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ABSTRACT:	Lanthanides	(Ln)	usually	occur	in	the	+3,	or	more	
recently	the	+2,	oxidation	states.	The	only	example	of	an	iso-
lated	molecular	Ln+4	so	far	remains	Ce4+.	Here	we	show	that	the	
+4	oxidation	state	is	also	accessible	in	a	molecular	compound	
of	terbium	as	demonstrated	by	oxidation	of	the	tetrakis(silox-
ide)terbium(III)	 ate	 complex,	 [KTb(OSi(OtBu)3)4],	1-Tb,	 with	
the	 tris(4-bromophenyl)amminium	 oxidant,	
[N(C6H4Br)3][SbCl6],	 to	 afford	 the	 Tb4+	 complex		
[Tb(OSi(OtBu)3)4],	2-Tb.	The	solid	state	structures	of	1-Tb	and	
2-Tb	were	determined	by	X-ray	crystallography	and	the	pres-
ence	of	Tb4+	was	unambiguously	confirmed	by	EPR	and	magne-
tometry.	2-Tb	displays	a	similar	voltammogram	to	the	Ce4+	an-
alogue	but	with	redox	events	that	are	about	1	V	more	positive. 

The	chemistry	of	lanthanides	(Ln)	has	been	limited	mostly	to	
the	+	3	oxidation	state.	Only	recently	it	has	been	shown	that	the	
oxidation	 state	 +	 2	 is	 accessible	 for	 all	 lanthanides	 by	 using	
bulky	supporting	ligands	and	appropriate	reaction	conditions.1	
In	contrast,	molecular	complexes	of	 lanthanides	in	the	oxida-
tion	state	+	4	remain	limited	to	the	special	case	of	the	4f0	cerium	
ion.2	The	high	oxidizing	power	of	Ce4+	(the	Ce4+/Ce3+	redox	po-
tential	ranges	from	1.87	to	−0.86	vs	NHE	depending	on	the	sol-
vent	and	supporting	ligand)3	has	led	to	the	rapid	application	of	
its	compounds	in	various	fields	ranging	from	organic	syntheses	
to	materials	science.4		Ce4+	chemistry	is	well	developed,	but	in	
order	to	avoid	redistribution	products,	the	rational	synthesis	of	
Ce4+	complexes	requires	a	careful	choice	of	oxidizing	agent	and	
solvent	and	careful	consideration	of	cation	effects	and	 ligand	
exchange	dynamics.3,	5		
The	terbium	ion	should	have	the	next	most	accessible	+4	oxi-
dation	state	according	to	the	calculated	redox	potential	of	3.3	V	

vs	NHE,6	but	Tb+4	so	far	has	only	been	observed	in	concentrated	
aqueous	 carbonate	 solutions7	 and	 in	 a	 few	 inorganic	 solids	
such	as	metal	oxides	or	fluorides.6a,	8	Further,	Tb4+	in	TbO2	has	
been	recently	identified	as	a	potential	candidate	for	solar	ther-
mochemical	reactions.9	While	a	molecular	complex	of	the	5f	an-
alogue	Bk4+	has	been	recently	reported,10	attempts	to	produce	
Tb4+	in	molecular	compounds	were	so	far	not	successful,11	re-
sulting	in	ligand	rather	than	metal	oxidation,	leaving	the	ques-
tion	of	the	possibility	of	isolating	complexes	of	Ln+4		other	than	
Ce4+	open.2a		
Our	 group12	 and	 others13	 have	 reported	 the	 ability	 of	
tris(tertbutoxy)siloxide	to	stabilize	lanthanide	ions	in	various	
oxidation	states.	In	particular,	both	the	Ce3+	and	the	Ce4+		homo-
leptic	 tetrakis(tertbutoxy)siloxide	 complexes	
[KCe(OSi(OtBu)3)4],	 1-Ce,	 and	 [Ce(OSi(OtBu)3)4],	 2-Ce,	 were	
prepared	 and	 crystallographically	 characterized.12b	 Here	 we	
show	that	the	tris(tertbutoxy)siloxide	ligand	allows	the	synthe-
sis	 and	 characterization	 of	 the	 first	 example	 of	 a	 molecular	
complex	of	Tb4+.	The	4f	7	terbium	complex	[Tb(OSi(OtBu)3)4],	2-
Tb,	 was	 prepared	 by	 oxidation	 of	 the	 Tb3+	 analogue,	
[KTb(OSi(OtBu)3)4],	1-Tb,	using	[N(C6H4Br)3][SbCl6]	as	the	ox-
idizing	agent.	We	have	also	prepared	the	isoelectronic	4f	7	Gd3+	
complex,	[KGd(OSi(OtBu)3)4],	1-Gd,	for	comparison.	
The	 potassium	 tetrakis(siloxide)	 Ln3+	 complexes,	
[KLn(OSi(OtBu)3)4]	 (Ln	=	Gd,	 Tb),	1-Ln,	were	prepared	 from	
the	reaction	of	KOSi(OtBu)3	with	the	anhydrous	lanthanide	tri-
iodides	GdI3	and	TbI3	in	81%	and	86%	yield	for	Gd	and	Tb,	re-
spectively,	Scheme	1.	
	
