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Abstract
This thesis explores various approaches of studying the long-range colour order of antiferro-

magnetic SU(N ) Heisenberg models with the linear flavour-wave theory (LFWT). The LFWT

is an extension of the well-known SU(2) spin-wave theory to SU(N ), and this semi-classical

method has been used to study SU(N ) models with colour-ordered ground states in the

fundamental irreducible representation (irrep). The aim of this thesis is to study various

SU(N ) Heisenberg models in different irreps and in various colour configurations, in part by

extending the LFWT method to different irreps of SU(N ).

This will be achieved by using three different methods all using different bosonic representa-

tions. First, the LFWT will be performed using the multiboson method that introduces a boson

for each state of a given irrep. Then, a different SU(3) bosonic representation first introduced

by Mathur & Sen will be presented and used to perform the LFWT calculations. Finally, another

way of applying the LFWT will be shown using the bosons first used by Read & Sachdev for

SU(N ) irreps with rectangular Young tableaux. The specific models that will be treated by

these methods are the fully antisymmetric SU(N ) models on the square, honeycomb, and

triangular lattices with m > 1 particles per site, as well as the bipartite SU(3) Heisenberg chain

in the adjoint irrep to show how the LFWT can be used for mixed symmetries. The last chapter

of the thesis will be dedicated to another problem related to the accidental line of zero modes

in the harmonic spectrum of the antiferromagnetic SU(3) Heisenberg model on the square

lattice with one particle per site in a three-sublattice order. The objective will be to try to lift

the accidental zero modes in the spectrum.

Keywords: condensed matter physics, flavour-wave theory, Heisenberg model, spin-wave

theory, SU(N), irreducible representation.

vii





Résumé
Ce travail présente les différentes façons d’étudier l’ordre de couleur à longue distance en

utilisant la théorie des ondes de couleur (LFWT) dans les modèles de Heisenberg SU(N )

antiferromagnétiques. La LFWT est une généralisation de la théorie semi-classique des ondes

de spin SU(2) à la symétrie SU(N ). Cette théorie a connu son succès dans les études de

systèmes SU(N ) avec des configurations de couleurs variées. Toutefois, l’application de cette

théorie a été limitée jusqu’ici à la représentation irréductible (irrep) fondamentale de SU(N ),

et il est souhaitable d’avoir à disposition une méthode qui permettrait d’appliquer la LFWT à

d’autres irreps de SU(N ). L’objectif de cette thèse est donc d’y remédier en développant une

telle méthode, et de l’utiliser afin d’étudier les propriétés de basse énergie des modèles SU(N ).

Nous présenterons la LFWT en utilisant trois représentations bosoniques différentes : la

représentation multibosonique, la représentation bosonique de Mathur & Sen et la représentation

bosonique de Read & Sachdev. Ces méthodes seront ensuite utilisées dans le cadre des modèles

SU(N ) dans les irreps complètement antisymétriques sur le réseau carré, hexagonal et trian-

gulaire avec m > 1 particules par site, puis pour étudier le modèle SU(3) dans l’irrep adjointe

ainsi que dans les irreps arbitraires. La dernière partie de cette thèse sera consacrée à la

problématique liée aux modes accidentels d’énergie zéro du modèle SU(3) sur le réseau carré

avec une particule par site dans une configuration de couleurs à trois sous-réseaux.

Mots-clefs : physique de la matière condensée, théorie des ondes de couleur, modèle de

Heisenberg, théorie des ondes de spin, SU(N), représentation irreductible.
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Zusammenfassung
In dieser Arbeit wird das antiferromagnetische SU(N ) Heisenberg-Modell mithilfe der soge-

nannten linearen Flavourwellentheorie (LFWT) betrachtet. Die LFWT ist eine Erweiterung

der wohlbekannten Spinwellentheorie, die die Untersuchung der Quantenfluktuationen des

geordneten SU(2)-Spins erlaubt. Die LFWT wird benutzt, um die Anordnung der SU(N )-

Teilchen – die hier Farben oder Flavour genannt werden – in der fundamentalen irreduziblen

Darstellung (Irrep) zu erforschen. Es ist aber noch unklar, wie diese Methode auf weitere Irreps

mit verschiedenen Symmetrien angewandt werden kann. Diese Arbeit präsentiert daher die

Ausweitung der LFWT-Methode auf verschiedene Irreps und die Analyse der Quantenfluktua-

tionen in mehreren Gittermodellen mit verschiedenen Farbkonfigurationen.

Dafür werden drei bosonische Darstellungen der SU(N )-Generatoren verwendet. Zuerst wird

die multibosonische Methode vorgestellt, die ein Boson für jeden Zustand der SU(N )-Irrep

einführt. Danach wird eine bosonische Darstellung der SU(3) gezeigt, die zuerst von Ma-

thur & Sen eingeführt wurde, und schliesslich werden die Read & Sachdev Bosonen präsentiert.

Die Modelle, die hier betrachtet werden, sind das quadratische Gitter, das dreieckige Gitter

und das hexagonale Gitter mit m > 1 Teilchen pro Gitterstelle in den vollständig antisymmetri-

schen SU(N )-Irreps sowie das eindimensionale Heisenberg-Modell in der adjungierten Irrep

der SU(3) mit einer gemischten Symmetrie. Das letzte Kapitel behandelt eine weitere Fragestel-

lung: Es befasst sich mit den unbeabsichtigten Null-Energie-Moden in dem Energiespektrum

des SU(3)-Modells in der fundamentalen Irrep.

Stichwörter: Physik der kondensierten Materie, Flavourwellentheorie, Heisenberg-Modell,

Spinwellentheorie, SU(N), irreduzible Darstellung.
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I Introduction

With the development of quantum mechanics in the early 20th century, condensed matter

physics has become one of the most active fields of research in modern physics. It is a field of

research that deals with systems with large number of constituents and the many-body inter-

actions resulting from them, which makes it particularly appealing for potential technological

advancements related to device engineering. This, in part, explains the vast interest in this

field of research. However, it is also about answering fundamental questions in physics related

to the new phases of matter and emergent phenomena arising from the complexity of the

many-body interactions. As Anderson—one of the pioneers of the field—pointed out, “more is

different”: a new level of fundamental complexity arises from a large collection of elementary

particles which needs to be understood [1]. An important subject in this quest is understand-

ing the new phases of matter that emerge at low temperature, and the SU(N )-spin-symmetric

models offer an exciting prospect in this matter thanks to the abundance of interesting phases

and physical phenomena that they can accommodate.

