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Abstract

A fundamental problem in signal processing is to design computationally ef-
ficient algorithms to filter signals. In many applications, the signals to filter
lie on a sphere. Meaningful examples of data of this kind are weather data
on the Earth, or images of the sky. It is then important to design filter-
ing algorithms that are computationally efficient and capable of exploiting
the rotational symmetry of the problem. In these applications, given a con-
tinuous signal f : S — R on a 2-sphere S* C R?, we can only know the
vector of its sampled values f € RY : (f); = f(x;) in a finite set of points
P CS? P ={x}, where our sensors are located. Perraudin et al. in
[18] construct a sparse graph G on the vertex set P and then use a polyno-
mial of the corresponding graph Laplacian matrix L € R™*" to perform a
computationally efficient - O(n) - filtering of the sampled signal f. In order
to study how well this algorithm respects the symmetry of the problem - i.e
it is equivariant to the rotation group SO(3) - it is important to guarantee
that the spectrum of L and spectrum of the Laplace-Beltrami operator AZ are

somewhat “close”.

We study the spectral properties of such graph Laplacian matrix in the special
case of [18] where the sampling P is the so called HEALPix sampling (acronym
for Hierarchical Equal Area isoLatitude Pixelization) and we show a way to
build a graph G’ such that the corresponding graph Laplacian matrix L’ shows

better spectral properties than the one presented in [18].

We investigate other different methods of building the matrix L better suited
to non uniform sampling measures. In particular, we studied the Finite Ele-
ment Method approximation of the Laplace-Beltrami operator on the sphere,
and how FEM filtering relates to graph filtering, showing the importance of
non symmetric discrete Laplacians when it comes to non uniform sampling
measures. We finish by showing how the graph Laplacian L’ proposed in this
work improved the performances of DeepSphere in a well known classification
task using different sampling schemes of the sphere, and by comparing the

different Discrete Laplacians introduced in this work.
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1 Introduction and general background

1.1 Introduction

Neural Networks (NNs) are popular algorithms for regression and classification
tasks. Taking as example an image classification problem, a neural network
perform multiple combinations of linear and non-linear transformations of each
image [ to assign it a label C; chosen in the set of all the possible labels C.
The first layer of the neural network transforms the input image I in a vector
- called feature map - f; through a function ¢;. The output feature map of
the first layer is used as input of the second layer that transforms it through
a function ¢9, and so on, until the original image I is mapped into a label C}

by the last, n-th layer of the neural network:

Cr=¢n0¢p_10..030 ¢1(I)

With a large training set of pre labeled images at its disposal, a NN is capable
of learning the optimal transformations ¢; that let it map each input image to
its correct label. Since the functions ¢; have many degrees of freedom - even
millions - a neural network is able to learn very complex transformations. In
the work of Csaji [5], NNs have been proved to be universal function approx-
imators, meaning that with a sufficient number of parameters NNs are able
to approximate any continuous function on a compact domain. This makes
NNs the optimal tool for complex tasks such as image classification, image

segmentation, speech recognition and natural language processing.

Convolutional Neural Networks (CNNs) are a subset of NNs whose layer struc-
ture has been specifically designed for image recognition and segmentation. For
this purpose, they don’t have all the degrees of freedom of a fully connected
neural network: each layer is constrained to learn only those transformations
of the input that are equivariant to translations of the input. This means
that a translation of the input image will not result in a change of class. The
layers ¢; of a CNN are convolutions with some kernels k;, that were learned
during the training phase. Thanks to their design, training of CNNs is faster -
thanks to the smaller number of parameters to be learned compared to a fully

connected NN -, easier - since there’s no need of artificially augmenting the



Figure 1: Cosmic microwave background map, the oldest electromagnetic
radiation in the universe. Source: Wikipedia

dataset with translated copies of the same image -, and leads to very accurate
results [4], [8].

Spherical convolutional neural networks (SCNNs) are CNNs that have been
designed to deal with spherical data, whose layer design makes them equiv-
ariant to rotations of the input. Examples of tasks where data is naturally
represented on a sphere are (i) climate science, where data is sampled on the
surface of the Earth, (ii) cosmology, where observations are naturally projected
on a sphere centered around the observer (see Figure 1), and (iii) virtual real-
ity, where the images are represented on a sphere centered around the player.
Being able to come up with rotation equivariant architectures brings with it
all the advantages that traditional CNNs have brought for traditional (eu-
clidean) image classification tasks: training is faster, easier and results are
very accurate. Fach layer of a SCNN performs a spherical convolution of the
input feature map with a kernel k; learned during the training phase. One of
the main issues with traditional SCNNs is the computational complexity of
computing at each layer the Spherical Harmonic Transform of the data to per-
form the convolution. To overcome this issue, Perraudin et al. [18] proposed
a Graph Convolutional Neural Network (GCNN) that is almost equivariant to

rotations, replacing the SHT with a more efficient Graph Convolution.

This work is organized as follows: in Chapter 1 we start by presenting fun-
damental concepts of spectral theory on the sphere and we present classical
ways of building rotation equivariant neural networks through the use of the
classical SHT. We present then some basics of Spectral Graph Theory that
lay the foundations of Graph Convolutional Neural Networks. In Chapter 2
we present the general framework of how to discretize the Laplace-Beltrami
operator on a general manifold, concluding with the special case of the Heat

Kernel Graph Laplacian (HKGL) approximation, together with some conver-



gence results. We continue in Chapter 3 by introducing DeepSphere [18], a
Graph Spherical Convolutional Neural Network (GCNN) that uses a graph
Laplacian matrix L similar to the HKGL to perform graph convolutions that
are almost equivariant to rotations. We study the spectral properties and the
equivariance error of DeepSphere and we show a way to build a graph G’ such
that the corresponding graph Laplacian matrix L’ shows better spectral and
equivariance properties. In Chapter 4 we show better graph constructions than
the HKGL on non uniform sampling measures. To conclude, we show a differ-
ent approach to perform rotation invariant convolutions that uses the Finite
Element Method (FEM) approximation of the Laplace-Beltrami operator on
the the sphere. Chapter 5 concludes this work by presenting some experimen-
tal results obtained by Gusset et al. [11] that implemented the graph G’ on a
GCNN and compared its performances to DeepSphere on a well known dataset
[22] showing that the new graph G’ performs better in real applications. We
finish by comparing the FEM and the graph approach, discussing the general
problem of how to incorporate geometrical informations about the sphere in

the graph.

1.2 Fourier Transforms and Convolutions on the 2-Sphere

The goal of this section is to present to the reader some fundamental results of
spectral theory on the sphere that we will need in this work. We present a brief
review of Banach and Hilbert spaces, spherical harmonics, Fourier transform
and convolution on S?. We refer to Sections 2 and 3 of the work of Driscoll
and Healy [7] for a more detailed and effective review of spectral theory on
the Sphere.

Banach and Hilbert spaces. A norm ||-|: X — R on a vector space X is
a subadditive, positive definite function such that ||z + y|| < [|z||+]y|, Vz,y €
X (triangle inequality). A Cauchy sequence (z,) C X is a sequence such that
Ve >03M >0:Vi,j > M ||z, —z;]| < e A Banach space (X,|-]) is a
normed vector space on the scalar field F' that is complete, meaning that X
is "big enough' such that for every Cauchy sequence (x,) C X there exist a
x € X such that z is the limit of (z,) in X ie. ||z, —z| — 0. A basis of
(X,]|-]]) is a minimal set of linearly independent vectors B C X such that



every element of X can be written as linear combination of the elements of
B. A scalar product is a function (-, -) : X x X — F that is linear in the
first argument, positive definite and conjugate symmetric. Through a scalar
product we can define the notion of angle # between two elements z,y € X

through the following formula:

(z,y)

cosf =
]| {ly]]

In particular we can define the notion of orthogonality: two elements z,y € X
are orthogonal if and only if (z,y) = 0. We are interested in those particular

Banach spaces where we can define a notion of orthogonality between vectors.

A Banach space (X, || - ||) is a Hilbert space when the norm || - || can be induced
by a scalar product: ||-|| =+/(-, -). We can now define an orthonormal basis

of X: a basis B C X such that Vz,y € B, ||z|| = ||y|| = land (z,y) = 0. Given
an orthonormal basis B = {b;}ic; we can write each vector in its Fourier

series

iel
If the set [ is countable the Hilbert space (X, || - ||) is called separable. Having
a countable orthonormal basis, and thus the possibility of representing each

vector through its Fourier series enormously simplifies many problems.

Spherical Harmonics. Given the usual parametrization z = z(0,¢),0 €
[0, 7], ¢ € [0,27] of the sphere
2 3 2 2 2\ 1/2
S* = {w = (w1, w2, ws) € R’ : ||z||gs = (wl + w; +w3) = 1}
wy = cos(p)sin(f), wy = sin(¢)sin(f), ws = cos(h)
the Hilbert space L?(S?) is defined as the space of square-integrable functions

endowed with the scalar product (f,g) = [s f(w)g(w)dw where the measure

dw is the rotation-invariant measure such that

/ o (@) = /¢ 2:0 / :O F(w(6, 6)) sin 0d6dg )
/wegz flgw)dw = /WGSZ fw)dw, g€ SO(3) (3)



For each rotation g € SO(3) we define a corresponding rotation operator A(g)
by
AMg)f(w) = f(97'w) (4)

A space is invariant under the rotations g in SO(3) if all operators A(g) take
each function of the space back into the space. As very well written by Driscoll
et al [7]:

Fourier analysis on the sphere amounts to the decomposition of the space of
square integrable functions on S? in minimal subspaces Vy invariant under all
of the rotations in SO(3), thus simplifying the analysis of rotation-invariant

operators.

It’s a well known fact [7] that the /-th invariant subspace V, C L*(S?) is made
of polynomials of R? of degree ¢ restricted to S?, and has dimension 2¢ + 1.
Its elements are called spherical harmonics of degree . These subspaces are
orthogonal between them, and correspond to the eigenspaces of the Laplace-
Beltrami operator Ag2. For a thorough introduction to how to define the
Laplace-Beltrami operator on a manifold and its properties, see [21]. The
set of all the orthonormal basis Y,”, —¢ < m < ¢ of each subspace V; gives
an orthonormal basis of L?(S?). The analytical expression of the spherical

harmonic Y;"(6, ¢) is actually known [7]:

20+ 1)(¢ —m)

! m m
Tr(l )l P;™(cos f)e™? (5)

m m (
where PJ* are the Legendre functions as defined in [7].

Remark. Saying that the space V} is invariant under rotations SO(3) means
that under any rotation g € SO(3), any spherical harmonic Y;™ € V} is trans-
formed into a linear combination of the others spherical harmonics of the same

degree (-
Mg/ (w) = 32 Vi w)al(9):

k<t



Fourier transform. We can now expand each function f € L%*(S?) in the

orthonormal coordinate system given by the spherical harmonics

flwy=3 3 fle.mY(w) (6)

CeN |m|<¢

flem) = [ f@)y @) M

where the coefficients f (¢,m) are the Fourier coefficients of f. The compu-
tation of f(¢,m) is called Spherical Harmonic Transform (SHT). Thanks to
equation (5) we can decompose the computation of the SHT (7) in the two
directions (6, ¢). One reason for which the most popular sampling schemes of
the sphere have the pixels lie on isolatitude circles is that it is possible to use
standard one-dimensional FFT algorithms to compute the longitudinal part
of the transform, making the computation of the SHT O(n*?), where n is the

number of pixels [10].

