usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Secured Routines: Language-based Construction

of Trusted Execution Environments
Adrien Ghosn, James R. Larus, and Edouard Bugnion, EPFL

https://www.usenix.org/conference/atc19/presentation/ghosn

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.
July 10-12, 2019 « Renton, WA, USA
ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference
is sponsored by USENIX.

Secured Routines:
Language-based Construction of Trusted Execution Environments

Adrien Ghosn

James R. Larus

Edouard Bugnion

EPFL, Switzerland

Abstract

Trusted Execution Environments (TEEs), such as Intel SGX
enclaves, use hardware to ensure the confidentiality and in-
tegrity of operations on sensitive data. While the technology
is available on many processors, the complexity of its pro-
gramming model and its performance overhead have limited
adoption. TEEs provide a new and valuable hardware func-
tionality that has no obvious analogue in programming lan-
guages, which means that developers must manually partition
their application into trusted and untrusted components.

This paper describes an approach that fully integrates
trusted execution into a language. We extend the Go lan-
guage to allow a programmer to execute a gorout ine within
an enclave, to use low-overhead channels to communicate be-
tween the trusted and untrusted environments, and to rely on
a compiler to automatically extract the secure code and data.
Our prototype compiler and runtime, GOTEE, is a backward-
compatible fork of the Go compiler.

The evaluation shows that our compiler-driven code and
data partitioning efficiently executes both microbenchmarks
and applications. On the former, GOTEE achieves a 5.2
throughput and a 2.3 x latency improvement over the Intel
SGX SDK. Our case studies, a Go ssh server, the Go tls
package, and a secured keystore inspired by the go-ethereum
project, demonstrate that minor source-code modifications
suffice to provide confidentiality and integrity guarantees with
only moderate performance overheads.

1 Introduction

Our era is defined by the emergence of a digital society
in which established notions of privacy, confidentiality, and
trust are undercut by the shortcomings of today’s technology,
which is increasingly reliant on cloud computing. In the cloud,
developers and users implicitly trust the cloud provider but
are still susceptible to: (1) hardware and firmware flaws, such
as the recent Meltdown [41] and Spectre [36] attacks, (2) vul-
nerabilities within the hypervisor [3], (3) exploits in libraries

and Software as a Service (SaaS) infrastructures [1,2,4,5], (4)
malicious employees with physical and administrative access
to both computer and storage resources, and (5) intrusive or
extra-territorial government surveillance [10, 12, 18].

To address these concerns, processor vendors, following
ARM’s lead [9], introduced Trusted Execution Environments
(TEEs), a hardware mechanism based on memory encryption
and attestation that isolates program execution and state from
the underlying operating system, hypervisor, firmware, [/O
devices, and even people with physical access to a machine.
TEEs have been portrayed as the solution to the problem of
trust in the cloud [16, 17,39, 51]. In particular, Intel SGX [6]
partitions hardware and software into two mutually distrustful
domains: a CPU, trusted user code, and a specified region of
memory form the trusted domain, while the remainder of the
hardware and software form the untrusted domain. SGX en-
claves execute trusted user code in a trusted domain. Entering
an enclave guarantees, through hardware, the confidentiality
and integrity of the enclave’s code, data, and execution.

Despite SGX’s availability on current-generation proces-
sors, uptake has been slow, probably due to the absence of
support on server-grade CPUs, the difficulty of programming
enclaves, their performance overhead, and the need to refactor
applications. The private messaging application Signal [43] is
one of the few applications that appears to use enclaves, and
Microsoft Azure only recently offered the first cloud solution
to expose SGX features [42,45]. A major challenge is that this
new technology lacks a clear programming model. Previous
solutions fall into two broad categories: (1) run complete user
applications in the trusted domain [16,17] and (2) separate the
portions of a program that require trusted execution [7, 8,40].
Solutions in the first category provide an abstraction, such
as an operating system [17] or a container [16], to execute
unmodified applications in an enclave. The other alternative
requires a developer to identify and partition [7, 8, 46], or
provide annotations that a program analysis tool can use to
partition [40], an application into trusted and untrusted com-
ponents. None of these prior approaches integrates the TEE
into language-specific abstractions and semantics.

USENIX Association

2019 USENIX Annual Technical Conference 571

This paper describes an approach that fully integrates
trusted execution into a modern programming language in
an appropriate manner. We extend the Go language to allow
a programmer to execute a goroutine within an enclave,
to use low-overhead channels to communicate between the
trusted and untrusted environments, and to rely on the com-
piler to automatically extract the code and data necessary to
run the enclave. Our solution provides language support for
trusted execution that is idiomatically compatible with the Go
programming language.

We introduce secured routines, a new language-based fea-
ture that hides the hardware intricacies with little overhead. A
secured routine is a user-level thread that executes a closure,
i.e., a function call, in the enclave at the request of untrusted
code. The secured routine abstraction cleanly distinguishes
trusted and untrusted code. Communications between the two
domains are possible solely via cross-domain channels, an
extension to native Go channels that deep-copies values to
prevent cross-domain pointer references.

GOTEE extends the Go programming language with a sin-
gle keyword, gosecure, to identify secured routines. GOTEE
is an open-source fork of golang/go [15]. Starting from
gosecure calls, the compiler identifies the minimal code re-
quired within the enclave and extracts it into a statically-
linked trusted binary. Trusted and untrusted domains have
their own runtime, memory management, and scheduler. GO-
TEE coordinates interactions between trusted and untrusted
code, replaces control transfers between these domains with
inexpensive synchronized data transfers using strongly-typed
cross-domain channels.

Our contributions include:

e A language-based, expressive, strongly-typed, high-
performance, remote-execution model for TEEs that
strengthens isolation between trusted and untrusted code.

e A practical implementation of these ideas using the Go
programming language and runtime. Our evaluation using
microbenchmarks demonstrates that an enclave core serv-
ing secured routines can achieve 5.2 the throughput of
domain-crossing control transfers.

e A demonstration that secured routines provide an expres-
sive model to implement secured applications: we parti-
tioned the t1s module (a built-in Go library), protected a
full ssh server, and extended the go-ethereum keystore (a
popular cryptocurrency client) to isolate all operations that
access private keys and certificates without a significant
loss of performance.

We describe the necessary background (§2), the secured
routine abstraction (§3), the implementation of GOTEE (§4),
and evaluate it using both microbenchmarks and three
security-sensitive applications (§5). Finally, we discuss possi-
ble architectural improvements in §6, related work in §7, and
conclude in §8.

untrusted process A

trusted enclave
eexit

AESM + f *

1)

eenter eresume)
secure
W syscall

OS Kernel L SGX driver)

AEXY

Figure 1: Trusted Execution Environments with Intel SGX;
the enclaves and trusted parts are colored.

2 Background

2.1 Intel Software Guard Extension

Intel Software Guard Extension (SGX) [6], introduced in
2015 with Intel’s sixth generation Skylake processor, allows
user-level creation of enclaves. These are contiguous regions
of virtual memory, protected against outside access and modi-
fication, even by software running at high privilege levels or
by I/O devices.

Figure 1 illustrates the partition of a process between se-
cure, trusted code and data and non-secure, untrusted code
and data. SGX enforces an asymmetric trust model: the en-
clave has access to the entire memory, while untrusted code
is unable to access or modify enclave memory. SGX fur-
ther ensures that control from the untrusted domain enters
the enclave only at pre-approved entry points. In SGX, Intel
provides the root of trust through the aesm module that cryp-
tographically ensures the validity of the initial state of the
enclave.

SGX reserves, at boot time, a contiguous portion of physi-
cal memory, called the Processor Reserved Memory (PRM),
with a maximal size of 128 MB. A 94 MB subset of this
region, called the Enclave Page Cache (EPC), is used to al-
locate enclave memory pages. The integrity of the EPC is
ensured through Merkle trees implemented in hardware [11].
The EPC size is a hard limitation on the amount of code
and data that can be loaded into an enclave without incur-
ring expensive page evictions to regular DRAM [17,53]. The
CPU’s Memory Management Engine (MME) ensures confi-
dentiality by encrypting cache lines evicted to memory and by
decrypting them as they are brought into the CPU running in
enclave mode; this reduces the available memory bandwidth
by 4x [53].

