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Abstract
The martensitic phase transformation in steel is one of the most famous solid state trans-

formation because of its contribution in the development of the modern industry. This

transformation from a face-centered cubic (FCC) high temperature phase, called the austenite,

to a metastable body-centered cubic (BCC) low temperature phase, the martensite, is crucial

in the steels metallurgy, as the strength of the material relies on it. Despite numerous studies,

this transformation exhibits particular features that are still not fully understood. Among

these, the variant selection phenomenon, observed when stress and/or strain is applied to the

material during or prior to transformation, is of particular interest due to its implications in

the industrial processing of steels.

Various criteria have been proposed in the literature to model variant selection, most of them

being based on the work of the deformation associated with the transformation in the applied

stress field. The deformation used in the computation of the work is generally determined by

using the Phenomenological Theory of the Martensite Crystallography (PTMC). However, this

theory considers different deformations to model the transformation, and there is currently a

lack of consent on which of these different deformations is the most appropriate to account

for the selection phenomenon.

In this thesis, we propose to use a novel mechanistic transformation model, called the con-

tinuous distortion model to study the selection phenomenon. This model describe the trans-

formation of the FCC lattice to a BCC lattice by using an atomistic description of the lattice

change.

The first part of this thesis is a study of the capabilities of the new model in accounting for

crystallographic features of the transformation. Our study indicates that the crystallographic

nature of the interfaces between the martensite and the austenite can be explained by com-

binations of different variants of the continuous model. It appears also that under the same

assumptions, the mechanistic and the phenomenological model are equivalent.

In the second part of this thesis, the variant selection is studied experimentally. Different

thermomechanical treatments are applied to various types of steels, and the produced mi-

crostructures are characterized by Electron BackScattered Diffraction (EBSD). The experimen-

tal results suggest that the deformation that needs to be consider in the computation of the

work depends of the type of strain accommodation mechanism involved during the transfor-

mation. When the accommodation of the martensite product is achieved by dislocations, the

deformation associated with individual variant should be considered in the computation of

the work. On the contrary, when the accommodation is based on variants coupling, it is the
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Abstract

combination of the deformations of the coupled variants that matters.

This thesis lays the foundations for a more unified vision of variant selection in martensitic

steels, by considering a unique deformation model, and underlines the importance of the

accommodation mechanisms in the selection phenomenon.

Key words: FCC-BCC martensitic phase transformation, variant selection, PTMC, continuous

distortion model
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Résumé
La transformation martensitique dans les aciers compte parmi les plus importantes transfor-

mations de phase à l’état solide, principalement en raison de sa contribution au développe-

ment de l’industrie moderne. En effet, cette transformation de l’austénite, une phase cubique

à faces centrées (CFC), stable à haute température, en martensite, une phase cubique centrée

(CC), métastable à basse température, est la clef des bonnes propriétés mécaniques des aciers.

Cependant, en dépit des nombreuses études qui lui sont dédiées, cette transformation pré-

sente des caractéristiques qui échappent encore à une pleine compréhension. Parmi elles, la

sélection de variants, observée lorsque des contraintes et/ou des déformations sont appliquées

au matériau avant et durant la transformation de phase, revêt un intérêt particulier au vu de

ses conséquences sur la production industrielle des aciers.

Différents critères de sélection de variants sont proposés dans la littérature, la plupart étant

basés sur le travail de la déformation associée à la transformation dans le champ de contrainte

appliqué. La déformation considérée dans l’évaluation du travail est généralement déterminée

par le modèle classique de la transformation martensitique, appelé Théorie Phénoménolo-

gique de la Cristallographie de la Martensite (PTMC). Cependant, cette théorie utilise plusieurs

déformations pour modéliser la transformation et il y a actuellement un manque de consensus

concernant le choix de la déformation à considérer dans le calcul du travail.

Dans cette thèse, nous proposons d’étudier la sélection de variants en utilisant un nouveau

modèle transformation, appelé modèle continu de la distorsion. Ce dernier décrit la transforma-

tion du réseau CFC en un réseau CC à l’échelle atomique et de manière continue, contrastant

ainsi avec la nature phénoménologique du modèle classique.

La première partie de cette thèse propose une analyse des caractéristiques cristallographiques

pouvant être expliquées par le nouveau modèle. Il a été mis en évidence que la nature cris-

tallographique des interfaces entre la martensite et l’austénite peut être expliquée par la

combinaison de différents variants du modèle continu. Il a également été montré que lorsque

les mêmes hypothèses sont considérées, le modèle phénoménologique et le modèle continu

sont équivalents. Dans la deuxième partie de la thèse, une étude expérimentale de la sélection

de variants est proposée. Cette étude est effectuée en imposant des traitements thermomé-

caniques sur différents types d’aciers, puis en caractérisant les microstructures produites, à

l’aide de diffraction d’électrons rétrodiffusés (EBSD). Ces expériences indiquent qu’un critère

basé sur le travail de la déformation associée au modèle continu dans le champ de contrainte

appliqué est approprié pour étudier la sélection de variants. Il apparaît aussi que la déforma-

tion pertinente pour calculer le travail dépend de la nature des mécanismes d’accommodation
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Résumé

à l’oeuvre durant la transformation. Lorsque l’accommodation de la martensite est effectuée

par plasticité, la déformation propre à chaque variant doit être considérée dans le calcul du

travail. Au contraire, si l’accommodation se fait par association de variants, la déformation qui

importe est la combinaison des déformations des différents variants considérés.

Ce travail pose les bases d’une vision plus unifiée de la sélection de variants dans les aciers

martensitiques en utilisant un modèle unique et souligne l’importance des mécanismes

d’accommodation dans le phénomène de sélection.

Mots clefs : transformation martensitique CFC-CC, sélection de variants, PTMC, modèle

continu de la distorsion.
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1 Introduction

This thesis deals with the martensitic transformation in steels. It focuses on the study of a

transformation related phenomenon, the variant selection. In this introduction, generali-

ties about the phase transformation are presented. In particular, the crystallography of the

transformation is detailed.

Martensitic transformation in steels

The martensitic phase transformation in steels is of technological interest as the strength of

steels essentially relies on it. This phase transformation is induced by a rapid quenching of a

thermodynamically stable high temperature phase called the austenite. The product of this

fast cooling is a metastable phase called the martensite in honor to the german metallographer

Adolf Martens who developed metallographic techniques for characterizing iron-based alloys.

This phase exhibits a fine microstructure and a significant amount of lattice defects, such as

dislocations. The martensitic transformation in steels is defined as a displacive transformation,

meaning that it is associated with a cooperative motion of atoms. Nishiyama (1901-1991),

a pioneer in the study of the martensitic transformation in steels, uses a japanese word to

describe it: Shōgidaoshi, translated by him "falling one after another in succession", like a

domino [Nishiyama, 2012]. No diffusion occurs during the phase change, and the transfor-

mation can propagate at almost the velocity of sound. As a consequence of its displacive

nature, the martensitic transformation is characterized by particular crystallographic and

thermodynamics features, and proper morphologies.

Crystallography of the transformation

Nature of the lattice change

The martensitic transformation leads to a change in the crystalline structure. The crystalline

structure of austenite is Face-Centered Cubic (FCC), and as the material is quenched below

the transformation temperature, its structure changes to Body-Centered Cubic (BCC), Body-
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Chapter 1. Introduction

Centered Tetragonal (BCT) or Hexagonal Close-Packed (HCP), depending on the alloys. The

BCC/BCT martensite is formed in a large range of steels, whereas HCP is typically observed

in high manganese steels. The BCC and BCT phases are generally called α or α′ martensite.

The HCP phase is named ε martensite. The austenite is noted γ. This thesis focuses on the

FCC-BCC(T) transformation, and the ε martensite formation is not treated here. Schematic

representations of the three different crystalline structures are presented in figure 1.1.

Figure 1.1: Crystalline structure commonly found in steels [Britannica, 2011]. A: BCC structure
of the α martensite. B: FCC structure of the austenite. C: HCP structure of the ε martensite.

Orientation relationship and transformation variants

As a common feature to all displacive transformations, the daughter phase is not oriented

randomly in respect to the parent lattice, it obeys some crystallographic rules which are

called orientation relationships. These relationships are generally expressed in terms of

parallelism between planes and directions of the parent and daughter phases. In martensitic

steels, various orientation relationships are observed. The first measurement of orientation

relationship in steel is due to Kurdjumov and Sachs in 1930 [Kurdjumov and Sachs, 1930], who

studied the transformation in Fe-1.4%C. For that alloy, they reported that the close-packed

planes as well as the close-packed directions of martensite and austenite are parallel: (011)α ∥
(111)γ and [11̄1]α ∥ [101̄]γ. The same parallelism between closed-packed planes was already

reported in 1926 by Young in iron meteorites [Young, 1926]. In 1934, Nishiyama observed a

slightly different orientation relationship when studying a Fe-30%Ni alloy [Nishiyama, 1934].

His measurement agrees with those of Wassermann in the same steel [Wassermann, 1933].

The reported orientation relationship is (011)α ∥ (111)γ and [100]α ∥ [011̄]γ now called the

Nishiyama-Wassermann orientation relationship. Later, other orientation relationships were

observed, by Greninger and Troiano in 1949 in Fe-22%Ni-0.8%C [Greninger and Troiano,

1949] and Pitsch in 1959, who studied thin foils of Fe-N [Pitsch, 1959]. The presence of

an orientation relationship between parent and daughter crystal implies that each parent

grain can transform in a fixed number of daughter crystal orientations. These are called the

orientation variants or simply variants of the transformation. Depending on the nature of the

orientation relationship, the number of orientation variants changes. For example, there are

24 Kurdjumov-Sachs variants and only 12 Nishiyama-Wassermann variants. The pole figures
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in figure 1.2 show the variants associated with the Kurdjumov-Sachs orientation relationship

in red and the Nishiyama-Wassermann orientation relationships in black.

Figure 1.2: A: {100}γ, {110}γ and {111}γ pole figures of a parent austenite grain. B: The 24
Kurdjumov-Sachs variants (in red) and 12 Nishiyama-Wassermann variants (in black) asso-
ciated with the transformation of the parent grain in A. The variants are represented on the
{100}α, {110}α and {111}α pole figures

Generally, it is acknowledged that the orientation relationship depends of the alloy compo-

sition and transformation temperature [Nishiyama, 2012]. However, recents EBSD studies

performed by Cayron indicate that there exists a continuous orientation spread, characterized

by continuous patterns in the pole figures, as shown in figure 1.3 [Cayron et al., 2010]. Cay-

ron further shows that even in a single lath of low-carbon steel, the orientation relationship

can vary between Pitsch, Kudjumov-Sachs, Greninger-Troiano and Nishiyama-Wassermann

[Cayron, 2014].

Figure 1.3: Experimental pole figures of martensite formed in a austenite grain ref. [Cayron
et al., 2010]
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The 24 Kurdjumov-Sachs variants. Among the different orientation relationships reported,

the one of Kurdjumov-Sachs is of particular interest in this thesis, and as such the variants

associated with this orientation relationship are detailed here. As mentioned above the

Kurdjumov-Sachs orientation relationship has the specificity of keeping the respective close-

packed planes and close-packed directions of the FCC and BCC lattices parallel. On the basis

of such parallelism, groups of variants can be defined. The variants having their close-packed

plane parallel to the same close-packed plane of the austenite are said to belong to the same

Close-Packed Plane packet (CPP packet). The variants having their close-packed direction

parallel to the same close-packed direction of the austenite belongs to the same Close-Packed

Direction packet (CPD packet) [Cayron, 2014]. Figure 1.4 shows the 24 Kurdjumov-Sachs

variants as squares on the four {111}γ close-packed planes of the austenite. Variants 1, 2, 3, 5,

6 and 8 thus belong to the same CPP packet 1. The edges of the triangles are the close-packed

direction of the austenite. The variants are positioned on the edge that is parallel to their

close-packed direction. Variants 1, 3, 4 and 9 belong to the same CPD direction. The pairs of

variants that belong to the same CPP and CPD packets, for example variants 1 and 3, have a

particular misorientation of 60◦ around [111]α and they are said to be twin-related variants.

Figure 1.4: 24 Kurdjumov-Sachs variants represented on the {111}γ planes of the austenite.

Variant selection

All variants are supposed to form equiprobably when the transformation occurs. However,

many researchers reported that some variants are formed preferentially, as a consequence

of the application of an external stress [Higo et al., 1974, Gautier et al., 1989, Kundu and

Bhadeshia, 2007, Abreu et al., 2009] or a prior deformation [Chiba et al., 2012, Miyamoto et al.,

2012]. This phenomenon is called variant selection. In the two aforementioned cases, when

stress or prior deformation is applied to the material, the variant selection is global and takes

1We mention that the number given to the variants here is different from the numbering presented in Morito et
al.’s work [Morito et al., 2003]. The present numbering is detailed in Appendix D.
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place at the scale of the sample. Besides, local variant selection can also be observed. The

concept of local variant selection describes the particular variants pairing or coupling that are

often reported in steels [Bokros and Parker, 1963, Morito et al., 2003, Stormvinter et al., 2012].

Contrarily to the global variant selection, the local variant selection is operating at the grain

scale. The variant selection phenomenon, at both local and global scale, is the topic of this

thesis.

Shape change and surface relief

In the early days of the crystallographic study of the martensite transformation, the use of

alloys with transformation temperature below room temperature was common, in order to

simplify both the experimental method and the crystallographic analysis. Scheil is one of

the initiators of such approach. He proposes to use Fe-28%Ni and Fe-29%Ni alloys, whose

transformation temperature is around 0◦C, to model the martensitic transformation in carbon

steels [Scheil, 1932]. When pre-polished surfaces of such alloys are quenched below the trans-

formation temperature, surface reliefs appear on the transformed zones. Similarly, existing

scratch lines on the austenite are deviated where the martensite forms. Figure 1.5 illustrates

the phenomenon. This observable shape change is considered as an essential feature of the

Figure 1.5: Illustration of the surface relief (a) and the deviation of fiducial lines (b) from ref.
[Nishiyama, 2012]

martensitic transformation [Bowles and Barrett, 1952]. As such, it has been the object of

detailed studies performed by Greninger and Troiano in Fe-22%Ni-0.8%C (1949)[Greninger

and Troiano, 1949], and by Machlin and Cohen in Fe-30%Ni (1951)[Machlin and Cohen, 1951].

They both described the shape change as an homogeneous deformation in which a plane

is kept invariant, this plane being the interface between the austenite and the martensite.

This plane is called habit plane and is believed to be the plane where the transformation

initiates. The crystallographic orientation of the habit plane is not random; there are about

four different habit planes observed in martensitic steels {225}γ,{259}γ, {31015}γ and {557}γ.

The type of habit plane depends mainly on the martensitic start temperature, noted Ms . The

alloys used by the two groups who first measured the shape change exhibit {259}γ habit plane.

Both conclude that the shape change associated with the transformation is a combination of a

shear s parallel to the habit plane and a dilatation δ normal to it, as illustrated in figure 1.6.
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This type of deformation is named an invariant plane strain (IPS). The invariant plane strain

Figure 1.6: Schematic representation of the shape change associated with the martensitic
transformation, with the combination of a shear s parallel to the habit plane and a dilatation δ

normal to it.

is a key element in the majority of the future models of the transformation, in particular in the

most famous one, the Phenomenological Theory of the Martensite Crystallography [Wechsler

and Read, 1953, Bowles and Mackenzie, 1954a].

Morphology of the martensite

A wide range of martensite morphologies are observed in steels, and various studies have been

carried out to understand the condition of formation of the different types of martensite mor-

phologies [Jana and Wayman, 1970, Maki et al., 1973, Umemoto et al., 1983, Morito et al., 2003].

Generally the morphologies are classified in five different categories: lath, {225}γ-plate, butter-

fly, lenticular and thin plate [Maki, 2012]. Examples of these morphologies are presented in

Figure 1.7: Optical micrograph of the different morphologies observed in ferrous martensite. A:
lath in Fe-7%Ni-0.22%C. B: butterfly in Fe-20%Ni-0.73%C. C: {225}γ-plate in Fe-8%Cr-0.9%C.
D: lenticular in Fe-29%Ni-0.26%C. E: thin plate in Fe-31%Ni-0.23%C. Micrographs taken from
ref. [Maki, 2012]
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figure 1.7 for different alloys. From figure 1.7, it can be noticed that changes of the morphology

are observed according to the alloy composition. As an example, laths are formed in Fe-Ni-C

alloy with 7% Ni and 0.22%C (figure 1.7A), whereas thin plates (figure 1.7E) are observed by

increasing the Ni content to 31%. Along with the changes of morphologies, varies also the

type of the habit plane and the orientation relationship. The details of the factors affecting the

transition from one type of martensite to another are not yet fully understood [Maki, 2012].

However, the type of accommodation mechanism appears to be a crucial element. The preva-

lence of a particular accommodation mechanism essentially depends on the temperature at

which the martensite starts to form. {557}γ lath martensite observed in low-carbon steel forms

at relatively high temperature (> 350◦C). At such temperature, the motion of dislocations does

not require a significant amount of energy, and the accommodation of lath martensite is es-

sentially achieved through this mechanism. By increasing the carbon and the nickel content in

the steel, the martensitic start temperature decreases. The accommodation mechanism thus

progressively changes. In carbon steels containing between 0.55 and 1.4wt%C, {225}γ plates

are formed at temperatures that range between 250◦C and 100◦C. These martensites exhibit a

fine microstructure composed of {112}α twins. Considering the Kurdjumov-Sachs orientation

relationship observed with such alloys, {112}α twins are in fact twin-related variants of the

transformation. In {225}γ-plates, the twinned zone does not extend through the entire plate,

and dislocations are generally observed inside {225}γ plates. Butterfly martensite produced at

a slightly lower temperature (75◦C) shares the same habit plane and accommodation process

as {225}γ-plates [Sato and Zaefferer, 2009]. By further decreasing the Ms temperature below

−30◦, the habit plane moves toward {259}γ. The martensite product is then lenticular. Its

central part, called the midrib, appears unhomogenous and composed of twins. The nature

of the twins is still unclear. {112}α twins are often reported, but some researchers suggest

the presence of additional {110}α twins [Thomas, 1971]. Away from the midrib, toward the

austenite/martensite interface, dislocations are observed. In alloys with even lower Ms , the

sample needs to be quenched in liquid nitrogen to transform. The martensite products formed

in such alloys are thin plates and have {31015}γ habit planes. The thin plates are composed

exclusively of {112}α twins. Figure 1.8 shows a schematic representation of the lenticular and

thin plate martensite.

Figure 1.8: A: Illustration of a lenticular martensite with its twinned midrib and the dislocations
zone. B: Illustration of a completely twinned thin plate of martensite
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The main crystallographic features of the different types of martensite are summarized in

table 1.1. The variations of the mean orientation relationship, the change of habit plane and

the produced morphologies are presented as a function of the martensitic start temperature

(Ms).

Table 1.1: Morphologies, habit plane and orientation relationship as function of the martensitic
start temperature (Ms) from low Ms on the left to high Ms on the right. Table inspired from
ref.[Sato and Zaefferer, 2009]. Abreviation of the different orientation relationships: Greninger-
Troiano (GT), Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS)

Low Ms High Ms
Morphology Thin plate Lenticular Butterfly {225}γ plate Lath
Habit Plane {31015}γ {259}γ or {31015}γ {225}γ {225}γ {557}γ
Accommodation Twins Multiple twins+Dislocations Twins+Dislocations Twins+Dislocations Dislocations
Orientation relationship GT GT/NW/KS KS/NW KS KS

Elements on the thermodynamics of the transformation

A major thermodynamical characteristic of the martensitic transformation is the supercooling

necessary to start the transformation. Considering only the stability of the chemical bonds, the

temperature of transition between the austenite and the martensite is the one that guarantees

an equality between the free energy of the austenite Fγ and the free energy of the martensite

Fα:

∆Fγ→α = Fα−Fγ = 0 (1.1)

In this notation, when the value of ∆Fγ→α becomes negative, the martensite is more stable

than the austenite. The temperature at which ∆Fγ→α = 0 is called T0. However, this tem-

perature does not correspond to the measured transformation temperature Ms , which is

significantly below T0. Similarly, the temperature at which the reverse transformation starts,

As , is higher than the equilibrium temperature, As > T0. Figure 1.9 illustrates that particularity.

The condition ∆Fγ→α = 0 is thus not sufficient to start the transformation, actually |∆Fγ→α |
has to be greater than some finite quantity [Kaufman and Cohen, 1958]:

|∆Fγ→α |>|∆Fmech | (1.2)

The quantity ∆F mech accounts for the non-chemical factors preventing the transformation,

typically the interfacial energy and the strain energy. Indeed, the significant shape change

associated with the transformation requires strain energy to be accommodated in the austenite

matrix. In addition, the martensite products exhibit complex microstructures and hence a

large number of interfaces are created during transformation.
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Figure 1.9: Illustration of the supercooling and the superheating observed in the martenstic
transformation in iron-based alloys from [Kaufman and Cohen, 1958]. ∆Fα′→γ denotes the
difference in free energy between the austenite and the martensite.

If the transformation is naturally hindered by the mechanical interaction between the marten-

site and the matrix, the Ms can be modified analogously by the application of external stress.

Scheil (1932) observed the phenomenon [Scheil, 1932], and later Patel and Cohen quantified

it [Patel and Cohen, 1953]. They showed that both an uniaxial compression and an uniaxial

tension favour the transformation. On the contrary, the application of an hydrostatic pressure

prevents it. In their experiments on Fe-20%Ni-0.5%C, they measured an increase of the Ms by

15◦C and 10◦C for an uniaxial tension and uniaxial compression respectively, and a decrease

of 8.5◦C with the application of an hydrostatic pressure. The changes in transformation tem-

perature were measured for an applied stress of 103MPa.

In thermoelastic martensitic phase transformations occurring in shape memory alloys, the

same type of phenomenon is observed. In these specific cases, the dependence of the transfor-

mation temperature with stress is classically studied by using the Clausius-Clapeyron equation

[Otsuka and Wayman, 1999].
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2 State of the art

In this chapter, the history of the modelling of the martensitic transformation is briefly pre-

sented. A particular attention is paid to the elements leading to the development of the most

famous model of the transformation, the Phenomenological Theory of the Martensite Crystal-

lography. Alternative mechanistic models are also presented.

A state of the art of the characterization and the modelling of the variant selection phe-

nomenon is proposed. Both the local variant selection and the global variant selection are

considered.

Modelling of the martensitic transformation

Early models and development of the PTMC

The history of the modelling of the martenitic transformation starts in the beginning of the

20th century with E.C. Bain, who proposed in 1924 a simple mechanism to change a FCC

structure into BCC(T) [Bain and Dunkirk, 1924]. This process is illustrated in figure 2.1. Bain

noted that an elongated BCT structure appears by combining two adjacent FCC cells. To

convert it in a cubic (BCC) or slightly tetragonal (BCT) structure, the elongated BCT cell

needs to be compressed in the vertical direction and stretched in the two other orthogonal

directions. Such deformation is now called the Bain strain. The structural change associated

with the martensitic transformation is successfully modelled by the Bain strain, but careful

characterization of the orientation relationship performed slightly later (1930-1934) on various

steels [Kurdjumov and Sachs, 1930] [Nishiyama, 1934] [Wassermann, 1933] concluded that

Bain’s model does not predict the correct orientation relationship. To our best knowledge

the orientation relationship associated with the Bain strain has only been observed in an

Fe-Pt alloy [Tadaki and Shimizu, 1970]. Conversely, the atomic correspondance, namely what

becomes in the BCC lattice each direction of the FCC lattice, as defined in the Bain’s model, is

considered to be true in steels [Bowles and Wayman, 1972]. As a matter of fact, it has recently

be proved that Bain’s correspondance involves the minimum atomic motion [Koumatos and

Muehlemann, 2016]. Considering figure 2.1, the Bain’s correspondance implies that one of
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Figure 2.1: Illustration of the Bain strain taken from [Bain and Dunkirk, 1924]. On the left, the
combination of the two adjacent FCC cells to create a BCT lattice. On the right, an illustration
of the strain needed to achieved a cubic lattice.

the < 100 >γ becomes a < 100 >α while the remaining two < 100 >γ become two orthogonal

< 110 >α directions. This early model profoundly affected how the transformation became

envisioned, and the Bain correspondance is now assumed in the majority of the transformation

models. A couple of years after Bain’s proposal, both Nishiyama (1934) and Kurdjumov and

Sachs(1930) proposed their own transformation models along with their measurements of the

orientation relationship. The Kurdjumov-Sachs and the Nishiyama’s models are quite similar,

both based on the composition of two shears. However none of them is able to account

for the habit plane and the surface relief associated with the transformation [Bowles and

Barrett, 1952]. Later, in 1948, Jaswon and Wheeler proposed to study the transformation

mechanism by using linear algebra, and they described the transformation as an homogenous

deformation of the austenite lattice [Jaswon and Wheeler, 1948]. Their model allows to obtain

the correct atomic structure and the Kurdjumov-Sachs orientation relationship. No plane is

left invariant by the transformation, they suggested to relax the condition for the existence

of a habit plane. They considered that the lack of rotation of a plane is a sufficient condition

to allow the accommodation of the transformation on the habit plane. They showed that for

their distortion, the (225)γ and the (111)γ are such planes. However, they were not able to

explain why if both planes satisfy equally their criterion, only {225}γ are commonly observed

in carbon steels, and not the {111}γ. Their model was also criticized as it could not account

for the surface relief and the observed shape change considered to be an invariant plane

strain [Bowles and Barrett, 1952]. The same year Greninger and Troiano proposed a novel

vision of the transformation by considering that two shears of different nature are involved

in the transformation [Greninger and Troiano, 1949]. The first shear is associated with the

shape change and acts homogeneously. The second one acts inhomogeneously in order to

obtain the correct final BCC lattice. This second shear is considered as invisible for naked
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eyes, and as such does not modify the observed shape change. The idea of such invisible

shear will be used as a major ingredient in the Phenomenological Theory of the Martensite

Crystallography (PTMC), which was born a couple of years later. The PTMC is the results

of the works of two independent groups, Bowles and Mackenzie [Bowles and Mackenzie,

1954a] and Liebermann, Wechsler and Read [Wechsler and Read, 1953]. They expressed the

transformation mechanism by using linear algebra. Both assume the Bain correspondence

and use the concept of the second invisible shear proposed by Greninger and Troiano. They

derived two different formulations that Christian showed to be equivalent [Christian, 1956].

In the Bowles and Mackenzie’s version of the PTMC, the model stands in a single equation:

RB = PQ . The left-hand side of the equation describes the lattice change by means of the

Bain strain B and a rotation R allowing for a correct orientation relationship. The product

RB is called the lattice strain. The rotation R is such that one line remains invariant during

the transformation. Accordingly, this strain is called an Invariant Line Strain (ILS). On the

right-hand side of the equation appears the matrix P , called the shape strain. It describes the

shape change as an Invariant Plane Strain (IPS), in agreement with the observed surface relief

and shape change. The shape strain is multiplied by a matrix Q , which is the inhomogeneous

invisible shear introduced by Greninger and Troiano. Figure 2.2 illustrates the concepts behind

the PTMC equation. On figure 2.2A, the austenite is partially deformed by an invariant plane

Figure 2.2: Illustration of the concepts behind the Phenomenological Theory of the Martensite
Crystallography.

strain, where the invariant plane, the habit plane, is indicated in red. In that case, the austenite

is only affected by the shape strain, P = IPS and Q = I . This situation is the one that is

macroscopically observed and measured. However, such deformation does not lead to the

correct BCC structure. The correct structure is obtained by deforming the austenite with an

invariant line strain (ILS), like RB . This deformation is illustrated on figure 2.2B. It gives the
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correct lattice but the shape change does not correspond to the experimental observations.

Actually, Greninger and Troiano pointed out - without formally demonstrating it- that it is not

possible to change a structure from FCC to BCC by a deformation that is an invariant plane

strain [Greninger and Troiano, 1949]. To tackle this issue, they introduced their second shear

acting inhomogeneously, which is formalized in the PTMC by the matrix Q . By combining the

homogeneous shape change P and the second shear Q , as in figure 2.2C, the correct and well

oriented BCC structure is obtained: PQ = RB . The inverse of Q is named the lattice invariant

shear (LIS), as it acts on RB without changing the lattice, but allowing for the final shape

change P = RBQ−1. The lattice invariant shear proposed by Bowles and Mackenzie can be

either twinning, similarly to the original Greninger and Troiano proposal, or slip. Figure 2.3

shows an illustration of these two types of lattice invariant shears when considering a {225}γ
habit plane.

Figure 2.3: Illustration of the lattice invariant shear on a {225}γ habit plane [Kelly and Nutting,
1961]. A: by slip. B: by twinning.

The PTMC needs as input the lattice parameters of both the parent and the daughter phases.

In addition, the nature of the lattice invariant shear Q , defined by a shear plane and a shear

direction, and the Bain correspondance have to be assumed. For the {225}γ and the {259}γ
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transformations that were well documented at the time of PTMC birth, a {112}α < 111 >α

lattice invariant shear is considered. Based on these inputs, the shape strain and the ori-

entation relationship can be determined. To account for the particular {225}γ habit plane

case, an additional dilatation parameter, δ, is needed. This parameter multiplies the lattice

strain RB to keep the close-packed line of the austenite involved in the Kurdjumov-Sachs

orientation relationship completely invariant: δRB = PQ . Because this dilatation was not

measured experimentally, the use of such a parameter was not satisfactory. Therefore, a

generalization of the PTMC was proposed independently by Acton and Bevis [Acton and Bevis,

1969], and by Ross and Crocker [Ross and Crocker, 1970] in 1969 and 1970 to account for the

{225} habit plane without using the dilatation parameter. They suggested to use two lattice

invariant shears instead of a single one, and developed what is now called the double shear

theory. However, this further complication of the original theory did not lead to significant

improvements in the understanding of the transformation [Dunne and Wayman, 1971]. The

double-shear formulation was nonetheless used later by Kelly, who claimed to account for

both the {225}γ habit plane and the {557}γ habit plane [Kelly, 1992]. This latter habit plane has

not been considered in the original PTMC, because such type of martensite was not accurately

characterized at that time. Indeed, {557}γ martensite appears essentially in fully transformed

material, which renders difficult the evaluation of the shape strain and the characterization of

the habit plane.

Today, PTMC is the classical approach to study the crystallography of martensitic steels. To

help in the long computations associated with the theory, a freeware has been developped

recently [Gu et al., 2016].

Modern PTMC

The PTMC described above is presented in its Bowles and Mackenzie version [Bowles and

Mackenzie, 1954a]. As already mentioned, another group, Liebermann, Wechsler and Read

worked at the same time on the same topic and developed a different, but equivalent, expres-

sion of the PTMC [Wechsler and Read, 1953]. Contrarily to Bowles and Mackenzie who used

matrix multiplications, they propose to model the martensite crystallography by linear combi-

nation of distortion matrices. The distortion matrices that are combined are lattice strains of

type RB . They are combined in pairs such that the resulting average distortion of each pair

is exactly an invariant plane strain. Following the same approach of variants combination,

Ball and James developed in the late eighties what is sometimes called the modern PTMC [Ball

and James, 1987]. Their approach has then been democratized to non-mathematicians by

Bhattacharya [Bhattacharya, 2003]. This modern PTMC is essentially based on the mathemati-

cal description of the interfaces between the phases (austenite-martensite) and between the

martensite variants. It differs from the original PTMC theory by being explicitly based on free

energy minimization [Ball and James, 1987]. Thanks to their generalization of the PTMC ap-

proach, they extended the theory to a wide range of transformations. Particularly, it achieved

some success in modelling shape memory alloys [Chluba et al., 2015]. As a consequence,

this theory is much more commonly used in that type of material than is steels. To our best
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knowledge, Muehlemann and Koumatos are the only ones to propose an analysis of the steel

crystallography by means of this modern PTMC [Muehlemann and Koumatos, 2015]. They

proposed a model accounting for {557}γ habit planes. Similarily to the classical PTMC, their

model is a double shear model. It is described as a twins within twins model as illustrated in

figure 2.4.

Figure 2.4: Illustration of the microstructure associated with the Muhlemann and Koumatos
twins within twins model for the {557}γ habit plane martensite. k is the normal to the habit
plane. Taken from ref. [Muehlemann and Koumatos, 2015]

However, contrarily to Kelly who used a trial-and-error method to find an appropriate set of

shear systems [Kelly, 1992], Muhlemann and Koumatos’ work allows to find the pair of shears,

starting only from the lattice parameters and knowing the final habit plane orientation. On

the mathematical stand point, the proposed twins within twins model is flawless, but the type

of microstructure associated with it (see figure 2.4) does not correspond to the experimental

observations of {557}γ low-carbon steels. Actually, the microstructure proposed is much closer

to what is observed in shape memory alloys.

Alternative mechanistic models

In both its modern and classical versions, the main limitation of the PTMC is in its name.

It is phenomenological. This particularity is underlined by Bowles and Mackenzie when

presenting their model. The lack of consideration of the atomic trajectory disappointed

several researchers [Bogers and Burgers, 1964] [Cayron, 2015]. They therefore proposed their

own models based on atomic descriptions. In 1964, Bogers and Burgers used hard spheres

to model the motion of atoms and proposed a succession of two shears to transform the

FCC lattice into a BCC lattice [Bogers and Burgers, 1964]. However, their mechanism cannot

explain the observed habit plane and shape change. Later from 2010 to 2015, Cayron proposed

different models, based on the same hard sphere description of the atoms [Cayron et al.,

2010, Cayron, 2013, Cayron, 2015]. His latest model allows to continuously evolve from an
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FCC lattice to a BCC lattice, both lattices being in Kurdjumov-Sachs orientation relationship.

The transformation mechanism does not keep any plane invariant, but both the (111)γ and

the (225)γ are untilted by transformation. He discovered afterwards that his mechanism was

a continuous version of the Jaswon and Wheeler’s model [Jaswon and Wheeler, 1948]. The

transformation is described by a single matrix F (x = cos(β)), called distortion matrix. The

distortion matrix allows, for each increment of the angular parameter x, to compute the

intermediate distorted FCC lattices:

F (x) =


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(2.1)

The transformation begins at x = 1
2 , where F ( 1

2 ) = I , implying that there is no deformation of

the austenite. It finishes at x = 1
3 , where the deformed austenite corresponds to the martensite

structure. A schematic representation of the transformation mechanism is proposed in figure

2.5. The transformation can be essentially seen as an opening of the β angle in the FCC

close-packed plane. The β angle changes from 60◦ to 70.5◦ as the lattice transforms from a

FCC structure to a BCC one. From this particularity, such transformation is called an angular

distortion [Cayron, 2016]. This distortion is equivalent to the invariant line strain of the PTMC,

where the invariant line in that case is the close-packed direction of the two phases (the line

QP on figure 2.5). As a matter of fact, the distortion F can be decomposed into the product of

a rotation and the Bain strain by using a polar decomposition F = RB . As compared with the

R

Q P

R’

Q P

Figure 2.5: Schematic representation of the continuous FCC-BCC transformation mechanism
from Cayron. Inspired from figure 10 in ref. [Cayron, 2015]. On the left, the initial FCC
structure is represented by its (111)γ plane which transforms (on the right) in a (11̄0)α plane,
while keeping the [11̄0]γ parallel to the [111]α.

PTMC, this model offers a satisfyingly simple description of transformation as it deals only

with a single matrix. In addition, as a major advantage, it provides a complete description of

the atomic path, allowing to see the transformation as a continuous process, as presented in
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figure 2.6. However, like the Jaswon and Wheeler model, it is not able to account for a shape

change being an invariant plane strain.

Figure 2.6: Illustration of the continuous transformation of a FCC unit cell (blue) to a BCC unit
cell (red) according to the Cayron’s continuous model associated with the Kurdjumov-Sachs
orientation relationship. Full film available on the LMTM website (www.lmtm.epfl.ch).

Characterization and modelling of the variant selection

Local variant selection

References to local variant selection are present in both versions of the PTMC, where variants

pairing are considered to accommodate the transformation on the habit plane. In the Bowles

and Mackenzie model for the (225)γ martensite habit plane, the authors explicitly noted

that the invariant lattice shear is equal to "half the twinning shear", such that the "variants

are related in pairs" [Bowles and Mackenzie, 1954b]. A few years later, variants pairing in

lenticular martensite is also reported [Bokros and Parker, 1963]. Bokros and Parker studied the

transformation in Fe-30Ni single crystals and observed that the transformation occurs in a

burst, by group of four variants "that catalyze the transformation on one another". This group

is called plate group. In that case the variants pairing is not due to the accommodation of the

habit plane, but is the result of an autocatalytic process. Lath martensite produced in low-

carbon steels also exhibits particular variant pairing, as reported by Morito et al. [Morito et al.,

2003]. Their study suggests that {557}γ habit plane martensite tends to form packets of variants

belonging to the same close-packed plane group. Within such packet, the low-misoriented

variants are paired to create blocks. An illustration of this variants pairing architecture is

presented in figure 2.7. Morito et al. used the {557}γ double shear theory proposed by Kelly to

explain the observed pairings. The analysis was not completely satisfactory, in particular the

coupling of low-misoriented variants remains unclear [Morito et al., 2003].

A general study on variant pairing in carbon steel has been conducted by Stromvinter et al.

in 2012 by using EBSD measurements [Stormvinter et al., 2012]. This study evidences the

effect of carbon content on variant coupling and shows results in excellent agreement with

the previous studies. At low carbon content, the variants pairing occurs, forming blocks and

the assembly of blocks creating packets, as described by Morito, then by increasing slightly

the amount of carbon (Fe-0.75C) the martensite tends to pair by twin-related variants, and

with higher carbon content, the variants pairing is based on plate groups. An illustration of
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Figure 2.7: Schematic representation of a transformed austenite parent grain in lath martensite
in a low-carbon steel. Details of the variant pairing in blocks and packets. Illustration from ref.
[Morito et al., 2003]

these different pairings is presented in figure 2.8. The local variant selection appears to be

a well-documented and precisely characterized phenomenon, but it remains rather poorly

understood. Apart from the Bokros and Parker’s model for the plate group formation based

on shape strain interactions, there is a lack of convincing links between the transformation

mechanism and the different type of variants pairing.

Figure 2.8: Illustration of the various types of coupling for different carbon steels. A: Low-
carbon steel (0-0.3C). B: 0.75C steel. C: 1.8C carbon steel. From ref.[Stormvinter et al., 2012]

Global variant selection

Effect of applied stress

Erich Scheil is one of the first researchers who investigates the effect of stress on the martensite

formation in 1932 [Scheil, 1932]. His experiments indicate that applied tensile stress assists

the transformation and increases the martensitic start temperature. Later, in 1953, Patel

and Cohen proposed a criterion for quantifying the effect [Patel and Cohen, 1953]. This

criterion is based on the interaction energy U between the shape strain associated with the
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transformation and the applied stress. In the original version, this criterion is computed by

decomposing the stress in a shear component τ parallel to the habit plane and a normal

component σ perpendicular to the habit plane. The interaction is expressed as the sum of the

product of the normal component σ with the dilatation δ associated with the transformation

and the product of the resolved shear τ with the transformation shear s:

U = τs +σδ (2.2)

The interaction energy of Patel and Cohen can also be seen as the work W of the transformation

strain in the applied stress field. This computation can be generalized for any transformation

strain F and applied stress tensor Σ by using the inner product of the two matrices:

W = (F − I ) :Σ= tr ((F − I )ΣT) (2.3)

where I is the identity matrix. Once accepted as an appropriate way of quantifying the effect

of stress on the transformation, the Patel and Cohen criterion has then been naturally used to

study variant selection [Higo et al., 1974, Gautier et al., 1989]. Bhadeshia and co-workers in

particular, by publishing an important number of papers on that topic, made that criterion the

classical way to study variant selection in martensite [Kundu and Bhadeshia, 2007, Abreu et al.,

2009]. Eventually, they claimed that computing such criterion with the shape strain associated

with the transformation is the only proper way to study the variant selection phenomenon

[Bhadeshia et al., 2008]. In the majority of the variant selection studies, the shape strain is

determined by the PTMC predictions.

Past and more recent experiments however suggest that the Patel and Cohen criterion is

not always appropriate. Kato and Mori in 1976 [Kato and Mori, 1976] and later Mishiro in

2013 [Mishiro et al., 2013] clearly noted that the work of the shape strain predicted by the

PTMC does not govern the variant selection. According to their results the work of the lattice

strain RB or simply the Bain strain B better accounts for the selection. Similar results were

also reported by Jesser and Olsen in their study on the effect of stress on the martensitic

transformation in thin iron films [Olsen and Jesser, 1971].