When discussing spin-magnetic systems, one usually refers to the SU(2) spin-degrees of

freedom of the electrons or the ions, and solid-state compounds with such magnetic properties

exist in nature. However, one could imagine extending the SU(2) degrees of freedom to a

more general SU(N ) symmetry even though such systems do not exist naturally in a lattice

configuration. The N degrees of freedom are called colours or flavours, whose nomenclature

originates from the SU(3) colour/flavour symmetries in elementary particles. Such quantum

SU(N )-spin systems represent an interesting setting in which strong correlations can lead to

various exotic ground states due to quantum fluctuations, and have been extensively studied

theoretically in various settings. To briefly mention some notable investigations, the one-

dimensional system in the fundamental irreducible representation (irrep) of SU(N ) has been

solved exactly by Sutherland already in the 70s using the Bethe ansatz [2] showing the ground-

state energy and the spin-wave-like excitations, and other investigations with field-theoretical

methods and abelian bosonisation in 1D has been carried out in the 80s by Affleck [3, 4].

In addition, calculations using the mean-field saddle-point treatment in the large-N limit

have been performed for various irreps [5, 6, 7, 8, 9, 10] in the late 80s and early 90s, a type of

1



Chapter I. Introduction

valence-bond solid (VBS) ground states have also been investigated for SU(2N ) chains [11]

and the list goes on. Most of the studies have been performed on the fundamental irrep or the

completely symmetric (or antisymmetric) irreps of SU(N ), as exemplified by Ref [12], but the

field still being active, the irreps with mixed symmetries are also being investigated recently.

Recent efforts are also centered around numerical simulations which offer a very powerful way

of studying the ground-state properties of the SU(N ) systems, ranging from the colour-ordered

state to plaquette states, VBS, dimerized states, spin liquids and many more. To name a few,

there is the exact diagonalisation (ED) [13, 14] that can be used for small system sizes, whereas

Quantum Monte Carlo (QMC) methods [15, 16, 17, 18, 19, 20, 21, 22] can be applied to cases

without the sign problem. There are also the variational Monte Carlo method [23, 24, 25, 26, 27]

and the tensor network algorithms such as density matrix renormalization group (DMRG) or

projected entangled-pair states (PEPS) [28, 29, 30, 31, 32] that can yield remarkable results in

1D or 2D.

The most exciting prospect, however, is that the SU(N )-symmetric models do not remain a

purely theoretical exercise anymore thanks to the substantial leap of progress that has been

made in recent years in the field of ultracold atom manipulation in optical lattices [33, 34, 35,

36, 37, 38, 39, 40, 41]. Using sufficiently cooled ytterbium atoms or alkaline-earth atoms and by

loading this ultracold atomic gas in optical lattices created by orthogonal lasers, it is possible

to create a system which then exhibits the SU(N ) symmetry. This becomes possible thanks to

the near-complete decoupling of the nuclear spin I and the electronic angular momentum

in the ground state of these atoms. This then imposes the independence of the scattering

parameters of the system from the nuclear spins, after which the Hamiltonian of the system

turns out to be SU(N )-symmetric with N = 2I +1 [39]. In addition, different irreps of SU(N )

can be realised by using the exchange process between different energy levels and the Hund

coupling between the SU(N ) colours [42]. As it is reported that up to N ≤ 10 can be realised

with strontium atoms
(

87Sr
)

[35], and with potentially several particles per site [38, 39], the

SU(N ) has recently risen to prominence again, and its fascinating physics in the context of the

many-body physics could slowly start being revealed in the near future.

Such experimental realisation can be described by the fermionic SU(N ) Hubbard model

H =−t
∑

〈i , j〉,µ

(
f †

i ,µ f j ,µ+H.c.
)
+U

∑
i ,µ<ν

ni ,µni ,ν, (1.1)

with f †
i ,µ, fi ,µ being fermionic operators with N degrees of freedom µ acting on site i , and

ni ,µ = f †
i ,µ fi ,µ. This is indeed a generalisation of the conventional SU(2) spin Hubbard model

to N colours. In the Mott insulating phase with one particle per site, the low-energy physics

of this model to second order in t/U is captured by the antiferromagnetic SU(N ) Heisenberg

models

H = J
∑

<i , j>

∑
µ,ν

Ŝµν(i )Ŝνµ( j ), (1.2)

2



where the operators Ŝµν simply exchanges the SU(N ) spins µ with ν. When having one particle

per site, the spin states are described by the fundamental irrep of SU(N )—denoted by the

Young tableau with one box as we shall see shortly. By contrast, when multiple particles are

present per site, the spin states are described by a different irrep of SU(N ) depending on the

colour symmetry that the particles form.

This antiferromagnetic (AFM) SU(N ) Heisenberg model with J > 0 will be the main focus of

this thesis, in which the long-range colour-ordered ground states will be investigated. The

theoretical tool that will be used for this purpose is the method called the linear flavour-

wave theory (LFWT). It is essentially a semi-classical method of studying the low-energy

excitations of a colour-ordered system, and it is a generalisation of the well-known SU(2)

spin-wave (SW) theory (that can be found in many textbooks such as Refs. [43, 44]): the spin

wave in SU(2) becomes the flavour wave in SU(N ). The theory of antiferromagnetic SU(2)

spin waves has been first developed by Anderson and Kubo [45, 46], for which a nice review

can be found in Ref. [47]. The aim was to study the Néel ground-state configuration [48] of

antiferromagnets with large spin-S. It relies on the assumption that the antiferromagnetically

ordered configuration is indeed the ground state and that quantum fluctuations about the

ordered state are small. If the quantum fluctuations are small, or if S is large—hence the

semi-classical nature of this method—an expansion in powers of 1
S can be justified. It is a

simple yet powerful method for probing ordered systems, and it surprisingly yields remarkably

accurate results even for S = 1
2 which is not a large number [47]. The LFWT applies the same

semi-classical approximation to the SU(N ) colours, and it originates from the pioneering

works of Papanicolaou[49, 50] in which he was studying the spin-1 bilinear-biquadratic model

that has a high SU(3) symmetry point. It was further used and developed by Chubukov [51]

and Joshi et al. [52]. More recently, it has been used to assess the possibility a long-range

colour order in 2D lattices with SU(3) or SU(4) symmetries with one particle per site, i.e., in

the fundamental representation [53, 28, 31]. However, it is not clear how to apply the LFWT

with irreps other than the fundamental irrep of SU(N ), and it is desirable to have such a

simple and powerful method available for other, more complicated irreps. In 2D and 3D, the

Mermin-Wagner-Coleman theorem [54, 55] allows for the existence of a long-range order at

zero temperature (or at any temperature in 3D), which means that the LFWT can definitely

be a very useful tool. However, it can still be beneficial in 1D where the theorem excludes the

possibility of having long-range colour order at any temperature, as it can, for instance, give a

point of comparison with respect to field-theoretical calculations as in Ref. [12].

