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We consider the S-matrix bootstrap of four-dimensional scattering amplitudes with Oð3Þ symmetry
and no bound states. We explore the allowed space of scattering lengths which parametrize the
interaction strength at threshold of the various scattering channels. Next we consider an application of
this formalism to pion physics. A signature of pions is that they are derivatively coupled leading to
(chiral) zeros in their scattering amplitudes. In this work we explore the multidimensional space of chiral
zeros positions, scattering length values, and resonance mass values. Interestingly, we encounter lakes,
peninsulas, and kinks depending on which sections of this intricate multidimensional space we consider.
We discuss the remarkable location where QCD seems to lie in these plots, based on various
experimental and theoretical expectations.
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Introduction and setup.—Pions are approximate
Goldstone bosons for spontaneous chiral symmetry break-
ing in QCD. In this Letter we study the following question:
Do pion scattering amplitudes take a special place in the
space of consistent S matrices?
We assume isospin symmetry, which is a very good

approximation of the physical world. To wit we consider
pions as particles of mass mπ ¼ 1 in the vector repre-
sentation of Oð3Þ so that their 2 to 2 scattering amplitude
reads

T cd
ab ¼ Aðsjt; uÞδabδcd þ Aðtjs; uÞδcaδdb

þ Aðujs; tÞδdaδcb;

where s; t; u ¼ 4 − s − t are the usual Mandelstam invar-
iants. Crossing symmetry is simply Aðsjt; uÞ ¼ Aðsju; tÞ.
The partial wave expansion is given by

T ¼ ð3Aðsjt; uÞ þAðtjs; uÞ þAðujs; tÞÞP0

þ ðAðtjs; uÞ−Aðujs; tÞÞP1 þ ðAðtjs; uÞ þAðujs; tÞÞP2

¼ 16πi
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ð1Þ
where Pl are Legendre polynomials and PI are the
(s-channel) projectors onto the three possible isospin
channels. (I ¼ 0 for singlet, I ¼ 1 for vector, and
I ¼ 2 for symmetric traceless tensor). Because of the
absence of bound states, we consider the following
analytic and crossing symmetric ansatz [1]:

Aðsjt; uÞ ¼
X

∞

n≤m
anmðρnt ρmu þ ρmt ρ

n
uÞ þ

X

∞

n;m

bnmðρnt þ ρnuÞρms ;

ð2Þ

where ρz ≡ ð½ ffiffiffiffiffiffiffiffi

8=3
p

−
ffiffiffiffiffiffiffiffiffiffi

4 − z
p �=½ ffiffiffiffiffiffiffiffi

8=3
p þ ffiffiffiffiffiffiffiffiffiffi

4 − z
p �Þ is a

conformal mapping of the z complex plane minus the
cut z > 4 to the ρ unit disk [2]. In the partial wave
decomposition, unitarity reads simply jSðIÞl ðsÞj ≤ 1 for
s > 4. To extract SðIÞl ðsÞ we project the amplitude as
usual, by multiplying by the appropriate Legendre poly-
nomial and integrating over the scattering angle. This is a
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linear operation so that all the SðIÞl ðsÞ can be explicitly
written as linear combinations of the constants anm
and bnm.
For numerical explorations we replace∞ in (2) by some

large number Nmax. Then we can simply explore the space
of possible S matrices by extremizing various physical
observables subject to the unitarity constraints while
making sure the values converge as we increase the cutoff
Nmax as well as other numerical cutoffs such as the number
of grid points where we check unitarity and how many
spins we impose it on; see [1] for details [5].
So far this is totally general and valid for any unitary

relativistic quantum theory with Oð3Þ vector particles. To
zoom in on pions we need further input. A lot is known
about pions as nicely reviewed in [6–10].
First of all we have experimental data. There are clear

resonances in the spin l ¼ 1 and spin l ¼ 2 corresponding
to the so-called ρ and f2ð1270Þ particles and a broader
resonance for spin l ¼ 0 corresponding to the σ particle. A
sharp characterization of these resonances is as zeros of the
corresponding partial waves. For example, the ρ particle
resonance will have a complex mass mρ such that [11]

