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By defining the following edge weights

Belkin et al. [1] proved that the spectral convergence of the corresponding 
graph Laplacian       to the continuous Laplace-Beltrami operator on the 
sphere, making it a good candidate for rotation equivariant graphs:

However, it has three drawbacks: first, it works only with equiarea sampling 
schemes. Second, in order to make the graph convolution efficient, we need 
a very sparse graph, not a full one. We will need to find a way to make it 
sparse trying to maintain its spectrum as close as possible to Δ. Finally, we 
need to carefully choose the kernel width 𝑡.

2. Graph Laplacian on the Sphere
For a given sampling, a given function 𝑓, a given rotation 𝑔, and a given 
filter 𝑘 we compute the normalized equivariance error

And define the mean normalized equivariance error 𝐸'

We comparing the state-of-the-art of rotation equivariant graphs 
DeepSphere [2] with the construction proposed in this work, obtaining the 
following encouraging results.

4. Results: mean equivariance error

1. Convolutions on the Sphere and rotation 
equivariant graph filtering

Abstract
We want to design computationally efficient algorithms to filter spherical
images of the sky, in order to construct a so-called Graph Spherical
Convolutional Neural Network. It is then important to design filtering
algorithms that are computationally efficient and capable of exploiting
the rotational symmetry of the problem. A way to do so is to construct a 
sparse graph with the vertices corresponding to the pixels of the image and 
then use a polynomial of the graph Laplacian matrix to perform a 
computationally efficient filtering of the sampled signal. In order to study
how well this algorithm respects the symmetry of the problem - i.e., it is
equivariant to the rotation group SO(3) - it is important to guarantee that
the eigenvectors of the graph Laplacian and of the Laplace-Beltrami 
operator are somewhat close. 

We show a way to build a graph such that the corresponding graph 
Laplacian matrix L shows good spectral properties improving the current
state-of-the-art rotation equivariant graphs.

We then investigate different methods of building the graph Laplacian, 
better suited to non uniform sampling measures. In particular, we studied
the Finite Element Method approximation of the Laplace-Beltrami operator
on the sphere and we studied a way to make graph-like filtering inspired
from FEM.

Take a sampling of the sphere, a weighted
undirected graph                       , a signal and the sampling 
operator                                                                such that                                .
It’s a well known fact that convolutions on the sphere can be performed in 
the spectral domain as product of the Fourier transformed signals. On a 
graph we can do the same thing: we can define the graph Laplacian

through the diagonal matrix                      , and define the graph Fourier 
transform as the projection of a signal    on its eigenvectors:

In this way we can define the graph convolution of a signal  with a kernel 

where is a diagonal matrix. Graph convolutions are different from the 
ones we are used to define in Euclidean domains, since the graph kernels
are diagonal matrices that can not be thought as the Fourier transform of a 
corresponding kernel defined in the spatial (vertex) domain.

The goal of this work is to understand how to make graph convolutions 
behave like spherical convolutions, i.e., they should commute with any
rotation      of the signal. This means that it should be true that

To filter a signal sampled on the sphere with the linear Finite Element 
Method one has to project the weak eigenvalue problem for the Laplace-
Beltrami operator 

on the subspace spanned by piecewise linear basis functions in figure 6. 
This leads to a filtering of the signal given by

where 𝐵 is the mass matrix, 𝑉 is matrix of eigenvectors of the stiffness matrix 
𝐴 and 𝐾 is the diagonal matrix representing the filter. Taking inspiration from 
this we can define the following sparse symmetric lumped FEM Laplacian

that is sparse and symmetric, thus a possible good candidate to be used in 
rotation equivariant graph convolutions.

6. Graph filtering inspired by the FEM for non
equiarea sampling schemes

Contacts

3. How to build an efficient rotation equivariant 
graph for an equiarea sampling scheme 5. Results: Experimental validation

Figure 1: the Nine Year Microwave Sky, an example of the images we want to filter.
Source: NASA

Figure 2: a sampling scheme of the sphere very used in 
applications to sample continuous spherical signals. 
These pixels in figure will be connected by suitable
weighted edges forming the graph                     that will be
used to perform rotation equivariant graph convolutions.

We measure the alignment of the eigenspaces of the graph Laplacian with 
the eigenspaces of the continuous Laplace-Beltrami operator as we change 
the kernel width 𝑡. The next plots shows what happens as we increase the 
kernel width.

In both figures we see the existence of an optimum: starting from a small 
value of 𝑡 = 0.01, as we increase its value, the alignment matrix (figure 3) 
starts to look more like the identity matrix - meaning that the eigenspaces
are perfectly aligned - and the error (figure 4) decreases for all frequencies.
When we reach the optimum value around 𝑡 = 0.05, we see that the graph 
Laplacian is still able to correctly approximate the low frequencies, but start 
to be unable to see the higher ones.

To make the graph Laplacian sparse, we simply threshold its weights.

Figure 3: for each value of the kernel width we plot in the entry 𝑖, 𝑗
of the matrix the alignment of the 𝑖th eigenspace of the graph Laplacian
with the 𝑗th eigenspace of Δ. 

Figure 4: for each eigenspace of Δ we calculate the error in the alignment
of the eigenspace of the graph Laplacian with the corresponding eigenspace of Δ. 

5. Conclusions

Figure 5: on the left, the signal 𝑓. On the right, the signal filtered (diffused) signal and
rotated. The mean equivariance error measures the difference between first rotating
the signal and then filtering it, and first filtering it and then rotating it. In the continuous
setting the two operations commute and this error is zero.

Gusset et al. [3] compared the performances of DeepSphere on the 
SHREC17 perturbed dataset [4]. They modified the available graph of 
DeepSphere and proposed four different graph architectures to compete in 
the SHREC17 competition. One of these four architectures - called in the  
table DeepSphere Optimal - was obtained implementing the procedure 
described in this work. They compared the performances of these four 
DeepSphere architectures together with the traditional rotation equivariant 
CNNs of Cohen et al. [4], Esteves et al. [5]. The models were tested in a 
retrieval task, and evaluated with two different metrics: accuracy and F1-
score while also comparing the speed of inference and of training of each 
model.

DeepSphere Optimal has the highest score between all the rotation 
equivariant models. Its performances in terms of speed of influence and 
training are comparable to the best one. It can be appreciated how all the 
four Graph CNNs are orders of magnitude faster to train than the traditional 
Spherical CNNs of Cohen et al. and of Esteves et al.

Figure 6: a triangulation of the 
sphere used for the FEM

Figure 7: one of the piecewise linear
basis functions of the space on which the 
FEM projects the weak eigenvalue
problem

We report the plots of the mean equivariance error by  spherical harmonic 
degree of the three constructions analyzed in this work: DeepSphere, 
DeepSphere Optimal and the symmetric lumped FEM Laplacian where 
the improvements with respect to DeepSphere, the starting point of this 
work, can be appreciated. Notice the change in the scale of the y axis for 
the graph of DeepSphere, that show errors up to 30%. 𝑁5678 and 𝑏𝑤	are  
parameters proportional to the number of vertices of the graph.
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