Convolutions. Convolution on the sphere is profoundly different than con-
volution on the Euclidean plane R2. Since translations are isomorphic to R2,
the convolution f * g(z) of two functions f,g € L*(R?) is itself a function on

the plane:
L f@ela—pdy = frgla): B —E (®)

On the sphere things work differently: translations are replaced by rotations,
but due to the fact that SO(3) is not isomorphic to S?, if we define the con-

volution on S? as follows:

fek(e) = [ M@k Tmdn = [ kg midn ()

neS?

f*xk(g) : SO(3) — R is not a function of the sphere anymore, but it is a
function of the special rotation group SO(3). In section 1.3 we will explain how
Cohen et al. [4] use in their work this definition of convolution on the sphere
to construct a rotation equivariant NN. However, the definition of convolution
that we will use in this work is the following, where the integral is performed

not on the sphere but on the rotation group SO(3):

ke f@)= [ konf (97) dg (10)

6



where dg is the measure on SO(3) that can be written in terms of the three
Euler angles (6, ¢, )
dg = sin 0dOdpdy

In this way k * f(w) is still a function defined on S?. However, integrating on
SO(3) means integrating on the third Euler angle ¢, that in practice means
using definition (9) with the use of radial kernels k only. Using the convolution
defined in equation (10), the following theorem [7] generalizes on the sphere a

well known property of convolutions and Fourier transforms:

Theorem 1.1. Given two functions f, h in L*(S?), the Fourier transform of the

convolution is a pointwise product of the transforms

47
20+ 1

(f *h)(t,m) =27 F(e,m)h(¢,0).

1.3 Spherical Convolutional Neural Networks

Cohen et al. [4] proposed a NN where the first layer performs a convolution
on the sphere as defined by equation (9). The output feature map - a signal
on SO(3) - is processed by the deeper layers that perform other convolutions
in SO(3). All these convolutions are performed in the spectral domain as in
theorem 1.1, meaning that every signal has to be Fourier-transformed first,
at each forward and backward step of the training phase of the NN. This
approach, even with the use of Generalized FFT algorithms for S? and SO(3),
remains both computationally expensive (O(n*?)) and memory expensive,
due to the need of storing kernels defined on the much bigger space SO(3). In
section 5.1 we report in table (4) the results of Gusset et al. [11], that compared
both the training and inference time of Cohen’s SCNN, showing how slow this

architecture is compared to other rotation equivariant NNs.

1.4 Spectral Graph Theory

Graphs. For the purposes of this work, a weighted undirected graph G(V, E, W)

is defined by a vertex set V', an edge set E, where the edges are unordered



pairs of vertices, and the matrix W whose entries w;; represent the weight
of the edge (v;,v;). G is a simple graph, if w;; assume only values in {0, 1}.
Undirected graphs are common mathematical objects used to model simple,
symmetric relationships between things. The edge e;; = (v;,v;) € E is the
mathematical object that translates the fact that the vertices v;,v; are in
a relationship, and the weight w;; measures how strong this relationship is.
Common examples of graphs include friendship graphs, where people are the
vertices and the edges represent friendship, or electric network graphs, where

vertices represent electronic components and edges represent wires.

The graph Laplacian. If D is the diagonal matrix Dy = >_; w;;, one can
define [24] the combinatorial graph Laplacian L

L=D-W (11)
and the symmetric normalized graph Laplacian L'
L'=D LD '?=1-D '*WD"'/? (12)

In a simple friendship graph G, one can define a vector f such that each entry
fi is the age of the person associated with the vertex v;, and could try to
measure how much people tend to be friends with people of the same age. In
other words, how smooth the signal f is on the graph G. A good measure
for the smoothness of a signal on a graph is given by the Dirichlet energy of
the signal f, i.e., the quadratic form associated with the normalized Laplace

operator L':
3 I ST

(vjvE)EE \/ djdk:

The reason why the Dirichlet energy is a good measure of the smoothness of f

(f; = fu)’ (13)

is easier to understand in the case of a simple graph, where it reduces to the

sum

fTLf= > (f;— fi). (14)

(vjop)EE
that will grow for each edge (v;, v;) connecting people with very different age.
Although the Dirichlet energy (13) works also for the combinatorial graph

Laplacian L, in practice it is preferred to use the symmetric normalized Lapla-



cian when the degree distribution is wide. Another way of looking at equation
(14) is as the following: the differences f; — f; can be seen as the gradient Vf
that is a signal on the edges (vj,v)) and equation (14) as the quadratic norm
of such gradient || Vf]|*.

Graph Fourier transform Since the graph Laplacian is a symmetric ma-

trix, we can write its eigen decomposition [25]
L=VAVT

where V is the orthonormal basis of R™ of eigenvectors, and A the real diagonal
matrix of the eigenvalues A = diag(\; € R). Similarly to the continuous
domain, where the Fourier transform of a signal f is defined as the projection
of f on the orthonormal eigenbasis of the Laplace-Beltrami operator A, on a
graph we can define a graph Fourier transform Fg : R" — R” of a discrete
signal f € R™ as the projection of f on the eigenvectors of the graph Laplacian
L:

Fo(f) :=VTf=f (15)

The inverse graph Fourier transform F' is thus
Flf) =VE=VVTf=f (16)

In the continuous case, the eigenvalues of the Laplace-Beltrami operator are
associated with a notion of frequency of the corresponding eigenfunction. In
a graph we have a similar notion: define the Rayleigh quotient of a vector
v € R" to be

.
R(v) = viLv

(17)

viv
The well known [25] Courant-Fischer characterization of eigenvalues and eigen-
vectors of symmetric matrices (18) can be interpreted in light of what we wrote
about the interpretation of the Dirichlet energy (13) vTLv as a measure of
the smoothness of v. The eigenvalue )\; is the measure of smoothness of the

eigenvector v;, that is the smoothest vector perpendicular to the lower-degree



Figure 2: Different graph topologies can drastically change the measure of
smoothness of a signal f, here represented as red vertical bars on the vertices.

eigenvectors vy, ...v;_1.
A1 = minR(v)
v#0

Vi = argming, s, 2oR(v)

N = min\lvllzllel,---sz‘—l R(“)

V; = arg mlnHvH:l,val,...,vi_lR(v)

Remark. It is interesting to notice that the Dirichlet energy of a signal f on
a graph G could change drastically by changing the underlying topology of
G. In figure 2 we see two simple graphs G = (V, FE), G' = (V, E’) with the
same signal f represented as vertical red bars over the vertex set V. On G,
the signal f varies smoothly across the graph since the edges V' connect only
those vertices with similar values of f. On G’ since we added edges between
vertices with very different values of f, we will have that the Dirichlet energy
of f calculated on the graph G’ will be much higher than the one calculated
on the graph G

Convolution and filtering on graphs As the plane R? is symmetric with
respect to any translation, and the sphere S? is symmetric with respect to any
rotation, the respective definitions of convolution are equivariant respectively
to these two symmetry groups. Since there are no such global symmetries in a
general graph G, definitions (8), (10) can not be extended naturally on graphs.
However, both on R? and on S?, the convolution of a signal f with a kernel

k can be performed in the spectral domain by multiplying the transformed

10



signal f times the transformed kernel k:
frk=FYf k) (19)

In a similar way we can define a notion of convolution also in the graph spectral
domain. We use the following definition [24] of the convolution of a signal f
times a kernel K:

Qkf = F; (Kf) = VKVTf (20)

where K is a diagonal matriz K;; = k;. Graphs convolutions are different from
the ones we are used to define in Euclidean domains, since the graph kernels
K are diagonal matrices that can not be thought as the Fourier transform of
a corresponding kernel defined in the spatial (vertex) domain. The diagonal

elements k; can be thought as functions of the corresponding eigenvalues

thus providing an intuitive frequency interpretation of the kernel K. In this
way the convolution can be seen as a filtering operation: for example, a kernel
k(X)) = exp(—X;) will be the kernel of a low-pass filter since it will cut the

high frequencies.

1.5 The Equivariance error for graph convolutions

Take a sampling scheme V = {v; € S?,i = 0,...,n} of the sphere, a weighted
undirected graph G(V, E, W), a signal f : S?® — R and its sampled repre-
sentation f : f; = f(v;). Suppose that there exists a sampling operator
Ty : L*(S?) D F — R", Ty (f) = f defined on a suitable subspace F of L*(S?)
such that it is invertible, i.e., we can unambiguously reconstruct the function
f € F from its sampled values f. The existence of such subspace depends
on the sampling scheme V', and its characterization is a common problem
in signal processing [7]. Recall the definition (4) of the rotation operator
Ag), 9 € SO(3).

We now want to understand how to set the edges and the weights of G such
that
TA(Q)T*UTf = UTA(g)f (21)

11



i.e., the graph convolution 2} and any rotation A(g) commute.

Verifying equation (21) is really hard in practice, due to the fact that for
almost all samplings schemes V' it is not known if there exists a space F
in which 7T is invertible. A special case is the equiangular sampling scheme
described in section 4.1 where the sampling theorem 4.1 holds [7]. With all
the other sampling schemes, there are no sampling theorems available, but
there are implementations of discrete SHT to reconstruct a sampled signal f,
thus providing a way to approximate 7~!. Thanks to this we are able, for a
given sampling, a given function f, a given rotation g, and a given kernel k,

to compute the normalized equivariance error

|TA(9)T QT f - QkTMg)mez))Z 2

Eq(f,9) = ( ||Tf||L2(R2)

where T~! is substituted with a discrete SHT in case 7T is not invertible. A
measure of how equivariant a graph is with respect to rotations will then be

given by the mean equivariance error

Eq = Efg Eq(f,9) (23)

In practice the expected value is obtained by averaging over a finite number
of random functions and random rotations. The mean equivariance error Eg
gives us an indication of how close the graph G is from being equivariant to
rotations. Now we state an intuitive concept that explains how to construct

rotation invariant graphs, i.e. graphs such that Eq is small.

The mean equivariance error Eg will be small if the scalar product £7v(,n

well approximates f (¢, m) i.e., the L? scalar product of the continuous signal

A

fll,m) = [l ese F(n)Y™(n)du(n).

IfV is an equal area sampling scheme, i.e. the area around each pixel v; is the
same, Eg will be small if the graph Laplacian L is such that its eigenvectors
v; well approximate the eigenfunctions of the Laplace-Beltrami operator Age

evaluated in the points of the sampling scheme, i.e.,

Viem) = Y{"(2:)

12



In this way we framed the problem of constructing a rotation invariant graph
with the more general problem of coming up with a matrix L with some
specific spectral properties. Graphs are only one of many ways of coming up
with such matrix L, and many other methods have been already studied in
the literature. In the next Chapter we present a brief overview of some of
these methods providing the general context in which graph filtering can be

framed.

13



2 Discrete Laplacians

In this Chapter we describe different methods to approximate the Laplace-
Beltrami operator on manifolds, with particular attention to what we will call

the Heat Kernel Graph Laplacian.

