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Abstract
In large scale data centers, network infrastructure is becoming a major cost component; as a

result, operators are trying to reduce expenses, and in particular lower the amount of hardware

needed to achieve their performance goals (or to improve the performance achieved for a

given amount of hardware).

In this thesis, we explore the use of locality in the data center to meet these demands. In

particular, we leverage locality in two different projects: (1) VNTOR, which moves network

virtualization from the server to the top-of-rack (ToR) switch, thereby reducing the server

hardware needed to achieve a certain performance, and (2) CRISS-CROSS, which makes the

network topology reconfigurable, thereby reducing the network hardware needed to switch

typical data center workloads with a given level of performance.

VNTOR exploits the locality of traffic flows as well as their power-law distribution in the

design of a virtual flow table, which extends the hardware flow table of off-the-shelf top-of-

rack switches. VNTOR uses this virtual flow table in a hybrid data plane which merges both

hardware as well software components. This way it can (1) store tens or even hundreds of

thousands of flows, (2) adapt to traffic-pattern changes, typically in less than one millisecond,

and (3) uses only commodity switching hardware with a minimal amount of data path memory

(4) without compromising latency or throughput.

CRISS-CROSS is a hierarchical, reconfigurable topology for large-scale data centers. The locality

in rack-level flows allows CRISS-CROSS to adjust its topology to the current traffic patterns. We

show that CRISS-CROSS preserves many of the advantages of Clos topologies: (1) it maintains

their hierarchy, (2) the simple routing algorithms, (3) their regular layout of connections for

simple physical deployability, and (4) the compatibility to existing management approaches.

We demonstrate that for a group-based communication pattern, CRISS-CROSS improves the

average flow completion time by 5.5× and the 99th percentile by 6.3×. For a purely random

point-to-point traffic pattern, it improves the flow completion time by 2.2× on average and 3×
at the 99th percentile.

Keywords: network, data center, cloud, virtualization, network virtualization, optical circuit

switch, routing
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Zusammenfassung
In großen Rechenzentren wird die Infrastruktur für das Netzwerk immer mehr zu einem der

wesentlichen Kostenfaktoren. Daher versuchen die Betreiber Ausgaben zu senken, indem sie

beispielsweise die erforderliche Menge Hardware zur Erreichung eines bestimmten Leistungs-

zielwerts verringern (oder alternativ, indem sie die Leistungsfähigkeit des Netzwerks bei gleich

bleibendem Hardware-Budget erhöhen).

Diese Doktorarbeit untersucht, ob man örtliche und zeitliche Nähe (Lokalitätsprinzip) im

Netzwerk ausnutzen kann, um Einsparpotentiale auszuschöpfen. Konkret wenden wir das

Lokalitätsprinzip in zwei verschiedenen Projekten an: (1) VNTOR verschiebt die Netzwerk-

virtualisierung vom Server in den Top-of-Rack-Switch (ToR), was die Anzahl der benötigten

Server bei gleicher Leistungsfähigkeit reduziert. (2) CRISS-CROSS ergänzt die Netzwerktopolo-

gie um eine rekonfigurierbare Komponente und macht sie damit anpassungsfähig. Dadurch

wird weniger Netzwerk-Hardware für die typischen Arbeitslasten im Rechenzentrum benötigt.

VNTOR macht sich die Lokalität einzelner 5-Tuple-Flows beim Entwurf einer virtuellen Flow-

Tabelle zunutze, die die begrenzten Hardware-Flow-Tabellen von handelsüblichen ToRs er-

weitert. VNTOR verwendet diese virtuelle Flow-Tabelle in einer hybriden Data-Plane, die

Hardware- und Software-Komponenten kombiniert. Mit diesem Design kann VNTOR (1)

zehn- oder sogar hunderttausende Flows speichern und sich (2) an veränderte Muster in der

Netzwerkauslastung anpassen – in der Regel innerhalb einer Millisekunde. Zum Einsatz kom-

men dabei (3) nur handelsübliche Switche mit minimalen Hardwaretabellen und es werden

(4) weder Latenzen noch die verfügbare Bandbreite eingeschränkt.

CRISS-CROSS ist eine hierarchische, rekonfigurierbare Topologie für besonders große Rechen-

zentren. CRISS-CROSS nutzt die Lokalitätseigenschaften von Flows auf Rackebene und passt

die Topologie an die jeweils aktuellen Netzwerklastmuster an. Dabei können wir zeigen, dass

CRISS-CROSS viele Vorteile der Standard-Clos-Topologien wahrt: (1) den hierarchischen Auf-

bau, (2) die Nutzung simpler, deterministischer Routing-Algorithmen, (3) ein unverändertes,

regelmäßiges Kabellayout für einfache, physische Installation, und (4) die Vereinbarkeit mit

bestehenden Managementverfahren. Die Messungen für gruppenbasierte Kommunikation

ergeben eine durchschnittliche Laufzeitverkürzung der Flows um den Faktor 5,5 und im 99-ten

Perzentil sogar um den Faktor 6,3. Für zufällige Punkt-zu-Punkt-basierte Kommunikations-

muster verbessern sich die Laufzeiten um den Faktor 2,2 bzw. 3.

Stichwörter: Netzwerk, Netzwerkvirtualisierung, Rechenzentrum, Cloud, Routing
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Résumé
Dans les larges centres de données, l’infrastructure réseau devient l’un des éléments majeurs

en matière de coût. Les opérateurs essayent de réduire ces dépenses, notamment en réduisant

la quantité de hardware nécessaire pour satisfaire leurs objectifs en terme de performance (ou,

plutôt, pour améliorer la performance en utilisant les ressources déjà disponibles). Dans cette

thèse, nous explorons comment le principe de localité peut être exploité afin de remplir ces

objectifs. En particulier, nous utilisons le principe de localité dans deux projets : 1) VNTOR, qui

qui étend la virtualisation du serveur au top-of-rack switch, réduisant la quantité de hardware

nécessaire pour atteindre une performance donnée, et (2) CRISS-CROSS, qui rend la topologie

de réseau reconfigurable, réduisant ainsi le hardware nécessaire au changement de workloads

pour un certain objectif de performance.

VNTOR s’appuie sur la localité des flows réseaux (traffic flows) ainsi que sur leurs "long-tail

behavior" afin d’obtenir une virtual flow table, une extension des hardware flow tables pour

les top-of-rack switches. VNTOR utilise cette virtual flow table dans un data plane hybrid

qui combine des éléments de hardware et de software. Ainsi, VNTOR peut (1) stocker des

dizaines, voir des centaines, de milliers de règles d’accès, (2) s’adapter au changement de

pattern du traffic, généralement en moins d’une milliseconde, et (3) nous n’utilisons que du

commodity switching hardware avec des ressources mémoires minimal pour le data path

(4) sans compromettre ni latence, ni débit. CRISS-CROSS est une topologie hiérarchique

reconfigurable pour les grands centres de données. La localité des flows observée au niveau

des racks permet à CRISS-CROSS d’adapter sa topologie au pattern de traffic. Nous montrons

que cette solution préserve la plupart des avantages des topologies de Clos : (1) CRISS-CROSS

maintient ces hiérarchies, (2) les algorithmes de routage simples, (3) les connexions et le

câblage existants et (4) la compatibilité avec les approches de gestion du centre de données

existantes.

Nous montrons que pour des patterns suivants des communications de groupes, CRISS-CROSS

améliore le temps de complétion pour le flow moyen par un facteur de 5.5x, et le 99ième

percentile par 6.3x. Pour un traffic complètement aléatoire, ces nombres sont respectivement

2.2x et 3x.

Mots clefs : Réseaux, centre de données, cloud, virtualisation, virtualisation de réseaux, rou-

tage
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1 Introduction

Large scale data centers are becoming increasingly common, as more and more businesses

migrate IT services into the cloud. These businesses are starting to use cloud services for all

aspects of their daily work, from word editing to machine learning. As a result, the number

of hyper-scale data centers is expected to double by 2021 compared to the 2016 levels, and

53% of all installed data center servers are expected to be in hyper-scale type data centers by

then [26]. With up to 94% of all data center workloads running in cloud data centers, traffic

within the data centers is estimated to quadruple in the same timespan [26]. Due to the capital

requirements for these large data centers, it is a small number of companies that provide the

majority of these cloud services.

The cost of the network makes up for a significant fraction of the cost of each data center,

both in capital as well as operating expenses [11, 66, 86]. It is estimated that by 2021, 85% of

the traffic in the data center will be east-west traffic [26], i.e., traffic within the data center,

and only 15% north-south, i.e., traffic exiting towards the Internet or WAN. Naturally, as the

traffic within the data center is growing, so is the importance of the data center network.

Besides increases in bandwidth demands, requirements for latencies are also growing. As

services become more distributed [38], the target service level objectives (SLOs) for latencies

are decreasing. Both of these reasons cause the cost of networks to rise even further.

In the highly competitive cloud computing market, a key factor is maximizing the possible

performance while minimizing the amount of hardware needed (and therefore cost). In

2017 alone, over $75 billion were spent on new data centers [136], and estimates show that

these levels were probably exceeded by over 50% in 2018 [136]. As such, operators are trying

to reduce expenses. For their capital expenses, they are attempting to reduce the amount

of hardware needed to achieve their performance goals. Any reduction in the number of
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deployed hardware devices also translates into savings in operating expenses, e.g., energy

consumption, or management overhead.

There has been a significant amount of work in recent years studying data center traffic under

diverse sets of circumstances [12–14,44,47,57,80,89,125]. This work has shown that data center

network traffic has inherent temporal and spatial locality, with its exact degree depending

on the granularity of flows. This locality opens the door to significant optimizations of data

center architecture at all levels.

In this thesis, we explore the use of locality in the data center to reduce the amount of data cen-

ter hardware needed to achieve a certain level of performance (or to improve the performance

achieved for a given amount of hardware). In particular, we leverage locality to:

1. move network virtualization from the server to the top-of-rack (ToR) switch, thereby

reducing the server hardware needed to achieve given performance targets,

2. and make network topology reconfigurable, thereby reducing the network hardware

needed to switch typical data center workloads with a given level of performance.

The first part of this thesis concerns the virtualization of tenant networks in a cloud envi-

ronment. Cloud providers virtualize their networks to offer their tenants familiar network

abstractions like layer-2 broadcast domains, private IP subnets, and security groups, com-

pletely under the tenants’ administrative control. These features make it easy for tenants

to replicate their physical network organization in the cloud and manage it with the same

familiar processes.

Most often, cloud providers implement the virtual network abstractions on the server within

the operating system (OS) that hosts the tenant virtual machines (VMs) or containers. The

host OS uses virtual switching, for example Open vSwitch [118], to provide connectivity to

the local VMs and also opportunistically includes cloud network abstractions: it performs the

encapsulation or translation needed to provide the abstractions of a layer-2 network and IP

subnet, and it enforces the access rules dictated by security groups.

This approach is flexible and convenient: firstly, it does not require any changes to network de-

vices, which are typically hard to reprogram. Secondly, it allows easy coordination between the

deployment of virtual-compute and virtual-network resources as both are deployed through

agents running in the same place — the host OS.

However, this approach leads to unnecessary performance overheads. Compute virtualization

platforms are designed to avoid host OS involvement as much as possible, and locating
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the implementation within the host OS violates this principle. Moreover, this approach

is incompatible with bare-metal computing, because to guarantee security, the point of

implementation for these network abstractions needs to be at an entity outside the one being

governed. Lastly, the network itself becomes vulnerable in the case of a hypervisor breakout.

Bugs in hypervisor implementations allow malicious or compromised tenants to escape the

confines of their VMs and run commands at the hypervisor level. As the enforcement of

network policies is at the hypervisor level, such an escaped attacker could access the network

without any protection.

To tackle these problems, we propose to offload the implementation of network abstractions

to the top-of-rack switch with VNTOR (Virtual Network at the top-of-rack). This provides a

solution to all problems mentioned above: we utilize the locality of traffic to move heavy flows

into hardware, while serving the majority of traffic via a software data plane. This allows us to

improve performance, reduce overheads at the end-host, and increase security.

The second part of the thesis concerns network topologies and their ability to adapt to the

workload. While the research community has suggested a large variety of different topologies

[9,24,25,50,51,57,58,65,92,94,100,121,133,134,137,140,141,145], the most common topology

in use today is the (folded) Clos topology [1, 61, 125, 131]. Folded Clos topologies provide

modularity and a hierarchical structure, which allows for easy calculation of routes, cabling

and installation. An example of such a topology can be seen in Figure 2.5.

Given current data center size requirements and radix limitations, these Clos topologies have

at least three layers: at the lowest layer, the servers of the data center are combined into racks,

each connected to a ToR; ToR switches (and their servers) are grouped into collections called

pods. These pods are connected to a set of fabric switches that make up the second layer; the

fabric switches are then connected to spine switches that make up the top layer.

As described above, operators are trying to limit the cost of the data center and the network.

To balance cost with scale, data center networks commonly have to oversubscribe the traffic at

the fabric switches. For example, with an oversubscription of 1:4, there is 3× more bandwidth

between ToRs and fabric switches than there is between fabric switches and spines [7, 131].

This is the oversubscription Facebook uses in their fabric-based Altoona data centers [7]. The

amount of oversubscription is a strategic decision made at deployment time and commits the

data center for multiple years, well before the actual networking requirements of the future

workloads are known. Oversubscription, however, means that there is less bandwidth between

pods than within pods [50, 82], which is problematic for traffic patterns with significant inter-

pod traffic, i.e., the general east-west traffic becoming more common in data centers today.
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As a consequence, the design challenge for the second part of the thesis is the following: can

we eliminate the spine bottlenecks that result from oversubscription while maintaining the

modularity and hierarchy of a Clos topology? As a solution, we propose CRISS-CROSS, an

alternative topology that utilizes reconfigurability to take advantage of locality in rack-level

flows. While the above-mentioned standard topologies are static and symmetric in nature, the

traffic itself is dynamic and non-uniform. We therefore propose a topology that preserves the

advantages of the Clos topology, but that is reconfigurable to adjust to changing traffic patterns.

This is an alternative approach to prior work which has often worked with direct connections

as shortcuts to increase bandwidth between active racks or servers, or used non-regular

structures to achieve shorter paths [57, 65, 145]. CRISS-CROSS uses optical circuit switches

(OCS) to extend Clos topologies and rearrange the links between ToRs and fabric switches

dynamically. Links are reconfigured in a way so that large flows bypass the spine connections

and instead take shorter routes. Preserving the hierarchy in the topology allows CRISS-CROSS

to preserve the simplicity of route calculation of the standard Clos based topologies, their path

diversity, as well as the physical deployment layout in the data center.

1.1 Thesis Statement

This thesis demonstrates the feasibility of using the locality of network traffic to improve data-

center performance and potentially reduce operating costs. By leveraging the locality of 5-tuple

flows, we move the implementation of network virtualization abstractions from the end-hosts to

already available hardware at the top of rack; this improves performance and frees up end-host

resources. By leveraging the locality of rack-level flows, we continuously adapt the network

topology to the workload; this improves performance and keeps the simplicity of the routing

schemes implemented in current data centers.

1.2 Thesis Contributions

This thesis makes two main contributions to the area of data center networking. Using the

locality of traffic flows, we are able to innovate both at the edge as well as on the topology itself.

These innovations provide data center operators with increased performance, and potentially

reduced costs.

VNTOR — Implementing virtual networking abstractions at the top-of-rack switch: The

locality of traffic flows as well as their long-tailed behavior allows the design of a virtual flow

table extending the hardware flow table of off-the-shelf top-of-rack switches. VNTOR uses a
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hybrid data plane that consists of both a hardware as well as a software data plane. With this it

can:

1. store tens or even hundreds of thousands of access rules,

2. adapt to traffic-pattern changes, typically in less than one millisecond,

3. and uses only commodity switching hardware with a minimal amount of data path

memory

4. without compromising latency or throughput.

CRISS-CROSS — A hierarchical, reconfigurable topology for large-scale data centers: The

locality in rack-level flows allows CRISS-CROSS to adjusts its topology to the traffic patterns.

We show that CRISS-CROSS preserves many of the advantages of Clos topologies:

1. it maintains their hierarchy,

2. the simple routing algorithms,

3. their regular layout of connections for simple physical deployability,

4. and the compatibility to existing management approaches.

Nevertheless, we demonstrate that for group-based communication patterns, CRISS-CROSS

improves the average flow completion time by 5.5× and the 99th percentile by 6.3×. For

purely random point-to-point traffic pattern, it improves the flow completion time by 2.2× on

average and 3× at the 99th percentile.

1.2.1 VNTOR: Rack-Based Network Virtualization

VNTOR is an off-the-shelve switch on which we implement security groups, a specific type

of virtual networking abstraction. Security groups are the main mechanism offered to cloud

tenants for controlling their communications, enabling them to enforce policies equivalent to

those provided by a traditional stateful firewall in a physical network. We picked this particular

abstraction for our proof-of-concept, because we consider it the most challenging one to

implement at the ToR due to the large number of flows it utilizes. Furthermore, we designed

and implemented the abstraction of a virtual flow table. A virtual flow table is a construct that

fits orders of magnitude more access rules than the ToR’s data path memory (the physical flow

table). We provide this abstraction through a simple, two-level memory hierarchy, where the
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top-of-rack’s (fast but small) data path memory acts as a cache for a much larger and slower

backing store accessible from the ToR’s supervisor engine. To support this caching hierarchy,

we designed an algorithm for typical switch ASIC data path memory. This algorithm takes the

reduced access rates for the data path memory into account, as both reading the utilization

information as well as updating and changing rules is several orders of magnitude slower than

reading cache entries. As a consequence, this algorithm fundamentally relies on the temporal

locality of the cached rules, which in our case means the locality of the traffic matched by each

rule.

Combining all of the above, we are able to show that by using the locality of network flows, it is

feasible to centralize the implementation of virtual networking at the top-of-rack switch. We

demonstrate that this increases performance for flows, especially for those flows that reside in

the data-path memory of the switch. We also show that resource demands on end-hosts are

significantly lower. By removing all network virtualization functionality from the end-host, we

also reduce the susceptibility of the network to hypervisor breakouts. Because VNTOR has

very limited hardware requirements, cloud providers can implement this solution today with

a firmware update to their top-of-rack switches. This allows them to offer bare-metal support

and faster communication with SR-IOV without compromising security or other specialized

hardware.

1.2.2 CRISS-CROSS: A Hierarchical, Reconfigurable Data Center Topology

CRISS-CROSS extends Clos topologies with a layer of optical circuit switches to make them

reconfigurable. It uses the locality of rack-level flows to adjust the topology to the traffic

patterns. At the same time, CRISS-CROSS preserves the advantages of a hierarchical topology,

namely the simple routing algorithms, the operator experience with deployment, as well as

compatibility with existing management techniques. In CRISS-CROSS we make the primary

assumption that the pod — the unit of higher available bandwidth in a Clos topology — is not

a natural or effective abstraction to capture data center network patterns. In combination

with oversubscription, this causes bottlenecks at the spine links. CRISS-CROSS uses optical

circuit switches to rearrange the links between ToRs and fabric switches to break up the strict

pod assignment of racks. This allows it to create temporary groups of active racks whose

communication can stay at the aggregation level and does not need to use the spines.

To evaluate CRISS-CROSS, we implemented an event-based flow-level simulator designed for

flexible topologies. Using this simulator, we evaluate CRISS-CROSS for shortest path routing

and a hierarchical routing. For both routing algorithms, we evaluate CRISS-CROSS for two
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traffic patterns: one with randomly distributed source and destinations, and another with a

group-based communication pattern.

1.3 Thesis Roadmap

This thesis is organized as follows:

• Chapter 2 explains the background knowledge for this thesis. It starts out with an

overview over cloud computing and its requirements. This is followed by an introduction

into data-center networking, including a brief overview over classical network topologies

as used in data centers, and an abstract model of a switch. It also covers the concept of

centralized control and software-defined networking in the data-center context and the

resulting simplification in management.

The second part of the chapter is about locality. We first provide the definition in its

historic form for memory, and then extend it for networking via the concept of flows.

• Chapter 3 discusses the work done for VNTOR. It first introduces the reader to different

abstractions in cloud data centers with many tenants, focusing on the security group

abstraction. Then, it compares the different existing systems for implementing these

abstractions, which we use to motivate the design of VNTOR.

