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Background: Traumatic brain injury (TBI) is recognized as a metabolic disease, characterized by acute cerebral
glucose hypo-metabolism. Adaptive metabolic responses to TBI involve the utilization of alternative energy sub-
strates, such as ketone bodies. Cerebral microdialysis (CMD) has evolved as an accurate technique allowing con-
tinuous sampling of brain extracellular fluid and assessment of regional cerebral metabolism. We present the
successful application of a combined hypothesis- and data-driven metabolomics approach using repeated CMD
sampling obtained routinely at patient bedside. Investigating two patient cohorts (n=26 and n=12), we iden-
tified clinically relevant metabolic patterns at the acute post-TBI critical care phase.
Methods: Clinical and CMDmetabolomics data were integrated and analysed using in silico and data modelling
approaches. We used both unsupervised and supervised multivariate analysis techniques to investigate struc-
tures within the time series and associations with patient outcome.
Findings: Themultivariatemetabolite time series exhibited two characteristic brainmetabolic states thatwere at-
tributed to changes in key metabolites: valine, 4-methyl-2-oxovaleric acid (4-MOV), isobeta-hydroxybutyrate
(iso-bHB), tyrosyine, and 2-ketoisovaleric acid (2-KIV). These identified cerebral metabolic states differed signif-
icantlywith respect to standard clinical values.We validated our findings in a second cohort using a classification
model trained on the cerebral metabolic states. We demonstrated that short-term (therapeutic intensity level
(TIL)) and mid-term patient outcome (6-month Glasgow Outcome Score (GOS)) can be predicted from the
time series characteristics.
Interpretation: We identified two specific cerebral metabolic patterns that are closely linked to ketometabolism
and were associated with both TIL and GOS. Our findings support the view that advanced metabolomics ap-
proaches combined with CMD may be applied in real-time to predict short-term treatment intensity and long-
term patient outcome.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Traumatic Brain Injury (TBI) is a significant cause of death, as each
year, N50million TBIs occurworldwide. TBI is associatedwith large eco-
nomic costs to the healthcare systems, as patients often require inten-
sive care for prolonged periods followed by even longer rehabilitation
periods [1–3].

From a pathophysiological standpoint, TBI can be subdivided into
primary and secondary injuries. Primary injuries result as an immediate
effect of the impacts, whereas secondary injuries often develop within
hours or days after the primary event and are characterized by a
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Research in context

Evidence before this study

Traumatic brain injury (TBI) is recognized as a metabolic disease
with acute impaired glucosemetabolism. The utilization of alterna-
tive energy substrates, such as ketone bodies could be beneficial
for the patients. Cerebral microdialysis (CMD) is an accurate tech-
nique for continuous sampling of brain extracellular fluid and as-
sessment of cerebral metabolism.

Added value of this study

Metabolomics (metabolic profiling) of brain extracellular fluid can
identity different states of brain metabolism during the acute
post-TBI critical care phase. The identifiedmetabolic states are as-
sociated with routinely measured parameters used in clinical set-
tings to monitor the patients' outcome. Ketometabolism was
identified as one of the key components associated to the pa-
tients' outcome, suggesting an implication of brain metabolism
in TBI pathophysiology and the potential for interventions
targeting ketometabolism for TBI neuro-repair. The identified met-
abolic signature could predict short- and long-term patient
outcome.

Implication of all the available evidence

The prediction of short- and long-term patient outcome could po-
tentially be executed in near real-time using a streamlined
workflow encompassing sample collection followed bymetabolo-
mics analysis. This approach could deliver insightful data and po-
tentially have a big impact on patient well-being.
We also believe that thesemetabolic states can bemodified during
their time at the ICU using appropriate nutritional intervention to
alter ketometabolism. Further clinical studies are required to inves-
tigate the flexibility and adaptation of thesemetabolic states to en-
able optimal clinical intervention.
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complex cascade of events, including oedema [4], hypoxia/ischemia, ep-
ileptic seizures. Another important pathological determinant of TBI is
metabolic dysfunction, and indeed TBI may be considered a metabolic
disorder, characterized by a state of cerebral glucose hypo-metabolism
[2,3,5–8].

The cerebralmicrodialysis (CMD) technique has recently been intro-
duced to capture the subtle alterations of regional cerebral energy
metabolism following TBI, allowing sampling of patient brain extracel-
lular fluid and the monitoring of various energy metabolites involved
in cerebral glucose and oxidative metabolism (lactate, glucose, pyru-
vate) [9] and, more recently, in cerebral ketone metabolism (beta-
hydroxybutyrate (bHB), acetoacetate (AcAc)) [7,10]. Cerebralmetabolic
sampling also allows the calculation of the lactate/pyruvate ratio, to
assess brain cell redox state, and the sampling of other molecules,
such as glutamate, as amarker of brain excitotoxicity [11]. CMD is there-
fore well suited to monitor the cerebral metabolic state at the acute
phase of TBI in humans [12].