This thesis thus aims to address this by developing various ways of dealing with the LFWT in

different irreps. Before diving into the heart of the matter, let us first (very) briefly introduce

some notions on SU(3) that will be important in the subsequent development.
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Chapter I. Introduction

1.1 The SU(N ) Lie algebra

1.1.1 The basic concepts

The Lie algebra su(N ) of the Lie group SU(N )—simply referred to as the SU(N ) algebra by

physicists—has a basis consisting of N 2 −1 generators Tα of SU(N ). With the help of the Lie

bracket (or the commutator) and the (completely antisymmetric) structure constants fαβγ,

the Lie algebra is defined by[
Tα,Tβ

]= i fαβγTγ, (1.3)

where the Einstein summation convention is implied. In the defining representation of SU(N ),

the SU(N ) generators can be given by the N ×N generalised Gell-Mann matrices λα which are

a generalised version of the Gell-Mann matrices of SU(3) that span the SU(3) Lie algebra. They

are traceless and hermitian, and they are related to the generators Tα by the relation

Tα = 1

2
λα. (1.4)

The rank of this algebra is N −1, which means that there are N −1 independent diagonal

matrices among λα. This also means that there are N −1 independent generators that we call

the Cartan generators Hi . The Cartan generators can be simultaneously diagonalised, and the

resulting N −1 eigenvalues of a state of a given irrep of SU(N ) are called weights who can then

be plotted on a N −1 dimensional weight diagram.

In the basis of Cartan generators, the defining commutation relations of SU(N ) (1.3) can be

given in terms of the N (N−1)
2 pairs of raising and lowering operators E±k as with the SU(2)

commutation relations with Sz ,S+,S−. This is called the Cartan-Weyl basis.1

There are two important irreps: the defining irrep (that is often called the fundamental irrep)

and the adjoint irrep. For SU(N ), there are N −1 fundamental irreps which are
∧kC (anti-

symmetric tensors with k ∈ {1, . . . , N −1}). However, only the defining irrep (k = 1) is usually

referred to as the fundamental irrep. The adjoint irrep is the representation of the algebra

generated by the structure constants themselves. The set of matrices Tα is given by

[Tα]βγ =−i fαβγTγ. (1.5)

There also is the conjugate representation (or the dual representation): we can always define

another representation with T̃α :=−T ∗
α such that[

T̃α, T̃β
]= [

Tα,Tβ
]∗ =−i fαβγT ∗

γ = i fαβγT̃γ. (1.6)

There are of course many other irreps. If we were to form a n-fold tensor product of a CN

1Without further details, we note that this Cartan-Weyl basis actually covers the complexification of su(N )
which is sl(N ,C).
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1.1. The SU(N ) Lie algebra

vector, there would be n! possible permutations related to different irreducible subspaces of

the permutation group Sn . Thanks to the formalism developed by Young [56], these irreducible

subspaces can be easily visualised by the Young tableaux with n boxes, and they can be used

to label the irreps of SU(N ).

Figure 1.1 – Examples of Young tableaux corresponding to a three-fold tensor product with
different symmetries.

The number of boxes of in a row cannot exceed that of the adjacent row above, and the

number of boxes in a column cannot exceed that of the adjacent column on the left. A column

cannot have more than N −1 boxes (because N boxes represents the trivial representation).

The boxes placed horizontally denote the symmetrisation, and the boxes placed vertically

denote the antisymmetrisation. The Young tableaux such as has a mixed symmetry, whose

corresponding irreps are neither completely symmetric nor completely antisymmetric under

transpositions.

For instance, let us consider two-particle states with SU(3) particles whose (orthogonal single-

particle) colour states are denoted by A, B and C . We then have the symmetriser S12 and the

antisymmetriser A12 defined by

S12 = 1

2
(e +P12) A12 = 1

2
(e −P12) , (1.7)

where e is the identity operator of S2 and P12 is the transposition operator. For ψ≡ A1B2, we

can then have

ψS ≡ S12ψ= 1

2
(A1B2 +B1 A2) (1.8)

that lives in the irrep , or

ψA ≡ A12ψ= 1

2
(A1B2 −B1 A2) (1.9)

that lives in the irrep . These states can be denoted in terms of the Weyl tableau:

ψS −→ A B , ψA −→ A
B

. (1.10)

The labels in the Weyl tableaux are such that they are in alphabetical order in each row and

column (the letters can be repeated in each row, but not in each column). The states of a given

irrep can be created in a similar fashion with the symmetrisers or antisymmetrisers and by

orthonormalising the resulting states.2

2Alternatively, the orthogonal units—also introduced by Young [56]—can be used, which work on the same
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Chapter I. Introduction

The multiplicity of an irrep can be given by the number of the corresponding standard Young

tableaux which are Young tableaux filled with distinct numbers from 1 to n in increasing order

in each row and column. For instance, the Young tableau has multiplicity 2 since there are

two possible standard Young tableaux for it: 1 2
3

and 1 3
2

.

The dimension D (i.e., the number of states) of a given irrep can be easily computed with

the help of its Young tableau. For this, we first need the hook-length of each box of the Young

tableau. The hook length of a box is given by the number of boxes directly to the right and

below plus the box itself. What we are interested in here is the product of the hook lengths of

all the boxes in a given Young tableau, which we will denote by h. As an example, the hook

length of each box of the following Young tableau in shown as follows:

5 3 1

3 1

1

=⇒ h = 5 ·32 ·13 = 45. (1.11)

Next, we attribute another number to each box starting with the upper left box by giving it the

number N . Using this as a reference box, one then adds 1 for each box on the right, and one

subtracts 1 for each box below. The numbers of each box are then multiplied together to form

the number H . The dimension of an irrep is then simply given by D = H
h . For instance, the

dimension of a SU(4) irrep would be calculated as follows:

N N+1 N+2

N−1 N

N−2

=⇒ H = (N −2)(N −1)N 2(N +1)(N +2)

=⇒ D = H

h
= 2 ·3 ·42 ·5 ·6

5 ·32 ·13 = 64.

(1.12)

Let us show another example: the irrep of SU(3). Its dimension is 8 with a multiplicity

of 2. Its states, well-known in particle physics for describing the hadron symmetry [57], are

listed in Table 1.1. The states are symmetric in particles 1 and 2 in one case, and the states are

antisymmetric in particles 1 and 2 in the other case, showing the double multiplicity of this

irrep.

The fundamental irrep of SU(N ) is always denoted by the Young tableau . The conjugate irrep

of a given irrep is given by replacing each column containing l boxes by a N − l-box column,

and then flipping it around the vertical axis in the middle. For example, the conjugate irrep of

SU(4) is given by

= . (1.13)

principle of (anti)symmetrisation. The details can be found in Ref. [13].
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1.1. The SU(N ) Lie algebra

Weyl tableau 1 2
3

1 3
2

A A
C

1p
6

(AC A+C A A−2A AC ) 1p
2

(AC A−C A A)

A A
B

− 1p
6

(AB A+B A A−2A AB) 1p
2

(AB A−B A A)

A B
B

1p
6

(ABB +B AB −2BB A) 1p
2

(ABB −B AB)

B B
C

1p
6

(C BB +BC B −2BBC ) − 1p
2

(BC B −C BB)

A C
C

− 1p
6

(ACC +C AC −2CC A) − 1p
2

(ACC −C AC )

B C
C

− 1p
6

(BCC +C BC −2CC B) − 1p
2

(BCC −C BC )

A B
C

− 1p
12

(2ABC +2B AC −C B A −1
2 (AC B +BC A−C B A−C AB)

−C AB − AC B −BC A)

A C
B

1
2 (C AB −C B A+ AC B −BC A) 1p

12
(2ABC −2B AC +C B A

−C AB + AC B −BC A)

Table 1.1 – The states of the SU(3) adjoint irrep. The particle index is implicit in the order
of the colours. In the first column, the states are symmetric in (12), whereas the states are
antisymmetric in (12).