It continues with a description of VNTOR and its underlying system design. Afterwards,

it goes into more detail on the implementation of our prototype. The chapter closes

with the evaluation of VNTOR for various types of traffic and metrics, before placing it

in context with related work.

• Chapter 4 presents CRISS-CROSS. It provides the background necessary to understand

the design of CRISS-CROSS. Afterwards, it describes the CRISS-CROSS topology, develop-

ing the topology from non-reconfigurable Clos topologies. Once the topology has been

defined, the chapter continues with a description of candidate selection algorithms,

the link change procedure, and two different routing algorithms. Then, it presents

the evaluation of CRISS-CROSS using our flow-level simulator. Finally, CRISS-CROSS is

placed in context with the existing work in the field.

• Chapter 5 concludes the thesis, in which we discuss some future directions in networking

as well as potential research ideas for the future of the presented projects.
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1.3.1 Bibliographic Notes

Chapter 3 is based on the paper VNTOR– Network Virtualization at the Top- of-Rack [52]. This

was joint work published with my colleague Sam Whitlock and George Ioannidis at the ACM

Symposium on Cloud Computing (2016). Not included in this thesis is my wo rk on distributed

building services [45], my contributions to the security of netw ork functions [117], and my

work on alternative RPC protocols for the data center a nd their P4 implementations [85].
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2 Background

In this chapter, we provide some of the background for this thesis. We give an overview of data

center designs. First, we present the field of cloud computing and its underlying technologies.

Then, we extend this with a history of the most common topologies in data centers, starting at

tree-based structures all the way to current-day setups, and their management with software-

defined networking. Lastly, we close the section with a description of an abstract switch model

as main component of data-center networks.

The second part of the background chapter deals with the definition of locality. We introduce

the concept of temporal and spatial locality for memory, and then use flows to extend the idea

of a working set to networking traffic. We close this chapter with an overview of the existing

body of research into traffic patterns in data centers and its findings regarding locality.

2.1 Data Center Designs

This section describes the typical setups of data centers. It begins with an introduction into

cloud computing and its influence on the network. It continues with the common topologies

currently deployed and some background on their evolution, and explains the operation of

using software defined networking. The section closes with an overview over newer topologies

suggested by the networking research community in more recent years.

2.1.1 Cloud Computing

Cloud Computing is the concept of rapidly providing resources such as compute storage to a

customer on demand without requiring direct management by the tenants themselves. These

services are typically run by a third party, the cloud provider. Generally, the term is used to

9



Chapter 2. Background

describe any deployments of data center for a large number of users over the internet, with

the data centers themselves distributed across the globe.

Cloud Computing, as it is understood nowadays, started around 2006 with the advent of

Amazon Web Services’ Elastic Compute Cloud [5]. Since then, most large internet companies

have created their own variants, e.g., Microsoft Azure [102], Google Compute Engine [60],

IBM Cloud [72] and many others. Fundamentally, all of these clouds provide the same kind

of services: they offer customers the ability to utilize virtual machines by the hour. These

machines can have varying capabilities depending on the distinct customer needs. As an

alternative, and to reduce the reliance on other companies, NASA and Rackspace Hosting

released an open-source cloud software called OpenStack [114] for the management of private

clouds. OpenStack enables at least larger company’s IT departments to provide a similar

experience in-house, creating private clouds, but retaining full control over all their aspects.

The business of cloud computing is large, with 2018 revenues projected near $190 billion, and

two digit growth rates [55]. Cloud providers compete primarily on price, aiming to provide the

highest performance for a given price point. Therefore, cost reduction is a primary driver of

innovation in this space. Automation, efficient utilization of resources, flexible allocations,

and many other factors are differentiators.

For the consumer, cloud computing provides many advantages, with the main point being the

elasticity for demand. There is no capital expenditure beyond the initial system design, and

the infrastructure can be scaled up and out nearly arbitrarily depending on business growth

and customer demands. It can even be used temporarily to provide additional resources;

the advent of machine learning means that nowadays, users can rent specialized hardware

temporarily for both training models and even inference in products. In general, all businesses

with large, but infrequent computing demands can benefit from cloud deployments.

Virtualization is the core enabling technology behind Cloud Computing [5, 59, 143]. Virtual-

ization in virtual machines (VMs) means exposing abstractions of the hardware interfaces of

the underlying hardware via a software layer. This approach has many advantages, of which

we describe the most commonly cited ones here [74]. Virtualization allows renting out VMs

to sized to the customers’ needs, and colocating many of these VMs on the same hardware,

i.e., sharing of resources that would otherwise be too big. Colocating multiple VMs on the

same machine provides efficiency gains. At the same time, virtualization provides isolation

between the different tenants, i.e., they can not interfere or monitor other tenants’ actions. On

the opposite side of the spectrum is aggregation in case the demands of a customer exceed

the size of a resource. A typical example here is storage. Sharing resources in a large data

center also allows customers to quickly scale their resources if demand arises. Lastly, virtual
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Figure 2.1 – Fat Tree - Doubling link capacity at every level

machines are easily managed by automatic processes that can deploy, move, and destroy VMs

as they are completely software-based. Thanks to virtualization support in modern hardware,

the performance differences of virtual hardware over bare metal are very low [21].

More recent developments go towards different levels of deployment, from software-as-a-

service, over platform-as-a-service to the more classical infrastructure-as-a-service, or even

serverless computing and its cousin function-as-a-service. These allow for an even better

fitting of resources to client demands, as they provide different abstractions beyond the

physical hardware abstraction of VMs.

All these solutions however have in common that the tenant has no control over the location

of the application in the data center. However, the same is true for the data center operator.

Scheduling software knows little about the demands of the applications themselves to optimize

their placement in terms of network connectivity. In fact, even if such information was

available, other considerations such as an avoidance of shared-fate might make network

connectivity secondary.

Most commonly, companies work with public clouds for their applications. However, it is

also possible to use private or even hybrid clouds. In this context, public cloud means that

the cloud is shared by many diverse tenants and is run by (one of) the above-mentioned

companies. On the other hand, private clouds are run by the IT departments of the companies

themselves, most commonly by large companies because of the required economies of scale.

The advantage of private clouds is that data is retained completely under the owner’s control,

which can be necessary either for judicial or for competitive reasons. The last alternative are

hybrid clouds, where the IT departments utilize both private and public clouds and split their

needs between them to provide the best from both worlds,i.e., the near-infinite scaling of

public clouds as well as the guarantees for privacy in the private ones.
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Figure 2.2 – Fat Tree

2.1.2 Common Topologies

Modern data centers employ a small set of common topologies in production. The research

community has proposed many alternatives (see § 2.1.3), however, none have made it into real-

world data centers to the best of the author’s knowledge. Historically, fat trees1 [91] were the

dominating topology. In fact, even today they are one of the most commonly used topologies

in the HPC community [40]. This topology is organized as a tree of switches (see Figure 2.1).

In Leiserson’s original definition, the fat tree was defined as a complete binary tree where

the number of links at a level was twice the number of links at the level below (i.e., further

from the root). With this definition, there is guaranteed full bisection bandwidth between all

nodes. The shown tree is a generalization of this concept beyond binary trees. Given that in

the real world there are radix limitations for switches as well as cabling costs, variants of fat

trees exist in which multiple links are replaced with a single link of higher bandwidth, without

necessarily guaranteeing the same amount of bandwidth. An example for this is shown in

Figure 2.2. In this example, the root connects to the second layer with 100Gbit/s, the second

to the third layer with 40Gbit/s, and the third to the fourth layer with 10Gbit/s and so on.

The disadvantage of fat trees is their limited scalability. As every additional layer needs an

associated increase in link speed or radix increase, there is both a technological limit to the

maximum speed and a disproportionate growth in cost as faster link speeds and higher radix

switches are substantially more expensive.

A first answer to these challenges was the introduction of multi-rooted (fat) trees (see Fig-

ure 2.3). In these, the single core router was replicated, i.e., there were multiple core routers.

This setup permits the upward bandwidth of the second layer switches to be split between

multiple links. The second layer routers are commonly called aggregation switches, as they

1 As is explained further on in this section, we utilize the original definition of a fat tree by Leiserson [91]
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Figure 2.3 – Multi-Rooted Fat Tree

aggregate multiple third layer switches, from now on called edge layer . However, these topolo-

gies still require the use of high-bandwidth links with their associated high costs for the

non-commodity switching technology.

Additionally, although multi-rooted fat trees solve the issue of high numbers of links or high

link speeds at the higher levels, they still suffer from a lack of resilience. If an aggregation

switch fails in this topology, all edge switches connected to this aggregation switch would lose

connectivity to the network as well. Similarly, the failure of an uplink of an edge switch would

mean a total loss of connectivity.

The next step in network design was therefore to introduce a certain degree of redundancy for

the edge to aggregation links. Examples of this are the classical Cisco cluster architecture [8],

Google’s traditional network [131] or Facebook’s old four-post network [7,49]. Figure 2.4 shows

an example of such a topology for a "four-post" design used by both Google and Facebook. In

this setup, each edge switch is connected to four different cluster (”aggregation”) switches —

the four posts. Furthermore, the four cluster switches are connected in a protection ring to

increase resiliency in the face of link failures. Together, this set of cluster switches and edge

switches make up one cluster. The cluster switches in one such cluster are in turn connected

to four core switches each (again, the four posts). These core switches also have a protection

ring connection to preserve connectivity during failures.

The main disadvantage with this setup is that it requires switches with very high radix to

connect all racks, with the cluster size defined by the radix of the cluster switches. Additionally,

these large radix switches were also very specialized and therefore expensive, ran proprietary

software making them difficult to debug. Lastly, even single switch failures would reduce the

capacity of the network by 75% either within the cluster for the cluster switches, or between

clusters for the core switches.
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Figure 2.4 – The cluster / 4-post design

In 2008, Al-Fares et.al. [1] published an alternative topology that used only commodity

switches. An example of its most general form is shown in Figure 2.5. Incidentally, the

authors also named their topology fat tree. However, it is a variant of a folded Clos topology,

and we will therefore use this terminology to avoid confusion. Clos topologies are a relatively

old concept first developed for telephone networks [29]. They were used to route calls from

an ingress stage through a middle stage to an output stage. The term folded refers to the

fact that in the data center, the ingress and egress stage are the same switches. Since then,

variations of folded Clos topologies have become the de-facto standard in large data centers

by Google [131], Facebook [125], Microsoft [132], or Amazon [122].

Figure 2.5 – Standard Folded-Clos Topology

Clos topologies tackle the main issues that stand in the way of lowering costs. The use of

commodity switching equipment means low capital expenditures. The regular structure of

the topology permits simple, standardized cabling, easy understandability, and easy routing.
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The high number of links also provides a large degree of redundancy, where the loss of a single

link has very limited impact on the bisection bandwidth. The multi-layered structure also

allows for oversubscription to control cost (we discuss the matter of oversubscription and

its trade-offs further in Chapter 4). Lastly, Clos topologies can also be built with lower-radix

switches, removing the need for highly specialized hardware.

One potential downside of Clos topologies is the increased number of networking elements

leading to more routing complexity. This disadvantage is mitigated through a centralized

approach for network management. The regular structure produces simple rules to create

routing entries. The nomenclature for the different layers stays consistent with the one for fat

trees, from spines at the cores that connect the fabric2 switches, which in turn connect the

edge switches. Again, further intricacies of the topology are discussed in Chapter 4.

2.1.3 Alternative Topologies

Many other alternative topologies have been developed; we describe them in relationship

to CRISS-CROSS in §4.7. Some projects utilize partial reconfiguration by adding additional

technology to the network in the form of mirrors [9, 57, 145] or wireless links [65]. Others add

additional optical circuit switches either for parallel optical networks [51, 121] or for (partial)

reconfiguration [24, 100, 141]. A last category of alternative topologies aims to completely

change to topology of the network, e.g., by including the servers in routing [63, 64] or using

networks inspired by random graphs [133, 137]. All these topologies have various optimization

criteria, with a general aim to increase performance and decrease costs. Nonetheless, data

center operators tend to be conservative in the deployment of new designs. As an example of

this conservatism, Singh et.al. [131] even describe that for the test of a new network topology,

they deployed the old one in parallel to prevent any issues. The fail-safe network could

then easily take back control with the press of a ”big red button”. As a consequence of this

conservatism, these new topologies have had a hard time of getting adopted so far.

2.1.4 Centralized Control

As described in §2.1.1, modern data centers are run in a largely automated fashion. For cloud

data centers, this is synonymous with a centralized management approach. Opposite to

early data centers, cloud data centers are run by a single entity, and the networks are very

homogeneous. This individual entity therefore has universal control over all components.

2 In the literature, these are also often called aggregation switches. In this thesis, we follow the naming convention
by Facebook and refer to them as fabric switches.
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Single ownership and homogeneity mean that a centralized network control plane becomes

feasible.

The concept to control the network centrally is called software defined networking (SDN) [98].

It positions itself as an alternative to the classical distributed algorithms for routing and path

discovery. SDN enables the operator to get complete visibility of the network. This visibility

allows easier reasoning over the state of the network as well as its configuration as compared

to the distributed algorithms.

The network is separated into a control and a data plane. The control plane is the intelligence

of the network that decides on the routing process. The data plane is only responsible for

forwarding of traffic, following the configuration from the control plane. The novelty of SDN is

that the control plane is separated from the data plane and centralized in a controller.

This clear separation of concerns allows switch vendors to sell white-box switches providing

the data plane component. These switches consist of a generic switch ASIC and a control CPU

that can then be custom-programmed by the network operators. As these white-box switches

replace specialized hardware, they can be priced very competitively.

Initially, the control plane was completely centralized, with a single controller having full

visibility over the network. Later designs introduced several new ideas. Hierarchical controllers

[71, 75] make state more manageable as it gets aggregated into larger units, e.g., by combining

all links between data centers into one virtual link. Distributed implementations [88] make

the network more resilient in the face of failures and improve scalability if the work can be

partitioned between multiple controllers.

The first implementation of SDNs used OpenFlow [98], a protocol to program the forwarding

tables in switches with match-action rules with a vendor-agnostic protocol. This allows the

centralized controller to program the flow tables of all switches according to its policy. The

protocol itself specifies a match data structure that gets applied to each incoming packet, and

associated actions that the switches should execute if the packet matches the specification.

Since this first proposal, SDN has truly penetrated the market. Google was the first major

company to publish their work with SDNs in B4 [75], an SDN based solution that uses the

global knowledge of network state for better network control. Since then, many more have

followed (e.g., Facebook’s routing platform Open/R [69], data center fabric [7]).

Controllers have three ways of installing routes in the network, either proactive, reactive or

a combination thereof. Proactive means that the rules for a packet are installed before an

associated packet ever arrives at the switch. This way, there is no delay, and the packet can be

delivered directly to its destination. In reactive routing, unknown flows are redirected to the
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controller. The controller then decides what should happen to the packet. Possible outcomes

include the installation of rule entries in arbitrary sets of switches, and the forwarding or

dropping of the packet.

One particular implementation that has gained popularity is OpenStack [114]. While Open-

Stack is a whole suite of software to manage (private) clouds, their networking component

Neutron [112] in particular uses SDN for network setups and control. Tenants can control all

aspects of their (virtual) networks, from IP addresses to logical topology, network functions

such as intrusion detection systems, firewalls and many more.

2.2 Switch Architecture

This section will give a brief overview over the components of a normal data center switch.

Figure 2.6 shows an abstract model of such a switch3. This is not meant as a full introduction

into the architecture of switches, but more to give the unfamiliar reader an idea of their

structure. In this simplified model, switches consist of three main components: the switching

ASIC4, a CPU for the supervisor, and the actual ports. We follow in this description the one by

Seifert & Edwards [127].

The ports are the connectors of the switch to the rest of the network. They are composed

of the physical layer receiver (PHY) and the Media Access Control (MAC) [127]. The PHY

converts the electrical or optical signal from the transport medium (i.e., copper or fiber,

respectively) to a bit stream on the receiving side, and vice-versa on the transmit. On the

receiving side, the MAC does the necessary checks for validity and errors. It also keeps most of

the port-specific statistics for the switch. On the transmit side, the MAC generates the needed

checksums. Network operators often choose to deploy a mixture of copper and fiber based

networks. The reason for this is that the actual PHY for fiber costs significantly more than for

copper, especially at higher speeds, but the range of copper is very limited at high link speeds

(depending on the technology used, between 3m and 30m). As a result, the operators use

copper wherever lengths permit its use, and fiber for the rest.

The ASIC takes care of all the packet forwarding in the switch and makes up the data plane

described in §2.1.4. In our model, the switch is made up of a set of ingress pipeline steps that

define where a packet should go, the fabric that does the actual connection of input to output

ports, an egress pipeline for post-processing the packets, and an output buffer which stores

packets until there is a free sending slot on the output port.

3 We purposefully skip the details of VLANs, priorities, flow control, auto-negotiation etc. and instead refer the
interested reader to [127]

4 Application Specific Integrated Circuit
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Figure 2.6 – An abstract example of a switch

The ingress pipeline contains the logic for flow control5, several filters such as access control

and VLANs, and the lookup engine. The lookup engine takes the incoming packets and parses

out a set of classifiers. Then, the lookup engine uses a set of tables, e.g., routing tables or MAC

addresse in combination with the classifiers to determine the correct handling of each packet.

It may forward the packet to a specific output port, to a set of output ports (multicast), an

internal processor port, or it may simply drop the packet. The lookup engine implementation

itself is highly dependent on the specific switch model, but most use a combination of SRAM,

content addressable memory (CAM) and ternary content addressable memory (TCAM). After

the handling of a packet has been determined, it is passed to the switch fabric. The fabric

uses the output port information for a packet to forward it to the specific egress pipeline for

that port. The egress pipeline may apply different filters (e.g., VLAN memberships, dropping

packets for inactive ports) or transform packets (e.g., time-to-live modifications or adding

VLAN headers). After passing the egress pipelines, the packets are scheduled into the output

queue (e.g., with Deficit Weighted Round Robin [130]). This queue is responsible for many of

the performance aspects of the network . Because multiple input ports can forward packets to

the same output port, the output queue can grow in size causing queuing delays. The release

of packets from the head of the queues to the wire again uses some form of flow control (e.g.,

the response to PAUSE frames or an implementation of 802.1Qbb [73]).

The last component of a switch is the supervisor engine which runs on a separate CPU.

Classically, these were running vendor specific OSs such as Cisco IOS [28] or JunOS [78]. With

the advent of generic white box switches, Linux based operating systems such as Cumulus

Linux [34], Microsoft Azure Cloud Switch [104], and Facebook Open Switching System [48]

have become more common. This allows very flexible deployment of software on switches.

5 e.g., PAUSE frames
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The supervisor engine has two main tasks. It monitors the switch state (and potentially

communicates it to a central controller), and it configures the forwarding state of the switch,

i.e., the data plane by modifying the tables used by the lookup engine mentioned above. The

CPU derives the forwarding state either via decentralized protocols such as IS-IS, GBP, or OSPF,

or via programming from a centralized control plane (see §2.1.4).

2.3 The Locality Principle

The principle of locality, or locality of reference [41,42], describes the relationship of a sequence

of memory access locations. Every program has a set of memory locations that it uses during

its operation. As programs typically do one thing at a time, they often utilize the same parts

of memory again and again within a certain interval, or utilize a lot of memory in the same

region. These types of accesses are referred to as temporal or spatial locality, respectively.

The primary driver for the definition and discovery of locality was virtual memory and shared

computing. To allow operating systems to run multiple programs efficiently but concurrently,

they needed to share the available memory. As this was a critical resource, early operating sys-

tem designers introduced the concept of virtual memory, essentially providing an abstraction

of an unlimited memory available to each program, where each program also has its own view

of memory. Memory not currently used was unloaded to disk, or paged out.

During an interval of time, only a subset of memory is used by any one program. The subset

accessed by the program in the interval prior to a specific point tnow in time is defined as

the working set of the program at point tnow . Once a page is accessed, it becomes part of the

working set for the specific interval

Assuming the working set of a program is located in fast memory and not paged out, the

performance of that program is very similar to the same program, but for which all pages

reside in fast memory. When paged-out memory is accessed, it is loaded back into main

memory, while another part is paged out.