Effect of prior austenite deformation

Because of its major implication in the industrial process of steels, the effect of the prior plastic

deformation of the austenite on the variant selection has been the topic of numerous studies.

Kundu et al. proposed to model the variant selection using the same type of approach as the

one used for the variant selection due to an applied stress [Kundu, 2009]. They computed

the Patel and Cohen criterion considering the residual stresses as the applied stress. Chiba et

al. performed experiments to study the effect of ausforming on the formation of lenticular

martensite. They observed a significant variant selection which could not be explained by the

Patel and Cohen criterion [Chiba et al., 2012]. They concluded that the selection was related to

the elongated morphology of the prior austenite grain. As a result of the ausforming process

the grain have an elongated shape and the variants that have their habit plane oriented parallel
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to the elongated direction are more prone to form as they cause less disturbance to the grain

boundary. Figure 2.9 gives a schematic illustration of the selection process.

Figure 2.9: Illustration of the variant selected in the model of Chiba et al.. Illustration from ref.
[Chiba et al., 2012]

Miyamoto et al. also relate the variant selection caused by ausforming to the deformed

microstructure of the austenite [Miyamoto et al., 2012]. As a results of the ausforming process,

microbands of dense dislocation walls are formed in the austenite. The microbands appear on

the primary and the secondary slip systems. The variant selection analysis indicates that the

variants that were preferentially formed were those whose habit plane was relatively parallel to

these two systems, hence parallel to the microbands of the prior austenite grain. Slip system

activity on the austenite is also mentioned by other authors as an influencing factor for variant

selection, even if not explicitly associated to microstructural features. In the successive models

of Jonas and coworkers, each variant is associated with a given slip system, and the activity of

the system determines the variants selection [Butrón-Guillén et al., 1997, Sum and Jonas, 1999].

In these models, additional selection rules are also applied. As an example, the work of the

Bain strain in the residual stress field is considered. This work has to be positive to allow the

growth of the variants. More recently, Tomida proposed a very comprehensive study of variant

selection in textured in steels [Tomida, 2018]. He compared the different models available

in the literature and concluded that the models are "incapable of quantitatively or even

qualitatively predicting the transformation textures of α’ in hot-rolled steels" [Tomida, 2018].

As a consequence, he proposes a variant selection mechanism based on the consideration of

the elastic anisotropy of austenite matrix, which favours the variant exhibiting a low elastic

energy and satisfying the so-called double Kurdjumov-Sachs relation. This relation, presented

by the same author in a previous paper [Tomida et al., 2013], considers that martensite variants

tend to form in Kurdjumov-Sachs, or close Kurdjumov-Sachs orientation relationship with the

parent grain, but also with the neighboring parents grains.

If a common consent exists in the modelling of the variant selection caused by applied stress

by using a criterion based on the work of the transformation strain in the applied stress field -

even though the choice of the transformation strain is a topic of debate-, it seems that there is

no such agreement for the modelling of the effect of prior deformation on variant selection.

Additionally, it appears that there is no unified vision of the variant selection caused by applied

stress and by prior deformation.
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3 Scope of the thesis

Objectives

The state of the art on the variant selection models presented in the previous chapter indicates

that there is no unique model accounting for all the reported cases of variant selection. The

Patel and Cohen criterion [Patel and Cohen, 1953] computed on the basis of PTMC predictions,

even though considered as the classical model, happens to fail in predicting the phenomenon.

Other models are proposed, but they lack generality or physical basis. In addition, the PTMC

which is the pillar of the majority of the variant selection models is phenomenological and as

such it could be a reason for preventing a comprehensive understanding of the phenomenon.

The objective of the thesis is to investigate variant selection for various types of martensite

in order to evidence the rules that govern the phenomenon and attempt to offering a more

unified vision of it.

Methods

The variant selection is studied in different types of martensite: surface martensite, {225}γ
plate, {557}γ lath martensite and {259}γ lenticular martensite. The variant selection is induced

either by an external applied stress or by a prior deformation and it is characterized by using

EBSD measurements. Two transformations models are considered in this work. The PTMC

model as it is undoubtedly the most commonly accepted model of the transformation, and

the continuous FCC-BCC model proposed by Cayron [Cayron, 2015].
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Outline

This thesis is written under the form of a compilation of articles. Several of these articles

are already published and others have been submitted to journals. Unpublished works are

also presented in article form. To each article corresponds a chapter. In addition, a brief

presentation of the mathematics used in this thesis is proposed. The overview of the different

chapters composing this thesis is presented here.

• Chapter 4 offers an overview of the mathematical framework used in this thesis. Mathe-

matical definitions of the different crystallographic features associated with the marten-

sitic transformation are proposed.

• Chapters 5, 6 and 7 focus on the study of the habit plane accommodation in marten-

sitic steels. Chapters 5 and 7 explain the habit plane accommodation by local variant

selection. Chapter 5 demonstrates that the equibalanced combination of twin-related

variants of the FCC-BCC continuous distortion keeps the {225}γ globally invariant. It

further shows that for that particular habit plane the PTMC model and the continuous

model are equivalent. In chapter 7, a careful characterization of the crystallography

of the {557}γ lath martensite is presented. A model based on the coupling of low-

misoriented variants forming bifoliated blocs is proposed. This morphology allows a

good accommodation of the lath on a {557}γ, as the deformation associated with it offers

a good angular compatibility with the surrounding blocs forming a packet. In Chapter 6,

an alternative way of accommodating the continuous FCC-BCC distortion on a {225}γ
without considering twin-related variants coupling is proposed. Using the Frank-Bilby

equation, we show that a set of screw dislocations allows for the accommodation of the

habit plane.

• Chapters 8 and 9 present the study of variant selection in surface martensite. In chapter

8, a criterion to model the observed variant selection is proposed. On this basis, different

transformation models are compared. In chapter 9, the particular chevron morphology

observed on the surface martensite produced on annealed samples is studied. We show

that the symmetry of the morphology is related to the variant selection phenomenon.

• Chapter 10 offers a study of the effect of 4-point bending on the variant selection in

{259}γ lenticular martensite formed in a Fe-Ni-C alloy. A significant variant selection

is observed which cannot be accounted by the classical PTMC model. An empirical

crystallographic rule is proposed to model the selection.

• Chapter 11 proposes an investigation of the effect of tensile deformation on variant

selection in low and high carbon steels. The selection is studied by computing the

work of the deformation associated with the transformation in the applied stress field.

It appears that the deformation that needs to be considered essentially depends on

the strain accommodation process. Actually, our study suggests that the deformation
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which matters is the result of appropriate combinations of lattice distortions of different

variants.

• Chapter 12 consists in a general discussion on the different aspects studied in this

thesis. The first part of this discussion is dedicated to the comparison of the different

crystallographic models used in this thesis, and the second part proposes a global view

of our results on variant selection in different martensitic steels.

• Chapter 13 concludes this thesis work and presents a few perspectives on the variant

selection topic.

The supplementary materials accompanying the different publications are available in the

Appendices A-C of the thesis.
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4 Mathematical framework

Conventions and notations

The mathematical notations and conventions used in this thesis are presented below. The

vectors are column vectors and are written in small bold letters. The matrices are written in

bold capital letters. A vector v is transformed by a matrix M as follows:

v ′ = M v (4.1)

The study of phase transformations implies the use of different bases. When the basis in which

the elements are expressed is not clear, a subscript is added on the vector or on the matrix. A

vector v and a matrix M expressed in a basis B1 are written v/B1 and M/B1 , respectively.

The identity matrix is noted I .

Bases

For an appropriate description of phase transformations, one should consider at least as many

bases as the number of different crystals involved in the transformation. In the FCC-BCC

transformation associated with the Kurdjumov-Sachs OR, there are 24 distinct α crystals.

Therefore at least 25 basis are needed: one for the parent γ phase and 24 for the α phase.

The parent basis Bγ is the orthonormal crystallographic basis formed by the vectors [100]γ,

[010]γ and [001]γ. There are in addition 24 orthonormal daughter bases Bαi , respectively

formed by the [100]αi , [010]αi and [001]αi .

Change of basis and coordinates transformation matrices

The coordinate-transformation matrix between two bases B1 and B2 is noted T = [B1 →B2]

and is defined such that its columns are the vectors of the basis B2 = {u; v ; w } expressed in
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the basis B1:

u/B1 =

 a

b

c

 v/B1 =

 d

e

f

 w/B1 =

 g

h

i

 (4.2)

One has,

T = [B1 →B2] =


a d g

b e h

c f i

 ; [B2 →B1] = [B1 →B2]−1 (4.3)

The vector v and the matrix M expressed in B1, noted v/B1 and M/B1 are, then, respectively

expressed in B2 as follows:

v/B2 = [B2 →B1]v/B1 = T −1v/B1 (4.4)

M/B2 = [B2 →B1]M/B1 [B1 →B2] = T −1M/B1 T (4.5)

It should be mentioned that coordinates transformation matrices are describing passive

transformations: A vector is not moved by the coordinates transformations matrix T , it is

simply expressed in a different basis from the initial one. Let’s consider a vector v/B1 expressed

originally in the basis B1. This vector can be expressed in any other basis B2 by using the

coordinates transformation matrix T −1 = [B2 →B1] as presented in equation 4.4. During this

operation, the vector v remains unchanged such that v/B1 and v/B2 are the same vectors, but

they are simply expressed in different bases. A passive matrix cannot completely describe

a phase transformation, active matrices that are actually distorting the vectors are needed.

Distortion matrices which are presented in detail below are such matrices.

Transformation-related matrices

Distortion matrices

The distortion matrix F is the primary measure of the transformation. It describes the mech-

anism of the transformation from a parent phase γ to a daughter phases α. The distortion

is defined such that any crystallographic direction u/Bγ = (ux ,uy ,uz ) of the parent phase is

transformed in u′′′
/Bγ = (u′

x ,u′
y ,u′

z ) according to the following equation:

u′′′ = F u (4.6)

The distortion F is generally called deformation gradient in classical metallurgical books. This

matrix is defined in the parent phase basis Bγ.
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Distortion F can describe a complete transformation, or it can describe partial transformation

if one uses a continuous description of the transformation. In that latter case, the distor-

tion matrix varies as function of a leading parameter β, F = F (β). This leading parameter is

bounded by two extremal values βi and β f . When the parameter equals βi , the austenite

remains untransformed, and F (βi ) = I . The transformation is complete when the parameter

reaches the value β f . The matrix describing the complete transformation is thus F (β f ). In

between, there exists an infinity of matrices, each of them describing a step in the transforma-

tion mechanism.

The distortion F allows to compute the image of directions upon transformation. Beside the

transformation of directions, it can also be interesting to see how planes are transformed. To

measure this transformation one uses the matrix F∗ which is the distortion matrix F expressed

in the reciprocal lattice. F∗ transforms plane of normal n in planes of normal m = F∗n.

F∗ and F are linked by the following relationship1:

F∗ = F−T (4.7)

The matrix F∗ is defined in the same basis as the one of F , namely Bγ.

In continuum mechanics, one generally takes the hypothesis that the reverse transformation

is given by the inverse of the deformation gradient F−1. However, it is worth noting that with

distortion matrices, as defined here, the reverse transformation is not simply the inverse of

the transformation F−1. The reason for that is related to the way the distortion matrices are

defined. Indeed, a distortion matrix acts on the parent crystal and deforms it. The original

parent basis becomes distorted, but it is still not the crystallographic basis of the daughter

product. The inverse of the distortion matrix F−1 therefore transforms the aforementioned

distorted basis in the parent basis, which is not the same as transforming the daughter basis

in a distorted basis that represents the parent basis, as would be the distortion matrix of the

reverse transformation.

Parent-daughter coordinates transformation matrix

The distortion F describes how the directions of the parent lattice change during the transfor-

mation but gives no information on the crystallography of the daughter phase. To know the

coordinates of the daughter phase expressed in the parent phase basis, or vice versa, one uses

coordinates transformation matrices T as presented in section 4.

Superscrits are generally used to indicate the basis considered. T γ→α = [Bγ → Bα] and

its inverse (T γ→α)−1 = [Bα → Bγ] = T α→γ allow to pass from the coordinate system of the

daughter phase (α) to the parent phase (γ), or vice versa, respectively.

1An elegant demonstration of this relationship can be found in Ref. [Bowles and Mackenzie, 1954a]:
Any direction x is transformed by F , such that y = F x . We remind here that the vectors x and y are column vectors.
If x belongs to a plane of normal n, we have nTx = 0. Similarly, y belongs to a transformed plane of normal m,
such that mT y = 0. We can write: mT y = nTx . By replacing y we obtain, mTF x = nTx . This is true for any x . We
can thus rewrite: mT = nTF−1 → m = F−Tn. ä
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Correspondence matrix

The correspondence matrix C is used to know what becomes each direction of the parent

phase in the daughter phase. Similarly to the coordinates transformation matrix T , the corre-

spondence matrix is noted with appropriate superscript. Cα→γ gives, for each parent crystal

direction what it becomes in the daughter phase. Correspondence matrices always exhibit

rational numbers.

The three transformation-related matrices presented above, the distortion matrix F , the co-

ordinates transformation matrix T and the correspondence matrix C , satisfy the following

equality:

Cα→γ = T α→γF (4.8)

Variants of the transformation

To be rigorous when describing phase transformations, it is important to distinguish the

distortion variants, the orientation variants and the correspondence variants. The first are

related to the orientation of the daughter crystals and the second refers to the mechanism of

transformation that creates the daughter crystals. The correspondence variants are based on

the correspondence matrix. Contrarily to the distortion and the orientation variants they are

not explicitly described here, as they are not directly used in this thesis. The mathematical

definitions for the different variants of the transformation proposed below are due to Cayron

[Cayron, 2006, Cayron, 2018].

Distortion variants

The distortion variant describes the way in which the parent lattice needs to be distorted to

produce the daughter phase. Distortion variants are defined by their proper distortion matrix

Fαi .

Fαi = gi Fα1 (gi )−1 (4.9)

Here, the distortion associated with the martensite crystal α1 is arbitrarily considered as

reference. The gi are symmetry of the point group of austenite Gγ. We mention here that even

if noted with a small letter, the gi are 3x3 matrices. As each gi does not necessarily create a

new distortion, there might be less distortion variants than symmetries in the point group.

The subgroup

H
γ

F = {gi ∈Gγ, gi Fα1 (gi )−1 = Fα1 } (4.10)
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contains the symmetry elements that leave the distortion Fα1 invariant. The number of

different distortions, namely the number of distortion variants is given by:

Nα
F = Gγ

H
γ

F

(4.11)

Orientation variants

The orientation variant tells how the daughter crystal αi is oriented with respect to its parent

phase, but it does not tell anything about the transformation mechanism. Orientation variants

are defined by their proper coordinates transformation matrix T γ→αi and thus only depend

on the orientation relationship:

T γ→αi = gi T γ→α1 (4.12)

The gi are not directly those of the point group of austenite Gγ, but depend on both the

point group of the austenite Gγ and the point group of the martensite Gα. In particular, the

symmetries common to both point groups have to be determined. To do so it is necessary to

express the symmetries of the martensite in the basis of the austenite. The intersection group

H
γ

T is thus defined as:

H
γ

T =Gγ∩T γ→α1Gα(T γ→α1 )−1 (4.13)

The gi that create new orientation variants have to be chosen in the cosets giH
γ

T that parti-

tioned Gγ. All symmetries within the same coset lead to the same orientation. The number of

distinct orientation variants is given by:

Nα
T = Gγ

H
γ

T

(4.14)

It is worth mentioning that different distortion variants could lead to the same orientation

variant, this is typically the case in the FCC-HCP system, where three different distortions of the

FCC lattice give the same final HCP lattice orientation. In the FCC-BCC transformation studied

in this thesis, there is the same number of orientation and distortion variants, independently

of the orientation relationship considered.
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Measure of the deformation

In this work, the measure of the deformation associated with the phase transformation is

based on the measure of the displacements of each material point from its undeformed, initial

position x to its transformed position x ′. These displacements are computed by using the

displacement gradient H [Curnier, 2005]. The matrix H is simply defined as follows:

x ′−x = F x −x = (F − I )x → H = F −−− I (4.15)

Considering the displacement u = x ′−x , the matrix H can also be seen as H =∇∇∇u.

Features of the transformation

Volume change of the transformation

The volume change accompanying the phase transformation can be directly computed from

the distortion matrix F . The ratio between an original volume element Vγ and the resulting

transformed volume element Vα is given by:

Vα = det(F )Vγ (4.16)

Invariant directions

Two conditions are needed for a direction to be invariant: first, it has to be undistorted,

meaning that the transformed direction and the parent direction are collinear, and second

the length of any vector along this direction should not change upon transformation. It is in

the properties of the transformation matrix F that such features have to be found. The first

condition implies that the candidates v for the invariant direction have to satisfy the following

equality:

F v =λv (4.17)

This is an eigenvalue problem where the eigenvalues express the change of length of the

eigenvector v during transformation. If an eigenvector is associated with an eigenvalue λ

equal to 1, it means that the second condition is satisfied and the direction is invariant. If

λ is different from 1 the direction remains unrotated upon transformation, but is not fully

invariant as the direction is stretched of the value λ. The existence of an invariant line is a

crucial point in the PTMC theory, and the purpose of the rotation R that multiplies the Bain

strain B is to guarantee that the lattice strain RB keeps a line invariant. This invariant line

is a necessary condition to achieve a macroscopic shape deformation that has an invariant

plane. Generally in the PTMC, unless the orientation relationship is exactly Kurdjumov-Sachs

and the lattice parameters are in hard-sphere ratio, the invariant line is not crystallographic.

In that case, the invariant line is the close-packed direction of the austenite involved in the
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orientation relationship [11̄0]γ ∥ [111]α. The continuous FCC-BCC distortion model assumes

a Kurdjumov-Sachs orientation relationship and lattice parameters in hard-sphere ratio; in

that case also the invariant line is [11̄0]γ ∥ [111]α.

Untilted planes as potential habit planes

A plane is said untilted when the normal to the plane remains unrotated upon transformation.

An invariant plane is necessarily untilted, however an untilted plane is not necessarily invariant.

For example, an in-plane distortion will left the normal unrotated, and thus the plane untilted,

but the plane cannot be considered as invariant because of the in-plane distortion. In our

vision as well as in Jaswon and Wheeler’one [Jaswon and Wheeler, 1948], investigating untilted

planes is a good way of studying the habit plane phenomenon in martensitic steels. In the

PTMC, the habit plane must be completely invariant, and being only untilted is not considered

as a sufficient condition.

Looking for untilted planes of any transformation is similar to searching invariant directions.

The directions are transformed by the distortion F expressed in the direct lattice. Similarily,

the planes are transformed by the matrix F∗, which is the matrix of distortion F expressed in

the reciprocal lattice. For the untilted planes, the following eigenvalue problem to be solved is:

F∗n =λn (4.18)

It is important to note here that, contrarily to the invariant direction calculation, an eigenvalue

of 1 does not imply that the plane is invariant. Actually, the eigenvalues of F∗ give an indication

on the change of spacing between the atomic planes during transformation. The study of the

distortion matrix in the reciprocal lattice is not sufficient to find the invariant planes of the

transformation.

Coherent interface

Martensite-martensite interface

Some conditions on the distortion matrices are needed to allow for the existence of a coherent

interface between two daughter crystals upon transformation. These conditions are illustrated

in figure 4.1. Let us consider a parent crystalΩ that will transform into two distinct domains

Ω′
1 andΩ′

2 by two different distortions F1 and F2, respectively. The plane Iγ is the plane in

the parent phase that corresponds to the interface Iα, between the domainsΩ′
1 andΩ′

2 after

transformation. To ensure a coherent interface Iα, all the vectors x belonging to the interface

Iγ have to be transformed the same way by the respective distortion matrices F1 and F2. We

thus need F1x = F2x ,∀ x ∈Iγ. Mathematically it consists in finding ker(F1−F2). To guarantee

a coherent interface, exactly two non-collinear vectors x1 and x2 have to belong the kernel.

This condition is equivalent to the so-called kinematic compatibility [Bhattacharya, 2003],
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Chapter 4. Mathematical framework

Figure 4.1: Condition of coherence at an interface between two transformed domains

also called the Hadamard jump condition [Ball and James, 1987].

Additionally, it can be shown that if two distortion variants are such that there exists two

non-collinear vectors x1 and x2 in the kernel, any linear combination of the two distortions

preserves the volume change of the transformation:

det(λF1 + (1−λ)F2) = detF1 = detF2 (4.19)

Proof: This proof is not novel, as its constitutive elements can be found in the litterature,

for exemple in the work of Muhlemann and Koumatos [Muehlemann and Koumatos, 2015].

However, we could not find the proof in its complete form, namely starting from a condition

on the dimension of the kernel, as defined above, and concluding with the formal volume

preservation, as stated in equation 4.19. We therefore propose to present it here.

The condition for a coherent interface between two distortion variants F1 and F2 as defined

above specifies that it should exist two non-collinear vectors in ker(F1 −F2):

dim(ker (F1 −F2)) = 2 (4.20)

We have also that F1 −F2 is a linear map in a three dimensional space. The rank theorem thus

states:

rank(F1 −F2)+ker(F1 −F2) = 3 (4.21)

It implies that the rank of F1−F2 is equal to one. The matrices F1 and F2 are said to be rank-one

connected. Expressed in such terms, the criterion for a coherent interface is known as the

Hadamard jump condition [Ball and James, 1987]. A rank-one matrix can be written as an

outer product of two vectors, such that:

F1 −F2 = anT (4.22)

where a and n are two column vectors.

34



As a consequence, we can write:

F1 −F2 = anT → F1 = F2 +anT (4.23)

By the factorisation of F2, the sum is transformed in a multiplication:

F1 = F2(I +F−1
2 anT) (4.24)

The volume change associated with different elements in equation 4.24 can be computed. The

determinant of the product of two matrices is the product of the determinant of each matrix

separately. So, we have:

det(F1) = det(F2(I +F−1
2 anT)) = det(F2) ·det(I +F−1

2 anT) (4.25)

As det(F1) = det(F2),

det(I +F−1
2 anT) = 1 (4.26)

The matrix determinant lemma states that det(I +bmT) = 1+bTm for any column vectors b

and m. This lemma being applied to equation 4.26, we have,

det(I +F−1
2 anT) = 1+ (F−1

2 a)Tn = 1 (4.27)

As a consequence (F−1
2 a)Tn = 0. Geometrically, it means that the vectors F−1

2 a and n are

orthogonal. From equation 4.24, the linear combination of F1 and F2 can be written as follows:

λF1 + (1−λ)F2 =λF2(I +F−1
2 anT)+ (1−λ)F2 = F2(I +λF−1

2 anT) (4.28)

The determinant can then be computed:

det(λF1 + (1−λ)F2) = det(F2) ·det(I +λF−1
2 anT) (4.29)

As seen before, F−1
2 a and n are orthogonal. Multiplying the vector F−1

2 a by λ will not change

its direction, and thus λ(F−1
2 a)Tn = 0. Therefore,

det(λF1 + (1−λ)F2) = det(F2) ä (4.30)

The volume change is thus preserved for any linear combination of F1 and F2. It is important

to note here that not all pairs of variant satisfy the Hadamard jump condition. Therefore, one

should be carful when combining variants and verify that the average transformation leads to

the same volume change as each individual variant. As an additional comment, it is worth

noting that the equation 4.28 evidences the equivalence between the Bowles and Mackenzie

version of the PTMC based on matrix multiplication [Bowles and Mackenzie, 1954a] and the

35



Chapter 4. Mathematical framework

Lieberman, Wechsler and Read version based on linear combination of lattice strain variants

[Wechsler and Read, 1953]. Indeed, Liebermann Wechsler and Read consider distortions F

that are lattice strains which can be decompose into an RB product. Additionally, λF−1
2 a and

n being orthogonal, the matrix I +λF−1
2 anT is nothing else than a shear parallel to a plane of

normal n. Actually, it is exactly the lattice invariant shear Q−1 of Bowles and Mackenzie.

Habit plane as a coherent interface

When discussing the coherent interface as described above, the interface considered is a

martensite-martensite interface. However, another important interface to study is the habit

plane, the martensite-austenite interface. In our approach and as described in the previous

section an untilted plane is a sufficient criterion for the existence of habit planes in steels.

However, from a PTMC stand point it is not enough and the shape deformation must admit a

completely invariant plane. In the Liebermann, Wechsler and Read PTMC, an invariant plane

strain is obtained by combining two variants, called twins in the original paper. The distortions

of the twins F1 and F2 satisfy the Hadamard jump condition. They show that is is possible to

combine the two distortions such that the average deformation is exactly an invariant plane

strain: λF1 + (1−λ)F2 = IPS. Liebermann, Wechsler and Read further showed that for steels

the volume fraction λ allowing an invariant plane can take two different values λ and 1−λ.

These values depend on the lattice parameter of the two phases and the tetragonality of the

martensite [Wechsler and Read, 1953]. In the Bowles and Mackenzie version, the habit plane

is made invariant by the action of the lattice invariant shear and the two different volume

fraction of twins are deduced from the shear amplitude.

Supercompatibility and cofactor condition. Ball and James proposed a criterion for a su-

percompatibility of the austenite-twinned martensite interface [Ball and James, 1987]. This

criterion is called the cofactor condition. It can be seen as a extension of the invariant plane

strain criterion stated by Liebermann, Wechsler and Read. Satisfying the cofactor condition

implies that an IPS is obtained by any ratio λ of the distortions F1 and F2. The mathematical

details linked to the exact expression of the cofactor condition will not be presented here as it

is beyond the scope of this mathematical introduction. We thus redirect the interested reader

to the work of Chen et al. [Chen et al., 2013]. We nonetheless mention that up to date there

is no known material satisfying this condition, even though particular shape memory alloys

are "close" to it [Chluba et al., 2015]. Following the success of the application of the cofactor

condition to real materials, della Porta et al. proposed a mathematical measure to evaluate

"how closely a material satisfies the cofactor condition" allowing thus to compare different

materials [Della Porta, 2019].
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Effect of applied stress on variant selection

A classical way of quantifying the effect of applied stress on variant selection consists in

computing the Patel and Cohen criterion [Patel and Cohen, 1953], or its generalization as

presented in the state of the art on variant selection in chapter 2, equation 2.3. Here we would

like to briefly explain why such a criterion is applicable for the study of variant selection,

by using thermodynamic calculations. We will also propose an illustration of this criterion

through a simple mechanical model.

At a given pressure p and temperature T , the variation of the Gibbs free energy is given by:

dG = dU + pdV −T dS, where the variation in internal energy dU is equal to the sum of

the work δW and heat δQ exchanged by the system. The variation in Gibbs free energy can

be expressed for each variant αi of the transformation: dGαi = dUαi + pdV αi −T dSαi . A

thermodynamic system always tends to minimize its Gibbs free energy, such that among all

the variants, the variant α j having dGα j < dGαi , i 6= j , is the most favoured. The contributions

of pdV and T dS do not vary as function of the variant formed. Indeed, the change of volume

as well as the change in entropy are the same for all variants. As a consequence, the only

contribution which can modify the value of the dGαi is the variation of the internal energy

dUαi = δW αi +δQαi . The term δQαi corresponds to the heat exchanged by the system. The

heat exchanged is the same for all variants. On the contrary, the value of the work δW αi can

vary as a function of the variant formed. It is typically the case when an external force is

applied to the system. To explain the variation of work from one variant to another caused by

the application of the force, we propose to split the term of work as follows:

δW =−δWinterface −δWdef −δWσ (4.31)

All the contributions have a negative sign as they represent the work performed by the system

and not the work received by the system. The term δWinterface is the interfacial energy associ-

ated with the transformation. This quantity is a function of the geometry of the martensite

nuclei considered and the specific interfacial free energy. For a given nucleus dimension, this

quantity is the same for all variants. The contribution δWdef defines the work performed by

the nuclei of martensite in order to deform the surrounding austenite. For symmetry reasons,

this quantity is identical for all variants. The last part of the total work δW is the contribution

δWσ associated with the applied force. This quantity describes the work of the deformation

associated with the transformation in the applied stress field. It is precisely this contribution

that changes as a function of the variant, and causes variant selection. The work of each

variant δW αi
σ can be expressed in terms of the displacement gradient Hαi associated with

each variant and the applied stress field tensor Σ, as follows:

δW αi
σ =Σ : Hαi (4.32)

The value δW αi
σ thus directly depends on the variant considered. As stated before, the energet-

ically most favoured variant is the one that has dGα j < dGαi , which is equivalent as searching

−δW
α j
σ <−δW αi

σ , as all the other contributions to the Gibbs free energy are identical for all

37



Chapter 4. Mathematical framework

variants. The variant selection is thus based on the maximization of the work δW αi
σ , as it is

commonly considered in the literature, for instance in the Patel and Cohen criterion [Patel

and Cohen, 1953].

An illustration of this criterion is proposed in figure 4.2, by using a simple mechanical model.

On figure 4.2A we represented a square of austenite (in blue) loaded in compression by the

Figure 4.2: A: Inital configuration. An austenite square (in blue) is submitted to an applied
force represented by the mass M. B: Transformed configuration where the austenite square
has transformed in the rectangular variant 1 (in red). C: Transformed configuration where the
austenite square has transformed in the rectangular variant 2 (in red).

mass M, placed on its top. The mass is submitted to the gravity g . We consider that the

system is at the temperature of transformation Ms and that a mechanical instability can

trigger the phase transformation. The transformation considered in this example is a 2d Bain

transformation leading to two rectangular variants illustrated in red in figure 4.2B and 4.2C.

The deformation of variant 1 is a compression along the y-direction and an elongation along

the x-direction. Conversely, the deformation associated with variant 2 is an elongation along

the y-direction and a compression along the x-direction. Here, the variant selection can

be seen as a minimization of the potential energy Ep associated with the mass M in each

configuration. Considering an initial configuration with a potential energy E 0
p = 0, we have

Eα1
p =−M g h for variant 1, and for variant 2, we have Eα2

p = M g h. The variation of the potential

energy being equal to the work of the external conservative forces: δW = −dE p. We thus

have δW α1 = M g h and δW α2 =−M g h, such that the variant exhibiting the highest work is

associated with the lower energy configuration. In this simple example, variant 1 is more

favoured than variant 2.
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Chapter 5. {225}γ habit planes in martensitic steels: from the PTMC to a continuous
model

Abstract
Fine twinned microstructures with {225}γ habit planes are commonly observed in martensitic

steels. The present study shows that an equibalanced combination of twin-related variants

associated with the Kurdjumov-Sachs orientation relationship is equivalent to the Bowles and

Mackenzie’s version of the PTMC for this specific {225}γ case. The distortion associated with the

Kurdjumov-Sachs orientation relationship results from a continuous modeling of the FCC-BCC

transformation. Thus, for the first time, an atomic path can be associated with the PTMC.

Introduction

Martensitic transformation in steels has been widely studied for the last century and remains

a major field of research. This solid-phase transformation exhibits some particular crystallo-

graphic features such as the presence of habit planes between austenite (γ) and martensite

(α), established orientation relationships between the two phases and a specific shape change.

Based on these characteristics, various models have been developed in order to describe and

understand the transformation. In the mid 50’s, two independent groups, Bowles and Macken-

zie [1], and Weschler, Liebermann and Read [2] developed a similar approach to explain the

main features of the transformation. These two equivalent models gave rise to one of the

most famous theory of phase transformation: the Phenomenlogical Theory of Martensitic

Crystallography (PTMC).

Among all the observed habit planes of martensite, the {225}γ family is one of the most studied,

because of the difficulties to be explained by the PTMC. The {225}γ habit planes are visible

in different martensite morphologies, such as thin plate martensite and butterfly martensite.

Martensite morphologies with {225}γ habit planes have a common characteristic: an internal

inhomogeneous structure showing a high density of twins.

The first model that offers an explanation for {225}γ habit planes is due to Jaswon and Wheeler

in 1948 [3]. They proposed a transformation mechanism where such a family of plane remains

untilted during the transformation, but not fully invariant. Based on the same atomic cor-

respondence between martensite and austenite, the Bowles and Mackenzie’s version of the

PTMC is the first model that can account for the invariant {225}γ habit planes. They were

however criticized because an additional dilatation parameter was needed in the model. Many

experiments have been performed in order to observe and measure this dilatation. They all

concluded that this parameter do not differ substantially from unity [4] [5] [6]. The Bowles

and Mackenzie’s explanation for these habit planes was abandoned and almost forgotten.

Several other models have then been developed avoiding the use of the dilatation parameter

[7] [8] [9] [10]. The current one, called the double shear theory, was proposed independently

by Acton and Bevis (1969) [9] and Ross and Crocker (1970) [10]. In this theory, a second lattice

invariant shear, crystallographically independent from the first one, is added to the original

PTMC theory. However, as wisely observed by Dunne and Wayman [11]: "It appears that the

refined and indeed elegant generalization of the original theory, wherein a single shear is

replaced by two, leads to improved but not completely satisfactory prediction for the {225}γ
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case. It is further disappointing that the generalization, compared to the original theory,

imparts a complexity which provides no selection rules for the initial choice of shear elements.

The present theoretical situation is thus one of modus vivendi."

Starting from a priori completely different hypothesis than those of PTMC, Cayron recently

proposed a continuous model for the FCC-BCC transformation [12]. To derive the atomic

path, he assumed that the atoms behave as hard spheres and the final orientation relationship

is exactly Kurdjumov-Sachs. It turns out that he in fact rediscovered the Jaswon and Wheeler

distortion and proposes a continuous atomic path for it.

By investigating the properties of the distortion, the present paper shows that an appropriate

combination of twin-related variants of this model is exactly equivalent to the Bowles and

Mackenzie modeling of the {225}γ. It solves therefore, for this particular case, the question

of the atomic path that could not be given by the PTMC. The crystallographic features of the

{225}γ plate martensite, like the shape strain and the twinning system, are directly derived

from the distortion using simple linear algebra concepts and are in total agreement with the

Bowles and Mackenzie analysis.

Furthermore, an answer is proposed to an old open question raised by Jaswon and Wheeler in

the conclusion of their article, namely, "the reason for the choice of {225}γ habit in preference

to an octahedral habit, since both have been shown to satisfy the condition of undergoing no

directional change." [3].

Results

Distortion associated with the Kurdjumov-Sachs orientation relationship

Experimental observations show that the orientation relationship between austenite and

martensite is often found to be the Kurdjumov-Sachs relationship [13]:

(111)γ ∥ (11̄0)α ; [11̄0]γ ∥ [111]α (5.1)

Considering atoms as hard spheres, the FCC-BCC martensitic transformation according to

this particular orientation relationship can then be described by the total distortion matrix

[12] :

D =


p

6
18 +1

p
6

18 −
p

6
6 + 1

3p
6

18 − 1
3

p
6

18 + 2
3 −

p
6

6 + 1
3

−
p

6
9 + 1

3 −
p

6
9 + 1

3

p
6

3 + 1
3

 (5.2)

This matrix expressed according to the orientation relationship (5.1) is equivalent to the

matrix DK S
0 calculated in equation 32 of reference [12] that was associated with the following

equivalent orientation relationship: (1̄11)γ ∥ (1̄10)α and [110]γ ∥ [111]α. This matrix expresses

the total distortion, from the initial to the final state. The continuous analytical expression
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associated with this distortion is given in reference [12].

The FCC-BCC distortion D of equation (5.2) is not an invariant plane strain, but an invariant

line strain, as only the [1̄10]γ direction is undistorted during the transformation. By computing

the distortion matrix in the reciprocal lattice D∗ = D−T and extracting its eigenvectors, one

can show that there are two planes which are not tilted by the distortion: (111)γ and (11
p

6)γ =
(0.35,0.35,0.86)γ. The (111)γ plane is explicitly imposed to be untilted by the Kurdjumov-

Sachs orientation relationship (5.1). On the contrary, the second plane (11
p

6)γ is not explicitly

described by the Kurdjumov-Sachs orientation relationship and is of interest as it is oriented

at 0.5◦ from the well-known (225)γ habit planes.

Variants of the distortion associated with the Kurdjumov-Sachs orientation rela-
tionship

Due to the orientation relationship and the crystalline symmetries, there exist 24 variants

of Kurdjumov-Sachs. The distortion matrix Dαi relative to each variant αi is thus found

using the symmetry properties of the FCC-BCC transformation [14] [15]. In the present

paper, we arbitrarily consider that the distortion matrix D presented in equation (5.2) is the

distortion matrix relative to the first variant D = Dα1 . The absolute basis B
γ
0 for expressing

the transformation matrix is therefore equal to the basis relative to the first variant B
γ
0 =B

γ
1 .

By convention, if the basis in which the vectors and matrix are expressed is different from

the absolute basis B
γ
0 . This basis appears explicitly in the notation as a right-down index.

For example, a matrix M expressed in the αi crystal is written M/B
αi
0

. When the basis is the

absolute one B
γ
0 , the basis is not specified in the index.

The transformation matrix relative to all the 24 variants in the absolute basis B
γ
0 can be

computed by using an appropriate change of basis:

Dαi = [Bγ
0 →B

γ

i ]Dαi

/Bγ

i

[Bγ

i →B
γ
0 ] = gγ

i Dαi

/Bγ

i

(gγ

i )−1 i = 1,2...24 (5.3)

with gγ

i = [Bγ
0 →B

γ

i ] a symmetry matrix of austenite.

For each variant αi , one arbitrarily chooses one gγ

i in its coset gγ

i K γ, where K γ = Gγ ∩
Dγ→αGγ(Dγ→α)−1 and Gγ is the point group of the austenite [15]. It is worth mentioning

that in the particular case of FCC-BCC transformation, there is no distinction between orien-

tational and distortional variants.

Among these 24 variants, there are 12 different pairs of twin-related variants. The twin-related

variants of each pair have the particularity of sharing the same {111}γ plane and the same

< 110 >γ direction. This feature is illustrated in figure 5.1 for each particular {111}γ plane. 3D

representation of the crystallographic arrangements of the twin-related variants can be found

in the supplementary material 3 of reference [16].

In addition, it can be noted that the transformation matrix corresponding to each variant of
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Figure 5.1: Common {111} planes and <110> directions of twin-related variants

these pairs leaves the same plane {11
p

6}γ untilted. Table 5.1 summarizes the crystallographic

nature of the pairs, indicating which planes are untilted and which direction is undistorted

during the transformation. This table can also be read to identify the proper orientation

relationship for each variant, this orientation relationship being defined by the invariant

direction and the untitled plane of type {111}γ. The twin-related variants of each pair can be

Table 5.1: Crystallographic features of the FCC-BCC transformation of twin-related variants
Variants α1 α2 α4 α5 α7 α10 α11 α13 α16 α18 α19 α21

α3 α8 α9 α6 α14 α15 α12 α23 α17 α22 α20 α24

Pairs p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Invariant
direction [11̄0] [011̄] [1̄10] [1̄01] [011] [011̄] [101] [101] [1̄01] [011] [110] [110]

Untilted (111) (111) (111̄) (111) (111̄) (1̄11) (111̄) (1̄11) (11̄1) (11̄1) (1̄11) (11̄1)
planes (11

p
6) (

p
611) (1̄1̄

p
6) (1

p
61) (

p
611̄) (

p
61̄1̄) (1

p
61̄) (1̄

p
61) (1̄

p
61̄) (

p
61̄1) (1̄1

p
6) (11̄

p
6)

expressed in the same semi-eigenbasis B
γ
p j

for j = 1, ..,12 defined by the common < 110 >γ

invariant line, the normal to the common {11
p

6}γ untilted plane and the cross product of

these two vectors.

The terminology of semi-eigenbasis is used here in opposition to the classical eigenbasis.

Indeed as the distortion associated with the Kurdjumov-Sachs orientation relationship has

only one invariant line, it is not diagonalizable, and thus cannot be expressed in an eigenbasis

[12]. In the rest of the paper, the mathematical development will be performed explicitly only

for the pair p1 of variants α1 and α3, but the same calculation is applicable to all pairs p j . The

transformation matrices of the twin-related variants α1 and α3 expressed in their common

semi-eigenbasis are then:

Dα1

/Bγ
p1

=


1

p
3

6
−1
6

0 1 −
p

3
9

0 0 4
3

√
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3

 Dα3

/Bγ
p1

=
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1 −p3
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√
2
3

 (5.4)
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If expressed in their appropriate semi-eigenbasis B
γ
p j

, the distortion matrices of each of the

twin-related variants of every pairs p j are equal to the ones presented in equation (5.4).