Let f be a sufficiently smooth function on a compact, closed infinitely dif-
ferentiable manifold M. The Laplacian eigenvalue problem on M is defined

as
Aptp = =i (24)

Being the Laplace-Beltrami operator self-adjoint and semi-positive definite,
there exists a basis B = {1); };of the space L*(M) such that Al = —A\tbs, Ao <
A< oA < Agge. < +oo. See [21) for an introduction to the Laplace-

Beltrami operator on manifolds.

There’s been a lot of work in trying to calculate solutions to equation (24), lead-
ing to different ways to approximate the Laplace-Beltrami operator through
what we call a discrete Laplacian. By discrete Laplacian we mean an operator
L that, once evaluated on a signal f and on a vertex x; can be written as a

matrix L in the following way:

L (k) = 5 Y (f () = J () )

Note that with unit masses d; = 1 we recover the same definition of Graph
Laplacian. We need now to introduce some basic concepts of Differential
Geometry, especially the definition of mean curvature of a manifold and its

link with the Laplace-Beltrami operator.

2.1 Notions of Differential Geometry

For this short introduction to basic concepts of Differential Geometry, set the
manifold M to be a differentiable, two dimensional surface embedded in R3.
The curvature of a curve on a plane is defined as the inverse of the radius R
of the tangent circle. For each point on the manifold M, define its tangent

plane H, orthogonal to the normal vector n. For every unit vector ey lying on

14



Figure 3: Curvature normal of a manifold

the tangent plane H, where # is an angle that measures the direction on the
tangent plane of ey, the normal curvature k() is defined as the curvature of
the curve that is the intersection of the manifold M and the plane containing
both n and ey. The mean curvature % is defined as the average on 6 of the

normal curvatures:

R = ;ﬂ /0% x(0)d6 (26)

It can be proved that the Laplace-Beltrami operator applied on the identity
function x — x, Vx € M is directly linked to the mean curvature normal Fn
by the following formula:

Apx = —2Rn (27)

This equation provides us a way to approximate the Laplace-Beltrami oper-
ator through the approximation of the mean curvature normal. This fact is

exploited by methods presented in the next section.

2.2 Discrete Laplacians from Differential Geometry

Desbrun et al. [6] construct a triangulation 7, with the vertices in the sam-
pling xo, x1, ..., x,_1 approximating the manifold M, and then use the follow-

ing discrete expression for the discrete normal curvature Fpn of the manifold
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Figure 4: One term of curvature normal formula and one Voronoi cell
constructed around the node z;

M: !
—Fh = > (cotay; + cot By) (x; — ;) (28)
t JENL()

where A; is the area of all the triangles of the mesh sharing the node z;;
Ni(7) is the first ring of neighbors of the ith node; «;;, 3;; are the angles of
the triangles of the mesh that lie on the opposite side to the edge (i, ;) with
respect to the node x; (Figure 4). Observe that for a flat surface the discrete
curvature is equal to zero &, = 0. This is a geometric approach that relies on
the intrinsic properties of the triangulation 7, and is based on the geometric
meaning of the curvature normal %. Using equations (28) and (27) it can be

shown [20] that this approach leads to a discrete Laplacian with masses

where A; is the area of all the triangles of the mesh with a vertex in x;, and

weights
 cot (ay;) + cot (Bj))
N 2

wij

2.3 Linear Finite Element Method Laplacian
The eigenvalue problem (24) can be rewritten in the equivalent weak form

<Vf, VU>L2(32) = )\(f, U>L2(Sz) Yv € LQ(S2) (29)
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The Finite Element Method (FEM) is a numerical algorithm that allows to
calculate a discrete approximation of the solution f through a functional dis-
cretization of the weak eigenvalue problem (29). We will discuss this method
deeper in section 4.2. By projecting equation (29) on a finite dimensional
functional subspace of L?*(S?) spanned by n basis functions ¢;, by writing n
times the equation (41), setting each time the test function v equal to the ith

basis function ¢; we obtain the generalized algebraic eigenvalue problem

Find (f, A) such that Af = ABf

(A)ij = Jo2 Vi(x) - Vo;(x)dx
(B)ij = Js2 ¢i(x)p;(x)dx
£ =fir f(x)= fodo(x)+ ... + fu1Pn_1(x)

that can be solved through usual algebraic solvers.

FEM Laplacian as a Differential Geometry Laplacian. Levy [14] showed
that by using the lumped mass matrix D;; = >°; B;; the FEM Laplacian

D'A

is the same Laplacian of Desbrun et al. [6] introduced in the previous section.
Meyer et al. [16] proposed another discrete Laplacian by modifying the masses

of Desbrun et al. setting them to
di = ay (Z),
where ay (i) is the area of the polygon obtained by joining the circumcenters
of the triangles surrounding node i (i.e. the Voronoi cell, figure 4).
2.4 Graph Laplacian for manifolds

Belkin et al. [3] prove convergence of eigenvectors of the Heat Kernel Graph
Laplacian LY (HKGL) of a data point cloud to the eigenfunctions of the
Laplace Beltrami operator Ay on the manifold M, when the data is sam-

pled from a uniform distribution on M. For this result to hold, they suppose
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the manifold M to be compact, infinitely differentiable and without boundary.
We just point out that being M compact, A has a discrete spectrum. The
graph they use to approximate the manifold is constructed as follows: given
a sampling P = {z; € M}!Z; on a k-dimensional manifold M C RY they
construct the full graph defined by the weights

T; — Xj 2
wij:exp<_|| 4#")

where || - || is the Euclidean norm in the ambient space RY and whose Laplacian
matrix
L,

we call Heat Kernel Graph Laplacian.

Observe that given a function f : P — R defined on the sampling P and de-
fined the vector f € R™ such that f; = f(z;), the Heat Kernel Graph Laplacian
matrix acts on f in the following way:

2
llwg—ay1]

(LL), =Z T (f) — flx) (30)

This graph construction is motivated by the fact that the HKGL is nothing else
than the natural discretization of the continuous functional approximation to
the Laplace-Beltrami operator L' : L*(M) — L*(M) whose eigenvectors and

eigenvalues are proven to converge to the ones of A .

Definition 2.1. (/2, Belkin et al./Functional approzimation to the Laplace-
Beltrami operator)

Let p be the uniform probability measure on the manifold M, where vol(M)
is the volume of M. We define the functional approximation to the Laplace-
Beltrami operator to be the operator L' : L*(M) — L*(M) such that

2
_ ly==l|

L) = [ 5 (F0) ~ f(@) dua)

We end this Chapter by stating the theorem of spectral convergence of the
HKGL to the Laplace-Beltrami operator A, that makes it a really good

candidate to construct rotation invariant graphs.
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Theorem 2.1. (Belkin et al., [3]) Let AL, ; be the ith eigenvalue of

(47.‘_{/.)7(]{4*2)/2 Lt
n n

and me be the corresponding eigenvector. Let \; and v; be the corresponding
eigenvalue and eigenfunction of A respectively. Then there exists a sequence

t, — 0, such that
lim,, o0 A7 = N
PPt )

lim,, oo HV;”Z - vi(x)’ )

where the limits are in probability.
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3 Graph Spherical Convolutions

In this chapter we first introduce DeepSphere [18], an example of Graph Spher-
ical Convolutional Neural Network that uses a modified version of the HKGL
to perform graph convolutions and hierarchical pooling to achieve rotation
equivariance, and computational efficiency. In section 3.2 we prove a pointwise
convergence result of the full HKGL in the case of the sphere using a regular
deterministic sampling scheme. In section 3.3 we show a way of modifying the
original graph of DeepSphere to improve its spectral convergence to Agz2 while

managing to contain the computational costs of graph convolutions.

3.1 Graph Spherical Convolutional Neural Networks

Perraudin et al. [18] have proposed a Spherical CNN to process and analyze
spherical sky maps, as the Cosmic Radiation map in figure 1. Sky images are
modeled as signals on the vertices of a sparse graph G on the vertex set V' of

the image pixels (v;) with weights

2
o i = vl
W;j = €xp m

where the kernel width ¢ is a parameter to optimize. In an earlier work,
Belkin et al. [3] proved the convergence of eigenvectors of the full graph G
to the eigenfunctions of the Laplace Beltrami operator Agz, when the data is
sampled from a uniform distribution on S? (see Section 2.4, theorem 2.1). For
this reason and for the intuition we presented at the beginning of Chapter 2
when introducing the mean equivariance error F¢, we expect the construction
of Perraudin et al. to work well only for images that were sampled with equi
area sampling schemes. On such sampling schemes, since the graph Laplacian
eigenvectors well approximate the spherical harmonics, the graph convolution

(20) well approximates the true spherical convolution (10).

fTViom) ~ /77 oo T Y (0)dpa(n) = fee,m) (32)

The most used sampling scheme by cosmologists and astrophysics is called
HEALPix [10], and is the one implemented in DeepSphere. HEALPix is an
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acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere. This
sampling scheme produces a subdivision of the sphere in which each pixel
covers the same surface area as every other pixel. It is parametrized by a
parameter Ngg4 € N, and is made of n = 12N?2,, pixels. The points of this
sampling lie on isolatitude rings, making it possible to implement an FFT
algorithm for the discrete SHT. The minimal resolution for HEALPix is given
by N4 = 1 and is made by 12 pixels. For each increasing value of N4, each
patch is divided into 4 equal area patches centered around the pixels of the

new sampling (figure 5).

In chapter 5 of this work we’ll deepen the relationship between the contin-
uous spherical Fourier transform and the graph Fourier transform in case of
non-uniform sampling measures. Perraudin et al. propose an efficient imple-
mentation of the graph convolution (20) to be implemented in each layer of
their Graph Spherical Convolutional Neural Network. They propose to learn

only those filters that are polynomials of degree ¢ of the eigenvalues \;

q
k) =S 0,
§=0

Jj=0 J=0

(33)
q q
Qf=V (Z 9jAJ') V'f=> 0,L'f

Learning the filter £ means learning the ¢ 4+ 1 coefficients 6;. In this way
they solve different problems at once: first, to compute the graph convolution
(20) there’s no need of computing the expensive eigen decomposition of L, but
they just need to evaluate a polynomial of the sparse matrix L. Thanks to
a suitable parametrization of the polynomial }%_, ;L7 in term of Chebyshev
polynomials, they manage to reduce the computations needed to evaluate such
filter to O(|E|). Since in a NN this filtering operation has to be computed in
every forward and backward step of the training phase, this gain in efficiency
is dramatically important and led to speedups of different orders of magnitude
compared to the architecture of Cohen et al. (see Chapter 5, table 4). The
filtering operation (33) can be seen also in the vertex domain as a weighted
sum of the ¢-neighborhoods of each vertex. This is due to the fact that L has
the same sparsity structure of the adjacency matrix of the graph, and thus
(L9),; will be non-zero if and only if the vertices v;, v; are connected by a path

of length ¢.
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Figure 5: HEALPix sampling for N4 = 1,2,3,4 [10]

Despite theorem 2.1 [2] states the spectral convergence of the full HKGL to
Asz, the sparse version of the HKGL of Perraudin et al. does not seem to
show such convergence. In figure (6) we see the correspondence between the
subspaces spanned by the graph Fourier modes of the graph Laplacian used by
Perraudin et al. and the true spherical harmonics. We can also see the plot of
the graph eigenvalues: we can see that they clearly come in groups of (2¢+ 1)
eigenvalues corresponding to each fth degree of the spherical harmonics. We
thus call v;(,,) the ith graph eigenmode corresponding the the one of degree
¢ and order m. We compute the normalized Discrete Spherical Harmonic
Transform (DSHT) of each v m) up to the degree liax. The entry (¢, k) of
the matrix represented in the figure corresponds to the percentage of energy
of the (th eigenspace V; = span{viu s, Vig,—t+1), - Vi) contained in the
rkth eigenspace of the true spherical harmonics. In a perfect situation, this
matrix would be the identity matrix, being all the energy of the ¢th graph
eigenspace contained in the corresponding one spanned by the true spherical
harmonics. It can be seen that the eigenmodes of the graph Laplacian span
almost the same subspaces as the spherical harmonics in the low frequencies,
but this alignment gets worse at higher frequencies. Furthermore, it can be
noticed that even by improving the resolution of the graph, the low frequency

eigenspaces do not get better aligned.