Keto-metabolismmay play a key role in TBI neuro-repair. In that re-
spect, ketogenic diets [10] and branched-chain amino acids (BCAA) [13]
supplementation are used as nutritional supports and have been shown
to be more efficient than glucose in terms of ATP yields [14], improve-
ment of cognitive performance [15,16], reduction in seizure activity
[15], enhancement of mitochondrial biogenesis and reduction in reac-
tive oxygen species production [14,17]. The beneficial aspects of these
alternative energy substrates might thus not only be restricted to
ketone bodies production, but rather to overall ketometabolism. This in-
cludes several pathways involved in the metabolism of medium-chain
fatty acids (MCFA), BCAA, ketogenic amino acids (KAA) that contribute
directly or indirectly to the production of ketones or acetyl-CoA and
succinyl-CoA. Therefore, we hypothesized that ketometabolism is one
of the main components affecting the brain metabolic state during the
course of TBI as well as one potential therapeutic path for intervention
during and post-trauma.

We report for the first time the successful application of a combined
hypothesis-driven and data-driven metabolomics approach conducted
on CMD samples obtained routinely during patient monitoring. We
combined metabolomics with data modelling and in silico pathway
analysis to define the metabolic state of the patients during the acute
post-TBI critical care phase (Fig. 1).
2. Materials and methods

2.1. Patient cohorts

We initially retrospectively assessed brain ketometabolism in a co-
hort of 26 TBI patients (Study 1) admitted to the Department of Inten-
sive Care Medicine (ICU), at the Centre Hospitalier Universitaire
Vaudois (CHUV)-Lausanne University Hospital, in Lausanne/
Switzerland between 2013 and 2017. We then used a cohort of 12 pa-
tients (validation cohort) to validate our findings (Study 2). A total of
38 TBI subjects from 2 clinical studies were therefore included in the
present analysis. All subjects used for this study were severe TBI pa-
tients with a post-resuscitation Glasgow Coma Scale (GCS) b9 and an
abnormal CT scan (defined by the presence of intracranial lesions [con-
tusions, hematoma]), who underwent brain monitoring with CMD, in-
tracranial pressure (ICP; Codman®, Raynham, MA, USA) and brain
tissue oxygen tension (PbtO2; Licox®, Integra Neurosciences,
Plainsboro, NJ, USA) probes, as part of standard patient care. Approval
for the study was obtained by the Ethical Committee of the University
of Lausanne, informed consent was obtained from each patient's next-
of-kin.

In Study 1,we captured the brainmetabolims of 26 patients in an av-
erage sample rate of approximately 4 h and across the time of their ICU
stay (116±71h). The averageGlasgowOutcome Score (GOS) and ther-
apeutic intensity scores (TIL) across Study 1 are 3.1 (±1.4) and 2.5 (±
1.1) respectively. In Study 2, a smaller set of patients were monitored
for shorter periods of time (maximum 7 days) in a predefined sampling
frequency of 12 h. A summary of the patient characteristics and under-
lying demographics is given in Table 1.
2.2. Sample collection and liquid-chromatography mass spectrometry (LC-
MS) analysis

CMD collection consisted of an intra-parenchymal (sub-cortical
white matter, visually normal brain) catheter (20 kDa cut-off CMA
70®, CMAMicrodialysis AB, Solna, Sweden) thatwas inserted in the op-
erating room following standard of care procedures. The catheter was
constantly perfused (rate: 0.3 μL/min)with a sterile solutionmimicking
cerebrospinal fluid content through a pump (CMA 106®, CMAMicrodi-
alysis AB), as described previously [18,19] and in line with recent con-
sensus guidelines [20].

For Study 1, samples were collected every 60 min, and immediately
analysed at the bedside using a colorimetric enzymatic assay system
(ISCUS FLEX) for glucose, lactate pyruvate, glutamate, and glycerol.
The remaining sample was frozen in liquid nitrogen and kept at −80
°C until the retrospective analysis, representing a total of 1111 samples.
For Study 2, two time points per day over a maximum of 7 days were
prospectively collected representing 128 samples.



Fig. 1. Schematic diagram outlining the workflow of the study. (Panel a was reproduced with friendly permission of https://doi.org/10.1007/s00134-017-5031-6).
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Table 1
Patient demographics in the development and validation cohort.

Study 1 Study 2

Subjects (M/F) 26 (6/20) 12 (9/3)
Average Age [y] (SD) 44.1 (17.0) 56.7 (18.1)
Average Weight [kg] (SD) 80.7 (17.1) 84.6 (12.8)
Average Height [cm] (SD) 175.2 (7.5) 172.7 (6.5)
Average Glasgow Outcome Score [1](SD) 3.14 (1.39) N/A
Average Therapeutic Intensity Score [1](SD) 2.54 (1.07) 2.93 (0.75)
Number of deceased patients 5 N/A
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2.3. Chemicals and reagents