Sð1Þ1 ðm2
ρÞ ¼ 0: ð3Þ

Let us emphasize that a free theory has SðIÞl ¼ 1 so a
resonance is quite a strong effect, very far from a free
theory. For pions, we do have two very important points
located at subthreshold values of s where the weak
coupling conditions (often referred to as Adler’s zeros [13])

Sð0Þ0 ðs0Þ ¼ 1 and Sð2Þ0 ðs2Þ ¼ 1 ð4Þ
hold. The same weak coupling conditions can be imposed
as zeros in the corresponding partial wave amplitudes as it

follows from their definition SðIÞl ¼ 1þ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4=s
p

T ðIÞ
l .

Indeed, leading order chiral perturbation theory [14]
predicts

T ð0Þ
0 ¼ 2s − 1

32πf2π
; T ð2Þ

0 ¼ 2 − s
16πf2π

; T ð1Þ
1 ¼ s − 4

96πf2π
;

ð5Þ
where fπ is the pion decay constant. From this we read off
the tree-level predictions s0 ¼ 1=2 and s2 ¼ 2.
Finally, at low energy we have the expansion of the

partial wave amplitudes close to threshold

Re½T ðIÞ
l � ¼ k2l½aðIÞl þ bðIÞl k2 þOðk4Þ�

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4 − 1
p

is the center-of-mass momentum,
aðIÞl are the scattering lengths, and bðIÞl are the effective
ranges. In Table I we summarize their experimental values.
Numerical explorations.—We first ask what is the

allowed region in the three-dimensional space of scattering

lengths fað0Þ0 ; að1Þ1 ; að2Þ0 g. It turns out they are all bounded

from below [17]. [18] The boundary of the allowed region
is shown in Fig. 1. It has a smooth tip, a point of highest
curvature; we do not know if it corresponds to any physical
theory. The black dot represents the QCD experimental
values from Table I. We see that it is well inside the allowed
region. Indeed, we can study the various phase shifts of the
extremal solutions along the boundary and realize these do
not resemble QCD. This is not surprising because we are
not imposing anything yet about the chiral symmetry
breaking physics which pions describe.
The lake.—To do so, we would like to impose the

existence of the two chiral zeros described in (4).
However, these zeros appear in the unphysical region
s < 4 and their position cannot be measured experimen-
tally. Our next investigation aims at getting some hints
about their position.
We start by fixing one chiral zero s0 in the singlet

channel amplitude T ð0Þ
0 ðsÞ and the vector ρ resonance with

mass parameters mρ ≃ ð5.5þ 0.5iÞ. [23] Then we maxi-
mize and minimize the symmetric channel amplitude

T ð2Þ
0 ðsÞ for 0 < s < 4 obtaining the blue solid curves in

Fig. 2(a) (here represented as s0 ¼ 1=2). We learn that there

TABLE I. Experimental determination of scattering lengths and
Roy equations results for effective ranges of π-π scattering up to
spin one [10,15,16].

I Oðk0Þ Oðk2Þ

0 að0Þ0 ¼ 0.2196� 0.0034 bð0Þ0 ¼ 0.276� 0.006

2 að2Þ0 ¼ −0.0444� 0.0012 bð2Þ0 ¼ −0.0803� 0.0012

1 að1Þ1 ¼ 0.038� 0.002

FIG. 1. Exploration of the minimum values scattering lengths
can take. The three surfaces here correspond toNmax ¼ 12, 14, 16
(orange, red, light blue). The fact they are almost indistinguish-
able is the sign of their very good convergence. The QCD values
(Table I) are represented by a dot here (the errors are smaller than
the size of the dot) and are of course well within the allowed
region where scattering lengths live.
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are regions where we cannot impose a chiral zero s2 since
the maximum and minimum are both negative there (red
segment). Therefore, we can simultaneously impose the

weak coupling conditions T ð2Þ
0 ðs2Þ ¼ 0 and T ð0Þ

0 ðs0Þ ¼ 0

only when the upper boundary is positive (green segment).
Repeating this game for various s0 allows us to exclude a
full region in the ðs0; s2Þ plane. This region, depicted in
Fig. 3, is what we dub the pion Lake.
Notice that, while the amplitude maximizing T ð2Þ