22



e o & N oo

T T

0 1 2 0 2 2 00 25 50 75 100 0 5 W 15 W 0 1 2 B W

. ® Nom=1
o =2

.l--........ ® Nog=4
* o fhw=8

08 . ® Noz=16

.
*e e 00000000

Figure 6: Alignment of the eigenvectors of the graph Laplacian of the
DeepSphere graph, the starting point of this work. In the middle we plot the
diagonals of the matrices on top, and on the bottom we plot its spectrum for
Ngige = 16.

3.2 Pointwise convergence of the Heat Kernel Graph

Laplacian on the Sphere

Here we prove a pointwise convergence result of the full graph Laplacian in the
case of the sphere on a deterministic sampling scheme that is regular enough.
Our proof will be constructed following the ideas presented in the proof of
theorem 3.1.

Definition 3.1. (Heat Kernel Graph Laplacian operator)
Given a sampling {x; € M}!=) of the manifold we define the operator L! such
that

i) = L[5 oo L0 50— ey
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Observe that the Heat Kernel Graph Laplacian operator restricted on the sam-
ple points x, ..., z,,_1 acts as the usual Heat Kernel Graph Laplacian matrix

L, rescaled by a factor of +:

1
(Lo £);

n

Ly f(x;) =

Theorem 3.1. from [2, Belkin et al.]
Let M be a k-dimensional compact smooth manifold embedded in some
euclidean space R, and fix p € M. Let the data points x1, ...z, be sampled

form a uniform distribution on the manifold M. Set t, = n*m, for any
a >0 and let f € Coo(M). Then:

1 1 b 1 t

n— o0

—0

> €

This theorem states a convergence in probability of L! to L, that is far from
being as strong as spectral convergence of theorem 2.1. However, we want to
show that a similar result still holds in the specific case of the manifold M
being the 2-Sphere S? and where the points z1, ..., z, are not sampled from
a random distribution on S?, but are defined by the HEALPix sampling. To
understand the differences between theorem 3.1 and theorem 3.2 it is useful
to first review the proof of theorem 3.1. For this proof we’ll need to use the

Hoeffding’s inequality that we recall here under:

(Hoeffding’s inequality)
Let Xi,..., X, be independent identically distributed random variables, such
that | X;| < K. Then

P{[==

—EX;

2
> e} < 2exp <—26[?2> (34)

Proof of Theorem 3.1. The first step is to observe that for any fixed t > 0, any
fixed function f and a fixed point y € S?, the Heat Kernel Graph Laplacian
L is an unbiased estimator for the Functional Approximation of the Laplace-

Beltrami L*. In other words, Lf f(y) is the empirical average of n i.i.d. random
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: g —yli?
variables X; = e = (

L'f(y). Thus,

f(y) — f(x;)) with expected value corresponding to

ELL f(y) = Eixi —EX, = L'f(y), (35)

and by the strong law of large numbers we have that

lim L f(y) = L'(y). (36)

n—oo

The core of the work of Belkin et al. is the proof, that we will not discuss, of

the following proposition.

Proposition 1. Under the same hypothesis of theorem 3.1, we have the fol-

lowing pointwise convergence

1

1 1 t t—0
;WL flp) — WAMf(p)-

Thanks to Proposition 1 and equation (36), a straightforward application of

Hoeffding’s inequality with K = %W together with equation (35) leads to

: —1/2e2nt(4nt)k/2
v Lt(zm)k/? |LLf(y) = L f(y)| > €| < 2e7/2emtinn (37)

We want the right hand side of equation (37) to go to 0 for n — oco,t — 0 at

the same time. For this to happen, we need to find a sequence (,) such that

n—oo

t, —— 0

26—1/262ntn(47rtn)k/2 ”HOO; 0

By fixing t, = n" k+é+a, for any o > 0, it is easy to check that
—1/2€nt,(4nt,)*/? “22% +oo, thus concluding the proof.

]

Now we can observe that in order to adapt this proof to the case of the sphere
with an equi area sampling scheme we need to modify two key things. First,

due to the deterministic nature of the sampling scheme, we need to prove that
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for any fixed ¢t > 0, any fixed function f and any point y € S?
LLF(y) — L F(y)| =22 0, (38)

without relying on the strong law of large numbers. Once proven such result,

we need to prove that

‘ 1

; t2 t—0 0
v

(L f(z) — L'f(x))

n—oo

We need now to define some geometrical quantities that we’ll need. Given a
sampling xg, ..., x,_1 define o; to be the patch of the surface of the sphere cor-
responding to the ith point of the sampling, define A; to be its corresponding
area and d; to be the radius of the smallest ball in R? containing the i-th patch
(see Figure 7). Define d™ := max;—g__, d; and A™ = max;___

Once proven the limit (38), Proposition 1 leads to our main result:

Theorem 3.2. For a sampling P = {x; € S?}?2 of the sphere that is equi area
and such that d™) < %, for all f : S* — R Lipschitz with respect to the

euclidean distance in R3, for all y € S?, there exists a sequence ¢, = n” such
|S?|

that the rescaled Heat Kernel Graph Laplacian operator ML; converges

pointwise to the Laplace Beltrami operator on the sphere Ag2 for n — oo:

SQ
lim oL e £(y) = D f ().

n—00 47Ttn

Figure 8: HEALPix equal areas
L patches for Ngge = 1, Ngige = 2

Figure 7: Geometric
characteristics of the ith patc
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3.2.1 Proof of the pointwise convergence of the Heat Kernel Graph

Laplacian on the Sphere for an equi area sampling scheme
Our first goal is to prove the following Proposition:

Proposition 2. For an equal area sampling {z; € S?}1=) : A; = AV, g of the
sphere it is true that for all f : S* — R Lipschitz with respect to the euclidean
distance || - || with Lipschitz constant L

/82 f(x)dp(x) — TllZf(xl> < Lpd™.

Furthermore, for all y € S* the Heat Kernel Graph Laplacian operator LY
converges pointwise to the functional approximation of the Laplace Beltrami

operator Lt

L f(y) == L' f(y).

Proof. Let us assume that the function f : R* — R is Lipschitz with Lipschitz

constant Ly, we have

< £;dmt
n

[ f@nta) = - pa

So, by triangular inequality and by summing all the contributions of all the n

patches

1
< ncfd“l); = L;d™

[ F(@)dn(e) - 3 S

<3|/ Fa)aute) - L)

Thanks to this result, we have the following two pointwise convergences

_lz—yl?

1 z;—yll?
Vf Lipschiz, Yy € S?, —Ze_u o — /e i du(x)
ne

Vf Lipschiz, Yy €S2, ﬁZe_H 7 f(xi)—>/e_“ - f(2)dp(z)

Definitions 3.1 and 2.1 end the proof. m
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Now, we just proved that keeping t fized L. f(x) — L'f(z). Now our goal is
to prove that:

Proposition 3. Given a sampling reqular enough i.e., for which we assume
A; = A; Vi, j and d™ < %, for a fixed t > 0, a fized Lipschitz function f
and a fived point y € S? there exists a sequence t, = n”, 3 < 0 such that

1
4mt2

n—00
— 0

Vf Lipschitz, Vo € S ‘ (Lfff(x) — Lt”f(x))

The main result of this section, theorem 3.2, is then an immediate consequence

of Proposition 3 and Proposition 1.

Proof of Proposition 3. We define for simplicity of notation
_llz—yll?
P(zy) =e 1 (fy) = f(2))

2
_ ==yl

K'(z,y) :==e
We start by writing the following chain of inequalities

LS = L flloe = max |1 (v) = L1 (9)]

13 t t
= max |20 i) = [ 6@ (o)
<max > |—¢'(zi1y) — | ¢'(z5y)dp(z)
YyES =1 n o4
(n)
< max | Ly,

where Ly 1s the Lipschitz constant of x — ¢'(x,y) and where we used for the

last inequality Proposition 2. If we assume d™ < % we have that

C
t 7t < ,
1L f = L' flleo < max lﬁ% ﬁ]
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Let’s now find the explicit dependence ¢ — Ly

Loy = 10:0" (-3 9)ls0
=110 (K'(-:9)) lloo
= 10K (59)f + K'(+;9)0: flloo
< 0K (- 59) flloo + [ (-5 9) 02 f oo
< 0K (59 ool 1 flloo + TE (-5 9) oo 102 f oo
= 10K (59|l floo + 1102 f ]
= Lt/ oo +1102f ]
= Liy||flloc + Ly

where Lg: is the Lipschitz constant of z — K “(z;y). We can observe that

such constant does not depend on y:

gK; - _ = ||ze N = ge v = (2615)’% ox 73
So we can continue
C 1
e B CORT I
Cllfllo

= rent Vi

So we have that, rescaling by a factor

4m t2
t t t t
g (17— 20)| < z s - o),
e 1, &
V2e /nts /it
t—0
n — 0o
we want . in order for [”\J} \/}t + ftg} 71:;% 0
vtz — oo ?
Vnt? — oo
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t(n) =n”, € (—
This is true if (n) pel

t(n)=n", Be(-

70)
,0)

= t(n)=n", Be(-1}0)

= Ot

Indeed
VN3 = nd2 D2 o0 gince 34+ 1/2 >0 = B> —1
Vit = n?Bt2 K20 o gince 284+ 1/2 > 0 <= > —3

So, for t = n? with 8 € (—%,0) we have that

(tn) === 0
ﬁ
H47r1t%Ll;Lnf_ 47r1t%Ltnf‘oo =50

The proof of theorem 3.2 is now trivial:

Proof of Theorem 3.2. Thanks to Proposition 3 and Proposition 1 we conclude
that Vy € S?

. 1 6 L 1 6 B 1

N2 f(y)
O

The proof of this result is instructive since it shows that we need to impose
some regularity conditions on the sampling. If the sampling is equal area as
HEALPix, meaning that all the patches o; have the same area (i.e., HEALPix,
see figure 8), then we need to impose that d™ < ﬁ If the sampling is not
equal area, meaning that in general A; # A;, it can be shown that we need a
slightly more complex condition: max;—g . ,—1 d;A4; < Cn-3.