Liquid-chromatography mass spectrometry (LC-MS) grade acetoni-
trile and isopropanol were purchased from VWR Internationals (Leu-
ven, Belgium) and Merck (Darmstadt, Germany), respectively. Water
was purified in-house using a Milli-Q Advantage A10 system from
Merck Millipore (Billerica, MA, USA). Acetic acid was supplied by
Sigma-Aldrich (St-Louis, MO, USA). Pure chemicals used as external
standards were purchased from Sigma-Aldrich (St-Louis, MO, USA),
Larodan Fine Chemicals AB (Malmoe, Sweden), Toronto Research
Chemicals (Toronto, ON, Canada), and Cambridge Isotope Laboratories
Inc. (Tewksbury, MA, USA). 2H and 13C labelled compound were ob-
tained from Sigma-Aldrich (St-Louis, MO, USA), Larodan Fine Chemicals
AB (Malmoe, Sweden), Toronto Research Chemicals (Toronto, ON,
Canada), Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA),
and CDN Isotopes (Pointe Claire, QC, Canada) and used as internal stan-
dards. Perfusion Fluid CNS was bought from Harvard Apparatus
(Holliston, MA, USA) and used as a blank matrix.

2.4. Preparation of internal and external standards

Individual 100 μM stock solutions of each internal standard were
prepared from the corresponding commercially available powder and
stored at−20 °C. On the day of analysis, a 0.1–0.5 μM internal standards
mixture in mobile phase A was prepared and used for calibration stan-
dards and samples preparation. External standards were prepared sim-
ilarly: individual 25–100 mM stock solutions of each analyte were
prepared from the corresponding commercially available powder and
stored at −20 °C. Then, a mixture of all analytes (concentration
0.06–1 mM) in methanol/water (1:1) was prepared. Different volumes
of the analytes and internal standards solutions were then mixed, and
the volume of each standardwasmanually adjusted to 0.5 mLwithmo-
bile phase A. A series of 8 calibration standardswas obtained and further
diluted by mixing 15 μL of each solution with 15 μL of perfusion fluid
CNS in a PCR plate. The platewas sealed, placed in a Thermomixer Com-
fort C maintained at 4 °C and shaken for 5 min at 1000 rpm. After this
mixing step, the calibration standards (approximate concentrations of
0.005–100 μM) were placed in the autosampler and analysed.

2.5. Sample preparation

CMD samples from consecutive time points were pooled until a vol-
ume of 15 μL was obtained. 15 μL of sample were pipetted and mixed
with 15 μL of dilution solution (0.1–0.5 μM internal standards solution
in mobile phase A) in a PCR plate. The plate was sealed, placed in a
Thermomixer Comfort C (Eppendorf AG, Hamburg, Germany) main-
tained at 4 °C and shaken for 5 min at 1000 rpm. The plate was placed
in the autosampler and samples immediately analysed.

2.6. Liquid chromatographic separation and mass spectroscopic detection

LC-MS was performed on a I-Class UPLC system (Waters Corpora-
tion, Milford, MA, USA) combining a binary pump, a FTN autosampler
and a column oven. Chromatographic separation was achieved on a
Waters ACQUITY UPLC BEH C8 Column, (100× 2.1mm, 1.7 μm)with bi-
nary solvent system at a flow rate of 450 μL/min. Mobile phase A was
0.1% acetic acid in water and B was 0.1% acetic acid in acetonitrile/
isopropanol (1:1). The binary solvent gradient was as follow:
0.0–1.0 min at 0% B, 1.0–6.5 min from 0% to 100% B, 6.5–8.5 min 100%
B, followed by 2 min of equilibration at initial conditions. Column
oven temperature was set to 55 °C and the autosampler injection vol-
ume to 1 μL.

High-resolution mass spectrometric analysis was performed on a
Thermo Scientific Q Exactive Plus instrument (ThermoFisher Scientific,
Bremen, Germany). Detection was performed in data dependent mode
(top 3) in negative and positive ionization modes in two separated in-
jections. Instrument parameters were identical for both ionization
modes and were as follow: for MS1, mass range m/z 65–600, resolving
power of 35′000 (at m/z = 200), automatic gain control (AGC) target
5e6, maximum injection time 120 ms. For MS2, resolving power of 17′
500 (at m/z = 200), AGC target 1e5, maximum injection time 50 ms,
isolation window 2 Da, normalized collision energy (NCE) 40, intensity
threshold 3e5, dynamic exclusion 5 s.

The mass spectrometer was interfaced to the UPLC system using a
HESI probe. The spray voltage was set to−4.3 kV or + 4 kV depending
on the ionization mode. For both positive and negative ionization
modes, heater and capillary temperatures were set to 350 °C, sheath
gas flow rate to 45 arbitrary units (AU), auxiliary gas to 15 AU and
sweep gas to 1 AU. The instrument was calibrated every four days ac-
cording to manufacturer specifications.

2.7. Mass spectroscopic data analysis

MS data analyses were performed with Xcalibur software 4.0
(ThermoFisher Scientific, Bremen, Germany). MS1chromatograms
were extracted using a mass tolerance of 5 ppm and signals were inte-
grated with the ISIS algorithm.