The adjoint irrep of SU(N ), on the other hand, is given by the Young tableau containing N −1

boxes in the first column and 1 box in the second column, e.g., for the SU(4) adjoint irrep.

The irreps of SU(N ) can also be labelled by their dimension D , e.g., the SU(3) irrep is thus

called the irrep 8. However, there is a nother way of labelling them, which is by using the

Dynkin label. The Dynkin label is a N −1 tuple,3 and the correspondence between the Young

tableaux and the Dynkin labels are given as follows:

Young tableau with row lengths ri with i ∈ {1, . . . , N −1}

l
Dynkin label [r1 − r2,r2 − r3, . . . ,rN−1]

(1.14)

As an example,

SU(3) ↔ [1,1], SU(5) ↔ [0,2,1,0]. (1.15)

3The rank of SU(N ) being N −1, only N −1 labels are required to characterise an irrep.
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Chapter I. Introduction

For more details on the Lie algebras and SU(N ) groups, we refer the interested readers to

Refs. [58, 59, 60] and the references therein. Lastly, let us illustrate an example of a weight

diagram by showing that of the SU(2) irrep S = 1 and the fundamental irrep of SU(3) in Fig-

ure 1.2. Both irreps have three states, but the SU(2) irreps have only one pair of ladder operator

Figure 1.2 – The weight diagram of SU(2) S = 1 and the fundamental irrep of SU(3). The weight
diagram of SU(3) fundamental irrep is in two dimensions spanned by H1 and H2.

(Ŝ+, Ŝ−) whereas SU(3) irreps have three pairs of ladder operators (Ŝ A
B , ŜB

A , Ŝ A
C , ŜC

A , ŜB
C , ŜC

B , ŜB
C ).

This is shown in its weight diagram by the fact that all the three states are connected by three

vertices in three different directions. In the weight diagram of the SU(2) S = 1 irrep, there is

only one direction along which the states are connected. As N grows, the number of ladder

operators grows as well, which makes the structure of the group more complex as well.4 As we

shall see in chapter II, this is the reason why the quantum fluctuations grow as N becomes

large.

1.1.2 From the Cartan-Weyl basis to Ŝµν

As we will be working with the SU(N ) colour-operators Ŝµν , let us see how they can be trans-

lated from the Cartan-Weyl basis of SU(N ). Let us take the example of SU(3). The Gell-Mann

4Apart from the algebraic considerations, the group SU(N ) becomes more complex in the topological sense as
well, as N become large. For instance, SU(2) is diffeomorphic to the three-dimensional sphere S3—it has three
generators—so one could simply think that SU(3) is diffeomorphic to S8. However, SU(3) has a more complex
fibre-bundle structure: it is a S3-bundle over S5.
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1.1. The SU(N ) Lie algebra

matrices λα (α ∈ {1, . . . ,8}) are given by

λ1 :=

0 1 0

1 0 0

0 0 0

 , λ2 :=

0 −i 0

i 0 0

0 0 0

 , λ3 :=

1 0 0

0 −1 0

0 0 0

 ,

λ4 :=

0 0 1

0 0 0

1 0 0

 , λ5 :=

0 0 −i

0 0 0

i 0 0

 ,

λ6 :=

0 0 0

0 0 1

0 1 0

 , λ7 :=

0 0 0

0 0 −i

0 i 0

 , λ8 := 1p
3

1 0 0

0 1 0

0 0 −2

 .

(1.16)

There are two Cartan generators H1, H2 and three pairs of raising and lowering generators

E±1,E±2,E±3. They obey the commutation relations

[Hi ,Ek ] =αi k Ek , [Ek ,E−k ] =
2∑

i=i
γki Hi , [Ek ,El ] = Nkl Em , (1.17)

with i ∈ {1,2} and k ∈ {1,2,3}. The coefficients αi k ,γki , Nkl can be consulted, e.g., in Ref. [60],

and are given by

αi k γki Nkl

k a1k a2k

1 1 0

2 1
2 1

3 - 1
2 1

k γk1 γk2

1 2 0

2 2 3
2

3 -1 3
2

k l m Nkl

2 -1 3 -1

3 -2 -1 1

3 1 2 -1

(1.18)

with the properties that αi −k =−αi k , γ−k i =−γki , Nlk =−Nkl and N−k −l =−Nkl .

These generators can be expressed in terms of the Gell-Mann matrices λα: 5

H1 :=1

2
λ3 = 1

2

1 0 0

0 −1 0

0 0 0

 , H2 := 1p
3
λ8 = 1

3

1 0 0

0 1 0

0 0 −2

 ,

E+1 :=1

2
(λ1 + iλ2) =

0 1 0

0 0 0

0 0 0

 , E−1 :=1

2
(λ1 − iλ2) =

0 0 0

1 0 0

0 0 0

(
= E+1

†
)

,

E±2 :=1

2
(λ4 ± iλ5), E±3 :=1

2
(λ6 ± iλ7).

(1.19)

5Note that the coefficients in the definition of H1 and H2 can differ depending on the normalisation convention.
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Chapter I. Introduction

The generators E±1,E±2,E±3 are indeed ladder operators and we can thus define

Ŝβα ≡ E+1, Ŝγα ≡ E+2, Ŝγ
β
≡ E+3,

Ŝαβ ≡ E−1, Ŝαγ ≡ E−2, Ŝβγ ≡ E−3.
(1.20)

To obtain the diagonal operators Ŝαα, Ŝβ
β

, Ŝγγ with H1, H2, we can use the tracelessness condition
N∑
µ=1

Ŝµµ = 0 as an extra equation. Solving


H1 = 1

2 Ŝαα− 1
2 Ŝβ

β

H2 = 1
3 Ŝαα+ 1

3 Ŝβ
β
− 2

3 Ŝγγ

Ŝαα+ Ŝβ
β
+ Ŝγγ = 0

(1.21)

we finally obtain
Ŝαα = H1 + 1

2 H2

Ŝβ
β
=−H1 + 1

2 H2

Ŝγγ =−H2.

(1.22)

It can be verified that the commutation relations (1.17) become[
Ŝαβ , Ŝµν

]
= δαν Ŝµ

β
−δµ

β
Ŝαν . (1.23)

in terms of the operators Ŝµν , withα,β,µ,ν ∈ {A,B ,C }. This thus defines the SU(3) commutation

relations in terms of the operators Ŝµν . This construction is of course valid for any SU(N ).