In the work of Belkin et al. [2] the sampling is drawn form a uniform random
distribution on the sphere, and their proof heavily relies on the uniformity
properties of the distribution from which the sampling is drawn. In our case
the sampling is deterministic, and the fact that for a sphere there doesn’t exist
a regular sampling with more than 12 points (the vertices of a icosahedron)
is indeed a problem that we need to overcome by imposing the regularity

conditions above.
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To conclude, we can see that the result obtained has the same form than
the result obtained in [2]. Given the kernel density ¢(n) = n”, if Belkin et al.
proved convergence in the random case for g € (—i, 0), we proved convergence
in the HEALPix case for 8 € (—%, 0). This kind of result can be interpreted
in the following way. In order to have this pointwise convergence, we need
to reduce the kernel width but not so fast compared to the resolution of the
graph. In other words, the kernel width has to be reduced but is somewhat
limited by the resolution of the graph. In the next section we’ll see how to set
in practice a good kernel width ¢ given a graph resolution n.

Remark. Pointwise convergence is just a necessary condition for spectral con-
vergence. Theorem 3.2 does not imply convergence of eigenvalues and eigen-

vectors.

3.3 How to build a good graph to approximate spherical

convolutions

The current state of the art of rotation equivariant Graph CNN is DeepSphere
[18]. However, if we measure the alignment of the eigenspaces spanned by
the eigenvectors of its graph Laplacian and the ones spanned by the spherical
harmonics we see that it does not get better as N4 increases (figure 77).
We'll see that the main cause of this bad behavior of the eigenspaces is the
fixed number of neighbors used for the construction of the graph. In this sub-
section we’ll see that to obtain the desired spectral convergence it is necessary
to increase the number of neighbors as we decrease the kernel width t. We'll
follow in practice what we did in proving theorem 3.2: first we’ll build a full
graph, and let the number of pixels n increase while keeping the kernel width ¢
fixed. After having discussed the results, we'll try to find a sequence (ty.,,.) to
obtain the expected spectral convergence. Only in the end we’ll find a way to
make the graph sparse to limit the computational costs of graph convolutions
but keeping the eigen decomposition of the graph Laplacian as close to the

spherical harmonics as possible.
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3.3.1 Full graph, n — o0

Here we analyze what happens to the power density spectrum of the full Heat
Kernel Graph Laplacian as we make n go to infinity while keeping ¢ fixed.
Since in the previous section we proved that (Proposition 1) for a sampling

regular enough and a fixed ¢, a fixed function f, a fixed point y

L fy) == L' f(y)

Since HEALPix is a very regular sampling of the sphere, we expect to observe
(even if we didn’t prove it) the corresponding spectral convergence proved in

theorem 2.1. The results obtained are in figure 9, 10.
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Figure 9: Alignment of the eigenvectors of the HKGL with a fixed kernel
width ¢

In figure 9 we see two things: first that there’s a frequency threshold beyond
which the Graph Laplacian is completely blind, approximately located at the
15th degree, and second that before this frequency threshold, we actually see

the convergence expected: the alignment gets better as n gets bigger.

To explain this we refer to figure 11 where we show a simplified situation where
we are sampling the interval [0,2] and we plot the Gaussian kernel centered
around the first pixel of the sampling corresponding to the origin. On the left-

most image the pixels are correctly spaced with respect to the kernel width, in
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Figure 10: Left: spectrum of the HKGL with a fixed kernel width ¢. Right:
true spectrum of Ag2
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Figure 11: Frequency threshold explained.

the sense that the values of the kernel evaluated on the pixels are well far apart
from each other. This makes the graph able to "see" all the pixels differently,
and thus all the frequencies with wavelength around the order of magnitude
of the average pixel distance will be captured by the graph. On the rightmost
image in figure 11 there are too many pixels with respect to the kernel width:
the values of the kernel evaluated on the pixels close to the origin, because of
the slope of the kernel being almost zero are too close to each other (in red);
because of this any variation of a signal on the red pixels would be almost
invisible to the graph Laplacian. With this fixed kernel width ¢, no matter
how much we sample the interval [0, 2], any frequency with wavelength shorter
than the radius r &~ 0.25 becomes invisible to the graph Laplacian.

This phenomenon can be seen also in the spectrum represented in figure 10
where we plot the eigenvalues of the matrix Lf: as N4 gets bigger the eigen-
values get more and more grouped in the usual groups of the same multiplicity
of the corresponding spherical harmonics; however, there’s a frequency (corre-
sponding approximately to the degree ¢ = 15) from which all the eigenspaces

tend to merge into one, corresponding to the eigenvalue 1.
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3.3.2 Full graph, t — 0

In this section we fix the parameter N4, and and we make the kernel width

t go to 0.

t=0010 t=0024 t=0056 t=0133 t=0316

0 5 1 15 W 0 5 1 15 W 0 5 1 15 20 0 5 1 15 W 0 5 W 15 W

Figure 12: Alignment of the eigenspaces of the HKGL with a fixed number of
points n corresponding to Ng;qe = 8

Results are in figure 12, 13: Starting from ¢ = 0.32, the error in the high
frequencies starts to get smaller, while the error in the low frequencies keeps
staying low (Figure 14) up to ¢t = 0.05. For ¢ that gets smaller and smaller up
to t = 0.01, we get worse alignment both in high and low frequencies (Figure
15). This behavior can be explained with the same arguments used in the
previous section: high values of the kernel width correspond to a very flat
kernel (figure 16, left), and thus the graph loses the capacity of individuating
high frequencies as discussed before. On the opposite side, low values of the
kernel width correspond to a very peaked kernel, that causes all the weights
to be close to zero and thus the graph becomes less and less connected loosing

every capability of identifying different frequencies (figure 16, right).

0 5 10 15 20

Figure 13: Whole trend
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Figure 14: First trend: error stays low for low frequencies, and gets lower for
high frequencies
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Figure 15: Second trend: error gets higher for both high and low frequencies
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Figure 16: One row of the weight matrix for different values of the kernel
width ¢ plotted on the HEALPix sampling with Nz = 8. On the left, for a
too large t, the HKGL can not capture high frequencies. On the right, for a
too small ¢, the graph becomes almost completely disconnected. In the center
a good value for ¢ makes the HKGL able to see the most frequencies.

3.3.3 Putting it together: full graph, n — oo and ¢t — 0

A grid search has been used to find the following optimal kernel width for
different values of N4, always in the case of a full graph, where we maximized
the number of graph eigenspaces with the alignment value in figure 18 bigger
than 80%. The optimal values of the kernel width ¢ are shown in figure 17.
In DeepSphere t is set to the average of the non zeros weight matrix entries,
where the number of neighbors of each vertex is fixed between 7 and 8. We can
see that the heuristic way of DeepSphere of setting the standard deviation ¢
produces results of the same order of magnitude of the optimal value. It can be
seen that the optimal values of ¢ are very close to a linear trend in the log-log
plot, showing an approximately polynomial relationship with the parameter
Ngige that could be used to extrapolate possible values of ¢ for higher Ng;qe.

In figure 18 we can appreciate that for a full graph, each time we double the
parameter Ng;q4., we approximately double the degree ¢ at which the graph

eigenvectors are correctly aligned with the spherical harmonics.

3.3.4 Reducing the number of neighbors

For what it concerns how to make the graph sparse, the intuition is the follow-

ing: remember that we want our graph Laplacian to approximate the operator
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Figure 17: Standard deviation of the Gaussian kernel in a log-log plot. A
straight line indicates a polynomial relation.

Lt that for sufficiently small ¢ approximates A
(Z G0 - o) = [ () - £ dulo) = A 0)

So far we showed how to do so optimally with a full graph; however, a full
graph comes at the cost of leading to a matrix L that is full, and thus to a
graph filtering cost of O(n?), worse than the common SHT cost of O(n®?).
Perraudin et al. [18] constructed a nearest neighbor graph constraining the
number of neighbors for each vertex to be fixed, making the graph filtering
cost linear in the number of pixels. However, as we saw at the beginning of
this section this leads to a poor alignment of the graph eigenvectors with the
spherical harmonics and thus to a not so optimal rotation equivariance. Here
we propose a different approach, based on the following intuition: making

_ wi—a;)1?

the graph sparse means deciding which weights w;; = exp to set to

zero. For this approximation to be accurate we want to set to zero only those
weights that are small enough: let’s define a new epsilon graph G’ by fixing a

[lz;—=z;l

threshold € on w;; =e™ @ such that

M=yl o lei—ayll?
, e 1t ife it > €
Wij = gl
0 if e w o <€

By setting e = 0.01 - or equivalently, thresholding the weights at
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Figure 18: Alignment of eigenspaces of the optimal full graph.

|7; — zj|| & 30 where o = /2t is the standard deviation of the kernel - in

figure 19 we can see the usual alignment plots of the graph G’

Nside
1
2
4
8
16

Number of neighbors
11
16
37
43
52

Table 1

We see that we need to increase the number of neighbors as N4 gets bigger.

Again, the intuition is the following: to have spectral convergence (a strong

type of convergence) we need more and more global information and more

precise. By fitting the relationship

Number of neighbors = (Ngge)®

to the data in table 1 we obtain that a should be close to 1/2, meaning that

the complexity graph filtering with G’ could be approximated by

O(lE]) =

O(ny/ Nsige) = O(n5/4).
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Figure 19: Optimal construction thresholded at k£ = 0.01

where n is the number of vertices of the graph. This complexity is exactly in
the middle between the linear complexity of DeepSphere and the complexity
O(n®?) of the SCNNs of Cohen and Esteves [4] [8]. In practice the num-
ber of neighbors grows very slowly with the number of pixels, making graph

convolutions with G’ still very efficient and fast (see section 5.1, table 5).

To conclude, we show in figure 20, 21 a confront between the alignment of the
graph Laplacian eigenvectors of the DeepSphere graph G, the starting point
of this work, and of the graph G’. It can appreciated how the alignment plots
show a much better behavior of the graph Laplacian eigenvectors of G’, and

how the spectrum of G’ resembles more accurately the spectrum of Age.
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Figure 20: Alignment of the graph  Figure 21: Alignment of the graph
Laplacian eigenvectors of the Laplacian eigenvectors of the proposed
DeepSphere graph G, the starting graph G’, and its spectrum.

point of this work, and its spectrum.

3.3.5 Equivariance error

So far we used the plots of the alignment of the eigenvectors with the spherical
harmonics as a proxy of the quantity we are really interested in, the mean
equivariance error Eg, because they gave us more valuable interpretations
about what was happening. Now we want to have the confirmation that the
proposed graph G’ led to a smaller mean equivariance error than the one of the
original graph G of DeepSphere. In figure 22 we plot the mean equivariance

error

E:Eﬁg E(fag)

of the diffusion filter k(\;) = exp(—2X;) for both graphs G,G’" by spherical
harmonic degree ¢ at different resolutions. This was obtained as the empirical
average over a uniform sample of rotations g € SO(3) and a uniform sample
of functions f € Vp = span{Y;", |m| < ¢}. We recall that for HEALPix there’s
no sampling theorem that guarantees the existence of an exact reconstruction
operator T~1, so to calculate this quantity we had to rotate the sampled signal
in the discrete domain, introducing important interpolation errors. We can see
that DeepSphere has a mean equivariance error that is almost 30% in the low
frequencies, and decreases slowly for higher ones. The graph G’ has a much
better behavior: the error stays low for the small frequencies, rising up for

the higher ones and always remaining confined under 5%. To compare it we
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reported also the results for the full HKGL, where we can appreciate a behavior

similar to G’ but with an error always smaller than 2%.

DeepSphere on HEALPix
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Figure 22: Mean equivariance error of the diffusion filter exp(—A) for G, G’
and the full HKGL, by spherical harmonic degree. Notice the difference in
the scale of the y axis for DeepSphere, that reaches errors up to 30%.