Scheme	 1.	 	 Synthesis	 of	 [KLn(OSi(OtBu)3)4]	 (Ln	 =	 Gd,	
Tb),	1-Ln.	
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The	NMR	spectrum	of	1-Tb	 (Figure	S1)	at	298	K	shows	only	
one	broad	resonance	at	−26	ppm	in	toluene-d8,	indicating	flux-
ional	behavior	of	the	siloxide	ligands	that	is	slowed	down	at	low	
temperature.		Several	signals	are	observed	at	193	K,	and	they	
coalesce	at	223	K	into	two	signals	(Figure	S2).	 	At	263	K,	the	
four	siloxide	ligands	are	equivalent	on	the	NMR	time	scale	(Fig-
ure	S3).	 	Crystals	of	1-Tb	characterizable	by	X-ray	diffraction	
were	grown	upon	storage	of	a	concentrated	toluene	solution	at	
−40	°C	overnight,	Figure	1.		Complex	1-Tb	is	isostructural	with	
the	 previously	 reported	 [KYb(OSi(OtBu)3)4]	 complex12a	 and	
presents	a	4-coordinate	Tb3+	ion	with	one	k1-OSi(OtBu)3	ligand	
and	 three	µ-k2:O,O-OSi(OtBu)3	 ligands	which	 bridge	 the	 Tb3+	
and	 K+	 cations.	 	 In	 contrast,	 in	 the	 previously	 reported	
[KCe(OSi(OtBu)3)4]	 complex,12b	 the	 Ce3+	 ion	 is	 5-coordinate	
with	 one	 k2:O,O-OSi(OtBu)3	 ligand	 and	 three	 µ-k2:O,O-
OSi(OtBu)3	ligands	that	bridge	the	Ce3+	and	K+.	The	difference	
in	structure	is	attributed	to	the	larger	ionic	radius	of	Ce3+	com-
pared	to	Tb3+	and	Yb3+	(6-coordinate	Shannon	radii:		Ce3+,	1.01	
Å;	Tb3+,	0.923	Å;	Yb3+,	0.868	Å).14	

	

Figure	 1.	 	 Molecular	 structure	 of	 [KTb(OSi(OtBu)3)4],	 1-Tb,	
with	thermal	ellipsoids	drawn	at	the	50%	probability	level.		Hy-
drogen	atoms,	methyl	groups	on	the	siloxide	ligands,	and	a	sec-
ond	molecule	of	1-Tb	present	in	the	unit	cell	have	been	omitted	
for	clarity.	