1.1.3 Natural bosonic representation of the states and of Ŝµν

We already encountered the states of the adjoint irrep of SU(3) in Table 1.1. Using the second

quantisation, we could naturally associate single-particle states to bosons bµ,a(i ), where µ is

the colour index µ ∈ {A,B ,C } and a is the particle number index a ∈ {1,2,3}. This is the most

natural bosonic representation of these states. Let us then use the convention

b†
µ,1(i )b†

ν,2(i )b†
ξ,3(i ) |0〉 = ∣∣µ1ν2ξ3

〉≡ ∣∣µνξ〉 , (1.24)

with µ,ν,ξ ∈ {A,B ,C }. We will simply omit the particle number knowing that it can be im-

plicitely read off from the order of the colours. Then the state A A
C can be written as

A A
C ≡ 1p

2
(|AC A〉− |C A A〉) = 1

2

(
b†

A,1b†
C ,2b†

A,3 −b†
C ,1b†

A,2b†
A,3

)
|0〉 . (1.25)

in terms of these bosons.
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1.2. Linear flavour-wave theory in the fundamental irrep

Now, what is the expression of the generators Sµν(i ) in this natural bosonic representation? We

know that they permute the colour µ and ν. Since we have joined three particles with tensor

products, we simply need to permute the colours of all the three particles. If n is the number

of particles per site (here, n = 3), we then have

Ŝµν(i ) =
n∑

a=1
b†
ν,a(i )bµ,a(i )− 1

N
δ
µ
νn̂(i ), (1.26)

where

n̂(i ) =
N∑
µ=1

n∑
a=1

b†
µ,a(i )bµ,a(i ). (1.27)

The second term in Eq. (1.26) is to satisfy

N∑
µ=1

Ŝµµ = 0, (1.28)

which is related to the tracelessness of the SU(N ) generators. However, the essential part in the

action of this bosonic representation of Ŝµν is the first term, i.e. the permutation of the colours.

The SU(N ) commutation relations (1.23) is satisfied with this definition of Ŝµν , whether it is

with or without this constant term.

1.2 Linear flavour-wave theory in the fundamental irrep

Let us now show how the LFWT works with a concrete example. We consider the AFM SU(3)

Heisenberg model with one particle per site on the square lattice with a three-sublattice

colour-order as shown in Figure 1.3. As we consider one SU(3)-colour particle per site, we are

Figure 1.3 – The tripartite order considered for the LFWT calculations shown in this section.

dealing with the fundamental irrep. We will closely follow the calculations performed by Bauer
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Chapter I. Introduction

et al. [31]. The Hamiltonian is given by

H = J
∑
〈l ,l ′′〉

∑
µ,ν

Ŝµν(l )Ŝνµ(l ′′), (1.29)

where µ,ν are the flavours A, B and C . As seen in Eq. (1.1.3), the bosonic representation of the

generators Sµν can be given by

Ŝµν(l ) = b†
ν(l )bµ(l ), (1.30)

with the constraint that∑
µ∈{A,B ,C }

b†
µ(l )bµ(l ) = nc . (1.31)

This is in fact a generalisation of the Schwinger bosons in SU(2).

In the large-nc limit with the assumption of an ordered state, the Holstein-Primakoff bosons

can be also used. Let us first consider a site l that belongs to the sublattice of the flavour A

(l ∈ΛA). We then write Ŝ A
A(l ) as follows:

Ŝ A
A(l ) = nc −b A†

B (l )b A
B (l )−b A†

C (l )b A
C (l )

=: nc −mA(l ). (1.32)

The superscript A indicates the sublattice we are dealing with, whereas the subscript labels

the flavour of the fluctuation. This leads to

Ŝ A
B (l ) = b A†

B (l )b A
A (l ) = b A†

B (l )
√

nc −mA(l ) (1.33a)

ŜB
A(l ) = b A†

A (l )b A
B (l ) =

√
nc −mA(l )b A

B (l ), (1.33b)

whose square roots can be Taylor-expanded in order to get a 1
nc

-expansion of the Hamiltonian.

Let us now compute the harmonic spectrum with terms of order nc . The Hamiltonian (1.29)

can be written as follows: H = ∑
µ<νHµν, where µ,ν ∈ {A,B ,C }. We first look at the sub-

Hamiltonian H AB that involves the bonds between l ∈ΛA and l ′′ ∈ΛB :∑
µ,ν

Sνµ(l )Sµν(l ′) = nc

[
b A†

B (l )b A
B (l )+bB†

A (l ′)bB
A(l ′)+b A†

B (l )bB†
A (l ′)+b A

B (l )bB
A(l ′)

]
(1.34)

The Fourier transform with

b A
B (l ) =

√
3

Nsites

∑
k∈RBZ

b A
B (k)e−i krl , (1.35)
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1.2. Linear flavour-wave theory in the fundamental irrep

with Nsites being the number of sites, gives rise to

=⇒H (2)
AB = z Jnc

∑
k∈RBZ

[
bB†

A,kbB
A,k +b A†

B ,−kb A
B ,−k +γkb A†

B ,−kbB†
A,k +γ∗kb A

B ,−kbB
A,k

]
, (1.36)

where z = 2 is the coordination number between two sublatticesΛA andΛB , and

γk = 1

2

(
e i kx +e i ky

)
. (1.37)

It is important to note here that only the colours A and B are involved in H AB in this quadratic-

order expansion. This is an important fact that will be observed repeatedly throughout this

thesis.

The sub-Hamiltonians HBC and H AC are also similar, and the Bogoliubov transformation

detailed in Appendix A finally yields the diagonalised quadratic Hamiltonian

H = z Jnc
∑

k∈RBZ

∑
µ∈{A,B}

∑
ν6=µ

ωk

(
b̃ν†
µ,kb̃νµ,k +

1

2

)
− z Jnc

N

3
(1.38)

with

ωk =
√

1− ∣∣γk
∣∣2. (1.39)

We briefly note here that there is an accidental line of zero modes related to an infinitely

Figure 1.4 – The dispersion relation ωk of the AFM SU(3) Heisenberg model in the tripartite
configuration.

degenerate classical ground-state manifold in the model. We will come back to this later in

chapter VI.
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1.3 Outline of the thesis

The essential concepts having all been introduced, we will gradually present different methods

of applying the LFWT for different irreps. This will be achieved by using three different bosonic

representations of the SU(N ) operators Ŝµν .

The chapter II will first present the LFWT multiboson method where one boson will be

introduced for each state of a given irrep. The completely antisymmetric irreps with multiple

particles per site on the square/honeycomb/triangular lattices will be considered, after which

the SU(3) adjoint irrep will be considered. We will then revisit the LFWT in the SU(3) adjoint

irrep in chapter III by introducing the Mathur & Sen bosonic representation for SU(3). The

chapter IV will then present the Read & Sachdev bosonic representation with which the LFWT

for completely antisymmetric irreps of SU(N ) and the adjoint irrep of SU(3) will be performed.

The chapter V is a summary of the differences between the three boson representations. Finally,

the chapter VI treats a somewhat different subject, namely our attempt at lifting the accidental

zero modes (that we saw in Figure 1.4) in the harmonic spectrum of the SU(3) Heisenberg

model on the square lattice with one particle per site. Also, a brief concluding chapter can be

found in chapter VII.