Temporal and spatial locality are defined through the concept of a reference string [126], i.e.,

the stream of virtual addresses generated by an application.

• temporal locality: the reference string contains several closely spaced references to the

same address. An example of this might be a loop that sums up values and stores the

result.
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• spatial locality: the reference string contains several closely spaced references to ad-

jacent addresses. A prime example of this is a loop that iterates over an array, i.e.,

neighbouring memory.

In modern systems, locality is used at all layers. The prime example for this are cache hierar-

chies in all components of modern computers (and even warehouse computer systems with

cache servers). If a program exhibits temporal locality, then caches often already contain the

data that the system needs because it was accessed not too long prior to the current access.

Spatial locality can be used to make these cache hierarchies even more efficient. As memory

buses are often organized in fixed sizes, the memory subsystems often load full cache lines

instead of single object sized parts of the memory. Programs that access lots of memory within

a single location, i.e., exhibiting spatial locality, profit from this behavior as even previously

unaccessed parts of memory are already preloaded. This preloading can also be extended by

using specific prefetchers that preload related memory.

In the context of networking, locality has to be defined slightly differently. Here, it is not data

that is frequently read or written, but rather a pair of source and destination that is active over

a certain time interval. We therefore use the concept of a flow [19, 47] to define locality. In this

thesis, we define a flow as a set of packets that share a common source and destination.

The granularity of source and destination – or end points – for a flow can vary depending on the

specific task. The most common definition of a flow is the 5-tuple of source and destination IP,

source and destination port, and the transport protocol. The 5-tuple is a generalization of the

definition of a TCP connection which is defined by those same 5 fields.

Beyond the 5-tuple, there exist less granular definitions of flows that aggregate end points [47].

The first aggregation is for end-hosts: removing the ports from the definition of a flow means

grouping all packets with the same source and destination IP addresses into the same flow

and treating all of them the same way. At the level of topologies, an even coarser definition

can be used, where it is only the source and destination racks that define a flow.

After introducing the concept of a flow, we can now use it to define temporal locality in

networks by redefining the working set as a subset of flows. Studies on flows have shown that

the majority of traffic is carried by a relatively small subset of flows [47, 57, 89, 115, 125]. In

many applications such as traffic engineering, it is sufficient to only manipulate the flows in

this subset to steer the majority of traffic as wanted. This is similar to virtual memory where

significant performance gains can be made by keeping the working set in fast memory. We

therefore need to define certain criteria that discriminate between heavy and non-heavy flows,

where the heavy flows then form the working set.
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Given this intuition, we arrive at the following informal definition: The working set for flows is

the set of flows that need to be treated differently than the default behavior in order to achieve a

certain performance target. Most commonly, the subset of flows within the working set is the set

that carries the majority of traffic while being relatively low in numbers. The actual quantitative

definition of performance and the subset of flows depends on the application [115].

In the literature, heavy flows are typically called elephant flows, with the rest classified as mice

flows [115] (or less commonly ants [47]). Elephant flows are characterized by a sufficient size

as well as a sufficient duration. However, the concrete values for these two restrictions as well

as their derivation depend heavily on the use case [107].

Significant work has been done on recognizing elephant flows. Ideally, an algorithm would

report the set of flows exceeding a certain threshold and their respective size at any moment

in time [47]. The proposed techniques range from simple sampling based strategies [107] such

as Cisco NetFlow [27] or Juniper JFlow [77], sample and hold as well as multistage filters [47],

end-host based methods [35] to programmable switch based approaches [120], even allowing

network wide heavy-hitter detection [68].

Beyond the definition of temporal locality, Roy et.al. [125] define spatial locality as the amount

of traffic that stays rack-local, cluster-local, or Facebook-internal.

There are various reasons for these skewed distributions. Examples include:

• Cloud computing tenants that primarily communicate within their own network. The

virtual machines of tenants are typically only allowed to communicate with other ma-

chines of this tenant or with the outside. Hence, their communication is limited to a

small number of end hosts.

• Large jobs for example in map-reduce calculations communicate only within their

worker sets. Specifically for map-reduce, there are phases of very active communication

in the shuffle phase, and periods of coordination traffic only in the map phase [39].

• Certain data centers are structured in a way that similar services are colocated in the

same racks [125]. Therefore, communication is between subsets of racks, e.g., the web

server rack that communicates with the cache rack and the database racks.

We utilize the definition of heavy flows in VNTOR. By keeping a subset of particularly heavy

flows in the hardware tables, most traffic is handled by the hardware data plane so that the

software data plane only has to deal with a small fraction of total traffic. This means that
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overall, the performance of this hybrid data plane is similar to that of a hardware switch with

sufficient capacity to contain flow entries for all flows.

For CRISS-CROSS, we aggregate the flows at a rack level, as this is the unit of reconfiguration.

The topology is then optimized so that the set of heavy flows exhibits minimal spine utilization,

i.e., it optimizes the topology so that the heavy flows can stay on the aggregation switches.

2.3.1 Traffic Patterns

In this section, we will give an overview over the literature characterizing locality and network

traffic. The interested reader is invited to look at the source material for more details beyond

the short characterization here.

Traditionally, much of the traffic in a data center has been north-south – the server talks to

a client somewhere on the internet – rather than east-west – the servers talk to each other

within the data center. This change is due to a change in workloads: pre-cloud, most clients

were located on the internet and communicated with a small number of servers per request.

Post-cloud, many functions are implemented within large clusters of computers that mostly

talk to each other, with 100s or even 1000s of servers involved per request [11]. This change in

application design lead to a shift in the observed flows in data centers.

Benson et.al. [12] studied three different types of data centers, a university, enterprise and

cloud data center (~2009/2010). In all types of data centers, they observed less than 10000

active 5-tuple flows during all 1 second intervals. They also observe that 80% of flows are short

in all types of data centers, carrying less than 10KB, with the rest making up the bulk of traffic.

In a second paper, Benson et.al. [14] observed 19 different data centers and investigated the

loss rates across different link types and noticed that nearly 4% of core links were suffering

from packet loss.

At the university of Calgary [44], the top 1% of flows were responsible for 73% of all traffic, with

the top 0.1% responsible for 46%. Other sources report even more skewed traffic with 0.02% of

flows responsible for 60% of all traffic [107].

Early work in the field of cloud data centers mostly looked at more specialized variants.

Kandula et.al. [80] examined data center traffic with a focus on a data mining data center.

This data center exhibited strongly grouped traffic. The probability of exchanging no traffic

between two servers is 89% for all pairs, and 99.5% for pairs in different racks. Interestingly,

the arrival rate for rack flows in this research was a relatively modest 2000 flows per second at

a rack aggregation level. 90% of traffic was carried by flows that lasted at least 10s.
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Ghobadi et.al. [57] looked at another set of more modern Microsoft data centers running a mix

of workloads, including index builders, map reduce workloads, database as well as storage

systems. In total, four different data centers were investigated, with 100-2500 racks. In these,

46-99% of racks exchanged no traffic, while less than 0.03% of rack pairs accounted for 80%

of all traffic. A second aspect that the authors evaluated was the elephant outdegree. The

elephant outdegree is defined here as the number of destinations with which the origin switch

communicates with elephant flows. During a single day, 20% of racks have an outdegree of

over 190, 10% of 70, and the rest less than 10. On a 5-minute basis, about 10% of racks have

more than 50 elephant flow destinations, with a maximum of 200.

Roy et.al. [125] report similar numbers as the above papers but for various Facebook data

centers (or rather for clusters). They describe traffic as being either rack-local or destined to

1-10% of hosts in a cluster, depending on the clusters main function. Using a definition of

heavy-hitter as being the heaviest flows that cumulatively are responsible for 50% of all traffic,

they note the following group communication pattern (within a 5ms interval): for webservers,

each host communicates with 5-8 other racks. For cache followers, this number goes up to 30

(with extremes of 50 at the tail).

For non-data center workloads, Varghese et.al. [47] showed that about 2% of 5-tuple flows

are responsible for 50% of traffic both for a WAN access point and between two ISPs. On the

internet, 90% of traffic is caused by a small subset of elephant flows [89].
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3 VNToR: Network Virtualization at the

Top-of-Rack Switch

This chapter presents our work on VNTOR. This work was largely presented at the ACM

Symposium on Cloud Computing 2016 (SoCC’16) in our paper ”VNToR: Network Virtualization

at the Top-of-Rack Switch” [52], but has been augmented with additional information and

details.

3.1 Introduction

Cloud providers are starting to virtualize their networks and expose to their tenants familiar

network abstractions like a layer-2 broadcast domain, an IP subnet, or a security group. These

abstractions make it easy for tenants to replicate their physical network organization in the

cloud and manage it with the same familiar processes.

Cloud providers typically implement network abstractions on the server, within the operating

system (OS) that hosts the tenant virtual machines (VMs) or containers. The host OS imple-

ments virtual switching, for example Open vSwitch [118], to provide connectivity to the local

VMs and also opportunistically implements cloud network abstractions: it performs the encap-

sulation or translation needed to provide the abstractions of a layer-2 network and IP subnet,

and it enforces the access rules dictated by the security groups. This approach is flexible and

convenient: first, it does not require any changes to network devices, which are typically hard

to reprogram; second, it allows easy coordination between the deployment of virtual-compute

and virtual-network resources, because both are deployed through agents running in the same

place—the host OS. An example of such a deployment is shown in Figure 3.1a.

Despite its benefits, this approach has significant performance and security problems:
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(a) Incompatibility with bare-metal support1: For security reasons, network abstractions must

be implemented at an entity outside the one being governed. For instance, if a security group

specifies that tenant X must not send any traffic to tenant Y , it does not make sense to let

tenant X itself enforce this rule. Hence, when tenants are given access to servers, network

abstractions must be implemented somewhere outside the server.

(b) Unnecessary performance overhead: Compute virtualization platforms are designed to

avoid host-OS involvement as much as possible, and implementing network abstractions

within the host OS violates this mentality. Bypassing the host OS with single-root I/O virtual-

ization (SR-IOV) [116] and offloading the implementation of network abstractions elsewhere

has tremendous potential for performance improvements [43, 109].

(c) Susceptibility to hypervisor breakouts: Bugs in hypervisor implementations allow mali-

cious/compromised tenants to escape the confines of their VMs and run commands at the

hypervisor level. Multiple vulnerabilities have been discovered in recent years (including

vmftp [30], CloudBurst [31], KVM Virtunoid [32], and XEN Sysret [33]) that would allow such a

tenant full access to the provider network.

To solve these problems, we propose to offload the implementation of network abstractions to

the top-of-rack switch (ToR); to show that this is feasible and beneficial, we present VNTOR, a

ToR that takes over the implementation of the security-group abstraction. Figure 3.1b shows a

subset of the possible configurations with VNTOR.

Security groups are the main mechanism offered to cloud tenants for controlling their com-

munications, and they enable tenants to enforce policies that in a physical network would

be enforced by traditional stateful firewalls. We picked this particular abstraction for our

proof-of-concept, because we consider it the most challenging one to implement at the ToR

(we comment on this in § 3.3).

Others have taken similar approaches: Fastrak implements certain network abstractions at

the ToR, but only for a few flows selected by the guest OS [109]. In contrast, VNTOR does it

for all traffic and without any changes to the guest OS, which leads to very different technical

challenges. As we were completing our work, Amazon announced they are also offloading

the implementation of security groups, but to the network interface card (NIC) as opposed to

the ToR [138]; their implementation involves a proprietary NIC without a publicly available

technical specification. Microsoft has gone a similar route with their FPGA-based Azure

SmartNIC [3]. In contrast, our approach does not require proprietary hardware, but only

software changes at the ToR.

1 Where the cloud provider offers tenants access to physical machines.
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(a) Hypervisor-centric (baseline)

(b) VNTOR

Figure 3.1 – Two approaches to cloud virtual networking using OpenStack

The main technical challenge we face is that ToRs are often low-end switches without the

resources required for a straightforward implementation of network abstractions. More

specifically, a typical ToR lacks the amount of data-path memory needed to store all the access

27



Chapter 3. VNToR: Network Virtualization at the Top-of-Rack Switch

rules needed to implement security groups (i.e., the set of access rules dictated by security

groups that contain VMs or containers running in servers connected to the ToR). This is

a fundamental limitation related to the ASIC manufacturing process, which is unlikely to

disappear in the near future [105].

To address this challenge, our ToR exports the abstraction of a virtual flow table, which fits

orders of magnitude more access rules than the ToR’s data-path memory (the physical flow

table). We provide this abstraction through a simple, two-level memory hierarchy, where the

ToR’s (fast but small) data-path memory acts as a cache for a much larger and slower backing

store accessible from the ToR’s supervisor engine.

At a high level, the idea of data-path memory as cache has been explored before, in the

context of Software Defined Networking (SDN) [83, 142, 144], but the substance of our work

is different. In SDN, what makes caching challenging is the presence of overlapping rules,

because naïve caching of such rules interferes with forwarding semantics. Hence, related

SDN work focuses on the correctness of the caching algorithm in the presence of overlapping

rules—an interesting algorithmic problem, which is independent of underlying-hardware

details. In contrast, we set out to eliminate the communication overhead due to host-OS

involvement, and we must be careful not to move this overhead to the ToR. Unlike SDN work,

our ToR has a concrete, hard baseline to match: that of a ToR that does not implement any

network abstractions. Hence, we focus on the performance of the caching system, which

is very much dependent on hardware details like the polling and update rate of the switch’s

data-path memory. We discuss this difference in § 3.3.

In summary, our contribution is the design (§3.4), implementation (§3.5), and evaluation

(§3.6) of VNTOR, a system for state-of-the-art clouds that implements security groups at the

ToR. This requires a ToR that:

• can store tens of thousands of access rules;

• adapt to traffic-pattern changes, typically in less than one ms;

• while using commodity switching hardware with a minimal amount of data-path mem-

ory;

• and without compromising latency or throughput.

Cloud providers can implement this solution today with a firmware update to their ToRs,

which would enable them to offer bare-metal support and faster communication with SR-IOV

without compromising security. We have implemented a prototype on top of a 64×10Gbps
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Broadcom Trident+ switching ASIC [16] and a low-power XLP supervisor engine [17], and

integrated our prototype in OpenStack Neutron [112].

3.2 Background

In this section, we describe the security-group abstraction as exposed by current clouds

(§3.2.1); OpenStack and how it implements security groups (§3.2.2); and the SR-IOV hypervisor

bypass technology (§3.2.3); we then compare existing security-group implementations (§3.2.4).

3.2.1 Security-Group Abstraction

A security group consists of tenant entities and ingress/egress rules. The entities can be VMs,

containers, or physical machines in the case of bare-metal support, and the rules specify what

traffic the group members can send or receive. A rule consists of a protocol (typically TCP,

UDP, or ICMP), a destination port or port range, and a remote location that is either an IP

subnet or another security group. Any traffic between security groups not explicitly allowed by

an egress and ingress rule is denied.

For example, the following rules allow TCP connections from group A to group B at port 8080:

Group Type Protocol Port Remote loc.

A egress TCP 8080 B

B ingress TCP 8080 A

The first rule is an egress rule associated with group A, which allows all entities (VMs etc.) from

A to initiate TCP connections to any entity from B at port 8080. The second rule is an ingress

rule associated with group B , which allows all entities from B to accept TCP connections at

port 8080 from any entity from A. If these are the only rules associated with groups A and B ,

the entities of these groups cannot send or receive any other traffic.

3.2.2 OpenStack and OVS Enforcement

OpenStack is the standard open-source cloud-management system, and Neutron is its network-

management module. It consists of one centralized controller and multiple agents, the latter

running on all the devices implementing network abstractions (in current clouds, these are

only the servers). The controller maintains all state related to network abstractions and dis-

tributes it to the relevant agents, which translate it into configuration and install it on the local

device.
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Figure 3.2 – netperf request/response benchmark

Neutron currently enforces the security-group rules at an Open vSwitch (OVS) running as part

of the hypervisor, and commercial solutions such as VMware NSX [87] use a similar approach.

When a tenant adds a VM to a security group, the Neutron controller sends the group’s rules to

the Neutron agent running on the VM’s hosting server. In response, the agent converts the

group rules into standard firewall rules and installs them in the local OVS switch. Firewall

rules are installed in an iptables rule chain, with connection tracking enabled, associated with

the OVS switch.

3.2.3 SR-IOV and Security Groups

In traditional compute-virtualization platforms, network I/O (and I/O in general) always

involves the hypervisor [10, 20, 84]; while this approach maximizes flexibility and portability, it

comes at a performance cost, especially as cloud workloads become more network intensive.

SR-IOV was invented precisely to remove this involvement [116]: it enables VMs to interact

directly and securely with NIC drivers, through the help of an I/O memory management unit

(IOMMU). SR-IOV can improve communication latency dramatically. Figure 3.2 shows average

communication latency between two VMs running on different servers connected to the same

ToR, when both the server CPUs and the network are underutilized (full experimental setup
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Test Expected
Amazon EC2 OpenStack

PV I/O SR-IOV PV I/O
SR-IOV
unsafe

SR-IOV
VNTOR

T
C

P

Echo test,
ingress and
egress rules

accept
p p p p p

Echo test,
ingress or
egress rule

only

deny
p p p

accept
p

Echo test,
no rules

deny
p p p

accept
p

Reverse-path deny
p p p

accept
p

Invalid,
ingress

and egress
rules

deny accept accept
p

accept
p

Invalid,
ingress

or egress
rule only

deny
p p p

accept
p

Invalid,
no rules

deny
p p p

accept
p

U
D

P

Echo test,
ingress and
egress rules

accept
p p p p p

Echo test,
ingress or

egress rule only
deny

p p p
accept

p

Echo test,
no rules

deny
p p p

accept
p

Reverse-path deny
p p p

accept
p

Enforcement point:
OVS

or
NIC

NIC OVS None VNTOR

Table 3.1 – Security-group semantics for intra-tenant traffic as exposed by Amazon and
OpenStack. The behavior of each system was tested for echo-tests, invalid packets, as well
as reverse-path packets after an initial packet. For each of these, certain rules were either
installed or not. (

p
means that the expected action was observed).
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in §3.6.2). For small packets, average latency is 2.5× smaller with SR-IOV, almost matching

bare-metal performance, while latency standard deviation is 4× smaller.

SR-IOV has severe implications for security groups: When VMs bypass the hypervisor and talk

directly to the NIC, the hypervisor cannot enforce security-group rules. As a result, OpenStack

supports SR-IOV (since “Juno” [113]) only at the cost of a fundamental restriction: security

groups are entirely disabled (§3.2.4). Amazon supports SR-IOV under the name Enhanced

Networking [6] as part of its Virtual Private Cloud product, but implements security groups on

a proprietary NIC that is not available outside their own cloud [138].

3.2.4 Validation of the Status Quo

For the record, we tested whether OpenStack and Amazon expose the security-group ab-

straction as described in § 3.2.1 and whether SR-IOV affects isolation. In each of the two

environments, we created two security groups, A and B , added a VM to each group, and tried

to send traffic between them, while varying the group rules. In some tests we added both

the ingress and egress rule from Section 3.2.1, in others one of the two, and in others none.

In the “echo” tests, A establishes a TCP connection with B at port 8080. In “reverse-path,” B

sends a packet with source port 8080 to an ephemeral destination port on A, without estab-

lishing a connection first. In “invalid,” A sends packets that are neither part of an established

connection nor establish a new connection (they are not SYN packets).

Table 3.1 shows the results, which validate our expectations: Both OpenStack and EC2 expose

the security-group abstraction correctly in the base case where I/O is emulated through a

paravirtual device (“PV IO” columns); in this case, the hypervisor is not bypassed and rule

enforcement and connection tracking can be implemented at the hypervisor. The only minor

difference is that Amazon does not verify the existence of SYN flags on the initial packet of a

TCP connection. However, in the case where the VMs use SR-IOV, OpenStack accepts their

addition to the security groups, but then fails to enforce the rules (“SR-IOV-unsafe” column).

Amazon does expose the abstraction correctly, even with SR-IOV, but at the cost of custom

hardware.

For completeness, the rightmost column in Table 3.1 shows the results for our solution; we

include it under “OpenStack” because we have integrated it in that platform.