The Kurdjumov-Sachs invariant plane strain

By inspection, it exists only one possibility to achieve an invariant plane strain (IPS) from a

linear combination of these two matrices, and it is a mixture with 1:1 volume ratio of each of

the twin-related variants,

D I PS
/Bγ

p1

= 1

2
Dα1

/Bγ
p1

+ 1

2
Dα3

/Bγ
p1

=


1 0 0

0 1 −
p

3
9

0 0 4
3

√
2
3

=


1 0 0

0 1 −s

0 0 1+δ

 (5.5)

This matrix shows that a fine combination of alternating twin-related variants can produce a

shape strain which is an IPS, having the {11
p

6}γ as invariant plane. The invariant plane of the

average distortion D I PS is disoriented by 0.5◦ from the {225}γ. The magnitude of the shape

shear is s =
p

3
9 ≈ 0.19 and the dilatation normal to the habit plane is δ= 4

3

√
2
3 −1 ≈ 0.089 =

+8.9%. It should be noted that for twin-related variants pairs, a linear combination satisfy the

volume conservation: det |Dα1 | = det |Dα3 | = det |D I PS |.

Interface between the twin-related variants

To complete the crystallographic study of the {225}γ habit planes one needs to verify the

geometrical compatibility of the transformation at the interface between the two twin-related

variants. In other words, it is necessary that the interface plane between each twin-related

variants is transformed in the same way by both variant. Mathematically, it consists in search-

ing two non-collinear vectors v ∈ {v I , v I I } such that for each of them [17] [18] , Dα1 v = Dα3 v .

This condition is equivalent to calculating the Kernel of Ap1 = Dα1 −Dα3 :

(Dα1 −Dα3 )v = Ap1 v = 0 ⇔ v ∈ K er (Ap1 ) (5.6)

The computation shows that two non-collinear vectors v p1

I and v p1

I I belong to the Kernel.

Together they define the interface plane between the two twin-related variants. The normal

np1 to this interface plane is simply found by calculating a cross-product, np1 = v p1

I × v p1

I I .

Such Kernel can be computed for each pair p j of twin-related variants.

It is usual to express the interface between the two variants in their own basis B
αi
0 . The

distortion of the planes, expressed in the αi basis B
αi
0 , is given by the correspondence matrix

for each i = 1,2, ..24 in the reciprocal lattice (Cαi→γ)∗. The interface plane between the twin-
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related variant is then:

n
p j

/B
αi
0

= (Cαi→γ)∗np j j = 1,2..12 i = 1,2..24 (5.7)

The results of the predicted interface between two twin-related variants are reported in table

5.2 for each pair p j of twins. Six different interfaces belonging to the {110}γ planes family have

been found. According to equation (5.7), they correspond to {112}α.

Table 5.2: Crystallographic features of the interface between twin-related variants
Variants α1 α2 α4 α5 α7 α10 α11 α13 α16 α18 α19 α21

α3 α8 α9 α6 α14 α15 α12 α23 α17 α22 α20 α24

Pairs p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Interface plane in B
γ
0 (1̄1̄0) (01̄1̄) (1̄1̄0) (101) (01̄1) (01̄1̄) (101̄) (101̄) (101) (01̄1) (1̄10) (1̄10)

in B
αi
0 (12̄1) (12̄1) (12̄1) (12̄1) (12̄1) (12̄1) (12̄1)) (12̄1) (12̄1) (12̄1) (12̄1) (12̄1)

Equivalence with Bowles & Mackenzie model

In the Bowles and Mackenzie’s paper The crystallography of martensite transformations III [1],

the shape deformation associated with their prediction is expressed in the basis B
γ
0 as follows,

P = I +md p ′′′ (5.8)

where d =− 1
2
p

3
[1,1,−2] and p ′′′ = (1,1,

p
6) and m = 2

3 (
p

3−p
2).

This transformation matrix can be expressed in its proper semi-eigenbasis in the same manner

that has been used previously for the twin-related variant. It takes a form that is exactly the

same as the Kurdjumov-Sachs invariant plane strain D I PS produced by the composition of

twin-related variants.

P =


1 0 0

0 1 −
p

3
9

0 0 4
3

√
2
3

= D I PS (5.9)

Consequently, the Bowles and Mackenzie’s version of the PTMC allows the prediction of

the same {11
p

6}γ planes as the ones that are shown to stay invariant by an appropriate

combination of twin-related variants.
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Discussion

It has been shown that an heterogenous structure of infinitely small twin-related variants in

equal proportion leaves a plane completely invariant. This plane is a {11
p

6}γ plane disoriented

from the well-known {225}γ plane by only 0.5◦. The macroscopic shape deformation resulting

from such a combination of variants, each of these variants undergoing an invariant line strain,

is exactly an invariant plane strain.

Figure 5.2 schematically represents a (225)γ thin plate of martensite according to the present

results.

1 3 1 3 1α

γ

λθ = 25◦ λ

γ

(225)γ (7̄43)α||

(12̄1)α

||(111)γ (1̄10)α

Figure 5.2: Schematic representation of (225)γ thin plate of martensite. Cross-sectional view
normal to [11̄0]γ ∥ [111]α.

The thin plate martensite showing a high density of alternate twin-related variants α1 and

α3 is represented surrounded by the austenitic matrix. The crystallographic orientations of

the γ and α phases are defined thanks to the dashed lines representing particular planes.

The trace of the (225)γ predicted habit plane is also shown. This plane corresponds to the

(7̄43)α in the martensite phase. In the present study, all twelve habit planes predicted by the

Kurdjumov-Sachs invariant plane strain D I PS are the {225}γ planes at 25◦ from the {111}γ
planes involved in the Kurdjumov-Sachs relationship. This particular feature is in full agree-

ment with the experimental studies of Shimizu, Oka and Wayman on Fe-Cr-C alloy [19]. Each

pair p j of twin-related variants is then associated unequivocally with one of theses twelve

{225}γ habit planes. The proportion λ of each of the twin-related variants α1 and α3 that is

needed to produce the invariant plane strain is unique and the ratio is found to be 1:1. This

result corresponds to the value experimentally deduced by Kelly and Nutting [20] when they

studied the martensitic transformation in carbon steels. It is also the same proportion that is

considered in the Bowles and Mackenzie’s model for this specific habit plane.

The present study also shows that the interface plane between two Kurdjumov-Sachs twin-

related variants is unique, as there are exactly two non-collinar vectors in the Kernel computed

in equation (5.6). The results suggest that the martensite twins are not created from me-

chanical twinning, but are due to a particular association of variants, these variants being
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twin-related. We conclude that a local variant selection occurs to accommodate the phase

transformation on the habit plane. Away from the habit plane, however, the transformation

might need additional mechanisms, like plasticity by dislocations gliding to accommodate the

shape strain related to the transformation. Such additional mechanisms can be observed in

{225}γ habit planes martensitic steels [21].

The shape strain D I PS associated with an equibalanced combination of twin-related variants

can be clearly identified in equation (5.5). This shape strain is exactly the same as the one

predicted by the PTMC and computed in equation (5.9). The calculated shear is 0.19 and the

dilatation normal to the habit plane is +8.9%. The shear strain is in good agreement with the

magnitude experimentally measured in ferrous martensite which varies between 0.18 [22]

and 0.22 [23]. However, the dilatation normal to the habit plane is overestimated. Indeed, the

dilatation reported in the literature is about +3% [23]. This discrepancy was expected because

the atoms were assumed to be hard spheres of constant radius, whereas a slight decrease of

the atomic size (few %) is observed during the transformation. This atomic size change is not

captured by our model such that we overestimated the volume change associated with the

FCC-BCC transformation, and hence the dilatation normal to the habit plane as well.

The hard-sphere assumption is done in both the Bowles and Mackenzie’s PTMC model for

the {225}γ case and our model. Indeed, for this specific habit plane, the PTMC requires the

dilatation parameter to be different from 1, such that the [11̄0]γ and the [111]α atomic rows

match. As commented by Bowles, this dilatation is exactly equivalent to an hard sphere mod-

eling of the atoms ([1], part III). In both models, the matching of the [11̄0]γ and the [111]α, and

the exact Kurdjumov-Sachs orientation relationship are required to let the (225)γ completely

invariant. To compensate the natural decrease of the atom size and the consequent atomic

mismatch along the [11̄0]γ ∥ [111]α closed-pack direction, accommodation mechanisms by

dislocations in the austenite need to be considered. Back in the 70’s, for example, Bowles

envisaged multiple {111}γ slip systems to preserve an invariant habit plane [24]. More recently,

Stanford and Dunne used similar arguments to explain the austenite/ε-martensite interface in

Fe-Mn-Si alloys [25]. The Bowles and Mackenzie’s dilatation parameter was controversial and

so is also the hard sphere modeling of the atoms. However, this approach has the advantage

of allowing the description of the atomic trajectories. In this respect, using the hard-sphere

model may allow more significant insights into the effective transformation mechanism than

the consideration of artificial double shear systems, mentioned in the introduction.

It is remarkable that both the atomistic and the phenomenological modeling lead to the

same results. In fact, even though these approaches are a priori based on opposite starting

hypothesis, they share one common assumption: the atomic correspondence between the

austenite and the martensite. The Bowles and Mackenzie model is historically based on the

observation of the macroscopic shape strain associated with the transformation. An initial

guess on the lattice invariant shear is required and the orientation relationship can then be

derived. It only deals with the initial and the final states, but allows to cover a broad range

of transformation, morphologies and habit planes. On the contrary, in the model proposed

by Cayron, one assumes the final orientation relationship and imposes a steric condition on

the atomic trajectories, by the mean of the hard sphere assumption. A precise atomic path
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can thus be defined for the transformation. The shape strain and the twinning system are

then directly derived from the model with simple calculations. The predicted twinning system

corresponds exactly to the lattice invariant shear assumed in the PTMC and experimentally

observed [19], which confirms the equivalence of the two models in the {225}γ case.

In their original papers, Bowles and Mackenzie emphasize the phenomenological nature of

their theory. As reformulated by Dunne [24], they stressed that the theory provides "a frame-

work that any proposed transformation mechanism must satisfy". The distortion associated

with Kurdjumov-Sachs orientation relationship is shown to fit perfectly in this framework, for

this particular {225}γ case. Our model is thus a step toward a complete mechanistic represen-

tation of the transformation. In this regard, it might be noted that the mathematical approach

used in this paper has also been successfully applied for {557}γ habit planes in dislocated

martensite [26].

The present study explains the invariant nature of the {225}γ habit planes thanks to fundamen-

tal, but rather abstract, linear algebra concepts. So, in order to visualize the crystallography

of {225}γ thin plates, some computer simulations have been performed at the atomic scale.

These simulations consist in computing the two final twin-related BCC lattices within their

parent austenitic matrix. The computation of the transformation is based on the matrices

Dα1 and Dα3 from equation (5.3). Only the iron atoms are considered and illustrated in figure

5.3. Figure 5.3(a), analogous to the schematic figure 5.2, shows the accurate atomic positions.

It illustrates clearly the Kurdjumov-Sachs orientation relationship, [11̄0]γ being parallel to

[111]α direction, and (111)γ plane parallel to (11̄0)α. All the crystallographic features presented

schematically in figure 5.2 are also illustrated here. Figure 5.3(b) shows a tridimensional view

of the simulated {225}γ plate. The proposed modeling of the {225}γ habit plane martensite is

Figure 5.3: Illustrations of the (225)γ thin plate: (a) projection along [11̄0]γ ∥ [111]α and (b)
3D view. Green dots: iron atoms in austenite. Blue and red dots: iron atoms in martensitic
twin-related variants α1 and α3.

based on an atomic description of the FCC-BCC phase transformation [12]. A movie of the

simulated {225}γ thin plate of martensite was computed. It is available in the supplementary

material. Snapshots of this film are presented in figure 5.4.
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Figure 5.4: Snapshots of the (225)γ thin plate formation. Green dots: iron atoms in austenite.
Blue and red dots: iron atoms in martensitic twin-related variants α1 and α3.

As previously mentioned, the distortion associated with the Kurdjumov-Sachs orientation

relationship leaves two families of plane untilted, {111}γ and {11
p

6}γ. However, it is usually the

second family of planes which is experimentally observed. As mentioned in the introduction

and already questioned by Jaswon and Wheeler [3], a major question is then to understand

why. The present approach proposes a clear answer, illustrated in figure 5.5. In the distortion,

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Comparison between the atomic displacements in the (11
p

6)γ plane (a), (b) and
(c) and in the (111)γ plane (d), (e) and (f ). Green dots: iron atoms in austenite. Blue and red
dots: iron atoms in martensitic twin-related variants α1 and α3.

each of the untilted planes is deformed within the plane, as the spacing between the atoms

in this plane changes during the transformation [12]. The matrices computed in equation

(5.4) show that for the (225)γ habit plane the atoms are displaced in opposite directions for

each twin of a given pair of twin-related variants such that the average displacement on this

plane is zero. This average cancellation is illustrated in figures 5.5(a) and 5.5(b). They show

the atomic positions in a (11
p

6)γ habit plane for both variants α1 and α3. The (11
p

6)γ plane

being irrational, it cannot form a 2D crystallographic lattice. Therefore, in the simulations,

this plane is defined by all the atomic positions u such that: [11
p

6] ·u = 0± tol , where tol

is a tolerance factor equal to 0.05. Black arrows are sketched on figure in order to better

visualize the atomic displacements. The invariant [11̄0]γ direction, where the atoms positions

in austenite and in martensite match is noted on the picture with a dashed horizontal line. To
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be compared with figures 5.5(a) and 5.5(b), figures 5.5(d) and 5.5(e) show the atomic positions

after transformation for each of the twin-related variantsα1 andα3 in the (111)γ plane. Figures

5.5(c) and 5.5(f) offer detailed views of the displacements for each variant in the (225)γ plane

and in the (111)γ plane. Figure 5.5(c) illustrates the average cancellation of the displacements.

On the contrary, as showed in figure 5.5(f), in the (111)γ plane, there is a displacement on

the vertical axis that goes in the same direction for both variants. Indeed, the red and blue

dots both shift in a direction [011̄]γ relatively to the initial FCC lattice in the same manner.

Such a displacement cannot be cancelled by any combination of these two variants. This

result can also be proved mathematically by applying an analogous approach for (111)γ as

the one we used to show the invariant nature of (225)γ planes. We notice that all the volume

change intrinsic to the FCC-BCC transformation occurs by the distortion of the (111)γ plane.

Therefore {111}γ planes cannot be invariant during the transformation.

In conclusion, this study shows that a fine alternate structure of Kurdjumov-Sachs twin-related

variants in equal proportion creates a macroscopic invariant plane strain having (11
p

6)γ as

invariant plane, lying at 0.5◦ from the observed (225)γ plane. The shape strain resulting from

this combination of twin-related variants consists in a shear of magnitude 0.19 parallel to the

habit plane and a dilatation normal to the habit plane of +8.9%. This shape strain corresponds

exactly to the result of the Bowles and Mackenzie’s version of the PTMC. For this special (225)γ
case, the two models are shown to be equivalent. We also demonstrated that because of the

geometrical compatibility at the interface, Kurdjumov-Sachs twin-related variants share an

interface plane of type {112}α, which corresponds to the twinning system that is assumed in

the PTMC.

In this specific case, a continuous atomic displacement can be associated with the original

Bowles and Mackenzie’s model, offering, for the first time, a mechanistic dimension to a theory

which up to now was phenomenological.

Methods

Mathematical notations and conventions

The mathematical notations and conventions used in the present paper are briefly presented

here. The vectors are column vectors and are written in small bold letters. The matrices are

written in bold capital letters. A vector v is transformed by a matrix M as follows:

v
′ = M v (5.10)
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The coordinate-transformation matrix between two basis B1 and B2 is noted T = [B1 →B2]

and is defined such that its columns are the vectors of the basis B2 expressed in the basis B1:

aB2

/B1
=

 a

b

c

 bB2

/B1
=

 d

e

f

 cB2

/B1
=

 g

h

i

 (5.11)

One has,

T = [B1 →B2] =


a d g

b e h

c f i

 ; [B2 →B1] = [B1 →B2]−1 (5.12)

The vector v and the matrix M expressed in B1, noted v/B1 and M/B1 are, then, respectively

expressed in B2 by:

v/B2 = [B2 →B1]v/B1 = T −1v/B1 (5.13)

M/B2 = [B2 →B1]M/B1 [B1 →B2] = T −1M/B1 T (5.14)

Semi-eigenbasis of twin-related variants

The distortion matrices of variants α1 and α3 forming the first pair p1 are expressed in their

common semi-eigenbasis, using the following coordinates-transformation matrix:

[Bγ
0 →B

γ
p1

] = 1

2


p

2 −
p

6
2

p
2

2

−p2 −
p

6
2

p
2

2

0 1
p

3

 [Bγ
p1

→B
γ
0 ] = [Bγ

0 →B
γ
p1

]−1 (5.15)

The distortion matrices Dα1 and Dα3 of each twin-related variant α1 and α3 can then be

expressed in the common semi-eigenbasis.

Dα1

/Bγ
p1

= [Bγ
p1

→B
γ
0 ]Dα1 [Bγ

0 →B
γ
p1

] (5.16)
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Dα3

/Bγ
p1

= [Bγ
p1

→B
γ
0 ]Dα3 [Bγ

0 →B
γ
p1

] (5.17)

Computation of the correspondence matrix

The matrix that transforms the coordinates of each crystalαi into the coordinates of the crystal

γ is T γ→αi [14]:

T γ→αi = gγ

i T γ→α1 i = 1,2, ..24 (5.18)

where T γ→α1 = [Bγ
0 →B

α1
0 ]. B

γ
0 and B

α1
0 are formed by the usual crystallographic vectors of

the Bravais lattice of the γ and α1 crystals, respectively.

The correspondence matrix Cαi→γ allows the computation of the image by the distortion Dαi

of any vector in the γ crystal expressed in the basis B
αi
0 of the product crystal αi .

Indeed, the image of any vector u/Bγ
0

by the distortion is given by:

u′
/Bγ

0
= Dαi u/Bγ

0
i = 1, ..24 (5.19)

To express the transformed vector u′
/Bγ

0

in the B
αi
0 basis one needs the transformation matrix

presented in equation (5.18):

u′
/B

αi
0

= [Bαi
0 →B

γ
0 ]u′

/Bγ
0
= (T γ→αi )−1u′

/Bγ
0
= (gγ

i T γ→α1 )−1[(gγ

i )D(gγ

i )−1]u/Bγ
0

i = 1, ..24

(5.20)

where (gγ

i )D(gγ

i )−1 is the distortion matrix of variant αi expressed in the absolute basis B
γ
0 , as

computed in equation (5.3).

Based on equation (5.20), the correspondence matrix is then:

Cαi→γ = (gγ

i T γ→α1 )−1(gγ

i )D(gγ

i )−1 = (T γ→α1 )−1D(gγ

i )−1 i = 1,2..24 (5.21)

Considering the distortion associated with the Kurdjumov-Sachs orientation relationship pre-

sented in relation (5.1) and the present coordinate-transformation matrix, the correspondence
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matrix Cα1→γ is:

Cα1→γ =


1 0 1

0 −1 0

1 0 −1

 (5.22)

And the correspondence matrix in the reciprocal lattice is then:

(Cαi→γ)∗ = (Cαi→γ)−T i = 1,2, ..24 (5.23)
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6 Accommodation of the {225}γ habit
plane by dislocations

The strain accommodation mechanism of the habit plane is an important feature of the

martensitic transformation. In our previous work (chapter 5), we showed that the combination

in equal proportion of twin-related variants of the distortion associated with the Kurdjumov-

Sachs orientation relationship leaves the {225}γ habit plane globally invariant [1]. However,

the accommodation mechanisms of a single variant of martensite on this particular plane has

not been studied yet. Here, we propose to analyse this aspect of the transformation using the

Frank-Bilby equation [2] [3]. Such analysis focuses only on the dislocations involved in the

accommodation of the habit plane, and gives no information on the accommodation of a full

martensite product.

Generalities on the Frank-Bilby equation

Let us consider an interface between two different lattices A and B. Each of the two lattices

can be computed as the product of the distortion of a common reference lattice, through the

transformation matrices FA and FB, respectively as illustrated in figure 6.1. The Frank-Bilby

Figure 6.1: Illustration of the deformation of a common lattice in the two crystals A and B.

equation allows the computation of the net Burgers vector bT that is needed to guarantee the

geometrical compatibility on the interface between the two lattices A and B [2] [3]:

bT = [F−1
A −F−1

B ] ·p (6.1)

57
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where p is a probe vector lying in the interface and bT describes net Burgers vector that

crosses the probe vector p . bT is a continuous representation of the dislocations needed to

accommodate the distortion. In a real crystal, dislocations are discrete linear defects defined

by their line and their Burgers vector b. To have a proper definition of the misfit dislocations

near the interface, the net Burgers vector bT needs to be decomposed in different sets of

discrete dislocations. Posing ni as the number of dislocations in each set i crossing the probe

vector p , we can write:

bT =∑
i

ni bi (6.2)

In the context of phase transformations, it is suitable to consider the parent lattice as reference

lattice [2]. Equation (6.1) can thus be rewritten in the following manner:

bT = [I −F−1] ·p (6.3)

where F is the distortion of the initial parent lattice to the transformed lattice.

Study of the {225}γ habit plane

For this study, we arbitrarily choose to consider the interface between variant α1 and the

austenite γ. This interface is the (225)γ and the invariant line associated with variant α1 is

[11̄0]γ ∥ [111]α.

By using the continuous distortion F [4] to model the complete transformation, the Frank-

Bilby equation on the (225)γ habit plane gives:

bT = [I − (F1)−1] ·p⊥ = 1

2
p

6
‖p⊥‖ · [11̄0]γ =λ · [11̄0]γ (6.4)

for a vector p⊥ oriented along the [225]γ× [11̄0]γ direction.

It can be shown that this result is true for any vector p in the interface. The vectors belonging

to the interface can be expressed by a linear combination of a vector p∥ along [11̄0]γ and the

vector p⊥ along [225]γ× [11̄0]γ: p = ap∥+bp⊥. By replacing p⊥ in the Frank-Bilby equation

(6.4) by p , we have:

bT = [I − (F1)−1] ·p = a[I − (F1)−1] ·p∥+b[I − (F1)−1] ·p⊥ = bλ[11̄0]γ (6.5)

As p∥ is the invariant line of the transformation, its contribution to the net Burgers vector bT

is zero, such that for any vector in the interface, the net Burgers vector bT is always oriented

along the [11̄0]γ ∥ [111]α.

The value of λ depends on the norm of the probe vector p , as it represents the number of

dislocation lines that are crossing p . It can be noted from the result of equation (6.4) that the

direction of the net Burgers vector bT is crystallographic, such that it is possible to decompose

it into a single set of discrete dislocations.
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Hence, equation (6.2) can be written as follows:

bT = nb = n · 1

2
[11̄0]γ (6.6)

The Frank-Bilby equation allows the computation of the net Burger’s vector associated with a

given interface, but it gives a priori no information on the dislocation line. However, in our

particular case assuming that the net Burger vector is decomposed in a single set of dislo-

cation, as in equation 6.6, the dislocation line can simply be guessed from the Frank-Bilby

equation itself. As already mentioned, the magnitude of ‖bT ‖ offers an indication of the

number of dislocation lines that are crossed by the probe vector p . In addition, for a single

set of dislocations, all dislocation lines are parallel. Therefore, a probe vector parallel to the

dislocation line crosses no dislocation line. Looking for the dislocation line is thus equivalent

to searching probe vectors that give bT = 0 or, in other words, to compute the kernel of the

linear map given in the Frank-Bilby equation: ker (I − (F1)−1). There is only one vector in this

kernel and it is the invariant line [11̄0]γ ∥ [111]α = p∥. An illustration of the latter explanation

is proposed in figure 6.2. The single array of dislocations is represented with the red lines in a

{225}γ interface delimited by the black rectangle. The dislocation line is noted ξ. It can be seen

that the only way to choose a probe vector that crosses no dislocation consists in choosing a

probe vector along the dislocation line ξ. In such situation, as the probe vector does not cross

any dislocations bT = 0. It is only the case for p = p∥. From this result, we can now deduce

Figure 6.2: Illustration of the dislocation array (in red) in the interface. The dislocation line is
noted ξ. p∥ and p⊥ are two possible probe vectors in the interface.

that the net Burgers vector bT associated with the (225)γ habit plane consists of an array of

screw dislocations of type 1
2 [11̄0]γ = 1

2 [111]α. This conclusion is in agreement with one of the

most detailed analysis of the microstructure of {225}γ martensite proposed by Sandwick and

Wayman in 1983 [5]. Their analysis concerns the Fe-8Cr-1C alloy. They concluded that the

(252)γ martensite/austenite interface of an untwinned martensite product contains an array

of parallel screw dislocations of type
aγ

2 [1̄01] = aα

2 [1̄1̄1]. In the crystallographic convention

they choose for their study, the Kurdjumov-Sachs orientation relationship is (111)γ ∥ (011)α
and [1̄01]γ ∥ [1̄1̄1]α. The observed screw dislocations are thus lying parallel to the invariant

line.

According to equation (6.2), we have n · 1
2 [11̄0] =λ[11̄0] and thus we can deduce the number of
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screw dislocations that are cut by the probe vector is n = 2λ. Considering the lattice parameter

of austenite to be approximately 3.6 Å, we can then compute the average distance d between

two screw dislocations. Over its length, the probe vector ‖p‖ crosses 2λ dislocation lines. A

rough estimate of the average distance between two dislocations can thus be computed by

dividing the length of the probe vector by the number of crossed dislocations: d = aγ‖p‖
2λ = 8.8

Å. The computed distance appears very small as it is less than 4 times the inter-atomic spacing.

The huge density of dislocations resulting from the computation could be possibly explained

by the fact that the present calculation does not account for any elastic deformation of the

lattice, and the misfit is only accommodated by dislocations. As a comparison, in the study of

Sandwick and Wayman, a measure of the mean distance separating the observed dislocations

has been performed and it is concluded that this spacing was about 13Å[5].

The detailed study of the interface has been performed for variantα1, however the same can be

done for each variant. The associated dislocations needed to accommodate the interface are

screw dislocations oriented along the invariant < 110 >γ∥< 111 >α. In a previous work [1], we

showed that {225}γ habit planes are kept globally invariant by an equibalanced combination of

twin-related variants. We use here the term globally invariant as the distortion associated with

a single variant does not itself lead to an invariant habit plane, but the atomic displacements

caused are such that they are exactly compensated by its twin-related variant, leaving the

{225}γ globally invariant. It is thus worth paying a more careful attention to the exact type of

dislocations that are associated with the distortion F K S
3 which is twin-related to F K S

1 . In this

case, we find bT3 =λ[1̄10]γ, thus bT1 =−bT3 . This equality is true for each pair of twin-related

variants. The dislocations that are associated with one variant on {225}γ are thus compensated

by the dislocations associated with its twin-related variant. Figure 6.3 taken from the chapter

on the accommodation of the {225}γ habit plane by twin-related variants pairing (chapter

5) allows to better visualize this compensation. The dislocation perspective proposed in the

Frank-Bilby analysis is another way of considering the global invariance of the habit plane

thanks to twin-related variants accommodation.

Figure 6.3: Illustration of the atomic displacement associated with two twin-related variants
(1 and 3) on a (225)γ plane. The initial austenite position are marked in green, and the
transformed position are marked in blue and red for variant 1 and 3, respectively. The dashed
line indicates the invariant line, i.e. the dislocation line of the proposed solution for an
accommodation based on dislocations.
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In conclusion, the misfit dislocations that can possibly accommodate the continuous Kurdjumov-

Sachs distortion on a (225)γ habit plane are determined using the Frank-Bilby equation. The

study proposes a solution of the strain accommodation of the (225)γ interface based on a sin-

gle set of screw dislocations
aγ

2 [11̄0] = aα

2 [111]. This dislocation structure is in good agreement

with the experimental data. As a final remark, it is worth mentionning that the dislocation

structure calculated here is in adequation with the dislocation structure proposed by Frank in

its model [6], and it is also the same as the one computed by the molecular dynamics model of

Maresca et al. for the {225}γ habit plane [7].
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Chapter 7. Intricate morphologies of laths and blocks in low-carbon martensitic steels

Abstract
Low-carbon martensitic steels are made of intricate assemblies of martensitic laths: the twenty-

four lath variants are grouped into packets on the four {111}fcc planes, and each packet is

composed of three blocks of pairs of low-misoriented variants. The orientation relationship

between the laths and their parent austenitic grains ranges from Kurdjumov-Sachs toward

Nishiyama-Wassermann. The paper presents electron microscopy investigations that confirm

that the habit planes of the laths are the {557} planes that contain the common fcc-bcc dense

directions. The morphology of many blocks appears as a bifoliate structure made of the habit

planes of the two low-misoriented lath variants they contain. A theoretical model is proposed

to discuss the results. The average of the two Kurdjumov-Sachs distortions associated with the

variants in a block is a Nishiyama-Wassermann distortion. The {557} lath plane of each of the

two variants in a block is untilted by the Nishiyama-Wassermann distortion of one of the two

neighboring blocks in the packet. Complete self-accommodation is also obtained in individual

packets. These results could explain simultaneously the {557} lath planes and the lath/block

intricacy in the packets.

7.1 Introduction

7.1.1 Morphologies of the laths and blocks

Low-carbon steels and iron nickel alloys containing less than 28wt-%Ni exhibit after quenching

microstructures constituted of body centered cubic (bcc,α) lath martensite. An extensive

review of their microstructures and properties was recently published by Krauss [1]. The

mean orientation relationship (OR) of martensite with its parent face centered cubic (fcc, γ)

austenite is close to Nishiyama-Wasserman (NW) [2, 1, 3], or in-between NW and Kurdjumov-

Sachs (KS) [4], i.e. close to Kelly [5] or Greninger-Troiano (GT) [6]. The study of martensitic

laths by optical microscopy is difficult because of their fine and highly intricate structures,

and because in most of the low-carbon steels the martensitic transformation is complete and

there is no retained austenite. Despite these difficulties, Marder and Krauss [7] elegantly took

advantage that the long straight lines visible in metallography are twin boundaries of prior

parent austenitic grains to calculate their orientations and statistically determine the habit

planes of martensite in the austenite reference frame; and they found that they are close to

{557}γ. Then, transmission electron microscopy (TEM) allowed them and other researchers to

observe martensite at higher scales [8]-[13] revealing complex structures. Hoekstra [9] used

the same method as Marder and Krauss to determine the orientation of the prior austenitic

grains, but in addition to the optical microscopy images, he could succeed in preparing some

TEM lamellae of the same features, which allowed him to determine the indices of the habit

planes in the martensite reference frame. It was concluded that the habit planes are close to

{569}γ ∥ {2710}α. Sandvik and Wayman [10] noticed that some laths exhibit an exact KS OR,

but only locally, and in general the OR deviates from KS toward NW [10]. We recall here that

the KS OR is a double parallelism rule: one for the close-packed planes (CPP) {111}γ ∥ {110}α,
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7.1. Introduction

and one for the close-packed directions (CPD) < 110 >γ∥< 111 >α. Sandvik and Wayman

also confirmed that the habit planes are the {557}γ planes that are 9.4◦ far from the common

CPP. They could not experimentally determine whether or not the habit plane contains the

common CPD, but they inferred it from Hoekstra’s study [10], and they concluded that the

habit planes are {557}γ ∥ {145}γ. Over the last two decades, the coupling of TEM with Electron

Back Scatter Diffraction (EBSD) has allowed the get a better idea of the structure of martensite

at different scales [12, 13]. It is now established that the laths are grouped into four packets

on the {111}γ ∥ {110}α CPPs. These packets are sometimes called morphological packets [14],

or CPP packets [15]. Although the KS OR is only local, it was admitted for sake of simplicity

that the twenty-four lath variants can be indexed as KS variants. Morito et al. [12, 13] showed

that each packet contains six KS variants grouped by pairs of low-misoriented variants, called

“blocks”. The two KS variants in a block are linked by a rotation of 10.5◦ around the normal

to the (111)γ ∥ (110)γ plane [15]. An example of pair of KS variants forming a block is (αK S
1 ,

αK S
6 ) marked by the blue ellipse in Fig. 7.1a. Examples of other pairs are (αK S

2 , αK S
3 ), (αK S

5 ,

αK S
8 ), (αK S

7 , αK S
9 ), (αK S

4 , αK S
12 ), (αK S

11 , αK S
14 ). It was also confirmed that the habit planes of the

laths are the {557}γ planes that contain the dense direction [1̄10]γ ∥ [11̄1]α, and they are more

precisely (557)γ ∥ (561)α [13]. In the present paper, the variants will be also indexed as KS

variants, and the KS OR chosen for variant α1 is (111)γ ∥ (110)α&[1̄10]γ = [11̄1]α as shown

in Fig. 7.1a. The six variants in the crystallographic packet (111)γ ∥ (110)α are represented

in Fig. 7.2. Please note that the indices of the variants used in this work are different from

those chosen by Morito et al. [12, 13] because the variants are not calculated in the same

way (we used an algebraic coset decomposition detailed in Ref. [16]); the variants (αK S
1 ,αK S

6 )

were noted (αK S
1 , αK S

4 ) by Morito et al. Also notice that the blocks are written in the figure as

NW variants, for example the block (α1,α6) is noted αNW
1 (Fig. 7.1b and Fig. 7.2); this will be

justified in the next sections. As Marder and Krauss [7] used optical microscopy, it is probable

that they observed the blocks and not the laths. So, one can infer that that the blocks, as the

laths, are made of {557}γ planes. However, a logical problem seems to emerge when one wants

to define a habit plane to the blocks. For example, if the block αN
1 W formed by the variants α1

and α6 is considered; the two variants share the common (111)γ ∥ (110)α CPP plane but do

not share a CPD. The CPD for α1 is indeed [11̄0]γ ∥ [11̄1]α1 , and that of α6 is [01̄1]γ ∥ [11̄1]α6 , as

represented by the bold black lines in Fig. 7.1b. This means that the habit plane of the laths α1

is (557)γ and that of the laths α6 is (755)γ. Therefore, one can wonder: could a habit plane be

attributed to the block αNW
1 , and if the answer is positive what would it be, (557)γ or (755)γ?

One could imagine a symmetric configuration in which the habit plane of the block could

be the {575}γ plane that does not contain any of dense directions of the two KS variants, as

illustrated in Fig. 7.3a. This hypothesis would imply that the habit plane of a block is none

the habit plane of the two variants it contains. Krauss proposed another hypothesis in which

the habit plane of one of the two variants dominates the block morphology [17], i.e. the habit

plane of the block is either (557)γ or (755)γ. As there are two possibilities for each of the three

blocks in a packet, eight configurations are possible; one is illustrated in Fig. 7.3b. However,

the TEM images in Ref. [8, 13] show that the variants are in equal proportions. In addition, if

one of the two variants were really dominant in its block, it should be highly elongated along
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Figure 7.1: Schematic representation of the KS and NW variants. (a) 3D view with the {111}γ
faces forming a regular pyramid, and the {110}γ ∥ {111}γ planes of the 24 KS variants repre-
sented by the rectangles. The KS OR imposes that for each variant a close-packed < 111 >α

direction is parallel to a < 110 >γ direction, i.e. a diagonal of the rectangle is parallel to an
edge of pyramid. The packets are formed by the 6 variants lying on the same {111}γ face. The
special twin-related pairs and the blocky pairs are colored in yellow, and marked by the red
and blue ellipses, respectively. (b) Planar view of the packet (111)γ ∥ (110)α plane showing one
block constituted of the KS variants αK S

1 and αK S
6 , with the average block orientation noted by

αNW
1 .

its CPD because this direction would be also contained in the habit plane of the block, whereas

the second variant should be very short; which was not observed. A third hypothesis can be

made: the morphology of the blocks is not a mere plate, but is a complex bifoliate structure

made of the two {575}γ planes of the two lath variants constituting the blocks, as illustrated

in Fig. 7.3c. The three hypotheses can be distinguished by observing the morphologies of

the blocks and laths and by indexing the habit planes simultaneously in the austenite and

martensite reference frames. Let us consider the three planes {557}γ that are at 9.4◦ far from

the common CPP (111)γ ∥ (110)α of the packet. By using the Bain correspondence related to

the variant αK S
1 , it can be shown that (557)γ and (755)γ correspond to {156}α1 planes, while

(575)γ corresponds to a {570}α1 plane. Only the first plane, i.e. the (557)γ plane, contains the

unrotated CPD [1̄10]γ = [11̄1]α1 . The (755)γ plane is also transformed into a {156}α1 plane, but

the KS distortion induces a rotation of the second CPD [011̄]γ and a slight rotation of the plane.
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Figure 7.2: Schematic view of a packet with the three blocks constituted by pairs of KS variants.
The rectangles are the (110)α planes of the KS variants that are parallel to the (111)γ plane. The
average orientation of a block is noted by the average orientation between the two KS variants
(it will be shown that it is a NW OR). The blocks αNW

1 , αNW
2 , αNW

3 are constituted of the pairs
αK S

1 -αK S
6 , αK S

5 -αK S
8 , αK S

2 -αK S
3 , respectively.

Figure 7.3: Three hypotheses for the morphologies of the blocks. (a) The habit plane of the
block is the one of the three {557}γ planes that is at 9.4◦ from the (111)γ plane but is none of
the habit planes of two variants; for the block αNW

1 it would be the plane (557)γ ∥ {750}α1 ∥
{750}α6 . (b) The habit plane of a block is the {557}γ habit plane of one of the two lath variants
constituting the block; for the block αNW

1 , it can be for example the plane (557)γ ∥ {156}α1 . (c)
The blocks are not plates but have a complex bifoliate morphology made of the two {557}γ
habit planes of the lath variants.

Consequently, in case (a) the habit plane of the block αNW
1 would be (557)γ ∥ {750}α1 ∥ {750}α6 ;

in case (b) it would be the {557}γ habit plane of one of the two lath variants constituting the

block, for example the plane (557)γ ∥ {156}α1 ; in case (c) the block would be made of the two

{557}γ habit planes of the lath variants (557)γ ∥ {156}α1 + (755)γ ∥ {156}α6 . The EBSD and TEM

experimental work that will be presented in the first part of the paper aims at getting a better

idea of the structure of the blocks and laths and at determining which of the hypothesis (a),

(b) or (c) is correct.
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7.1.2 Theoretical models for the {557}γ habit planes

From a theoretical point of view, the complexity of lath martensite remains in great part

unsolved. The phenomenological theory of martensitic crystallography (PTMC) has failed to

explain the {557} habit planes, at least in its early versions of 1953-54 [18, 19], and it was nearly

forty years later, in 1992, that Kelly [20] used the double-shear version of the PTMC initially

developed by Ross and Crocker [21] in order to make the theory more compatible with the

experimental results. He used “floating” lattice invariant shear (LIS) systems with, for first

LIS, shears of type (hhl )[11̄0]γ where the (hhl )γ planes varied from (001̄)γ to (110)γ , and for

second LIS, shears on planes between (311)γ and (31̄1̄)γ. He noticed that lath martensite with a

habit plane close to {557}γ can be formed with at least 35 different combinations of LIS. Kelly’s

double shear version of PTMC was used by Lambert-Perlade et al. [1] and Morito et al. [13] to

discuss their EBSD results. They respectively chose (2̄31)[111̄]α & (211)[11̄1̄]α and (112)[11̄1̄]α
& (110)[11̄1̄]α, as double LIS systems. More recently, Iwashita et al. [22] used a PTMC version

developed by Khachaturyan [23] with (1̄01)[101]γ & (101)[1̄01]γ double-slip, and they adjusted

the magnitude of shear on both planes to obtain results close to the experiments, i.e. an habit

plane close to {557}γ and an orientation relationship close to KS. Later, Qi, Khachaturyan and

Morris [24] followed a similar approach and explored all the combinations related to simple

and double slips with the variants chosen among the twenty-four KS variants and slips chosen

among seventy-two systems. They tested more than 23’000 possibilities and concluded that

the choice that gives a solution close to the experimental results is the composite case of two

KS variants sharing the same Bain axis, and more precisely the variants forming a block. A

recent model also based on double shears but without free parameters except the choices

of the shears was recently proposed by Koumatos and Muehleman [25]. Kelly [20] states

that the “double shear version of the phenomenological theory [. . . ] explains ALL the known

crystallographic characteristics of lath martensite” (sic); however, to our point of view, the

trial-and-error method and the high degree of freedom given to the LIS significantly reduce

the “predictive” or “explicative” character of these PTMC approaches. Any theory should

be evaluated by the outputs/inputs ratio. Another point should be mentioned. From the

calculated amplitude of the LIS, Kelly predicted that the dislocation spacing should be close to

4 nm, and concluded that this value was in excellent agreement with the experimental TEM

observations of dislocations at austenite/martensite interfaces made by Sandvik and Wayman

[11], but doubts exist on the real nature of the TEM contrasts observed at the interfaces 1.