Creation of an enclave requires the execution of a complex
instruction sequence using new instructions such as ecreate,
eadd, eextend, and einit that respectively create the en-
clave; define its resources together with their initial state and

572 2019 USENIX Annual Technical Conference

USENIX Association

access rights; and finally initialize the enclave. The number of
concurrent threads allowed inside the enclave corresponds to
the number of eadded Thread Control Structures (7CS) and
is fixed at enclave initialization.

After enclave initialization, user-level software uses the
eenter instruction to perform an ecall, a control transfer
to a pre-defined location within the enclave (Figure 1). The
eexit instruction allows to perform ocalls, i.e., a voluntary
control transfer to untrusted code. SGX also supports asyn-
chronous enclave exits (AEX) to service interrupts and excep-
tions, which is necessary since the enclave forbids privileged
instructions. An AEX saves the current state of the enclave
within the EPC, restores the untrusted context, and transfers
control to the operating system handler. The untrusted code
resumes enclave execution by performing an eresume.

Finally, SGX provides a remote attestation mechanism that
allows developers to verify the integrity of the software in
the enclave. As part of enclave creation, developers need to
provide a measurement of the enclave, i.e., a signed hash
of the SGX instructions and arguments used to instantiate
the enclave, as well as of selected portions of the enclave’s
code and data. A remote party can compare this measurement
with its expected, precomputed value and proceed with the
enclave’s execution only if the two values match.

2.2 Building Secured Systems

One approach to utilizing SGX is to run all of an appli-
cation in the enclave. The literature contains examples of
complex abstractions—including an entire operating system,
Haven [17]; a library operating system, Graphene [23]; and
a container platform, SCONE [16]—running in SGX. While
convenient for developers and effective at reducing expensive
enclave crossings [53], this approach has significant draw-
backs: (1) it greatly expands the amount of code running
inside the enclave, which puts pressure on system resources
and incurs pervasive memory decryption overheads and (2)
it brings into the enclave code and third-party libraries—not
necessarily used, understood, or validated—which can facili-
tate attacks on the enclave (e.g., ROP [47]).

Another approach necessitates a deeper understanding of an
application, as it requires splitting the application’s code and
data into trusted and untrusted portions, following the Intel
SGX Software Development Kit (SDK) [7] model. This SDK
is a set of C/C++ libraries and tools that enable programmers
to create and deploy enclaves. The Intel SGX SDK exposes
an API similar to the SGX instructions. Trusted and untrusted
code and data reside within distinct source files. A configu-
ration file describes the required ecalls and ocalls functions.
The compilation process first invokes an IDL compiler to
generate boilerplate code and then compiles the enclave code
as a position-independent binary with all dependencies stati-
cally linked, invokes a signing tool on this . so to meter the
enclave’s code, and finally compiles the untrusted application

code as a regular executable.

SCONE [16] and Eleos [44] both rely on message pass-
ing to implement asynchronous system calls and avoid ex-
pensive enclave exits. Following the same approach, Intel
recently published switchless [14], a (under-development)
mini-framework that provides a simple C++ messaging mech-
anism on top of the SDK.

Asylo [31] is a C++ framework, compatible with
gRPC [32], that abstracts TEE technologies behind a concise
API and a set of C++ classes. From a practical point-of-view,
Asylo is an improved version of Intel’s SDK that exposes a
smaller API, requires less boilerplate code, supports different
TEE implementations, and provides transparent support to
perform system calls from the enclave.

Glamdring [40] automates code partitioning, as it only re-
quires a developer to mark data that needs to be protected. It
then relies on static analysis to determine the portion of code
that accesses this data and needs to run within the enclave.
As an optimization, Glamdring uses heuristics to enlarge the
trusted code base and limit the number of expensive enclave
crossings. This can help balance a trade-off between EPC
memory consumption and the number of domain crossings.
Glamdring provides less fine-grained control over code parti-
tioning than the Intel SGX SDK, but hides the technology’s
intricacies and exposes a very simple programming model.

2.3 SGX Limitations

The SGX technology, and its implementation on current
Skylake processors, presents major performance challenges:
while the magnitude of these overheads may change in the
future with refinement of the processor’s micro-architecture,
or by adding dedicated silicon, these overheads are, to some
extent, tied to the mechanisms providing confidentiality and
integrity in the SGX design.

The limited EPC working set and the reduced memory
bandwidth are inherent in the design. Similarly, the control-
flow transitions between the trusted and untrusted execution
(i.e., ecalls, ocalls, and AEX) are expensive because of TLB
shootdowns, CPU state changes, and cache flushes needed to
mitigate foreshadow attacks [22]. These domain crossings are
an order of magnitude more expensive than a system call [53],
between ~2us [53] and ~3.5us on our hardware. This cor-
responds to a throughput of less than 1M enclave entries
per second with four cores performing ecalls in parallel
(see §5.2). Keep in mind that system calls within an enclave
require a domain crossing, as SGX is limited to user-level
execution, and as a consequence these calls also become an
order of magnitude more expensive.

Put together, these limitations require a programmer to
worry about the size of the trusted code base and the trusted
working set, to reduce the exposed attack surface as well as the
frequency of EPC page evictions; to optimize the application
for cache locality; to understand precisely the threading model

USENIX Association

2019 USENIX Annual Technical Conference 573

of the application; and to minimize domain crossings, system
calls, interrupts, and signals.

3 Design

The secured routine extension to Go enables GOTEE to parti-
tion an application’s code, data, and execution between trusted
and untrusted domains, while cross-domain channels rein-
force memory isolation and enable cross-domain communi-
cation and cooperation. This section presents a high-level
description of the design and semantics of GOTEE’s exten-
sions.

3.1 Threat Model

We follow the threat model of other work in SGX [16, 17,23,
40] in which an adversary tries to access confidential data
or to damage the SGX enclave’s integrity. The attacker has
administrative access to the machine and control over both
hardware and software, and may modify any code or data in
untrusted memory, including the operating system and the hy-
pervisor. We consider Iago attacks [24] for GOTEE’s runtime
and system call interposition mechanism in Section 4.3.

Denial-of-service attacks, a known limitation of SGX [26],
and hardware side channels (e.g., based on caches, page faults,
or branch shadowing) are out of scope. We assume a correct
underlying implementation of SGX that provides confiden-
tiality and integrity for enclave code and data.

3.2 Quick Overview of Golang

The Go programming language (golang) is a modern,
memory-safe, garbage-collected, structurally-typed, compiled,
systems programming language. Go supports concurrency
based on the Communicating Sequential Processes (CSP)
model [33]. The unit of execution within a Go program is
called a goroutine, a user-level thread executing a closure
that is created by prefixing a function call with the go key-
word. Goroutines are multiplexed and scheduled on a pool
of operating system threads, using a cooperative scheduling
model implemented by the Go runtime. Goroutines communi-
cate and synchronize using channels, which are synchronized,
typed message queues with copy and blocking read/write
semantics.

3.3 Secured Routines & Cross-domain Chan-
nels

From a programming point of view, a secured routine provides
a simple and familiar abstraction that allows a programmer
to execute a goroutine within an enclave and to use cross-
domain channels to communicate between the trusted and
untrusted environments.

1var secretKey xKey

> func generateSymKey (xio.Reader) *Key {...}

3

4 func InitSymKey (done chan bool){

5 fmt. Println (*“Creating a new secret key ‘)
6 secretKey = generateSymKey (rand.Reader)

7 done <— true

8}

9

0 func EncryptServer(request, reply chan []byte){

1 for {
12 msg := <— request
13 reply <— secretKey.Encrypt(msg)

14 }
15 }

16

17 func TrustedEncryption(msg []byte) []byte{

18 done := make(chan bool)

19 gosecure InitSymKey (done)

20 _ = <— done

21 request := make(chan []byte)

2 reply := make(chan []byte)

23 msg := []byte(‘‘The quick brown fox...* *)
2 gosecure EncryptServer(request ,reply)
25 request <— msg

26 res := <— reply

27 fmt. Println (* “Encryption done ‘)

28 return res

2 }

Listing 1: Using secured routines to isolate a secret key
within the TEE.

Listing | presents a sample program that secures a se-
cret encryption key, secretKey, within the enclave. The
TrustedEncryption function uses the gosecure keyword
to spawn a secured routine that creates the key within the
enclave. A subsequent gosecure call spawns an encryption
server, EncryptServer, within the enclave. The untrusted
code sends the message to the server (line 25) and gets back
the encrypted result (line 26).