2.8. Hypothesis-driven in silico modelling approach to define the
ketometabolic impact space

We first defined a search space of potential key metabolic compo-
nents impacting TBI in a hypothesis-driven manner. Building on the
clinically known relevance of AcAc, bHB, lactate and pyruvate, we
used the RECON 2.2 (human genome scale metabolic model) to search
the neighbourhoodmetabolic space [21,22]. This was defined by identi-
fyingmetabolites connected to thosementioned above by less than four
metabolic reactions, using the information in the stoichiometric matrix.
The entire space obtained (illustrated in S1 Figure), consisted of 555
metabolites, spread across different compartments. Amongst these,
we selected 57 unique metabolites (highlighted in yellow in S1 Figure)
based on four criterions; a) less than equal to three steps upstream from
the key metabolites of interest (bHB and AcAc), b) interconnected to
greater than five other metabolites identified in the search globally,
c) previous literature evidence of implication in ketometabolism, and
d) feasibility to measure usingMS-based metabolomics. In total 57 me-
tabolites relevant in the context of brain metabolism were detectable.
Following quality control procedures 40 out of the 57 metabolites
were used for subsequent statistical data analysis. The metabolites
are mostly related to metabolism of KAA, BCAA and MCFA, and repre-
sent notably a source of energy by either providing acetyl-CoA,
succinyl-CoA or ketones to the TCA cycle. The final list of species
selected for further measurement and analysis is tabulated in S1
Table Supplementary_Table_Hypothesis_Driven_List_Metabolites_1.
xlxs.

2.9. Data aggregation across multiple sources

Alongside the metabolomics data a wide array of additional time-
resolved metadata variables was available. These notably included



Fig. 2. Metabolic states derived using hierarchical cluster analysis.
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systemic physiologic parameters (e.g. temperature, and oxygen
saturation), cerebral physiologic and metabolic variables (e.g. ICP,
CMD-derivedmetabolites). Ona per-subject level, clinically relevant de-
mographic data such as age, gender, weight, height, type of brain injury,
days of hospital stay and the ultimate patient outcome, were collected.
A summary of all available metadata variables is given in S2 table. We
developed a unified data warehousing system that aligned the hetero-
geneous datasets via stable identifiers and unique timestamps allowing
subsequent data pre-processing and analysis, which could be executed
in a straightforward way.

2.10. Data pre-processing

The acquired metabolomics data resulted in a feature vector
representing 40 molecules. For every patient, each feature vector was
annotated with the exact timestamp of sample acquisition in coordi-
nated universal time (UTC) and were concatenated into multivariate
time series. Due to the variable nature of patient treatment and sample
acquisition, the obtained time series were of different length and tem-
poral resolution for each subject.

2.11. Statistical data analysis

In a first step, we investigated the entirety of the metabolic time se-
ries using an unsupervised approach with the goal of identifying time-
segments of similar metabolic behaviour across patients. As we were
primarily interested in the dynamic aspects of brain metabolism, we
scaled the individual time series to unit variance before combining all
data to a master matrix. We then performed Ward's algorithm on the
mastermatrix to calculate similarities between themetabolic snapshots
and to construct a dendrogram. We then secondly investigated the sig-
nificant metabolic differences between the temporal segments (called
“brain metabolic states”) as well as the associations with available clin-
ical metadata using univariate statistical approach.

Thirdly, to test the feasibility of building predictive model capable of
classifyingmetabolic states in new patient data, we mathematically de-
scribed the metabolic states with the help of a classification model,
which we constructed using an extreme gradient boosting approach
[23] trained using a 10 × 10 cross-validation procedure.

In a fourth and last step, we investigated possibility of building su-
pervisedmultivariatemodels to associate the brain-specific TIL compos-
ite scale, a reliable measurement instrument with a high degree of
validity for assessing therapeutic intensity and the aggressiveness of
care necessary to control elevated ICP in severe TBI patients [24] as
well as the 6-month patient outcome using the GOS – using the time se-
ries data. As the time series were of unequal length across the patients,
we calculated secondary variables (so called time series descriptors or
time series proxies) to extract relevant time series characteristics. This
approach allowed us to obtain equal number of variables permetabolite
and patient whilst retaining most of the relevant time series character-
istics. In total 10 descriptors were calculated for each time series which
are summarised in S1 table. For themodellingwe predominantly used a
partial least squares (PLS) regression approach [25]. In addition,we also
tested the feasibility of using a more advanced Long-Short-Term Mem-
ory Network (LSTM) approach [ 26] for use on multivariate metabolic
time series data.