1An important issue can be raised here. The closely spaced parallel black lines shown in Ref. [11] were assumed
to be interfacial dislocations, and the possibility that they could be Moiré fringes was quickly discarded by Sandvik
and Wayman. However, the nearly perfect regularity of the fringes is puzzling, even for dislocation arrays; and if
they were dislocations, they would be too close to be resolved by TEM because their deformation fields would
overlap. Consequently, legitimate doubts can be raised on the interpretation of the lines. Thölén [26] showed by
TEM simulations that dislocations and Moiré fringes are indistinguishable when their spacing is less than one
extinction distance (typically 20-50 nm), which is clearly the case for the lines observed in Ref. [11]. The risk of
confusion was also raised by Waitz and Karnthaler [27], and some authors show that similar regularly and closely
spaced lines visible in TEM at the interfaces are actually Moiré fringes [28, 29]. Moreover, even if one accepts
that such lines are interfacial dislocations, then one should at least admit that they are not specific of displacive
phase transformations because they are observed at the interfaces of massive phase transformation products
[29], and at low-angle boundaries and special boundaries of stainless steels and aluminum alloys [30, 31, 32]. The
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7.2. Method

For the last years, we have developed an alternative model to PTMC [33]-[36]. The analytical

forms of the atomic displacements and lattice distortion were determined by considering the

iron atoms as hard-spheres of constant size, and the OR was the unique input [35, 36]. The

{225}γ habit plane simply emerged as an eigenvalue of the reciprocal distortion matrix, i.e. as

an untilted plane [35, 37], and this plane could be rendered fully invariant by combining the

two twin-related KS variants in a packet sharing a common CPD [1̄10]γ ∥ [11̄1]α [38] (marked

by the red ellipse in Fig. 7.1a). In the theoretical part of the paper, it will be shown that the

average distortion of the two KS variants in a block, i.e. the mean distortion of a block, is a NW

distortion, and one of the three {557}γ planes close to the CPP is untilted by this distortion.

This plane does not contain the common CPD of any of the two KS variants. In the example of

the block αNW
1 , the plane untilted by the NW distortion will be shown to be the (575)γ plane.

This plane will be shown to be an interface of good compatibility for one of the two laths in

each of the two other blocks in the packet. A qualitative representation of the morphology and

crystallography of the lath/block structure in a packet will be proposed.

7.2 Method

The steels investigated in this work are a 1018 steel, a 8Cr-1W (Eurofer) steel and a 9Cr-1Mo

(EM10) steel chosen for their low carbon contents (< 0.2%.). Their compositions are given in

Table 1. The steels were cut, sealed in a quartz tube under vacuum, heat treated at 1000◦C for

one hour, and water quenched. For the three steels under study, the only phase that could be

identified is the bcc phase; there was no retained austenite.

Some TEM lamellae were prepared in the as-quenched 1018 steel by mechanical grinding and

polishing down to 100 microns, punching disks at a diameter of 3 mm, and electropolishing

with a Tenupol (Struers) machine with the electrolyte A2 at -15◦C. The TEM lamellae were

observed on an OSIRIS (FEI) TEM microscope working at 200 kV. The samples were positioned

in a screw-tightened sample holder in order to maintain them firmly in position and impede

that they get stuck on the magnetic lens. The TEM images and the selected area diffraction

(SAED) patterns were acquired on Gatan Orius 4k x 2.6k CCD camera. The 90◦ rotation angle

between the diffraction and image modes at medium and high magnifications were corrected

by rotating the SAEDs. We have spent time on the microscope to find three or four different

variants of neighborhood martensite in diffraction conditions in order to be able to calculate

the orientation of their prior austenitic grains. The zone axes of the experimental SAEDs of

the martensitic laths were manually indexed, and the zone axis of austenite was calculated by

using the software GenOVa (Generation of orientational variants). GenOVa was also used to

simulate the theoretical SAED patterns of the variants and compare them with the experiments

[39]. A new functionality was also created; it plots the traces of the habit planes expected from

the simulated SAEDs in the experimental TEM images. A snapshot of this option is reported in

Supplementary Material S1 (appendix B).

validation of the double-shear PTMC for low carbon alloys by using TEM features that could be Moiré artifacts can
be questioned.
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All the steels in Table 1 have been studied by EBSD. The samples were polished down to 1

micron and electropolished at room temperature at 20 V with the electrolyte A2 of Struers. The

EBSD maps were acquired with a XLF30 (FEI) scanning electron microscope (SEM) equipped

with a Nordlys 2 camera and Aztec (Oxford Instruments) software. The acceleration voltage

was 20 kV, the magnifications were chosen quite low (x500, x650 and x1200), and the step

sizes were 0.1 or 0.3 µm. The indexation rates of the EBSD maps acquired in the present

work were between 65% and 75%, and all the maps have been dilated in order to remove the

unindexed pixels and put in contact the neighboring grains. These rates are quite low, but they

are usual for as-quenched steels because of the high densities of dislocations and subgrain

boundaries. The software ARPGE (Automatic Reconstruction of Parent Grains) was used to

automatically reconstruct the prior parent grains and determine their orientations [40]. An

angular tolerance of 5◦ was chosen to identify the daughter bcc grains; the GT OR was used for

the reconstruction, with tolerance angles starting at 3◦ (“nucleation” step) and increasing up

to 15◦ (“growth” step). After reconstruction, the orientations of the parent grains were used to

automatically index the bcc grains as if they were KS variants and identify the crystallographic

CPP packets. The validity of the reconstruction was checked by plotting the pole figures (PF)

of the daughter bcc grains for some prior austenitic grains. These pole figures usually exhibit

special continuous features, such as circles and small two-fold bow ties in the < 100 >α PFs,

three-fold stars and four-fold crosses in the < 110 >α PFs, and large two-fold bow ties in the

< 111 >γ PFs. Examples of such features are given in Ref. [33, 34]. The < 100 >γ reconstructed

directions should appear in the centers of the < 100 >α circles, the < 111 >γ directions should

be in the centers of the < 110 >α three-fold stars, and the < 110 >γ directions in the middles of

the < 111 >α bow ties. The angular resolution of the reconstruction method is in the range

of 2 to 5◦ depending on the quality of the EBSD maps, the internal misorientations of the

austenitic grains before transformation, and the presence of twins in the prior grains [40]. A

simulation that illustrates the correspondence between the < 111 >γ and < 110 >α directions

is given Fig. 7.4. The continuous PF features are a sign of the continuity between the Pitsch,

Figure 7.4: Simulated pole figures of the three-fold stars made by the directions < 110 >α of the
24 variants with OR spreading from KS to NW (see Ref. [33] for details), with (a) the < 111 >γ

parent directions, and (b) the < 557 >γ parent directions.

KS and NW ORs that come from internal gradients; and, to our point of view, they should

be consider as a plastic trace of fcc-bcc distortion mechanism [33, 34, 35]. Note that these

gradients make very difficult the distinction between the low-misorientation operators O3
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(10.5◦ around < 111 >α) and O5 (10.5◦ around < 110 >α) that link the variants αK S
1 - αK S

4 and

αK S
1 - αK S

6 , respectively (Fig. 7.1). A special module has been developed in the software ARPGE

to draw the traces of some expected habit planes. This new functionality allows plotting the

traces of the equivalent planes {hkl }γ for all the parent grains, and the traces of the planes

(hkl )α that are parallel to a fcc plane of type {hkl }γ (within a certain tolerance angle) in each

bcc grain. An example is given in Supplementary Material S2 for the case of an iron-nickel

meteorite (appendix B); it shows that the traces of the bcc {110}α planes of kamacite that are

parallel to a {111}γ plane of fcc taenite are in good agreement with the morphology of the

kamacite plates, as expected for octahedrites. In the paper, this functionality will be used to

check which of the hypotheses (a), (b) or (c) in Fig. 7.3 is experimentally observed.

7.3 Experiment

7.3.1 TEM observations

According to Morito et al. [12, 13], the habit planes of the laths are those that contain the dense

direction without rotation of the CPD, i.e. (557)γ ∥ {156}α. The TEM observations presented

in this section are in full agreement with Morito’s result. An example is given in Fig. 7.5

with the as-quenched 1018 steel. In the observed area, four different SAED patterns of laths

noted K, L, M and N could be found and indexed in the same tilt conditions (Fig. 7.5b), i.e.

without tilting the TEM lamella. The orientation of their parent austenitic grain could be

unambiguously determined, and then the SAED patterns could be perfectly simulated (Fig.

7.5c). They are associated with the variants αK S
12 ,αK S

14 , αK S
15 and αK S

24 , respectively. The operators

(misorientations between the variants) related to the variants αK S
12 , αK S

14 , αK S
15 and αK S

24 can be

found in the Supplementary Material 3 of Ref. [34]. The zone axes of the SAEDs were identified

to [11̄3]α12 , [11̄0]α14 , [5̄13]α15 and [1̄31]α24 , respectively. The zone axis of the austenitic grain is

[112]γ. The laths K and L belong to the same packet and are closely interlaced, but note that

they do not form a block because the angle between the zone axes is too high. The laths M and

N belong to two other distinct packets. The traces of the habit planes of the four laths were

simulated with GenOVa by testing two possibilities:

(a){557}γ ∥ {057}α or (b){557}γ ∥ {156}α (7.1)

within a tolerance of 3◦ for both conditions. Please note that condition (a) corresponds to the

hypothesis (a) of Fig. 7.3, and condition (b) would agree with hypothesis (b) or (c) of Fig. 7.3.

For each of the two conditions, two planes are generally found, but only the one in best

agreement with the morphology will be shown. This best fit is obtained with the condition

(b), as shown in Fig. 7.5d. The habit planes of the laths K, L, M and N are (575̄)γ ∥ (561)α12 ,

(755̄)γ ∥ (561)α14 , (7̄55)γ ∥ (561)α15 , (55̄7)γ ∥ (561)α24 , respectively. These results agree with

Morito’s observations; the habit planes of the laths are the {557}γ planes that are at 9.4◦ far

from the common CPP, and they contain the common CPD by the KS OR. Another area close

to that of Fig. 7.5 and observed with the same sample tilt angles is shown in Fig. 7.6. The two
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Figure 7.5: TEM image and diffraction patterns of an assembly of martensite laths in the as-
quenched 1018 steel. (a) Bright field image showing the laths noted K, L, M, N. (b) Experimental
SAEDs obtained with an identical sample tilt for the four laths. (c) Simulated SAEDs overlapped
on the experimental SAEDs. (d) Simulated traces of the habit plane (557)γ ∥ {156}α expected
from the orientations of the laths (yellow lines). Note that the small grey dots in the SAEDs in
the line (c) are those simulated for the [112]γ zone axis of the prior parent austenitic crystal;
they do not appear in the experimental SAEDs of line (b) because there is no retained austenite.

martensitic variants, noted E and F, constitute a block. Note that the SAED of laths E in Fig.

7.6b is the same as that of lath N in Fig. 7.5b, and their habit planes are parallel. The main

difference between them is that the lath N is large and isolated whereas the laths E are finer

and interlaced with the other laths F of the block. It is concluded that the laths E and F are

variants of the same parent austenitic grain oriented along the zone axis [112]γ as for the laths

K, L, M and N,. The SAED of laths F is slightly misorientated from that of laths E, as shown by

its weaker intensities. Here again, it could be checked that the habit plane of the laths agrees
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Figure 7.6: TEM image and SAED patterns of a pair of intricate laths belonging to the same
block in the as-quenched 1018 steel. The SAEDs were acquired in the same sample tilt
condition and in a zone close to that of Fig. 5. (a) Bright field image showing the laths noted E
and F, with in yellow the traces of the habit planes (557)γ ∥ {156}α simulated from the SAEDs.
(b) Experimental SAEDs that were used to plot the expected traces.

with Morito’s observations: the habit plane of the laths E is (55̄7)γ ∥ (561)α24 , and that of laths F

is (75̄5)γ ∥ (561)α18 .

7.3.2 EBSD observations

The TEM results confirm that the habit planes of the laths are the planes (557)γ ∥ {156}α. The

question about the morphology of the blocks introduced in section 1.1 remains however

unanswered for the moment because of the limited field of view of the TEM observations. The

technique EBSD is more appropriate to study the blocks and the packets because of its larger

fields of view. In order to compare the three hypotheses schematized in Fig. 7.3, four EBSD

maps were acquired at low magnifications on each of the low-carbon steels reported in Table

1.

The EBSD data were treated with ARPGE. The prior austenitic grains were reconstructed, and

their orientations calculated. In each parent grain, the martensitic grains were indexed as KS
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Table 7.1: Chemical composition of the three low-carbon steels used in the study

wt-% Cr Mo W C N V Ni Si Mn Ta

1018 - - - 0.18 - - - - 0.8 -
Eurofer 9.0 - 1.04 0.109 0.02 0.18 0.07 0.04 0.5 0.1
EM10 8.8 1.1 - 0.096 0.02 0.03 0.18 0.37 0.5 -

variants, and their habit planes have been studied by testing the possibilities (a) and (b) of

equation 7.1 within a tolerance of 3◦ for both conditions. The two cases were evaluated by

comparing the traces of the predicted habit planes with the morphologies of the bcc grains

visible in the EBSD maps. All the maps were treated automatically with the same parameters.

An example of analysis is given for the as-quenched 1018 steel in Fig. 7.7. First, the initial

Figure 7.7: EBSD map of the as-quenched 1018 steel. (a) Daughter bcc grains, (b) reconstructed
austenitic grains, (c) orientation gradients in the bcc grains in RGB colors (Red = Pitsch, Green
= KS, Blue = NW), (d) CPP packets in each prior austenitic grains represented with four colors.

EBSD map of the martensitic grains (Fig. 7.7a) is used to reconstruct the prior fcc austenitic

grains (Fig. 7.7b), then the bcc martensitic grains are indexed as KS variants, and their internal

misorientations ranging from KS to NW are colored in Fig. 7.7c with a RGB code (Red =

Pitsch, Green = KS and Blue = NW) as described in Ref. [15]. This method also allows the

quantification of the ratios of the Pitsch, KS, NW and GT ORs. The results for all the steels are

presented in Table 2; they are very close, which confirms that a majority of pixels in the blocks

have ORs close GT/NW.

The histograms of disorientations are reported in Supplementary Material S3 (appendix B).

By plotting the rotation axes related to the misorientation angle, one can notice that the 60◦
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Table 7.2: Surface percentage of the different orientation relationships (ORs) determined from
the analysis of the EBSD maps. An error bar of 15% of these numbers is roughly estimated
from the different measurements.

OR Pitsch KS NW GT

1018 3% 22% 44% 31%
Eurofer 7% 25% 34% 34%
EM10 8% 29% 30% 33%

misorientations are split into two groups: (60◦,< 110 >α) and (60◦, u) with the axis u being

at 3◦ from the < 111 >α axis. This distribution of operator axes was satisfactorily simulated

with GenOVa with the GT OR (not detailed here). In each prior austenitic grain, the four CPP

packets are identified and arbitrarily colored in blue, yellow, red and green (Fig. 7.7d). The

quality of the parent grain reconstruction is checked by plotting in stereographic pole figures

the experimental orientations of the martensitic grains with the calculated orientations of

the austenitic grains they are inherited from, and then by checking that they correspond to

the theoretical pole figures, such as those presented in Fig. 7.4. The traces of the planes

according to the condition (a) or (b) were also automatically plotted in all the bcc grains of

the map; the results are shown in Fig. 7.8a and Fig. 7.8b, respectively. Whatever the condition

(a) or (b), in general two possible habit planes are found within a tolerance angle of 3◦, as

already noticed for the TEM analyses. One can acknowledge that for condition (b), one of

the two traces generally fits very well with the long direction of the blocks. A good fit is more

frequently observed with the condition (b) than with condition (a), it is obtained roughly at

70% in condition (b) and only at 20% in condition (a). The EBSD maps acquired in the other

as-quenched steels lead to same results. They represent more than fifty prior austenitic grains

and approximatively three hundreds blocks. Two of these maps are reported in Supplementary

Material S4 (appendix B). We conclude that condition (b) is statistically more relevant than

condition (a); i.e. the habit plane of a block generally follows the same condition as that of one

of the two lath variants from which it is constituted, i.e. {557}γ ∥ {156}α with α being one of the

two KS variants of the block. In a second stage, we put our attention on the 30% of blocks of

bad fits, and more particularly on those located in the zones A and B marked by the dashed

rectangles in Fig. 7.7a and corresponding to the prior parent grains PG6 and PG21, respectively.

It was found that all the blocks analyzed in these two zones have for habit plane(s) some of

the twelve {557}γ planes (Fig. 7.9a,b), but not necessarily following the condition (a) or (b).

This was checked by plotting all the twelve {557}γ planes in the prior austenitic grains, and

by manually translating those parallel to the long directions of the block. The fit was always

very good, within a tolerance better than 5◦. We conclude that the habit planes of the block

exhibit {557}γ interfaces, even when the condition (b), i.e. {557}γ ∥ {156}α is not fulfilled. The

zone C is the unique exception among all the EBSD maps acquired in this study; none of the

twelve {557}γ traces fit with the elongated directions of the blocks. We plotted the traces of

other families of habit planes usually reported in literature, and found that among them a

good agreement was obtained with the {225}γ planes.
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Figure 7.8: Determination of the habit planes in the EBSD map of Fig. 7.7 by automatically
plotting for all the bcc grains (a) the traces of the planes {057}α ∥ {557}γ, and (b) the traces of
the planes {156}α ∥ {557}γ. The agreement between the traces and the morphology is perfect
for none of the two cases, but more often better in the case (b).

From these EBSD analyses, it is concluded that the majority of blocks have a {557}γ habit plane

that is the same as one of its two lath variants. Therefore, case (a) of Fig. 7.3 is excluded, and

cases (b) or (c) remain possible. Due to the sectioning effect at the surface and the fact the two

{557}γ habit planes in case (c) have a low misorientation (16◦), cases (b) and (c) are difficult to

distinguish from each other. Thus, to get a better idea of the block morphology, we focused our

attention on the blocks located in the parent grains orientated close to a direction < 111 >γ

because in such an orientation one the four packets is parallel to the surface, and the habit

planes of the laths in this packet are nearly viewed flat. Such a parent grain was identified for

example at the bottom of the zone B of the EBSD map of Fig. 7.7a. The two laths in orange in

Fig. 7.9b form a block, their habit planes were indexed as (755)γ and (575)γ and they obey the

condition {557}γ ∥ {156}α. This configuration fit well with a bifoliate morphology schematized
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Figure 7.9: Regions A and B of the EBSD map of Fig. 7.7 (corresponding to PG6 and PG1,
respectively). Traces of the {557}γ planes that fit with the morphology of the blocks even if
none of the conditions {057}α ∥ {557}γ or {156}α ∥ {557}γ is fulfilled

in Fig. 7.3c. Another prior austenitic grain orientated close a direction < 111 >γ direction was

identified in the center of the EBSD of Fig. 7.10. The blocks at the corners of the map form a

triangle because they belong to three sectioned packets, but the brown and blue blocks in the

center of the map and marked by the white arrows are viewed as plates because they belong to

the fourth packet that is nearly flat-on. The brown block appear as made of two plates, one

is on the (5̄57) plane and is flat, and the another one is on the (557̄)γ plane and is sectioned.

Therefore, the brown grain is also bifoliate, but the crystallography is different from the case

(c). The lath on (557̄)γ plane belong to another block and another packet than the lath on

the (5̄57)γ plane; the two laths are connected to by the low-misorientation operator O3 (10.5◦

around < 111 >α, see [34] for details), as variant α1 and α4 in Fig. 7.1a, and not by the operator

O5. These results confirms that the blocks are bifoliate, but sometimes the two plates of

foliation are not close to the same {111}γ plane. These last cases may correspond to the 30% of

the “bad” fits observed previously. The TEM and EBSD experiments confirm earlier studies on

lath martensite in low-carbon steels. The laths are grouped by packets, the packets are divided

into three blocks, and each block is constituted by a pair of low-misoriented KS variants. The

analysis of the TEM results show that the habit planes of the laths are (557)γ ∥ {156}α and

they contain the common CPD. The KS OR permitted to satisfactorily simulate the diffraction

patterns of the laths in different blocks. The EBSD data show that the bcc grains exhibit

gradients of orientations from Pitsch, KS and NW, with an average OR close to GT. The blocks

have a plate morphology with a habit plane that is most of the time (575)γ ∥ {156}α, which

agrees with the hypotheses (b) and (c) of Fig. 7.3. By looking in the EBSD maps at the parent
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Figure 7.10: An EBSD map acquired on the as-quenched 1018 steel with the orientation of a
prior austenite grain close to a < 111 >γ zone axis. (a) Initial map of the bcc martensite, (b)
prior austenitic grains reconstructed by ARPGE, (c) gradients of ORs in the martensitic grains
colored in RGB (Red = Pitsch, Green = KS, Blue = NW), (d) CPP packets in the parent austenitic
grains, (e) {557}γ traces manually positioned along the blocks where the fit is acceptable,
(f) pole figure of the reconstructed parent grain PG1 with the < 110 >α directions of bcc
martensitic they contain and the calculated < 557 >γ directions. The orientation of the parent
grain PG1 is close to a < 557 >γ direction, which explains why some blocks (in brown and blue,
marked by the white arrows) are seen flat-on. The brown block is composed of two plates, one
flat-on (white arrow) and the other inclined or edge-on (black arrow).

grains that are orientated in a direction close to < 111 >γ, many blocks appear with a complex

bifoliate structure made of plates lying on two different 557γ planes; for some of them the

{557}γ planes are close to the same {111}γ plane, which agrees with the hypothesis (c) of Fig.

7.3, and for others the planes are close to two distinct {111}γ planes, which is a case than

was not expected from literature. In the rest of paper, we will try to explain why the local KS

OR observed at the lath scale deviates toward NW at the block scale, and we will propose a

qualitative explanation of the (575)γ habit planes and the complex bifoliate morphology of the

blocks.
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7.4 Crystallographic interpretation and discussion

Before discussing the experimental results, we would like to quickly explain our general

approach of martensitic transformations. After having explored different alternative models

for fcc-bcc martensitic transformation, such as the double-step model [33] and the one-step

model based on Pitsch OR [34], we have orientated our researches for the last years toward a

one-step model based on the KS OR [35]. The two-step model is probably relevant to steels in

which the intermediate hcp phase exists, as it is the case in FeCrNi and FeMn steels [41]; and

the one-step Pitsch model [34] is probably relevant for nitrogen iron alloys in which Pitsch

OR is observed [42]; but we came to seriously consider that for a vast majority of steels, the

one-step distortion that leads to the KS OR is the “natural”, “spontaneous” distortion and that

the other orientations (Pitsch, NW, GT) result from this KS distortion due to the back-stresses

induced in the surrounding matrix [35]. Thus, we consider that KS is the natural distortion in

the low-carbon steels, and that the tendency toward the NW OR results from the coupling of

the two-low misoriented variants in the blocks. We will show that it is possible to explain why

the average OR tends to NW at the block scale, even if KS exists locally at the lath scale. We will

also show that the {557}γ planes have some specific properties relatively to the NW OR that

could explain their formation.

7.4.1 Reminder on the calculation of orientation and distortion variants

Before entering the discussion, some notations and formulae must be recalled. We note the

reference basis of the γ phase Bγ
0 = (aγ

0 ,bγ
0 ,cγ0 ) with aγ

0 = [100]γ, bγ
0 = [010]γ, cγ0 = [001]γ. The

distortion matrix is formed by the coordinates of the transformed vectors (aγ
0 )′ , (bγ

0 )′ , (cγ0 )′

expressed in the reference basis Bγ
0 , written by

Dγ→α = [Bγ
0 → Bγ′ ] (7.2)

This matrix can be calculated by finding a primitive basis of the parent phase and by following

how this basis is distorted during the transformation [35]. The distortion matrix gives in

columns the images of the directions. The images of the planes are given by the reciprocal

matrix

(Dγ→α)∗ = (Dγ→α)−T (7.3)

where “-T” means “inverse of the transpose”.

We also note T γ→α the matrix of coordinate transformation, which gives the coordinates of

the vectors of the reference basis Bα
0 of the α crystal in the reference basis Bγ

0 of the γ crystal:

T γ→α = [Bγ
0 → Bα] (7.4)

T γ→α only depends on the orientation relationship.

A distinction should be made between the orientational variants and the distortional (shape)
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variants. The orientational variants only depend on the orientation relationship and not on the

mechanism. They can be mathematically defined from the subgroupHγ of the crystallographic

symmetries that are common to the parent and daughter crystals. This subgroup is given by

the orientation matrix T γ→α and by the point groups of parent and daughter phases, Gγ and

Gα:

Hγ =Gγ∩T γ→αGα(T γ→α)−1 (7.5)

The orientational variants are the cosets αi = gγ

i H
γ and their orientation matrices are T γ→αi =

gγ

i T γ→α with gi ∈αi . The number of orientational variants is Nα = |Gγ|
|Hγ| . Details are given in

Ref.[16].

The distortional shape variants depend on the mechanism, and more specifically on the

distortion matrix. They can be defined similarly as for the orientational variants but by

replacing the orientation matrix tγ→αi by the distortion matrix Dγ→α. The subgroup Kγ of

shape symmetries that are common to both parent and daughter crystals is

Kγ =Gγ∩Dγ→αGγ(Dγ→α)−1 (7.6)

The distortional variants are the cosets di = gγ

i K
γ and their distortion matrices are Dγ→αi =

gγ

i Dγ→α(gγ

i )−1 with gγ

i ∈ di . The number of distortional variants is Mα = |Gγ|
|Kγ| . Details are

given in Ref.[36].

The distortion matrices associated with the KS OR and with the NW OR will be noted DK S and

D NW , and simply called here “KS distortion matrix” and “NW distortion matrix”, respectively.

However, it is important to keep in mind that these two matrices are not those proposed by

Kurdjumov and Sachs [4] and by Nishiyama and Wassermann [2, 3] in their seminal papers,

for which the lattice deformation results from a simple shear combined with an expansion

and a contraction along some crystallographic directions. Please also note that the distortion

matrix Dγ→γ was noted Dγ→α
0 in ref. [35], the index “0” meaning the reference basis Bγ

0 . In

the present work, the index i is attributed to the index of the distortional variant, i.e. it is the

matrix of the distortional variant i obtained with the KS OR, and noted for sake of simplicity

Dγ→αi = DK S
i . By default, the identity matrix is gγ

1 , and the distortion matrix obtained with gγ
1

(or any matrix in Kγ) is noted DK S
1 .

7.4.2 Calculations of the KS and NW distortion matrices

The KS OR that we used in our previous works [35] was (1̄11)γ ∥ (1̄10)α & [110]γ = [111]α. This

choice was made to avoid the negative signs on the invariant line [110]γ = [111]α. Another

equivalent choice is often made: (111)γ ∥ (110)α & [1̄10]γ = [1̄11]γ. In order to facilitate the

comparison with literature, this OR was chosen for the variant α1 (Fig. 7.1). The fcc-bcc

distortion matrices can be calculated from DK S given in Ref. [35] by using the symmetry
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matrix

g =


0 −1 0

1 0 0

0 0 1

 (7.7)

and by applying the coordinate transformation (gi )−1Dgi . Thus, the KS distortion matrix

associated with variant α1 is

DK S
1 =


1+

p
(6)

18

p
(6)

18
1
3 −

p
6

6

−1
3 +

p
6

18
2
3 +

p
6

18
1
3 −

p
6

6

1
3 −

p
6

9
1
3 −

p
6

9
1
3 −

p
6

3

 (7.8)

The calculations prove that the intersection groups Hγ and Kγ are equal, both being consti-

tuted of the identity and inversion elements. Therefore, the orientational and distortional

variants are equivalent, and there is a one-to-one equivalence between the distortion matrix

DK S
i and the orientational variant αK S

i . Among the twenty-four KS distortion matrices, two

are of particular interest relatively to DK S
1 ; they are DK S

3 and DK S
6 . The matrix DK S

3 gives the

variant αK S
3 linked to αK S

1 by the operator O1 [15] (they are twin-related), and their association

makes fully invariant the {225}γ plane [38]. The matrix DK S
6 gives the variant αK S

6 that shares

the same (111)γ ∥ (110)α plane as αK S
1 , αK S

3 and αK S
6 . As already mentioned in introduction

and illustrated in Fig. 7.1b, the variants αK S
1 and αK S

6 are linked by a rotation of 10.5◦ around

the [111]γ ∥ [110]α axis, i.e. by the operator O5 [15]. The distortion matrix DK S
6 associated with

the variant αK S
6 is deduced from DK S

1 by using the symmetry matrix gγ
6 =


0 0 1

0 1 0

1 0 0



DK S
6 = gγ

6 D(gγ
6 )−1 =


1
3 +

p
6

3
1
3 −

p
6

9
1
3 −

p
6

9

1
3 −

p
6

6
2
3 +

p
6

18 −1
3 +

p
6

18

1
3 −

p
6

6

p
6

18 1+
p

6
18

 (7.9)

It can be checked that DK S
1 and DK S

6 leave invariant the directions [11̄0]γ and [011̄]γ, respec-

tively. It will be shown in the next section that the average of DK S
1 and DK S

6 is a distortion

that leaves unrotated the third CPD in the (111)γ plane, i.e. the [101̄]γ direction, and that this

matrix is exactly equal to that of the distortion related to the NW OR. For this reason, the block

formed by the pair of variants αK S
1 and αK S

6 is noted αNW
1 .

For the moment, one needs to calculate the NW distortion matrix by a method that is not based
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Chapter 7. Intricate morphologies of laths and blocks in low-carbon martensitic steels

on averaging. We use the fact that the NW variant αNW
1 with the orientation (111)γ ∥ (110)α

and [101̄]γ ∥ [001]α is located at 5.26◦ between the two variants αK S
1 and αK S

6 , as illustrated in

Fig.7.1b. The rotation matrix that re-orients αK S
1 toward αNW

1 is the rotation R of 5.2◦ around

[111]γ , and the one that that re-orients αK S
6 toward αNW

1 is the rotation R−1 of -5.26◦ around

[111]γ, with:

R =


1
9 (3+3

p
2+p

3) 1
9 (3−2

p
3) 1

9 (3−3
p

2+p
3)

1
9 (3−3

p
2+p

3) 1
9 (3+3

p
2+p

3) 1
9 (3−2

p
3)

1
9 (3−2

p
3) 1

9 (3−3
p

2+p
3) 1

9 (3+3
p

2+p
3)

 (7.10)

The distortion matrix associated with the variant αNW
1 is thus

D NW
1 = RDK S

1 = R−1DK S
6 =


1
6 (2+p

2+2
p

3) 1
6 (2−p

2) 1
6 (2+p

2−2
p

3)
1
3 (1−p

2) 1
3 (1+p

2) 1
3 (1−p

2)
1
6 (2+p

2−2
p

3) 1
6 (2−p

2) 1
6 (2+p

2+2
p

3)

 (7.11)

It can be checked that this matrix leaves the [101̄]γ direction unrotated; this direction is just

elongated by a ratio 2
p

3
3 ≈ 1.155. Further calculations (not detailed here) prove that there are

as many NW orientational variants as distortional ones. Therefore, there is again a one-to-one

correspondence between the orientational and the distortional variants for the NW OR. The

polar decomposition of D NW
1 will be used in the next section. It is written

D NW
1 = R NW

1 By =


1

12 (6+2
p

3+p
6) −1+p2

2
p

3
1

12 (−6+2
p

3+p
6)

1
6 (
p

3−p
6) 1p

3
+ 1p

6
1
6 (
p

3−p
6)

1
12 (−6+2

p
3+p

6) −1+p2
2
p

3
1

12 (6+2
p

3+p
6)




2p
3

0 0

0
√

2
3 0

0 0 2p
3


(7.12)

The rotation R NW
1 is of angle ArcCos( 1

3 + 1p
6

) and of axis [1̄01]γ, and By is the classical Bain

distortion matrix with the contraction axis oriented along the [010]γ direction.

7.4.3 The NW distortion matrix as the average of two KS distortion matrices

By considering how the vectors are transformed by DK S
1 and DK S

6 , as illustrated in Fig. 7.11,

one gets the feeling that the averaging of the two KS distortion matrices should lead to the NW

distortion matrix D NW
1 . This could explain why the ORs found experimentally at low scales an

medium resolutions in the EBSD maps tends to NW, whereas those found locally at higher

scales and better resolutions by TEM diffraction are closer to KS. Can this average relation be

rigorously proved? The more general question is: how to average two distortion matrices D1

and D2? The classical averaging formula used in the PTMC [19, 23, 43] is arithmetic; it consists

in linearly adding the distortion matrices with a weight factor (here 1
2 ) such that the resulting
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7.4. Crystallographic interpretation and discussion

Figure 7.11: Representation of the angular distortion part on the (111)γ plane of the KS
distortion associated with the two KS variants αK S

1 and αK S
6 . Instead of using rectangles,

the variants are represented by triangles formed by the dense directions < 111 >γ. The
(111)γ → (110)α fcc-bcc transformation occurs by opening by 10.5◦ the angle between the
< 111 >α directions. In the KS OR, only one direction is rotated while the other remains parallel
to a dense direction of austenite.

distortion matrix is

L = 1

2
D1 + 1

2
D2 (7.13)

By considering the numerical values (chopped at 10−4) of the matrices given in equations 7.8

and 7.9, and in equation 7.11, it appears that L is not exactly equal to D NW
1 :

L ≈


1.14296 0.0986253 −0.0068736

−0.136083 0.802749 −0.136083

−0.0068736 0.0986253 1.14296

 D NW
1 ≈


1.14639 0.0976311 −0.0083147

−0.138071 0.8047378 −0.138071

−0.0083147 0.0976311 1.14639


(7.14)

Why does the arithmetic average formula 7.13 work only approximately (at 5.10−3) but not

exactly? The fundamental reason is that formula 7.13 does not always respect the invariance of

the determinant. The determinant of a distortion matrix gives the ratio of the atomic volume

of the daughter phase divided by the atomic volume of the parent phase, i.e. the density of the

parent phase divided by the density of the daughter phase. For fcc-bcc transformations this

ratio is 4
3

√
2
3 ≈ 1.08866 in a hard-sphere model. Combining two distortion matrices should

not modify this ratio because it is a volume property. However, the determinant is not a linear

function of matrices. Thus, formula 7.13 can only by applied if it conserves the volume. This

condition is obeyed when the kinematic compatibility between the two variants is verified,

i.e. when the interface between them is distorted similarly by the individual distortion of

each variant [43]. This is not the case here. Does an averaging formula different from that of

equation 7.13 and leading exactly to the NW distortion matrix exist? The answer is positive.
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The idea lies in the fact that both αK S
1 and αK S

6 are two variants slightly misoriented; they

belong to the same Bain packet; their < 100 > directions form the same < 100 > Bain circle in

the pole figure; they have the same Bain matrix in their polar decomposition. Both distortion

matrices DK S
1 and DK S

6 can be decomposed as a product of a rotation and the Bain matrix By :

D NW
1 = RK S

1 By =


1

12 (
p

2+6
p

3) 1
6 −−2+p6

4
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−6+p6

12
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√
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1
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p
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6
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 (7.15)

D NW
1 = RK S

1 By =
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0 0

0
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3 0
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 (7.16)

The rotations RK S
1 and RK S

6 are of angle ArcCos(− 5
12 + 7

12
p

2
+ 1p

3
+ 1p

6
), and their rotation axes

are [1−p
2,7− 5

p
2− 4

p
3+ 3

p
6,1] and [1,7− 5

p
2− 4

p
3+ 3

p
6,1−p

2], respectively. The

distortion matrices can be averaged while maintaining the determinant invariant; this is done

by averaging the rotation matrices RK S
1 and RK S

6 , and then by multiplying the mean rotation

by the Bain matrix By . The question is now: how to average two rotation matrices? This

question is not simple and has been the subject of a broad literature well beyond materials

science. There are many formulae that can be applied depending on the chosen metrics

(geodesic, quaternion, chordal etc.) [44, 45]. The average of two rotations should give a

rotation. Besides, we search a formula in which the two rotation matrices can be interchanged.

Such a remarkable formula exists; it was proposed by Moahker in 2002 [46]: the geometric

mean of two rotations R1 and R2 is

〈R1,R2〉 = R1(RT
1 R2)

1
2 = R2(RT

2 R1)
1
2 = 〈R2,R1〉 (7.17)

This formula is of prime importance, although not yet well known in crystallography and

metallurgy. If two distortion matrices D1 and D2 are based on the same symmetric matrix B ,

i.e. D1 = R1B and D2 = R2B , their mean is thus given by

〈D1,D2〉 = 〈R1,R2〉B (7.18)

Applied to the KS rotations RK S
1 and RK S

6 , it gives

〈RK S
1 ,RK S

6 〉 =


1

12 (6+2
p

3+p
6) −1+p2

2
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3+p
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6) 1p
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1
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3−p
6)

1
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2
p

3
1

12 (6+2
p

3+p
6)

 (7.19)
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The matrix is exactly the rotation obtained by the polar decomposition of D NW
1 in equation

7.12. The matrix B is By of equations 7.12, 7.15 and 7.16. Thus, we get exactly the equation

that was expected:

〈DK S
1 ,DK S

6 〉 = D NW
1 (7.20)

The calculations prove that geometric average of the distortion matrices related to the KS

variants in a block is equal to a NW distortion matrix. This theoretical result is in good

agreement with the fact that locally the OR of a lath can be close to KS, and more globally, at

the block scale, it tends to be closer to NW.

7.4.4 The {557}γ plane emerging from the NW distortion

We have considered many hypotheses to explain the (575)γ habit planes; some were based

on variant coupling, others implied adding small obliquity corrections etc., but the only one

that we consider valuable because of its simplicity and the absence of extra parameters is the

one that is now presented. The average distortion matrix related to the two KS variants in a

block is a NW distortion matrix. Can the observed {557}γ habit planes be explained by this NW

distortion matrix, for example by using the “untilted-plane” criterion already applied for the

{225}γ habit planes in the high-carbon steels [35, 37]? If the hypothesis is correct, the habit

plane of a block should be untilted by the NW distortion, i.e. it should be equal to one of the

eigenvectors of the NW distortion matrix expressed in the reciprocal space:

(D NW
1 )∗ = (D NW

1 )−T =


1
8 (2+p

2+2
p

3) 1
4 (2−2

p
2) 1

8 (2+p
2−2

p
3)

1
4 (1−p

2) 1
2 + 1p

2
1
4 (1−p

2)
1
8 (2+p

2+2
p

3) 1
4 (2−p

2) 1
8 (2+p

2+2
p

3)

 (7.21)

This matrix has for eigenvalues 3
2
p

2
≈ 1.0607, 1 and

p
3

2 ≈ 0.8660, and for respective eigen-

vectors the planes (1,
p

2,1)γ, (1,1,1)γ and (1̄,0,1)γ. The plane (1,
p

2,1)γ is at 0.3◦ far from

the (575)γ plane, and will be simply noted (575)γ. The planes equivalent to (575)γ for the

distortions of the two other blocks, D NW
2 and D NW

3 , are the (557)γ and (755)γ, respectively.