To conclude: Existing approaches to security groups have fundamental problems: First, none

of them are compatible with bare-metal support. Second, in the OVS-based approach, a tenant

may escape the confines of their VM, gain unauthorized access to the hypervisor, and bypass
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Figure 3.3 – This figure shows the VNTOR architecture

security-group rules. Third, to reap the performance benefits of SR-IOV, cloud operators must

either disable security groups or deploy custom hardware on their servers.

3.3 Our Proposal: Move to the ToR

We set out to solve these problems by moving the implementation of security groups to the ToR.

On top of being physically outside the server—hence compatible with bare-metal support—

the ToR has the following advantages as an enforcement point: First, it is the traffic source’s

entry point into the cloud network, hence it can stop unauthorized traffic from affecting

legitimate communications. Second, commodity ToRs are already equipped to enforce access

rules (albeit a small number of them) within the switching ASIC at line speed; so, in a sense,

we are making access-rule enforcement cheaper by moving it from the server —where it

consumes general-purpose processing cycles that could be allocated to other functionality—

to the ToR, where it can run on the existing hardware without any performance penalty. We

consider our approach aligned with the SDN philosophy of pushing complexity to the network

edge: even though we do add functionality to a network device, we do it at the first hop from

the server without affecting the network core.

The key challenge is the limited rule capacity of commodity switching ASICs, which also arises

in the SDN universe. To address it, SDN proposals use switch datapath memory as a cache

for a backing store located at another switch [144] or a processor close to the switch [83, 142].

However, that work focuses on caching algorithms that maintain forwarding semantics in the

presence of overlapping rules2. In our context, support for overlapping rules is not crucial, as

2 For example, caching “deny * from 1.1.1.0/24” while not caching “allow * from 1.1.1.1/32” incorrectly denies
traffic from 1.1.1.1.
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Data struct. Stored in Type Field
Written or
updated by

Read or
polled by

hwTbl ASIC Flow table
matchAction cache manager hw pipeline
counter hw pipeline cache manager

swTbl SupE Hash map
matchAction sw forwarder sw forwarder
counter,
weight,
weighth

sw forwarder
cache manager

sw forwarder
cache manager

hwEntry cache manager sw forwarder

minHeap SupE
Min-heap,
sorted by
ptr → weight

ptr
(points to
swTbl entry)

cache manager cache manager

maxHeap SupE
Max-heap,
sorted by
ptr → weight

ptr
(points to
swTbl entry)

sw forwarder cache manager

Table 3.2 – VNTOR system state

security groups do not currently require it—though it is, of course, a useful feature and can be

provided by combining SDN proposals with ours.

What is crucial, in our context, is performance, and existing caching systems are not fast

enough (whether the rules are overlapping or not). One reason we are moving functionality

from the hypervisor to the ToR is to eliminate hypervisor overhead; it does not make sense

to cancel out this improvement by slowing down the ToR. To meet this goal, we design a

caching system tailored to the properties of state-of-the-art datapath memory, for example,

we interleave memory polls and updates to strike a balance between the freshness of the poll

results and the delay of the memory updates. Such systems issues have been outside the focus

of the related SDN work.

We consider security groups the most challenging network abstraction to implement at the

ToR, because it requires both a large number of accept/deny rules (as many as the tenant

entity pairs that are allowed to communicate by their security groups) and connection tracking.

However, network virtualization involves more than security groups, most importantly layer-2

network overlays; to support these, VNTOR would need to implement virtual extensible LAN

(VXLAN) [97], which encapsulates/decapsulates all tenant traffic that belongs to an overlay

and traverses the network core. Many current-generation commodity switches already have

VXLAN hardware support built-in, hence the only piece we are currently missing is the VXLAN

control protocol; we need to either add it to our ToR software stack, or integrate our software

stack into an existing one that implements it.
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3.4 System Design

In this section, we describe the typical ToR platform that served as our starting point (§3.4.1),

the VNTOR architecture (§3.4.3), its two main components in detail (§3.4.4 and §3.4.5), and

its integration in OpenStack (§3.4.6).

3.4.1 Platform

A typical ToR consists of a switching ASIC that implements all the line-rate packet processing

and a supervisor engine (SupE) that runs all the software needed to manage the ASIC. The

ASIC has a (physical) flow table that can fit pSize entries, each one storing a rule (a traffic

pattern and associated action) and a byte counter. A poll operation on an entry returns the

entry’s current counter, and an update operation replaces the entry’s rule with a new one. The

SupE has access to DRAM that can fit vSize À pSize entries.

One limitation of current ToR platforms is that a poll or update operation on the ASIC flow

table is significantly slower than packet inter-arrival on a multi-Gbps link: the latency of a

poll, denoted by tpoll, is typically several µs, while the latency of an update, denoted by tup,

is tens or even hundreds of µs. We observed such latency numbers in our own prototype,

even though we used a state-of-the-art ASIC and controlled the ASIC flow table through the

vendor’s own software development kit (SDK). One likely explanation is that these operations

were traditionally not considered time-critical and were therefore never optimized. Future

ToR platforms, with different ASIC hardware/software control mechanisms, should improve

these operations, but are unlikely to close the gap between poll/update latency and packet

inter-arrival times (as they are unlikely to significantly increase flow-table capacity). We

designed VNTOR such that (a) it achieves its goals given the poll/update latency of current

ToR platforms and (b) it will be able to leverage the lower poll/update latency offered by future

platforms to scale the workload churn that it can handle.

3.4.2 Local vs. Remote Control Plane

The OpenFlow API [98] provides the mechanisms to configure match+action rules of a switch,

evaluate the frequency by which certain rules are applied, and even inspect and forward

redirected traffic. A Neutron agent could therefore implement cloud virtual networking

policies, e.g., security groups, using the API without having to modify the switch. Related

research has focused on the scalability of software-defined networks in the context of the

limited capacity of the forwarding tables of OpenFlow switches, suggesting changes to the

API [36] or ways to partition tables across switches [144].
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Figure 3.4 – Combined time to poll all TCAM rules and replace n of them with an OpenFlow
approach compared to a local client running on the supervisor

Figure 3.4 shows the measured cost of two basic micro-operations that determine the cost

of polling and updating flow table rules from a Broadcom Trident+ switch with a low-power

supervisor, and is representative of high-volume commercial switches currently deployed in

data centers. The micro-benchmark identifies the combined upper bound when polling and

updating the ASIC. Figure 3.4 measures the performance an OpenFlow approach in which a

remote client repeatedly polls the hardware flow counters and then replaces n rules. In the

local-only case, the client runs directly on the supervisor, thereby eliminating the serialization

and networking overheads of transferring the information through the OpenFlow secure

channel.

This benchmark also shows that a centralized approach for cache control causes a high

overhead. This overhead is partially due to the controller itself, but also due to the overheads

of serializing information on the OpenFlow secure channel and operating the TCP/IP stack

from the supervisor. A single polling operation takes tr = 40µs and a single update takes

tup = 287µs. This microbenchmark used batched requests for OpenFlow to minimize the

effect of the network. Still, the OpenFlow solution takes tr = 389µs, and tup = 635µs. We see

that polling operations are an order of magnitude slower even when amortized in a batch over

all TCAM entries, and that rule updates are 2.2× more expensive.
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3.4.3 Architecture

Figure 3.3 shows the VNTOR components: apart from the ASIC, there are parallel software

forwarders, a cache manager, and a Neutron agent, all running on the SupE. The ASIC performs

its lookups in its flow table (from now on “hardware table”). The software forwarders perform

their lookups in a hash map of vSize À pSize entries that is stored in DRAM (from now on

“software table”).

The authoritative security-group rules are stored in the Neutron agent; when a new flow is

observed, this state is consulted and translated into accept/deny rules that are written in the

software table.

The hardware table in the ASIC acts as a cache for the software table in the forwarding threads,

and the two of them together implement the virtual flow table abstraction. We refer to rules

stored in the hardware table as cached rules.

The cache manager continuously polls the hardware table, computes a weight for each rule in

that table that reflects the rule’s recent popularity, and replaces the lightest cached rules with

heavier non-cached rules.

The ASIC handles all traffic that can be served from the hardware table and passes the rest

to the software forwarders. More specifically: A packet enters the switch through a port and

gets forwarded to the ASIC. If the lookup in the hardware table returns an action other than

“forward to the SupE,” the packet stays in the ASIC until it is dropped or forwarded. Otherwise,

the packet is tagged with its ingress port number and passed to one of the software forwarders,

which processes the packet, starting from a lookup. If the software lookup indicates that the

packet should be forwarded, the packet is tagged with its egress port number and passed back

to the ASIC, which removes the tag and forwards the packet through the designated egress

port.

Table 3.2 summarizes system state: hwTbl is the hardware table and swTbl is the software table.

Each element of swTbl consists of five fields: matchAction (traffic specification and associated

action), counter (byte counter), weight, weighth (a past value of weight used for exponential

smoothing), and hwEntry (set only if the rule is cached and states the corresponding hwTbl

entry). Moreover, there are two kinds of heaps that store pointers to swTbl entries: First,

the cache manager maintains in minHeap pointers to recently polled cached rules, sorted

by weight, with the lightest rule at the head. Second, each software forwarder maintains in

maxHeap pointers to non-cached rules, sorted by weight, with the heaviest rule at the head.

For brevity, when referring to heap operations, instead of saying that “we insert/remove a

node that points to rule R,” we say that “we insert/remove rule R.”
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Algorithm 1 Cache-Management Algorithm

1: while True do
2: for each rule R cached in hwTbl entry i do
3: r ← swTbl’s entry that stores R’s copy
4: r.counter ← hwTbl.poll(i )
5: r.weight ← rate · (1−h)+ r.weighth ·h
6: minHeap.del(oldest element)
7: minHeap.add(pointer to r )
8: rc ← swTbl entry at minHeap.head()
9: r c̄ ← swTbl entry at maxHeap.head()

10: if rc .wei g ht < r c̄ .weight then
11: hwTbl.update(rc .hwEntry,

r c̄ .matchAction)
12: r c̄ .hwEntry ← rc .hwEntry
13: rc .hwEntry ← None
14: minHeap.del(pointer to rc )
15: end if
16: end for
17: end while

3.4.4 Cache Management

Two facts shaped the design of the cache manager:

(a) In an idealized system, Least Recently Used (LRU) is the best replacement policy. Before

building our prototype, we simulated an idealized system, where operating on the data struc-

tures (including polling/updating hwTbl) takes zero time. We gave real data center traces

as input to this system and compared the performance of the most intuitive replacement

policies. In particular, we experimented with several variants of “least heavily used” (LHU),

where each rule has a weight reflecting how many bytes matched the rule recently; this weight

may correspond to a sliding time window, or it may be updated at fixed time intervals. LRU

outperformed all LHU alternatives, and in retrospect the intuition is obvious: real traffic is

bursty, and LRU ensures all traffic bursts (but the first packet) are served from the cache.

(b) In a real system, polling and updating hwTbl takes a long time, with two implications for

caching. First, we cannot implement LRU, because we cannot update hwTbl on every miss:

we can perform up to 1
tup

(a few thousand) updates per second, whereas a switch with multiple

10Gbps ports may observe packet bursts way above this (at the limit, 19.5M minimum-sized

packets per second per port). Second, it does not make sense to poll the entire hwTbl and

then update it: doing so takes hundreds of ms—a very long time in the context of multi-Gbps

line rates; by that point, the entries in hwTbl would be irrelevant to the currently observed

traffic.
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Figure 3.5 – The heap architecture and interactions

Our cache-management algorithm (Algorithm 1, illustrated in Figure 3.5) tries to approximate

LRU as well as hardware limitations allow and to make timely updates based on fresh statistics.

More specifically: The cache manager continuously polls hwTbl (lines 1,2). After polling

cached rule R , it first finds and updates R’s copy in swTbl (lines 3–5). Next, it updates minHeap

(lines 6,7). Finally, it compares the lightest cached rule (line 8) to the heaviest non-cached rule

(line 9); if the latter is heavier (line 10), then the two rules are “swapped,” i.e., one is evicted

from hwTbl and the other inserted in its place (line 11). In case of a swap, the cache manager

also updates swTbl and minHeap accordingly (lines 12–14). A minor point: For simplicity, line

8 references a single maxHeap, whereas in reality there are as many as the software forwarders,

and the cache manager picks the one with the heaviest rule at the head.

A rule weight reflects the rule’s current popularity, smoothed with standard exponential

averaging: In line 5 of algorithm 1, rate is the traffic rate currently matching the rule (computed

from counter), while h ∈ [0,1) is a history factor that determines how much the past matters.

History (weighth) is updated (set to weight) at fixed time intervals of duration Th.

We define the freshness of cached rule R at a given point in time as follows: consider R’s copy

in swTbl and its counter field; R’s freshness is the amount of time from the moment counter’s

value was read from hwTbl. Freshness captures the relevance to current traffic of a rule’s

statistics stored in swTbl. The best (smallest) possible freshness is tpoll, which holds as soon as

the cache manager updates counter (line 3).
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The size of minHeap involves the following trade-off: the smaller it is, the fresher but also

the fewer the cached rules considered for eviction. For instance, if ||minHeap|| = 1, the only

cached rule considered for eviction is the one that was just polled; on the positive side, this

rule is as fresh as possible; on the negative side, it is unlikely that this happens to be the

lightest cached rule, so replacing it is a suboptimal decision. At the other end of the spectrum,

if ||minHeap|| = pSize, the cache manager considers all the cached rules for eviction, some of

which were polled hundreds of ms earlier.

Regarding complexity, the most expensive operations performed by the cache manager are

the insertions and deletions on minHeap, which are O(log ||minHeap||).

3.4.5 Software Forwarding

On top of processing packets experiencing a miss in the hardware pipeline, each software

forwarder helps the cache manager by lazily updating some of the cache-related state. More

specifically, after receiving a new packet, a software forwarder: (a) Looks the packet up in

swTbl; if there is no matching entry, it checks the Neutron agent’s authoritative state, translates

it into accept/deny rule(s), and inserts them in swTbl. (b) Identifies the best matching rule R

in swTbl and updates the counter and weight fields. (c) If R is not in maxHeap, it is inserted.

If R is in maxHeap and its weight increases, maxHeap is rebalanced. (d) Checks whether the

rule at the head of maxHeap has been cached by the cache manager and, if so, removes it

from maxHeap. The interaction between the cache manager and the software forwarders is

illustrated in Figure 3.5.

The lazy update of the weight field may put the data structures in a non-intuitive state. First,

maxHeap is rebalanced only when a weight field increases. Second, the swTbl entry that

corresponds to a non-cached rule R is updated either when a packet that matches R happens

to arrive, or, potentially, when maxHeap is rebalanced—hence, if R is idle, its weight may

become obsolete. As a result of these two points, the swTbl’s weight fields are not guaranteed

to reflect the rules’ actual weights, and maxHeap is not guaranteed to be a heap.

Nevertheless, laziness does not affect the cache manager’s replacement decisions. In the end,

the only non-cached rule considered for caching by the cache manager is the rule at the head

of maxHeap. Hence, what matters is that this rule is the one with the biggest actual weight

and the rule’s weight field is up to date. Both of these properties are guaranteed, because the

moment a new packet matches rule R and makes R the heaviest rule, it also causes R’s weight

field to be updated and R to move to the head of maxHeap.
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Regarding complexity, the most expensive operations performed by a software forwarder

are the ones on maxHeap, which are O(log ||maxHeap||), where ||maxHeap|| is equal to the

number of non-cached rules (i.e., flows) handled by the forwarder.

3.4.6 OpenStack Integration

Our design is not tied to any particular management system, but we integrated it in OpenStack

because it is the open-source standard and is increasingly deployed in industry.

Integrating VNTOR in OpenStack merely requires implementing a Neutron agent that runs

on VNTOR’s SupE and whose role is to collect, from the Neutron controller, all the relevant

security-group state. In particular, our agent subscribes for changes to:

• all the local VMs, i.e., those running in the local rack;

• membership information of the security groups where the local VMs belong;

• membership information of any security group with which a local VM is allowed to

communicate;

• all the other relevant network-wide translations defined by Neutron, e.g., encapsulating

tunnels.

3.5 Prototype Implementation

In this section, we provide details on our prototype’s hardware (§3.5.1) and software (§3.5.2),

then describe how we achieve traffic separation (§3.5.3).

3.5.1 Hardware

Our underlying ToR is a 1U reference kit that encloses a Broadcom Trident+ switching ASIC

with 64×10Gbps ports [16] and an XLP SupE [17]. The ASIC provides full bisection bandwidth

between the ports and has a hardware flow table with the properties stated in Table 3.3. The

SupE has a Netlogic XLP MIPS processor with 4 cores, 16 hardware threads, and 1024MB of

DRAM; it runs Linux and Broadcom’s SDK.

One limitation of our reference kit (that did not affect our design) is that the ASIC and the SupE

communicate over a PCIe bus that allows maximum throughput 600Mbps or 170Kpps in each

direction. This is a limitation of the printed circuit board, not of the integrated circuits: both
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Parameter Value
#entries in hwTbl (pSize) 2048
Avg. hwTbl poll latency (tp ) 40µs
Avg. hwTbl update latency (tup ) 287µs
#entries in swTbl (vSize) 1.2M
#eviction candidates (||minHeap||) 1024
History factor (h) 0.8
Aging interval (Th) 100ms

Table 3.3 – Prototype properties and configuration

the ASIC and SupE are fully equipped to exchange traffic at 10Gbps, but the SupE’s built-in

10GbE NIC is unfortunately not connectable in our reference kit. Hence, our prototype could

handle a significantly higher cache miss rate with a proper printed circuit board.

3.5.2 Software

VNTOR software is a multi-threaded process with one thread implementing the Neutron

agent; one thread implementing the cache manager (§3.4.4); four threads implementing

software forwarding (§3.4.5); and one thread receiving traffic from the ASIC and dispatching

it to the forwarding threads in a flow-consistent manner.3 Each software thread is pinned to

one SupE hardware thread (so we use only 5 of the 16 hardware threads available). Given the

limited ASIC-SupE interconnect of our prototype (§3.5.1), a single forwarding thread could

have handled all traffic coming from the ASIC, but we implemented 4 threads in order to

validate our design, which calls for parallel software forwarders.

Threads communicate over shared memory, mostly in a lock-free manner. The forwarders and

the cache manager communicate without locks: a forwarder indicates which is the heaviest

non-cached rule by setting the maxHeap top, while the cache manager signals the promotion

of a rule to hwTbl by setting the hwEntry field of the rule’s copy in swTbl. Due to consistent

hashing of flows to forwarders, the forwarders split the swTbl in separate parts, eliminating

the need for locks. The Neutron agent does lock the authoritative security-group state in order

to update it (blocking the forwarders from reading it), but this happens only when security

groups for VMs in this rack change, hence it does not affect our prototype performance—and,

in any case, we could use standard techniques like shadow tables to eliminate this lock.

The forwarders implement connection tracking following the iptables ESTABLISHED seman-

tics: When a forwarder receives a new packet, it first checks whether a matching entry exists

3 The dispatch thread emulates receiver-side scaling [103], which is normally provided by the NIC hardware and,
hence, would be unnecessary if our SupE’s NIC was connectable.
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in swTbl. If not, and this is a UDP packet or a TCP SYN packet, it reads from the Neutron

agent’s state the source’s and the destination’s security groups, say A and B , and their rules.

If, according to the rules, the new flow should be allowed, it inserts an exact-match rule

into swTbl that allows traffic from the source to the destination; in the TCP case, should the

corresponding SYN/ACK packet be received during the standard 30 second window, it also

inserts an exact-match reverse rule. The exact-match rules are removed from swTbl following

TCP FIN packets or timeouts.

We set the configuration parameters (Table 3.3) as follows: The size of swTbl is determined

by the available DRAM. We set ||minHeap|| such that the freshness of the rules in minHeap

(§3.4.4), i.e., of the cached rules considered for eviction, is on the same time scale as traffic

bursts—about half a second; this ensures that we do not evict a rule that is currently matching

an ongoing traffic burst but was polled before the burst started. We set the aging interval Th to

the average time between polls of the same hwTbl entry, i.e., history is updated every time the

cache manager completes an iteration over hwTbl.