We would like to draw the attention of the readers on the fact6 that

• The N degrees of SU(N ) will be called “colours” throughout the thesis, denoted by the

capital letters A,B ,C , . . . (or by numbers 1,2,3, . . . in some rare cases for better readability

or for convenience).

• As is often the case in physics and mathematics, the letter i is used as an index but it

can also mean
p−1 in the same equation.

• Some abbreviations used in this thesis include

the linear flavour-wave theory (LFWT),

the irreducible representation (irrep),

the spin wave (SW),

the valence bond solid (VBS),

the quantum Monte Carlo (QMC).

6We also note that the Mathematica package for symbolic calculations named “SNEG” [61] has been occasionally
used, when using Mathematica.
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II Multiboson Linear Flavour-Wave
Method

Introduction: colour order, or no colour order?

As the first way of performing the LFWT for a SU(N ) Heisenberg model in any arbitrary

irrep, this Chapter will present the multiboson method, a method set up with Karlo Penc,

Pierre Nataf and Frédéric Mila’s collaboration [62]. This method is based on the multiboson

SW approach that has been used in various SU(2) spin models with S > 1
2 by Papanicolaou

[49, 63, 50], Onufrieva [64], Chubukov [51], Masashige et al. [65], Romhányi and Penc [66], Penc

et al. [67] among others and thus rests on a solid foundation. The distinctive feature of this

approch in contrast to the conventional SW theory is that it introduces bosonic operators for

higher-order spin operators as well, allowing to probe higher-order excitations of the system.

Although we are not interested in multipolar transitions, the multiboson approach is still of

interest in our case as it allows the LFWT to be applied on irreps other than the fundamental

irrep. This generalisation to arbitrary irreps becomes possible because the multiboson method

introduces a generalised boson for each of the states of a given irrep, after which we can

apply the Holstein-Primakoff transformation as in the traditional SWT or the LFWT in the

fundamental irrep with the help of a large parameter that we introduce.

Ultimately, this method will enables us to calculate the low-energy spectra of a given SU(N )

system. It also provides us a mean to quantify the quantum fluctuations, hence providing a

way to predict the existence (or the absence) of an ordered state. Let us illustrate the method

by applying it to different SU(N ) irreps with increasing complexity: we will first look at a model

in the fully antisymmetric irrep before moving on to the most general case, which is an irrep

with mixed symmetry.

The first section of this Chapter will thus mainly involve the SU(4) Heisenberg model on the

bipartite square lattice in the fully antisymmetric irrep denoted by the Young tableau , the

simplest model in 2D with a fully antisymmetric irrep void of the frustration problem. Once

we have understood how to implement the method, we will be investigating some physically

interesting questions: is an ordered state a possible ground-state candidate for a 2D square

lattice at zero temperature? Is an ordered ground state also possible in other geometries in 2D
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Chapter II. Multiboson Linear Flavour-Wave Method

such as the triangular and the honeycomb lattices? If the answer is yes for the square lattice,

then what happens when the system goes from a 2D square lattice to a parallel 1D chains by

turning off the vertical couplings between the sites, for instance? After settling these questions

on the fully antisymmetric case, we will move on to the concluding section of this chapter in

which we will show how to apply the multiboson LFWT on the SU(3) Heisenberg chain in 1D

in the SU(3) adjoint representation (denoted by the Young tableau ), which has a mixed

symmetry. The physical interest here will to discover the low-energy spectra of such a one

dimensional system.

2.1 Fully antisymmetric irreps

In this section, we consider the 2D square/honeycomb/triangular lattices with m > 1 particles

per site whose SU(N ) wavefunctions are completely antisymmetric and whose interactions

are given by the AFM SU(N ) Heisenberg Hamiltonian

H = J
∑

<i , j>

∑
µ,ν

Ŝµν(i )Ŝνµ( j ). (2.1)

Ultimately, we would like to know whether a long-range colour order can exist or not in these

systems, and for which values of N and m this is the case. For the square lattice and the

honeycomb lattice, we will look at the bipartite configuration (nsub = 2) whereas the triangular

lattice will be in the tripartite configuration (nsub = 3). In addition, we will be choosing N and

m such that nsub = N
m . This ensures that we can find a simple colour-ordered ground-state

configuration without frustration.

The motivation for investigating these models come from Refs [68, 69]. Notably, there is a

phase diagram in Ref. [69] that predicts chiral spin liquid and valence cluster states on the

square lattice for large N and m. However, for small N and m, the quantum fluctuations are

relatively small and long-range colour-order can form, and the question is to discover whether

relatively small values of N and m can have a colour order. For m = 1 the stabilisation of the

antiferromagnetically ordered phase has been already reported up to N = 5 for square lattices

and up to N = 3 for triangular lattices with the LFWT and different numerical methods [70,

71, 53, 28, 13, 72]. But what about m = 2 ? For the SU(4) AFM Heisenberg, the large-N limit

calculations at zero temperature have long predicted a degenerate dimerized ground state

in one dimension [6, 8], with DMRG and VMC also reaching the same conclusion [73, 23]. In

two dimensions on a square lattice, on the other hand, the Néel-ordered configuration has

been suggested as a possible ground state by some numerical simulations such as the VMC

calculations [23] and QMC carried out with system sizes up to 16×16 [20, 22]. And although

Assaad [16] seems to suggest the absence of long-range order with the system size of 24×24,

his recent computations on system sizes up to 40×40 suggest a small local moment in the 2D

model [74]. We will thus attempt to contribute to this discussion with the LFWT here.
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2.1. Fully antisymmetric irreps

MO

VBS

VCS

ACSL

Figure 2.1 – The sketch of the phase diagram for the SU(N ) Heisenberg model on the 2D
square lattice, shown by Hermele and Gurarie in Ref. [69]. The shaded regions indicate that the
ground state is known or that there is a convincing ground-state candidate with substantial
evidence. The magnetic order (MO), the valence-bond solid (VBS), the valence cluster state
(VCS) and the Abelian chiral spin liquid (ACSL) are present here. The dash-dotted line shows
the experimentally realisable parameters. It can be seen that the magnetically ordered region
is on m = 1 and for small values of N = nsubm. Our aim is to see if the magnetically ordered
region can be slightly extended to other small values of m and N .

2.1.1 Two SU(4) particles per site on the square lattice

Let us imagine that we have a square lattice on which we have two (m = 2) SU(4) particles per

site whose interactions are Heisenberg-like with their nearest neighbours. Furthermore, the

particles on each site form a wavefunction that belongs to the fully antisymmetric irrep [0,1,0]

denoted by the Young tableau (it contains m vertical boxes). If we assume that this system

has a colour order at zero temperature, we can easily conclude that one of the classical ground

state configurations is the one depicted in Figure 2.2, where the square lattice is in a bipartite

configuration with two different colors on one sublattice and the two remaining colors sit on

the second sublattice. We would like to study the low-energy spectra of the system related to

the quantum fluctuations by using the LFWT just as in section 1.2 with the fundamental irrep.