3. Results

3.1. The stratification of brain metabolic states using unsupervised multi-
variate analysis

We used an unbiased data-driven approach to investigate the pa-
tient ketometabolic states during their ICU stay. As stated, around 43
time points were available for each patient describing 116 ± 71 h of
monitoring on average. Hierarchical clustering revealed the presence
of two distinct metabolic states (Fig. 2) which were projected back on
the original patient time lines resulting in characteristic barcode
patterns depicted in Fig. 4. Statistical analysis revealed that valine,
4-methyl-2-oxovaleric acid (4-MOV), isobeta-hydroxybutyrate (iso-
bHB), tyrosyine, 2-KIV, leucine, threonine, phenylalanine, methionine,
and butyrylcarnitine are significantly higher in state “A” compared to
“B”. The complete list of metabolites and their corresponding p-values
are shown in Table 2. We also trained a metabolic state classification
model on the data. Using 10 × 10 cross-validation we were able to
achieve AUC value of 0.9943 for the hold-out data (Fig. 3a).Weobtained
the top 10 variables with the highest gain contribution from the model
as visualized in Fig. 3b.

3.2. Association between brain metabolic states and clinical outcomes

Here, we further investigated if the found metabolic states were as-
sociated with brain metabolic and physiological variables. We observed
that the clusters were significantly associated with the clinical standard
values of CMD glucose, lactate, pyruvate and glutamate (p b .0001)
(Fig. 6). This means that metabolic state “A” has higher levels of CMD
lactate, pyruvate and glucose compared to metabolic state “B” while
CMDglutamate and ICP is lower in state “A”. Differences in ICPwere sig-
nificant (p b .0001) betweenmetabolic states; on the contrary however,
the differences in brain tissue oxygen tension (PbtO2) as well as the lac-
tate/pyruvate ratio were not significant between the metabolic states.
Based on the currently available evidence for clinical practice, we con-
clude that the metabolic state “A” overall is a healthier state compared
to themetabolic state “B”.We also investigatedwhether the average du-
ration of a patient in a given state can be associated to patient outcome.
On average patients spent 46.8 h (±29.7 h) in state “A” and 70.2 h (±
49.8 h) in state “B”; individuals transitioned between states at different
frequency and with different duration. The patterns of transitions be-
tween metabolic states vary considerably across patients as shown in
Fig. 4. For some patients the duration in a given metabolic state only
lasts a few hours whereas others can stretch up to numerous days. We
argue that additional investigation is necessary to better understand
the underlying manifestation of the brain metabolic states as they
allow a real-time window into the brains metabolic status.

3.3. Prediction of patient outcome based on the longitudinal brain meta-
bolic signature

In order to investigate whether the information contained in the
brain metabolic time series can be utilised to predict near-term and
mid-term patient outcome, we constructed regression models for the
TIL and GOS. For the TIL model, the root mean square error (RMSE) of
the PLS prediction model was 0.1436, which corresponded to a r2



Fig. 3. a. Receiver Operating Characteristic (ROC) curve for the metabolic state gradient
boost classification model (top 10 variables). b. Variable importance (based on gain
contribution) for the metabolic state gradient boost classification model (top 10
variables).

Fig. 4. Temporal distribution of identified metabolic state

Table 2
Significantly different metabolites between metabolic states.

Metabolite P-value after FDR correction Significant

Valine 1.896E-142 Yes
4-Methyl-2-oxovaleric acid 9.782E-138 Yes
iso-BHB 1.629E-131 Yes
Tyrosine 4.966E-130 Yes
2-Ketoisovaleric acid 2.701E-124 Yes
Leucine 9.875E-118 Yes
Threonine 1.058E-116 Yes
Phenylalanine 5.296E-116 Yes
Methionine 1.883E-110 Yes
Butyrylcarnitine 9.731E-101 Yes
3-Hydroxyisovaleric acid 6.713E-94 Yes
Isoleucine 1.699E-90 Yes
3-Methyl-2-oxovaleric acid 7.877E-89 Yes
Propionylcarnitine 1.803E-86 Yes
3-Hydroxydecanoic acid 3.331E-84 Yes
3-Hydroxyhexanoic acid 9.483E-84 Yes
Glutarylcarnitine 9.236E-71 Yes
Hexanoylcarnitine 9.288E-68 Yes
Octanoylcarnitine 1.600E-63 Yes
Decanoylcarnitine 3.754E-63 Yes
2-Hydroxybutyric acid 5.106E-60 Yes
3-Hydroxypentanoic acid 8.771E-48 Yes
Pyroglutamic acid 9.028E-47 Yes
2-Hydroxyisovaleric acid 1.229E-46 Yes
Pantothenic acid 6.759E-44 Yes
3-Hydroxyoctanoic acid 4.141E-41 Yes
Suberic acid 3.607E-32 Yes
Glutamic acid 5.747E-27 Yes
Acetoacetate 2.480E-24 Yes
2-Hydroxydecanoic acid 7.342E-20 Yes
Sebacic acid 1.185E-16 Yes
8-Hydroxyoctanoic acid 9.649E-16 Yes
Hexanoic acid 7.387E-14 Yes
2-Hydroxyoctanoic acid 2.015E-12 Yes
BHB 1.257E-09 Yes
Decanoic acid 6.882E-09 Yes
10-Hydroxydecanoic acid 6.510E-04 Yes
Taurine 1.418E-03 Yes
Octanoic acid 6.721E-02 No
Dodecanoic acid 5.791E-01 No
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value of 0.9851 between the actual and predicted TIL values (see
Fig. 7a). Inspecting the variable contribution for the PLS revealed that
10-hydroxydecanoic acid (10-OH-C10), suberic acid, bHB, 8-
hydroxyoctanoic acid (8-OHC8), 2-hydroxyoctanoic acid, dodecanoic
acid, glutamic acid, acetoacetate, butyrylcarnitine and isoleucine were
s (blue = “A”, red = ”B”) across patient trajectories.