In figure 23 we see the visualization of the equivariance error of DeepSphere: on
the left, the original sampled signal T'f. Top right, the rotated and filtered sig-
nal Q;TA(g)f. Bottom right, the filtered and rotated signal TA(g)T ', Tf.
In figure 24 we see the visualization of the equivariance error of the graph
G': on the left, the same, original sampled signal T'f. Top right, the rotated
and filtered signal Q;TA(g)f. Bottom right, the filtered and rotated signal
TA(g)T*%T f. No difference can be appreciated at a visual analysis for the
graph G’, while for DeepSphere the difference is clearly visible.
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TA(g)T ' Tf

Figure 23: DeepSphere V1 equivariance error. On the left, a signal f. Top
right, f was first rotated and then filtered through a diffusion filter

k(X)) = exp(—A). Bottom right, f was first filtered and then rotated. The
difference in the two outcomes is evident.

QTA(9)f

TA(g)T ', Tf

Figure 24: DeepSphere V2 equivariance error. On the left, a signal f. Top
right, f was first rotated and then filtered through a diffusion filter

k(X)) = exp(—A). Bottom right, f was first filtered and then rotated. No
difference in the two outcomes is visible to the human eye.
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Mean equivariance error F ‘ Ngge =4 Ngge =8 Ngjge = 16
DeepSphere graph G 12.37% 12.03% 12.23%
Optimal graph G’ 4.57% 3.98 % 1.54%

Table 2

To conclude, we report in table 2, as final metric for the evaluation of rota-
tion equivariance of the two graphs G, G’, the mean equivariance error for
a different values of Ny;4. that we computed by sampling random coefficients
07" € (0,1) of linear combinations of all the spherical harmonics up to degree

(=16
flw)y=" 3 6V (x)

<16, |m|<t

and by averaging on random rotations g € SO(3). Our graph shows lower

errors as Ngiq. grows, and a much lower error than DeepSphere.
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4 Non uniform sampling schemes and the FEM

Laplacian

In Chapter 3, we used the fact that when the sampling scheme of the sphere is
regular enough, the graph G is such that the corresponding graph Laplacian
L = VAVT has eigenvectors that are close enough to the ones of Ag2 to design
a graph with a low mean equivariance error. We showed a way to construct a
graph G’ such that its graph Laplacian well approximates Agz in the case of
an equiarea sampling scheme of the sphere and we tested it on the HEALPix
sampling scheme. In this Chapter we focus on sampling schemes that are
less uniform than HEALPix. The sampling scheme V = {v; € S?} that we
will use for our study, very used in applications, is the so called equiangular
sampling scheme [7]. This chapter is organized as follows: In section 4.1
we first introduce the equiangular sampling, and then we present the results
that we obtained with two different Graph Laplacians: the HKGL, and a
graph proposed by Khasanova et al. [9], specifically designed for this sampling
scheme. In section 4.2 we deepen how to use the Finite Element Method
(FEM) to construct a discrete approximation of Agz and how to derive a

graph-like Laplacian from it, that shows a low equivariance error.

4.1 Graph Laplacian on the Equiangular Sampling
4.1.1 The Equiangular Sampling
Given the usual parametrization x = (6, ¢) of the sphere

) 1/2
§? = {x = (w1, 22,03) € R : [lz]lms = (2] + a3 +03) " = 1}

x1 = cos(¢)sin(f), x9 =sin(¢)sin(f), x3 = cos(d)

Let m € N, the equiangular sampling of bandwidth b = 2™ is given by 9351,? =
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x (H;b) : ¢,(€b)> where

o P "o

j=0,..2b—land k=0,..,2b— 1

j k
Qj(-b) = 7Ti ). _op

Figure 25: Equiangular sampling with bandwidth b = 8

One has thus n = 4b? points on the sphere, where all the points xg;c) correspond

to the north pole for every k£ = 0,...,2b — 1. Notice also that the south pole
is never sampled. In figure 25 it can also be appreciated how the area close to
the poles is much more sampled that the equator. One reason for which this
sampling scheme is very used in application is the existence of the following
result from [7], that states that any band limited function can be exactly

recovered from its sampled values f (xﬁ?)

Theorem 4.1. Let Iy € N and mg € Z, |mo| < lop. If f = X033 f(l,m)Yl
then

1 2b—12b—1

f (lo,mo) = ~ 2 >Ny f( )Ymo ( (b )> sin (Gj(b)) X

j=0 k=0

4b 1 b
_ZQZ sm( 2l+1)(9j(- ))

T

Theorem 4.1 is the equivalent on the sphere of the well known Shannon’s
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sampling theorem, that states the minimum sampling frequency at which a
band limited signal f : R — R can be perfectly reconstructed, and is a precious

tool when doing signal processing on the sphere.

4.1.2 Heat Kernel Graph Laplacian on the equiangular sampling

scheme

Thanks to theorem 4.1 not only we have a characterization of the space

F={f =yl F(l,m)Y™} © L*S?) of band limited functions on
which the sampling operator T": F' — R" is invertible, but we also an analytic
expression for 77!, Thanks to this we can calculate up to machine precision
the equivariance error for any function f € I’ and any rotation g € SO(3). In
figure 26 we calculated the mean equivariance error of the full HKGL averaging
on mono-frequency signals for different bandwidths. We can observe a much
cleaner behavior of the mean equivariance error than the one we observed
for he HEALPix sampling, most probably due to the fact that this time we
can exactly calculate 7~!'. The error increases linearly with the frequency of
the signal for all bandwidths, and it seems to converge to zero as b increases.

However, the spectrum of the graph Laplacian does not show the eigenvalues

grouped in the expected pattern.

Table 3: Kernel width ¢ used to construct the HKGL for each bandwidth b

4.1.3 A graph alternative to the HKGL for the equiangular sam-
pling

Khasanova et al. [9] designed a discrete Laplacian that is explicitly intended
to work on the sphere with the equiangular sampling. They studied a way to
build a graph to analyze images produced by omnidirectional cameras. In their
work they assume that the image is sampled on the sphere on the equiangular

sampling. They consider the set G of all the possible graphs where each node is
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Full HKGL on equiangular sampling
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Figure 26: Equivariance error of the full HKGL on the equiangular sampling
by spherical harmonic degree ¢, and its spectrum for the bandwidth b = 8§ .

connected only to four of its nearest neighbours (North, Sud, West, East) and
propose a weighting scheme w;; that minimizes the difference in the response
to the polynomial spectral filter 7 = L evaluated on images of the same
object seen at different latitudes. In other words, they solve the minimization

problem

min |7 (v (0)) = F (3 (o) (39)

for the adjacency matrix W, where y(v;) is the image of the object on the

VN

Figure 27: Khasanova et al. setting.
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sphere centered on the vertex v;, and F(y(v.)) is the response of the filter
at the vertex v, that lies at the same longitude of the vertex v; but on the
equator (figure 27). In their work they prove that the optimal weights solving
the minimization problem (39) are given by weights w;; inversely proportional

to the Euclidean distance between vertices:

1

|l —

Wi (40)
This construction is interesting since it is adapted to the equiangular sampling,
and leads to a very sparse graph with only 4 neighbors per vertex. Further-
more, to obtain the weights (40) every calculation was done in the spatial
domain, without any consideration about the spectral interpretation of the
filter. In order to compare it to the HKGL we show the equivariance error
by spherical harmonic degree in figure 28. It can be appreciated how this
construction performs a little worse that the full HKGL for low bandwidth
samplings, but converges faster than the full HKGL, and its spectrum looks

much more similar to the one of Age.

Khasanova-Frossard graph on equiangular sampling

010 ® bw=16

Equivariance Error
2
2

Figure 28: Equivariance error of the Khasanova-Frossard graph on the
equiangular sampling with bandwidth b = 8 by spherical harmonic degree ¢,
and its spectrum.

The Khasanova-Frossard graph showed us that it is possible to do better than
the HKGL on the equiangular sampling. We asked ourself if there’s a general
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way of building a more equivariant graph than the HKGL that is straight-
forward to implement on any sampling scheme of the sphere. To answer this
question in the next section we study a more complex way to approximate the
Laplace-Beltrami operator Age: the linear FEM Laplacian. We will see that
the comparison between the FEM Laplacian and the graph Laplacian will give
us precious insights to better understand the limitations of graph Laplacians

when it comes to deal with non uniform samplings of the sphere.

4.2 The Finite Element Method approximation of the

Laplace-Beltrami operator on the sphere

The Finite Element Method (FEM) is a numerical algorithm that allows to cal-
culate a discrete approximation of the solution of the Laplace-Beltrami eigen-
value problem through a functional discretization of the differential operator
Ag2. We put the necessary definitions and mathematical concepts necessary to
properly introduce the weak formulation of a differential problem, the Galerkin
method and finally the Finite Element Method in Appendix. For a detailed
introduction to the FEM, we refer the reader to [19]

Let’s transform the strong form of the eigenvalue problem on the Sphere on
its weak formulation. Let’s multiply equation (24) by a sufficiently regular
function v and integrate on S?. Since the sphere is a closed manifold and has

no border, integrating by parts yields

Find f € H'(S?*), A € R such that
41
. Vf(x)-Vo(x)dx = )\/SQ f(x)-v(x)dx Yo e H'(S?) )

where v has been chosen to belong to H' C L*(S?), the Sobolev space of all
the functions with derivative Vf € L*(S?). The Finite Element Method first
approximates the domain  with a triangulation 7, = {7}, and then projects
the weak problem (41) into a finite dimensional subspace V;, C H'(7,) made by
all the piecewise linear polynomials on the triangulation 7. Being the sphere
convex, the triangulation 7, has been obtained by calculating the triangulation
of the convex hull of the vertices of the chosen sampling scheme through the

Qhull algorithm [1]. Now, define X} to be the space of all the continuous,

49



piecewise linear functions on (2
Xp={vy 0, €C(Q): vy|, € P V7 € Tp}

and set Vj, = X}. Since for the functions in X} the number of degrees of
freedom is the same of the number of vertices of the mesh n, we need n basis
functions ¢;,7 = 0,...,n—1 to fully describe X}. ¢; is defined as the continuous

piecewise linear function such that
¢Z(I]) :(5ZJ ZZO,,TL—l

where x; are the points of the sampling scheme that have been used as vertices
of the triangles 7 of the triangulation 7. The support of ¢; i.e., the subset of
Ty where ¢; is not zero, is made by all the triangles sharing the ith vertex. An

example is shown in figure 30.

Remark. For a function v, € X}, v, = voo + ...v, P, the coefficient v; is equal

to the function v, evaluated in the ith vertex

v; = vp(T;) (42)

Figure 29: A triangulation 7, of the sphere made with the vertices of the
HEALPix sampling scheme with N4 = 8.