Now that we have more than one particle per site with different colours, how do we perform

the semi-classical approximation?

One way to proceed is to think in terms of the “composite particles”, i.e., in terms of the

states of the irrep rather than the individual colours they are composed of. Previously, we had

been expressing the SU(N ) generators in terms of bosons representing N colours, as it is the

natural representation of the N degrees of freedom of SU(N ). However, one could also use a

different bosonic representation of the SU(N ) generators: we could write them in terms of
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Chapter II. Multiboson Linear Flavour-Wave Method

(a) Two particles per site.

−→

(b) Wavefunction (or composite particle) of
each site.

Figure 2.2 – A bipartite 2D square lattice with two particles per site. The flavours A,B ,C ,D
are represented by the colors blue, yellow, red, green respectively. The lattice is in an ordered
configuration where two different colours are on one sublattice and the two remaining colours
are on the other sublattice.

bosons representing the individual composite states of the irrep . This effectively amounts to

having an anisotropic SU(6) Hamiltonian, in the sense that the Hamiltonian can be written

in terms of SU(6) operators without being fully SU(6)-symmetric. As we will shortly see, this

will provide us with a natural and easy way of approaching the semi-classical limit with the

Holstein-Primakoff bosons.

The linear flavour-wave theory of SU(4) m = 2 square

Let us label the four degrees of freedom of SU(3) by A,B ,C and D . The irrep is six-dimensional,

and its basis can be given by{
1p
2

(
(|A1B2〉− |B1 A2〉

)
,

1p
2

(
(|A1C2〉− |C1 A2〉

)
,

1p
2

(|D1 A2〉− |A1D2〉
)

1p
2

(|B1C2〉− |C1B2〉
)
,

1p
2

(|B1D2〉− |D1B2〉
)
,

1p
2

(|C1D2〉− |D1C2〉
)}

,
(2.2)

where the states are labelled with the four SU(4) colours and the particle subscripts 1,2. These

states are indeed created with bosons introduced in subsection 1.1.3. The states are antisym-

metric in the particle indices. For convenience, let us denote these states by the following

elements of the set

Γ := {AB , AC ,D A,BC ,BD,C D}. (2.3)

Let us attribute a boson to each of these states. In other words, the bosons dAB , dAC , dD A , dBC ,
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2.1. Fully antisymmetric irreps

dBD , dC D and their adjoint counterparts will be used to create and annihilate these six states.

The idea now is to express the SU(4) generators Ŝµν in terms of these bosons.

We know that the generators Ŝµν have the effect of permuting colour µ with colour ν. So if we

choose to act Ŝ A
B on the state AC , we should obtain the state BC . Furthermore, the action of

the generators is closed, which means that the resulting state should still belong to the same

irrep. We can thus conclude that Ŝ A
B should contain a term such as d †

BC dAC . Taking another

example, the application of Ŝ A
C on the state AB should yield C B . The state C B is not exactly

an element of our set Γ in which we defined all the possible states of our irrep, but it does

correspond however to BC with a minus sign if we trace back their definitions to Eq. (2.2).

This could be shown more rigorously by using the natural bosonic representation of the

generators Ŝµν (Eq. (1.26) in subsection 1.1.3), and it will be shown for a more general irrep later

in section 2.2. Here, we will simply check the validity of our logic by checking the commutation

relations of Ŝµν in their new bosonic expressions with bosons d . This is sufficient to show that

our construction respects the SU(4) symmetry as it should. Following our construction, the

generators Ŝµν are finally given by

Ŝ A
B := d †

BC dAC −d †
BD dD A , ŜB

A := (
Ŝ A

B

)†
,

Ŝ A
C :=−d †

BC dAB −d †
C D dD A , ŜC

A := (
Ŝ A

C

)†
,

Ŝ A
D :=−d †

BD dAB −d †
C D dAC , ŜD

A := (
Ŝ A

D

)†
,

ŜB
C := d †

C D dBD +d †
AC dAB , ŜC

B := (
ŜB

C

)†
,

ŜB
D :=−d †

C D dBC −d †
D AdAB , ŜD

B := (
ŜB

D

)†
,

ŜC
D := d †

BD dBC −d †
D AdAC , ŜD

C := (
ŜC

D

)†
,

Ŝ A
A := d †

AB dAB +d †
AC dAC +d †

D AdD A − N̂

2
, ŜB

B := d †
AB dAB +d †

BC dBC +d †
BD dBD − N̂

2
,

ŜC
C := d †

AC dAC +d †
BC dBC +d †

C D dC D − N̂

2
, ŜD

D := d †
D AdD A +d †

BD dBD +d †
C D dC D − N̂

2
,

(2.4)

where

N̂ := d †
AB dAB +d †

AC dAC +d †
D AdD A +d †

BC dBC +d †
BD dBD +d †

C D dC D . (2.5)

One can check that these definitions satisfy the SU(N ) commutation relation[
Ŝαβ , Ŝµν

]
= δαν Ŝµ

β
−δµ

β
Ŝαν , (2.6)

thus showing that the suggested bosonic representation of the SU(4) generators is legitimate.

Note that the terms− N̂
2 in Eq. (2.4) have been introduced solely to satisfy the relation

N∑
µ=1

Ŝµµ = 0.

which is related to the tracelessness of the SU(N ) generators. However, the operator N̂ simply

counts the number of composite particles per site, and its expectation value should always be

equal to 1 if we were to stay within our irrep . Consequently, we can safely ignore these terms
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BC

BD

AB

DA

AC

CD

H1

H2

H3

(a) Weight diagram of the irrep [0,1,0] of SU(4).

ŜB
A

ŜC
AŜC

B

ŜD
AŜD

B

ŜD
C

(b) Action of the generators
in the weight diagram.

Figure 2.3 – The weight diagram of the six-dimensional antisymmetric SU(4) irrep. The weight
diagram is in three dimensions in the Cartan-generator basis {H1,H2,H3}, as SU(4) is a group
of rank 3. The triangle with thicker lines pointing downwards is above the other triangle
pointing upwards in the weight diagram. The vertices have been coloured to help recognize
the corresponding ladder operators of SU(4) depicted in (b). The red, green and blue (solid)
vertices are in the H1-H2 plane, whereas the three other (dotted) colours have a H3 component.

in the following calculations: they do not alter their outcome. It is also worth noting that the

SU(N ) commutation relations (2.6) remain true even without the terms − N̂
2 in Eqs. (2.4).

The transitions between states induced by Ŝµν , described in the bosonic language in Eqs. (2.4),

can be nicely seen in the weight diagram of of SU(4) illustrated in Figure 2.3. The filled

or unfilled circles represent the weights (or the states in this case). There are N (N−1)
2 = 6

directions in which the weights are connected, and these directions are associated to the 6

pairs of generators (or ladder operators) of SU(4). For instance, we can see that the transition

between the states AC and BC are related to Ŝ A
B and ŜB

A .