Fig. 5. Temporal distribution of identified metabolic states (blue = “A”, red = ”B”) across external patient trajectories.
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the 10 most relevant metabolites for the model. The fact that a model
with a high r2 value could be built indicates that metabolic time proper-
ties (described via time series descriptors) can serve as useful input var-
iables for TIL score prediction since they ultimately capture altered
metabolic pathway characteristics.

We also tried to use the PLS approach to model the GOS, but it
proved to be inefficient. We therefore tested the potential of a LSTM
to model the GOS. Since the dataset is comparably small for training a
neural network architecture, we multiplexed our training data set by
adding random noise to the raw temporal trajectories. Again, cross-
validation was carried out in leave-one-patient validation method. The
r2 value of the best neural prediction model was 0.7320 (see Fig. 7b).

3.4. Further validation of findings with a second clinical cohort

To evaluate the hypothesis derived from Study 1, we used the data
from Study 2 comprised of 12 patients. First, we performed Principal
Component Analysis as well as Hierarchical Cluster Analysis. This pri-
mary investigation revealed that no systematic difference exists be-
tween both data sets, which allowed the additional samples to be
utilised for the validation of our models (data not shown). We then ap-
plied the “metabolic state classification model” that we developed on
Study 1 data to the new data from Study 2. Results showed that the
model was capable to recognise the metabolic states in unseen patients
with high level of confidence (89.8% of the samples were assigned class
membership probabilities of 90% and higher). Following the prediction,
we then mapped the metabolic states onto the patient time series
(Fig. 5). Visual comparison with the sequence patterns of two different
states was obtained from the Study 1 patient set (Fig. 4).

In a second phase we also investigated the possibility of testing the
TBI prediction model on the validation cohort. As the validation cohort
was acquired at a much lower sampling frequency (every 12 h) com-
pared to the development cohort (~4 h on average) we could not di-
rectly apply the existing model as such. To overcome this limitation,
we resampled the time series from Study 1 with the help of an interpo-
lation procedure to match the characteristics of the development co-
hort. This approach made the time series and as such the descriptor
calculation comparable but still could not compensate for the lack of
more detailed temporal features in the validation cohort. To address
whether a TIL prediction is nevertheless possible despite the bias in
sample acquisition we build a new (hybrid) PLS model combining
both data sets and with a leave-one-out validation approach. The r2

value for the development cohort samples was 0.9492 and 0.9478 for
the validation cohort respectively (Fig. 7c).

4. Discussion

Herewe report for thefirst time the successful application of ameta-
bolomics approach conducted on CMD samples obtained routinely dur-
ing patient monitoring. Given the limitation on the amount of CMD
samples and in order to optimize the outcome, we used the combina-
tion of hypothesis-driven and data-driven metabolomics to capture
themost relevant metabolites that are important for defining themeta-
bolic state of the TBI patients upon their admission and during their stay
in critical care unit. We were able to quantify the temporal trajectories
of 40 brain relatedmetabolites throughout the course of themonitoring.
The cerebral metabolic patterns predominantly identified in our study
include severalmetabolites that are crucially involved in ketonemetab-
olism, thereby suggesting an implication of human brain
ketometabolism in TBI pathophysiology and the potential for interven-
tions targeting ketometabolism (e.g. supplemental bHB, MCFA, BCAA)
for TBI neuro-repair.

When analysing the entirety of the available time series data in
unsupervised way, we showed that patients undergo different brain
metabolic states, which (in some cases) can last up to several days
(Fig. 4). The groupings – obtained through hierarchical cluster analysis
– are statistically significant with respect to many metabolites with
valine, 4-MOV, iso-bHB, tyrosine, 2-KIV, and leucine amongst the most
significant variables (Fig. 2; Table 2). Investigating the external time-
resolved data revealed that lactate, pyruvate, glucose and glutamate
measured in the CMD samples are significantly different between the
brainmetabolic states (Fig. 6) whereas blood glucose is not significantly
different.

We further investigated the association between the identified
metabolic and parameters that are routinely measured in clinical set-
tings to monitor the patients' outcome, namely lactate, pyruvate,
glutamate, and ICP. In particular, results revealed increased brain lac-
tate, glucose and pyruvate, and decreased brain glutamate, arterial
haemoglobin and ICP with state “A” as compared to state “B”. There
are other markers such as UCH-L1 and GFAP which have been associ-
ated with TBI [27,28]; however we have not looked into association
with these markers as they are not currently used in our center to
monitor TBI patients.