The programmer relies on gosecure to inform the com-
piler how to partition the code between trusted and untrusted
domains. The compiler determines the functions that can
be reached by the execution within the enclave, in this ex-
ample InitSymKey, EncryptServer and their dependencies
fmt.Println, generateSymKey, *Key.Encrypt, efc. GO-
TEE compiles these functions into a statically-linked exe-
cutable.

Unlike prior work [7, 8,40], secured routine’s code parti-
tioning does not require disjoint trusted and untrusted code.
Functions can exist in both environments, e.g., the function
fmt.Printlnin Listing 1.

GOTEE hardens memory isolation between trusted and un-
trusted domains, as compared with the SGX hardware model,
in three ways. First, each domain manages its own set of
symbols, data, and global variables independently, allowing
them to have distinct copies of data and globals. This also
differs from Glamdring [40], where the trusted and untrusted

574 2019 USENIX Annual Technical Conference

USENIX Association

- B
enclave)

channels +—
g

app
~N

syscall<-|:
:|—-
> g dispatcher GC
gosecure \ threads)

v syscall

Figure 2: Channel-based cooperation between runtimes.

namespaces cannot overlap.

Second, GOTEE allows only cross-domain channels across
the trusted boundary. Cross-domain channels are an extension
to the native Go channels allowing secured communications
across domains with deep-copy semantics. Cross-domain
channels are declared and used like regular go channels. How-
ever, they provide deep-copy semantics to prevent pointers
from crossing a domain boundary. For example, in Listing 1,
the msg byte slice received at line 12 is an in-enclave copy of
the untrusted one sent at line 25.

Third, function arguments passed to secured routines, with
the exception of cross-domain channels, are deep-copied in-
side the enclave by GOTEE’s runtime. The deep-copy mech-
anism can be seen as a marshalling step similar to the one
needed to send complex objects or structures over a network.
GOTEE emits compilation warnings if a deep-copy, due to a
secured routine or a cross-domain channel, requires to deref-
erence a pointer.

While more restrictive than the original SGX model, GO-
TEE’s design ensures that enclave code cannot be subverted
or leak secrets by inadvertently dereferencing or writing to an
unsafe memory location. All data that leaves the enclave does
so by being explicitly sent over a cross-domain channel, while
all data referenced by the application’s trusted code resides in
the enclave.

3.4 Runtime Cooperation

The secured routine abstraction requires mutually distrust-
ful domains to cooperate. More specifically, it allows the
untrusted domain to trigger execution of a closure within
the trusted one. For example, when the untrusted execution
reaches line 19 in Listing 1, the trusted runtime spawns a new
routine that invokes the InitSymKey (done) closure.

Figure 2 presents the general overview of runtime coop-
eration. Both domains have their own code and data, their
own thread pools to multiplex execution, and their own man-
aged memory regions that are separately garbage collected.
Between the two domains, dedicated cross-domain channels

are used by the runtimes to trigger the execution of secured
routines and to enable enclave system calls. Specifically, and
unlike a normal go closure, a secured routine is implemented
by passing its arguments on a dedicated channel not visible to
golang programmers. The trusted runtime verifies the valid-
ity of the closure’s entry point before scheduling it within the
enclave. System call interposition operates in a similar man-
ner: the trusted runtime copies the system call’s arguments
into a dedicated, hidden channel; the untrusted runtime then
reissues the system call asynchronously and returns the result
over a private channel.

Since full copy semantics are enforced between the two
domains, each garbage collector can safely manage its own
memory space without synchronizing with the other one.

3.5 Compatibility With SGX

The secured routine abstraction and its design are compatible
with the SGX technology and its performance model:

Minimum trusted code: The code loaded into the trusted
domain is automatically extracted by the compiler and is
minimal. This is both security- and resource-efficient as it
reduces the number of EPC pages consumed by the enclave
as well as its attack surface.

Control transfers: Control transfers between the two do-
mains are replaced with inexpensive, synchronized, and typed
data transfers via cross-domain channels for both application-
level communication as well as runtime synchronization. The
expensive SGX domain crossings are only necessary in the
initialization phase, to block threads when they are idle or in
the stop-the-world GC phase, and to service an EPC miss.

Defensive programming: Cross-domain channels, used to
launch closures and to invoke system calls, perform memory
copies and sanitize arguments. Moreover, they are the single
point of interaction between mutually distrustful domains and
are therefore easy to augment with defensive programming
techniques.

Thread multiplexing: The SGX environment chooses, at en-
clave creation time, the number of threads that can execute
simultaneously within the trusted domain. The Go thread pool
size can be fixed at the beginning of the execution to match
the number of TCS in the enclave. This, however, does not
impose any limitation on the number of concurrently execut-
ing secured routines, which means that concurrency is not
bounded by this SGX limitation.

System call interposition: The use of channels to commu-
nicate and synchronize between the two runtimes simplifies
system call interposition. The runtime detects system calls
from trusted code, performs argument sanitization, copies ar-
guments to untrusted memory buffers, and sends the system
call to the untrusted runtime. Once the system call is serviced,
the enclave runtime can perform additional checks to validate
the result before delivering it to the application.

USENIX Association

2019 USENIX Annual Technical Conference 575

app.go_
—

GOTEE

— -Japp

untrusted
text+data

comp/link

gosec

insert as
signedELF
segment

l

rosten enclave
trusted comprt text+data
closures

runtime

Figure 3: The GOTEE compilation pipeline.

No global variables or cross-domain references: secured
routines reinforce the isolation between the two domains by
prohibiting shared global variables and cross domain memory
references. This forces data sharing to be explicit and passed
through either typed communication channels or typed func-
tion arguments, with deep-copy semantics. This design elim-
inates implicit sharing and cross-domain references, which
pose the risk of mistakenly leaking data and violating confi-
dentiality.

Secured routines do not provide any guarantee or protection
with regards to denial of service attacks. As with previous
work [16,23,40], we consider the challenge of bringing secrets
into the enclave to be out-of-scope for this paper. These are
known, fundamental limitations of the SGX technology that
GOTEE does not ameliorate.

Compatibility with other TEE designs: The secured rou-
tine abstraction is not tied to the SGX model. From a high-
level point-of-view, secured routines and cross-domain chan-
nels allow cooperation between two (memory-isolated) peer
environments that communicate solely via specific channels.
The GOTEE compiler can be extended to support other TEE
implementations without requiring application code modifi-
cations.

4 Implementation

The GOTEE compiler and runtime extend the Go system. This
section describes the changes to the compiler, a new library
written in Go that provides SGX support, and the changes to
the runtime environment.

4.1 Compiler Support for gosecure

The GOTEE compiler is responsible for partitioning code and
data according to the design of §3.3. GOTEE is a backward-
compatible extension of the standard Go compiler with a new
keyword gosecure, and an extension to Go channels, cross-

domain channels. The changes are small, consisting of ~400
modified lines and ~2000 lines of new code written in pure
Go.

Figure 3 illustrates the process: GOTEE compiles each in-
stance of gosecure by type-checking and validating the clo-
sures at compile time. The generated code differs slightly
from the standard goroutine support. On the caller side, the
closure arguments are sent over a cross-domain channel. On
the callee side, within the enclave, the runtime library pulls the
in-enclave copy of the closure arguments and a function iden-
tifier from the channel, validates the target function, spawns
the corresponding routine with the arguments, and then sched-
ules it. Compared to a standard goroutine, GOTEE adds a level
of indirection, with a write to and read from a cross-domain
channel, and the deep-copy of each argument.

GOTEE records functions with the gosecure keyword as
valid targets for the secured routine abstraction within the
enclave. GOTEE then initiates a full compilation for enclave
code, using the Go compiler’s analysis to determine the mini-
mum transitive closure of code reachable from these functions,
as well as the global variables used by this code. The compiler
also creates a main function for the enclave that serves as the
eenter entry point and that initializes the runtime servers for
cross-domain cooperation. The result of this compilation step
is a statically-linked, non-relocatable binary to be loaded into
the enclave as the trusted code.

GOTEE implements restrictions on the enclave code. First,
the compiler detects channels passed via arguments to secured
routines and ensures that these are declared as cross-domain
channels. Second, the compiler inspects secured routine’s
target signatures as well as cross-domain channel types and
emits warnings if their deep-copying requires dereferencing
pointers. Third, GOTEE does not allow function pointers as
arguments to secured routines or cross-domain channels. Fi-
nally, GOTEE only allows pure Go code within the enclave
and rejects dependencies on C code and shared libraries.

GOTEE also compiles the untrusted code using the standard
Go compiler, without these restrictions. As a final step, GOTEE
packages the statically linked trusted executable into an ELF
segment of the untrusted binary.