By writing n times the equation (41), setting each time the test function vy,

equal to the sth basis function ¢; of the space X}, we obtain the generalized
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Figure 30: Basis function of the space X}

algebraic eigenvalue problem

Find (f, A) such that Af = ABf
(A)ij = Jo2 Vgi(x) - Vo,(x)dx
B)ij = Js2 i(x)9;(x)dx
£ =fir [f(x)=fodo(x)+ ... + fac1Pn_1(x)

(43)

A is called the stiffness matrix, and B is called the mass matrix. Observe
that being the Laplace-Beltrami operator self-adjoint, we have that A = AT,
B = BT. Being B non singular, the system (43) is equivalent to the eigenvalue

problem

B'Af = Af (44)

It can be shown [25] that even though the matrix B~ A is not symmetric, its
eigenvalues are still real and its eigenvectors are such that VBVT =1, where
I is the identity matrix. The solution f that is the vector of the coefficients of
the function f;, in the basis ¢; corresponds exactly to the values of the function

frn in the vertices.

4.3 How to filter a signal with the linear FEM

Calculating the discrete Fourier transform with the linear FEM means pro-

jecting the Fourier transform into the subspace Vj,:

fFEM(ga m) = /

o fnm)viemy(m)dn = vy, BE (45)
h

where v;(g,,) is the solution to the eigenvalue problem (43), fn is the projection
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of f on V},, and B is the mass matrix. It follows that the filtering of a discretized

signal f in the spectral domain is done by the following matrix Q%FM:

QLM = (BVT)'KV'B (46)

where VTB is the FEM Fourier transform matrix, K is the diagonal matrix
that represent the chosen kernel for this filter, and (VTB)™! is the matrix
representing the inverse FEM Fourier transform. We can already notice a
fundamental difference between this way of filtering a signal and the way of
filtering a signal with a graph. The FEM filtering uses not only the eigenvectors
of the FEM Laplacian, but also the mass matrix B. We computed the usual
mean equivariance error per spherical harmonic degree for the diffusion filter

K = exp(—A) on the equiangular sampling, and we show it in figure 31. We

FEM diffusion on equiangular sampling
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Figure 31: Equivariance error of the linear FEM diffusion on the equiangular
sampling by spherical harmonic degree.

can see that the FEM filtering works better than the state-of-the-art graph

of Khasanova-Frossard, but the matrix Q&FM is full, and its computation

requires the expensive inversion of the Fourier matrix V7B, making it not

efficient if used in a CNN.

4.3.1 A confront between FEM filtering and graph filtering
Due to the fact that VIBV =1, we have that

(VIB) =V,
VIB=V,
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So, the FEM filter matrix QLM can be rewritten as
QM = VKV (47)
Thus a polynomial filter
K—1
k(X)) = Po(A) =Y 00"
k=0
would be implemented with a matrix

k—1 rk—1
QEEM — v (Z ekAk> V=3 6,(B A" =P.(B'A).
k=0 k=0

It is interesting to notice that FEM filtering (47) looks very much like graph
filtering (20) but, given that V' is not orthogonal anymore, it has to replace
the VT with V=1, Equation 47 implies that the FEM filtering could be im-
plemented exactly as the graph filtering already implemented in DeepSphere,
using the FEM matrix B~! A instead of the usual symmetric HKGL L. Unfor-
tunately, in order to make the evaluation of the polynomial P,(B~*A) efficient,
we need the matrix B~'A to be sparse. The only way to do so is to have a
sparse stiffness matriz A and a diagonal mass matriz B. Unfortunately there
is no likely way to have both these conditions satisfied at the same time, since
this is one of the most well known trade offs of the FEM [25]. To make B
diagonal we need to choose ¢; to be an orthogonal basis of the finite dimen-
sional functional space V},. To do so, we will need to choose more complicated
basis functions than the usual ones in figure 30, most likely with a support that
extends to the whole sphere, making the stiffness matrix A not sparse any-
more. A common workaround [25] is the so called lumping of the mass matrix,
that consists in replacing the matrix B with the lumped diagonal matrix D
obtained by placing in each diagonal entry (D);; the sum of the elements of

the 7th row of the mass matrix B:

D = diag{d;}, di =) (B)y (48)

J
This approximation is well studied in the literature and it is proved to work

well in many practical cases [19]. In this way the FEM matrix B~ A would
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be approximated by the matrix
D 'A.

This matrix has the big advantage of having the same sparsity pattern of the
stiffness matrix A, making it very efficient for polynomial filtering. We can

take one step further by using the symmetric matrix
D '2PAD 2,

To confront FEM and HKGL filtering we filter a unit mass signal

f =1(0,0,..0,1,0,...,0)T with the diffusion filter exp (—7L). It was chosen a
very irregular sampling scheme, shown in figure 32. It can be seen how the full
HKGL compresses the signal around the equator where the sampling scheme is
more sparse; on the other hand the FEM filtering manages to keep the diffusion
homogeneous no matter the asymmetry in the sampling scheme. The mean
equivariance error using by spherical harmonic degree can be found in figure
33. It can be seen how D™ A ha almost the same equivariance error of the full
FEM Laplacian B~'A, while using the symmetric matrix D~/2AD~1/2 makes

the equivariance error much worse, especially at lower frequencies.
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Figure 32: Symmetric lumped linear FEM diffusion and HKGL diffusion on
an irregular sampling scheme of the sphere. The position of the filtered
source signal is indicated with a black star.
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Figure 33: Equivariance error of the lumped FEM Laplacian and of the
symmetric lumped FEM Laplacian on the equiangular sampling by spherical
harmonic degree £.
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Accuracy of the linear FEM spherical harmonics. Thanks to the sam-
pling theorem 4.1, we are able to compute the exact SHT (under the hypothesis
of band limited signals) of the solutions to the eigenvalue problem (43) and we
show in figures 34, 35 the power spectrum of the eigenmodes for both HEALPix
sampling and the equiangular sampling, as a measure of the goodness of the

linear FEM approach to approximate the spherical harmonics.
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Figure 34: Alignment of eigenspaces of the linear FEM Laplacian on
HEALPix, and its spectrum for Ny;q. = 16
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equiangular sampling, and its spectrum for bw = 32
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5 Conclusions

5.1 Experimental validation: SHREC17

Gusset [11] implemented the graph proposed in Chapter 2 in a GCNN and
three other rotation equivariant neural networks on a popular classification
problem [22]. The four models tested were the following: the original version
of DeepSphere, Deepsphere Optimal - obtained implementing the thresholding
procedure described in this work in section 3.3 - and the traditional SCNNs
of Cohen et al. and of Esteves et al. [4] [8].

On the Equiangular sampling. Gusset compares with two different met-
rics (accuracy, Fl-score) the performances of these four rotation invariant mod-
els, while also comparing the speed of inference and of training of each model.
Results are shown in table 4. It can be seen how DeepSphere Optimal has
always the highest score between all the rotation equivariant models, no mat-
ter the evaluation metric. Furthermore, its performances in terms of speed of
inference and training are second only to DeepSphere, remaining by far faster
than the other two SCNNs.

performance size speed
Method Accuracy Fl-score params inference training
Cohen s2cnn__simple 78.59 78.85 400k 12ms 32h
Esteves sphericalcnn 79.18 79.36 500k 9.8ms 2h52
Deepsphere 73.36 73.67 190k  0.98ms 43m
Deepsphere Optimal | 80.42 80.65 190k 1.0ms 48m

Table 4: Results form [11]. Performances of four rotation equivariant GCNNs
and two SCNNs on the popular classification task SHREC17.

On HEALPix  Gusset repeated the same test on the same dataset, this
time sampled using the HEALPix sampling scheme with N4 = 32. Results
can be seen in table 5. Being the new graph of DeepSphere Optimal more
equivariant to rotations, we expected to see an improvement in the accuracy,
as we did in the equiangular case. The fact that this improvement was not
observed means that, with this sampling, the original DeepSphere graph W is

already sufficiently equivariant to rotations.
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‘ DeepSphere ‘ DeepSphere Optimal
accuracy | 82.23% | 82.76%

Table 5: Results form Gusset et al. Accuracy on the HEALPix sampling

5.2 Confront of different Discrete Laplacians on the equian-

gular sampling

We conclude by showing how the different discrete Laplacians L illustrated
so far compare in terms of equivariance error and computational time of the
filter F(f) = Lf. We can see how the four sparse discrete Laplacians are one
order of magnitude faster than the two full Laplacians. The FEM Laplacian is
able to reduce the equivariance error of the HKGL, and it manages to keep it
low - around 0.5% - even when using the sparse, lumped approximation D~1A
while reducing the computational time of one order of magnitude. D~ 'A
performs really well, and gets close to the performances of the graph Laplacian

of Khasanova and Frossard.

0.7

FEM

o
o

@ HKGL

Computational time [ms]
o e o o
N w > U

o
=

Lumped FEM " Symmetric Lumped FEM
A Khasanova-Frossard Thresholded HKGL |

0'?).0 0.5 1.0 1.5 2.0 2.5 3.0
Equivariance Error [%]

Figure 36: Trade-off between computational time and equivariance error for
the filter L for different discrete Laplacians on the equiangular sampling

5.3 Final considerations and future work

In order not to confuse the notation between the FEM and the Graph approach

we will be need a more precise notation than in the rest of this work. For this
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FEM | HKGL | Lumped | Symmetric | Thresholded | Khasanova
FEM Lumped HKGL Frossard
FEM
Equivariance 0.46 1.55 0.47 2.80 1.50 0.64
error [%]
Computational | 619 561 68 49 67 42
time [us]

Table 6: Results of figure 36

purpose, define a graph GG, and its graph Laplacian by Lg. Define Vg, Ag to

be the solution of the eigenvalue problem
LoVe = VA,

Define the FEM stiffness matrix A, (A);; = [V¢;Vp; and the FEM mass
matrix B, (B);; = [ ¢;¢;. Define Vpgy and Apgys to be the solution to the

generalized eigenvalue problem
AVrpy = BVrpuAreu.

We saw that both in the graph and in the FEM approach, filtering a sampled
signal means approximating the Fourier transform through the multiplication
of the signal f by a Fourier matrix - V[, for the graph, VB for the FEM
- then applying a filter through a diagonal matrix K, and then applying the
inverse Fourier transform - V¢ for the graph, (V% z,,B) ™! for the FEM -. From
these considerations it follows that a polynomial filter P,(A) is implemented in
the graph domain by multiplying the signal f by a polynomial of the symmetric
graph Laplacian Lg
Pi(Le),

and in the FEM domain (thanks to what explained in section 4.3.1) by a
polynomial of the matrix B™tA

P.(B7'A).

Starting from the FEM Laplacian B~ A it is possible to construct a sparse
Laplacian D~ A that shows almost no difference in its equivariance error com-

pared to the full FEM Laplacian. Levy [14] showed that, by explicitly solving
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the integrals [, ¢:¢;, [, Vo, -V,,

Aij = 5 (COt(aij) + COt(ﬁij))

where A; is the sum of the area of all the triangles 7 of the triangulation
75, sharing the ith vertex, proving that the lumped FEM Laplacian DA
corresponds to the Laplacian of Desbrun et al. [6] introduced in this work in
section 2. In this way he connected the FEM approach to Laplacians obtained
from Differential Geometry and Discrete Exterior Calculus [26], [15].

The symmetric graph Laplacian L¢ constrains the graph Fourier matrix V{;
to be orthogonal, while the FEM Laplacian B~ A leaves to its Fourier matrix
V5B more degrees of freedom. The fact that the mass matrix B is con-
structed to exactly represent the dot product in the Galerkin subspace V}, and
that the matrix Vpgy, converges to the sampled spherical harmonics makes
it possible for the FEM filtering to converge towards the continuous filtering
even in cases of non uniform sampling measures [19], while for symmetric

Laplacians there is no convergence result available.