0 ðsÞ is
unique, there can be many amplitudes having the same zero
s2. On the other hand, the intersection of the upper
boundary of the allowed region with the s2 axis selects
a unique amplitude since a zero there coincides with the
maximum possible value at that point. This uniqueness of
the boundary theories is the same sort of uniqueness found
and thoroughly explored in the conformal bootstrap [24].

Remarkably, the prediction ðs0; s2Þ ¼ ð1=2; 2Þ of lead-
ing order chiral perturbation theory (5) is clearly excluded.
What the lake is telling us is that we need to be consid-
erably far from that weak coupling point to be able to
include such a strong coupling phenomena as a resonance.
Therefore, we can think that the boundary of the lake
corresponds to theories that are as free as possible given
that they contain the ρ resonance [25].
If we were to take the complex ρ mass to be larger and

larger (i.e., further away in the Mandelstam plane) the lake
would become thinner and thinner eventually becoming a
line segment passing through the chiral perturbation
theory point and very well fitted by our numerics to
s2 − 2þ 4=5ðs0 − 1=2Þ ¼ 0. Curiously this line of zeros
would correspond to a tree-level amplitude Aðsjt; uÞ ∝
s −m2

πα; α ¼ 1 yields (5). It would be interesting to further
explore this line segment analytically; it should be related
to an interesting line of perturbative field theories.
Nicely, along the south shore, the sign of the scattering

lengths match the experimental one being also close in
magnitude to them (see the left inset in Fig. 4).
The peninsula.—Motivated by these explorations, we

consider a third exploratory game where we now impose
the ρ resonance condition plus the three scattering length
inequalities jað0Þ0 − 0.2196j < 0.034 etc. given in Table I.
These upper and lower bounds for each scattering length
are simply six additional constraints to add to the many
unitarity conditions we have already. We repeat the
procedure above of maximizing and minimizing the value

(a) (b)

FIG. 2. Schematic picture of the lake (a) and of the peninsula
determination (b). (a) Solid blue lines enclose the allowed region
for the amplitude T ð2Þ

0 when we impose the chiral zero condition
at s0 ¼ 1=2 and the ρ resonance. The same region is shown in
(b) by dashed blue lines. Solid blue lines in (b) embrace the
allowed region when the three scattering lengths are set to the
experimental values within errors. In both panels we denote in red
the region where we cannot fix s2 and in green where we can.

FIG. 3. Pion lake: the white region is the exclusion area in the
plane ðs0; s2Þ when we fix the ρ resonance. The black point
corresponds to tree-level chiral perturbation theory (5) which is
now excluded. We show the shape of the lake for three different
Nmax ¼ 12, 13, 14 (blue to red): convergence is guaranteed by the
three curves almost overlapping.

FIG. 4. Scattering lengths orbit around the lake. The colors in
the inset and in the panel match in order to help following the
orbit as we move around the lake. In the left inset we show a
closeup off the A kink: the black dot corresponds to the tree-level
chiral theory and the ellipsoid to the experimental values for
QCD. All the curves shown are obtained at fixed Nmax ¼ 14. The
small nonsmoothness of the A − B arc is a numerical artefact (in
any case it occurs in a region where að1Þ1 is huge, far from the pion
physics we are interested in).
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of the amplitude in the symmetric channel T ð2Þ
0 ðsÞ with a