GOTEE can optionally generate a signed measurement of
the enclave at compile time and store it within a dedicated
ELF section of the untrusted binary, so as to perform remote
attestation upon deployment. If not done by the compiler,
the measurement and signature of the trusted code can be
performed at run time.

4.2 gosec - an SGX Library in Go

The GOTEE compiler includes an SGX library, completely
implemented in Go, as a standard Go package called gosec.
It contains ~1000 lines of code.

Loading an enclave: gosec mirrors the Intel SGX API in
that it provides functions to (1) create an enclave, (2) load

576 2019 USENIX Annual Technical Conference

USENIX Association

a static binary into the enclave, (3) take a measurement of
the enclave, and (4) perform eenter and eresume to the
enclave. The gosec package communicates with the Intel
SGX Linux kernel driver via ioct1 to execute the privileged
SGX instructions, i.e., ecreate, eadd, and einit. It also
communicates with the Intel aes module [26] that delivers
the token required to perform the initialization (einit, see
§2.1). The gosec package implements step (2) by parsing the
ELF binary and extracting the enclave code. At run time, the
package spawns a new, untrusted, operating system thread
to execute an eenter instruction that starts the enclave. The
number of concurrent threads allowed inside the enclave can
be selected by setting an environment variable. By default,
the loader adds only two TCS to the enclave: one to execute
the user code, the other to support garbage collection.

Measuring an enclave: Measuring an enclave is a series of
distinct steps that involve the SGX driver (to execute priv-
ileged instructions), the SGX daemon (to retrieve a crypto-
graphic token), the measurement byte array generated by the
gosec library while creating the enclave [26] (§4.1), and the
enclave binary itself. First, the enclave’s memory boundaries
are determined by reading the ELF sections of the trusted
binary. This information is used to perform the ecreate call.
Then, individual page contents are registered via the driver,
which performs the eadd and eextend accordingly. At the
same time, gosec builds the corresponding measurement byte
array, which is then used to retrieve a token from the SGX
aes module daemon. Finally, gosec issues the einit driver
call, using the token, to finalize the enclave.

AEX handler: Asynchronous exits from the enclave, e.g.,
faults and exceptions, are first passed to the operating system.
Then, a user-space AEX handler, implemented in gosec, is
called. The handler runs outside of the enclave and plays a
fundamental role in the debugging process. The gosec AEX
handler reads a shared region of memory where the GOTEE
runtime dumps information before performing a panic or
throwing an exception. This, of course, is reliable only for
debugging purposes. If no GOTEE runtime cause for the AEX
is found, the gosec AEX handler performs an eresume to
return in the enclave.

4.3 GOTEE Runtime

The third component of GOTEE is the runtime library that
is statically linked to the enclave code. It consists of the Go
runtime modified to run in an enclave, including its cooper-
ative user-level thread scheduler and garbage collector, and
extensions to allow trusted and untrusted code to cooperate.
It supports cross-domain channels as the sole means of com-
munications with untrusted code. The code patch consists of
~760 lines of new code and ~300 modified ones.

Enclave runtime initialization: GOTEE replaces most of
the Go runtime initialization steps. The gosec package pre-

allocates all trusted heap, thread local storage, and memory
pools during the enclave creation as part of the load and ini-
tialization sequence. This is necessary because of the SGX
metering requirements. As a result, the entry point of the en-
clave simply switches execution onto a protected stack that
is part of the enclave and skips over most of the Go run-
time memory allocation steps. After this, the enclave runtime
shares most of the Go runtime, with minor changes to avoid
enclave-disallowed instructions such as cpuid or rdtsc.

Allowing multiple trusted threads: GOTEE lazily spawns
enclave threads. During the execution, when a new thread is
required, the current enclave thread first atomically acquires
a TCS from the pool. It then performs an enclave exit and
a clone system call before resuming its enclave execution.
While exits and entries are expensive, these are bounded by
the maximal number of TCS allocated for the enclave. The
newly created thread performs an eenter and jumps to the
pre-defined enclave entry point to initialize its state before
serving secured routines.

Securing untrusted channels: The channel implementation,
as well as the goroutine structure, were extended to support
a secured communication mechanism between the trusted
and untrusted environments. To pass copies of values to and
from secured routines, GOTEE uses buffers allocated within
the unprotected memory region. Upon performing a blocking
operation, the trusted runtime allocates an unprotected buffer
that will either hold the value that it writes, thereby allowing
an untrusted routine to access it, or be used to receive the
value produced by an untrusted routine’s write to the channel.
When unblocked, the secured routine copies the content of the
buffer to the appropriate memory location within the enclave.
For complex types, the enclave performs a deep-copy. This
adds an extra step for secured routines compared to standard
Go, which allows direct read/write to the blocked goroutine’s
enqueued address, e.g., a stack, a heap, or a data variable. GO-
TEE automatically identifies and instruments cross-domain
channels at runtime, hence limiting the effort required to port
existing applications. Communications within the same do-
main are unaffected.

Cross-domain synchronization: The two runtimes, and in
particular their schedulers, must cooperate to synchronize
access to channels across domains to ensure the timely deliv-
ery of messages. In Go, a blocking operation on a channel
deschedules the routine and wraps it within a special data-
structure along with a pointer to the read (write) memory
location. In the case of a cross-domain channel, the wrapper
must be accessible from both runtimes. GOTEE’s enclave run-
time manages a private untrusted memory area from which
such wrappers are allocated. A secured routine that needs to
enqueue itself will therefore allocate a wrapper, along with
an untrusted memory buffer, and then enqueue itself in the
untrusted cross-domain channel.

The unblocking operations on cross-domain channels

USENIX Association

2019 USENIX Annual Technical Conference 577

also required changes. An untrusted routine cannot directly
reschedule a trusted routine, and vice versa. Instead, unblock-
ing a routine enqueues it in a ready queue that belongs to the
appropriate domain. These queues are polled by the corre-
sponding runtime’s scheduler. The scheduler ensures that the
address of the goroutine is valid, i.e., that it was registered
at creation and is still live, before executing it. Note that this
extra step only applies to cross-domain communications.

Memory management: The GOTEE runtime restricts the
amount of available heap memory because of SGX memory-
size limitations. The standard Go runtime assumes a 64-bit
address space with gigabytes of memory and places its run-
time heap, spans, and bitmap for memory management ac-
cordingly. During runtime initialization, and throughout code
execution, the Go runtime mmaps portions of the address space
corresponding to these regions and frequently extends them.
An enclave’s maximum memory live working-set is 94 MB,
and even less if we want to avoid page evictions. As a result,
GOTEE uses a fixed-size heap whose address and size are
computed as a fixed offset from the code and data. The heap
size can be set either at compile time if a measurement is
generated or at run time before loading the enclave.

Thread Local Storage: Go relies on thread local storage
(TLS) to quickly access runtime values such as the current
routine (G) or the current machine abstraction (M). Go nor-
mally allocates M in the heap and sets it as the TLS base.
SGX, on the other hand, requires a TCS to declare its TLS
at creation time. GOTEE circumvents the SGX limitations
by preallocating Ms into the enclave’s .bss segment. As all
.bss data structures are part of the garbage collector’s root set
(unlike an arbitrary location in memory), this approach allows
the enclave to use the unmodified Go garbage collector.

Garbage collection and Stack shrinking: Go performs
mark and sweep concurrent garbage collection. The GC re-
quires a short pause time with all threads blocked at a safe
point for mark and sweep terminations. As a result, secured
routines need a way to exit the enclave and perform a block-
ing futex sleep. Other than that, the original Go GC is un-
modified, and it executes independently from the untrusted
domain’s runtime. Untrusted memory buffers are allocated
and managed by an in-enclave allocation library and are not
traced by either GCs. The trusted runtime keeps references
to secured routines blocked on cross-domain channels, which
both allows a safety check when they are rescheduled and
keeps them in the live-set of objects during garbage collection.

Goroutine stacks can shrink and stack frames can be relo-
cated in memory when the goroutine is blocked on a channel.
In standard Go, the destination location of channel data may
be on the stack, and therefore handled as part of stack re-
location. In GOTEE, when a secured routine is blocked on
a cross-domain channel, the destination address points to a
location in untrusted memory, i.e., not on the stack, while the
stack pointer used as the final recipient of the deep-copy is

the one updated during stack shrinking.