The neuroprotective role of lactate has been extensively studied dur-
ing the past few years. In particular, intracerebroventricular injection of
lactate was shown to reduce lesion size and improve neurologic deficits
after middle cerebral artery occlusion in mice [29]. Interestingly, lesion
size was positively correlated with ICP in TBI patients [30], and reduced
ICP was associated with reduced brain swelling and water content in a
rat TBI model [31]. Moreover, administration of hypertonic sodium lac-
tate increased cerebral bloodflowby causingvasodilation of cerebral re-
sistance vessels [32,33]. In an in vitro ischemia model, lactate was
shown to increase TREK1 expression, and therefore to protect against
excitotoxicity by promoting efficient potassium buffering and gluta-
mate clearance [34].

The exact mechanisms causative of the observed temporal patterns
are unclear at the moment and warrant further investigations on larger
clinical cohorts. However; we suggest that it could potentially serve as a
tool to assess the real-time (i.e. duringmonitoring) brainmetabolic sta-
tus in TBI patients. We proved the feasibility of recognising the



Fig. 6. Associations of external time-resolved variables with brain metabolic states.
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described metabolic states in unseen patient data with the help of a
mathematical model which in theory could facilitate a real-time patient
assessment. Also, overlaying the differentiating metabolites for the two
states (“A”/“B”) with the human genome scalemetabolic model, we can
hypothesize that themost impacted/impacting pathways could include
fatty acid oxidation, valine, leucine and isoleucine metabolism, folate
metabolism, methionine and cysteine metabolism, urea cycle, and glu-
tamate metabolism (S2 Figure).

In an early clinical study, it was shown that TBI causes a nitrogen im-
balance in which nitrogen excretion exceeds nitrogen uptake [35], sug-
gesting increased protein breakdown. Indeed, the principal source of
excreted nitrogen is urea, which is generated from deamination of
amino acids, such as valine, tyrosine, leucine, threonine, phenylalanine,
and methionine.
Valine, leucine and isoleucine (which precursor is threonine [KEGG
database]) [36–38] are part of the BCAA. After crossing the blood-
brain barrier, BCAA are notably involved in the synthesis of the excit-
atory neurotransmitter glutamate, which is in turn a precursor of the
inhibitory neurotransmitter γ-aminobutyric acid (GABA) (through glu-
tamate decarboxylase). This suggests that, besides being involved in the
nitrogen balance, BCAA might play a key role in excitatory-inhibitory
circuitry in the brain of TBI patients [39]. In rodent models of TBI, oppo-
site shifts in circuit excitability and disruption in inhibitory synaptic
function [40,41], which were associated with a decrease in brain BCAA
levels, have been observed [41]. Upon dietary supplementation of
BCAA, hippocampal synaptic efficacy was restored leading to the
improvement of cognitive performance [41,42]. Noteworthy, such a de-
crease in BCAA (as well as their derivative metabolites, such as 4-MOV)



Fig. 7. a. Predicted vs. actual TIL using ketometabolic pathwaymolecules as input data for
PLS regression with leave-one-out validation (Study 1). b. Predicted vs. actual GOS (6 m)
using ketometabolic pathway molecules as input data for neural net with leave-one-out
validation. c. Predicted vs. actual TIL using ketometabolic pathway molecules as input
data for hybrid PLS regression with leave-one-out validation for Study 1 (blue) and
Study 2 (red).
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was observed in plasma of TBI patients [16,43], and not only was found
to correlate with elevated ICP [43], but supplemental BCAA also en-
hanced cognitive recovery [16] and increased plasma tyrosine levels
[16,44]. In this respect, phenylalanine, which only differ by one hydroxy
group from tyrosine, was found elevated in plasma of TBI patients and
was associated with beneficial decrease in ICP [45]. In addition, both ty-
rosine and phenylalanine are precursors of catecholamine [46] and in-
volved in folate metabolism, which have been linked to TBI [47,48].

Glutamate molecules in the synaptic cleft are prone to induce
excitotoxicity if not adequately cleared [49]. In linewith this, acute post-
traumatic glutamate release has been implicated in being responsible
for excitotoxicity following TBI leading to neuronal injury, cell death
and dysfunction of surviving neurons [50].

Alternatively, valine can also be converted into 2-KIV, which can be
released from glia through monocarboxylate transporter 1 (MCT1) [51]
and transported into neurons, where it could either modulate the me-
tabolism of glutamate [52] or be used as an alternative energy substrate
via formation of succinyl-CoA [52,53]. Interestingly, succinate was re-
cently proposed to support brain energy metabolism in TBI patients,
as its focal administration potentiated brain metabolism [54,55]. It
was also suggested that, as a ketoacid, 2-KIV can protect against oxida-
tive stress in reacting with hydrogen peroxide [52,56]. Iso-bHB, simi-
larly as its precursor 2-KIV, can be released in the extracellular space
through MCT1, re-enter valine catabolic pathway via 3-
hydroxyisobutyrate dehydrogenase and further be used as an alterna-
tive energy substrate or serve as an anaplerotic function for the TCA
cycle (i.e. new synthesis of glutamate/GABAmolecules) [52,57]. Finally,
methioninewas identified as a key differentiator between themetabolic
states “A” and “B”. Reduced availability of methionine in the plasma of
severe TBI patients [58] and in the brain of TBI rats [59] were reported
and suggested to alter multiple cellular processes, including protein
synthesis, epigenetic regulation of gene expression, cytoprotection
against oxidative stress and cellular transport of amino acids inmultiple
organs (including the injured brain).