3.5.3 Traffic Separation

In the case of VMs running on the same physical machine, a performance enhancement in

SR-IOV NICs can potentially circumvent security groups: when an SR-IOV NIC receives a

packet coming from a local SR-IOV device (a local VM) that has a destination MAC address

associated with another local SR-IOV device, the NIC short-circuits the packet from one device

to the other without sending it to VNTOR.

To avoid this, we assign to each SR-IOV virtual function (each VM) a rack-scoped VLAN ID

that uniquely identifies all traffic from the VM, as proposed in FasTrak [109]. This prevents

traffic between local VMs from being short-circuited (because the destination always belongs

to a different VLAN from the source), ensuring that security groups are applied correctly.

Neutron manages the namespaces and deploys the VLAN ID assignment to VNTOR and the

hypervisors. A VM cannot change its VLAN ID (only the hypervisor can do that), which has the

useful side-effect that VMs cannot spoof each other’s identities (in a traditional virtualization

platform, spoofing is prevented through ingress filtering at the hypervisor, however, since we

are bypassing the hypervisor, we need a different approach).

3.6 Evaluation

After describing our experimental setup (§3.6.1), we answer four questions: (§3.6.2) How much

does VNTOR improve communication performance given a static workload? (§3.6.3) Does
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HW

Dual-socket Intel Xeon E5-2637v2 @ 3.5Ghz,
8 cores, 64GB RAM, Intel 82599 10GE NIC,
TurboBoost and intel_pstate disabled
to reduce variance, IOMMU enabled for SR-IOV.

SW

Ubuntu 15.10 “Wily”
with 4.2.0-25-generic SMP kernel,
OVS version 2.4.0, TCP Nagle disabled
where applicable to improve performance [109].

Table 3.4 – Server characteristics

VNTOR maintain this advantage as the workload becomes increasingly dynamic? What are its

performance limits? (§3.6.4) Does VNTOR’s caching algorithm work well with realistic data

center traffic?

3.6.1 Experimental Setup

We use a 10GE switch (characteristics in Table 3.3), running either a standard layer-2 stack or

our VNTOR software; and 10 servers (characteristics in Table 3.4) connected to the switch.

When the servers exchange all-to-all traffic and bottleneck on I/O, the maximum achievable

aggregate throughput4 is close to 187Gbps. vCPUs are always pinned to physical cores to

minimize variance across experiments due to scheduling.

To generate traffic, we use netperf [124] and iperf3 [46], respectively, for simple latency and

throughput measurements; a benchmark we wrote based on libevent for measuring perfor-

mance during churn; and tcpreplay for replaying traffic traces. We use OpenStack “Liberty” to

manage the infrastructure (deploy VMs and configure security groups).

We compare four setups:

• OVS: Standard OpenStack setup. Traffic exchanged between VMs. Security groups

enforced at OVS.

• SR-IOV-unsafe: Traffic exchanged between SR-IOV-empowered VMs. No security groups.

• SR-IOV+VNTOR: Traffic exchanged between SR-IOV-empowered VMs. Security groups

enforced at VNTOR.

• Metal+VNTOR: Traffic exchanged between native processes. Security groups enforced

at VNTOR.

4 We mean data throughput, which is the full bisection bandwidth of 200Gbps minus protocol overhead.
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Figure 3.6 – iperf3 streaming benchmark

OVS is the typical cloud setup (§3.2.2) whose performance we aim to improve. In SR-IOV-

unsafe, communication is empowered with SR-IOV at the cost of no security-group enforce-

ment (§3.2.3). The last two setups correspond to our system with and without virtualization at

the end-point. In all experiments, there are two access rules for each generated TCP connec-

tion, like the ones in § 3.2.1.

We want to show that:

• SR-IOV+VNTOR outperforms OVS, i.e., enforcing security groups at the ToR improves

performance;

• SR-IOV+VNTOR performs as well as SR-IOV-unsafe, i.e., in our solution, security does

not come at the cost of performance;

• SR-IOV+VNTOR performs close to Metal+VNTOR, i.e., in our solution, the cost of virtu-

alization is minimal.

3.6.2 Baseline: Static Workload

First, we test how much VNTOR improves latency and throughput given a static workload,

where all the access rules fit in the hardware table.
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Figure 3.7 – Throughput of a unidirectional TCP flow. VNTOR promotes the rule at ∼ 6sec and
demotes it at ∼ 15sec.

We measure with netperf the request/response latency between two processes running on

different servers5, which is typically used to characterize communication performance in

data-centers [67, 93, 109]. In these experiments, server CPUs and I/O buses are lightly loaded.

Figure 3.2 shows the results for different message sizes, and we see that SR-IOV+VNTOR

significantly outperforms OVS. For the smallest message size, SR-IOV+VNTOR average latency

is 2.5× smaller and latency standard deviation 4× smaller. In this case, the dominant factor is

the latency introduced by the networking stack, which is significantly lower in SR-IOV+VNTOR

due to passthrough (§3.2.3). The advantage decreases for larger message sizes, as transfer time

also becomes a significant factor; still, for 32KB messages, SR-IOV+VNTOR average latency is

1.6× smaller and latency standard deviation 2.3× smaller.

Next, we measure with iperf3 aggregate throughput when 20 process pairs exchange traffic

at the highest possible rate, each pair over 5 parallel TCP connections. In these experiments,

when the processes run natively, the servers bottleneck on I/O and they achieve the maximum

possible aggregate throughput of 187Gbps—this is precisely why we chose this experiment

configuration.

5 One process sends messages, one at a time, and the other responds. Request/response latency is the amount of
time from the moment the first process sends a message until it receives a response.
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Figure 3.6 shows the results: Metal+VNTOR achieves the maximum possible throughput, while

SR-IOV+VNTOR is effectively equal and 1.8× better than OVS.

From both figures we see that SR-IOV+VNTOR performs the same as SR-IOV-unsafe, which

confirms that enforcing security groups at the ToR does not introduce any latency (relative to

no enforcement). This is not a surprise: in these experiments, the few access rules involved fit

and reside in the hardware table, hence are guaranteed to be processed at line speed.

3.6.3 Churn and Breaking Point

Second, we study how VNTOR behaves given a dynamic workload, where the access rules do

not fit in the hardware table and the working set keeps shifting.

We start with a microbenchmark to verify that VNTOR behaves as expected when a rule

is promoted to the hardware table and when it is demoted back to the software table. We

use iperf3 to establish a single TCP connection between two processes running on different

servers and stream traffic from one to the other at the highest possible rate. We use tcpdump
to capture traffic at the two end-points so that we measure packet drops, retransmissions,

reordering, and throughput at 10ms intervals. Instead of letting VNTOR run its caching

algorithm, in this particular experiment, we explicitly instrument the cache manager to cache

and then evict the relevant rule at particular points in time.

Figure 3.7 shows the results, which are as expected: Throughput is 600Mbps (limited by the

PCIe bottleneck between ASIC and SupE inside the switch) when the rule is not cached, and

10Gbps (limited by the line rate) when the rule is cached. The moment the rule is promoted to

the hardware table, there is packet reordering (directly proportional to the amount of buffering

in the software forwarder and the hardware-table update latency tup), but throughput climbs

to line rate within 20ms. Similarly, the moment the rule is demoted to the software table, there

are packet drops and retransmissions, yet throughput stabilizes back down to the software

level within a few ms without additional penalty.

Next, we create a special benchmark for measuring VNTOR’s performance during a dynamic

workload. A fixed number of process pairs establish TCP connections between them and

exchange requests and responses over each connection. Some of these connections are

“elephants,” i.e., they exchange n-byte messages as fast as possible, and some are “mice,”

i.e., they exchange “minimal traffic,” which we define as one small message per second.

Connections change from elephant to mouse and vice-versa, such that there are always e

elephant and m mouse connections. The churn is the rate at which elephant flows become
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mice and vice versa. We run this experiment with different churn levels, and we observe the

request/response latency and throughput achieved by the servers, as well as VNTOR behavior.

We set the benchmark parameters such that the dominant factor in server performance is the

latency introduced by the networking stack at the endpoints and packet processing at VNTOR,

not by other server or switch bottlenecks. In particular, we ensure that:

• the working set of the rules fits in the hardware table;

• the ASIC-SupE interconnect inside the switch is not saturated;

• the servers are neither CPU- nor I/O-bottleneck-ed.

We present results for e = 700 elephant connections, which yields a working set of 1400 rules,

i.e., 70% hardware-table occupancy; m = 50000 mouse connections, which yields a few tens of

Mbps of mouse traffic; and n = 2897 bytes (two MTUs), the maximum message size for which

the servers are not CPU-bottlenecked.6

We should clarify that the point of the benchmark is not to study the scenario where the

working set of elephant flows exceeds the hardware table. VNTOR design does not make sense

in that case: a significant amount of traffic misses at the hardware table and is redirected to

the software forwarders, saturating the ASIC-SupE interconnect. Instead, the point of the

benchmark is to study the scenario where the total number of rules far exceeds the hardware-

table size, while the working set fits but keeps shifting, i.e., measure VNTOR’s ability to quickly

identify and cache a highly dynamic working set from among a significantly bigger set.

Figure 3.8a shows aggregate throughput as a function of churn, and we see that SR-IOV+VNTOR

clearly outperforms OVS for all churn levels. For low churn levels, this is not surprising as

the results presented earlier in Figure 3.2 show that SR-IOV+VNTOR has significantly lower

request/response latency, hence the throughput achieved by a set of connections exchanging

request/response traffic is bound to be significantly higher. What is perhaps surprising is that

VNTOR maintains the same throughput (which is on par with SR-IOV-unsafe) until churn

reaches 2200 flows/sec (each elephant connection lasts roughly 640ms on average), before

degrading gracefully, sufficient for the expected churn at a ToR [80].

Figure 3.8b maps the breaking point of 2200 flows/sec to internal VNTOR behavior: The y-axis

is the rate at which cached rules are replaced, and the x-axis is churn. The 1:1 line corresponds

to an ideal system that caches a new rule for every new elephant flow (hence keeps all elephant

6 Servers exchange request/response, not bulk traffic. As messages get larger, copying packets to/from the NIC
becomes the dominant factor in request/response latency and saturates the CPU.
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univ1 univ2
Number of flows 556 602 190 064
Duration (sec) 3914 9479
Flows under 1KB 50% 85%
Acceleration 15× 6.5×
Average accelerated rate (Mbps) 378 406

Table 3.5 – Statistics for univ1 and univ2 traces from [14].

traffic in the hardware pipeline). We see that VNTOR follows this line closely until it reaches

2200 replacements/sec and then starts falling behind. The impact of delayed and missed

replacements is directly visible on the software-forwarder traffic, which shoots up at that exact

moment (because the hardware pipeline cannot handle all elephant traffic any more) and

quickly saturates the ASIC-SupE 600Mbps bottleneck.

Finally, Figure 3.8c shows a rule’s time-to-cache (TTC), measured from the reception of the

corresponding flow’s first packet until the update call to the hardware table completes. TTC

includes the time it takes for the software forwarder to promote the rule to the top of the

max-heap, and for the cache manager to consider the rule and cache it. The hardware-table

update latency tup = 300µs constitutes a lower bound for TTC. We see that for a churn of

1000 flows/sec, the median TTC is 628µs (about twice the lower bound), the 90th percentile is

3.2ms, and the 95th percentile is 10.4ms.

3.6.4 Trace-based Study

Finally, we assess VNTOR’s caching performance given realistic data-center traffic. We use the

only two publicly available data-center traces that we are aware of, captured at a university

data-center in 2010 [14]; Table 3.5 states their main characteristics. These traces have many

short flows and very high churn, which makes them interesting workloads for caching systems.

As they are several years old, we “accelerated” them as much as allowed by our server hardware

and pcap-based replay software (by a factor of 15 and 6.5, respectively) while preserving

inter-flow arrival times, thereby creating two more traces.

VNTOR handled all four traces with zero packet drops. While this is an expected outcome given

the low rate of the traces, the interesting question is whether VNTOR’s caching works well

for the traces, i.e., whether it succeeds in serving most of the traffic from the hardware table.

To answer, we measured VNTOR’s cache hit rate and replacement rate, and we compared

them to those of an idealized system with an equally-sized cache and an LRU replacement
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“univ1”and “univ2” traces from [14]
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algorithm. We chose this comparison point because it outperformed all idealized alternatives

we simulated (§3.4.4).

For all four traces, traffic has sufficient locality to be served mostly from the hardware table. For

the two original traces, both VNTOR and LRU achieve near-perfect hit rate, so we only show

results for the two accelerated traces: cache hit traffic (handled by the hardware pipeline) in

Figure 3.9, cache miss traffic (handled by a software forwarder) in Figure 3.10, and replacement

rate in Figure 3.11. We see that VNTOR’s cache miss traffic is up to a few tens of Mbps

(Figures 3.10a and 3.10b), only a small fraction of the cache hit traffic (Figures 3.9a and 3.9b).

As expected, VNTOR trades off hit rate for a lower replacement rate: VNTOR’s miss rate is 4–5

times higher than the idealized LRU’s, but its replacement rate is 2–3 times lower (Figures 3.11a

and 3.11b). As a side-note, in one of the traces, traffic from elephant flows spikes at the end,

but is absorbed by the cache (Figure 3.9a).

3.7 Related Work

FasTrak also moves the implementation of network abstractions to the ToR, but only for a

small number of latency-sensitive flows [109]. Hence, that work does not face the challenge of

fitting a large number of access rules in the ToR’s limited datapath memory.

We have already discussed how we relate to SDN proposals in § 3.3: Several use the switch

datapath memory as a cache for a backing store located at another switch, in the case of

DIFANE [144], or a processor close to the switch, in the case of CAB [142] and CacheFlow [83].

vCRIB provides the abstraction of a centralized rule repository, while the rules underneath are

deployed on both hypervisor and switches [108]. In general, the goal is that the network as a

whole exposes the abstraction of a single “Big Switch” [23, 106] implemented in a distributed

manner [81]. We share the general challenge but have a different focus from this work: we

design and build a caching system that meets a significantly harder performance baseline, and

we achieve this by tailoring the solution to the properties of state-of-the-art datapath memory.

The limited computational power of switch supervisor engines is a recurring motivation

for offloading functionality to higher-performing, centralized controllers [36, 144]. Indeed,

FlowVisor [129] rewrites all rules attempting to process traffic at the SupE to redirect this

traffic to the controller. Our evaluation suggests that a modern SupE provides sufficient

computational power to maintain the state that is necessary for making fast and intelligent

resource-management decisions.
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ServerSwitch [95] inserts a switching ASIC as a PCIe card within a server and can offload excess

rules to the CPU [96]. In contrast, VNTOR uses a high-volume commercial 10GigE ASIC in a

1RU form factor and does not require an expensive, power-hungry server.

Devoflow [36] raises the level of abstraction in the protocol between the SDN controller and

the switches, in part by converting wildcard rules into exact-match rules locally within the

switch. Similarly, VNTOR similarly converts OpenStack policies into local match/action rules.

Traffic classification for identifying “heavy” elephant flows is a well-studied problem [18, 89,

115, 139]; VNTOR’s approach is pragmatic and emphasizes quick, online decisions that scale

to large numbers of flows.

3.8 Conclusion

We presented the design and implementation of VNTOR, a ToR for cloud networks that imple-

ments security groups. Unlike the traditional approach of implementing security groups at the

server (within the OS that hosts tenant entities), VNTOR enables bare-metal support, avoids

the performance overhead that results from involving the host OS, and reduces susceptibility

to hypervisor exploits. We presented a VNTOR prototype built on top of a standard ToR and

integrated in OpenStack. We showed that our prototype implements security groups correctly,

while offering latency and throughput close to those of the underlying switching ASIC; as a re-

sult, it significantly outperforms a traditional, state-of-the-art server-based implementation.
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4 CRISS-CROSS: Dissolving data-center

pods while maintaining the hierarchy

of a data-center fabric

4.1 Introduction

Large internet corporations rely on hyperscale data centers to provide their services. These

data centers grow ever larger and have become major cost centers [62], with a significant

part of the cost being due to their networks. Given the central role of networking, data center

network designs have to balance performance with the cost of ownership.

Hyperscale data center networks typically use folded Clos topologies [1, 61, 125, 131], which

provide modularity and a hierarchical structure, allowing for easy calculation of routes, cabling

and installation. Given current data center size requirements and radix limitations, these

Clos topologies have at least three layers: at the lowest layer, the servers of the data center

are grouped into racks, each connected to a top-of-rack (ToR) switch; ToR switches (and their

servers) are grouped into collections called pods, each connected to a set of fabric switches

that make up the second layer; the fabric switches are then connected to spine switches that

make up the top layer.

To balance cost with scale, data center networks typically have to oversubscribe the traffic at

the fabric switches. For example, with an oversubscription of 1:3, there is 3× more bandwidth

between ToRs and fabric switches than there is between fabric switches and spines [7, 131].

The amount of oversubscription is a strategic decision that is made at deployment time and

commits the data center for multiple years, well before the actual networking requirements of

the future workloads are known in practice.
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Figure 4.1 – A typical display of a Clos topology where the fabric switches are grouped with
their respective pods. The colors signify which spine group a fabric switch belongs to.

Figure 4.2 – Typically, the fabric switches in Clos topologies are grouped with their respective
pods. However, it’s also possible to group them with their respective spine switches shown
here. Spine switches and their fabric switches form different spine groups, signified by their
different colors

Oversubscription, however, means that there is no full bisection bandwidth between the

pods [50, 82], which is problematic for traffic patterns with significant inter-pod traffic: such

traffic has to cross the spines and share the limited bandwidth between fabric switches and

spines, potentially leading to congestion, reduced flow completion times and, therefore,

reduced performance.

The natural way to address this problem is to break away from the strictly modular, hierar-

chical nature of Clos topologies. One option is to replace fabric and spine switches with a

random network of small diameter [133, 137]. Another option is to dynamically adapt the

network topology to the current traffic pattern, either by directly interconnecting some pairs

of ToRs through circuits [50, 134], mirrors [145], or discoballs [57], or by replacing part of

the Clos topology with a random network [141]. These are all elegant solutions that improve

performance relative to an oversubscribed Clos topology of similar cost; this improvement,
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Figure 4.3 – Architecture of CRISS-CROSS, illustrated with 8-radix switches and fabric over-
subscription of 1:3, resulting in a deployment using 4 spine groups (each with their OCS
module) for 48 racks. When the OCS module is configured in its baseline passthrough state,
the topology is a standard folded-Clos topology where the 48 racks are organized in 8 pods.

however, requires giving up, more or less, the simple routing and physical deployment that

come with the modular, hierarchical nature of Clos topologies.

In this chapter, we ask the question: can we eliminate the spine bottlenecks that result from

oversubscription while maintaining the modularity and hierarchy of a Clos topology? We

propose CRISS-CROSS, an approach that adapts the network topology to the current traffic

pattern; however, instead of directly interconnecting ToRs like prior work, we use optical

circuit switches (OCS) to rearrange the links between ToRs and fabric switches, such that

traffic contributing to spine congestion ends up bypassing the spines. Our key observation

is that the pod, which is a group of racks of fixed size with a transitive property of 1-hop

communication between any two ToR switches, is not a natural or effective abstraction to

capture data-center network patterns.

In fact, other authors [57] have argued in a similar fashion. Ghobadi et.al showed that topolo-

gies need a high fan-out, i.e., that each rack can connect directly to many other racks. In our

case, we need a lower fan-out than ProjecTor, because we utilize 1-hop indirection instead

of direct connections, effectively multiplying the number of destinations per uplink. This

design decision is supported by another paper by Roy et.al. [125] about Facebook network

behavior which also showed group-based communication patterns; we support these patterns

as CRISS-CROSS is able to adjust group membership for the 1-hop communication, and in fact

even allows partial membership.

To motivate the design of CRISS-CROSS, we first take a closer look at the default Clos topologies.

Figure 4.1 shows the classical way of drawing folded Clos topologies. In this case, it is a 1:3
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oversubscribed (2 fabric uplinks vs. 6 fabric down links) topology with three layers and a

switch radix of 8 for all switches. In total, this topology serves 48 racks, 8 per pod. In this

presentation format, the fabric switches are grouped with the ToR switches to which they are

connected. One important observation however is that each of the fabric switches in a pod is

connected to a different set of spine switches. We call these groups of spine switches spine

groups. This is signified by the different colors used both for the spine switches and the fabric

switches in the pods.