We have concluded in Ref. [35] that (111)γ cannot be a habit plane for martensite because it is

the plane in which the fcc-bcc volume change is “localized”, i.e. the (111)γ plane is untilted

but highly distorted because of the rotation of some of the directions it contains. Indeed, in

the ideal case of hard-sphere model, the fcc-bcc volume change uniquely comes from the

increase of angle between two < 110 >γ CPDs in the CPP (Fig. 7.1c) from 60◦ to 70.5◦ while the

lengths of the two directions remain constant; the surface increases by 4
3

√
2
3 ≈ 1.088, which is

exactly the fcc-bcc volume change expected with a hard-sphere model. To our knowledge, the

only case of {111}γ habit planes concerns the “octahedrite” meteorites (see Supplementary

Material S1 (appendix B), but it is probable that the very low cooling rates of these objects

(few degrees per thousand years) allowed diffusive accommodation mechanisms, such as

dislocation climbing, that usually are not activated during rapid cooling.
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The two remaining candidates are the (575)γ and (1̄01)γ planes. The (575)γ plane is obviously

a good candidate to interpret the {575}γ habit planes; however, this plane is (575)γ ∥ {057}α,

which corresponds to case (a) of Fig. 7.3; i.e. it does not contain the [1̄10]γ CPD of the variants

αK S
1 . This case was experimentally investigated and eventually excluded in the previous sec-

tion. Despite this apparent discrepancy with the experiments, we consider that the fact that

the plane untilted by the NW distortion matrix is a {557}γ plane (up to 0.3◦) is not coincidence.

In order to conciliate the calculations with the observations, an interpretation is proposed in

the following section.

7.4.5 The {557}γ habit planes and the intricacy of the blocks

The TEM observations have showed that the habit planes of the laths are most often (575)γ ∥
{156}α. The EBSD maps exhibit blocks that have often a bifoliate morphology made of two

plates lying on distinct {557}γ planes. One foil is made of the {557}γ ∥ {156}α1 habit plane of one

lath variant, and the other foil is made of the {557}γ ∥ {156}α6 habit plane of second lath variant

of the block, as shown in Fig. 7.3c. It was also observed that some blocks are constituted

of {557}γ planes that do not belong to the same packet, as in Fig. 7.10a. This additional

complexity could probably be explained by a second coupling between the low-misoriented

variants linked by the operator O3 (10.5◦ around < 111 >α), but in order to remain as simple as

possible, it will be assumed in the rest of the paper that a block is a structure only made of the

two {557}γ ∥ {156}α planes that are the habit planes of the two KS variants it contains, i.e. those

linked by the operator O5 (10.5◦ around < 110 >γ).

Can the {557}γ habit plane be theoretically explained despite the fact that the {557}γ habit

planes calculated from equation 7.21 do not contain the invariant dense direction whereas the

experiments show they do? We make the hypothesis that the individual laths are created by

the fcc-bcc transformation with the KS distortion given in Ref. [35], for example by equations

7.8 and 7.9 for the variants αK S
1 and αK S

6 , respectively, and that the habit plane of a lath should

contain the common CPD, for example [1̄10]γ = [11̄1]α1 for variant αK S
1 . This last condition

means that the habit plane of the lath αK S
1 is a plane of type (hkl )γ ∥ (h′k ′l ′)α such h = k and

h′−k ′+ l ′ = 0. Among all the possible planes of type (hhl )γ with h 6= l , the plane (557)γ is

special because (i) it is only slightly tilted by 0.5◦ by the distortion matrix DK S
1 [35], and (ii) it is

not tilted at all by the average distortion D NW
2 of the adjacent block αNW

2 , as illustrated in Fig.

7.12. With the same argument, the plane (755)γ is special for the lath variant αK S
6 because it is

slightly tilted by 0.5◦ by the distortion DK S
6 and is not tilted at all by the average distortion of

the adjacent block D NW
3 . In other words, the planes (557)γ and (755)γ of the laths αK S

1 and

αK S
6 in the block αNW

1 are special because they are only slightly tilted by their own distortion

field, and not tilted at all by the average distortion of the neighboring blocks αNW
2 and αNW

3 ,

respectively. It is thus probable that the two habit planes constituting the bifoliate structure of

a NW block are the planes {557}γ as illustrated in Fig. 7.3c because these planes show a good

angular compatibility with the neighboring blocks in the packet. The pairs of habit planes

constituting the bifoliated blocks αNW
1 , αNW

2 , and αNW
3 are (557)γ+ (755)γ , (755)γ+ (575)γ

and (575)γ+ (557)γ, respectively. They are given in the lines of Table 7.3.
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Figure 7.12: Rotation angle of the planes (1,1, l )γ is l a real number, by (a) the distortion matrix
DK S

1 of the lath αK S
1 , and by (b) the distortion matrix D NW

2 of the block αNW
2 . The special

values l = 1, 7/5 and 5/2 marked by the vertical lines correspond to the planes (111)γ, (557)γ
and (225)γ.

Table 7.3: Table of good angular compatibility between the laths αK S
i and the surrounding

blocks αNW
j . The first grey line indicates the three NW blocks αNW

j belonging to the packet
(111)γ ∥ (110)α with their untilted plane {557}γ, i.e. the eigenvector of the distortion matrix
(D NW

j )∗. In the first grey column are reported the three blocks αNW
i with their pair of KS lath

variants. A cross is marked at position (i,j) when the untilted plane {557}γ of the block αNW
j

contains the common dense direction < 110 >γ∥< 111 >α of the lath αK S
i ; it is the habit plane

of the lath. The bifoliate structure of the blocks appears in the table by the two crosses in the
lines of the blocks. The two crosses aligned in the same column correspond to KS lath variants
that belong to two different blocks but share the same {557}γ habit plane.

Block αNW
1 Block αNW

2 Block αNW
3

(575)γ (557)γ (755)γ

αK S
1 x

Block αNW
2

αK S
6 x

αK S
5 x

Block αNW
2

αK S
8 x

αK S
2 x

Block αNW
3

αK S
3 x
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The planes (755)γ, (575)γ and (557)γ are the block interfaces αNW
1 /αNW

2 , αNW
2 /αNW

3 , and

αNW
3 /αNW

1 , respectively; they are also the habit planes of the KS laths αK S
6 ∥αK S

5 , αK S
8 ∥αK S

2 ,

and αK S
3 ∥αK S

1 , respectively. They are given in the columns of Table 3. This complex intricate

configuration is schematized in Fig. 7.13. This interpretation of the {557}γ habit planes

Figure 7.13: Morphological/crystallographic model of the three blocks in a (111)γ ∥ (110)α
packet. The blocks αNW

1 , αNW
2 and αNW

3 are colored in blue, green and red, respectively. A
block is a composite structure made of two {557}γ planes, which are the (557)γ ∥ {156}α habit
planes of the two KS laths it contains. The three {557}γ planes located at 9.4◦ far from the
(111)γ plane are represented by the triangles. The number in the triangles represents the index
i of the lath αK S

i .

proposed is different from those previously reported in literature that usually assume that the

{557}γ habit planes of martensite in low-carbon steels come from the internal structure of the

laths that contain sets of regularly spaced dislocations. Here, we infer that the {557}γ habit

planes are the result of a good angular compatibility between the laths and the surrounding

blocks.

7.4.6 Transformation temperature, plastic accommodation and variant pairing

In high-carbon steels, the KS distortion has for irrational untilted plane (11
p

6)γ ≈ (225)γ
plane [35], and a combination of two twin-related KS variants makes this (225)γ plane fully

invariant [38]. In the case of low-carbon steels, we have shown that the average of the KS

distortions associated with the two low-misoriented variants in a block is a NW distortion,

and the irrational plane untilted by this distortion is (1
p

21) ≈ (575)γ. However, contrarily to

the (225)γ planes, this plane is not rendered fully invariant by variant pairing. This difference

between the high and low carbon contents may probably be understood by considering the

transition temperature Ms. In high-carbon steels, the low Ms impedes dislocation plasticity
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around the martensite products, which favors self-accommodation by association of variants.

In low carbon steels, the higher Ms allows for the plasticity required to absorb the important

incompatibilities associated with the fact that the {557}γ habit plane is not fully invariant.

The accommodation may be obtained by stacking dislocations inside the surrounding fcc

matrix, as suggested in Fig. 7.9 of Ref. [35], or inside the bcc crystal during its formation,

as imagined in Fig. 7.2 of Ref. [47]. Whatever, the microstructural details, we think that the

important transformation plasticity in the low-carbon steels takes the form of the continuum

miorientations between the Pitsch, KS and NW ORs [15, 33, 34]. Mesoscopically, two rotational

gaps generated by the fcc-bcc distortion, one of 5.26◦ around the CPD and one of 5.26◦ around

the CPD should be accommodated, which can be realized with two wedge disclinations [48, 49].

These disclinations are supposed to be at the origin of continuous rotations A and B observed

in the pole figures [33]. The accommodation by a different type of variant-pairing implying

less dislocation plasticity in the high-carbon steels is in agreement with a lower spreading of

the ORs [50, 51].

7.4.7 Self-accommodation in individual packets

We would like to finish the discussion by considering other self-accommodation effects. The

case of association of two blocks (four KS variants) has been investigated, but no special

interesting result could be extracted. More interesting is the association of the three blocks

forming a packet. This configuration is sufficient to accommodate the strains at the maximum,

leaving only the hydrostatic part due to the volume change. Let us consider the pairsαK S
1 −αK S

6 ,

αK S
5 −αK S

8 and αK S
2 −αK S

3 forming the blocks αNW
1 , αNW

2 and αNW
3 , respectively, as indicated

in Fig. 7.2. It is reasonable to assume that the average of the six KS distortions is equivalent to

the average of the three NW distortions. We also assume that the average of the product is the

product of averages, i.e.

〈D NW
1 ,D NW

2 ,D NW
3 〉 = 〈R NW

1 ,R NW
2 ,R NW

3 〉〈B1,B2,B3〉 (7.22)

Averaging three rotations linked by a three-fold symmetry g2π/3 is a special case of the example

2 treated by Moakher [46] in which the rotation axes are coplanar. In such a case, the rotation

angle of the mean rotation is zero; thus, 〈R NW
1 ,R NW

2 ,R NW
3 〉 = Identity. In addition, since the

matrices Bx , By and Bz are diagonal in the same basis, their geometric average is simply

〈B1,B2,B3〉 = (B1,B2,B3)
1
3 =


2

5
6p
3

0 0

0 2
5
6p
3

0

0 0 2
5
6p
3

 (7.23)

Consequently, the average of the six KS variants in a packet, or equivalently the average of their

three mean NW distortion matrices, is an isotropic matrix equal to 2
5
6p
3

times the identity matrix.

It is the best distortion that can be obtained by accommodation; its determinant
4
√

2
3

3 ≈ 1.088
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gives the volume change from fcc to bcc expected from a hard-sphere model. If the real change

of atomic size during the transformation is taken into account, the multiplicative coefficient is

lower, close to 1.016. Anyway, this change does not modify the calculations and conclusion:

in the limit of the hypotheses made on the geometric averaging formulae, the martensitic

transformation is self-accommodated with the six KS variants of an individual packet; the

formation of any of the four packets is sufficient to obtain self-accommodation; there is no

need to form the 24 variants.

7.5 Conclusion

The low-carbon steels are constituted of a highly intricate microstructure of lath martensite.

In each prior austenitic grains, martensite is structured into four crystallographic packets

constituted of three blocks made of pairs of low-misoriented KS variants. The fact that the

orientation relationship within the prior parent austenitic grains is not strict but follows

gradients from KS toward NW is not well explained in literature, so as the fact that the habit

planes deviate from the common {111}γ plane to be actually close to {557}γ. The present

experimental and theoretical work proposes some elements of responses that are different

from those classically used in literature.

Three low-carbon steels were studied by TEM and EBSD with the help of dedicated software.

It was checked by carefully indexing the TEM diffraction patterns obtained on laths belonging

to the same prior austenitic grains that their habit planes are (557)γ ∥ {156}α. The EBSD maps

confirm that the orientation gradients inside the blocks range from KS toward NW. Most of the

blocks appear as plates on {557}γ planes or as bifoliate structures made of the two (557)γ habit

planes of the two lath variants.

Crystallographic arguments were used to interpret these results. The average distortion

associated with the two low-misoriented KS variants constituting a block is a NW distortion.

The average formula used for the calculation is geometric; it allows respecting the expected

volume change even if the kinematical condition of compatibility is not fulfilled. One of three

{557}γ planes close to the common plane {111}γ ∥ {110}α is absolutely untilted by the NW

distortion. Consequently, the {557}γ habit planes of the two laths forming a bifoliate block are

special because each of them contains a common dense direction, is only slightly tilted by

its own distortion field, and is not tilted at all by the NW distortion of one of the neighboring

block in the packet. In addition, the calculations show that the martensitic transformation

can be completely self-accommodated in individual packets by the co-formation of the six KS

variants, the resulting mean distortion being only the hydrostatic matrix due to the fcc-bcc

volume change. It is thus proposed that the {557}γ habit planes and the bifoliate morphology of

martensite in the low carbon steels are the result of a good angular compatibility between the

laths and the surrounding blocks in the packets. The blocks are in contact two-by-two by the

{557}γ habit planes of the laths they contain, which produces a highly intricate microstructure.
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Note 1 The values of the mean displacement per atom calculated in section 7.3. of Ref.[35]

were based on a classical unit cell formed by the atoms with positioned in [0,0,0], [1,0,0],

[0,1,0], [0,0,1], [1,1,0], [1,0,1], [0,1,1], [1,1,1], [1/2,1/2,0], [1/2,0,1/2], [0,1/2,1/2], [1/2,1/2,1],

[1/2,1,1/2], [1,1/2,1/2]. The corner atoms (eight atoms) count for 1/8, and the atoms in the

centers of the faces (six atoms) for 1
2 ; the unit cell contains 4 atoms. The average displacement

is calculated by summing the pondered displacements of the 14 atoms and dividing the

result by 4. The mean displacement was calculated with the Bain, Pitsch and KS distortion

matrices. Unfortunately, we realized during the preparation of present paper, that the result

obtained in Ref.[35] depends on the choice of the reference frame. This is because the origin

[0,0,0] of the basis is a corner of the unit cell whereas it should be its center. The results

obtained with a cell centered in [0,0,0], i.e. by translating the vectors by [1/2,1/2,1/2] now

give mean displacements that do not depend on the choice of the reference frame. The mean

displacements recalculated with the centered unit cell are 0.347 Å for Bain, 0.461 Å for KS and

0.429 Å for Pitsch. Therefore, we were wrong when we said that the displacements associated

with the Pitsch and KS distortion were lower than for Bain distortion. The rest of the paper

[35] is not affected by this error, and the conclusion that the distortion associated with the KS

OR is a good candidate to be the natural distortion and could explain the {225}γ habit planes

in the high carbon steels still holds, as confirmed in Ref. [38].

Note 2 We take the opportunity of the paper to correct a typo error in the indices of the

phases that appeared in equation (5) of Ref. [36] during the edition process. The orientation

relationships should be read:

• KS: [110]γ = [111]α and (1̄11)γ ∥ (1̄10)α

• Burgers: [111]γ = [100]ε and (1̄10)γ ∥ (001)ε

• SN : [110]γ = [100]ε and (1̄11)γ ∥ (001)ε

Note 3 This work is in the continuity of our efforts [33, 34, 35, 38] to develop an alternative

to the phenomenological theory. It is in agreement with our initial hypothesis that only

one matrix, the angular distortion matrix associated with the KS OR, is sufficient to explain

important feature of martensite, such as gradients of orientation relationships, the {225}γ habit

planes in high-carbon steels [35, 38], and now the intricate lath/block morphologies on {557}γ
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habit planes in low-carbon steels. Although the irrational character of these habit planes was

sensed for a long time, it is only now that irrational values are proposed. According to our

model, the {225}γ and {557}γ habit planes are in fact {11
p

6}γ and {11
p

2}γ planes, respectively.

Our research continues on the {259}γ habit planes of martensite in Fe-Ni-C steels.
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Chapter 8. Variant selection in surface martensite

Abstract
A significant variant selection is reported in isothermal martensite formed on the surface of

a Fe-30%Ni sample. The selection phenomenon is modelled using different descriptions of

the martensitic phase transformation. In particular, matrices based on the Phenomenological

Theory of the Martensitic Crystallography, the Jaswon & Wheeler distortion and the continuous

FCC-BCC distortion are compared. All descriptions allow good predictions of the variant selec-

tion. However, the Jaswon & Wheeler distortion and the continuous distortion better accounts

for other features of surface martensite, such as the {225}γ habit plane and the accommodation

mechanism by twin-related variants pairing.

Introduction

Variant selection in martensitic steels is a well documented phenomenon because of its impli-

cations on the industrial process of steel. It is reported when stress is applied to the material

either before (Wittridge & Jonas, 2000) ( Miyamoto et al., 2012) or during transformation

(Gey et al., 2005)(Mishiro et al., 2013). In this study, we show a significant variant selection

in isothermal surface martensite formed on the free surface of a as-cast Fe-30%Ni sample

without any applied stress. The formation of surface martensite above the bulk martensitic

start temperature has been observed since the fifties in different types of steels, as for ex-

ample, in high carbon steels, iron-nickel alloys and stainless steels (Klostermann & Burgers,

1964)(Klostermann, 1972). More recently, spontaneous martensitic transformation around

free surface created by FIB milling in retaind austenite grains of stainless duplex steel was also

noticed (He et al., 2014). However, to our knowledge, variant selection in surface martensite

has never been reported. This study shows this phenomenon and proposes a predictive model,

based on the maximization of the extension of a material fiber oriented along the normal to

the sample free surface. This model is used to compare different crystallographic descriptions

of the transformation. In particular, we consider the invariant plane strain and the invari-

ant line strain based on the Phenomenological Theory of the Martensitic Crystallography

(PTMC)(Bowles & Mackenzie, 1954), the Jaswon & Wheeler distortion (Jaswon & Wheeler, 1948)

and the continuous distortion associated with the Kurdjumov-Sachs orientation relationship

(Cayron, 2015). The study shows that all four descriptions of the transformation are able to

predict correctly the trend of variant selection in surface martensite, however, the Jaswon &

Wheeler distortion and the continuous distortion are more appropriate for accounting for

other features of the transformation, such as the habit plane and the accommodation by

twin-related variants pairing.
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Material & Methods

Experimental method

A as-cast Fe-30%Ni alloy was cut and polished manually. The sample was prepared for EBSD

mapping by electropolishing with the Struers A2 electrolyte (35V, 20sec). Surface martensite

appeared after the electropolishing using an electrolyte at 10◦C , meaning that the trans-

formation took place approximatively 10◦C above the bulk martensitic start temperature.

Maintained at the same temperature, the sample kept transforming hours later, which in-

dicates an isothermal type of transformation. Optical images showing the evolution of the

martensite transformation are available in section III of the supplementary material (Appendix

A), figure S 6. EBSD characterization was performed with a FEI-XLF 30 field emission gun SEM

using the Oxford Instruments acquisition software.

Predictive models for variant selection

The EBSD measurements, presented in the Results & Discussion section, show a significant

variant selection even though the material was not subjected to any stress or strain, prior

or during transformation. The variant selection phenomenon is believed to result from the

geometric anisotropy caused by the presence of the free surface, which allows the martensite

to expand, free of constraints in the direction normal to the surface. Predictive models based

on this observation and considering different modeling of the transformation are proposed.

Modeling of the transformation.

Various models are available in the literature (Bowles & Mackenzie, 1954) (Jaswon & Wheeler,

1948) (Cayron, 2015). Here, we will consider four different descriptions to compare them and

analyze which is the most appropriate to predict variant selection in surface martensite. The

mathematical descriptions of the transformation are defined by a transformation matrix F .

F gives the image by the transformation of any vector u: u′ = F u. Expressed in the austenite

crystallographic basis, the four descriptions considered in this work are:

• The Jaswon and Wheeler distortion. The Kurdjumov-Sachs orientation relationship

(111)γ ∥ (11̄0)α ; [11̄0]γ ∥ [111]α is often found in martensitic steels (Kurdjumov & Sachs,

1930). Based on this orientation relationship, an FCC-BCC distortion has been proposed

by Jaswon and Wheeler (1948). As function of the lattice parameters, the distortion can

be written:

F JW = aα
aγ


1
6 +

√
3
2

1
6 −1

2 +
√

1
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2
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1
6

−1
3 +
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1
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1
6 1+

√
1
6

 (8.1)
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For the Fe30%Ni, we consider the lattice parameters, aα = 2.8635Å and aγ = 3.5854Å, for

the martensite and the austenite respectively, as measured by Goldmann and Wagner

(1963).

• The continuous distortion. A continuous distortion for the FCC-BCC transformation

has been recently proposed (Cayron, 2015). This continuous distortion, noted DK S(x =
cos(β)) in the aforementioned reference, leads to the Kurdjumov-Sachs orientation

relationship. It can be expressed using a unique angular parameter x which evolves

during the lattice transformation:

F K S(x) =
1−x + 1
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The two extremal x values are x = 1
2 and x = 1

3 , for the initial and the final distortion of the

FCC lattice, respectively. It is worth recording that the complete distortion F K S(x = 1
3 ) is

equal to the Jaswon & Wheeler distortion with lattice parameters in hard sphere ratio,

i.e. aα

aγ
=

√
2
3 .

• PTMC Invariant Plane Strain. Variant selection caused by applied stress is classically

studied using the invariant plane strain (IPS) computed from the Phenomenological

Theory of the Martensite Crystallography (Bhadeshia et al., 2008). Here, the IPS is

calculated with the PTCLab software (Gu et al., 2014), using the Goldmann and Wagner

lattice parameters for Fe30%Ni and assuming twinning on {101}γ as lattice invariant

shear (details in section V of the supplementary material in Appendix A). From the two

solutions computed using PTMC, the one that best fits the experimental data is chosen.

F I PS =


0.99193 0.03516 −0.02776

−0.02808 1.12242 −0.09663

−0.02776 0.12099 0.90449

 (8.3)

• PTMC Invariant Line Strain. Beside the IPS, the PTMC also allows computing the

invariant line strain (ILS) associated with the phase transformation. For our alloy, the

invariant line strain is given by:

F I LS =


1.11998 0.03516 0.10029

−0.01947 1.12242 −0.08802

−0.14482 0.12099 0.78743

 (8.4)

Variant selection criteria.

A variant selection criterion is then associated to each description of the transformation. For

the invariant line strain F I LS , the invariant plane strain F I PS and the Jaswon & Wheeler F JW
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models, the criterion is the maximization of the extension of a material fiber oriented along

the normal to the free surface. The term material fiber comes from continuum mechanics

and describes a set of material particles oriented along a given direction. It is not related to

any texture consideration. This criterion can also be seen as the maximization of the volume

change intrinsic to the transformation in a direction normal to the surface. To express it

mathematically, we need to consider the gradient of displacement H associated to the phase

transformation H = F − I . The displacement associated with the extension of a material fiber

oriented along the normal to the free surface is given by the magnitude of Hzz , when H is

expressed in the sample reference basis Bs = {x , y , z}. A sightly different criterion is chosen

for the continuous model. Taking advantage of the continuous description, we propose

to consider the maximization of the variation of the extension of a material fiber oriented

along the normal to the free surface, at the beginning of the transformation. We thus need

to compute the derivative Ḣ K S(x = 1
2 ) = d H K S

d x | 1
2

of the continuous distortion and evaluate

the magnitude of Ḣ K S
zz . The criterion based on the maximization of Hzz in the case of the

continuous model has also been tested in this study, but since the predictions agree with the

one obtained using the Jaswon & Wheeler distortion, they are not presented here. For the

variant selection, a threshold based on the absolute value of the magnitude of Hzz or Ḣzz ,

is set to best fit the experimental data in each of these four cases. The Hzz threshold values

equal respectively 0 for the Jaswon & Wheeler model and the PTMC invariant line strain and

0.03 for the invariant plane strain. The Ḣzz threshold is set to 0.2. The predictive models have

been implemented using the MTEX toolbox (Bachmann et al., 2010).

Results & Discussion

Experimental evidence of variant selection

Figure 8.1 shows two EBSD maps of surface martensite and the corresponding pole figures of

the martensite. Due to the large grain size in the sample, up to millimeter scale, these maps

only show a part of the parent grain. Therefore, a lower magnification EBSD measurement has

been performed to verify that the measure of a single "island" of martensite is representative of

the transformation produced in the whole grain. The lower magnification map is presented in

the supplementary material in section I (Appendix A). From the poles figures 8.1B and 8.1D, a

pronounced variant selection can be observed. In these two examples, the selection relates to

variant grouping in so-called Bain packets (Cayron, 2013). In the martensitic transformation,

there exist three Bain packets, each of them containing 8 variants which all have the same Bain

strain. In {100}α pole figures, Bain packets are easily recognizable by the circles around the

< 100 >γ poles. The arrows on figure 8.1B and 8.1D indicate them. It seems that the variants

belonging to Bain packets having a contraction axis oriented close to the normal to the surface,

i.e. having an expansion located in the plane parallel to the surface, appear more weakly than

the others. In map 1, two Bain circles are complete whereas the third one is almost missing. In

map 2, only one Bain circle is almost complete and the two others only appear partially.

103



Chapter 8. Variant selection in surface martensite

Figure 8.1: EBSD measurements of surface martensite, coloured by Euler coding. A and C:
EBSD maps 1 and 2. B and D: Pole figures of the martensite in maps 1 and 2, respectively.

Variant selection predictions

Figures 8.2 and 8.3 show the predictions of the variant selection according to the four criteria

applied to maps 1 and 2, respectively. When needed, detailed views have been added on the

pole figures in order to better visualize the predicted variants. From figures 8.2 and 8.3 it can

be seen that the trend of the variant selection by Bain packets is predicted quite correctly

with all four models. Additional EBSD measurements and associated simulations, available in

section II of the supplementary material (Appendix A), show the same quality of predictions.

Accommodation by twin-related variants.

The main discrepancy between the predictions -regardless of the model used- and the ex-

periments is the light presence of the variants of the Bain packet that is associated with the

compression along the surface normal. According to our computations, the variants be-

longing to this Bain packet are not favoured by the presence of a free surface, as for these

variants the expansion mainly takes place in the xy plane. They are thus not selected in our

predictive models. Nonetheless, we are able to explain their appearance by considering a

"twinning" accommodation mechanism of the habit plane. By their crystallographic nature,

two twin-related variants belong to two different Bain packets (Cayron, 2013). Therefore, to

accommodate the nucleation of all variants belonging to two specific Bain packets that are
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Figure 8.2: Prediction of variant selection for map 1. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: Jaswon & Wheeler distortion. C:
Derivative of the continuous distortion. D: PTMC invariant plane strain. E: PTMC invariant
line strain.
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Figure 8.3: Prediction of variant selection for map 2. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: Jaswon & Wheeler distortion. C:
Derivative of the continuous distortion. D: PTMC invariant plane strain. E: PTMC invariant
line strain.
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Figure 8.4: Twin-related variants combination for habit plane accommodation. A: EBSD map,
with twin boundaries marked in black and {225}γ habit plane indicated with dashed lines. B:
{100}α pole figure.

favoured by the free surface, one needs variants from the third Bain packet, even if this packet

is not favoured. The EBSD map in figure 8.4A with the twin boundaries marked in black shows

that the variants belonging to the unpredicted Bain circle (see 8.4B) are twin-related in pair

with the variant composing predominantly the martensite plates. It can be seen that the un-

favoured twin-related variants are only located on the habit planes of the plates, which traces

are indicated with dashed lines on figure 8.4A, confirming their role in the accommodation

mechanism.

Derivative criterion vs. complete distortion criterion.

As already mentioned, for the criterion based on the maximization of the extension of a

material fiber along the normal to the free surface (max Hzz ), the continuous model and

the Jaswon & Wheeler model give the same results. Thus, it is worth comparing figures 8.3C

and 8.3B to figure 8.3A in order to analyze the effect of considering a criterion based on the

variation of the extension (max Ḣ K S
zz ), using the continuous distortion instead of the criterion

based on the total extension (max Hzz ), associated with the complete lattice distortion. By

focusing on the Bain packet indicated with red circles, it seems that the criterion based on

the variation improves the predictions for the variants distribution inside the indicated Bain

packet, as compared to the complete distortion. This result might suggest that variant selection

takes place at an early stage of the transformation, the variant being selected in the beginning

of the lattice distortion. Such a vision is quite in opposition with the idea of a variant selection

based on the invariant plane strain. Indeed, the IPS criterion, includes the consideration of

the full distortion along with the type of accommodation as relevant for the variant selection.

In other words, in the derivative criterion, the early stage of the transformation is considered
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Table 8.1: Comparison of the quality for the predictions for the four different models.
PTMC ILS PTMC IPS JW distortion Continuous distortion

Map 1 19% 14% 21% 21%
Map 2 14% 13% 14% 16%

as crucial for the selection, whereas in the IPS criterion it is the final accommodated product,

which drives the selection.

Quantitative comparison of the models.

To quantify and compare more properly the quality of the predictions, we performed a com-

putational image comparison of the predicted and the experimental datas. Binary images of

the experimental and simulated pole figures are superimposed and the number of pixels that

are correctly predicted, i.e. that are common in both the images, are counted. This number is

then normalized by the union of the predicted and simulated pixels. The computational com-

parison is performed based on the {100}α and {110}α pole figures for both maps. The results

are presented in table 8.1. Details of the quantitative comparison of the variant selection are

available in the supplementary material in section VI (Appendix A). A second method consist-

ing in computing the angular deviation of each experimentally measured martensite grain

in respect to the closest predicted martensitic variant has also been carried out. The results

were not substantially different form the one presented above and both comparisons show

that the trend of variant selection is captured by all models and that we cannot completely

discriminate one model from the other on the quality of variant selection prediction.

Orientation relationship and habit plane predictions.

Beside the variant selection phenomenon, it is also worth comparing the quality of the predic-

tion for other features of the transformation, such as the orientation relationship (OR) and the

habit plane. The nature of the OR can be deduced from the shape of the continuous patterns

in the martensite pole figures (Suikkanen et al., 2011). In particular, the curvature of the

outer contour of 3-fold stars in the {110}α pole figure tells whether the OR is closer to that of

Nishiyama-Wassermann or to that of Kurdjumov-Sachs. On figures 8.5A, 8.5B and 8.5C, arrows

indicate the part of the pattern to compare. If the external contour of the star is convex as it is

the case in figure 8.5C, the OR is close to that of Nishiyama-Wassermann, and if it is concave as

in figure 8.5B, it is close to that of Kurdjumov-Sachs. By inspection, the measured pole figures

indicate that the OR is closer to that of Kurdjumov-Sachs. The measured OR is quite surprising

as the NW OR has been originally observed in bulk martensite formed in Fe-30%Ni and the

same OR was estimated in surface martensite by Klostermann and Burgers (Klostermann

& Burgers, 1964). A closer analysis of the OR based on the misorientation across FCC-BCC

boundaries has been carried out. Figure 8.5D shows the interphase boundaries associated

to map 1. The boundaries are marked in green when they are close to the Kurdjumov-Sachs

108



Figure 8.5: Orientation relationships. A: Experimental pole figures B: Pole figures of the Jaswon
& Wheeler and continuous distortions (Kurdjumov-Sachs). C: Pole figures from the PTMC
calculations D: Color map of interphase boundaries, in green, within 3◦ of KS, and in magenta,
within 3◦ of NW.

OR and in magenta when they are close to the Nishiyama-Wasserman OR. It can be observed

that near the habit plane the OR is closer to Kurdjumov-Sachs, but as the martensite plate

grows, the OR tends to get closer to the Nishiyama-Wasserman one. The same type of gradient

in the orientation relationship has already been observed by Sato & Zaefferer, in butterfly

martensite (Sato & Zaefferer, 2009). They measured an OR close to Kurdjumov-Sachs near

the {225}γ outer interface of the butterfly wings, while the Greninger-Troiano OR and the

Nishiyama-Wassermann OR were found along the inner interface. To estimate quantitatively

the occurrence of each OR in surface martensite, we measured the length of the boundaries

associated with the two respective OR. In agreement with the results of analysis of the shape

of the pole figure, boundaries close to KS are more often found than boundaries close to NW.

Some additional details of this analysis, including the measurements of the bulk OR (figure

S 17), are proposed in section VIII of the supplementary material (Appendix A). The type of

habit plane is another relevant feature of the transformation that needs to be accounted in

the transformation models. Based on the analysis of EBSD maps (supplementary in Appendix

A, section IV), we found that the habit plane is of type {225}γ. This result has been already

reported in the literature (Wakasa & Wayman, 1979) (Klostermann & Burgers, 1964). The

crystallography of the habit planes thus disagrees with the PTMC calculations which predict

a habit plane close to {3 10 15}γ. On the contrary, the Jaswon & Wheeler distortion and the

continuous distortion can account for untilted {225}γ (Jaswon & Wheeler, 1948)(Cayron, 2015).

In the continuous model, the {225}γ habit plane even becomes fully invariant by pairing the

variants that are twin-related (Baur et al., 2017). In this configuration, the shape deforma-

tion associated is exactly an IPS on {225}γ. This type of accommodation agrees particularly

well with Klostermann observations of isothermal martensite growth (Klostermann, 1972).
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According to his study, the initial stage of the plate growth is an IPS on {225}γ. The plate

then grows transversally and the associated shape deformation becomes inhomogeneous.

To fully appreciate the agreement between Klostermann’s observations and the continuous

distortion, it is worth considering again figure 8.4. It shows that an energetically unfavoured

variant twin-related with a favoured one is needed to accommodate the transformation on

the habit plane. The combination of theses variants on the habit plane produces an IPS. This

corresponds to the Klostermann’s first stage. Then, once the habit plane is accommodated,

the twin that is energetically most favoured grows preferentially.

Both the Jaswon & Wheeler distortion and the continuous model are able to account convinc-

ingly for the accommodation mechanism and the habit plane observed in surface martensite.

Using PTMC, the surface martensite habit plane is wrongly predicted if the real lattice parame-

ters are considered, but one can account for such a habit plane by using lattice parameters

in hard sphere packing ratio as input for the computation (Baur et al., 2017). In terms of

orientation relationship, it appears that the Jaswon & Wheeler distortion and the continuous

distortion well describe the early stage of the transformation, while PTMC prediction of the

orientation relationship is valid for the fully grown plate.

Conclusion

In conclusion, we observed and analyzed variant selection in surface martensite formed

in a Fe-30%Ni alloy. The variant selection was found to be related to the Bain packets. A

prediction model based on the maximization of the extension of a material fiber oriented

along the normal to free surface is proposed. Different descriptions of the transformation

have been tested. In particular, PTMC matrices, namely the invariant plane strain and the

invariant line strain, the Jaswon & Wheeler distortion and the continuous distortion have been

compared. The variant selection prediction is not significantly different using these different

models, such that none of the models can be discriminated from the others on this basis.

However, the Jaswon & Wheeler distortion and continuous distortion allow a more complete

description of the transformation as they accounts well for other features of the transformation

such as the {225}γ habit plane and the accommodation mechanism by twin-related variants

pairing. Finally, this study suggests that it might be worth considering of the variation of the

extension of a material fiber oriented along the normal to the free surface at an early stage

of the transformation, using the continuous description of the transformation, instead of its

total extension based on the complete transformation.
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Chapter 9. On the chevron morphology of surface martensite

Abstract
It is established that the annealing twin boundaries of austenite act as nucleation sites for the

martensitic transformation. In the present study, we observe that in surface martensite the

transformation only takes place for twin boundaries that are approximately vertical in respect

with the sample free surface. This phenomenon is shown to be related to variant selection. The

criterion for surface martensite formation introduced in a previous study is used here to account

for the selection of the twin boundaries that promote the transformation. This criterion correctly

captures the phenomenon and explains the highly symmetrical chevron morphology observed

in surface martensite.

Introduction

The formation of surface martensite in steels was reported several times in the past and studied

in details by Klosterman and Burgers [1]. Different alloys (stainless steels, iron-nickel and

iron-nickel-mangenese alloys) exhibit this particular form of martensite [2, 3, 4]. Recently, the

present authors showed that a natural variant selection takes place in the martensite formed

at the surface of Fe-30wt%Ni alloys [5]. The phenomenon is caused by the presence of the free

surface which favours the nucleation of some particular martensite orientations. The selection

was modeled by using a criterion for martensite formation based on the maximisation of

the extension of a material fibre oriented along the normal to the free surface. Different

transformation models were compared and we showed that the FCC-BCC distortion associated

with the Kurdjumov-Sachs orientation relationship [6, 7] convincingly accounts for both the

variant selection and the crystallographic features of surface martensite, such as the {225}γ
habit plane and the Kurdjumov-Sachs orientation relationship. Like free surfaces, grain

boundaries are also known to promote the nucleation of martensite [8]. Experiments on

annealed samples show that twin boundaries in particular act as potent nucleation site for the

martensitic transformation, in both surface and bulk martensite [2, 9, 10, 11]. In the present

study, the formation of surface martensite is studied in a cold-worked and recrystallized Fe-

30wt%Ni alloy, exhibiting a high number of annealing twin boundaries. We observe that not all

the twin boundaries are equivalently efficient to promote the formation of surface martensite.

Only the boundaries with particular spatial orientations allow the nucleation of martensite.

The phenomenon is studied by considering the criterion for surface martensite formation

introduced in our previous study [5]. We show that this criterion explains the austenite spatial

orientations for which the transformation preferentially takes place, which rationnalizes the

highly symmetrical morphology observed in the surface martensite.
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Experimental method

Fe-30wt%Ni samples have been cold-worked and recrystallized in quartz tubes at 1’100◦C for 3

hours. They were grinded down to 1 micron and electropolished with Struers A2 electrolyte at

35V for 20s. The temperature of the electrolyte was about 10◦C . It is above the Ms temperature

of Fe-30wt%Ni bulk martensite, which is reported to be lower than 0◦C [12]. Surface martensite

appears during electropolishing. This transformation above the Ms is believed to be caused by

the removal of the stresses on the polished surface. The produced martensite is characterized

by using an XLF-30 (FEI) scanning electron microscope, equipped with a Channel5/Aztec

(Oxford Instruments) EBSD system.

Results and discussion

Crystallographic characterization

By analyzing the entire polished surface, we observe that almost all the martensite prod-

ucts have a highly symmetrical chevron morphology. This morphology is illustrated in the

optical micrograph in figure 9.1 and in the EBSD measurements of figures 9.2A and 9.4A.

Figure 9.1: Optical micrograph of the chevron martensite formed on the surface of the recrys-
tallized Fe-30wt%Ni sample.

The measurement in figure 9.2 indicates that the two austenite grains (yellow and green) are

misoriented by a 60◦ rotation about [111]γ. The trace of the grain boundary is perpendicular

to the common [111]γ and indicated by the circle on figure 9.2B. The corresponding grain

boundary is thus an annealing twin boundary. The nucleation of surface martensite exhibiting

the chevron morphology appears to be related to the presence of such boundaries. Figure

9.3 illustrates schematically the morphology and the crystallography of chevron martensite.
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Figure 9.2: EBSD map of the chevron martensite. A: Austenite and martensite in Euler colour
coding. Austenite twin boundaries are marked in red. Detailed window: internal misorienta-
tion of the martensite: Blue 0◦ to red 8◦. B: Pole figures of the austenite. C: Poles figures of the
martensite.

Figure 9.3A shows two twin-related austenite grains (1 and 2) separated by a twin boundary in

red. On each side of the twin boundary, a lenticle of martensite appears. The chevron consists

in the assembly of these two lenticles. A detailed crystallographical analysis based on the

EBSD measurement suggests that the habit plane of each lenticle is of type {225}γ, and the

orientation relationship is close to Kurdjumov-Sachs, in agreement with our previous study

of surface martensite (see supplement 2 (Appendix C) for the details) [5]. Figure 9.3B shows

two twin-related grains (1 and 2) represented with the {111}γ planes. The common (111)γ,

which is the twin boundary, is marked in grey. The six Kurdjumov-Sachs variants having

their close-packed plane parallel to the common (111)γ close-packed plane are represented

with paralellograms. These six variants belong to the same close-packed plane packet (CPP

packet). When the close-packed plane associated with these variants corresponds to the twin

boundary, the variants have the particularity of being common to both twin-related grains.

From the EBSD measurements in figure 9.2, the variants forming the chevron correspond to

that case. The common (11̄0)α ∥ (111)γ is indicated in figure 9.2 with circles on the {110}α and
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{111}γ poles figures (Figure 9.2B and 9.2C). As a consequence, the chevron is in Kurdjumov-

Sachs orientation relationship with both grains. The propensity of martensite to nucleate

in orientation relationship with two different neighbour grains is well documented. This

particularity is, for exemple, used as variant selection criterion by Tomida et al. [13] and its

implication on the micro-mechanics of steel has been recently enlighted by Archie et al. [14].