Mitigating SGX limitations: The current version of SGX
disallows several instructions in the enclave, such as syscall,
cpuid, and rdtsc. While these have to be completely avoided
during the runtime initialization, due to the limited environ-
ment at that time (no heap or channels during the early init
phases), they can later be emulated. The system call interpo-
sition mechanism allows the enclave to forward system calls
to the untrusted runtime. The same mechanism can be used
to execute a rdtsc, with the communication overhead reduc-
ing its accuracy. For the cpuid call, most of the information
provided by the instruction is fixed at enclave creation, which
simplifies its emulation.

Go relies on futex calls to implement locking within the
runtime. These are optimistic locks, performing a limited
amount of spinning before sleeping. In an enclave, a futex
sleep would require to exit the enclave and re-enter upon a
futex wake up, with high overheads. Instead, in GOTEE, a
secured routine that needs to obtain a cross-domain channel
lock will spin until it acquires the lock. Upon an unlock, GO-
TEE checks if any unsafe thread is sleeping on the futex. If
so, it spawns a dedicated routine to use the system call interpo-
sition to perform the unblocking futex wake up system call.
This approach is similar to the one used by standard Go for
blocking system calls, except that GOTEE relies on routines
rather than operating system threads.

Network support: The Go runtime relies on epoll calls,
as part of the scheduler’s logic, for network events. GOTEE
extends the scheduler’s implementation to ensure that a single
idle thread at a time is allowed to exit the enclave and perform
the epoll call.

Iago Attacks: GOTEE’s runtime is hardened against lago at-
tacks and only relies on 4 syscalls: mmap to allocate unsafe
memory, checked against enclave boundaries and known un-
safe areas; futex calls for idle threads, which are used to re-
duce CPU utilization, not mutual exclusion; and epol1l calls
performed by idle threads as described above.

On the application side, GOTEE provides a single point of
system call interposition which relies on channels with deep-
copy semantics for memory isolation. This currently performs
system call filtering and safety checks on both arguments and
results, and could be extended, in the future, to allow user-
defined filtering policies.

Debugging: Debugging code within an enclave is challeng-
ing as the AEX user-space exception handler provides little
information to identify the cause of an asynchronous exit
from the enclave. GOTEE has an optional flag that allows a
program to run in a simulation environment with identical
memory layout and run time behavior as the SGX program,
but without the SGX protection mechanisms.

578 2019 USENIX Annual Technical Conference

USENIX Association

Workload Text | Data | RO-data | Total | Main Package Dependencies Application LOC
runtime only 493 25 273 793 | - -
K hello world +72 +1 +16 +91 | ++ fmt, syscall, strconv, os, io, 13
S reflect, runtime, unicode
© enclave-cert +174 +1 +45 | 4221 | ++ crypto/rsa, math, bytes, hash, 75
unicode
ssh +1036 +4 +291 | +1332 | ++ golang.org/x/crypto/*, crypto, 71
gnet, encoding
keystore +1165 +4 +329 | +1499 | ++ crypto/ecdsa, crypto/elliptic, 474
crypto/aes
g runtime only 67 2 75 | - -
2 hello world +49 +0 +1 +51 | - 355

Table 1: Per case-study enclave TCB breakdown in KB, package dependencies, and application lines of code (LOC). + and ++
are, respectively, an increase over the baseline runtime only, and over all previous table entries.

5 Evaluation

Our experiments were performed on a Microsoft Azure Cloud
Confidential Computing server, with an Intel(R) Xeon(R) E-
2176G CPU @ 3.70GHz with 4 physical cores, configured
with Ubuntu 18.04 LTS running Linux kernel 4.15.0-1036-
azure. GOTEE operates with the standard Intel SGX 2.0 Linux
kernel driver (sgx2) and attestation daemon (aesm). All GO-
TEE experiments were run with garbage collection enabled
and a single thread servicing secured routines in the enclave.

The purpose of our evaluation is to validate: (1) the effec-
tiveness of secured routines as a way to partition code (§5.1);
(2) the performance, latency, and throughput of secured rou-
tines and their cost in comparison to the crossing-oriented
approach of the Intel SDK (§5.2); (3) with three case studies,
GOTEE’s usability and ability to hide critical secrets within the
enclave by executing a full application in the enclave(§5.3),
by performing a fine-grained partitioning of a standard Go
package(§5.4), and by extending a real-world application with
a TEE-specific implementation(§5.5).

5.1 Code Size

We first evaluate the impact of secured routines on the enclave
code size. To this end, we add a baseline hello world bench-
mark that invokes fmt .Println in the enclave, and compare
it to the Intel SDK C++ hello world code sample.

Table 1 shows, for each case study, (1) the size of the en-
clave code measured as an increase on the baseline size of
GOTEE runtime for the enclave, (2) the main Go package
dependencies, and (3) the application lines of code. Entries
in the table are sorted such that each case study only reports
extra packages imported compared to previous lines.

First, we observe that both the Go runtime and the gener-
ated code are larger than the C++. Second, the ssh-server is
responsible for the greatest increase, in TCB size, over the run-
time baseline, due to its numerous dependencies. This result

is expected as this particular case study does not leverage the
fine-grain partitioning provided by GOTEE and simply puts
the entire application code inside the enclave. The keystore
prototype only adds a few crypto subpackages to the TCB
dependencies.

On the other hand, Table 1 also shows the difference in
source-code level complexity between GOTEE and the Intel
SDK. In hello world, the lack of transparent forwarding
of system calls in the SDK requires a programmer to forgo
printf in the enclave and instead: (1) call sprintf to write
to an intermediate buffer, (2) define and ocall with the IDL
compiler, and (3) use it to issue a write system call. Addi-
tionally, programmers are still responsible for properly imple-
menting all the boilerplate code required to define, create, and
load the enclave. As a result, the C++/SDK hello world
consists of 355 LOC, 13 files, requires 85 lines of configura-
tion, and 161 lines of Makefile.

By comparison, the GOTEE 13 lines of code hello world
compiles with the gotee build command.

5.2 Microbenchmarks

This evaluation uses the following microbenchmarks:

e syscall-lat: from within a trusted closure, execute a
getuid () system call in a loop; report the mean latency.

e gosecuretblock-lat: spawn a trusted closure and wait for
a response over a private cross-domain channel; report
end-to-end median latency.

e gosecure-server-lat: a single secured routine performs
blocking writes to a cross-domain channel in a loop. An
untrusted routine measures the latency of performing a
read on the same channel. The difference between this
measurement and gosecure+block-lat corresponds to the
runtime overhead required to trigger a secured routine.

e gosecure-tput: multiple untrusted goroutines concurrently
spawn a trusted closure and wait for a response over a
private cross-domain channel.

USENIX Association

2019 USENIX Annual Technical Conference 579

bench-name Go | GOTEE | SDK
syscall (getuid) || 0.23 1.35 | 3.69
gosecure+block || 0.30 1.5 | 3.50
gosecure-server || 0.20 0.60 -

Table 2: Latency microbenchmarks in ps.

e gosecure-server-tput: a single trusted closure receives
requests on a public cross-domain channel from multiple
concurrent untrusted goroutines and replies individually on
private channels, effectively bypassing the runtime cooper-
ation required to spawn new secured routines.

GOTEE latencies: Table 2 compares the latencies of basic op-
erations in Go, GOTEE, and, when applicable, the equivalent
C++ implementation with the Intel SGX SDK. All experi-
ments report the median (mean for syscall-lat) over S00K
iterations.

The latency to spawn a secured routine and have it write to
a private channel is 1.5us. The equivalent standard Go pro-
gram has a latency of 0.30us, suggesting that GOTEE runtime
cooperation and SGX memory overheads have an impact of
~1.2us (5.0x). We believe that the implementation can be
optimized to reduce contention on cross domain events and
runtime cooperation overheads. Still, GOTEE shows a 2.3 x
improvement over the Intel SDK latency, which requires a
full crossing (eenter followed by eexit).

For a trivial system call, that requires going through the
syscall interposition mechanism over channels, GOTEE is able
to achieve a 2.7 x improvement over the Intel SDK crossing-
oriented approach.

GOTEE throughput: The throughput experiments consist of
multiple concurrent requests to the enclave. For the Intel
SDK, different threads perform ecalls in parallel, yielding a
throughput of 281 Kops for one thread and 938 Kops for all
four cores.