	
Treatment	of	1-Tb	with	AgI	in	either	THF	or	CH2Cl2	gave	no	re-
action.		However,	treatment	of	1-Tb	with	a	stronger	oxidizing	
agent,	namely,	the	tris(4-bromophenyl)amminium	hexachloro-
antimonate	salt,	([N(C6H4Br)3][SbCl6]),15	resulted	in	an	imme-
diate color	change	and	gave	an	intense	orange	colored	solution.		
Removal	 of	 THF	 and	 recrystallization	 from	 hexane	 yielded	
bright	orange	single	crystals	of	2-Tb,	which	were	characterized	
by	X-ray	 crystallography,	 Figure	2.	 	The	UV-visible	 spectrum	
generated	from	crystals	of	2-Tb	dissolved	in	toluene	shows	a	
broad	 absorption	 at	 λmax	 =	 371	 nm	 with	 a	 molar	 extinction	

coefficient	 ε	 of	 4200	M−1∙cm−1	 (Figure	 S4).	 A	 similar	 feature	
(λmax	=	365	nm)	was	reported	for	electrochemically	generated	
solutions	of	Tb4+	 in	5.5M	of	K2CO3.	Complex	2-Tb	 is	stable	in	
toluene	for	several	days,	but	in	THF,	the	orange	solution	imme-
diately	begins	to	decolorize	and	within	hours	is	completely	col-
orless.	 	We	 found	 that	 the	 synthesis	 of	2-Tb	 is	 improved	 in	
MeCN,	likely	due	to	the	higher	stability	of	MeCN	towards	oxida-
tion	and	to	the	lower	solubility	of	2-Tb	which	allows	it	to	pre-
cipitate	 from	 the	 reaction	mixture	 and	 avoid	 side	 reactions.		
The	optimized	synthesis	of	2-Tb	is	shown	in	Scheme	2.	
	
Scheme	2.		Synthesis	of	[Tb(OSi(OtBu)3)4],	2-Tb.	

	
	
The	 complex	 2-Tb	 is	 isomorphous	 with	 the	 previously	 re-
ported	2-Ce.12b	Both	Ln4+	ions	are	5-coordinate	and	bound	by	
three	k1-OSi(OtBu)3	and	one	k2:O,O-OSi(OtBu)3	ligands	despite	
a	0.11	Å		difference	in	their	Ln4+	ionic	radii	(6-coordinate	Shan-
non	radii:		Ce4+,	0.87	Å;	Tb4+,	0.76	Å)	and	the	ability	of	2-Ce	to	
bind	an	additional	ligand.11c	The	0.09	Å	difference	in	(Ln–O)avg	
bond	distances	between	1-Tb	and	2-Tb	is	less	than	the	0.15	Å	
difference	in	the	6-coordinate	ionic	radii,	but	if	one	considers	
the	decrease	in	ionic	radius	from	Tb3+	to	Tb4+	(0.163	Å),	and	the	
increase	in	Shannon14	radii	between	coordination	numbers	n	
and	n+1	(0.06	Å),	the	0.09	Å	difference	is	close	to	the	0.103	Å	
difference	expected	as	a	result	of	these	influences.		The	metrical	
parameters	of	the	2-Ln	complexes	are	given	in	Table	1	together	
with	those	of	their	Ln3+	analogues	1-Ln.	
	

	

Figure	2.		Molecular	structure	of	[Tb(OSi(OtBu)3)4],	2-Tb,	with	
thermal	ellipsoids	drawn	at	the	50%	probability	level.		Hydro-
gen	atoms	and	methyl	groups	on	the	siloxide	ligands	have	been	
omitted	for	clarity.	

	
Table	 1.	 	 Selected	 bond	 lengths	 (Å)	 and	 angles	 (°)	 of	
[KLn(OSi(OtBu)3)4],	 1-Ln,	 and	 [Tb(OSi(OtBu)3)4],	 2-Ln	
(Ln	=	Ce,12b	Tb)	.	

Ln
III

OSi(OtBu)3

(tBuO)3SiO

(tBuO)3SiO
K

(tBuO)3SiO

1-Ln
Ln = Gd, 81%; Tb, 86%

THF, r.t., 7 hLnI3

+ 4 KOSi(OtBu)3

- 3 KI

MeCN, r.t., 5 min
+ [N(C6H4Br)3][SbCl6]

- [N(C6H4Br)3]
- [KSbCl6]

Tb
IV

O

(tBuO)3SiO

(tBuO)3SiO

Si(OtBu)2

tBu
O(tBuO)3SiO

1-Tb

2-Tb, 34%
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	 1-Tb	 2-Tb	 1-Ce12b	 2-Ce12b	
Ln–O	
range	

2.103(3)-
2.152(2)	

2.023(3)-	
2.093(3)	

