GRAPH LAPLACIANS FOR ROTATION EQUIVARIANT NEURAL NETWORKS

Master thesis in Computational Science and Engineering

School of Basic Sciences Department of Mathematics École Polytechnique Fédérale de Lausanne

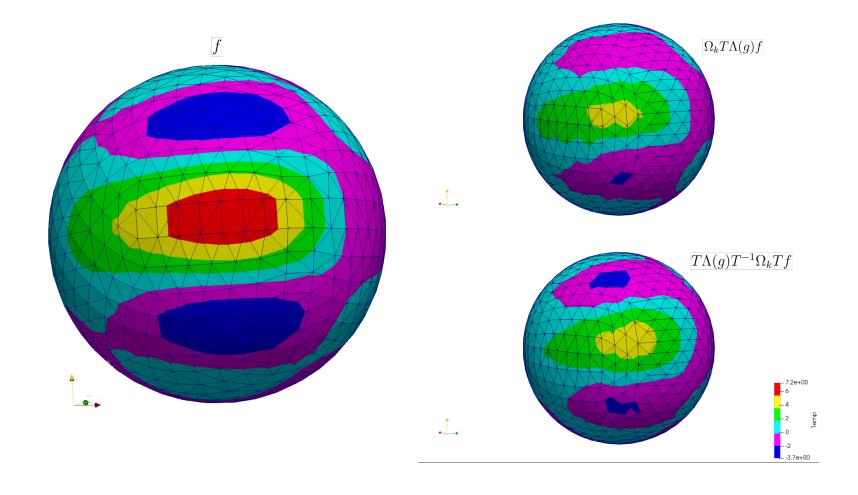
Supervised by: Michael Deferrard (EPFL)

Nathanaël Perraudin (SDSC – ETH)

Piercesare Secchi (Politecnico di Milano)

Pierre Vandergheynst (EPFL)

Rotation Equivariant Filtering



Fourier analysis on the sphere and the spherical harmonics

$$\Delta Y_{\ell}^{m} = -\ell(\ell+1)Y_{\ell}^{m}$$

$$\ell = 0$$

$$\ell = 1$$

$$\ell = 2$$

$$\ell = 3$$

$$\ell = 4$$

$$\ell = 5$$

$$\hat{f}(\ell,m) = \int_{\omega \in \mathbb{S}^2} f(\omega) Y_{\ell}^m(\omega) d\omega$$

[1] Starry: analytic occultation light curves, Luger R. et al., https://rodluger.github.io/starry/v0.3.0/tutorials/basics1.html

Convolution on the sphere

Definition:
$$k*f(\omega) = \int_{g \in SO(3)} k(g\eta) f\left(g^{-1}\omega\right) dg$$
 .

Theorem 1.1. Given two functions f, h in $L^2(\mathbb{S}^2)$, the Fourier transform of the convolution is a pointwise product of the transforms [2]

$$(f * h)(\ell, m) = 2\pi \sqrt{\frac{4\pi}{2\ell + 1}} \hat{f}(\ell, m) \hat{h}(\ell, 0).$$

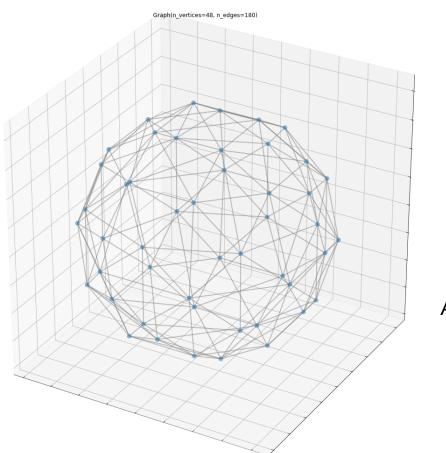
• Convolutions can be done in the spectral domain as usual:

$$f * h = \mathcal{F}^{-1}(\hat{h}\mathcal{F}(f))$$

- Complexity of FFT algorithms is $\mathcal{O}(n^{3/2})$.
- Convolutions are rotation equivariant operations

[2] Computing Fourier Transforms and Convolutions on the 2-Sphere, Driscoll J.R. and Healy D.M., 1994.

Our tool to perform fast spherical convolutions: graphs.



Adjacency matrix **W**

Graph convolutions

ullet Given a weighted adjacency matrix f W, define the graph Laplacian to be

$$\mathbf{L} = \mathbf{D} - \mathbf{W}$$
$$\mathbf{D}_{ii} = \sum_{j} w_{ij}$$

The graph Laplacian is symmetric:

$$\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\intercal$$

• Convolving on the graph a signal ${f f}$ with a kernel k is defined as:

$$\mathbf{\Omega}_G^k f = \mathbf{V} k(\mathbf{\Lambda}) \mathbf{V}^{ op} \mathbf{f}$$

Notice the similarity with $f*k=\mathcal{F}(\hat{k}\mathcal{F}(f))$

How to build a rotation equivariant graph

$$\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\intercal$$

KEY CONCEPT: if $\mathbf{v}^{\mathsf{T}}\mathbf{f} \approx \langle f, Y_{\ell}^m \rangle_{L^2} = \hat{f}(\ell, m)$ then the graph Fourier transform will be rotation equivariant.