For GOTEE, Figure 4 presents two variants, running with
a single thread inside the enclave: (1) gosecure-tput,
the closest in behavior to the Intel SGX SDK, and (2)
gosecure-server-tput. The former shows a throughput im-
provement of 5.2x (1.46 Mops) over the SDK for a single
core running in the enclave. GOTEE can allow a single en-
clave thread to achieve 1.6x the throughput of four cores
executing the Intel SDK. GOTEE’s throughput depends on the
number of concurrent untrusted goroutines (multiplexed on
a single thread) performing gosecure calls. For fewer than
three untrusted goroutines, the runtime cooperation requiring
to reschedule the secured routines dispatcher is the main bot-
tleneck. After that, there are enough concurrent goroutines to
avoid blocking the dispatcher.

The second GOTEE experiment shows the benefit of avoid-
ing the secured routine creation overheads. Its performance
degrades, however, as contention on the cross-domain chan-
nel increases; both runtimes compete to obtain the lock and

1600
1400
1200

800 - /
600 -

400 gosecure-server

200 =¥~ gosecure

0 T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Number of concurrent closures

KOPS

Figure 4: Synchronous closure execution rate for secured
routine multiplexed on top of a single enclave thread.

must cooperate to reschedule unblocked routines. Vanilla Go,
which is not subjected to our cooperation overhead or SGX
performance costs, achieves over 4.1Mops.

The garbage collector’s impact on these microbenchmarks
is negligible. The Go memory statistics show that for the full
throughput experiment, 21 GC cycles were completed inside
the enclave, with a median pause time of 13us. However, the
total GC pause time only accounts for 0.033% of the appli-
cation’s available CPU time. In the latency microbenchmark,
we measured a similar median for 2 completed cycles, which
accounts for 0.015% of the benchmarks CPU time.

5.3 A full in-enclave ssh server

GOTEE can be used to port a full application to the en-
clave. The enclave size breakdown is reported in Ta-
ble 1. The Go programming language provides, under
golang.org/x/crypto/ssh, a fully functional implementa-
tion of an ssh-server. This implementation relies on the default
net package. While none of the application logic code for the
server was changed, this port required a few modifications
to the net package, which relies on C bindings for socket
structures in order to stay compatible with the Linux kernel
headers. As GOTEE allows only pure Go code inside the en-
clave, we created gnet, a new package that redefines relevant
C structures (e.g., struct_sockaddr, struct_in_addr,
struct_addrinfo) and constants in pure Go. This package
adds 70 LOC to the native net package.

5.4 Webserver with enclave-cert

The loss or leakage of an SSL private certificate can have
serious reputational consequences. However, a private certifi-
cate must reside in the memory of the process that handles
an SSL connection. Our case study designs and implements
the enclave-cert package, which isolates within an enclave
the two operations that require access to an SSL certificate’s
private key: signing the handshake hash and decrypting the
client’s symmetric session key.

580 2019 USENIX Annual Technical Conference

USENIX Association

We modified the native Go t1ls package to allocate the
server’s private certificate key within the enclave and to
perform these operations in the trusted environment. The
enclave-cert package uses channels to pass encryption and
decryption requests to the enclave. A single secured routine is
spawned by the user application when a certificate is loaded
or created. The secured routine then waits on the request
channel, performs the requested decryption, and notifies the
untrusted requester.

The code patch consists of 9 additional LOC that add
optional request channels to the TLS certificate structure.
The enclave code is in enclave-cert, a new package of 35
LOC that defines the operations on the private key. The http
package is unmodified. Any webserver application that uses
enclave-cert operates like a corresponding Go webserver
application.

The separation of functionality between the tls pack-
age (which does not depend on GOTEE or gosec) and
enclave-cert eliminates circular dependencies and ensures
backward compatibility when SGX is not available.

In this experiment, we have an apache-bench client con-
nect repeatedly over https://localhost to a simple web-
server and request a single page load per session. The work-
load is totally dominated by the TLS handshakes.

We compare the built-in Go http and t1s packages with
the modified enclave-cert. The built-in server achieves
an average of 400 reqs/sec, while enclave-cert achieves
353 reqs/sec (i.e., 88% of native). The apache-bench output
shows they have the same mean for connection and processing
time, but enclave-cert has a higher (6x) standard devia-
tion. In fact, the run time cooperation between trusted and
untrusted domains is a source of variability that impacts the
system’s stability and tail latency. A similar experiment with
Glamdring [40] reported only 60% of native throughput due
to the cost of frequent enclave crossings.

5.5 Keystore based on go-ethereum

The go-ethereum [29] project is the official implementation
of the Ethereum protocol [13] in Go. A particular feature of
the project is the ability to manage ethereum signature keys
(ECDSA) as part of a keystore. The go-ethereum project
allows safely encrypting keys with a passphrase before stor-
ing them on disk. The keystore is responsible for loading and
decrypting the keys using the user-provided passphrase. To re-
duce the window of vulnerability, go-ethereum zeroes-out, in
memory, decrypted keys after signing a hash or a transaction.

As a proof-of-concept, we implemented a simplified ver-
sion of this keystore with GOTEE. The keystore executes in
the enclave and enables: (1) loading an encrypted private key
from the disk in the enclave, (2) decrypting the private key
using a user-provided passphrase (e.g., via a secured ssh con-
nection), and (3) signing a hash if the user validates it. Our
keystore is 500 lines of Go code. The primary benefit of this

approach is the elimination of the window of vulnerability.
The keystore can safely keep private keys cached in secure
memory. It took a single developer one day to implement this
simplified secured keystore.

The enclave size break down is reported in Table 1. The
amount of code loaded in the enclave, more than 1MB, is
large compared to other experiments. This is mostly due the
embedded ssh server, the cryptographic libraries, e.g., ellip-
tic curves and AES, and the encoding libraries, required to
unmarshal decrypted private keys.

Along the TLS benchmark, this implementation validates
that GOTEE can support popular Go cryptographic libraries
(RSA, AES, and ECDSA) without modifying these packages.

6 Discussion

GOTEE demonstrates that language support for TEEs can
alleviate SGX limitations and that the GOTEE programming
model can be used to effectively increase the integrity and
confidentiality of sensitive server-side computations. At the
same time, the viability of SGX, beyond simple use cases in
digital-rights management, as a foundational trust technology
is doubtful given the large number of SGX vulnerabilities
found to date and the complexity of the current architecture.
SGX is a complex extension to a complex instruction set with
an optimized implementation. Verifying the correctness of
this extension and of its interactions with the large number of
existing instructions is challenging [11,26]. SGX has already
been shown to be vulnerable to side-channel attacks based
on caches [20], page faults [49], branch shadowing [38], and
processor side-channel attacks ("Foreshadow” [22], a variant
of Spectre [36] and Meltdown [41]).

GOTEE’s increased isolation and decoupling between
trusted and untrusted code, as well as the channel abstrac-
tion as the sole mean of communication, allows GOTEE ap-
plications to remain agnostic to the underlying technology’s
programming model. GOTEE seems ideally suited to provide
a programming model for more radical TEE designs, that
better protect trusted code in isolated environments compris-
ing dedicated cores, TLBs, and (larger) dedicated, encrypted
DRAM. One such TEE design could allocate processors and
memory at kernel boot time. With a reserved co-processor, its
TLB could be dedicated to an enclave and the responsibility
of managing the virtual address space could shift from the
operating system kernel to a kernel driver, with a small and
verifiable implementation. A robust solution would also par-
tition the cache hierarchy to avoid cache-based side-channel
attacks.

7 Related Work

A GOTEE-compiled program results in side-by-side execu-
tion of two peer environments that communicate over type-

USENIX Association

2019 USENIX Annual Technical Conference 581

checked, message-passing channels. Using language-based
message passing to isolate parts of a program is similar to
the Singularity operating system [35], which used strongly
typed channels as its only communication mechanism among
processes and the kernel.

Program partitioning has been used to transform programs
to run sensitive computations on isolated or secure processors.
The Jif/split [50] system used security types and information-
flow analysis to partition programs so that secure computa-
tions could be distributed and executed on trusted processors.
Swift [25] partitioned a web app to run its trusted computa-
tion on a server. Wedge [19] was a Linux extension that sup-
ported least-privileged partitioning and execution of programs.
The Crowbar tool used static program analysis to partition
programs so that operations could be performed with least
privilege. Privtrans [21] partitioned a program to enforce priv-
ilege separation. GOTEE, inspired by these systems, provides a
language-base, compiler-driven code and data partitioning for
TEE:s that presents a simple programming model and which
could be extended to support other TEE hardware, as well as
secured co-processor or remote execution setups.