2.221(3)-
2.297(3)	

2.084(2)-
2.160(2)	

(Ln–O)avg	 2.13(2)	 2.04(3)	 2.26(3)	 2.11(3)	
Ln–OtBu	
range	

-	 2.474(3)	 2.721(3)-
2.764(3)	

2.581	

	
X-band	electron	paramagnetic	resonance	(EPR)	spectra	were	
measured	at	20	K	and	298	K	on	1	mM	solutions	prepared	by	
dissolving	crystals	of	1-Tb,	1-Gd	and	2-Tb	in	toluene	(Figures	
S5-S9	in	the	Supporting	Information).		The	1-Tb	spectrum	does	
not	 show	 intense	 features	 as	 expected	 for	 the	 non-Kramers	
Tb3+	(4f	8)		ion.16	In	contrast,	the	20	K	spectrum	produced	from	
2-Tb	(Figure	3)	shows	strong	features	at	g=	8.9,	g=	7.7	and	g	=	
5.0	that	are	consistent	with	spectra	reported	for	fluoride	phos-
phate	glasses	and	silicates	containing	Tb4+.17-18	Complex	EPR	
spectra	with	highly	anisotropic	g-values	have	been	previously	
observed	in	complexes	of	4f7	ions	and	have	been	interpreted	in	
term	of	a		large	zero	field	splitting	(ZFS).18-19	Similar	strong	fea-
tures	were	observed	in	the	EPR	spectrum	of	the	isoelectronic	
1-Gd	 complex.	The	differences	 in	 the	spectra	of	 the	Gd3+	and	
Tb4+	complexes	may	be	ascribed	in	part	to	differences	in	the	1-
Ln	and	2-Ln	structures	and	the	increased	ZFS	resulting	from	
the	more	charged	Tb4+	ion.18		
Magnetic	susceptibility	measurements	as	a	function	of	temper-
ature	were	performed	on	crushed	crystalline	samples	of	the	4f	8	
1-Tb	and	the	4f	7	complexes,	2-Tb	and	1-Gd,	Figure	4.		The	χMT	
=	7.78	and	7.77	emu∙K/mol	measured	at	294	K	for	1-Gd	and	2-
Tb,	 respectively,	 are	 in	 agreement	 with	 the	 χMT	 =	 7.88	
emu∙K/mol	predicted	for	a	4f	7	complex	by	a	first	approxima-
tion	using	LS	coupling	for	4f	7	ion	(L	=	0,	S	=	7/2),6a	and	both	are	
significantly	lower	than	the	11.2	emu∙K/mol	observed	for	4f	8	
Tb3+	in	1-Tb	(predicted	11.8	emu∙K/mol,	L	=	3,	S	=	5/2).	For	the	
isotropic	Gd3+	ion	in	1-Gd,	the	χMT	data	are	linear	over	the	tem-
perature	range	from	300	to	15	K.	

	
Figure	3.		X-band	EPR	spectrum	(υ	=	9.397323	GHz,	P	=	0.6335	
mW,	modulation	amplitude	=	0.5	mT,	T	=	20	K)	of	2-Tb,	rec-
orded	as	a	1	mM	solution	in	toluene.	
	
At	temperatures	below	15	K,	a	sharp	decrease	of	the	magnetic	
moment	is	observed	probably	due	to	zero	field	splitting	effects.	
The	 χMT	 versus	 T	 data	measured	 for	 the	2-Tb	 overlap	 with	
those	measured	for	1-Gd	in	the	temperature	range	300	to	15	K	
as	anticipated	for	an	isoelectronic	4f	7	ion.		

	

Figure	4.		Plot	of	χMT	versus	temperature	data	for	ground	crys-
talline	samples	of	1-Gd	(black),	1-Tb	(blue),	and	2-Tb	(red)	col-
lected	under	an	applied	magnetic	field	of	1	T.	