How to interpret the fact that the graph approach constrains the Fourier ma-
trix V[, to be orthogonal is still not clear and will be subject of future work.
However, even given these orthogonality constraints it is sometimes possible to
design graphs with state-of-the-art performances, like the Khasanova-Frossard
graph for the equiangular sampling scheme. Notice that this graph was ob-
tained solving the optimization problem (39) formulated directly in the spatial
(vertex) domain, without relying on the spectral interpretation of the graph
filtering, that in the case of a non uniform sampling presents the problems

discussed above and it is still not clear.
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6 Appendix

In this section we provide the necessary definitions and mathematical concepts
necessary to properly introduce the weak formulation of a differential problem,
the Galerkin method and finally the Finite Element Method.

Linear operators, functionals and bilinear forms A linear operator
L : X — X from the Hilbert space (X,||-]|) to itself is a map such that
L(ax + By) = aLx + fLy. A linear operator on a Hilbert space is continuous
(or bounded) if 3M : |Lz| < Mz. (x,\) are called respectively eigenvector
and eigenvalue of the linear operator L if the image of x through L is a
rescaling of x of factor A i.e. Lx = Ax. The operator L is called self-adjoint
if (Lx,y) = (x,Ly) Vz,y € X. Self-adjoint operators have two important
properties: their eigenvalues are real, and two eigenvectors x,y associated to

different eigenvalues A, u are orthogonal. Indeed

(Lz,y) = (x, Ly),
(Az,y) = (x, ny),
Mz, y) = u(z,y),

that implies (z,y) = 0. If the eigenvectors of a self-adjoint operator L span
the whole space X, then L is called diagonalisable. A linear operator from
a Hilbert space X to R is called a linear functional on X. A functional
is bounded if 3IM > 0 : |Lz| < M |z|]. The normed vector space made
by the set of all linear bounded functionals on X endowed with the norm
|L|| = supyex|Lv|/ ||v| is called the dual space of X and is indicated with
X*. An important property of linear functionals is that for every functional

L € X*, there exists a unique vector u € X such that

Lv = {(u,v) YveX

A bilinear form on the vector space X is a map a(-, -): X x X — F that is
linear with respect to both arguments. It is said to be strongly coercive if
Ja >0 |a(z,z)| > aljz|?, and bounded if IM > 0 : |a(z,y)| < M ||z |y
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The Lax-Milgram theorem Before introducing the Galerkin method the
last thing to do is to state the Lax-Milgram theorem, theorem that is the
foundation of the FEM formulation.

Theorem 6.1 (Lax-Milgram). If a(-, -) is a bounded and strongly coercive
bilinear form on the Hilbert space X, L. € X* is a linear bounded functional

on X, there exist a unique solution f to the following problem:
Find f € X such that a(f,v) = Lv for all v € X (49)

For such f one has || f|| < £ ||L|| where a > 0 is the coercive constant
a(v,v) > o ||v|)* Vo € X.

The Finite Element Method takes a PDE problem in strong form (50), re-
formulates it in the equivalent weak form (49) through suitable definitions of

X,a(-, ), L and finally solves it through polynomial interpolation.

6.0.1 Weak formulation of a PDE and Galerkin Method

Galerkin’s method is a method to approximate the solution f of an infinite
dimensional problem of the form (49) with the solution f;, of a finite dimen-
sional problem. Our goal is now to explain how to write a differential problem
like

Given a regular domain Q C R? and u € C(Q), find f € C*(Q2) such that

_a’ﬂlxl f(X) - arzwzf(x> = U<X) x €Q
f(x)=0 x € 0f)
(50)

in the form 49. Let’s multiply the differential equation times a sufficiently

regular function v that vanishes on 02 and integrate on 2. We obtain

— e Af(x)v(x)dx = [ u(x)v(x)dx x €}
F(x)=0 x € 0f)
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Since the contribution of both f and v on the border 0f2 is zero,

Joq V f-nvdo = 0 and integrating by parts we get

/QVf(X)'VU(X)dX = /Qu(x) -v(x)dx (52)

By defining a(f,v) := [, Vf(x)- Vu(x)dx and Lv := [ u(x) - v(x)dx problem
52 can be written in the form of equation 49. It remains to choose a Hilbert
space (X, (-, -)x) such that (i) X is "big enough" to include those functions
such that all the integrals and derivatives in the problem 52 is well defined.
This means that X must include those functions f such that f, V f are in L*()
and has to be complete with respect to the norm induced by the scalar product
(-, - )x. At the same time X must be (ii) "small enough" to include only those
functions that vanish on the boundary of 2. and (iii) the hypothesis of the Lax-
Milgram theorem are satisfied, i.e. a(-, -) is actually bounded and coercive
and L is bounded and linear. It turns out that such an Hilbert space exists: it
is called H}(92), it contains all the functions v such that v € L*(Q), Vv € L*(Q)

and it is endowed with the scalar product

(u, V) 3 () :/u(x)v(x)dx—i—/QVu(x)-Vv(x)dx

Q

H} contains only those functions that vanish on 6 i.e.
feH(QNC(Q) = f(x)|,q = 0. This means that thanks to Lax-Milgram

theorem the problem

Given u € L*(Q) find f € H,(f2) such that

53
/QVf(x)-Vfu(x)dx = /Qu(x) w(x)dx Vv € Hy(Q) (53)

has one and only one solution in H (). However, to have this result (existence
and uniqueness of the solution) we had to pay the price of looking for the
solution f in H}(Q), a much bigger space than C?(Q) that we had in the
original, strong form of the problem. This means that our solution f € HJ(£2)
to the problem (53) could not be a solution to problem (50), because it could be
not regular enough and the second derivative A f could not exist! Fortunately

there are regularity results - that we omit here - that assure that if the forcing
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term w is regular enough, then also the solution f will be regular and thus the
two formulations - strong and weak - of the problem are actually equivalent,

and thus solving 53 eventually leads to solving 50.

Now that we know that a solution exists, we need to compute it! Computing
it analytically is often impossible; Galerkin’s method in a mathematical tool
provide us a way to compute an approximation of the solution f. Take the weak
problem 49, but restrict the ambient space to be a finite dimensional subspace
of X, say Vj, = span{¢q, ..., ¢,_1}. We write thus the Galerkin problem

Find f;, € V}, such that a(fp,vn) = (up,vp) for all u, € Vj, (54)

The key property of the Galerkin method is that the error f — fj, is orthogonal
to Vp; thus by choosing a sequence of finite dimensional spaces that fill the
original space X, we can get as close as we want to the continuous solution
f. To solve equation 54 we write fj,, up,v as linear combinations of the basis
{0, ... Pn-1}

In = fogo+ fio1 + - fum1Pn—1

Up = UgQo + ULP1 + - Up_1Pp_1 (55)

Up = Voo + V11 + . Vp_1Pn—1

thus obtaining by linearity of the bilinear form and of the scalar product a

linear system of equations in the n coordinates of f,

n—1 n—1
Find f € R" such that Z CL((bZ', ¢j)fj = Z<¢“ gbj)uj foralli=0,..n—1
=0 =0
(56)
Defining the stiffness matriz (A);; = a(¢;, ¢;) and the mass matriz
(B)ij = (¢, ¢;) we can rewrite problem 56 in the following algebraic form
Find f € R" such that Af = Bu (57)

where f,u are the vectors of coordinates of fj,u, with respect to the basis

(1)
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Remark. If the basis functions ¢; are orthonormal, then the mass matrix B is
the identity matrix. Furthermore, the scalar product in the space V), of two
functions wuy, v, is equal to the dot product defined by the mass matrix B in

R™ of the coordinate vectors
(un,vp) = u'Bv (58)

The Galerkin method 54 is well posed by a straight-forward application of the
Lax-Milgram theorem, and thus also the system 57 admits one and only one

solution.

6.0.2 The Finite Element Method

The Finite Element Method is a technique that let us construct a particular
subspace V}, in (54) through polynomial interpolation. Let’s refer again to the
problem 50 defined on the domain ©Q C R? in figure 37.

Figure 37: The domain €2 and its approximation 7

Approximation of the domain (2 First we need to construct a discretiza-
tion of the continuous domain 2. In this example we take the triangulation in
figure 37 T, = {7 : 1 <k < g}, where h € R is a parameter such that every
edge of the triangles 7, € 7}, is smaller than h. 7T} is such that

e The elements 7 € T}, are closed subsets of €2 with pairwise disjoint interior

and Qp, = Urer, T
e The triangulation 7, has no hanging vertices.

It’s clear that by discretizing the continuous domain €2 we introduce a first

source of errors in the method; however for simplicity we won’t take this into
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account in the next discussion, and we will identify the domain €2 with the
domain €2, covered by 7. The quality of the mesh 7T}, is important for a good
solution; a good quality mesh should avoid triangles with extreme angles and
every triangle of 7, should look like as much as possible to an equilateral trian-
gle. In figure 38 we see an example of a bad quality mesh: its triangles look very
stretched; there are vertices that are shared by many triangles and vertices that
are shared by very few. In figure 37 we see a better mesh: there are no stretched

triangles, and every vertex is shared by an almost constant number of triangles.

Choosing V}, and the basis functions ¢; Beyond
X}, explained in section ??, other choices for V}, are
possible. A common choice is the space X? that is the

space of all the piecewise second-order polynomials.

In this case, since every second order polynomial in

R? has 6 degrees of freedom per each triangle 7,
Figure 38: A bad

meaning that we need to know its values in at least 6 .
quality mesh

different points on the triangle 7, to uniquely identify
it, the dimension of the space will grow (figure 39).
A bigger space means that the approximation f;, will
be better, but we’ll need more basis functions to define and thus it will result

in a bigger linear system Af = Bu and higher computational costs.

Figure 39: The degrees of freedom (DOF) for X} and X? on a reference
triangle

Assembling the stiffness and mass matrices Once defined the basis

functions ¢;, the FEM method constructs the stiffness matrix and the mass
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matrix (A);; = a(¢i, ¢;), (B)i; = (¢, ¢;) and solves the linear system 57 for
the coefficients f; of the FEM solution f,. An important fact to notice is both
matrices A and B are sparse and share the same sparsity pattern. Due to the
form of the basis function ¢;, the element (i,7) of these matrices is different
from zero only if the supports of the corresponding basis functions (¢;, ¢;)
overlap, meaning that the vertices (x;, ;) are connected by an edge of the
mesh 7;,. In other words, the number of non-null entries of the i — th row of A
and B is equal to number of triangles of the mesh 7}, that share the 7th vertex

i.e., the degree of the v — th vertex.

About the boundary conditions Note that the Dirichlet boundary condi-
tions in the strong formulation of the differential problem 50 got transformed
in the weak formulation 53 as a condition on the ambient space HJ(£2). Other
kind of boundary conditions (Neumann, Robin for example) would not trans-
late into the condition on the ambient space that functions must vanish on the
border, but instead they would impose a different formulation of the bilinear
form a( -, -) or of the functional L. For this reason, Dirichlet boundary con-
ditions are called essential since translated into a condition on the ambient
space and thus automatically satisfied from the FEM formulation; Neumann
boundary conditions are called natural since they transform into a different
weak formulation through a modification of the bilinear form a( -, -) and/or

the functional L.
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