TrustScript [30] provides language support for running
TypeScript (JavaScript) code in an enclave. Similar to GOTEE,
it relies on keyword annotation of trusted code and uses asyn-
chronous message passing between the trusted and untrusted
runtimes. Unlike GOTEE’s automated, fine-grain partitioning,
TrustScript developers must implement all trusted code in an
annotated namespace, and the TrustScript’s security model is
unclear.

Glamdring [40] uses data-driven code partitioning between
an SGX enclave and an untrusted environment. The compiler
and toolchain try to reduce the number of enclave crossings
by bringing more code into the enclave. GOTEE takes a differ-
ent approach, as it provides programmers with fine-grained
control over the TCB, a stricter memory isolation between
the two domains, and replaces enclave crossings with channel
communications.

The debate on the relative merits of the crossing-oriented
abstractions of the Intel SDK and the communication-oriented
abstraction of GOTEE is of course a new twist on the dual-
ity of shared memory and message passing [37]. While nu-
merous systems have been built with the domain-crossing
approach embodied in the Intel SDK (§2.2) [8, 17,40], the
current implementation of SGX favors an asynchronous,
communication-oriented model, as demonstrated by GOTEE
and Intel’s own recent switchless [14]. Other mentioned
solutions [14, 16,23, 30, 31,44] rely internally on message
passing to avoid enclave crossings. GOTEE, however, lever-
ages Go channels, an abstraction that is part of a language,
type-safe, and widely used. The cross-domain channels ex-
tend the general channel programming abstraction and enable
developers to use explicit cross-domain communication at the
application-level. Internally, this single point of interaction
allows to perform both static and dynamic safety checks in

concordance with the language semantics.

As a general result, GOTEE shows that programming lan-
guage support, with an appropriate abstraction and program-
ming model, combines the best of previous approaches, i.e.,
the fine-grained automatic partitioning, the message passing
model precluding enclave crossings, as well as a higher level
of isolation between the two domains, and provides an inter-
esting testbed for future extensions, such as information flow
control or user-defined system call filtering.

Microsoft used SGX in conjunction with machine-code
modification and verification to ensure a property called in-
formation release confinement that guarantees that attackers
can only see encrypted data [48]. Although their C++ pro-
gramming model is crossing oriented, GOTEE would provide
a better starting point as they impose and verify safety restric-
tion on the C++ enclave code that would be unnecessary for a
safe language such as Go. Similarly, the Microsoft VC3 [46]
map-reduce system requires and checks at run-time an even
stronger set of control-flow and memory-safety properties,
which again are easily satisfied by Go programs.

Finally, there exist software solutions which rely on layered
virtualization to remove any trust dependency from the oper-
ating system [27,28,34] or the cloud hypervisor [52]. GOTEE
could provide a complementary application-level isolation.

8 Conclusion

What comes first, the processor or the programming model?
Intel’s SGX made a TEE generally available, and its SDK
provides a thin veneer that exposes its hardware features as
the programming model. As systems are constructed on SGX,
it has become increasingly clear that the most effective use
of this TEE is to have it execute only trusted operations and
to run the bulk of an application outside of the enclave. This
paper explores a new programming model to support this style
of use. GOTEE provides language support for TEEs. It extends
the Go programming language and uses the Go routine mech-
anism to invoke a function within the enclave. Our compiler
uses a single annotation to distinguish trusted code and au-
tomatically partition a program and establish cross-domain
communication.

GOTEE treats the enclave as a distinct computing entity
and uses message passing to copy arguments to functions,
which then execute securely in a distinct, secure domain. This
alternative model has the advantage of not requiring expen-
sive cross-domain control transfers, resulting in significantly
higher performance than the standard option. Equally impor-
tant, it reduces the close coupling between the trusted and
untrusted domains and opens the possibility of new, more eas-
ily verified hardware implementations that can better isolate
TEE cores and run faster.

582 2019 USENIX Annual Technical Conference

USENIX Association

Acknowledgments

We thank Mathias Payer, Pascal Felber, the ATC anonymous
reviewers, and our shepherd Christof Fetzer for their detailed
comments. Moreover, we would like to thank Marios Ko-
gias, George Prekas, and Jonas Fietz for the many discussions
and constant feedback that lead to this paper. This work was
funded in part by a VMware Research Grant.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

CVE-2016-5195 - write to read-only memory map-

pings. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2016-5195.

CVE-2017-1000366 - glibc vulnerability leading to
arbitrary code execution. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-1000366.

CVE-2017-4948 - vmware out-of-bound read leads to
confidentiality violation. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-4948.

CVE-2018-2727 - vulnerability in oracle financial
services applications. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-2727.

CVE-2018-7160 - node.js dns rebind leads to full
code execution access. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-7160.

Intel SGX - software guard extensions programming
references. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf.

Intel SGX SDK - software guard extension, software
development kit. https://software.intel.com/
en-us/sgx-sdk.

Rust sgx sdk.
rust-sgx-sdk.

https://github.com/baidu/

Trustzone - arm. https://www.arm.com/products/
security-on-arm/trustzone.

The USA Patriot Act. https://www.Jjustice.gov/
archive/11/highlights.htm, 2001.

Intel Software Guard Extension (ISCA Tutorial).
https://software.intel.com/sites/default/
files/332680-002.pdf, 2015.

CLOUD Act - H. R. 4943. https://www.congress.

gov/bill/115th-congress/house-bill/4943/
text, 2019.

Ethereum project.
2019.

https://www.ethereum.org/,

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Intel SGX Switchless - set of features to avoid expensive
crossings. https://github.com/intel/linux-sgx/
blob/master/sdk/switchless/, 2019.

ADRIEN GHOSN, EPFL DCSL. GOTEE - a fork of Go
with support for *gosecure’. https://github.com/
epfl-dcsl/gotee, 2019.

ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH,
T., MARTIN, A., PRIEBE, C., LIND, J., MUTHUKU-
MARAN, D., O’KEEFFE, D., STILLWELL, M.,
GOLTZSCHE, D., EYERS, D. M., KAPITZA, R.,
PIETZUCH, P. R., AND FETZER, C. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of
the 12th Symposium on Operating System Design and
Implementation (OSDI) (2016), pp. 689-703.

BAUMANN, A., PEINADO, M., AND HUNT, G. C.
Shielding Applications from an Untrusted Cloud with
Haven. ACM Trans. Comput. Syst. 33, 3 (2015), 8:1—
8:26.

BERGHEL, H. Oh, What a Tangled Web: Russian Hack-
ing, Fake News, and the 2016 US Presidential Election.
IEEE Computer 50, 9 (2017), 87-91.

BITTAU, A., MARCHENKO, P., HANDLEY, M., AND
KARP, B. Wedge: Splitting Applications into Reduced-
Privilege Compartments. In Proceedings of the 5th
Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2008), pp. 309-322.

BRASSER, F., MULLER, U., DMITRIENKO, A., KOSTI-
AINEN, K., CAPKUN, S., AND SADEGHI, A.-R. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practi-
cal. In Proceedings of the 11th USENIX Workshop on
Offensive Technologies (WOOT) (2017).

BRUMLEY, D., AND SONG, D. X. Privtrans: Automati-
cally Partitioning Programs for Privilege Separation. In
Proceedings of the 13th USENIX Security Symposium
(2004), pp. 57-72.

BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN,
D., KASIkcI, B., PIESSENS, F., SILBERSTEIN, M.,
WENISCH, T. F., YAROM, Y., AND STRACKX, R. Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom
with Transient Out-of-Order Execution. In Proceed-
ings of the 27th USENIX Security Symposium (2018),
pp- 991-1008.

CHE TsAI C., ARORA, K. S., BANDI, N., JAIN, B,
JANNEN, W., JOHN, J., KALODNER, H. A., KULKA-
RNI, V., DE OLIVEIRA, D. A. S., AND PORTER, D. E.
Cooperation and security isolation of library OSes for
multi-process applications. In Proceedings of the 2014
EuroSys Conference (2014), pp. 9:1-9:14.