Heat Kernel Graph (HKG):

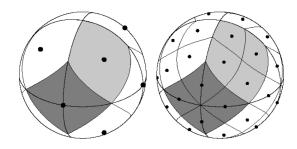
$$w_{ij} = \exp\left(-\frac{||x_i - x_j||^2}{4t}\right)$$

Belkin et al. proved that with a random sampling scheme, in probability [3]

$$\mathbf{EigL}_n \xrightarrow{n \to \infty} \mathbf{Eig}\Delta$$

[3] Convergence of Laplacian Eigenmaps, Belkin M. and Nyiogi P., in Advances in Neural Information Processing Systems 19, 2007.

HEALPix: equiarea sampling scheme



 The HKG Laplacian eigenvectors well approximate the spherical harmonics:

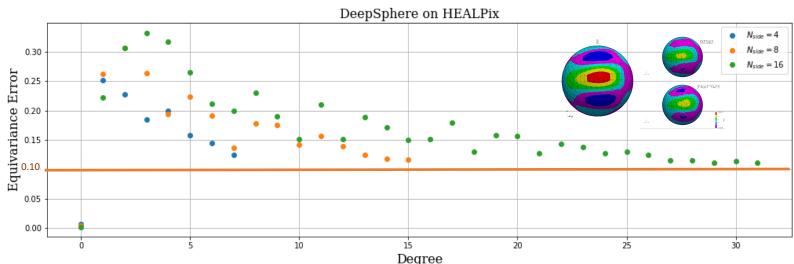
$$\mathbf{v} \approx Y_{\ell}^m(\mathbf{x})$$

 The dot product of the HKG Laplacian eigenvectors and any sampled signal well approximates the corresponding Fourier coefficient:

$$\mathbf{v}^{\mathsf{T}}\mathbf{f} \approx \langle f, Y_{\ell}^{m} \rangle_{L^{2}} = \hat{f}(\ell, m)$$

DeepSphere 1.0

- DeepSphere is a Spherical Graph Convolutional Neural Network
- Each layer implements a **polynomial** filter of a **sparse** HKG Laplacian of a spherical signal sampled with HEALPix.
- Filtering is $\mathcal{O}(n)$

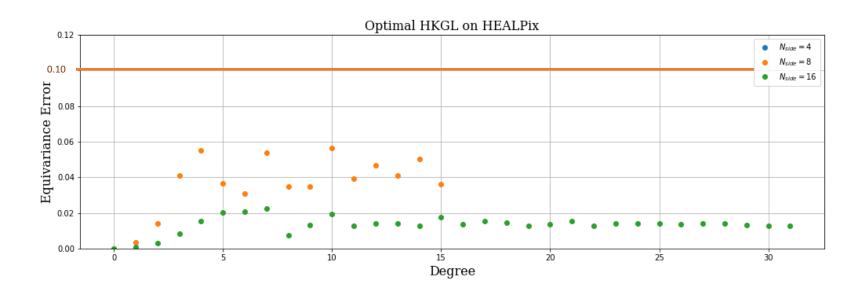


[4] DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications, Perraudin N., Defferrard M., Kacprzak T., Sgier R., 2018

POLITECNICO MILANO 1863

DeepSphere 2.0

- DeepSphere 2.0 is an improved version of DeepSphere
- Each layer implements a **polynomial** filter of a sparse (but **not too sparse**) HKG Laplacian of a spherical signal sampled with HEALPix.
- Filtering is $\mathcal{O}(n^{5/4})$



Non-equiarea sampling schemes

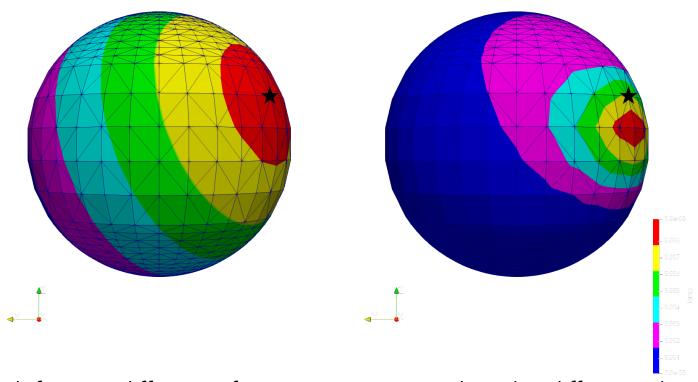


Figure: left, FEM diffusion of a point source signal. Right, diffusion obtained with the HKG Laplacian