zero s0 imposed in the singlet channel T ð0Þ
0 ðsÞ. The

schematic representation of the result is in Fig. 2(b). We
note that while before we excluded a small segment, now
the maximum and minimum conditions exclude all but a
tiny region for possible positions s2 of the second chiral
zero since only in a very small segment is the minimum
negative and the maximum positive. Scanning over various
s0 we thus construct a full region in the ðs0; s2Þ plane which
is now mostly excluded. It is represented in Fig. 5 and
dubbed as the pion peninsula for obvious reasons.
It would be very interesting to see how the excluded

region morphs into the lake in the limit when the inequal-
ities imposed on the scattering lengths become looser.
In Fig. 6 we plot the effective ranges bð0Þ0 , bð2Þ0 as we

move around the peninsula boundary. Very nicely, we note
that at the tip of the peninsula the orbit passes close to their
experimental values in Table I. Besides, we observe the
emergence of a first zero in Sð0Þ0 that we identify as the σ
resonance. It too approaches its experimental position as
we go to the tip of the peninsula.
The kink.—In this concluding section we fix the chiral

zeros to the tip of the peninsula at our largest Nmax ¼ 20
value as illustrated in Fig. 5. We impose nothing else.
With these chiral zeros fixed, we repeated the analysis of

the possible allowed values for the three scattering lengths,
as in Fig. 1. We observed that with these extra constraints
the resulting space is much more interesting and intricate.
There seem to be, for example, two cusps in this three-

dimensional space (one corresponding to the free theory
and another with scattering lengths roughly twice as
large as those measured in nature). The two cusps are
connected by a sharp edge where the QCD scattering
lengths seems to lie. To illustrate this, we consider in Fig. 7
a two-dimensional section of the allowed space intersecting
this sharp edge at fixed að0Þ0 ¼ 0.2196, the expected

FIG. 5. Pion peninsula: we fix the ρ resonance and the
inequalities given by the experimental intervals for the three
scattering lengths. The colored region is the one allowed by
unitarity and different colors correspond to different Nmax from
12 to 20 as we go from blue to red. The dashed contour encloses
the pion lake.

FIG. 6. Trajectory of the effective ranges in the ðbð0Þ0 ; bð2Þ0 Þ
plane (upper left panel) and of the spin zero in the
½ReðmσÞ; ImðmσÞ� plane (lower left panel) as we travel the
boundary of the peninsula (right) at fixed Nmax ¼ 20. Blue
elliptic regions represent the experimental values and their
uncertainty. In gray from lighter to darker the same trajectories
are shown for Nmax ¼ 16;…; 19.

FIG. 7. Top-right panel: allowed region in the ðað2Þ0 ; að1Þ1 Þ
plane at fixed s0 ¼ 0.36, s2 ¼ 2.04 and að0Þ0 ¼ 0.2196. All the
other panels show the effective ranges and the resonance

masses along the same boundary as a function of að1Þ1 . Their
experimental values lie in the blue ellipses. Nmax goes from 14
to 20 (blue to red).
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experimental value for this scattering length. Not only do
we have a very sharp kink but its location is extremely close
to the experimental values.
Moreover, if we follow other quantities as the effective

ranges bð0Þ0 , bð2Þ0 or the complex mass mσ of the emerging

spin-zero resonance as a function of að1Þ1 , they all show a
kink compatible with their experimental values. We even

observe the emergence of a zero in Sð1Þ1 which we would
like to identify with the ρ resonance. (Its real part is actually
quite close to the experimental one but its imaginary part is
off [26].)
Conclusions.—One of the main outcomes of the dis-

cussion contained in this Letter is the constraint on the
position of the chiral zeros in π-π scattering, obtained in a
consistent way using our setup; see Fig. 5. An obvious next
question which we are currently exploring is whether
imposing the chiral zeros in the allowed region is enough
to select a theory with phase shifts resembling the exper-
imental ones and from which we can extract a resonance
spectrum compatible with the physical one.
It would be also interesting to extend this study to the

case of massless pions, i.e., exact Goldstone bosons and to
other interesting setups with some symmetry breaking
pattern, both in four or lower dimensions. [In two
dimensions, the OðNÞ bootstrap was recently addressed
in [27–29] where contact with known integrable models
was made.]
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