Figure 4.2 shows a different layout of the fabric switches. In this identical topology, we have

only changed the drawing location of the fabric switches and sorted them by spine group (i.e.,

color). In this display format, it becomes more obvious how traffic flows. For each uplink from

a ToR, traffic can flow via any of the spines in that uplink’s color’s spine group. This means that

there is one spine group per uplink from a ToR. For traffic flowing from the spine downwards,

there is only one unique path to reach each of the destination ToRs.

Figure 4.3 illustrates how we extend the Clos topology with optical circuit switches in CRISS-

CROSS. As above, there are four spine groups (shown in the four colors) for the four uplinks

per ToR, each with its own OCS module. The OCS module provides a level of indirection

between the ToRs and fabric switches. If the OCS switches are all configured in their base

configuration, the topology is that of a standard folded Clos with 8 pods, the same as in

Figure 4.1 and Figure 4.2. However, it is now possible to connect a ToR to any of the fabric

switches by interchanging the links within a spine group, creating partial group membership.

CRISS-CROSS effectively dissolves the notion of pods, and specifically breaks the transitive

1-hop communication property in favor of providing higher bandwidth between selected pairs

of racks, while maintaining all other properties of the topology.

CRISS-CROSS uses an asynchronous control plane algorithm that (1) monitors the congestion

level of the links between fabric switches and spines, (2) identifies a pair of such links to

swap for reducing spine traffic, and (3) updates the routes in the network accordingly without

dropping packets while minimizing or even avoiding out-of-order delivery by offloading

affected links before executing any changes.

We evaluate CRISS-CROSS on a simulated, 3-layer topology using multiple traffic pattern types.

Our results show that CRISS-CROSS improves the average flow completion time of group

communication patterns by more than 5.5×, and the 99th percentile flow completion by more

than 6.3×. In fact, CRISS-CROSS even improves the flow completion time of a purely random

point-to-point traffic pattern by 2.2× on average and 3× at the 99th percentile.
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The closest related work is Larry [24], which also proposes a reconfigurable topology that

maintains Clos modularity and hierarchy; however, that work does not address the problem of

spine oversubscription and is focused on the oversubscription of fabric links.

The rest of this chapter is organized as follows. §4.2 provides the necessary background both

for Clos topologies as well as optical circuit switches. §4.3 lists the requirements that a data

center topology should fulfill. The topology of CRISS-CROSS is described in §4.4, including

the algorithm used to replace links, routing, and connectivity guarantees. Further details of a

potential implementation are described in §4.5. The performance of CRISS-CROSS is evaluated

in §4.6. We close the chapter with a discussion of related work in §4.7, a brief discussion of

future research in §4.8 and conclude in §4.9.

4.2 Background

4.2.1 Clos Topologies

Clos topologies are hierarchically structured network topologies. For the purposes of this

paper, we will only discuss three layer, folded-Clos, and use the following naming convention

for the three layers of the topology: the spine layer, made up from spine switches, the fabric

layer, made up from fabric switches, and the edge layer, made up from top-of-rack (ToR)

switches.

Figure 4.3 illustrates a 3-layer folded-Clos when the OCS module is in its baseline (passthrough

configuration).

A pod is defined as a set of ToRs that are connected to the same fabric switches. This property

is transitive within Clos topologies: if ToRs A and B are connected via a fabric switch, and ToRs

B and C the same, then A and C are also connected via a fabric switch.

Communication between pods requires two additional hops between fabric switches via a

spine switch. The topology is also organized to form transitive groups: a set of fabric switches

are identically connected to a set of spine switches to form a spine group. Figure 4.3 illustrates

the 4 spine groups, using different colors, of a deployment with 1:3 oversubscription.

This representation of a Clos topology is different than most in the literature. Typically,

the focus is on the pods, and therefore the ToRs in each pod are shown grouped with their

respective fabric switches, and shows the availability of bisection bandwidth in the topology.

Our representation makes clear which spines are utilized by each of the fabric switches to

provide connectivity between all ToRs, and which spine is used by which uplink.
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Number of pods radix
Size of pod (Spod ) R f ab_down

Fabric switches per pod Rtor _up

Number of spine groups Rtor _up

Spines per group R f ab_up

Fabric switches per group radix
Nspi nes R f ab_up ×Rtor _up

N f abr i c N(spine groups) × radix
NToR radix×R f ab_down

Table 4.1 – Sizing formulas for oversubscribed Clos architectures. R represents the number of
ports of a switch; N the number of switches.

4.2.2 Oversubscription and Scaling

Non-oversubscribed Clos topologies are rearrangeably non-blocking, i.e., they deliver full

bisection bandwidth between all ToRs. However, because of economic pressures and the need

to increase the scalability of the network, deployed topologies typically have some level of

oversubscription, leading to reduced bandwidth between certain parts of the network. Within

a 3-layer Clos topology, there can be oversubscription between any two layers, defined as the

ratio between uplink and downlink ports.

For example, Facebook uses an oversubscription ratio of 1:4 (instead of the more standard 1:3)

at this level [7], motivated both by the need to reduce the cost of the network, and increase

the size, measured in the number of racks, of the data-center cluster. They preserve a large

number of spare ports to be able to vary this oversubscription ratio, at the cost of wasting

ports as long as there is oversubscription.

Oversubscription also typically occurs at the ToR, allowing more servers to be connected to a

single ToR. In practice, this oversubscription also oftentimes involves different link speeds.

The result of typical oversubscription is that bandwidth is always non-blocking within a

rack, typically plentiful and often non-blocking within a pod, but restricted across pods,

based on the fabric oversubscription ratio. Table 4.1 provides the key formulas that define

oversubscribed Clos topologies. Table 4.2 uses these formulas to give an overview over all

possible configurations when all switches have a radix (i.e., number of ports per switch) of 16

(which we will use for our evaluations). A radix of 16 also implies that the sum of down and up

links is equal to 16: Rdown +Rup = 16.

We observe from the formulas as well as Table 4.2 that: (1) the size of a pod, measured in the

number of ToRs, is defined by the number of downlinks from fabric switches; (2) the number
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R f ab_up : R f ab_down Rtor _up Ntor N f abr i c Nspi nes #Linkstot al #Links f ab↔ToR BWBi sect / BWRack

1:15 1 240 16 1 256 240 0.42%
1:15 2 240 32 2 512 480 3.33%
1:15 4 240 64 4 1024 960 3.33%
1:15 8 240 128 8 2048 1920 3.33%
2:14 1 224 16 2 256 224 7.14%
2:14 2 224 32 4 512 448 7.14%
2:14 4 224 64 8 1024 896 7.14%
2:14 8 224 128 16 2048 1792 7.14%
4:12 1 192 16 4 256 192 16.67%
4:12 2 192 32 8 512 384 16.67%
4:12 4 192 64 16 1024 768 16.67%
4:12 8 192 128 32 2048 1536 16.67%
8:8 1 128 16 8 256 128 50.00%
8:8 2 128 32 16 512 256 50.00%
8:8 4 128 64 32 1024 512 50.00%
8:8 8 128 128 64 2048 1024 50.00%

Table 4.2 – Set of possible deployment configurations for radix=16

of fabric switches in a pod in turn is exactly the number of uplinks from each ToR; (3) the

number of spine groups is equivalent to the number of uplinks from the ToR; (4) the number

of spines in each group, in turn, is defined by the number of uplinks from each fabric switch.

From this, we can derive the total number of racks in the cluster.

Table 4.2 additionally shows the tradeoff in terms of number of links at the different layers in

the network, which impacts the overall bisection bandwidth of the system.

4.2.3 Optical Circuit Switches

Optical circuit switches (OCS) have made recent advances in scalability as well as switching

speeds, making them more attractive for the data center. Common circuit switches in the

market typically use 3D-MEMS. There is a fundamental tradeoff between switching speeds,

insertion loss, and port count in MEMS-based switches. Large port counts reduce the response

speed of switches because they require mirrors with larger apertures and tilting ranges [99].

For large port counts, this limits maximal switching speeds to the order of 10-100ms [22, 119]

Newer advances, including 2D-based MEMS wavelength-selective switches (WSS) [51] have

reduced the switching times to O(10µs) for relatively small port counts. The most recent

results show sub 1µs [128] reconfigurations, while increasing port counts to the range of

competitiveness (> 50×50) with 3D-MEMS based products. 128×128 radix silicon photonic

single chip switch fabrics are viewed as feasible [111].

The largest circuit switches with µs scale latencies are available with 2048 ports [101]. For

the combination of these latencies and port counts, the authors had to make tradeoffs in
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the generality of their reconfigurations, reducing the number of possible configurations, i.e.,

which input ports can be connected to which output ports.

Figure 4.3 suggests that our design relies on OCS as a level of indirection, and that the OCS

modules should scale with the number of fabric switches per spine group and the number of

fabric downlinks, i.e., 2× radix×R f ab_down .

4.3 Problem statement

Our approach is based on the observation that: (1) existing data-center networks rely on

fabric oversubscription of folded Clos networks to reduce costs and increase cluster sizes;

(2) data-center traffic patterns, e.g., as presented by Facebook, show temporal locality, in

particular when considering rack-to-rack traffic behavior [125]; and (3) the heavy degree of

virtualization and automation in large-scale cloud data centers, driven by different concerns

such as high-availability, power management, and hardware diversity leads to inherently

unpredictable network traffic patterns [12, 14, 80].

The overall performance of the network therefore varies based on the changes of the rack-to-

rack network patterns: if the traffic is mostly intra-pod, the spine links will be largely underuti-

lized and oversubscription is a non-issue. Conversely, if the traffic goes mostly between pods,

the spine links will become bottlenecks. This is true in particular when the traffic patterns are

randomly distributed across rack pairs, or in the presence of group communication patterns

between groups of servers that are randomly allocated to racks.

In such topologies, the limiting resource is the set of spine links that carry traffic across pods.

This work addresses the following problem statement:

Is it possible to use reconfiguration in an oversubscribed network to increase available band-

width for flows in order to reduce their flow completion times, while keeping the hierarchy,

supporting unmodified IP-based protocols, and commodity-parts-based hardware?

Connectivity and Path Diversity: The solution needs to guarantee connectivity between all

racks at all times, both during failures as well as during reconfigurations. For this, the topology

needs to provide a certain path diversity.

Scalable Routing: Scalable routing refers to two things: routing tables need to be limited in

size, and the calculation of routes as well as change sets needs to have a small algorithmic

complexity.
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Deployability: The proposed architecture needs to be deployable in a data center with limited

additional work compared to current Clos topologies. It should use standard equipment for

as many components as possible. Specifically, the cabling complexity and installation of

switching hardware should not be a cause of cost increases or deployment times.

Application transparency: Reconfigurations of the network should be totally transparent to

applications and to existing, established flows. Ideally, reconfigurations should not cause

packet drops or out-of-order delivery.

4.4 Design

Figure 4.3 shows the high-level design of the physical topology and of the control plane of

CRISS-CROSS. Starting with a standard folded-Clos topology, a programmable OCS module

is inserted for each spine group. We discuss the resulting topology (§4.4.1), followed by the

high-level algorithm behind CRISS-CROSS (§4.4.2), the routing implications (§4.4.3), and detail

why the algorithm guarantees connectivity (§4.4.4).

CRISS-CROSS satisfies the requirements listed in §4.3. In normal operation, there are always

at least as many paths between two racks as there are uplinks from each. Both failures and

reconfigurations therefore will leave other paths to preserve connectivity. There is one OCS

module per spine group (and therefore per color), guaranteeing that reconfigurability can

never create an unconnected graph.

Routing needs at most NToR entries in the routing tables for each switch; the calculation of

routes is possible in a centralized controller with the same complexity as Clos topologies.

The architecture is also deployable physically as fabric switches are already co-located in

centralized locations, and the OCS are per fabric group [7]. Beyond the OCS, CRISS-CROSS

uses only standard components. It requires minimal adjustments to the control plane for

routing, and utilize standard draining techniques [131] to limit impact to existing routes.

4.4.1 CRISS-CROSS Topology

The use of OCS turns CRISS-CROSS into a superset of all folded-Clos topology. In fact, the

baseline permutation of the OCS is simply one specific folded-Clos topology. As such, CRISS-

CROSS preserves the hierarchical structure, port and link counts as well as most of the benefits

of oversubscribed folded-Clos topologies identified in §4.2.
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The ability to permute links could allow a topology that dynamically swaps racks between

two pods as to optimize intra-pod traffic. Unfortunately, such a swap would require O(r adi x)

links to be changed dynamically, which would require a complex, difficult to analyze transition

phase, especially to meet the requirement of continuous network connectivity.

Instead, CRISS-CROSS dissolves the pod structure by undoing the transitive property of pod

membership by swapping a single pair of links at a time. Prior work has shown that there is

significant locality in flows between racks [125]. CRISS-CROSS aims to capture this temporal

locality and apply reconfigurations so that bandwidth between subsets of ToRs is increased.

Figure 4.3 shows that the spine group, and its associated fabric switches constitutes a recon-

figuration cluster, with one OCS between each reconfiguration cluster and its attached ToRs.

This circuit switch allows us to connect any ToR to any fabric switch within the reconfiguration

cluster, i.e., connect any of the links of one color to any of the fabric switches of the same color

of Figure 4.3.

By labelling links with a static color (i.e., with a given reconfiguration cluster), CRISS-CROSS

ensures that connectedness is preserved across all permutations: assuming that the baseline

folded-Clos provides connectivity between any two ToR, without having to route via a third

ToR, that property holds as well for CRISS-CROSS (see §4.4.4).

Table 4.3 shows the required total port count for the OCS module of each reconfiguration

cluster, which must support at least all possible bipartite permutations between the ports

to the fabric switches and ports to the ToR. The number of links is radix×R f ab_down . With

contemporary single-ASIC switches typically having 32, 64, or even 128 ports, this leads to port

counts in low thousands, with recent developments in OCS technologies moving CRISS-CROSS

into the realm of feasibility (see §4.2.3).

CRISS-CROSS requires that the topology consists of at least two reconfiguration clusters to

ensure the continuity of traffic during link reconfiguration. In fact, concurrent link reconfigu-

rations are possible as long as at least one color can temporarily ensure that every destination

has a route at all times, including when links are down.

R f ab_up : R f ab_down / Radix 16 32 64 128
1:1 256 1024 4096 16384
1:3 384 1536 6144 24576

1:(Radix-1) 480 1984 8064 32512

Table 4.3 – Number of ports required in an optical circuit switch as a function of the fabric
oversubscription and the switch radix.
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(a) Select loaded link and rack pair (b) Select heaviest fabric and victim links

(c) Unload victim & target link (d) Swap links, unloading spine

Figure 4.4 – Algorithm for reconfiguration of links

Physical deployability is also simple: for example, Facebook already organizes their data

centers around spine groups [7], with all fabric switches in the same location. We extend on

this in §4.4.5.

Routing remains as straightforward as with a standard folded-Clos topology, as the hierarchical

nature of the network is preserved. Even shortest path routing as deployed in current data

centers is possible, both with standard protocols such as iBGP or OSPF with the associated

typical deployment options [90]. The subtleties required to minimize impact to traffic during

reconfiguration are described in §4.4.2; the routing itself is described in §4.4.3.
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Finally, CRISS-CROSS has a useful fallback property which allows for a conservative deployment

model: if desired, the OCS modules can be configured to revert CRISS-CROSS back to a

standard, static, folded-Clos topology. As an alternative, the decision to deploy CRISS-CROSS

can be done in software, at any point in time after installation.

4.4.2 High-level Algorithm

We now describe the high-level control plane algorithm of CRISS-CROSS. As shown in Fig-

ure 4.3, we assume a centralized algorithm has access to statistics, at the granularity of flows,

for all spine links. The flow granularity must be of the rack-pair, i.e., identify the source and

destination ToR. The algorithm uses that information to (i) update routes to drain links, (ii)

bring these links down, (iii) reconfigure the OCS, and (iv) bring the links back up in the new

topology and (v) update the routes to use them.

Figure 4.4 shows the key steps of the algorithm, whose main goal is to unload spine links by

connecting the most active pairs of racks directly to one fabric switch. The algorithm operates

within a reconfiguration cluster and has four main steps illustrated by Figure 4.4a–4.4d:

a: It identifies the hottest spine link of the reconfiguration cluster 1 , then the rack-pair

that contributes the most to the traffic of that spine. This unambiguously identifies the

two target links and their ports on the ToR and the on the fabric switch 2 (see §4.5.1

for details).

b: By definition, the two target links are attached to two different fabric switches of the

same reconfiguration cluster. The swap must identify a victim link that is attached to

either of the target fabric switches but not connected to either of the target ToRs. We

select v as the least-loaded link that matches the requirements 3 , see §4.5.2.

c: The algorithm updates the routing tables to unload two links: the victim link v , and

the target link that is connected to the other fabric switch than v . Once the traffic is

unloaded, the links can be disconnected 4 .

d: The two links are swapped via an OCS reconfiguration. Routes are then updated 5 , see

§4.5.3.

4.4.3 Routing

Routing in CRISS-CROSS is very similar to the shortest path routing in a Clos topology. We

propose two alternate routing schemes — shortest path first (SPF) and hierarchical routing.
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Theses schemes are implementable because they allow aggregation of switches, and are

computable in limited time due to the hierarchy of the topology.

CRISS-CROSS follows the observation from Jupiter Rising [131] that there are three different

types of switches in the topology, and each has specific route calculations. For the hierarchical

routing scheme, we make the following observations:

• The ToR switches are responsible for a specific subnet. Their ports are either down

or up ports; any traffic coming in from below is sent to any port upwards, while the

downwards traffic is directed to the appropriate server. The choice for which up-port

to take can be decided with varying mechanisms, but equal-cost multi path (ECMP) is

sufficient for simple load balancing.

• The fabric switches have route entries for all subnets of all directly-connected ToR

switches. All other traffic is sent to any of the spine ports, with ECMP a valid load-

balancing strategy at this level as well.

• Lastly, the spine switches. As in standard Clos topologies, the spine identifies the unique

route to a destination rack. Unlike a standard Clos, the routes cannot be aggregated at

the pod level.

The calculation for the shortest paths needs one additional restriction: For the ToR switches, if

the source and destination share a fabric switch, then only those uplinks to the shared fabric

switches should be added, as all other routes are via the spine and therefore longer. For both

routing schemes, all routes have a length of 3 or 5.

We examine two different situations: the state of routes in the stable states between configura-

tions, and the changes in routing during the execution of the reconfiguration algorithm.

Steady state: For the hierarchical case, the OCS reconfiguration does not permanently impact

the ToR as (1) the connected subnet does not change and the ToR must only differentiate

traffic destined for its own rack; (2) all other subnets remain reachable over all uplinks since

the link changes operate exclusively within a spine group. The downlink routes of the two

fabric switches involved in the reconfiguration change as they must now direct traffic to a

new subnet and no longer direct traffic to another one. All spines of the reconfiguration

cluster must update the routes of the two racks involves in the swap, i.e., changing the unique

downlink for two fabric switches. This gives a complexity of 2×Nspi nes updates. The additional

rule for the shortest path routing implies that only the ToR routing tables are impacted. The

impact is necessarily limited to ToRs on the affected fabric switches. More specifically, it is
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limited to the routes of the two swapped ToRs, and the routes with a destination of either of the

swapped ToRs. This means that the number of updates is bounded by 2×Rtor _up ∗R f ab_down .

Transient routing changes: To prevent packet loss, links need to be unloaded before they can

be reconfigured. As a result, transient route changes must be made during the reconfiguration.

This affects all ToR of the network (but only the ToRs) as each ToR can be reached only via

one link from the spines in a single spine group (i.e., color). However, this is also the only link

through which it can be reached from the fabric switches in that color group, and their spines.