The same nucleation behaviour is also observed in the heterogeneous nulceation of BCC

precipitates formed on FCC annealing twin boundaries in Ni-Cr alloys and in the nucleation

of FCC precipitates formed on the BCC deformation twin boundary in a duplex stainless steel

[15]. The EBSD characterization of the martensite chevron (figure 9.2C) further indicates that

Figure 9.3: Schematic representation of the crystallography and morphology of chevron
martensite. A: {225}γ lenticles of martensite composing the two "wings" of the chevron, each
lenticle nucleating on one side of a twin boundary indicated in red. B: Two tetrahedras
representing the {111}γ of the two twin-related austenite grains, grain 1 and grain 2 (twin).
The tetrahedras are matching on the common (111)γ (twin boundary) coloured in grey, such
that the (111)γ is a mirror plane between the two grains. The martensite variants belonging
to the common CPP packet are represented by rectangles, which appear as paralellogramms
because of the 3D representation. A pair of misoriented variants are coloured in red.

the martensite orientation, in purple, spreads between the two low-misoriented Kurdjumov-

Sachs variants belonging to the same CPP packet. The inserted window in figure 9.2A shows

the misorientation inside the chevron. The reference orientation is taken on the top right edge

of the chevron, in blue. The gradient of colour indicates the gradient of misorientation from

0◦ (blue) to 8◦ (red). We measure about 3◦ to 5◦ of misorientation between the two sides of the

chevron and less than 2◦ of misorientation inside each wing of the chevron. Exemple of such

pair of low-misoriented variants are illustrated in red in figure 9.3B. Among the six variants

of the CPP that are in orientation relationship with both twin-related grains, a maximum

of two low-misoriented variants appear. In fact, as schematically illustrated in figure 9.3A,

the lenticles composing the chevron are either made of the same variant (1), or of the two

low-misoriented variants (1 and 6). This suggests that a variant selection takes place inside the

CPP packet. The phenomenon was expected as it has already been evidenced and modeled

in our recent study of surface martensite [5]. As can be observed on the low magnification
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Figure 9.4: A: Band contrast EBSD maps of the martensite with the annotation of the angle in
degrees between the normal to the {111}γ twinning plane and the normal to the free surface.
B: Histogram of the angle in degrees between the normal to the {111}γ twinning plane and the
normal to the free surface on the twin boundaries where martensite is observed. In black, the
twin boundaries where no martensite is observed. In purple, the six occurrence of martensite
nucleation on a single side of the boundary ("half-chevron") and in green the sixty occurences
of martensite nucleation on both sides of the grain boundary (full chevron). A total of 111
grain boundaries are analyzed. Sixty chevrons are observed and six half-chevrons.

EBSD maps in figure 9.4A, the reproducibility of the morphology produced in our sample is

striking; the chevron morphology is very frequently observed (about 90% of all cases). Rarely,

the martensite is seen to form on one side of the twin boundary only. We called this unfre-

quent morphology of martensite half-chevron. Maps showing half-chevrons are presented in

supplement 1 (Appendix C). Another exception of the chevron morphology is illustrated in

figure 9.4A and indicated by a dashed arrow on the lower left corner. Some martensite with

no particular morphology appears on a grain boundary, which is not an annealing twin. The

latter nucleation has been observed in other maps, but the amount of such allotriomorph
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martensite is always small. It is worth mentionning that the chevron martensite is different

from the butterfly martensite, as the chevrons are the result of the martensite nucleation in

two different grains, contrarily to the butterfly martensite which forms in a single austenite

grain [16, 17, 18]. The symmetry of the chevron suggests that the twin boundary where the

martensite forms has a particular orientation with respect to the sample free surface. If one

considers that the martensite orientation on both sides of the twin boundary is the same, the

perfect symmetry is reached only for vertical orientation of the twinning plane, namely when

the normal to the twinning plane is at 90◦ from the surface normal. To verify experimentally

this hypothesis, the angle between the normal to the twinning plane and the surface normal

is measured in different grains using EBSD measurements. As an example of this analysis,

the measured angles are indicated in figure 9.4A. We annotated in black the twin boundaries

where martensite is observed and in red where no martensite appears. Various EBSD maps

were acquired to increase the statistics. An histogram summarizing these measurements is

presented in figure 9.4B. We marked in black the twin boundaries where no martensite forms,

in purple the occurrences where half-chevrons are observed, and in green the cases where full

chevrons are formed. The maps associated with the measurements shown in figure 9.4B are

presented in supplement 1 (Appendix C). For geometrical reasons, twin boundaries with high

angles are more often seen when examining a sample surface than those with low angles. For

example, a twin boundary parallel to the surface (angle of 0◦) cannot be observed by surface

analysis. This consideration explains why the histogram shows no twin boundaries with angles

lower than 20◦. The histogram indicates that there are two thresholds for the orientation of

the twin boundaries to promote the nucleation of martensite. The angle between the normal

to the twin boundaries where martensite nucleates and the free surface normal is greater

than 44◦. Half-chevrons are observed for angles between 44◦ and 55◦, and above this value

with a single exception at 68◦, the morphology is always the classical chevron. The mean

angle where chevron martensite is observed is 77◦, while the mean angle associated with all

observed twin boundaries is 65◦. The measurements thus suggest that there is a selection of

the twin boundaries where surface martensite forms, the relatively vertical twin boundaries

being more efficient nucleation sites than randomly oriented ones. From our experimental

measurements, we conclude that the nucleation of martensite is affected by different factors.

First the nucleation takes place on the twin boundary and the martensite is in Kurdjumov-

Sachs orientation relationship with both twin-related parent crystals. This implies that the

variants of martensite that form belong to the CPP packet associated with the twin boundary.

Second, among the six variants of the CPP, a maximum of two variants are observed per twin

boundary, these variants being low-misoriented. Finally, it also appears that not all the twin

boundary are equivalently efficient in promoting the phase transformation, the chevrons

forming preferentially on rather vertical twin boundaries.
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Variant selection modelling

We propose to adress the selection phenomenon occuring inside the CPP packet, by using our

model for variant selection in surface martensite presented in reference [5]. We define the

favoured variants as those that maximize the zz component of the gradient of displacement

H = F|x= 1
3
− I, when expressed in the sample basis: M ax(Hzz ). The sample basis is such that

the z-direction is normal to the free surface. This criterion is computed using the continuous

FCC-BCC distortion F(x) where x varies from x = 1
2 , no transformation, to x = 1

3 describing

the complete transformation [Cayron, 2015]. The complete transformation corresponds to the

Jaswon and Wheeler model with FCC and BCC lattice parameters in hard sphere ratio [Jaswon

and Wheeler, 1948]. The complete distortion is expressed as follows:
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The continuous model is chosen to model the transformation as it better accounts for the

Kurdjumov-Sachs orientation relationship and the {225}γ habit plane than the PTMC (Phe-

nomenolocial Theory of the Martensite Crystallography) predictions using the Fe-30wt%Ni

lattice parameters [5]. As compared to our original model in reference [5], we add here an

additional hypothesis on the nucleation of martensite. We consider that martensite nucleates

only on the twin boundaries and that it is in Kurdjumov-Sachs orientation relationship with

both grains. We thus restrict the number of variants that could form to the six variants belong-

ing to the CPP associated with the twin boundary. From the EBSD measurements we extract

the two austenite orientations and for each of them we compute the distortion associated

with the six aforementioned variants. In each grain, the variant exhibiting the highest Hzz

value is selected. The result of the simulation are presented in the pole figures in figures 9.5A

and 9.5B for the green and the yellow grains, respectively. For each austenite orientation, the

24 Kurdjumov-Sachs variants are represented by empty circles. The variant selected in the

green grain is marked in green on both figures 9.5A and 9.5B, similarly the variant selected in

the yellow grain is marked in orange, for a better visibility. Superimposed on the simulations,

we plotted the experimental martensite orientations of figure 9.2 in black. The simulation

indicates that the variant that is selected in the green grain is low-misoriented with the variant

selected in the yellow grain. The simulation and the experimental measurements are in good

agreement. The same quality of results is obtained for two additional simulations proposed in

supplement 1 (Appendix C).

Consequently, we propose to apply our criterion for variant selection to explain the selection

of the twin boundary on which the martensite preferentially nucleates, and to rationalize

its chevron morphology. We explore the space of all possible orientations of an austenite

crystal with respect to a free surface normal to z, and evaluate Hzz for a given variant. The

variant considered in the computation (equation 9.1) has the invariant [11̄0]γ direction and
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Figure 9.5: Simulated pole figure of the chevron martensite in figure 9.2. A: Simulation in
the green grain. B: Simulation in the yellow grain. In green, the orientation selected by the
maximum work criterion in the green grain and in orange the orientation selected by the
maximum work criterion in the yellow grain. The experimental orientations are superimposed
in black.

the untilted (111)γ plane. This variant belongs to the (111)γ CPP packet and accordingly is

associated with a (111)γ twin boundary. We choose to discretize the space of the possible

orientations of austenite using two rotations: the first one around [11̄0]γ and the second one

around [111]γ. Because the Hzz expresses a projection along the normal to the sample surface,

only two rotations are necessary to explore the space. The angular step of each rotation is 0.01

rad. The initial orientation of the austenite crystal is such that the [11̄0]γ direction is along

the x-axis of the sample, the [112̄]γ along the y-axis and the [111]γ along the z-axis, namely

along the normal to the free surface. This initial orientation is illustrated in figure 9.6A. Figure

9.6C shows a map of the value of Hzz as function of the two rotation angles. The first rotation

around [11̄0]γ is represented on the θ-axis and the second around [111]γ is represented on the

φ-axis. In figure 9.6D, we plotted the maximal value of Hzz found as function of the θ angle

between the [111]γ and the normal to the free surface. The dependence of the Hzz value to

the angle between the surface normal and [111]γ has a symmetrical shape about 90◦. The

maximum value is 0.1528 and it corresponds to the angles of 73◦ (and 107◦). This variant

is thus favoured when its close-packed plane, hence the twin boundary, is rather vertical

with respect to the free surface normal. An illustration of that situation is proposed in figure

9.6B. The experimental measurements reported in figure 9.4D show that there is not a unique

orientation of the twinning plane that favours the martensite nucleation. The angle θ between

the normal to the {111}γ twin boundary where martensite forms, with either a half or a full

chevron, and the normal to the sample free surface spreads from about 44◦ to 90◦. By using

a threshold value on the Hzz criterion for the nucleation of martensite, we select a number
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Figure 9.6: Hzz criterion for the martensite nucleation for a variant belonging to (111)γ ∥ (11̄0)α
CPP packet. A: Initial orientation (φ = 0 and θ = 0) of the austenite crystal considered in
the simulation. The free surface is represented by the plane drawn in red. B: Schematic
representation of the favourable twinned austenite orientation for martensite nucleation. n is
the normal to the free surface. Grain 1 and grain 2 are twin-related. The θ angle between the
common (111)γ twnning plane and the free surface normal is represented. C: Map of Hzz as
function of the austenite orientation. The orientation is defined by a rotation of the austenite
around [111]γ on the φ-axis and the rotation around the [11̄0]γ on the θ-axis. The red dashed
lines represent the threshold of the Hzz for martensite nucleation, namely 95% ·M ax(Hzz ).
D: Hzz value as function of the angle between the normal to the free surface and the (111)γ
twinning plane. The red dashed lines indicate the values of the threshold for martensite
nucleation.

of austenite orientations that are the most efficient to promote the transformation. This

threshold is set to mimik the experimental range. It is found to be about 95% of the maximum

value of the Hzz component, namely 0.1452, such as to reach a threshold angle of 44◦. The

threshold Hzz value and the corresponding angles are illustrated on figures 9.6C and 9.6D

with the dashed red lines. The orientation satisfying the 95% ·max(Hzz ) condition are marked

in white in figure 9.6C.

It has been seen before that the martensite transformation tends to take place on both sides of
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the twin boundary, so we also evaluate the value of Hzz on the other side of the twin boundary,

namely in grain 2, if one refers to the sketch in figure 9.6B. This computation is performed

for the six different variants that belong to the same CPP packet associated with the (111)γ
twin boundary. Figure 9.7A-F shows the value Hzz of all variants as function of the θ and

φ angles of rotation around [11̄0]γ1 and the [111]γ1 . The map in figure 9.7A represents the

Hzz of variant 1 in grain 2, and in figure 9.7B-F the maps of the Hzz of the other 5 variants

inside the CPP packet are illustrated. The pairs of maps (A-B), (C-D) and (E-F) in figure 9.7

are very similar. This similarity was expected as these are pairs of low-misoriented variants.

In each figure 9.7A-F, the orientations satisfying the 95% ·Hzz criterion in grain 2 are marked

in white. We also report in black the orientations that favour the nucleation of variant 1 in

grain 1. They correspond to the orientations marked in white in figure 9.6C. The orientations

that favour the nucleation of martensite variants on both side of the twin boundaries are the

intersection of the black and the white clouds. It appears that the clouds intersect only for

variant 1 (figure 9.7A) and its low-misoriented variant (figure 9.7B). These results indicate

that if a twin boundary is oriented such that the nucleation of a given variant is promoted

on one side of the twin boundary (grain 1), the nucleation of martensite on the other side

of the boundary (grain 2) is favoured only for the variants whose orientation is either the

same or low-misoriented with the variant favoured in grain 1. This result is in agreement

with the experimental results in figure 9.2 showing that the martensite orientation spreads

between two low-misoriented Kurdjumov-Sachs variants. The computation further indicates

that the nucleation of martensite on both sides of the twin boundary is favoured when the

twin boundary is exhibiting an angle above 74◦ with respect to the free surface. The condition

that the twinned austenite should satisfy for nucleation on both side of the twin boundary,

resulting in the formation of the chevron, is thus more restrictive than the condition for the

nucleation on only one side of the boundary, which is associated with the formation of half

chevron (44◦). Taken together, the results well agree with the experimental measurements.

They indicate that for angles between 44◦ and 74◦, the martensite tends to form only in one

side of the boundary, which experimentally corresponds to magenta bars in figure 9.4B, and

full chevron (green bars) should be observed for angles greater than 74◦. It can be noted

however that some full chevrons are observed for angle between 55◦ and 70◦, which are not

accounted by our calculations. For such orientations, we predict that the transformation will

take place only in one side of the twin boundary. This discrepancy could indicate that the

nucleation on one side of the boundary promotes the nucleation on the other side. In other

words, if the criterion for nucleation is satisfied on one side (grain 1) the computed Hzz value

on the other side (grain 2) can be a little bit lower than the threshold value for nucleation and

still the transformation occurs in both grains. It is also interesting to note that the thereshold

value found in this study is larger than the one we used in our previous study [5]. In the latter

case, to account for all the variants formed, the most appropriate threshold was set to 0. Only

the variants having negative value of Hzz i.e., those associated with a contraction along the

normal to the free surface were not formed. It seems thus that the initial state of the material

affects the value of the threshold. Indeed, the sample used in reference [5] was an as-cast

sample, whereas this one has been annealed after work-hardening. It should be acknowledged
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Figure 9.7: A: Map of Hzz for variant 1 in grain 2 as function of the austenite orientation. The
orientation is defined by a rotation of the austenite around [11̄0]γ on the θ-axis and a rotation
around the [111]γ on the φ-axis. The orientation satisfying the 95% ·max(Hzz ) criterion in
grain 2 are marked in white. The orientations that are satisfying the 95% ·max(Hzz ) criterion
in grain 1 are marked in black. B-F: Map of Hzz for the 5 other variants inside the (111)γ
CPP packet in grain 2 as function of the austenite orientation. The orientation satisfying the
95% ·max(Hzz ) criterion in grain 2 are marked in white. The orientations that are satisfying
the 95% ·max(Hzz ) criterion for variant 1 in grain 1 are marked in black. The pairs of variants
represented in (A-B) (C-D) and (E-F) are low-misoriented variants. The red dashed lines
indicate the θ angular range (74◦-106◦) where the criterion for nucleation is satisfied for at
least one of the two low-misoriented variants in both grain 1 and grain 2.

also that in each case the threshold has been set to mimik the experimental data and, as such,

it should be considered with care. In our previous work, we noted that using the variation Ḣzz

of the Hzz component at the beginning of the transformation seemed a good criterion for the

variant selection. This criterion has been tested here and does not lead to more convincing

results. We tested also whether the invariant plane strain (IPS) predicted by the PTMC was

able to account for the variant selection observed in the present work. Our computations

shows that given the austenite orientation the PTMC is able to predict fairly well the variants
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that form preferentially. However, this model cannot account for the particular orientations

of the austenite that favours the martensite nucleation. The details of the computation are

available in the supplement 3 (Appendix C).

Conclusions

In conclusion, surface martensite has been formed in Fe-30wt%Ni recrystallized sample

during electropolishing. The transformation occurs preferentially on twin boundaries, and the

martensite formed on that boundaries exhibits a highly symetrical chevron morphology. EBSD

measurements indicate that the transformation is favoured on twin boundaries that are rather

vertical with respect to the sample surface, and that the martensite is in Kurdjumov-Sachs

orientation relationship with both twin-related austenite grains. The characterizations further

show that the variants forming on the two sides of the twin boundary are the same or low-

misoriented and that they belong to the CPP packet associated with the twin boundary. Among

the six variants of the CPP packet, a maximum of two variants per twin boundray are observed

indicating a variant selection phenomenon inside the CPP packet. The variant selection is

adressed by using the criterion for variant selection proposed in our recent study on surface

martensite based on the maximization of the extension in a direction normal to the free

surface [5]. We show that starting from two experimental twin-related austenite orientations

the criterion correctly predicts the martensite orientation formed on the twin boundary in

three different EBSD maps. We then use the same criterion to explain why the rather vertical

twin boundaries are preferred nucleation sites. Stating that the martensite nucleates on

twin boundaries and that it belongs to the CPP packet associated with the twin boundary

on which it nucleates, we have evaluated our criterion for surface martensite formation for

all possible orientations of the austenite. The calculations were performed for each of the

six variants composing the CPP packet. They indicate that only the austenite orientations

associated with rather vertical twin boundaries maximize the criterion for nucleation on both

side of the twin boundary, and that among the six variants, the favoured ones are either low-

misoriented or the same in the two austenite grains. This study explains the selection of the

twin boundaries promoting the transformation and hence rationalizes the highly symmetrical

chevron morphology observed in surface martensite nucleating on twin boundaries.
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Abstract
Variant selection is commonly observed in martensitic steels when a stress is applied to the

material during transformation. Classically, the selection phenomenon is modelled considering

the work of the shape strain in the applied stress field. This shape strain is generally calculated

by using the Phenomenological Theory of the Martensite Crystallography (PTMC). In the present

study, we studied the martensitic transformation occurring in a Fe-20wt%Ni-1.8wt%C alloy

transformed while loaded in four-point bending. A significant variant selection is observed, but

surprisingly its nature cannot be explained by the classical approach. A crystallography-based

empirical model which accounts for the experimental results is proposed instead.

Introduction

The effect of applied stress on the martensitic transformation has been studied for almost one

century, Scheil being one of the first researchers who worked on this topic in 1932 [1]. In 1953,

Patel and Cohen [2] performed a series of experiments on iron–nickel alloys and proposed

a physical criterion to quantify the effect. The criterion allows to calculate the change of

the martensitic start temperature as a function of the stress applied to the material. In their

study, Patel and Cohen showed that if both the application of a uniaxial compressive stress

and a uniaxial tensile stress increase the temperature at which martensite forms, the increase

due to the latter is more significant. Accordingly, they proposed a criterion for martensite

formation based on the work of the shape strain associated with the transformation in the

applied stress field. This criterion is now known as the Patel–Cohen criterion. The shape

strain considered is an invariant plane strain, where the invariant plane is the interface

between martensite and austenite (habit plane). It can be calculated for any alloy by using

the Phenomenological Theory of Martensite Crystallography (PTMC). The PTMC is probably

the most famous crystallographic model for the martensitic phase transformation. It is the

result of the work of two independent groups of researchers: Liebermann, Wechsler and Read

in 1953 [3], and Bowles and Mackenzie in 1954 [4]. Both chose to model the transformation

using linear algebra, but they came up with two apparently different expressions. A couple

of years later, Christian showed that the two models were in fact equivalent [5]. Expressed

in the Bowles and Mackenzie version, the transformation is modelled using four different

matrices, each of them accounting for a part of the transformation. The structural phase

change and the orientation relationship are characterized respectively, by the Bain strain B [6]

and a rotation R , and their product RB gives the lattice strain. The shape change is described

by the matrix P , which is the shape strain. The last matrix Q renders compatible the shape

strain with the lattice strain. It is named the lattice invariant shear. The PTMC stands then in

a single equation RB = PQ . After its publication, this model quickly became very popular and

remains as such today. The PTMC calculations allow in particular to study variant selection

using the predicted shape strain to evaluate the Patel–Cohen criterion. Such an approach is

broadly accepted and commonly used [7, 8]. However, some experiments indicate that this
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criterion is not appropriate to explain the phenomenon. As an example, Mishiro et al. applied

a compressive stress just above the martensitic start temperature to induce variant selection

in a low-carbon steel. They noted that the lattice strain RB better accounts for the selection

than the shape strain P [9]. Chiba et al. reported a significant variant selection in Fe–Ni–C

lenticular martensite formed after ausforming [10]. They observed that four variants were

preferentially formed in each parent grain. They applied the Patel–Cohen criterion using the

residual stress to account for variant selection, but this analysis was not satisfactory. Indeed,

the experimentally observed variants had their habit plane oriented rather perpendicularly to

the compression direction and the resolved shear stress acting on them was very low. They

concluded that variant selection was not related to the residual stress, but to the elongated

morphology of the prior austenite grains. Such morphology favours the variants having a

habit plane oriented parallel to the elongated direction as they induce less disturbance at the

austenite gain boundary.

In the present study, we observe similar results in lenticular martensite formed in Fe-20wt%Ni-

1.8wt%C under bending. A strong variant selection is measured, and the selection cannot

be explained convincingly by the PTMC. The phenomenon is eventually accounted by an

empirical crystallographic criterion.

Material and Methods

A Fe-20wt%Ni-1.8wt%C alloy has been homogenized at 1000 ◦C for 1 hour in a quartz tube.

After the heat treatment, the material is directly quenched in water. A thin rectangular sample

is cut out of the material. The sample is loaded in a miniaturized home-designed four-

point bending device. The device is illustrated in Figure 10.1A. The loading is performed by

moving the two central pins down, using a vertical screw. Such a loading system imposes a

compression in the upper part of the sample and a tension in the lower part. The line in the

middle of the sample thickness is called neutral line, as no stress acts on it. Martensitic phase

transformation is induced in the sample by cooling it to −80 ◦C in a freezer. The specimen

is maintained in the device during transformation. The imposed stress thus interacts with

the transformation mechanism. The four-point bending device is designed such that the

deformed sample can be directly embedded for material characterization, while keeping its

exact shape. Figure 10.1B shows the embedded sample. The sample is prepared for EBSD

characterization by mechanical grinding followed by a final polishing using Vibromet table.

In order to study variant selection, some EBSD measurements have been performed in a XLF-

30 (FEI) scanning electron microscope, equipped with a Channel5/Aztec (Oxford Instruments)

EBSD system.
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Figure 10.1: (A) Four-point bending device. (B) Bended sample embedded in epoxy for material
characterization.

Results

Figure 10.2 shows an optical micrograph of the microstructure after transformation. The two

pins in the upper corners of the picture are the central loading pins of the 4-point bending

setup. It can be seen that the transformation only takes place in the tensile part of the sample.

The propensity for the martensite to form preferentially in the tensile part of a bended sample

was already observed by Kulin, Cohen and Averbach in three-point bending [11]. A few years

later, this observation was rationalized by the aforementioned Patel–Cohen criterion [2]. It

appears that our alloy is such that at −80 ◦C only the part in tension has enough driving force

to induce the martensitic transformation. According to the Fe–Ni–C phase diagram, the heat

treatment at 1000 ◦C leads to the dissolution of only 0.85 wt% of the carbon, the rest is forming

the carbides visible in Figure 10.2. The Ms reported for a Fe-20wt%Ni-0.8wt%C is −74 ◦C [12].

Considering our slightly higher carbon content, a transformation temperature close to −80 ◦C

is reasonable. As an interesting feature, it can be noted that the transformation is localized and

takes place in “columns”, the columns stopping near to the neutral line. Figure 10.3 shows the

EBSD measurement of a column of martensite. This measurement indicates that only a few

variants are formed in each austenitic parent grain, suggesting a probable variant selection

phenomenon.

Figure 10.2: Bright-field optical micrograph of the sample in 4-point bending. The axis in red
indicates the orientation of the EBSD measurement.
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Figure 10.3: EBSD map of a column of martensite with the austenite in blue and the martensite
in Euler colour coding and below, bright-field optical micrograph of the corresponding zone.
The black arrows indicate the traction direction and the red axis can be related to those in
Figure 10.2.

Discussion

To address variant selection, two different PTMC calculations are performed using the PTCLab

open-source software [13]. The first calculation considers an FCC-BCC transformation and

the second an FCC-BCT transformation, including the tetragonality γ= cα
aα

= 1.045 observed

in Fe–Ni–C alloys of close compositions [12, 14]. The lattice parameters aα = 2.87 Å and

aγ = 3.58 Å, and aα = 2.87 Å, cα = 3.00 Å and aγ = 3.58 Å measured in similar alloys are the

inputs for the calculations of the BCC and the BCT models, respectively [15] The simple shear

version of the PTMC is used and the lattice invariant shear is chosen as suggested in the Bowles

and Mackenzie original theory for the Fe–Ni–C martensite, namely a “twinning shear” of type

< 111 > {112}α [4]. The shape strain P and PT and lattice strain RB and RBT matrices are

given below for the FCC-BCC and the FCC-BCT transformations, respectively:

P =
 0.99264 0.03316 −0.02733

−0.02641 1.119 −0.09808
−0.02733 0.12315 0.8985

 RB =
 1.11731 0.03316 0.09733

−0.01765 1.119 −0.08932
−0.14049 0.12315 0.78534



PT =
 0.96057 −0.07824 −0.02312

0.06557 1.13011 0.03844
−0.02312 −0.04587 0.98645

 RBT =
 1.11664 −0.07824 0.13296

0.06987 1.13011 0.04274
−0.18329 −0.04587 0.82627


In both cases, the orientation relationship predicted by the PTMC is between the Nishiyama–

Wassermann OR and the Kurdjumov–Sachs OR. The calculated habit planes are {0.17 0.63 0.76}γ
for the BCC model and {0.26 0.44 0.86}γ for the BCT. These habit planes are respectively at 10◦
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and 5◦ from {259}γ and 6◦ and 9◦ from {3 10 15}γ, which are the typical habit planes observed

in such alloys [16]. Variant selection is studied using the Patel–Cohen criterion for martensite

formation, as suggested in the literature [7]. The variants selected are the ones that maximize

the work W of the shape strain P , respectively PT , in the applied stress field σ; W = εi jσi j

with ε= P − I and σ is the generalized stress tensor associated with the external loading. In

four-point bending, the generalized stress tensor is reduced to a single non-zero entry, as the

material is either in simple compression or simple traction. Here, we choose to orientate the

specimen such that the traction/compression axis is aligned with the y-axis. Accordingly, the

stress tensor is σi j = 0 if i , j 6= 2. For each austenitic grain, the daughter variants are classified

in respect with the value of their work. The variant exhibiting the maximal work is ranked

first (1) and the one with the lowest work is ranked last (24). The calculations are performed

using the Mtex toolbox [17]. Figure 10.4A,B present the histograms of the variant occurrence

in the EBSD map according to the proposed ranking for the BCC and the BCT models. The

occurrence of a given variant is measured by counting the number of pixels associated with

the variant. With such a ranking, if the variant selection is based on the work of the shape

Figure 10.4: Histograms of the variants’ occurrence considering the BCC model in (A) and the
BCT model in (B). In the y-axis: the number of pixels associated with a given variant number.
In x-axis: variants numbered with a ranking according to the value of the work.

strain, one expects that the variant with a small number, and thus exhibiting high work, would

be observed more often than those associated with greater numbers. On this basis, it can

be concluded that the present experiment does not exhibit a variant selection based on the

work of the BCC shape strain, as there is no correlation between the ranking of the variants

and their occurrence. On the contrary, the BCT model seems to correctly predict the variant

selection, at least for the first variant, i.e., the one with the highest work. A verification of the

habit plane prediction is then performed by studying an austenite grain selected from the

EBSD map presented in Figure 10.3. The grain is shown in Figure 10.5A with the austenite

in blue and the martensite in Euler color coding. In Figure 10.5B,C respectively, the shape

strains predicted by the PTMC calculations for the BCC and BCT models are shown for all
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four variants in Figure 10.5A. The normals to the predicted habit planes are marked in green

and the shear directions are marked in yellow. Numbers are given to each variant to help in

associating them with their shape strain. The midrib is considered as the habit plane of the

Figure 10.5: Trace analysis of the shape strain predicted by the Phenomenological Theory of
Martensite Crystallography (PTMC) and variant selection prediction. (A) EBSD map of the
grain with red arrows indicating the traction direction. The dashed lines indicate the normal
to the habit plane of variant α4. (B) Pole figure of the normals to the habit planes (green) and
the shear directions (yellow) predicted by the BCC model. (C) Pole figure of the normal to
the habit planes (green) and the shear directions (yellow) predicted by the BCT model. (D)
< 110 >γ experimental pole figure.

martensite and a trace analysis is performed to verify the PTMC predictions. As an example,

the normal to the habit plane of the red variant α4 is marked with dashed lines in Figure 10.5.

Our analysis clearly indicates that the BCT model does not predict the observed habit plane.

This model which seemed to correctly account for variant selection is thus not satisfactory. On

the contrary, the BCC model which fails to account for the variant selection seems to correctly

predict the habit planes. From Figure 10.5, we can see that selected habit planes almost

contain the traction direction. Hence, the shear resolved on it is almost zero, which explains

why the criterion based on the work of the shape strain associated with the BCC model is not

able to account for the variant selection. To be exhaustive in our variant selection analysis,

we also computed the work of the elastic part of the BCC shape strain using ε= 1
2 (P +P T )− I ,

the work of the lattice strain RB and the work of the lattice invariant shear Q . Additionally,

we considered the couplings of variants inside the same plate group by computing the work

of the average strain resulting from different shape strains, as suggested by Okamoto et al.

[18]. None of these criteria accounts for the variant selection observed in the sample. These

features are somewhat coherent with the results presented by Chiba et al. on variant selection
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in lenticular martensite [10]. They also observed a lack of correlation between such energetic

criteria and the measured variant selection. In agreement with our observations, they noted

that the favoured variants have their habit planes normal to the compression axis, with low

resolved shear acting on them. They concluded that the selection phenomenon was related to

the elongated morphology of the prior austenite grain. In our sample, the parent austenite

grains have a quite equiaxed geometry and Chiba et al.’s explanation is thus not applicable. It

seems, however, that even though the thermomechanical treatments are different, the results

of Chiba et al. have similarities with ours. As illustrated in Figure 10.5A, we also observe that

four variants form preferentially, these variants belonging to the same plate group. The variant

coupling in plate groups is frequently observed in lenticular martensite [19, 20, Bokros and

Parker, 1963]. The plate groups were originally observed by Bokros and Parker in Fe-31%Ni

[21]. They are defined in terms of habit plane orientation, as the group formed by the variants

having their habit planes that cluster around a given < 110 >γ direction of the parent crys-

tal. An illustration of such a cluster is proposed in Figure 10.5D,B where squares are drawn

to indicate the < 110 >γ direction and the associated habit plane normals, respectively. In

terms of lattice orientation, the plate group is crystallographically defined in reference [20]

and illustrated with the yellow Kurdjumov–Sachs variants in Figure 10.6A. This illustration

is adapted from Figure 4E of ref. [20]. The parent austenite is represented by two of the

{111}γ planes, and the two others are not visible. The Kurdjumov–Sachs variants are illustrated

by the green and yellow rectangles, representing the {110}α ∥ {111}γ. The yellow rectangles

represent one of the six possible plate groups. According to this definition, the plate group

can be defined as the variants that have their < 111 >α that scatter about 10◦ from a < 110 >γ.

It should be noted that the < 110 >γ direction that defines the plate group in terms of the

habit plane or in terms of lattice orientation are different. In Figure 10.6A,B, we marked in

purple the considered < 111 >α and in red the associated < 110 >γ. In our experiment, a single

Figure 10.6: Empirical criterion for variant selection. (A) Plate group represented in 3D on two
{111}γ planes. Illustration adapted from ref. [20]. (B) Triangle representing the (11̄1)γ plane
and rectangle representing in 2D the (11̄0)α of variant 12. In purple, the [111]α that clusters
about the [110]γ marked in red.

plate group is formed preferentially in each parent grain. Based on this observation, we were

able to express an empirical criterion to characterize the plate group that is favoured under
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traction. This criterion cannot distinguish the different variants inside the same group and

thus does not treat the more severe selection that can be observed in some grains, where only

one or two variants out of the four appear. Our criterion states that the selected plate group

is the one formed by the four variants having their < 111 >α that cluster about the < 110 >γ

direction which is closest to the traction axis. In Figure 10.6A, the yellow plate group would be

selected if the traction axis is close to the red arrows. Based on that empirical rule, we classify

the plate groups as a function of the angle between the traction direction and the < 110 >γ

direction associated with each plate group. The plate group with the lowest angle is ranked

first (1) and the plate group with the largest angle is ranked last (6). Figure 10.7B shows the

histogram of variant occurrence according to the proposed criterion for the entire column

of martensite shown in Figure 10.3. It appears that this criterion accounts very well for the

Figure 10.7: Histograms of plate group occurrence considering a ranking based on the empiri-
cal criterion. In the y-axis: the number of pixels associated with a given plate. In the x-axis:
plate group numbered with a ranking according to the empirical criterion.

variant selection observed in our sample. Figure 10.8 illustrates the selection phenomenon

for the grain in Figure 10.5A with the austenite in blue and the martensite in Euler color

coding. Figure 10.8A presents the experimental pole figures of the grain. Figure 10.8B shows all

Kurdjumov–Sachs variants with empty markers and the variants selected by our criterion with

blue markers. Figure 10.8C shows the orientation of the parent grain. We marked with a circle

the < 110 >γ direction about which the < 111 >α of the variants of the selected plate group

clusters. The circle is reported on the martensite pole figures, in Figure 10.8A,B, to indicate

the < 111 >α cluster. It is quite puzzling to see that even though the BCC model prediction of

the orientation relationship and the habit plane orientation are in fairly good agreement with

the experimental measurements, the variant selection based on the work of the shape strain

does not hold, and that on the contrary, the BCT model accounts for the variant selection

but considering a shape strain which is not observed. It seems that the mechanism of the

formation of lenticular martensite is not fully understood and that its current modeling is not

able to depict all the physics involved in the transformation. The nature of the lattice invariant

shear in particular seems to be controversial. The PTMC theory considers that a single shear
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Figure 10.8: Variant selection in the single parent grain presented in Figure 10.5A. The circle
indicates that the < 111 >α scatters about the < 110 >γ that is closest to the traction axis
which is oriented along the y-direction.(A) Experimental pole figures of the martensite. (B)
Kurdjumov–Sachs pole figures with the variant selected by our criterion marked in blue. (C)
Experimental pole figures of the parent austenite.

occurs to accommodate the {259}γ martensite. However, Thomas observed that more than

one lattice-invariant shear effectively acts in the accommodation process [22].

In conclusion, variant selection has been studied in a Fe-20Ni-1.8C alloy transformed under

bending. The transformation takes place only in the tensile part of the specimen and a signifi-

cant variant selection is observed. It appears that a single plate group is formed preferentially

in each grain. The variant selection is studied using the Patel–Cohen criterion with two dif-

ferent shape strains associated with the FCC-BCC and the FCC-BCT transformations. The

shape strains are computed using PTMC. The BCT model is shown to correctly account for the

variant selection, but the shape strain does not agree with the experimental data. In contrast,

the BCC model predicts well the habit plane orientation, but is not able to explain the variant

selection. These discrepancies between the experiment and PTMC predictions need to be

further analyzed in order to better understand the mechanism of formation of the lenticular

martensite and possibly explain what drives the observed variant selection. An empirical cri-

terion, which captures the selection, is proposed. However, the physical explanation for such

a criterion remains mysterious and more advanced characterization techniques to analyze the

martensite substructure might be required to rationalize it.
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Chapter 11. Effect of tensile deformation on variant selection in {225}γ plate martensite
and {557}γ lath martensite

Abstract
The effect of tensile deformation on variant selection has been studied in {225}γ plate martensite

and {557}γ lath martensite formed in high- and low-carbon steels, respectively. Different

thermomechanical treatments are performed to analyse the effect of applied tensile stress,

in the elastic and plastic range and the effect of prior plastic tensile deformation on variant

selection. The variant selection is studied by computing the work of the deformation associated

with the transformation in the applied stress field. Our analysis indicates that the deformation

that needs to be considered to model the selection is based on lattice strains combinations. For

{225}γ plate martensite, the average deformation resulting from the combination of the lattice

strains of twin-related variants is the relevant deformation gradient for the work computation.

On the contrary, in lath martensite, the combination of the lattice strains of low-misoriented

variants appears to better model the selection phenomenon.

Introduction

Because of their implications on the industrial process of steels, the effects of applied stress

and prior deformation on variant selection have been studied by various researchers, in

a wide range of steels [1, 2, 3, 4, 5, 6]. It is not rare that the studies reach contradictory

conclusions. A broadly accepted approach to study the effect of stress on variant selection

consists in evaluating the work W of the deformation gradient F associated with the phase

transformation in the applied stress field Σ:

W = (F − I ) :Σ (11.1)

where I is the identity matrix.

Generally, the divergence between authors lies in the choice of the deformation gradient F to

consider. In the classical modelling of the martensite crystallography called the PTMC, three

different types of deformation are involved in the transformation mechanism [7]:

• The lattice strain RB which describes the deformation of the FCC lattice to a BCC lattice.

It is expressed as the product of a rotation R and the Bain strain B [8]. The lattice strain is

defined as an invariant line strain, one line being left unchanged upon transformation.

• The shape strain P , which models the change of shape associated with the transfor-

mation as an invariant plane strain. The plane which remains invariant is called the

habit plane, and it is the interface between the martensite and the austenite. The shape

strain P consists in the combination of shear parallel to the habit plane and a dilatation

normal to it.

• The lattice invariant strain Q−1 which renders compatible the shape strain P and the

lattice strain RB . The lattice invariant shear Q−1 does not affect the final martensite

lattice structure, but acts in order to guarantee that the macroscopic shape change is an
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invariants plane strain. The mechanism associated with the lattice invariant shear is

either "twinning" or slip. By "twinning", PTMC considers both mechanical twinning

and twin-related variants pairing.

The PTMC stands in a single equation: RB = PQ [7]. The comparison of the various variant

selection studies found in the literature indicates that there is no common consent on which

of the lattice strain or the shape strain better accounts for the phenomenon. Badheshia and

co-workers used the work of the shape strain P , also called the Patel and Cohen criterion [9] to

model the selection phenomenon [5]. They claimed that it is the only proper way to model

the selection [3]. However, other researchers reported that the work of the lattice distortion

RB better accounts for their experimental results [1]. Kato and Mori [2], Jesser and Olsen

[10] and Miyaji et al. [11] even concluded that the Bain strain allows for the most convincing

description of variant selection under stress.

A transformation model alternative to the PTMC has been recently proposed by one of the

co-authors [12]. The transformation is described continuously by a unique transformation

matrix, which evolves during the transformation. The complete transformation is a lattice

strain of type RB . The orientation relationship associated with the transformation is the one of

Kurdjumov-Sachs. In this model, the lattice parameters are in hard-sphere ratio. Based on the

proposed mechanism, the accommodation of the {225}γ and the {557}γ habit planes have been

studied [13, 14]. In the former case, it is shown that the linear combination of twin-related

variants of the transformation is an invariant plane strain on a {225}γ plane. For this particular

case, the continuous model and the PTMC are shown to be equivalent [13]. Indeed, in the

PTMC model for the {225}γ, an additional dilatation parameter δmultiplying RB is introduced

to impose the lattice parameters to be in hard-sphere ratio and to force [11̄0]γ = [111]α. The

models however differ for the modeling of the {557}γ habit plane. The classical PTMC uses two

lattice invariant shears to account for the {557}γ habit plane. The shear elements to consider in

the model have been determined by Kelly [15]. By combining these shears to the lattice strain,

a fully invariant plane close to {557}γ is obtained. Contrarily, by using the continuous model,

{557}γ habit plane can be accounted by combining two low-misoriented Kurdjumov-Sachs

variants [14]. However, such combination does not achieve a fully invariant plane, the plane

being only untilted by the transformation. The average of these two low-misoriented variants

is a lattice strain associated with the Nishijama-Wassermann orientation relationship.