USENIX Association

2019 USENIX Annual Technical Conference 583

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000366
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000366
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-4948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-4948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2727
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2727
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7160
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/sgx-sdk
https://github.com/baidu/rust-sgx-sdk
https://github.com/baidu/rust-sgx-sdk
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.justice.gov/archive/ll/highlights.htm
https://www.justice.gov/archive/ll/highlights.htm
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.congress.gov/bill/115th-congress/house-bill/4943/text
https://www.ethereum.org/
https://github.com/intel/linux-sgx/blob/master/sdk/switchless/
https://github.com/intel/linux-sgx/blob/master/sdk/switchless/
https://github.com/epfl-dcsl/gotee
https://github.com/epfl-dcsl/gotee

[24]

CHECKOWAY, S., AND SHACHAM, H. Iago attacks:
why the system call API is a bad untrusted RPC interface.
In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XVIII) (2013), pp. 253—
264.

[37]

T., SCHWARZ, M., AND YAROM, Y. Spectre At-
tacks: Exploiting Speculative Execution. CoRR
abs/1801.01203 (2018).

LAUER, H. C., AND NEEDHAM, R. M. On the Duality

of Operating System Structures. Operating Systems
Review 13,2 (1979), 3-19.

[25] CHONG, S., L1U, J., MYERS, A. C., QI, X., VIKRAM,

K., ZHENG, L., AND ZHENG, X. Secure web applica- [38] LEE, S., SHIH, M.-W., GERA, P., KM, T., KiMm, H.,

tion via automatic partitioning. In Proceedings of the AND PEINADO, M. Inferring Fine-grained Control

21st ACM Symposium on Operating Systems Principles Flow Inside SGX Enclaves with Branch Shadowing. In

(SOSP) (2007), pp. 31-44. Proceedings of the 26th USENIX Security Symposium
201 . 557-574.

[26] COSTAN, V., AND DEVADAS, S. Intel SGX Explained. (2017), pp. 55757
IACR Cryptology ePrint Archive 2016 (2016), 86. [39] LIANG, X., SHETTY, S., ZHANG, L., KAMHOUA,

[27] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. S. C. A., AND KWIAT, K. A. Man in the Cloud (MITC)
Virtual ghost: protecting applications from hostile op- D efenderf SGX'B aseq U'SCI' Credennal Protec't10n for
erating systems. In Proceedings of the 19th Interna- ?ynchronlzatlon fﬁ)phcatlo;;s n Chloud Computlng' Platl-
tional Conference on Architectural Support for Program- orm. In Proceedings of the 1 Qt [EEE Internationa
ming Languages and Operating Systems (ASPLOS-XIX) Conference on Cloud Computing (CLOUD) (2017),
(2014), pp. 81-96. pp. 302-309.

[28] DONG, X., SHEN, Z., CRISWELL, J., COX, A. L., AND [40] LIND, J., PRIEBE, C., MUTHUKUMARAN, D.,
DWARKADAS, S. Shielding Software From Privileged O’KEEFFE, D., AUBLIN, P.-L., KELBERT, F., REI-
Side-Channel Attacks. In Proceedings of the 27th HER, T., GOLTZSCHE, D., EYERS, D. M., KAPITZA,
USENIX Security Symposium (2018), pp. 1441-1458. R., FETZER, C., AND PIETZUCH, P. R. Glamdring:

. Automatic Application Partitioning for Intel SGX. In

[29] ETHEREUM. Go Ethereum. https://github.com/ Proceedings of the 2017 USENIX Annual Technical
ethereum/go-ethereum, 2019. Conference (ATC) (2017), pp. 285-298.

[30] GOLTZSCHE, D., SIEBELS, T., AND KAPITZA, [41] Lipp, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.
R . Trustscript: Language . support _ for par- HAAS, W., MANGARD, S., KOCHER, P., GENKIN, D.
titioning trusted web applications. https: YAROM. Y.. AND HAMBURG. M. Meltdown. CoRR
/ /www.eurosys2019.org/wp-content/uploads/ abs/180} 0}’207 (2018) T ’
2019/03/eurosysl9posters—abstract100.pdf, ' ’

2019. [42] MACKIE, K. Azure Confidential Comput-

[31] GOOGLE LLC. Asylo. https://asylo.dev/, 2019. ing Project Getting Added Partner Support.

https://redmondmag.com/articles/2018/05/10/

[32] GOOoGLE LLC. gRPC. https://grpc.io/,2019. azure-confidential-computing-partners.aspx,

2018.

[33] HOARE, C. A. R. Communicating Sequential Processes.

Commun. ACM 21, 8 (1978), 666-677. [43] MARLINSPIKE, M. Technology preview: Private con-

[34] HOFMANN, O. S.. KIM. S.. DUNN, A. M., LEE, M. Z.. taCF dlstcoizery ftor Ség,llda'L https: ;/51gna1.org/blog/
AND WITCHEL, E. InkTag: secure applications on private-contact-aiscovery/.
an untrusted .operatmg system. In Prc.)ceedmgs of the [44] ORENBACH, M., LIFSHITS, P., MINKIN, M., AND SIL-
18th International Conference on Architectural Support BERSTEIN. M. Eleos: ExitLess OS Services for SGX
for Programming Languages and Operating Systems Enclaves. In Proceedings of the 2017 EuroSys Confer-
(ASPLOS-XVIII) (2013), pp. 265-278. ence (2017), pp. 238-253,

[35] HUNT, G. C., AND LARUS, J. R. Singularity: rethink-)
ing the software stack. Operating Systems Review 41,2 [45] RUSﬁZINO.V{CH’ M. _ Introducing AZ“;‘;
(2007), 37-49. confidentia computing. https:

azure.microsoft.com/en-us/blog/

[36] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., introducing-azure-confidential-computing/,
HAMBURG, M., L1PP, M., MANGARD, S., PRESCHER, 2017.

584 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://www.eurosys2019.org/wp-content/uploads/2019/03/eurosys19posters-abstract100.pdf
https://asylo.dev/
https://grpc.io/
https://redmondmag.com/articles/2018/05/10/azure-confidential-computing-partners.aspx
https://redmondmag.com/articles/2018/05/10/azure-confidential-computing-partners.aspx
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

[46]

[47]

[48]

[49]

SCHUSTER, F., COSTA, M., FOURNET, C., GKANT-
SIDIS, C., PEINADO, M., MAINAR-RUIZ, G., AND
RUSSINOVICH, M. VC3: Trustworthy Data Analyt-
ics in the Cloud Using SGX. In IEEE Symposium on
Security and Privacy (2015), pp. 38-54.

SHACHAM, H. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86).
In ACM Conference on Computer and Communications
Security (2007), pp. 552-561.

SINHA, R., CoSsTA, M., LAL, A., LOPES, N. P, RA-
JAMANI, S. K., SESHIA, S. A., AND VASWANI, K. A
design and verification methodology for secure isolated
regions. In Proceedings of the ACM SIGPLAN 2016
Conference on Programming Language Design and Im-
plementation (PLDI) (2016), pp. 665-681.

XU, Y., Cul, W., AND PEINADO, M. Controlled-
Channel Attacks: Deterministic Side Channels for Un-
trusted Operating Systems. In IEEE Symposium on
Security and Privacy (2015), pp. 640-656.

[50]

[51]

[52]

(53]

ZDANCEWIC, S., ZHENG, L., NYSTROM, N., AND MY-
ERS, A. C. Untrusted Hosts and Confidentiality: Secure
Program Partitioning. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP)
(2001), pp. 1-14.

ZEGZHDA, D. P., Usov, E. S., NIKOL’SKII, V. A.,
AND PAVLENKO, E. Use of Intel SGX to ensure the
confidentiality of data of cloud users. Automatic Control
and Computer Sciences 51, 8 (2017), 848-854.

ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B.
CloudVisor: retrofitting protection of virtual machines
in multi-tenant cloud with nested virtualization. In Pro-
ceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP) (2011), pp. 203-216.

ZHAO, C., SAIFUDING, D., TIAN, H., ZHANG, Y.,
AND XING, C. On the Performance of Intel SGX. In
IEEE WISA (2016), pp. 184-187.

USENIX Association

2019 USENIX Annual Technical Conference 585

	Introduction
	Background
	Intel Software Guard Extension
	Building Secured Systems
	SGX Limitations

	Design
	Threat Model
	Quick Overview of Golang
	Secured Routines & Cross-domain Channels
	Runtime Cooperation
	Compatibility With SGX

	Implementation
	Compiler Support for gosecure
	gosec – an SGX Library in Go
	gotee Runtime

	Evaluation
	Code Size
	Microbenchmarks
	A full in-enclave ssh server
	Webserver with enclave-cert
	Keystore based on go-ethereum

	Discussion
	Related Work
	Conclusion