	
Cyclic	 voltammetry	 measurements	 were	 performed	 on	 the	
homoleptic	 tetrakis(siloxide)	2-Ce	 and	2-Tb	 complexes	 as	 2	
mM	solutions	in	THF	with	0.1	M	[NBu4][B(C6F5)4]	as	the	sup-
porting	electrolyte,	Figure	5,	Table	2.	Cyclic	voltammetry	ex-
periments	previously	reported	in	slightly	different	conditions	
(1	mM	 analyte,	 [nPr4N][B{Ar(3,5-CF3)}4]	 used	 as	 electrolyte)	
for	1-Ce	and	2-Ce	demonstrated	irreversibility	and	wide	peak	
separations	 for	 the	 Ce4+/Ce3+	 redox	 couple	 which	 were	 at-
tributed	to	ligand	reorganization	involving	the	switch	between	
the	k1	and	 	k2	siloxide	coordination	modes.13a	The	current–po-
tential	curves	of	2-Tb	are	also	characterized	by		irreversible	re-
dox	events	with	wide	peak	separations	between	events	at	the	
cathodic	and	anodic	electrodes	(ΔE	=		1.55	V,	2-Tb).	The	Epc	=	
−0.70	V	vs	Fc	reduction	potential	measured	for	2-Tb	is	1.02	V	
more	positive	than	that	observed	for	2-Ce	in	the	same	condi-
tions.		Similarly,	the	Epa	=	0.85	V	vs	Fc	oxidation	event	for	2-Tb	
is	1.04	V	more	positive	than	the	−0.19	V	vs	Fc	event	measured	
for	2-Ce,	 and	 is	very	close	 to	 the	oxidation	 threshold	 for	 the	
THF	solvent	(see	Figure	S11	for	the	scan	at	50	mV/s,	where	the	
Epc	redox	event	is	better	resolved).		These	data	are	consistent	
with	the	more	positive	potentials	expected	for	Tb4+	compared	
to	Ce4+	and	suggest	that	ligand	reorganization	from	the	k2	bind-
ing	mode	in	2-Ln	to	k1	binding	in	1-Ln	is	also	occurring	for	the	
terbium	 system.	 The	 oxidation	 occurs	 at	 a	 potential	 signifi-
cantly	 less	positive	 compared	 to	 the	 calculated	 value	 for	 the	
Tb4+/Tb3+		redox	couple	(3.3	V	vs	NHE),6		suggesting	a	stabiliz-
ing	effect	of	the	Tb4+	oxidation	state	by	the	OSi(OtBu)3	ligand.	
The	measured	value	in	Table	2,	however,	is	consistent	with	the	
applied	 potential	 that	was	 reported	 to	 generate	 Tb4+	 ions	 in	
concentrated	carbonate	solutions	(1.3	V	vs	NHE).7	
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Figure	5.	 	 Cyclic	 voltammograms	of	 2	mM	solutions	of	2-Ce	
(green)	and	2-Tb	(red)	measured	in	0.1	M	[NBu4][B(C6F5)4]	in	
THF	versus	 Fc	with	 a	 glassy	 carbon	working	 electrode.	 	 The	
measurements	were	done	at	room	temperature	and	scanned	at	
250	mV/s.	

 

Table	2.		Electrochemical	data	in	V	vs	Fc	[V	vs	NHE]	of	
the	2-Ce	and	2-Tb	complexes	(Figure	2).	

	 2-Ce	 2-Tb	
Epc	 −1.72	[−0.92]	 −0.70	[0.10]	
Epa	 −0.19	[0.61]	 0.85	[1.65]	
ΔEpc/Epa		 1.53	 1.55	
	
In	 conclusion,	 the	 utilization	 of	 the	 electron-rich	
tetrakis(tertbutoxy)siloxide	ligand	environment	along	with	the	
tris(bromophenyl)	 amminium	hexachloroantimonate	 oxidant	
has	allowed	the	expansion	of	rare	earth	oxidation	chemistry	to	
a	molecular	complex	of	terbium(IV).	The	isolation	of	a	molecu-
lar	Tb+4	suggests	that	it	may	be	possible	to	extend	the	+4	oxi-
dation	 state	 to	molecular	 complexes	 of	 the	 other	 lanthanide	
ions.	In	view	of	the	broad	range	of	applications	of	Ce+4,	this	find-
ing	should	lead	to	further	development	of	the	redox	chemistry	
of	the	lanthanides	and	to	unusual	oxidative	chemistry.		
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