Recall that the swap involves two links of the same spine group; the changes must ensure that

that specific spine group is temporarily not used to communicate to/from the two affected ToR

switches. Specifically, (1) the two involved ToRs must update the ECMP group to temporarily

exclude that uplink; and (2) all other ToRs must insert two specific uplink routes for the

destination ToR. These specific uplink routes can be load-balanced via an ECMP group that

excludes the spine group. All these transient operations can be undone in the final step of

the algorithm. This procedure is the same for both routing algorithms. In fact, SPF can avoid

any changes if shorter paths already exist. On the other hand, when a single shortest path is

disconnected, then all the other longer paths need to be readded.

4.4.4 Connectivity between ToRs

The prior section gives a good intuition on why the graph is always connected, even during a

reconfiguration. We will now describe this in more detail: all the fabric switches in a spine

group are connected via the spine switches. Every one of the spine switches can forward

traffic between any of the fabric switches. Therefore, we have path redundancy already within

the spine groups two top layers, as long as there is more than one uplink available per fabric

switch, and they do not have exclusive failures.

The algorithm described above guarantees that a ToR is connected to at Nspi neg r oups different

fabric switches, each of which can reach all other fabric switches in the same spine group.

Reconfiguration is only between links in the same spine group, and so there are available paths

between all ToRs via the other Nspi neg r oups −1 spine groups.

Additionally, the fact that the links are only swapped within the spine group means that the

fabric switches reachable via this uplink remain the same. Only the path length for two fabric

switches changes.

From the above description, it is also clear that CRISS-CROSS satisfies the path diversity

requirement. Some additional care needs to be taken when there are large numbers of failures.
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As long as there is more than one uplink available and the fabric switches have connectivity to

at least one shared spine switch, the reachability between ToRs is guaranteed.

4.4.5 Deployability and Physical Layout

In this section, we will explain how CRISS-CROSS satisfies the requirement for deployability,

particularly as it related to the physical layout of the data center. Little is known about the

physical deployment of most data centers, but Facebook has published some information

in [7]. They organize their data centers around the spine groups, with all fabric switches of the

same spine group in the one location, i.e., all fabric switches with the same ”color” are in the

same place.

As the circuit switches in our design need to be between all the racks and the fabric switches

in one spine group (color), this layout is directly adaptable. From a deployability standpoint,

we can simply add an OCS at this location. In fact, the only change required would likely

be to replace a non-programmable (or statically programmed) optical patch panel with a

programmable OCS.

4.5 Implementation

This section describes the concrete implementation for each of the steps in the algorithm in

§4.4.2, i.e., the candidate selection algorithm, link changeover, and route reestablishment.

The implementation assumes a centralized SDN controller to coordinate these steps in a real

data center. We describe both the implementation in our simulation environment as well as

potential solutions in a real data center.

4.5.1 Candidate Selection

The candidate selection in the simulation environment tries to emulate the approximate

nature of candidate selection in the real world. It first identifies the heaviest used spine link,

and then the rack responsible for most of the traffic on this link.

The description in the algorithm 4.4.2 simplifies the criteria to a pair of racks. The actual goal

of the candidate selection algorithm is to find the rack / fabric switch pair with the highest

amount of traffic going via the spine, i.e., the bottleneck of the topology. The logic here is

simple: if a rack communicates a lot via a remote rack, then it communicates a lot with the

attached racks and should be moved closer to them. Ideally, the algorithm chooses the pair

with the highest number of flows, which we implement in the simulation. For this, each rack
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has to keep a count over how many flows are active from other racks via its uplinks (local traffic

does not need to be further optimized). The algorithm then choses the rack out of all with the

highest number of flows via a single fabric switch.

We have however also tested reducing the overhead of this task to the simpler issue of identify-

ing the busiest pair on a single spine link. We present the results for the first version, but the

alternative has competitive results as well. There are two general cases: zero or one links are at

capacity, or multiple links are at capacity. In the first case, the link with the highest congestion

is chosen as the critical link. For all flows across this link, the one with the highest throughput

currently is identified. In our simulation, this is a parameter explicitly tracked. In a data center,

this might be achieved via techniques such as flow sampling [107], or techniques described by

Harrison et al. [68].

Candidate selection can run continuously and in parallel to the normal operation of a network.

4.5.2 Victim Selection

The goal of the victim selection is to minimize the new load put on the spines. Switching a

link from one fabric switch to another means that traffic which originally was local over this

link now has to go via a spine. On the other hand, all traffic to the ToRs on the new fabric

switch becomes local. So, to make perfect decisions, one needs to know exactly the amount

of bandwidth used to local and to remote racks, for both the source and the destination. We

implement a heuristic that considers all links on both fabric switches involved, identifies

which victim ToR has the least local traffic on these links for both, including the candidate tor,

and then choses that victim ToR (and its link) for replacement. Another approach would be

to ignore the potential downside of a swap and simply choose a good offloading candidate.

While we decided to simulate the more optimal algorithm, preliminary testing revealed only

minor differences in performance.

4.5.3 Link Change Procedure

Once the algorithm in the prior section has identified the set of links to change, they need to

be swapped without impacting running connections. We separate the description of this link

change procedure into three phases: preparation and unloading, reconfiguration, and route

reestablishment.

For the preparation of the link, we follow the routing changes described in §4.4.3. Unsetting

the routes on all involved switches can be done in a simple round trip time, i.e., less than
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a millisecond, and the offloading itself will depend on the buffer utilization, e.g., for small

buffers, it would also be less than <1ms. The reconfiguration even of slower TCAMs takes less

than 1ms [52]; the total time for unloading links is therefore less than 2ms.

Another solution would be to have a completely source-routed network [76, 79, 110, 123]. In

that case, switches could just bounce packets back to the sender if a link goes down. This

would also allow a ”lazy” update mechanism, where this sender would then automatically

discover new links when an old link goes down and is used right after. This would further

reduce the number of updates of the routing table, as typically only small subsets of servers

communicate with each other [125].

4.5.4 Link-level Detection / Configuration

The latency to bring up a physical link is highly dependent on technology. This is also a

non-optimized operation in most switches, and would require some engineering effort for

an improvement to re-establish Ethernet links (e.g., via an optimized auto-negotiation) and

to notify the control plane. However, this is likely dominated by the reconfiguration of the

physical link via the OCS, i.e., vary between 10µs (Helios) and 100ms (largest optical switches

commercially available).

Route reestablishment: This is the last step of §4.4.3 when routes need to be re-added. To

prevent misrouted traffic, the spines and the two updates to the fabric switches need to happen

first. As no traffic for the destination ToRs can reach these layers without new entries at the

ToR, this can happen in parallel to the OCS reconfiguration and is therefore likely dominated

by its reconfiguration time. Once links have been established, the two destinations routes are

added back to all uplinks.

4.6 Evaluation

In this evaluation, we show that CRISS-CROSS reaches its primary goal of introducing re-

configurability and that it reduces the flow completion times and sustainable load. For all

experiments, we use the simulation environment described in §4.6.1. In §4.6.2, the reader will

find the experimental methodology.

First, we examine the temporal behavior of the number of flows on the spine as well as

reconfiguration rates in §4.6.3. After this introduction to the dynamic behavior of CRISS-

CROSS, we look at the effect of different reconfiguration rates and the difference in routing

algorithms in §4.6.4. Then, we show the increased sustainable load for a given service-level
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objective (SLO) in §4.6.5. In §4.6.6, we describe the improvement of flow completion times

at different quantiles, and close the evaluation with a sensitivity analysis of CRISS-CROSS in

respect to the number of uplinks and oversubscription in §4.6.7.

4.6.1 Simulation Environment

We evaluate CRISS-CROSS with a flow-level simulator written for this purpose. The simulator

uses an event driven model of flow arrivals, flow completions, and timed reconfiguration

events and is extendable. The assumption behind CRISS-CROSS is that the necessary locality

in flows needs rack-level aggregation. Therefore, this is the chosen granularity for flows. Flows

in the network observe max-min fairness to simulate the behavior of TCP flows.

We model a centralized SDN controller that creates routes either via a shortest-path algorithm

(SPF) or via the hierarchical routing scheme described in §4.4.3. The control plane has global

knowledge about all flows and executes link-change decision at zero cost.

4.6.2 Experimental Methodology

The experiments are done on a subset of the topologies listed in Table 4.2, which we specify

at the beginning of each section. All experiments use a radix of 16 with a 10 Gbps link speed

as the size of the simulation is limited by runtimes. In §4.6.3 and §4.6.4, we use a 4 : 12

oversubscription with Rtor _up = 4, i.e., four uplinks from the ToR corresponding to four spine

groups. This oversubscription ratio is close to the 1:3 oversubscription used in practice. We do

not define an oversubscription ratio for the ToR, as we investigate and simulate only rack-level

flows.

In §4.6.7, we perform a sensitivity analysis for four topologies defined by an oversubscription

of either 2 : 14 or 4 : 12, and Rtor _up of either 4 or 8. Note that 2 : 14 is the highest level of

oversubscription that still provides path redundancy within a spine group. As a baseline, we

also simulate a rearrangeable non-blocking topology, where all uplinks of a ToR are connected

to a single non-blocking switch.1

We define load l as a fraction of the total bandwidth BWtot of a non-blocking topology with

the same number of racks and rack uplinks. Using this definition and assuming a uniform

distribution of sources and destinations, we calculate the theoretical maximum load lmax

at which the spine of a given topology would be fully saturated. To calculate lmax , we first

look at how much bandwidth is available on the spine. Then, we determine how much

1 It is important to note that this does not imply that there is never any congestion. Congestion is still possible on
the uplinks from each individual rack, and in fact, expected.
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traffic can be sustained in total for the given traffic distribution. For the total bandwidth of a

non-oversubscribed Clos topology, we have

BWtot = NToR ×Rtor _up

The fraction of traffic via the spine is R−1
R , as there are R pods in a Clos topology, and only 1

R of

all traffic is expected to be local for a uniform distribution. The total bandwidth via the spine is

BWspi ne = Nspi nes ×R = R f ab_up ×Rtor _up ×R

This means that the maximal theoretical sustainable bandwidth is

BWmax = BWspi ne × R

R −1

resulting in a theoretical maximum load of

lmax = R ×R f ab_up

(R −1)×R f ab_down

The evaluation uses two traffic patterns on CRISS-CROSS. Both traffic patterns utilize a Poisson

process for arrival times and flow sizes. We present the results for a flow rate of 3000 flows/sec,

as this number presents a reasonable trade-off in regards to simulation overhead and is in

line with numbers reported in the literature for real-world arrival rates [80]. We have done

exploratory studies on different flow rates, and gotten qualitatively similar results.

Random all-to-all (RATA): The first scenario is an all-to-all traffic pattern with an equal

distribution for the source and destination racks. This traffic pattern has no inherent locality,

and likely represents traffic in a data center in which network locality is not used for scheduling.

This scenario is an example of the traffic patterns described in the literature [12, 14, 57, 80], but

without introducing any skew to simulate the worst-case locality. RATA constitutes a challenge

for CRISS-CROSS as there is no long-term skew.

Alternating best/worst case (ABW): The second scenario is a combination of two separate

sub-patterns. The two sub-patterns are the best and the worst-case traffic patterns for a Clos

topology. The best case in a Clos topology is purely pod-local traffic2. This means that for the

best-case sub-pattern, all communication is within pods. The worst-case traffic for a Clos

topology is purely non-pod-local traffic. We make a further requirement for this sub-pattern

2 In case there is oversubscription at the rack level, purely rack-local traffic would have a higher total available
bandwidth. However, our simulation is concerned only with flows at rack level or higher.
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by limiting the communication groups to the size of a pod. Hence, there exists a Clos topology

for which this worst-case sub-pattern is actually a best case. Within each sub-pattern, the

source and destination racks follow a uniform distribution.

We then alternate the best and worst case over time to create a combined pattern. This

combined pattern maximizes the number of reconfigurations needed, and therefore stresses

the reconfiguration part of the design. For all experiments, we alter between the two sub-

patterns every 10 seconds. ABW stresses CRISS-CROSS and forces it to optimize the topology

every 10 seconds, while it is the worst-case for a standard Clos topology half of the time.

We compare three different setups in our experiments:

1. No reconfigurations,i.e., a baseline folded Clos topology

2. 10, 30, 70, 100, 300, and 500 reconfigurations/second, corresponding to estimates for

target reconfiguration rates, with 10 reconfigurations per second being comparable to

single OCS on the market today

3. Unlimited reconfigurations

In this evaluation, we only present a small number of topology variants. However, these

variants are representative of large groups of settings; a full exploration of the whole state

space is computationally prohibitive.

4.6.3 Effect of Reconfiguration

We begin our exploration of CRISS-CROSS behavior with a look at the effects on average flow

throughput for the ABW scenario. All simulation runs are on a 1:3 oversubscribed topology

with 4 uplinks.

Figure 4.5 shows the average flow throughput across all flows over time. In Figure 4.5a, we

show the behavior of throughput without reconfiguration enabled. Figure 4.5b shows the

exact same traffic, but with enabled reconfiguration. In both experiments, ABW starts with the

worst-case sub-pattern, and it alternates every 10 seconds.

For the non-reconfigurable scenario, the average bandwidth available for flows is only around

2.5-3 Gbps in the worst case, which is in line with expected bandwidth for a 1:3 oversubscribed

topology. At 10 seconds, the sub-pattern switches to the best case. Of note here is that not

all flows finish immediately, so that there is a short period of changeover where average
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(a) Flow throughput without reconfiguration / equivalent Clos topology
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(b) Flow throughput with reconfiguration

Figure 4.5 – The effect of reconfiguration on average flow throughput over all active flows for
the alternating best/worst case traffic scenario. The graph at the top shows the throughput
without configurations on the equivalent Clos topology, the bottom the same topology but
with enabled reconfiguration.

throughput increases. Once throughput stabilizes, the average is around 9-9.5 Gbps. The

average bandwidth oscillates with the state of the ABW pattern.

For the reconfigurable case, although the pattern also changes between its two extremes, the

average throughput is about the same as for the best-case pattern in the prior paragraph. This

validates the general assumption that CRISS-CROSS can find a good topology for both traffic

matrices.
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Figure 4.6 – Temporal behavior for the shortest-path routing algorithm with the alternating
best/worst-case traffic scenario, switching every 10 seconds. Here, CRISS-CROSS has a 4 : 12
oversubscription in the fabric, with Rtor _up = 4 and 4 spine groups. The offered load is at 20%,
close to the maximal sustainable load for the non-reconfigurable topology. The flow arrival
rate is 3000 flows/sec.
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Figure 4.7 – Temporal behavior for the hierarchical routing algorithm with the alternating
best/worst-case traffic scenario, switching every 10 seconds. Here, CRISS-CROSS has a 4 : 12
oversubscription in the fabric, with Rtor _up = 4 and 4 spine groups. The offered load is at 20%,
close to the maximal sustainable load for the non-reconfigurable topology. The flow arrival
rate is 3000 flows/sec.
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As a next step, we look at the effect of different reconfiguration rates and the adjustment speed

of CRISS-CROSS. We continue to use the ABW scenario on the same topology, but we extend

the analysis to include our two routing algorithms. The goal of the reconfiguration algorithm

is to reduce the load on the spine. The typical way of measuring load is with the throughput

on the affected links. However, we utilize max-min fairness for all flows, and —as there is

no oversubscription at the lower layers in the simulation—, the bandwidth is only limited

by ECMP collisions on the lower layers and the available bandwidth on the spine itself. This

means that offloading flows from the spine only has a limited impact on utilization of the

spine. So, while we are able to show a reduction in bandwidth, we find it more instructive

to look at the number of flows utilizing the spine. In Figures 4.6 and 4.7, we first look at this

number of flows on the spines, and then at the number of reconfigurations actually executed

to achieve these numbers.

We utilize a load of 20%, and a flow rate of 3000 flows/second, first with shortest-path routing,

and then with the hierarchical approach, in Figure 4.6a and Figure 4.7a respectively. For both,

we show the number of flows on the spine over time for several different rates of reconfigura-

tion, including no reconfiguration (i.e., a non-reconfigurable Clos topology), and unlimited

reconfigurations (which should provide the best performance).

For SPF, the behavior is as expected. The number of flows stabilizes for the non-reconfigurable

topology after an initial startup phase. When the pattern changes over to the best-case, this

number drops quickly to zero, before rising to the same level when the pattern switches back

to the worst case. For the reconfigurable topologies, we see a short spike at the beginning of

each 10s interval while CRISS-CROSS adapts the topology to the current traffic pattern. As the

topology adapts to the running traffic pattern, the number of flows on the spine decreases. Of

course, this adaption takes longer the fewer reconfigurations per second CRISS-CROSS has to

work with. In fact, for reconfiguration rates below 100, it takes longer than the full interval of

10 seconds, while it’s around 200ms for unlimited reconfigurations.

Opposite to the non-reconfigurable topology, CRISS-CROSS adapts to the worst-case. This

means that when the traffic pattern changes to the ”best-case”, the traffic now uses the spine.

Therefore, we see an initial spike in the number of flows again. However, this spike is not as

large as it is for the worst-case sub-pattern, as CRISS-CROSS does not reach an optimal solution

for the worst-case sub-pattern within the 10s interval. This is because not all racks are actively

communicating in their groups during each interval, and so some of the connections between

racks for the ”best-case” pattern persist even during the ”worst-case” part of the pattern. This

also explains why the lower reconfiguration rates have fewer flows on their spines in this case.
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We repeat the same experiment in Figure 4.7a, but this time with hierarchical routing. The

results here are very similar to the ones above. However, in the reconfigurable cases, the spikes

at the beginning of a new traffic pattern are higher, and it takes longer for CRISS-CROSS to

reduce them. This is because for SPF routing, as soon as a pair has one shared fabric switch,

then all flows between those pairs bypass the spine. In hierarchical routing, this is only true

for 1/4 of the flows.

Figure 4.6b and Figure 4.7b measure the actual reconfiguration count. When switching

between two sub-patterns, there is a large spike in the unlimited case. Yet, CRISS-CROSS

never stops adjusting the topology for the worst-case sub-pattern. This is for the same reason

as the larger spike in the number of flows above: the heuristics cannot determine a truly

optimal topology for that sub-pattern. On the other hand, when switching back to the former

best-case sub-pattern, it is able to revert most of its changes from before and completely stop

all reconfigurations. While this seems like an issue, traffic patterns in practice are never as

black and white, and so the optimal topology is a moving target anyway. Hence, any algorithm

that moves towards this optimal topology quickly enough can make significant improvements

to total network performance. The number of reconfigurations for both routing algorithms is

relatively constant.

4.6.4 Spine Utilization

In this section, we evaluate the utilization of the spine for a full run of the experiment. We show

the results for both reconfiguration algorithms and both RATA and ABW in Figure 4.8. The box

graphs show the quartiles as well as the minimum and maximum values for occupancy of the

spine, and a subset of reconfiguration rates that show the trends. The topology is the same as

in §4.6.3, i.e., 1:3 oversubscription and four uplinks per ToR.

Figure 4.8a and Figure 4.8b show that there is limited variance in the number of flows utilizing

the spine over time for RATA. However, even in this random source and destination pair pro-

cess, there is sufficient locality to allow reconfiguration to reduce the number of flows between

2.9× for 500 reconfigurations per second, and 3.2× for unlimited amounts of reconfiguration

for SPF routing. The results for hierarchical routing are not as good, but CRISS-CROSS still

achieves nearly a 50% reduction in the number of flows on the spine with unlimited recon-

figurations/second. We can also see that any number of reconfiguration already reduces the

median number of flows on the spine significantly, even as low as 10 reconfigurations / second.
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Figure 4.8 – Overview of spine occupancy in the number of flows for different reconfiguration
rates. Here, CRISS-CROSS has an oversubscription of 4:12 and Rtoru p = 4. The load is 20%.
Shown are both SPF (left) and hierarchical routing (right).

Interestingly, for SPF, even relatively low reconfiguration rate of 100 reconfigurations / second

achieves similar results as the unlimited case. Additionally, once again, as we saw in §4.6.3,

SPF routing leads to lower numbers of flows on the spine than hierarchical routing.

The results in Figure 4.8c and Figure 4.8d for ABW show a greater spread. This is expected, as

the two sub-patterns are completely orthogonal. For the non-reconfigurable case, either all,

or none of the flows cross the spine. In this case, CRISS-CROSS reduces the average number of
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flows on the spine of over 3.5× for 100 reconfigurations/sec, 16× for 500 reconfigurations/sec,

and 52× for the unlimited case.