When we analysed the available time series data with supervised
modelling techniques, we showed that a PLS approach can predict TIL
with high accuracy (r2 = 0.9851 on the development cohort and r2 =
0.9478 on the validation cohort). The TIL score is an aggregatemeasure-
ment taking several patient parameters such as ICP, hypocapnia levels,
levels of CSF drainage as well as body temperature [24] into consider-
ation and is widely used in clinical practice. Predicting the TIL score
from metabolomics data in clinical practice would facilitate an alterna-
tive way to assess patients within a very short time frame. In particular,
in this analysis we found important contribution from ketone bodies, as
well as MCFA and BCAA.

In their rat model, Prins et al., demonstrated an increased in MCT2
expression after TBI, suggesting enhanced ketones uptake and utiliza-
tion under such conditions [60]. The correlation between brain and
plasma bHB (with larger plasma bHB than brain bHB) observed in the
present study is thus in line with potential utilization of ketones from
the circulation. Yet, bHB oxidation result in higher ATP production, as
compared to glucose [61] and to an increase in NAD+/NADH ratio,
which notably protects against oxidative stress [14]. Other beneficial ef-
fects of bHB administration were notably associated to a decrease in ce-
rebral edema formation through the improvement of energy
metabolism following ischemia in rats [62] and an increase in cerebral
blood flow [63]. AcAc also resulted in a reduction of glutamate-
induced toxicity both in vivo and in vitro [64]. Interestingly, it was
shown that plasma bHB and AcAc, which correlated with CSF levels al-
though not significantly, were low in acute brain injury patients, and
that ketone supplementation was required to increase their concentra-
tions to clinically relevant levels [65].

Regarding fatty acids, 10-OH-C10, suberic acid and 8-OH-C8 areme-
tabolites of ω-oxidation. W-oxidation is prominent in the brain, and,
unlike β-oxidation, occurs in both neurons and glia [66]. Products of
ω-oxidation are oxidized in the cytosol to their dicarboxylic analogs,
and then β-oxidized in peroxisomes, stimulating therefore peroxisome
proliferation and modulating fatty acid binding proteins [66,67].

Regarding GOS prediction, we were able only to detect a moderate
(r2 = 0.7320) association with the metabolomics data. Predicting the
GOS from the time series was more difficult and did not yield the
same degree of predictive performance compared to the TIL model.
LSTM are currently one of themost powerful approaches in artificial in-
telligence andmachine learning but really excel when trained on larger
training data sets. We therefore suggest to further investigate the ro-
bustness of this approach using data obtained from a larger patient
cohort.

We would like to emphasize that the available study data was af-
fected by a variety of limitations that can be summarised as follows:
firstly, the overall cohort sizes are comparably small with only 26 sub-
jects in the first and only 12 subjects in the second study.We retrospec-
tively calculated a power analysis for both cohorts in context of the
investigation with the TIL. Assuming an effect size f2 of 0.15 and an
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error probability of 0.05 and further setting the number of predictors to
4 (representing the number of PLS components used in the model) and
using a one-tailed linearmultiple regressionmodel, a power of 0.60was
determined for the first and 0.33 for the second cohort. The combined
power of 0.75was determined for the combination of both cohorts. Fur-
thermore the type, location, and severity of the brain injuries as well as
the underlying demographics vary amongst the individuals. In addition,
the number of available time points as well as their corresponding tem-
poral resolution varied considerably amongst patients. Thirdly, the
characteristics of this study reflect the reality in an ICU environment
with sample collection merely conducted as an add-on to a very de-
manding patient care environment.

Despite the limitations, we strongly believe that investigating brain
metabolism using comprehensive metabolomics approach coupled to
themicrodialysis sampling described in this study can provide valuable
and novel insights into the brainmetabolic states, which is currently not
possible with other technologies. A streamlined sample collection and
subsequent metabolomics workflow could deliver data within a short
timeframe and potentially having a big impact on patient well-being.
To the best of our knowledge, this is the first report of the discovery
and characterisation of metabolic states in the TBI patient. The predic-
tion of short-term and long-term patient outcome using advanced
metabolomics approach can be potentially executed in real-time as
new samples become available and be used to monitor the brain meta-
bolic states.

In addition to monitoring the patients, our working hypothesis is
that these metabolic states can be modified during their time at the
ICU using appropriate nutritional intervention to alter ketometabolism.
Further clinical studies are required to investigate the flexibility and ad-
aptation of thesemetabolic states to enable optimal clinical intervention
(Fig. 8).
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