Towards the Finite Element Method (FEM)

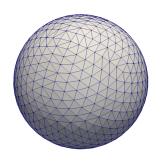
$$\Delta f = -\lambda f$$

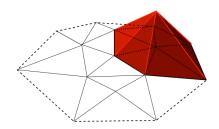
$$\left| \langle \nabla f, \nabla v \rangle_{L^2(\mathbb{S}^2)} = \lambda \langle f, v \rangle_{L^2(\mathbb{S}^2)} \quad \forall v \in L^2(\mathbb{S}^2) \right|$$

The **Galerkin problem** is a discretized version of the weak eigenvalue problem, where the ambient space is finite dimensional:

$$\begin{cases}
\langle \nabla f_h, \nabla v_h \rangle_{L^2(\mathbb{S}^2)} = \lambda \langle f_h, v_h \rangle_{L^2(\mathbb{S}^2)} & \forall v_h \in V_h \\
V_h \subset L^2(\mathbb{S}^2), & V_h = \operatorname{span}\{\phi_0, ..., \phi_{n-1}\}
\end{cases}$$

The Finite Element Method (FEM)



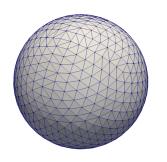


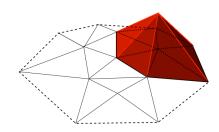
$$f_h(x) = \sum_{i=0}^{n-1} f_i \phi_i(x)$$

The Finite Element Method (FEM) is a method to solve the Galerkin problem where the space V_h is the space of continuous piecewise linear functions defined on a triangulation of the sphere.

$$\begin{cases}
\langle \nabla f_h, \nabla v_h \rangle_{L^2(\mathbb{S}^2)} = \lambda \langle f_h, v_h \rangle_{L^2(\mathbb{S}^2)} & \forall v_h \in V_h \\
V_h \subset L^2(\mathbb{S}^2), & V_h = \operatorname{span}\{\phi_0, ..., \phi_{n-1}\}
\end{cases}$$

The Finite Element Method (FEM)





$$f_h(x) = \sum_{i=0}^{n-1} f_i \phi_i(x)$$

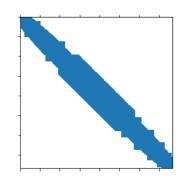
Writing the Galerkin problem n times, each time with $v_h = \phi_i$ we obtain the following algebraic generalized eigenvalue problem:

Find
$$(\mathbf{f}, \lambda)$$
 such that $\mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f}$

$$(\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{f})_i = f_i: \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \dots + f_{n-1} \phi_{n-1}(\mathbf{x})$$



FEM convergence

$$\begin{cases} \text{Find } (\mathbf{f}, \lambda) \text{ such that } \mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f} \\ (\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{f})_i = f_i : \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x}) \end{cases}$$

$$||f - f_h||_{H^1(\Omega)} \le Ch^r |f|_{H^2}$$
$$|\lambda - \Lambda| \le C(\lambda)h^2$$
[5]

Remark: it's the *only* case (together with the random HKG Laplacian) where we have a convergence theorem.

[5] A priori estimates for the FEM approximations to eigenvalues and eigenfunctions of the Laplace-Beltrami operator, Bonito et al., 2017.

FEM Fourier transform

Find
$$(\mathbf{f}, \lambda)$$
 such that $\mathbf{Af} = \lambda \mathbf{Bf}$

$$(\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{f})_i = f_i: \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x})$$

- Equivalent to finding the decomposition $~{f B}^{-1}{f A}={f V}{f \Lambda}{f V}^{-1}$
- The eigenvectors are such that:

$$VBV^{\intercal} = I$$

• FEM Fourier transform:

$$\hat{f} \approx \int f_h Y_h = \mathbf{v}^{\mathsf{T}} \mathbf{B} \mathbf{f}$$

FEM filtering

Find
$$(\mathbf{f}, \lambda)$$
 such that $\mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f}$

$$(\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{f})_i = f_i: \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x})$$

Filtering a signal f with a kernel k is defined as the following matrix multiplication, where $V^{T}B$ is the FEM Fourier matrix.

$$egin{aligned} & \mathbf{\Omega}_{ ext{FEM}}^k \mathbf{f}, \quad \mathbf{\Omega}_{ ext{FEM}}^k = (\mathbf{V}^\intercal \mathbf{B})^{-1} k(\mathbf{\Lambda}) \mathbf{V}^\intercal \mathbf{B} \ & \mathbf{V}^\intercal \mathbf{B} \mathbf{V} = \mathbf{I} \implies \left\{ egin{aligned} & \mathbf{V}^\intercal \mathbf{B} = \mathbf{V}^{-1} \ & (\mathbf{V}^\intercal \mathbf{B})^{-1} = \mathbf{V} \end{aligned}
ight. \ & \mathbf{\Omega}_{ ext{FEM}}^k = \mathbf{V} k(\mathbf{\Lambda}) \mathbf{V}^{-1} \end{aligned}$$