So far, the continuous FCC-BCC distortion model has sucessfully modeled variant selection in

surface martensite by using a criterion based on the lattice strain of each variant [16].

Like stress, prior deformation is also known to cause variant selection [4, 6]. Kundu et al.

studied the effect of complex rolling conditions on the transformation [6]. He considered that

the residual stresses due to the thermomechanical treatment caused variant selection. The

selection was then modeled by using the Patel and Cohen criterion computed with the residual

stress. Using a more crystallographic approach, Myiamoto et al. proposed a detailed study of

the effect of ausforming on variant selection [4]. He indexed the variants as Kurdjumov-Sachs

variants and concluded that the variant selection is based on the so-called CPP packets. A

CPP packet consists in all the six Kurdjumov-Sachs variants having their close-packed plane
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parallel to the same close-packed plane of the austenite [17]. There are a total of four different

CPP packets. Myiamoto et al. showed that the variants preferentially formed in the ausformed

material are those belonging to CPP packet associated with the primary or the secondary slip

planes. This selection is explained by the formation of microbands in the austenite during the

thermomechanical treatment.

In this study, we propose to analyse variant selection caused by various tensile deformations,

studying both the effect of stress and the effect of prior deformation. The study is performed

for two different types of martensite, {225}γ plate martensite and {557}γ lath martensite.

These two types of martensite have been chosen, as they are commonly observed in carbon

steels, the former being formed in high-carbon steels and the latter in low-carbon steels. The

variant selection is studied by computing the work of the deformation associated with the

transformation in the applied stress field according to equation (1). Besides comparing the

effect of the different thermomechanical treatments on variant selection, we aim to clarify

which of the shape strain or the lattice strain better models the selection phenomenon.

Materials and Method

Three different types of tensile deformation have been performed in this study. All deforma-

tions are carried in the austenitic phase, at a temperature just above the martensitic start

temperature. A 3800 Gleeble machine is used to perform the different thermomechanical

treatments. Figure 11.1 illustrates theses treatments. The first thermomechanical treatment

(TMT-1) consists in deforming plastically the material and inducing the martensitic trans-

formation by cooling it, while maintaining the imposed deformation. The material is thus

stressed when the transformation takes place. It should be noted that the applied stress is

not constant during the transformation and slightly decreases due to creep. Such loading

has been chosen in order to avoid any risk of failure of the sample. The second treatment

(TMT-2) consists in deforming the material in the elastic regime and transforming it while

keeping the external force. In both above mentioned thermomechanical treatment, the stress

is maintained during the transformation, the stress applied during TMT-1 being larger than

the one associated with TMT-2. The last thermomechanical treatment performed (TMT-3)

consists in deforming the austenite plastically, then removing the applied stress and quench-

ing the martensite without applied stress. To set the conditions of the thermomechanical

treatments, two additional tests have been performed for each material. A first test allows to

obtain the transformation temperatures by measuring the specimen dilatation using a quartz

dilatometer during heating and fast cooling. Then a simple traction just above Ms has been

performed in order to obtain the force-displacement curve of the different specimens until

failure. In the thermomechanical treatment TMT-1, we choose to impose for each material the

maximum deformation before failure. Similarly in TMT-2, we impose the force the closest to

the yield of the specimen. The mechanical treatments are either performed in displacement

control (TMT-1), in force control (TMT-2) or using both modes (TMT-3).
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Figure 11.1: Representation of the thermomechanical treatments performed in the study. On
the left, the temperature as function of time during the treatments. On the right, the different
tensile deformations are performed at T2, just above Ms, and during the quench (for the first
two thermechanical treatments) to induce variant selection. TMT-1: Tensile deformation
above the elastic limit εyi eld and transformation while keeping the deformation. TMT-2:
Tensile deformation below the elastic limit and transformation while keeping the applied
stress. TMT-3: Tensile deformation above the elastic limit and transformation without any
applied stress, σ= 0.

These thermomechanical treatments have been performed on two different steels, a low-

carbon steel (0.1C-5Mn-1.5Si) and a high-carbon steel (Fe-1.2C-0.5Cr). The low-carbon steel is

a typical steel developed to be processed by ausforming. The temperatures of transformation

of the low- and the high-carbon steels are rather different. Accordingly, the temperatures

of the thermomechanical treatments also differ. Table 11.1 presents the temperature and

holding time involved in the thermomechanical treatement of each material. Prior to the

thermomechanical treatments, the high-carbon steel has been homogenized at 1100◦C for

1 hour in a quartz tube and quenched in water. The strain ε and stress σ corresponding to

the imposed strain and force are presented in table 11.2. It is worth mentioning here that the

values of the strains are rough estimate as it is always difficult to evaluate precisely the length

of the hot zone related to the Gleeble setup, where the deformation is localized.
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Table 11.1: Transformation temperatures of the high-carbon steel and the low-carbon steel
and features of the heat treatments performed of both steels. Af: Austenite finish temperature.
Ms: Martensite start temperature. The temperature T1 is the austenitization temperature and
T2 is the temparature at which the tensile deformation is carried. They are also indicated in
figure 11.1.

Af Ms T1 Holding time at T1 T2

High-carbon steel 780◦C 105◦C 1000◦C 2mn 120◦C

Low-carbon steel 850◦C 380◦C 1000◦C 15mn 400◦C

Table 11.2: Stresses and strains associated with the different thermomechanical treatments
performed.

High-carbon steel Low-carbon steel

TMT-1 ε= 0.02 ε= 0.14

TMT-2 σ= 150 MPa σ= 62 MPa

TMT-3 ε= 0.02 ε= 0.14

Once deformed, the tensile specimens are prepared for EBSD characterisation by mechanical

grinding down to 1 micron and using a Vibromet table for the final polishing. The charac-

terization is performed in an XLF-30 (FEI) scanning electron microscope equipped with a

Channel5/Aztec (Oxford Instrument) EBSD system. The crystallographic computations and

the variant selection analysis are performed using the Mtex software [18], and the orientations

of the prior austenite grains are reconstructed with the ARPGE software [19].

Results and Discussion

EBSD characterisation

For a given alloy, the different thermomechanical treatements do not lead to visually different

microstructure, therefore only one maps per material is shown. The maps of high-carbon steel

and the low-carbon martensite are presented in figures 11.2A and 11.2B, respectively. The

map in figure 11.2B is the result of the thermechanical treatment TMT-1 and the map 11.2B

the result of TMT-3. Retained austenite is observed in the high-carbon steel whereas a fully

transformed microstructure is observed in the low-carbon steel. The crystallographic analysis

indicates that the martensite formed in the high-carbon steel has a {225}γ habit plane whereas

the martensite formed in the low-carbon steel exhibits a habit plane of type {557}γ. In the

following, the martensite formed in the high-carbon steel will be called plate martensite and

the martensite formed in the low-carbon steel lath martensite.
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Figure 11.2: EBSD maps of the martensite in Euler colour coding.A: Plate martensite in the
high-carbon steel submitted to TMT-2, transversal cut (i.e. traction along the z-axis). B: Lath
martensite in the low-carbon steel, after TMT-3. Longitudinal cut (i.e. traction along the
y-axis).

Variant selection

To evidence the variant selection, a quantitative approach is required. It is achieved in this

study by counting the number of pixels associated to each variant. Each pixel of the EBSD

map gives an information on the orientation of the crystal, then by using a crystallographic

model each orientation can be indexed as an orientation variant and then related to a given

distortion variant, which is defined by its proper lattice strain. The crystallography of the

{225}γ plate martensite is modelled by using the FCC-BCC continuous model [12]. The lattice

strain RBpl ate is directly given by the distortion matrix DK S in reference [12], and the shape

strain Ppl ate is obtained by the equibalanced combination of the lattice strain of twin-related

variants Ppl ate = 0.5RB +0.5(RB )twin [13]. The PTMC model for {225}γ martensite, originally

proposed by Bowles and Mackenzie [7] being completely equivalent to the continuous dis-

tortion model, a modelling of {225}γ plate martensite using PTMC would lead to the same

variant selection analysis. Regarding the crystallography of lath martensite, the continuous

model considers a lattice strain and not an invariant plane strain to account for the {557}γ
habit plane [14]. An aim of the present study is to understand which of the shape strain or the

lattice strain needs to be considered in variant selection. Therefore, the crystallography of

lath martensite is modeled in a first step by using the double shear solution proposed by Kelly,

which considers both a lattice strain and a shape strain [15]. The PTCLab software is used for

the PTMC calculations [20]. In Kelly’s model, the < 11̄0 >γ {110}γ and < 01̄1 >γ {113}γ shear

systems are considered as the first and second lattice invariant shears. The lattice parameters

chosen as input for the computations are aγ = 3.61Å and aα = 2.87Å for the austenite and

the martensite, respectively. The lattice parameter of the martensite corresponds to a value

found in the literature for similar alloys [21, 22] and the lattice parameter of the austenite

is an experimental value measured in a similar alloy by the industrial partner who provided

the material. The lattice strains RBl ath and RBpl ate , and the shape strains Pl ath and Ppl ate

associated with the lath and plate models are expressed in the austenite crystallographic basis
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as follows:

Ppl ate =
 0.9694 −0.0306 −0.0749

−0.0306 0.9694 −0.0749
0.0612 0.0612 1.1498

 RBpl ate =
 1.13608 0.13608 −0.07491

−0.19725 0.80274 −0.07491
0.06117 0.06117 1.14983



Pl ath =
 0.97392 −0.02608 −0.03234

−0.1245 0.8755 −0.15439
0.12544 0.12544 1.15555

 RBl ath =
 1.11423 0.10447 −0.02746

−0.14986 0.78326 −0.12095
0.01116 0.08734 1.11746



The plate martensite model is associated with the exact Kurdjumov-Sachs orientation rela-

tionship, and Kelly’s model is associated with an orientation relationship between Kurdjumov-

Sachs and Nishyama-Wassermann.

A variant selection related to the applied stress is expected in the thermomechanical treate-

ments TMT-1 and TMT-2. In the thermomechanical treatment TMT-3, no stress is acting

during transformation. Additionally, as the deformation is homogenous through the whole

hot zone of the sample there should be no significant residual stress. As a consequence no

variant selection based on stress is expected. We start our analysis of the effect of stress on

variant selection by considering the work of the shape strain P in equation (1), namely the

Patel and Cohen criterion [9]. The variants that maximize the work of the shape strain in

the applied stress field W = (P − I ) : Σ are considered to be the most favoured variants. In

tensile deformation, the applied stress tensor is such that all components are zero except

the diagonal component associated with the tensile axis. The variants are classified based

on the value of the work. The variant that has the largest work is ranked first (1) whereas the

one exhibiting the lowest work is ranked last (24). In the model for {225}γ plate martensite,

there are always two variants that exhibit the same work, as the shape strain is the result

of the combination of two twin-related variants in equal proportion [7]. Therefore, in that

case the variants are coupled and ranked from (1) to (12). It is worth mentionning here that

the resolution of the EBSD measurements performed is not sufficient to distinguish the two

twin-related variants orientations. Each plate is indexed as a single orientation. However,

characterisations using transmission electron microscopy indicate that at the midrib of the

{225}γ plate, the two twin-related orientations are observed, in equal proportion [23].

Plate martensite: High-carbon steel

Figures 11.3A and 11.3B show the histograms of the variants occurrence as function of their

ranking for the different thermomechanical treatements where plastic strain (TMT-1) and

elastic strain (TMT-2) are applied during transformation. The height of the bar corresponds

to the number of pixels associated with the variant and the colour of the bar indicates the

average work value of the observed variant. The work is computed using a normalized value

of stress. This analysis indicates that the variant selection can be modelled reasonably well by

considering the work of the shape strain (Patel and Cohen criterion). The variants for which

shape strains exhibit a low work are present in smaller amount than those with higher work. Or,
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Figure 11.3: Histogramm of the variant occurrence with a ranking based on work of the shape
strain (Patel and Cohen criterion). A: Results for TMT-1. B: Results for TMT-2. C: Results for
TMT-3. The colour of the bars indicates the average work associated with the variants. The
dashed lines indicate the linear fitting of the variant occurrence as a function of their ranking.

in other words, the variants with high work values have the tendency to grow bigger than those

with lower work values. To help in visualizing this tendency, a linear fitting drawn with a black

dashed line is superimposed on the graphs. Figure 11.3C shows the results of the same analysis

performed on the plastically deformed sample without stress (TMT-3). In that case, the "stress"

considered in the evaluation of the work is chosen to be parallel to the direction of the prior

plastic deformation. The linear fitting indicates a slight decrease of the variant occurrence

as the variant number increases, but this tendency is very light and we concluded that no

significant variant selection is taking place in the plastically deformed sample (TMT-3). We

also checked whether or not considering the work of the lattice distortion RB associated with

each variant instead of considering the average distortion P resulting from the combination of

the twin-related lattice distortions is appropriate to model the selection. Our analysis indicates

no good correlation between the variant occurrence and the magnitude of the lattice strain

RB , and confirms that the deformation gradient to consider in the computation of the work

in equation (1) is F = P , as suggested by Patel and Cohen [9].
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Lath martensite: Low-carbon steel

The same variant selection analysis has been performed for the lath martensite. The results in

figure 11.4A indicate that the work of the shape strain is not able to account convincingly for

the variant selection. Indeed, there is no correlation between the variant ranking and their

occurrence. Such lack of correlation exists for all tested thermomechanical treatments. The

computation of the work has also been performed using the lattice strain RB . The results are

presented in figure 11.4B. The analysis is not more satisfactory. The lack of correlation can

Figure 11.4: Histogramm of the variant occurrence in the lath martensite submitted to the
TMT-1 with a ranking based on the work criterion. A: Computation of the work based on the
shape strain P . B: Computation of the work based on the lattice strain RB .

suggest that another type of selection is taking place in the sample. When studying the effect

of ausforming on lath martensite, Miyamoto et al. evidenced a variant selection based on

CPP packets [4]. Accordingly, we treated our results under such light. Figure 11.5B presents a

reconstructed austenite map acquired in the sample deformed plastically and transformed,

while keeping the stress in the sample (TMT-1). The pie graphs added on several grains

indicate the repartition of the variants in the four different CPP packets. The colour of each

part of the pies is chosen arbitrarily, only to indicate the uneven repartition between the

different CPP packets. It appears that for each prior austenite grain there is a CPP packet

which is favoured among the four ones. In figure 11.5C, we represent the orientation of the

normal to the favoured CPP in red. The remaining of the < 111 >γ directions are indicated

in black. We observed that none of the {111}γ normals close to the traction axis are selected,

even though a < 111 >γ fibre texture along this direction has developed as a consequence

of the tensile deformation. Two green circles have been added on the < 111 >γ pole figure

to highlight the fibre. This analysis indicates that the dominant CPP packet is never the

one perpendicular to the traction axis, and suggests that the variants belonging to that CPP

packet are less favoured than those belonging to other CPP packets. This phenomenon can be

understood if considering the lattice distortions associated with the variants belonging to the

CPP normal to the traction axis. To simplify the explanation, let us consider the variants of the
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Figure 11.5: A: EBSD map in Euler colour coding of the lath martensite formed in the low-
carbon sample submitted to TMT-1. The red arrows indicate the traction direction along the
sample y-axis. B: Reconstructed austenite map. The black arrows indicate the normal to the
close-packed plane associated with the selected CPP packet. The pie graphs illustrate the
uneven repartition of the CPP packet formed in the grains. C: Pole figure representing the
directions normal to the {111}γ planes. The directions normal to the close-packed planes
associated with the selected CPP packets are indicated in red. The traction direction along
the y-axis is indicated by the red arrows. The green circles indicate the < 111 >γ fibre texture.
D: Tetrahedron representing a < 111 >γ fibre grain with its four {111}γ planes. The traction
direction is indicated with the red arrows. The six Kurdjumov-Sachs variants belonging to the
(111)γ CPP packet are represented with grey rectangles that appear as parallelograms because
of the 3D perspective. The Nishijama-Wassermann variants resulting from the combination of
low-misoriented Kurjdumov-Sachs variants are marked in purple.

exact Kurdjumov-Sachs orientation relationship and not those of the orientation relationship

proposed by Kelly, in order to have a perfect parallelism between the close-packed planes

of the FCC and the BCC phase. We note however that because the two aforementioned

orientation relationships only differ from a few degrees, the following explanation holds also

for the lattice strains of the Kelly’solution. We will consider an austenite grain belonging to the

< 111 >γ fibre, as represented in figure 11.5D. On this figure, the austenite grain is represented

by its four {111}γ planes forming a tetrahedron. The orientation of the grain is such that it

has the [111]γ direction along the y-traction axis, and consequently the (111)γ perpendicular
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to it. The variants 1, 2, 3, 5, 6 and 8 are the six Kurdjumov-Sachs variants belonging to the

(111)γ CPP perpendicular to the traction axis. The variants are chosen in agreement with

the numbering in reference [14]. The distortion matrices of each of these variants can be

expressed in a basis formed by the [11̄0]γ, [111]γ and [11̄0]γ× [111]γ = [112̄]γ. The work of

the lattice strain in the applied stress field (traction along the y-axis) is equal to the diagonal

value Hy y of the displacement gradient H = RB − I . The calculations indicate that for all the

variants belonging to the (111)γ normal to the traction axis, Hy y is equal to zero. This implies

that none of the variants in the CPP packet is favoured by the application of the stress. The

latter explanation rationalizes why the CPP normal to the traction axis is never the one of

the dominant CPP packet. It is however not sufficient to explain why one of the CPP packets

out of the three remaining ones is favoured. Indeed considering a < 111 >γ fibre grain, all

three remaining CPP packets are symmetrically oriented about the traction direction, and as

such are equivalently favoured. Further investigations of the substructure of the deformed

austenite might be needed to explain the CPP packet selection. The same type of uneven

repartition of CPP packet have been observed in the samples submitted to TMT-2 and TMT-3.

Unfortunately, because of the few grains present in the maps associated with these samples,

we do not observe the [111]γ fibre texture and thus cannot reasonably conclude whether

the same CPP packet selection takes place as a consequence of the external loading, or if

the uneven repartition is only due to a self-accommodation process, the variants belonging

to the same CPP being formed together to minimize the internal stress associated with the

transformation. Indeed, the temperature of transformation of lath martensite is relatively

high, such that the external applied stress is low and it is possible that the applied stress enters

in competition with the minimization of the internal stresses by self-accommodation. If the

self-accommodating process is predominant, the choice of the formed CPP would not be

related to the external loading, but rather to randomness.

Once identified the selection based on the CPP packets, we propose to analyse the repartition

of the different variants belonging to the favoured CPP packet. Investigations of variant

grouping in low-carbon steel suggest that the low-misoriented Kurdjumov-Sachs variants

(10.5◦ around < 110 >α) come by pairs and form blocks [17, 14]. The pairs of variants 1-

6, 2-3 and 5-8 in figure 11.5D are pairs of such variants. The geometrical average of the

lattice strains of the two low-misoriented variants leads to a lattice distortion associated

with Nishiyama-Wassermann orientation relationship [14]. This lattice distortion will be

called Nishijama-Wassermann distortion, but it is worth mentionning that it is different

from the model originally proposed by Nishiyama [24]. There are three different Nishiyama-

Wassermann variants in a CPP. They are illustrated in purple in figure 11.5D and noted NW1,

NW2 and NW3. We note here that as for the Kurdjumov-Sachs variants discussed above, none

of the three Nishijama-Wassermann variants belonging to the CPP normal to the traction

axis is working in the applied stress field. Therefore the previous explanation for the lack

of selection of the variant belonging to that CPP also holds by considering the work of the

Nishijama-Wasserman variants. To analyse the variant selection inside the favoured CPP, we

computed the work of the resulting average distortion for all variants belonging to the favoured

CPP packet and ranked the variants accordingly. Figure 11.6 illustrates the occurrence of the
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three Nishiyama-Wassermann variants in the selected packet of the map presented in figure

11.5A. This analysis suggests that an additional selection takes place in the sample. Among

Figure 11.6: Repartition of the Nishijama-Wassermann variants inside the selected CPP. The
variants are ranked according to the work of the Nishiyama-Wassermann average distortion:
W = (F NW − I ) :Σ. A: Results for the TMT-1, sample deformed plastically and transformed
with applied stress. B: Results for TMT-2, sample deformed elastically and transformed with
applied stress. C: Results for TMT-3, sample deformed plastically and transformed without
stress. The average work associated with the variants is indicated below each bar.

the three different Nishijama-Wassermann variants, the variant exhibiting a negative work

appears less often than those exhibiting a positive work. The selection inside the CPP is also

observed in the sample submitted to pure plastic deformation (TMT-3) represented in figure

11.6C, but is almost not observed in the sample elastically stressed before transformation

(TMT-2) represented in figure 11.6B. We believe that the lack of variant selection in the elastic

loading case is related to the low magnitude of the stress imposed during the transformation.

For the lath martensite, the temperature at which the tensile deformation is performed is

elevated (400◦C). As a consequence, the elastic limit is low, and the stress applied in the elastic

thermomechanical treatment is only 62MPa. As a comparison, in the same thermomechanical

treatment applied to the plate martensite, where variant selection has been observed (figure

11.3B), the applied stress in the elastic regime reaches 150MPa. The selection observed in the

sample submitted to plastic deformation only prior to transformation (TMT-3, figure 11.6C)

was unexpected as no stress is applied during transformation. Some residual stresses caused

by the prior deformation might be present in the material during transformation, which might

explain the variant selection observed.

Taken together the results of variant selection in plate and lath martensite indicate that the

phenomenon is related to the nature of the strain accommodation process. In {225}γ plate

martensite, the accommodation of the habit plane is based on the coupling of Kurdjumov-

Sachs twin-related variants. The deformation that matters in the computation of the work

in equation (1) is therefore the combination of the lattice strains of both variants, namely

the shape strain. On the contrary, in lath martensite, a self-accommodation is achieved by

the concomitant formation of all variants belonging to the same CPP packet. In addition,

low-misoriented variants of the same packet appears together, forming a bifoliated block [14].

For that type of martensite, we observe a two-steps variant selection, first there is a selection of
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a particular CPP packet and then a selection inside the packet. A CPP packet is systematically

not selected, and it is the one for which the work of all the variant’s lattice strain is zero. Inside

the selected CPP packet, the variant selection can be explained by considering the work of the

combination of the lattice strains of low-misoriented variants in the stress field.

Conclusions

The effect of tensile deformation in both elastic and plastic ranges on variant selection has

been studied in lath and plate martensites. The effect of a prior tensile plastic deformation

with no applied stress is also investigated. The selection is primarily studied by considering the

work of the deformation gradient F associated with the transformation in the applied stress

field Σ: W = (F − I ) :Σ. In plate martensite, the variant selection is successfully modelled by

considering the average of the two lattice distortions of the twin-related variants composing

the plate, F = 0.5RB +0.5(RB)twin = P , namely the Patel and Cohen criterion. A selection is

observed when stress is applied during transformation, but no significant selection is observed

as a consequence of a prior plastic deformation. In lath martensite, the selection is observed

in both thermomechanical treatments involving plastic deformation (TMT-1 and TMT-3),

and not when the applied stress remains below the elastic limit (TMT-2). The selection

phenomenon is somewhat more complex than in the plate martensite and we could not

explain the selection by using a simple analysis based on the work of the lattice distortion

or of the shape strain. We observed that some CPP packets are favoured. The CPP packet

selected are those that are not oriented along the tensile direction. This can be explained

by considering the lattice distortion associated with the variants in the CPP packet, as this

CPP orientation is such that none of the variants belonging to that CPP packet works in the

stress field. A second selection is observed inside the selected CPP packet. This latter could

be modelled by considering the work of the lattice distortion associated with the Nishijama-

Wassermann orientation relationship, which results from the combination of lattice strains

of the two low-misoriented Kurdjumov-Sachs variants forming a block. We concluded that

in both cases, i.e. plate and lath martensite, it is the combination of lattice distortions that

matters in the computation of the work, and that the nature of the combination is related to

the strain accommodation in the martensite product.
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12 General discussion

Comparison of the continuous FCC-BCC distortion model with the

PTMC

The {225}γ habit plane case

An important result obtained during this thesis is the demonstration of the equivalence be-

tween the continuous distortion model and the PTMC model in the prediction of the {225}γ
habit plane (chapter 5). We showed that under the same assumptions, namely considering

the same orientation relationship and the same ratio of lattice parameters, the two models

are equivalent. As a consequence, we offered a mechanistic dimension to the famous phe-

nomenological theory.

We propose here to briefly compare the two models in this particular {225}γ case. The com-

parison of the inputs and outputs associated with each model is summarized in table 12.1.

The major input associated with the PTMC is the assumption that the macroscopic shape

change is an invariant plane strain. As additional inputs, the ratio of lattice parameters, the

Bain correspondence and type of accommodation, namely the nature of the lattice invariant

shear are needed. Through the PTMC calculations, the orientation relationship and the type

of habit plane are predicted. On the contrary, in the continuous model, the Kurdjumov-Sachs

orientation relationship is a starting hypothesis. Besides, the ratio of lattice parameters is

implicitly imposed as the atoms are considered to behave like hard spheres. As in the PTMC,

the Bain correspondence is assumed. The habit plane and the accommodation by twin-related

variants pairing are emerging from the distortion.
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Table 12.1: Comparison between the PTMC and the continuous model in the {225}γ case

Model Inputs Outputs

• Nature of the shape strain • Orientation relationship
PTMC • Accommodation mechanism • Shape strain

• Lattice parameters
• Bain correspondence

• Orientation relationship • Shape strain
Continuous • Lattice parameter • Accommodation mechanism

• Bain correspondence

Concept of habit plane

The habit plane is an experimentally observable feature of the transformation. However,

its nature is envisioned in a different way by the two approaches. The assumption of the

existence of a completely invariant habit plane is central in the PTMC calculations, whereas in

the continuous model it is only a consequence of the combination of two particular variants.

In general, like Jaswon and Wheeler [Jaswon and Wheeler, 1948], the approach based on the

continuous model considers as a sufficient condition for the existence of a habit plane that the

plane remains untilted by the transformation. As a matter of fact, in the {557}γ model presented

in chapter 7, there is no invariant plane. The habit plane of each lath is tilted by 0.5◦ and

globally untilted by the neighbouring bloc. The remaining of the martensite accommodation

is ensured by plasticity both in the austenite and the martensite. In the {557}γ habit plane

case, contrarily to the {225}γ, the continuous model is not yet able to predict the exact type

of accommodation mechanism needed to guarantee an invariant plane. Disclinations and

dislocations are considered to be good candidates.

Importance of the lattice parameters

If both models need some lattice parameters as inputs, the attention paid to them is radically

different. In the PTMC, the variation of the ratio of lattice parameters leads to change in the

predictions. As an example, with using the same lattice invariant shear, the PTMC predicts

a Kurdjumov-Sachs orientation relationship with a {225}γ habit plane, for lattice parameter

in hard-sphere ratio
aγ

aα
=

√
3
2 , but it predicts a orientation relationship between Kurdjumov-

Sachs and Nishiyama-Wassermann and a {259}γ habit plane for a larger ratio. In the continuous

model, a hard sphere ratio is assumed to simplify the computation of the atoms trajectories.

In this model, a change of lattice parameter could potentially be accounted for by varying the

size of the atoms during the transformation. The mechanism of transformation will however

remain the same. In our opinion, for steels, considering the exact lattice parameter ratio is

not so important to model the transformation. Actually, the relationship between the ratio

of lattice parameters and crystallographic features such as the orientation relationship and
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the habit plane as it is intrinsically assumed in the PTMC is questionable. In the supplements

of the first study on surface martensite (Appendix A), we compare the crystallography of the

surface martensite and the bulk martensite produced in Fe-30%Ni. In the same material,

the orientation relationship changes from Kurdjumov-Sachs on the surface to Nishiyama-

Wasserman in the bulk. Similarly, the habit plane moves from {225}γ on the surface to {259}γ
in the bulk. On a PTMC stand point, a rather natural explanation for such changes in the

crystallography could be the change of the lattice parameters ratio due to thermal contraction,

as the bulk and surface martensite formation takes place at two different temperatures. To

test the validity of this hypothesis, we computed the change of the ratio of lattice parameter

due to the difference in temperature between room temperature, when the surface martensite

appears, and the liquid nitrogen temperature in which we formed the martensite in the

bulk. For such temperature difference, the ratio
aγ

aα
decreased by 0.06%. It is extremely low

in comparison with the 2% difference of ratio that needs to be considered in the PTMC to

move form a {225}γ hard sphere solution to a {259}γ solution. Therefore, we believe that the

change of accommodation mechanisms, related to the decrease in Ms, is a more meaningful

explanation for the change in the crystallography rather than a change in lattice parameters.

Contributions of the continuous description

Contrarily to the PTMC model where only the final distortion is considered, the continuous

model describes the complete atomic path. It has thus the strong advantage of giving a realistic

idea of how the martensitic transformation "looks like". It is typically what is aimed when we

present the film of the formation of {225}γ thin plate (chapter 5). We believe such illustration

of the martensitic transformation more pedagogical than PTMC computations. Even, we

think that such animation could help in understanding what is behind the phenomenological

description of the PTMC, as it is somehow closer to reality.

Regarding the prediction of variant selection, our studies indicate, using a selection criterion

based on the work of the distortion, that the continuous description does not improve the

prediction with respect to the final transformation. Although we first suggested that the

consideration of the variation of the extension in a direction normal to the surface at the

beginning of the transformation could better model the variant selection phenomenon in

surface martensite (chapter 8), our second study on the same type of martensite (chapter

9), which more clearly allows to discriminate the different models, let us conclude that the

complete distortion is more appropriate to study variant selection.

Still, we are convinced that the continuous description of the transformation could help in

refining the variant selection prediction, for example by offering insights on the accommoda-

tion mechanism in the austenite. Additionally, the continuous model could potentially allow

for the explanation of interesting crystallographic features, such as the spread of orientation

relationship visible by the continuous patterns in the martensite pole figures.
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Chapter 12. General discussion

Variant selection modelling

In our mathematical introduction in chapter 4 (equation 4.32), we explained that the effect

of stress on variant selection can be studied by considering the work of the deformation F

associated with the transformation in the applied stress field Σ, similarly to the Patel and

Cohen criterion [Patel and Cohen, 1953]:

Wσ = (F − I ) :Σ= H :Σ= tr (HΣT) (12.1)

The experimental studies of variant selection carried out on the different martensite types

suggest that such a criterion is appropriate to model variant selection. In this section, we will

discuss in more details the different elements involved in the computation of the work Wσ.

Applied stress in the variant selection model

In equation 12.1, the stress tensorΣ considered is the macroscopic applied stress, but it is well-

known that in polycrystalline materials the local stress, acting in each individual grain, is not

equal to the macroscopic one. Such simplification in the evaluation of the quantity Wσ could

have been detrimental for the prediction of variant selection. However, our results suggest

that the consideration of the macroscopic stress allows for a reasonably good prediction of the

variant selection. Nonetheless, it would be interesting to study variant selection considering

the local stress by using polycrystalline models, in order to quantify the loss of quality in the

prediction using the Reuss (iso-stress) assumption. It is worth mentioning that by studying

surface martensite, we manage to somehow circumvent the difficulties associated with the

change of local stress state between different grains. Indeed, in that particular case, the effect

of the free surface is identical for all grains.

Effect of free surfaces on variant selection

On the free surface contrarily to the bulk, there is no austenite to impede the deformation of

the martensite in the direction normal to the free surface. As a consequence, Wdef (in equation

4.31 in chapter 4) is different for each variant, even if no stress is applied to the material

(Wσ = 0). This particularity gives rise to a natural variant selection in surface martensite, as

it has been reported in chapters 8 and 9. In these studies, we modelled the variant selection

phenomenon by using the Hzz component of the displacement gradient, when it is expressed

in the sample reference frame, z defining the normal to the free surface. The variant that

exhibits the largest Hzz value is more prone to form as it maximizes the deformation in the

direction normal to the free surface. In the context of variant selection caused by applied stress,

this criterion can be seen as the general criterion presented in equation 12.1, where the stress

tensor Σ is associated with a fictitious force normal to the free surface. Figure 12.1 illustrates

this equivalence, by using the principle of superposition. In figure 12.1A, we modelled the

effect of the free surface by considering that it is equivalent to considering the nucleation of
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martensite in the bulk and removing the "hat" of austenite above the nucleus of martensite.

When a martensite nucleus is formed in the bulk, it is constrained by the surrounding austenite

which impedes its transformation. However in the case of a transformation on a free surface,

these constraints are partially removed. Such a situation is equivalent to a nucleation in the

bulk plus a contribution of a tensile force normal to the free surface (figure 12.1B). As the

effect of the bulk on the nucleation of the martensite is assumed to be the same for all variants,

only the effect of the fictitious tensile force matters for variant selection. We can then consider

the effect of the free surface as the interaction of the fictitious force with the transformation

mechanism, which gives a fictitious Wσ = Σ f i ct : H , where Σ f i ct has all the components

equal to zero, except the Σzz diagonal component, z being oriented normal to the sample

free surface. To compare the free surface effect and the effect of an applied stress on the

Figure 12.1: Illustration of the anisotropy associated with the nucleation of surface martensite.
The free surface is marked in red. The black arrows represent the constraints caused by the
austenite and the red dashed arrows represent the fictitious force associated with the free
surface.

surface martensite formation, we performed a simple experiment using the 4-point bending

device presented in chapter 10. As-cast Fe-30%Ni samples have been polished down to 1

micron. The samples have then been loaded in 4-point bending and electropolished directly

on the machine, such that the imposed stress interacts with the transformation mechanism.

The produced martensite has been characterized with EBSD measurements and the variant

selection studied. The pole figures presented in figure 12.2 show the martensite formed in

an austenite grain with a cube orientation, in tension along the x-axis. This measurement

indicates that the trend of variant selection is essentially the same as for surface martensite

without applied stress. Namely, the Bain group close to the z-axis almost disappears. The

expected effect of the applied stress would have been that the Bain group close to the x-axis

would disappear as well. It is not the case, and this little experiment leads us to conclude that

the effect of an applied stress is of second order with respect to the effect of the free surface.
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Chapter 12. General discussion

Figure 12.2: EBSD map (A) and associated pole figures of the surface martensite (B) produced
on a sample electropolished while loaded in 4-point bending. The tensile axis is along the
x-direction. In C: Pole figure of the austenite parent grain.

We try to quantify the effect of the free surface by using a rather rough approach which consists

in evaluating the maximum elongation authorized in elasticity εmax = σy

E and compare it to

the elongation associated with the transformation mechanism εtrans. The max elongation

associated with the transformation mechanism is computed by using the Green deformation

tensor E = 1
2 (F TF − I ). For standard mechanical values of the austenite, we have εmax

∼=
1 ·10−3. By computing E using the continuous model, we find εtrans

∼= 1.7 ·10−1. Based on this

calculation, it appears that the maximal deformation authorized in elasticity is significantly

lower than the elongation associated with the transformation, which illustrates also that

plasticity is needed to accommodate the transformation. In agreement with the experiment, it

indicates that it is more favourable for a variant to maximize its deformation in a direction

normal to the free surface, where there is no limit in the allowed elongation, rather than

maximizing it in the tensile direction.

Deformation associated with the martensite transformation

Our studies indicate that the deformation gradient F that needs to be considered in the

computation of Wσ (equation 12.1) is not always the shape deformation as originally proposed

by Patel and Cohen, and commonly accepted as being the appropriate criterion, but it depends

on the martensite type, in particular on the accommodation mechanism in the martensite.

We concluded that the deformation F to consider is always based on the lattice strain RB .

Depending on whether the martensite product is accommodated independently, by means

of dislocations, or by variant couplings, it is either directly the lattice strain, or the result of

the combination of different lattice strains, that needs to be considered in the prediction.
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For example, in the {225}γ plates formed in the bulk of high-carbon steel (chapter 11), a

coupling of twin-related variants is required to accommodate the martensite formation. In

that case, the variants are formed simultaneously. The deformation to consider is thus the

resulting deformation caused by both variants, namely the shape strain P = 0.5RB+0.5RBt wi n .

When {225}γ martensite is formed on the surface of the sample, the accommodation of the

habit plane is only partially made by the twin-related variants. In our first study on surface

martensite (chapter 8), we noted that the variant which is twin-related with a favoured variant

slightly appears, participating in the accommodation. However, the amount of that variant is

very low, such that the situation appears to be far from the 50%-50% fully accommodating ratio.

Even in our second study (chapter 9), we observed no trace of the unfavoured twin-related

variant. Actually because it forms on the surface, the motion of dislocation is facilitated and

it is very likely that the accommodation of surface martensite is achieved by dislocations,

similarly to what is proposed in our Frank-Bilby analysis (chapter 6). Therefore, in that case, a

variant can "live by itself" and only the lattice deformation associated with individual variants

needs to be considered in the computation of the work. In that case, the consideration of the

individual lattice strain better accounts for variant selection. In {557}γ lath martensite, the

selection phenomenon appears to be more complex. We could not convincingly relate the

selection to the work of a particular distortion. Actually, we noted two types of selections. A

first selection based on the CPP packet and a second selection occurring inside the formerly

favoured CPP packet. The first selection mechanism would require a more detailed study. We

rationalized the second one by using the work of the combination of the two low-misoriented

martensite variants forming a bloc, namely the distortion associated with the Nishijama-

Wassermann orientation relationship. In the {259}γ lenticular martensite, we were not able to

find the deformation that could model variant selection. All the classical models have been

tested, but none of them accounts for the selection. By analyzing the internal structure of the

lenticular martensite, we observed a complex crystallographic architecture, as illustrated in

the TEM micrograph in figure 12.3.

Figure 12.3: TEM brightfield micrograph of the internal substructure of {259}γ lenticular
martensite
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Chapter 12. General discussion

In the light of such a microstructure, the inability of our different models to capture the variant

selection is understandable. Indeed, it is very likely that the deformation associated with the

nucleation of lenticular martensite involves more complexity than a coupling of two variants,

as proposed in the PTMC for the {259}γ or in our model for {225}γ. A detailed TEM analysis of

the internal microstructure of lenticular martensite combined with a measure of the macro-

scopic shape change would help in modelling the variant selection in this material.

To summarize our modelling of variant selection in the different investigated steels, a schematic

map is proposed in figure 12.4. The different martensites are classified as a function of the com-

plexity of the martensite strain accommodation and the temperature at which there are formed.

By simple accommodation we consider a mechanism essentially based on dislocations. An

increased complexity is considered if variant grouping are needed for the accommodation of

the martensite product.

Figure 12.4: Map of the variant selection modelling for different types of martensite. In the
x-axis, the increasing complexity of the martensite accommodation mechanism. In the y-axis,
the martensitic start temperature.

Relation between variant selection and martensite morphology

The results obtained in this thesis suggest that the martensite morphology is related to the

variant selection phenomenon. The effect is clearly evidenced in our study of the chevron

morphology (chapter 9). We showed a selection of the twin boundaries that favour the trans-

formation. The selection is such that it induces a symmetry in the martensite morphology

(illustrated in figure 12.5A). Besides, the strain accommodation by local variant selection

as proposed in our models for the {225}γ and {557}γ habit planes are also related to proper

morphologies. In the {225}γ, we showed that the only way to accommodate the habit plane by

variants pairing of the continuous distortion is an equibalanced combination of twin-related

variants. This implies an alternated martensite microstructure, as presented in figure 12.5B. In
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the study of {557}γ laths, we concluded that blocks have a bifoliate morphology(figure 12.5C),

allowing for good angular compatibility between the laths and the surrounding blocs.

Figure 12.5: Morphologies related to the variant selection phenomenon. A: Chevron morphol-
ogy caused by the selection of the twin boundary. B: Alternate structure of {225}γ martensite.
C: Bifoliate morphology of {557}γ martensite blocks composing a packet.

