. *J. Solid State Chem.* **1992**, *100*, 136-140.

17. Ebendorff-Heidepriem, H.; Ehrt, D., Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses. *J. Phys. Condens. Matter* **1999**, *11*, 7627-7634.

18. Hansen, S.; Mosel, B. D.; MullerWarmuth, W.; Fielding, P. E., EPR studies of Tb4+ in single crystals of zircon and scheelite structure silicates and germanates. *Z. Naturforsch A* **1996**, *51*, 885-894.

19. Benmelouka, M.; Van Tol, J.; Borel, A.; Nellutla, S.; Port, M.; Helm, L.; Brunel, L. C.; Merbach, A. E., Multiple-Frequency and Variable-Temperature EPR Study of Gadolinium(III) Complexes with Polyaminocarboxylates: Analysis and Comparison of the Magnetically Dilute Powder and the Frozen-Solution Spectra. *Helv. Chim. Acta* **2009**, *92*, 2173-2185.