FEM polynomial filtering

$$\begin{cases} \text{Find } (\mathbf{f}, \lambda) \text{ such that } \mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f} \\ (\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{f})_i = f_i : \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x}) \end{cases}$$

$$k(\mathbf{\Lambda}) = P(\mathbf{\Lambda}) \implies \mathbf{\Omega}_{\text{FEM}}^k = P(\mathbf{B}^{-1}\mathbf{A})$$

- $\mathbf{B}^{-1}\mathbf{A}$ is not symmetric.
- $B^{-1}A$ is full.
- $VBV^{T} = I$.

Lumped FEM Laplacian

Find
$$(\mathbf{f}, \lambda)$$
 such that $\mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f}$

$$(\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$$

$$(\mathbf{f})_i = f_i: \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x})$$

$$P\left(\mathbf{B}^{-1}\mathbf{A}\right) \approx P\left(\mathbf{D}^{-1}\mathbf{A}\right)$$

$$\mathbf{d}_{ii} = \sum_{j} \mathbf{b}_{ij}$$

- $D^{-1}A$ is not symmetric.
- $D^{-1}A$ is sparse.

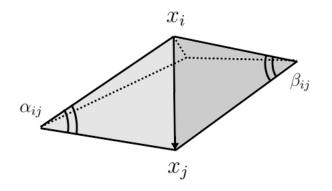
Lumped FEM Laplacian as a graph Laplacian

$$\begin{cases} \text{Find } (\mathbf{f}, \lambda) \text{ such that } \mathbf{A}\mathbf{f} = \lambda \mathbf{B}\mathbf{f} \\ (\mathbf{A})_{ij} = \int_{\mathbb{S}^2} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{B})_{ij} = \int_{\mathbb{S}^2} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x} \\ (\mathbf{f})_i = f_i : \quad f_h(\mathbf{x}) = f_0 \phi_0(\mathbf{x}) + \ldots + f_{n-1} \phi_{n-1}(\mathbf{x}) \end{cases}$$

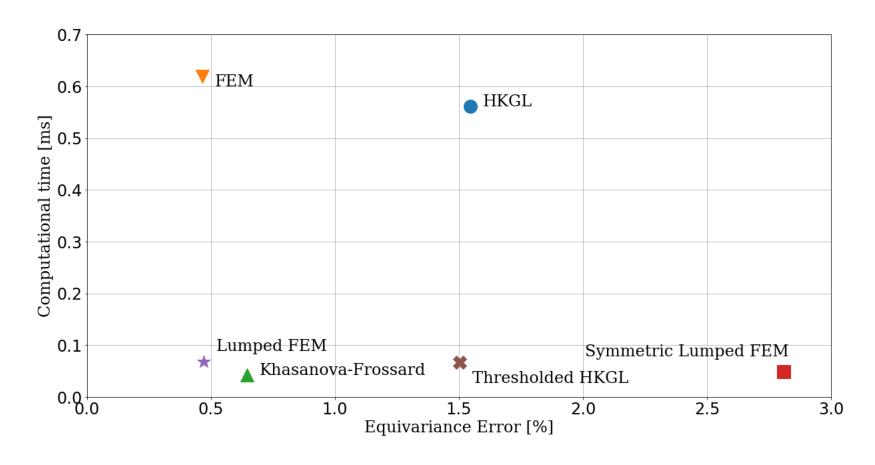
$$\mathbf{D}^{-1}\mathbf{A}:$$

$$(\mathbf{D})_{ii} = \frac{A_i}{3}$$

$$(\mathbf{A})_{ij} = \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij})$$

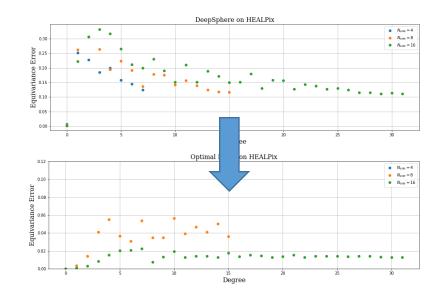


Equivariance error and computational time



Conclusions

- 1) We gained a better understanding of the HKG.
- We put that knowledge in practice, improving the Equivariance Error of DeepSphere.



- 3) We investigated different Discrete Laplacians, from Differential Geometry to Numerical Mathematics
- 4) We used this knowledge to better understand the advantages and limitations of Graph Laplacians when it comes to non uniform sampling of the sphere.