Texture inheritance

The texture inheritance has been only briefly addressed in this thesis. Only the last experiments

presented in chapter 11 consider the effect of plastic deformation without stress on variant

selection. Our results suggest that the variant selection on the plastically deformed sample

without stress is very similar to the variant selection when the stress is maintained during

transformation. This is quite surprising, but might potentially be explained by residual stress

arising from the hot deformation. Further work is required to confirm this hypothesis. This

result even though not explained is still of interest as it indicates that texture inheritance takes

place when the material is strained before transformation. As a starting point for the texture

inheritance study, we think valuable to investigate in more details the selection of the CPP

packet observed in lath martensite.
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13 Conclusions and perspectives

The variant selection phenomenon at both local and global scales has been studied in different

martensitic steels. It has been characterized by EBSD measurements. Two different transfor-

mation models are considered in this thesis, the Phenomenological Theory of the Martensite

Crystallography and the continuous distortion model.

Global variant selection has been studied in Fe-Ni surface martensite, and in bulk transfor-

mations of {557}γ lath martensite formed in a low-carbon steel, {259}γ lenticular martensite

formed in a Fe-Ni-C alloy and in {225}γ plate martensite formed in a high-carbon steel. It

has been shown that a criterion based on the work of the deformation associated with the

transformation and the applied stress allows a good prediction of variant selection. Our work

further suggests that the deformation to consider in the computation of the work depends on

the type of martensite, more precisely on the accommodation mechanism in the martensite.

When the martensite is essentially accommodated with dislocations, the work of lattice distor-

tion well accounts for the selection phenomenon. This is typically what is observed in surface

martensite. On the contrary, when the accommodation is performed by variant pairing, as

for the {225}γ plate martensite, the variant selection is better modelled by using the average

of the lattice distortions of each variant, which is in that case the shape strain. The analysis

of variant selection in {557}γ appears more complex, but we could also relate the selection

by the combination of lattice strains of different variants. In that case, the low-misoriented

Kurdjumov-Sachs variants of the same CPP packet have been used to model the selection. The

study of the {259}γ lenticular martensite is somewhat less conclusive as we could not relate

the observed variant selection to any defined accommodation process.

Local variant selection to accommodate the transformation has also been studied. By using

the continuous distortion model, we could explain the {225}γ and the {557}γ habit planes

by variants combinations. In the {225}γ case, the habit plane is kept completely invariant,

whereas in the {557}γ case, the variants combination only allows to obtain an untilted, or low

tilted (0.5◦) plane.

Besides the variant selection study, this thesis also enlightens the similarities and dissimi-

larities between the continuous model and the classical PTMC. It appears that the models

are much closer than could be initially believed. In particular, under the same assumptions,
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Chapter 13. Conclusions and perspectives

the models are shown to be equivalent. Our work thus offered a mechanistic dimension to a

theory which was up to now phenomenological.

In summary, the following general results are achieved in this thesis:

• We evidenced that contrarily to the widespread expectation it is not always the shape

strain that needs to be consider to model variant selection, but rather the lattice strain

or appropriate combination of lattice strains, depending on the accommodation mech-

anism.

• We proposed a mechanistic vision of the PTMC by showing its equivalence with the

continuous model.

• We explained two different habit planes, by using the continuous model and without any

additional parameter; in each case, a local variant selection of different nature allows

for the existence of the habit plane.

Perspectives

In our opinion, the {259}γ lenticular martensite case should be more carefully studied. In

particular, investigating in details the substructure of such martensite is of interest to achieve

a better understanding of the variant selection phenomenon observed in our bending experi-

ments. In addition to the microscopic characterization, we also believe that a measure of the

shape deformation associated with the {259}γ martensite would advantageously complete

the study. Digital image correlation methods combined with interferometry or confocal mi-

croscopy could be useful tools to achieve such measurements.

Another point that needs to be investigated in more details is the effect of prior deformation

on the transformation. This point has been only briefly addressed in {225}γ plate and in

{557}γ lath martensite. Our conclusions on the effect of prior deformation are not completely

satisfactory. In plate martensite, no clear effect is observed, and on the contrary, an effect

similar to the effect of applied stress is observed in lath martensite. We could not explain this

phenomenon. Since the texture inheritance caused by deformation prior to transformation

has crucial implications in the industrial processing of steel, this point needs to be further

studied. In particular the selection of the CPP packet observed in the deformed lath martensite

seems of interest and would require a dedicated study. In this respect, it could be of interest to

perform thermomechanical treatments where a constant strain rate is imposed during the

transformation. Besides, the recent developments of EBSD allowing for a better statistical

analysis seems a good approach to study the variant selection phenomenon. Although the

mechanisms of variant selection due to prior deformation appear to be more complex than

those due to applied stress, we believe that our work will help in the further understanding of

texture inheritance, by bringing a sound basis on the effect of stress on variant selection.

Finally, we believe it is worth continuing exploring the predictive capabilities offered by the
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continuous transformation model. The accommodation mechanisms related to the trans-

formation appear to be of great importance in the variant selection phenomenon, and con-

sidering the full atomic path during transformation could offer significant insights on these

mechanisms. In particular, using the continuous transformation model in computational

methods, instead of only taking into account the final distortion, might offer new perspectives

on the transformation.
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A Supplements to Variant selection in
surface martensite

A.1 Characterization at lower magnification

The EBSD measurements presented in the main text are showing "islands" of martensite

formed in only a part of the parent grain. In order to verify that the variant selection occurring

in a single island of martensite is representative of the transformation behaviour of the entire

grain, a lower magnification EBSD characterization is proposed here. The grain size in the

(a) Euler colour coding

(b) Band contrast and Euler colour coding

Figure A.1: EBSD map of surface martensite at lower magnification (x65).
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sample is large, and grains can reach the millimetric size. From this measurement, it can be

seen that all the islands of martensite formed in a given grain are very similar, which allows

us to consider only one of them as representative of the whole. The analysis of the variant

selection phenomenon proposed in the main manuscript is thus based on the measure at

higher magnification (x500) of few of these islands.

A.2 Additional simulations

EBSD measurements

Additional simulations have been performed based on different EBSD maps acquired from

the same as-cast Fe30%Ni sample. Figures A.2 and A.3 show the two additional maps and their

respective pole figures of the BCC phase.

Figure A.2: EBSD measurements of surface martensite and pole figures of the martensite.
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A.2. Additional simulations

Figure A.3: EBSD measurements of surface martensite and pole figures of the martensite.
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Variant selection predictions

Using the same criterion as in the article, the prediction of the variant selection is presented in

figures A.4 and A.5 for the first and the second additional maps, respectively.

Figure A.4: Prediction of variant selection for the map 1. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: Kurdjumov-Sachs distortion. C:
Derivative of the Kurdjumov-Sachs distortion. D: PTMC invariant plane strain. E: PTMC
invariant line strain.
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A.2. Additional simulations

Figure A.5: Prediction of variant selection for the map 2. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: Kurdjumov-Sachs distortion. C:
Derivative of the Kurdjumov-Sachs distortion. D: PTMC invariant plane strain. E: PTMC
invariant line strain.
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A.3 Isothermal surface martensite

Directly after electro-polishing and some days later, micrograph pictures have been taken

showing the presence of surface martensite. These respective pictures are presented in figure

A.6a and A.6b. By comparing the two micrographs, it can be observe that new martensite

(a) After polishing

(b) A few days after polishing

Figure A.6: Bright field micrographs of surface martensite

plates continue to appear even though the temperature is constant (the sample stayed in the

fridge at the same temperature as the electrolyte). The surface martensite observed is thus

isothermal martensite.
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A.4. Crystallography of the habit plane

A.4 Crystallography of the habit plane

Comparison between typical habit planes

Using PTMC, the habit plane of Fe30%Ni is predicted to be close to {3 10 15}γ and this pre-

diction is generally experimentally verified, in the bulk. However, in the surface martensite

observed by Klostermann (1972) and later by Wakasa and Wayman (1979) the habit plane

is of type {225}γ. In our sample, we studied the crystallography of habit plane by verifying

whether the traces of the habit planes visible on the EBSD maps correspond to {3 10 15}γ or

to {225}γ. Figures A.7a and A.7b present the results of this study for the {3 10 15}γ and {225}γ
habit planes, respectively. By comparing figures A.7a and A.7b, it appears that the habit plane

(a) {3 10 15}γ case (b) {225}γ case

Figure A.7: Study of the habit plane of surface martensite

is not of type {3 10 15}γ but is likely to be of type {225}γ. Indeed, figure A.7a shows that for

several plates of martensite, the normal to the trace of the habit plane does not intersect any

{3 10 15}γ poles, except the pole oriented along the z-direction. However, these plates have

different habit planes one to another, and by inspection none has a habit plane normal to

z. This means that the habit plane cannot be of type {3 10 15}γ. Figure A.7b, on the contrary,

shows the study of the {225}γ habit plane case. Here, it can be observed that each plate can

be associated to a {225}γ pole. Surface martensite in Fe30%Ni seems therefore to have {225}γ
habit planes.

Verification of the choice of the habit plane trace

Figure A.8 shows the misorientation in the austenite around the martensite plates in respect

with the austenite orientation far from the plates.The red colour means that the misorientation

is about 7◦ and the blue colour indicate that there is no misorientation. This allows to get
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convinced that the traces of the habit plane have been chosen in an appropriate way, as the

distortion of the austenite near this region is weaker than anywhere else on the border of the

plate.

Figure A.8: EBSD measurements of surface martensite: Internal misorientation of the austenite.
Blue colour, no misorientation. Red colour, misorientation of 7◦.

A.5 The PTMC solutions

The PTMC solutions for the Fe30%Ni have been computed thanks to the open source software

PTCLab. The inputs for the computations are the lattice parameters of the FCC and the BCC

phases, the correspondence matrix and the lattice invariant shear system. In our study, the

Bain correspondence has been chosen and the lattice invariant shear is assumed to occur

by twinning on {101}γ. No dilatation parameter is considered, such that we pose δ= 1. The

lattice parameter of the alloy in the two different phases are respectively: 3.5854Å for the

austenite and 2.8635Å for the martensite. These lattice parameters are taken from Goldmann

and Wagner (1963). Figure A.9 shows the output of the PTCLab software, where four solutions

are proposed. It can be seen that the shapes of the patterns in the pole figures are relatively

different in the two solutions. In the main article, solution 2 is chosen as it better fits the

experimental data in terms of orientation relationship and variant selection prediction. In

order to offer a comprehensive study, in this section, we present the results of the simulations

using solution 1.
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A.5. The PTMC solutions

Figure A.9: Chart of the PTMC solutions computed from PTCLab

We can see that there exist only two crystallographically different solutions, as solutions 1 is

equivalent to solution 4, and solution 2 equivalent to solution 3. Figure A.10 shows the pole

figures of the martensite associated to the two different solutions.

Figure A.10: Martensite pole figure of the two PTMC solutions. A: Solution 1. B Solution 2.
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Simulations for the other solution

For the simulation, the same criterion as the ones imposed in the main article have been

chosen. The results for map 1 and map 2 of the article are illustrated in figures A.11 and A.12,

respectively. By inspection, it can be noted that according to this solution, the invariant strain

line allows a slightly better prediction for the variant selection than the invariant plane strain.

Figure A.11: Prediction of variant selection for the map 1. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: PTMC invariant plane strain. C: PTMC
invariant line strain.

Figure A.12: Prediction of variant selection for the map 2. In blue, the selected variants. Empty
circles, unselected variants. A: Measured pole figure. B: PTMC invariant plane strain. C: PTMC
invariant line strain.
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A.6 Quantitative analysis of the variant selection prediction

The quality of the predictive models for variant selection is generally performed qualitatively,

by comparing visually the experimental and the simulated pole figures. We propose a method

based on image processing to quantify more properly the quality of the predictions. This

method is briefly explained in this supplementary material.

Method

The quantitative measure of the quality of the prediction is based on pole figures analysis. The

concept is to superimpose binary image of the predicted and the experimental pole figure. The

measure of the quality is then performed by counting the number of pixels that are correctly

predicted. In other words, we count the number of black pixels that are present in both the

experimental and the predicted pole figures. This value is then normalized by the union of the

predicted pixels and the experimentally measured pixels.

Comparison of the prediction for the various models

Figures A.13 and A.14 show the superimposition of the experimental and measured {100}α
and {110}α pole figure for the PTMC invariant line strain, the PTMC invariant plane strain, the

Jaswon & Wheeler distortion and the continuous distortion for map 2.

(a) PTMC ILS (b) PTMC IPS (c) JW distortion (d) Continuous distortion

Figure A.13: Superimposition of the experimental and predicted {100}α pole figures of map 2:
In black, common pixels; in grey, pixels written in one of the two pole figures.

(a) PTMC ILS (b) PTMC IPS (c) JW distortion (d) Continuous distortion

Figure A.14: Superimposition of the experimental and predicted {110}α pole figures of map 2:
In black, common pixels; in grey, pixels written in one of the two pole figures.
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A.7 The PTMC solution with hard sphere ratio

We recently show (Baur et al., 2017) that if one imposes the lattice parameters in a hard-sphere

ratio, i.e.
aγ

aα
=p

3/2, the continuous distortion associated with the Kurdjumov-Sachs OR and

the PTMC calculations lead to the same results. More precisely, the continuous distortion

is equal to the invariant line strain of the PTMC and the equibalanced combination of twin-

related variant of the continuous distortion is equal to the invariant plane strain.

Our study shows that in the case of surface martensite, the PTMC with the real lattice pa-

rameters of the Fe-30%Ni does not predict neither the correct orientation relationship nor

the correct habit plane. Indeed, the habit plane measured is of type {225}γ and the OR is

Kurdjumov-Sachs, whereas the PTMC predicts habit plane close to {259}γ and a Nishiyama

OR. Imposing a hard sphere ratio as input to the PTMC, the calculations offers a correct pre-

diction of these features. If we do so, the invariant line strain leads to a good variant selection

prediction, exactly as the continuous distortion does. One could however wonder what would

be the prediction of variant selection if one consider the shape deformation (IPS) instead. The

results of such a prediction are presented in this supplementary.

Simulations based on the invariant plane strain

The shape deformation associated with a hard sphere lattice parameters ratio takes the follow-

ing form in the crystallographic γ-basis.

FI PS =


0.9694 −0.0306 −0.0749

−0.0306 0.9694 −0.0749

0.0612 0.0612 1.1498

 (A.1)

The calculation for the variant selection is conducted exactly in the same way as what is done

in the main paper. The simulated pole figures as well as the experimental EBSD measurements

are shown in figure A.15.

Qualitatively, it can be noted that the prediction are not really convincing and that the predic-

tion based on the invariant line strain (ILS) are better. For map 1 only, we analysed the quality

of the predictions as described in the supplementary 5 and compare the result with the one

obtained using the ILS. The results are presented in table A.1. The associated superimposed

{110}γ pole figures are shown in figure A.16.

Table A.1: Quality of the predictions with hard sphere lattice parameters

PTMC IPS PTMC ILS

Quality 12% 21%
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A.7. The PTMC solution with hard sphere ratio

(a) Simulated map 1 (b) Simulated map 2

(c) Experimental map 1 (d) Experimental map 2

Figure A.15: Simulations based on the IPS associated with hard-sphere ratio

(a) Invariant Plane Strain (b) Invariant Line Strain

Figure A.16: Superimposition of the predicted and the measured {110}α pole figure: In black,
pixels that are written in the predicted pole figure and in the experimental measurement; in
grey, pixels that are either predicted or measured
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A.8 Orientation relationships

The analysis of the orientation relationship in the surface martensite found in our Fe-30%Ni,

based on the pole figures shape, indicates that it is closer to the Kurdjumov-Sachs OR than to

the Nishiyama-Wassermann OR. As mentioned in the main text, this is quite surprising as it

is with such an alloy that Nishiyama and Wassermann derived their famous OR (Nishiyama,

1934) (Wassermann, 1933), but both worked on bulk martensite and not on surface martensite.

It seems therefore that the OR changes from a KS type to a NW type depending on whether the

martensite is formed on the surface or in the bulk.

The same alloy as the one that presented surface martensite as been quenched in liquid nitro-

gen to form bulk martensite and the sample has then be prepared for EBSD mapping. The

bulk martensite pole figure of a single grain of austenite is presented in figure A.17. It can be

compared to figure A.18, the pole figure associated to the map 1 in the main manuscript. The

Figure A.17: Pole figures of the bulk martensite

Figure A.18: Pole figures of the surface martensite

incurvation of the outer three-fold star in the {110} pole figure reveals that surface martensite

is closer to KS than bulk martensite, as in the former the shape tends to be more concave than

in the latter where it is more convexe.

In order to assess more quantitatively the difference of OR, we used the HKL EBSD software

to compute the misorientation on the interphase boundaries. On figure A.19 the interphase

boundaries which show an misorientation within less than 3 degrees from the Kurdjumov-

Sachs OR and the Nishiyama-Wasserman OR are indicated in green and magenta respectively.

In black, are marked the boundaries that are at three degrees from both ORs. Figure A.19 seems

to indicate that close to the habit plane the orientation relationship is of type Kurdjumov-
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A.8. Orientation relationships

Figure A.19: Orientation relationship at the grain boundaries. Green indicates the boundaries
whithin 3◦ from KS and magenta indicates the one whithin 3◦ from NW.

Table A.2: Comparison of the quality for the predictions for the four different models.
KS OR NW OR

Map 1 64% 44%
Map 2 65% 47%

Sachs, and that it moves towards a Nishyjama-Wasserman type of OR when the martensite

plate grows. By counting the pixels associated to each type of boundary in both map 1 and 2,

it is possible to assess to which OR the martensite formed is closer to. The number of pixels

belonging in a interphase boundary that is associated to the KS OR (within 3◦) and the number

of pixels belonging in a interphase boundary that is associated to the NW OR (within 3◦) are

counted and normalized by the total number of pixels defining the interphase boundary. The

results are presented in table A.2. It can be noted that the sum of the percentage is greater

than 100%, this is due to the fact that some boundaries are in the same time within 3◦ of NW

and KS.

Figure A.20 shows the map of orientation relationship of the martensite plate based on the

reconstruction of the parent austenite, using the method presented in the following refer-

ence: Cayron, C. EBSD imaging of orientation relationships and variant groupings in different

martensitic alloys and Widmanstätten iron meteorites, Material Characterization, 94, 93-110,

(2014)). This second analysis confirms that the plate start to transform with a KS OR and far

from the habit plane the OR changes towards NW OR and even locally towards Pitsch OR.
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Figure A.20: Orientation relationship in the plate. Color coding: KS in green, NW in blue and
Pitsch in red.
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B Supplements to Intricate morpholo-
gies of laths and blocks in low-carbon
martensitic steels
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Supplementary Materials 

 

S1: Plotting the traces of planes with GenOVa  

GenoVa (Generation of Orientational Variants) is a computer program that calculates the 

orientational variants and their groupoid composition table. It can simulate the pole figures and 

SAEDs of the variants and their parent crystal. A new functionality has been developed to plot the 

traces of the habit planes. A snapshot is shown in Fig. A1. For this simulation the zone axis of the 

parent austenite is [112] and the calculated zone axis of the variant 𝛼12
𝐾𝑆 is close to [1-13] within a 

tolerance angle of 2°. The simulated SAED of the fcc parent and bcc variant 𝛼12
𝐾𝑆  are shown in (a) by 

using small red spots (1 pixel) and larger blue spots (5 pixels) for the fcc and bcc phases respectively. 

The small diameter of the fcc spots was chosen because there is no retained austenite in the low-

carbon steels studied in this paper. The overlap of the simulation with the experimental SAED is 

shown in (b). One can check that the positions of the simulated spots are exactly those of the 

experiments, except far from transmitted beam because of the Ewald sphere curvature. The traces 

of the twelve {557} planes of the parent crystal are shown by the red lines in (c). The traces of the 

{557} planes that are parallel to a {156} within a tolerance angle of 2° are marked by the yellow 

bold lines. Here, two planes obey this condition. One of these two lines fits very correctly with the 

morphology of the lath on which the diffraction pattern was acquired. The overlap of the simulated 

trace on the experimental TEM image is shown in (d). 

 

Fig. A1. Snapshot of the module developed into GenOVa to simulate the diffraction patterns of 
variants and plot the traces of the habit planes. 

 

(a) (c) 

(b) (d) 
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S2: Habit planes in iron nickel meteorites 

 

A piece of the octahedrite iron nickel meteorite “Muonionalusta” was bought on eBay by the author. 

The sample was polished and the 4x8 maps have been acquired at low magnification with stage 

displacements between the maps. A large map (0.4 x 1.5 mm) was then reconstituted by stitching.   

The parent austenitic (taenite)  grain is reconstructed with ARPGE and the trace of {111} planes are 

automatically plotted and manually positioned along the martensitic/bainitic (kamacite) laths where 

good fit is found (Fig. A2). It is then checked by a fully automatic procedure that those planes are 

obey the condition {111} // {110} (Fig. A3). 

 

Fig. A2. EBSD map of the “Muonionalusta” meteorite with the trace of the {111} planes, 
automatically calculated and manually positioned. 

 

 

Fig. A3. Trace of the {110} // {111} planes, automatically calculated and automatically positioned in 
all the daughter bcc grains. (a) By manually choosing and positioning the traces of the {111} planes 
that fit with the morphology of the kamacite grains, and (b) by a fully automatic process plotting the 

traces of the planes {111} // {110}.   

  

191



S3: Histograms of misorientations between the variants. 

1018 steel  

 

     

Eurofer steel 
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EM10 steel 

 

   

Fig. A4. Histograms of misorientations (rotation angle) between the martensitic grains in the EBSD 
maps of different low-carbon steels in their as-quenched states. The rotation axes corresponding to 

the rotation angles 6°, 52° and 60°  1° are plotted in stereographic projections. The rotations axes 
related to the 60° misorientations are <110>bcc (blue arrow) and close (but not equal) to a <111>bcc 
direction (red arrow). This proves that the mean OR that can be measured in EBSD is close to (but not 
equal to) a KS OR. A good agreement is found with the GT OR (calculations not detailed here).  
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S4: Habit planes in a as-quenched 1018 steel 

The paper shows two EBSD maps acquired on an as-quenched 1018 steels. More maps were 

acquired and treated. We give here the results obtained on two other maps, one acquired again on 

an as-quenched 1018 steel (Fig. A5 and Fig. A6), and another one in an as-quenched Eurofer steel 

(Fig. A7 and Fig. A8). 

 

Fig. A5. EBSD map of a 1018 steel in as-quenched state. (a) Daughter bcc grains, (b) reconstructed 
austenitic grains, (c) orientation gradients in the bcc grains in RGB coloring (Red = Pitsch, Green = KS, 
Blue = NW), (d) Close-packed plane packets in each prior austenitic grains represented with four 

colors, (e) pole figures on some parent grains with the <110> direction in blue, and the calculated 

<557> directions in red. (f) Histogram of disorientations between the daughter bcc grains in the 
whole map.  
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Fig. A6. Determination of the habit planes in the EBSD map of Fig. A5 by (a) automatically plotting for 

all the bcc grains the traces of the planes {057} // {557}, (b) automatically plotting for all the bcc 

grains the traces of the planes {156} // {557}. 
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Fig. A7. EBSD map of a Eurofer steel in as-quenched state. (a) Daughter bcc grains, (b) reconstructed 
austenitic grains, (c) orientation gradients in the bcc grains in RGB coloring (Red = Pitsch, Green = KS, 
Blue = NW), (d) Close-packed plane packets in each prior austenitic grains represented with four 

colors, (e) pole figures on some parent grains with the <110> direction in blue, and the calculated 

<557> directions in red. (f) Histogram of disorientations between the daughter bcc grains in the 
whole map.  
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Fig. A8. Determination of the habit planes in the EBSD map of Fig. A7 by (a) automatically plotting for 

all the bcc grains the traces of the planes {057} // {557}, (b) automatically plotting for all the bcc 

grains the traces of the planes {156} // {557}. 
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C Supplements to On the chevron mor-
phology of surface martensite

C.1 Additional maps

Figures C.1 show additional band contrast maps of the surface martensite formed on annealed

samples. The orientation of the twin boundary where martensite is observed are marked in

black and the ones where no martensite is observed are marked in red. When only one side of

the chevron is formed, the angle is marked in black with a dashed line box. It is for example

the case on the right down corner of the map in figure C.1C.

Figure C.1: Band contrast EBSD map with annotation of the θ-angle between the normal to
the annealing twin grain boundary and the normal to the free surface.
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Figure C.2 shows a high magnification map of chevron martensite and its associated BCC pole

figures both experimental (figure C.2B) and simulated (figure C.2C and figure C.2D). Figure

Figure C.2: EBSD map of chevron martensite and associated pole figures of the martensite. B:
Experimental pole figure. C: Simulation of the variant selected considering the orientation
of the red grain. D: Simulation of the variant selected considering the orientation of the blue
grain.

C.3 shows another high magnification map of chevron martensite and its associated BCC

pole figures both experimental (figure C.3B) and simulated (figure C.3C and figure C.3D). In

that case, the orientation of each wing of the chevron is the same. As compared with the

two previous simulated maps (figure 2A of the main study and figure C.1A), in this one the

twin-related variant slightly appears. This variant is not predicted by our model as it not

favoured by the free surface and nucleates only for the accommodation of the {225}γ habit
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C.1. Additional maps

plane.

Figure C.3: EBSD map of chevron martensite and associated pole figures of the martensite. B:
Experimental pole figure. C: Simulation of the selected variant considering the orientation
of the light green austenite grain. D: Simulation of the selected varariant considering the
orientation of the blue austenite grain.
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C.2 Crystallographic features

{225}γ Habit plane

Figure C.4 shows the trace analysis of the habit plane of the surface martensite. The habit

plane is of type {225}γ in agreement with the measurements performed previously (Ref: A.P.

Baur, C. Cayron, R.E. Logé, Variant selection in surface martensite, J. Appl. Cryst., 50, 1646-

1652, (2018)). This type of habit plane is accounted by the continuous model, whereas for the

Fe-30wt%Ni lattice parameters, the PTMC calculations predict a habit plane close to {259}γ.

Figure C.4: Trace analysis of the {225}γ habit plane of chevron martensite
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C.2. Crystallographic features

Orientation relationship

The nature of the orientation relationship at the interphase boundary is represented in figure

B.8.5. The colour of the contour indicates in (a) how far from the Kurdjumov-Sachs OR the

interphase boundary is and in (b) how far from the Nishijama-Wassermann OR it is. The red

colour indicates that the deviation from the reference OR is less than 2◦, in yellow between

2◦ and 3◦, green between 3◦ and 4◦, in cian between 4◦ and 6◦ and blue navy above 6◦. The

warmer the colour on the interphase boundary, the closer is the experimental orientation

relationship to the reference one. This analysis confirms that the orientation relationship is

closer to Kurdjumov-Sachs (figure C.5(a)) than Nishijama-Wasserman (C.5(b)). The analysis

has been performed using the HKL Channel5 software from Oxford Instruments.

(a) Kurdjumov-Sachs

(b) Nishijama-Wasserman

Figure C.5: Analysis of the orientation relationship. On the top figure, the reference OR is
Kurdjumov-Sachs and on the bottom figure, the reference OR is Nishijama-Wassermann. In
red: <2◦; In yellow: 2◦-3◦; In green: 3◦-4◦; In cian: 4◦-6◦; In blue navy: > 6◦. The closer the
measured OR is from the reference one, the warmer are the colours on the figures.
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C.3 Variant selection predictions and predictions of the favoured

austenite orientations based on the PTMC

In our paper entitled Variant selection in surface martensite (Ref: A.P. Baur et al., J. Appl. Cryst.,

50, 1646-1652, (2018)), we compare the transformation models based on the PTMC using both

the Invariant Line Strain RB and the Invariant Plane Strain P; and the continuous FCC-BCC

distortion model. All models were able to capture the selection trend rather correctly, and it

was difficult to discriminate a model on this basis. We showed however than the continuous

FCC-BCC distortion better accounts for the Kurdjumov-Sachs orientation relationship and

the {225}γ habit plane. In the present study as well, these crystallographic features are better

modelled with the continuous distortion than with the PTMC predictions (see supplement A

for details).

In this supplementary section, we will analyse whether the PTMC models could or not explain

the chevron morphology and the variant selection observed. The PTMC computations are

performed identically to the calculations made in our previous paper, without dilatation pa-

rameter and assuming twinning on {101}γ as lattice invariant shear. Under these assumptions,

the PTMC model predicts an habit plane close to {259}γ. To account for the {225}γ habit plane

experimentally observed the dilatation parameter has to be considered in order to ensure a

matching of the close-packed atomic rows of both phases. Under that condition, the PTMC

and the continuous distortion models give the same results (Baur et al., Sci. Rep. 7, 2017). Here

below, we give the two shape strains associated with {259}γ and {225}γ, P and Pδ respectively.

We also write the invariant line strain RB predicted by the PTMC without dilatation parameter.

The invariant line strain predicted by the PTMC with dilatation parameter δ is the distortion

studied in the main study (equation 1, section 3.2).

P =
 0.99193 0.03516 −0.02776

−0.02808 1.12242 −0.09663
−0.02776 0.12099 0.90449

 Pδ =
 0.9694 0.0749 −0.0306

−0.0612 1.1498 −0.0612
−0.0306 0.0749 0.9694



RB =


1.11998 0.03516 0.10029

−0.01947 1.12242 −0.08802

−0.14482 0.12099 0.78743

 (C.1)

We first verify the variant selection using the two invariant plane strains P and Pδ and the

invariant line strain RB. The criterion is therefore respectively max[Hzz ] = max[(RB− I)zz ],

max[Hzz ] = max[(P− I)zz ] and max[Hzz ] = max[(Pδ− I)zz ]. The simulations are performed

for the EBSD map presented in figure 1. The results for the invariant plane strain P and the

invariant line strain without dilatation parameters RB give exactly the same results, presented

in figure C.6. The results for the invariant plane strain Pδ with the dilatation parameter are

presented in figure C.7. The simulations can be compared with the simulations using the
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C.3. Variant selection predictions and predictions of the favoured austenite orientations
based on the PTMC

FCC-BCC distortion model in figure 2.

Figure C.6: Simulated pole figures of the chevron martensite in figure 2, using the invariant
plane strain model P and the invariant line strain RB. A: Simulation in the green crystal. B:
Simulation in the yellow twin. In green, the orientation selected by the Max(Hzz ) criterion in
the crystal and in yellow the orientation selected by the criterion in the twin. The experimental
orientations are superimposed in black.

Figure C.7: Simulated pole figures of the chevron martensite in figure 1, using the invariant
plane strain model with the dilatation parameter Pδ. A: Simulation in the green crystal. B:
Simulation in the yellow twin. In green, the orientation selected by the Max(Hzz ) criterion in
the crystal and in yellow the orientation selected by the criterion in the twin. The experimental
orientations are superimposed in black.
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From the simulations it can be seen that the variant selection prediction is accurate for both the

invariant plane strain and the invariant line strain of the PTMC without dilatation parameter.

The invariant plane strain with dilatation parameter appears to be a less convincing model.

Actually, one variant is well predicted, but the model also predicts its twin-related variant

which is almost not observed. It is only observed sometimes near the habit plane (see the

additional map in figure C.3 in the appendix C, section A). As both PTMC models without

dilatation parameter seem to well account for the variant selection, we propose to do the same

simulations as those presented with the FCC-BCC continuous model, namely to explore all

the austenite orientation to see if the PTMC can also explain the selection of the austenite

orientations where the martensite preferentially nucleates. Figure C.8 presents the values of

Hzz , as function of the angle between the twin boundary normal and the surface normal.

Figure C.8: Magnitude of Hzz as function of the θ angle in degrees between the normal to
the twinning plane normal and the sample surface. The red line indicates the value of Hzz

associated with the selected variant in the EBSD map of figure 2. A: with the invariant plane
strain without dilatation P. B: with the invariant line strain without dilatation RB. C: with the
invariant plane strain with dilatation Pδ

This simulation clearly indicates that the criterion based on the invariant plane strain is not

able to account for the particular orientations on which the martensite nucleates. Indeed, the

favoured orientations are such that the angle between the surface normal and the twin bound-

ary normal are about 60◦ (figures C.8A and C.8C). This result would imply that martensite

should form preferentially on twin boundary orientated about 60◦ and not for larger angles,

as reported experimentally. The line in red indicates the value of Hzz reached by the most

favoured variant in the experiment. This line is clearly below the maximum value of Hzz ,

which is 0.1231. On the contrary, the PTMC model based on the invariant line strain RB well

captures the selection of the favoured orientation of the austenite. By comparing figure C.8B

to figure 9.6D and showing the results for the continuous distortion model, it appears that the

shape of the variation of the magnitude of Hzz as function of the θ angle is similar. Only the

magnitude varies a little due to the bigger dilatation associated with the hard sphere model in

figure 9.6D. This result is not surprising as these two models only differ from a small rotation.

Analogously, figure C.8A and figure C.8C have a similar shape.

In conclusion, the variant selection prediction and the prediction of the favoured orientation

of the austenite are well modelled by both the invariant line RB of the PTMC without dilatation
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C.3. Variant selection predictions and predictions of the favoured austenite orientations
based on the PTMC

and the continuous model (which is equivalent to invariant line strain of the PTMC with

dilatation parameter). On the contrary, the invariant plane strain Pδ with dilatation and P

without dilatation parameter cannot explain the favoured orientations of the austenite. Beside,

the invariant line RB predicted without dilatation and the continuous distortion model differ

in the prediction of the habit plane and the orientation relationship. The analysis presented

in the supplementary section B indicates that surface martensite has a {225}γ habit plane

and exhibits a Kurdjumov-Sachs orientation relationship. These crystallographic features are

accounted only if adding the dilatation parameter, or in other words by using the continuous

model.
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D Variants table

In this appendix, we detail the different Kurdjumov-Sachs variants and the particular grouping

of variants that are mentionned in this thesis. A misorientations table for all the Kurdjumov-

Sachs variants as defined in this thesis is presented in table D.1. This table is taken directly

from the supplementary 3 of reference [Cayron, 2014]. In that latter work, the misorientations

between the variants are defined as operators, noted Op. The first column of table D.1 gives

the number of each operator. The second column defines the misorientation, as an angle in

degree and an axis in the α phase. The last column gives all the pairs of variants that are linked

by the operator.

There are two pairs of variants of particular interest in this thesis. The pair called twin-related

variants, which is associated with the operator Op.3, and the pair called low-misoriented

variants, which is associated with the operator Op.5. The former pair is of importance for the

accommodation of the {225}γ habit plane, and the latter pairing is observed in the {557}γ lath

martensite.
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Appendix D. Variants table

Figure D.1: The first colum defines the number of the operator as defined in the GenOVa
program developped by Cayron [Cayron, 2007]. The second column gives the misorientation
in terms of a rotation angle in degrees and an axis angle in the α phase associated with each
operator. The third colum lists all the pairs of variants sharing the given misorientation. Table
taken from Ref.[Cayron, 2014].
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D.1. Grouping of variants

D.1 Grouping of variants

In this thesis, we evidenced that the grouping of variants, also referred as local variant selection

is of importance in the study of the martensitic transformation and the associated global

variant selection phenomenon. In the present section, we propose to illustrate the different

groups of variants encountered in our study, namely the Close-Packed Plane packet (CPP

packet), the Bain group and the Plate group. Table D.1 presents the list of the variants classified

in the different groups.

Table D.1: Kurdjumov-Sachs variant classed in the different groups mentioned in this thesis:
CPP Packet, Bain group and the Plate group

Groups Variants inside the groups Operators inside the groups
CPP Packets (α1, α2, α3, α5, α6, α8) Op.0, Op.1, Op.2,

(α4, α7, α9, α11, α12, α14 ) Op.4, Op.5, Op.7
(α10, α13, α15, α19, α20, α23 )
(α16, α17, α18, α21, α22, α24)

Bain Groups (α1, α4, α6, α12, α17, α19, α21, α23) Op.0, Op.3, Op.5, Op.11,
(α5, α8, α11, α13, α14, α15, α16, α22) Op.16, Op.18, Op.20, Op.22
(α2, α3, α7, α9, α10, α18, α20, α24)

Plate Groups (α2, α6, α7, α12) Op.0, Op.7, Op.20, Op.21
(α3, α5, α13, α20)
(α1, α8, α21, α22)
(α4, α14, α19, α15)
(α9, α11, α16, α24)
(α10, α17, α18, α23)
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D.1.1 The Close-Packed Plane packet (CPP packet)

The Close-Packed Plane packet (CPP packet) is formed by the variants having their close-

packed plane involved in the orientation relationship parallel to the same closed-packed plane

of the austenite. There are four different close-packed planes in an austenite crystal, such that

there are four different CPP packets. Each group contains six Kurdjumov-Sachs variants. One

of the four CPP packet is illustrated in figure D.2A, in red. In figure D.2B, the six variants of the

same CPP packet are represented on a pole figure. The blue dots are the < 110 >α directions

and the red dots are the < 111 >γ directions of the parent grain. The arrow on the pole figure

indicates the normal to the common (111)γ plane. It can be seen that that normal is parallel

to the normal to the (11̄0)α of all variants of the CPP packet. Note that here the orientation

relationship is chosen such that: (111)γ ∥ (11̄0)α ; [11̄0]γ ∥ [111]α.

Figure D.2: A: The triangles represent the four {111}γ planes of an austenite crystal. On each
of these face, the Kurdjumov-Sachs variant are represented by rectangles on the {111}γ plane
parallel to the {110}α involved in the orientation relationship. The direction forming the border
of the triangles are the dense {110}γ directions of the austenite. The variants are positioned on
the top of the {110}γ which is invariant during the variants formation. Six Kurdjumov-Sachs
belonging to the same CPP packet are marked in red. B: The variants belonging to the same
CPP packet are represented on a pole figure, with in blue the < 110 >α directions and in red
the < 111 >γ directions of the parent grain.

D.1.2 The Bain group

The Bain group is defined by all the Kurdjumov-Sachs variants having the same Bain strain,

when decomposing the lattice distortion F in the product of a rotation and the Bain strain,

F = RB. There are three different Bain groups, each group being composed of eight variants.

One of the three of Bain group is illustrated in figure D.3A, in blue.
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D.1. Grouping of variants

Figure D.3: The triangles represent the four {111}γ plane of an austenite crystal. On each of
these faces, the Kurdjumov-Sachs variant are represented by rectangles on the {111}γ planes
parallel to the {110}α involved in the orientation relationship. The direction forming the border
of the triangles are the dense {110}γ directions of the austenite. The variants are positioned on
the top of the {110}γ which is invariant during the variants formation. Eight Kurdjumov-Sachs
belonging to the same Bain group are marked in blue. B: The variants belonging to the same
Bain group are represented on a pole figure, with in blue the < 100 >α directions and in red
the < 100 >γ directions of the parent grain.

D.1.3 The Plate group

The plate group is crystallographically complicated to define. Actually, we do not have any

crystallographic explanation for the presence of such a group of variants. Plate groups are

found in high carbon martensite or iron-nickel alloys, it is named after the type of marten-

site where such group are observed, the Plate martensite. This type of martensite and the

formation of Plate groups are typically associated with the burst phenomenon, when the

nucleation of a given variant catalyses the creation of another. Such type of martensite is

also called zig-zag martensite, due to the zig-zags that the plates of martensite form by the

auto-catalytic process. Plate martensite exhibits habit plane of type {259}γ. Bokros and Parker

are the pioneer of the study of this type of martensite and they propose a definition in term of

habit plane orientation to define the plate group [Bokros and Parker, 1963]. In their work, the

plate group is defined by the variants having their habit plane low-misoriented with respect to

the other variants belonging to the same group. The continuous distortion associated with

the Kurdjumov-Sachs orientation relationship cannot account for the {259}γ habit plane. As a

consequence, we use a definition of the plate group based on the crystallographic orientation

of the martensite lattice, using the operators of misorientation as proposed by Cayron [Cayron,

2014]. An example of plate group is illustrated in green in figure D.4A. On figure D.4B, we

illustrate the plate group on a pole figure. A plate group is characterized by the fact that the

< 111 >α cluster about a common < 110 >γ direction, as indicated by the arrow.
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Appendix D. Variants table

Figure D.4: The triangles represent the four {111}γ planes of an austenite crystal. On each of
these faces, the Kurdjumov-Sachs variant are represented by rectangles on the {111}γ plane
parallel to the {110}α involved in the orientation relationship. The direction forming the border
of the triangles are the dense {110}γ directions of the austenite. The variants are positioned on
the top of the {110}γ which is invariant during the variants formation. Four Kurdjumov-Sachs
belonging to the same plate group are marked in green. B: The variants belonging to the same
plate group are illustrated on a pole figure. In blue, the < 111 >α directions and in red the
< 110 >γ directions. The arrow indicates the cluster of the < 111 >α about a common < 110 >γ.
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