4.6.5 Sustainable Load

In this experiment, we compare the flow completion times for various loads and show that

for a given SLO, CRISS-CROSS can sustain a significantly higher load average. For this, we

compare the median, the 90th and 99th percentiles for both the hierarchical routing algorithm

(left) and SPF routing (right) for the all-to-all traffic pattern in Figure 4.9. Again, we use the

same topology with a 1:3 oversubscription ratio and four uplinks. The vertical line is the

maximum theoretical load at which all spine links would be saturated 100% of the time for the

non-reconfigurable case. Due to the different length of individual flows, we have normalized

the flow completion times by dividing it with the completion time in an uncongested case,

effectively resulting in a slow-down factor.

As before, we compare multiple reconfiguration rates. As the load approaches the theoretical

maximum, the flow completion time of the non-reconfigurable topology goes to infinity

as expected. CRISS-CROSS, for both routing algorithms and all reconfiguration rates, has a

significantly higher limit.

For the hierarchical routing, for an SLO of 10× at the 99th percentile, CRISS-CROSS is able to

sustain a load approximately 30% higher than the non-reconfigurable version for reconfig-

uration rates of 300 reconfigurations/second or higher, with only limited additional gain on

higher reconfiguration rates.

For the shortest path routing, 100 reconfigurations / second suffice to achieve a similar

performance as unlimited reconfigurations. CRISS-CROSS with this reconfiguration rate is able

to provide similar flow completion times as the static topology even at > 2× the offered load.

Even low rates of 10-30 reconfigurations / second significantly improve the performance.

4.6.6 Reconfiguration Rate and Flow Completion Times

This section investigates the effect of reconfiguration on the distribution of flow completion

times. For this, we present the complementary cumulative distribution function (CCDF) of

the normalized flow completion time. The metric reports 1 for uncontended flows and > 1

when links are shared across flows. We choose a target load of 20%, as it is still within the

theoretical limit for the topology analyzed in §4.6.5. As a baseline for maximally achievable
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Figure 4.9 – Load offered vs flow complettimes, 4:12 oversubscription, 4 uplinks, all-to-all
traffic scenario. Hierarchical routing (left), SPF (right)
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performance, we also include a non-blocking topology without any oversubscription in our

results in addition to the varying reconfiguration rates from before.

Figure 4.10 and Figure 4.11 show the result for the RATA scenario. The figures on the top have

a 1:7, the ones on the bottom a 1:3 oversubscription ratio. The figures on the left have only

four uplinks, while the figures on the right have eight uplinks per rack. This means that the

topology at the bottom left is the same as the one used in §4.6.5.

We first look at the shortest-path routing case. In Figure 4.10, we can see that introducing

reconfiguration reduces the FCT by over 2× across all percentiles. For the 1:3 oversubscription

in Figures 4.10c and 4.10d, there only is a small difference between the reconfiguration rates,

and the reconfigurable topology even comes close to the fully non-blocking topology in

terms of FCTs. For the higher oversubscription in Figure 4.10a and 4.10b, the rates of 100

reconfigurations/second and below leads to significantly higher FCTs than the faster rates.

However, the non-reconfigurable topology is not able to sustain this load at all. Only the pod-

local flows (1/16th of all) have acceptable flow completion times, with a significant amount of

FCTs approaching infinity, a sign of overload for the topology. This shows that introducing even

low rates of reconfiguration can make loads sustainable that were not sustainable beforehand.

For the hierarchical routing in Figure 4.11, the results are a bit more mixed. For the high-

oversubscription case (Figures 4.11a and 4.11b), there is a clear difference in the performance

of the different reconfiguration rates, with none coming close to the baseline. For the 1:3 over-

subscription (Figures 4.11c and 4.11d), the performance is very similar to the one described

in the paragraph above, with minimal differences between the reconfiguration rates. The

main takeaway from the latter set of graphs is that SPF nearly always outperforms hierarchical

routing.

4.6.7 Sensitivity to Topology Size

The goal of this comparison is to show the effect of different CRISS-CROSS oversubscriptions

and uplink counts on flow completion times using the four topologies from §4.6.5 (i.e., 1:3

and 1:7 oversubscription, and 4 vs 8 uplinks). For RATA, we use the same graphs (Figure 4.10

and 4.11) as before. However, we extend our analysis on the same topologies to ABW with

Figure 4.12 for SPF routing and Figure 4.13 for the hierarchical routing scheme.

We first investigate the performance for RATA in Figures 4.10 and 4.11. For shortest path

routing, and at a load of 20%, there is only a small effect of the level of oversubscription for the

reconfigurable topologies. The addition of uplinks (and therefore spine groups) only has a

minimal effect on the flow completion times. This is because the flow throughput doubles with
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Figure 4.10 – Overview over flow completion times for an all-to-all traffic scenario with SPF
routing at 20% load
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Figure 4.11 – Overview over flow completion times for an all-to-all traffic scenario with hierar-
chical routing at 20% load
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Figure 4.12 – Overview over flow completion times for the best/worst case traffic scenario with
SPF routing at 20% load
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Figure 4.13 – Overview over flow completion times for the best/worst case traffic scenario with
hierarchical routing at 20% load
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the doubling of the uplinks and hence capacity of the topology given our load definition. The

most interesting aspect here is that higher oversubscription leads to the static configuration

not being able to sustain this load level, and requiring higher reconfiguration rates. Also,

introducing more uplinks means that slightly higher reconfiguration rates are required for the

same performance targets.

For hierarchical routing, the effect is significantly more pronounced for higher oversubscrip-

tions. The flow completion times rise significantly with lower reconfiguration rates. Com-

paring Figure 4.10a and 4.10b, we can see the effect of increasing the number of uplinks per

rack very clearly. As the number of reconfigurable links goes up, CRISS-CROSS needs higher

reconfiguration rates to achieve the same flow completion time targets. In fact, doubling the

number of uplinks translates into needing roughly twice as many reconfigurations/second for

the same performance.

The situation for ABW is similar. For SPF routing in Figure 4.12, we see that again there is a

significant reduction in FCT across the board for the reconfigurable setups. In fact, the lines

for unlimited reconfiguration and the baseline are nearly indiscernible as the performance is

extremely close. At an oversubscription ratio of 1:7, the static configuration cannot sustain

the load, similar to the RATA scenario. The same is true for very low reconfiguration rates.

For a low number of rack uplinks, the local flows can still finish; for large numbers of uplinks,

even the local links become completely overloaded. Again, similar to what we saw for RATA,

increasing the number of uplinks increases the FCT for a given reconfiguration rate. Also,

similarly, a reconfiguration rate of 100 is significantly worse than the faster reconfigurations.

However, at a 2:14 oversubscription, the rate of 100 reconfigurations/second achieves similar

FCTs to the non-reconfigurable topology at a 1:3 oversubscription. Even in the cases where

performance towards the tail diverges from the baseline for slower reconfiguration rates, the

majority of flows experience low FCTs. For example, in 4.12b, even though the FCT for a

reconfiguration rate of 300 is nearly three times higher than the baseline, the FCTs at the 90th

percentile are only about 50% higher.

As was the case with RATA, hierarchical routing simply raises the sensitivity of CRISS-CROSS for

ABW. In Figure 4.13, FCTs are overall higher than for shortest path routing, but follow the same

trends. On the whole, the speedups of CRISS-CROSS over the non-reconfigurable topology are

more significant for ABW than for RATA.

In summary, with a rate of 500 reconfigurations/sec, CRISS-CROSS achieves a reduction in

average flow completion times of 5.5x , and a reduction at the 99th percentile of 6.3x for ABW.
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For RATA, CRISS-CROSS improves FCTs by 2.2x on average and 3x at the 99th percentile. A

higher number of uplinks per ToR requires a higher rate of reconfigurations/second.

Lastly, we are able to demonstrate our main goals: (1) introducing reconfiguration into the

topology allows an increase in the oversubscription ratio while retaining the same performance

as the non-reconfigurable topology, or alternatively (2), introducing reconfiguration produces

better performance for the same oversubscription ratios.

4.7 Related Work

CRISS-CROSS provides a reconfigurable topology that keeps the same hierarchy as typical data

center deployments but augments it with circuit switching technology. In general, there is a

trade-off between flexibility of a topology and its structure: the less structured it is, the more

complicated is routing. Clos topologies are typical examples of inflexibility, but simple routing;

random graphs are at the other extreme with difficult routing.

Optical circuit-based reconfigurable topologies: Helios kickstarted the development of re-

configurable topologies [50]. Helios uses a hybrid architecture of packet and circuit switching,

where heavy flows are offloaded to direct circuits between ToRs. c-Through [140] improved

on this by using a different, buffer-based method for identifying hot pairs. Reactor [92] and

Mordia [51, 121] improved on the prior millisecond-scale reconfiguration times by optimizing

the control plane. All these topologies use direct ToR-to-ToR connections and therefore do

not scale well in grouped communication or high fan-in/fan-out patterns. OSA [134] took a

different approach by using circuit switches to connect ToRs directly. OSA adjusts the topology

to optimize for current workloads, but is limited by the cardinality of switches in the number

of hosts. It also suffers from complex routing, as ToRs that are not directly connected need

to traverse multiple circuits with delays of up to 10ms. The routing for these is made more

complex by having structureless topologies. MegaSwitch [25] re-introduces a structure by

creating circuits between all ToRs. However, this limits the performance of a circuit to that of

one individual link, and it limits the scalability in the number of hosts.

Free space reconfigurable topologies: These designs replace wired links with wireless tech-

nology. This removes cabling layout as a limitation for their installation and deployement.

There are many representatives of this category, utilizing 60Ghz links [65] with mirrors [145].

In the free-space designs, there are the same two approaches as in the cabled version. Pro-

jecTor [57] creates two parallel architectures, one with connectivity between all ToRs, and

direction connections for high-bandwidth requirements. Firefly [9] takes a similar approach
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to OSA and allows any possible configuration of the topology made up only of ToRs, without

any additional core switches. However, the free space designs suffer from the same problem

that a lack of hierarchy causes, and in addition have high requirements on the operating

environment such as dust-free data centers.

Reconfiguration in Clos Networks: FlatTree [141] combines the advantages of Clos topologies

with those of random graphs by allowing partial reconfiguration. They randomize subsets of

the topology according to traffic, removing all structure. On these subsets, this provides the

same advantages and disadvantages as we describe under Random Graph Networks below.

Lastly, Larry [24] is the closest in spirit to CRISS-CROSS, as it retains the Clos topology and

pod structure. It groups the downlinks on a fabric switch between all ToRs in a subset of

the pod, allowing flexible bandwidth assignment per ToR. As such, it aims the problem of

oversubscription at the rack layer, not at the spine layer, and can be used in combination with

the techniques in CRISS-CROSS.

Random Graph Networks: Jellyfish [133] and XPander [137] take a radically different approach

and suggest random-graph-like networks to achieve good bisection bandwidth without re-

configuration. These random graphs have a very low diameter network, and therefore high

bisection bandwidth per port in the network. Kassing et.al. [82] have argued that the addi-

tional costs of reconfigurability can better be invested in more networking devices to improve

the total amount of available bandwidth. They are also (nearly) arbitrarily incrementally

expendable because they do not need to add complete sets of elements to keep any structure.

However, there is an open problem regarding efficient routing. To the best of the author’s

knowledge, these networks currently rely on k-shortest-path routing and MPTCP for load-

balancing. These routes are expensive to calculate, especially in the presence of failures in a

data center environment.

Traffic Engineering: Clos topologies have a high degree of path diversity. Traffic engineering

tries to load balance traffic across these paths to get an even distribution of traffic and avoid

hotspots. Normal ECMP-based load balancing is a static assignment that cannot react to

changes in bandwidth needs of individual flows. There is a large body of research in reactive

dynamic load balancing techniques including Hedera [2], MPTCP [54], or CONGA [4]. These

solutions try to route elephant flows away from hotspots towards lightly loaded paths. Other

solutions try to solve this problem at a finer granularity by either load balancing flowlets [135]

or per-packet via spraying with Presto [70] or Juggler [56]. Traffic engineering has focused

on balancing traffic between spines to remove relative imbalances between them, but does
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nothing to increase the available bandwidth over the spines. CRISS-CROSS on the other hand

completely offloads the spines.

4.8 Discussion

We briefly discuss some of the trade-offs in our design to explain how a real-world deployment

might change certain design decisions based on operational requirements.

The ”application transparency” requirement imposes restrictions on the implementation, in

particular to ensure that all traffic goes over non-affected spine groups before any links are

to be taken down. This "draining" can be changed so that it either ignores drops, completely

prevent reorderings, or one can use techniques such as Juggler [56] or Presto [70] to prevent

the impact of reorderings. By deactivating draining, reconfigurations can be a lot quicker and

higher reconfiguration rates can be achieved. Depending on the used technology for the OCS

and the buffer capacity of the ASICs, it might even be feasible to simply buffer the packets

during reconfiguration.

While we did not study it specifically, the use of modular, scalable OCS building blocks can

be used for other purposes, and in particular to simplify the incremental deployment of

data centers, or the hardware upgrade of fabric or spine switches in an existing production

datacenter. In fact, cost-effective, programmable OCS technology will very likely be introduced

first in data centers to address these administrative and operational concerns. Our approach

to CRISS-CROSS addresses in fact the same problem, but at a totally different time scale

(sub-seconds in our case vs. planned administrative operations).

We presented an implementation that serializes phases of the algorithm and limits decision

to a single reconfiguration at a time. Depending on the technology bottlenecks, concurrent

reconfigurations that consists of overlapping phases may be required to allow the network to

adjust to rapid changes in network patterns. We leave this for future work.

Our implementation relies on hierarchy to calculate routes and ECMP to distribute the load.

As a consequence, the shortest path is not always taken between two pairs of racks. Unlike

standard Clos topologies, the strict use of shortest-path routing is a tradeoff as all traffic

between two ToRs will flow via the only link that are connected to the same fabric switch. For

CRISS-CROSS, it is a tradeoff, and shortest-path routes can be easily inserted for paths between

selected ToR.
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4.9 Conclusion

We present CRISS-CROSS to address the network challenge of adapting to changing traffic

patterns in oversubscribed data-center networks. CRISS-CROSS is designed to respect the

proven advantages of modularity, structure, hierarchy, cost and scalability found in over-

subscribed Clos networks, but increase performance by dissolving pods and breaking the

transitive 1-hop routing property of classic folded Clos networks. Our evaluation shows that

dynamic reconfiguration reduces spine traffic in worst-case and best-case scenarios.

Our research contribution assumes that the emergence of scalable, programmable optical

circuit switches will offer new reconfiguration opportunities. Assuming this to be the case,

CRISS-CROSS offers a backward-compatible enhancement over the proven de-facto standard.

While CRISS-CROSS is designed to work with existing commodity switch ASIC and firmware, we

do expect that engineering changes will be required to increase the supported reconfiguration

rates.
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5.1 Future work

There is a multitude of further research ideas for both presented projects. In the following

paragraphs, we present some of the ideas for further development, first for the individual

projects and afterwards for other uses of locality in a network context.

In recent years, there has been a rise in programmable data planes; both in SW [37] and

FPGAs [53]at the end-host , as well as in the network itself, i.e., in the form of programmable

switches with P4 [15] being the most prominent representative. These new data planes provide

novel opportunities for placing features in the network as well as improved programmability

in general. This programmability allows new levels of introspection into the network, e.g.,

by allowing finer grained and more accurate elephant flow identification [68]. Elephant flow

identification is a fundamental aspect to utilize flows, so further developments in this area

will be directly applicable to both projects.

VNTOR : VNTOR itself was implemented on an off-the-shelf switch using a Broadcom Trident

ASIC with limited data plane programmability. Using programmable data planes such as

P4 [15], it might be possible to move some of the logic into the data plane itself. This could

be useful for improving the cache replacement algorithm. However, it is at the moment not

possible to update tables from the data plane itself, so the additional value of P4 switches

needs to be evaluated.

At the same time, P4 switches suffer from the same issues as traditional top-of-rack switches

that the TCAM space is limited. It should therefore be possible to modify the strategies in

VNTOR to modify the compiler and toolchain of P4 to split the rule space between the control

CPU in a P4 switch and the match action tables.
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Another approach to VNTOR would be an implementation at different points in the network.

Given the better programmability of P4, it might be possible to further split the state between

multiple switches without too much overhead as a hybrid version of DIFANE [144] and VNTOR.

Alternatively, the end-host might become a more interesting point of implementation with

the advent of FPGAs in networking cards. From the available information, it is most likely

that Amazon is using a variation of this [138]. Microsoft’s SmartNIC [53] is similar in spirit to

VNToR in that it has slow and fast-paths, where flows get moved into the fast-path as needed.

The additional advantage of placing the implementation at the end-host is the larger number

of hardware units across which state can be separated. The downside of such an approach is

of course that the number of hardware units increases and therefore management overhead

(and cost) as well.

From an algorithmic perspective, the identification of heavy-flows in VNTOR is relatively basic

compared to some of the literature, as this was not a focus of our work. Implementing different

algorithms for this identification in particular with the limitations of the ASIC itself could

provide optimization potential for higher cache hit rates for a given reconfiguration rate.

Lastly, the advent both of new interconnects between the control plane, different processors

in the control plane, faster link speeds in the network and changes in workloads might shift

the balance around for the best algorithms to use in VNTOR.

CRISS-CROSS : One of the biggest open questions in CRISS-CROSS is both the actual feasibility

of large OCSs as well as their cost. Therefore, further work is required to evaluate what the

actual limits for OCS sizes might be, and for at which costs they can provide benefits versus

non-oversubscribed topologies.

A subset of this research question is how a limitation of OCS sizes would influence the design

of CRISS-CROSS. With smaller OCSs, the set of possible configurations for a topology would be

reduced. However, within limits, this reduction could still provide benefits as it would support

some loosening of the pod membership relationship of individual racks.

For a full implementation, significant optimizations could be made by parallelizing the

changes in configuration to the OCS if the underlying technology supports it.

Another part of this equation is the scheduler. Given some flexibility in network configuration,

would this allow to extend the scheduler so that it takes the current network configuration

more into account? The scheduler (or even the load balancer) has direct impact on the
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efficiency of the network, even more so in an asymmetrical design. Therefore, an integration

might be worthwhile.

From an evaluation perspective, several directions should be further researched. The recon-

figuration speed of the OCS itself has a big influence on the actual performance and the

algorithms used in CRISS-CROSS. Slow reconfigurations might mean that link offloading is a

useful technique, while very fast operation might allow to skip this step completely. Backup

routes could reduce the impact even in the case that no off-loading exists.

Lastly, CRISS-CROSS looked at only a subset of Clos topologies with three layers. A general-

ization to more layers could provide even more opportunities for reconfigurations. In the

same vain, a further study across different radices of switches is needed. Very large radices

would allow for very shallow Clos topologies and therefore potentially reduce CRISS-CROSS’

usefulness, while lower switch radices would potentially increase it.

Other uses of locality: The work presented here used network locality within the topology

as well as within an individual ToR switch. However, network traffic touches a multitude

of other areas as well. One area mentioned above already is that of scheduling and load

balancing. Using either of these, operators of data centers have the opportunity to increase

the amount of locality in the data center. Then, going down further in the stack, there might be

additional uses of network locality within the server at all levels, within network cards, network

acceleration cards such as FPGA based NICs, or within the networking stack, although many

of these have already been heavily optimized.

5.2 Conclusion

This thesis describes how locality, particularly network locality, can be used in the data center

as an opportunity for more efficiency in various metrics. We presented two projects showing

the use of locality at different levels in the network, VNTOR and CRISS-CROSS

VNTOR shows that using the locality of flows at the top-of-rack, it is possible to implement

the network virtualization abstraction in hardware. Specifically, we showed that such an

implementation is possible at the top-of-rack. Moving the abstraction there enables bare-

metal support for cloud data centers, avoids the performance overheads of an implementation

in software at the host OS, and reduces the susceptibility to hypervisor breakouts.
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CRISS-CROSS shows that using locality of flows at rack granularity allows to design a topology

that adapts to the changing traffic patterns in the data center network, but also retains the

advantages of current data center architectures such as modularity, and hierarchical structure.
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