We can introduce a more compact way of writing Eqs. (2.4). We can write Ŝµν as

Ŝµν =
D∑

α=A
α6=µ,ν

d †
ανdαµ, (2.7)

where the (antisymmetric) indices αν or αµ of the bosons are ordered in such a way that

they correspond to the labels of the states in Γ. When reordering the indices, the sign of the

permutations needs to be taken into account, i.e., d †
νµ =−d †

µν, to reflect the antisymmetry of

the states of this irrep.

Lastly, it should be noted that the choice of basis in (2.2) is somewhat arbitrary. For instance,

we could have chosen the state 1p
2

(|A1D2〉− |D1 A2〉
)

as a basis element instead of the state
1p
2

(|D1 A2〉 − |A1D2〉
)

used in (2.2). These two states differ by a minus sign, which would

have induced a minus sign in certain terms of the generators Ŝµν in (2.4) and give us the

label AD instead of the label D A (the generator Ŝ A
B = d †

BC dAC −d †
BD dD A would have become
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2.1. Fully antisymmetric irreps

Ŝ A
B = d †

BC dAC +d †
BD dAD ). But the commutation relations (1.23) would still be satisfied, and

the subsequent physical conclusions would remain the same.

Without loss of generality, the classical ground-state Néel order can be assumed to be com-

posed of the state AB on sublattice ΛAB and the state C D on sublattice ΛC D as depicted in

Figure 2.2. Note that these two states are as far apart as possible from one another in the

weight diagram in Figure 2.3.

It is important to remember that there is a constraint imposed by the model on every site i of

the lattice, given by∑
η∈Γ

d †
η(i )dη(i ) = nc , (2.8)

where nc = 1 for each site. Note that the boson index η ∈ Γ now refers to the composite states

in Γ. With the assumption of small fluctuations around our presumed colour order, we can

use the Holstein-Primakoff prescription by considering the limit nc →∞. This is equivalent to

the semi-classical approximation in the SU(2) spin-wave theory, where we let S →∞. In terms

of the Young tableaux, this would correspond to having nc columns

nc︷ ︸︸ ︷
· · · and letting nc

go to infinity. Let us introduce the pair of Holstein-Primakoff bosons a(i ) for the sites i ∈ΛAB

and b( j ) for the sites j ∈ΛC D . The constraint (2.8) then becomes

a†
AB (i )aAB (i ) = nc −

∑
η∈Γ\{AB }

a†
η(i )aη(i ),

b†
C D ( j )bC D ( j ) = nc −

∑
η∈Γ\{C D}

b†
η( j )bη( j ),

(2.9)

from which we derive

a†
AB (i ), aAB (i ) →

√
nc −

∑
η∈Γ\{AB }

a†
η(i )aη(i ) 'p

nc − 1

2
p

nc

∑
η∈Γ\{AB }

a†
η(i )aη(i ),

b†
C D ( j ),bC D ( j ) →

√
nc −

∑
η∈Γ\{C D}

b†
η( j )bη( j ) 'p

nc − 1

2
p

nc

∑
η∈Γ\{C D}

b†
η( j )bη( j ),

(2.10)

in the same way as in the SU(2) spin-wave theory. The beauty of this transformation is that the

commutation relations (1.23),
[

Ŝα
β

, Ŝµν
]
= δαν Ŝµ

β
−δµ

β
Ŝαν , stay valid up to order O (1) in nc even

after this transformation.

Expanding the square roots in 1/nc allows us to a obtain a decomposition of the Hamiltonian

in powers of
p

nc :

H =H (0) +H (1) +H (2) +O (n
1
2
c ). (2.11)

Here, the term H (1) is equal to zero since we started the expansion from a classical ground

state, and the term H (0) is a constant. We are thus interested in the quadratic Hamiltonian
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Chapter II. Multiboson Linear Flavour-Wave Method

H (2) which is given by

H (2) = Jnc
∑

i∈ΛAB

∑
〈 j〉

[
2a†

C D (i ) aC D (i )+2b†
AB ( j )bAB ( j )

+a†
AC (i ) aAC (i ) +b†

BD ( j )bBD ( j )+a†
AC (i )b†

BD ( j )+aAC (i ) bBD ( j )

+a†
BD (i ) aBD (i ) +b†

AC ( j )bAC ( j ) +a†
BD (i )b†

AC ( j )+aBD (i ) bAC ( j )

+a†
D A(i ) aD A(i ) +b†

BC ( j )bBC ( j ) +a†
D A(i )b†

BC ( j )+aD A(i ) bBC ( j )

+ a†
BC (i ) aBC (i ) +b†

D A( j )bD A( j ) +a†
BC (i )b†

D A( j )+aBC (i ) bD A( j )
]

.

(2.12)

We observe here that a different choice of basis mentioned above (AD instead of D A) would

have induced a minus sign in front of the terms a†
D A(i )b†

BC ( j ), aD A(i ) bBC ( j ), a†
BC (i )b†

D A( j )

and aBC (i ) bD A( j ). However, the result of the subsequent diagonalisation would have re-

mained the same, yielding the same dispersion relations at the end.

We now perform the Fourier transform,

aα(i ) =
√

2

Nsites

∑
k∈RBZ

aα(k)e−i kri , bα( j ) =
√

2

Nsites

∑
k∈RBZ

bα(k)e−i kr j , (2.13)

with the state index α ∈ Γ and the number of sites Nsites. The sum runs over the reduced

Brillouin zone (RBZ). The Hamiltonian in k-space is then given by

H (2) =H (2)
0 +H (2)

1 +H (2)
2 +H (2)

3 +H (2)
4 (2.14)

where

H (2)
0 = Jnc

∑
k∈RBZ

2Asq

[
a†

C D,k aC D,k +b†
AB ,k bAB ,k

]
,

H (2)
1 = Jnc

∑
k∈RBZ

[
Asq

(
a†

AC ,k aAC ,k +b†
BD,k bBD

)
+Bsq,k

(
a†

AC ,k b†
BD,−k +aAC ,k bBD,−k

)]
,

H (2)
2 = Jnc

∑
k∈RBZ

[
Asq

(
a†

BD,k aBD,k +b†
AC ,k bAC ,k

)
+Bsq,k

(
a†

BD,k b†
AC ,−k +aBD,k bAC ,−k

)]
,

H (2)
3 = Jnc

∑
k∈RBZ

[
Asq

(
a†

D A,k aD A,k +b†
BC ,k bBC ,k

)
+Bsq,k

(
a†

D A,k b†
BC ,−k +aD A,k bBC ,−k

)]
,

H (2)
4 = Jnc

∑
k∈RBZ

[
Asq

(
a†

BC ,k aBC ,k +b†
D A,k bD A,k

)
+Bsq,k

(
a†

BC ,k b†
D A,−k +aBC ,k bD A,−k

)]
,

(2.15)

in which the sums run over the reduced magnetic Brillouin zone and

Asq := 4, Bsq,k := 4γsq,k, γsq,k := 1

2

(
coskx +cosky

)
. (2.16)

γsq,k is called the geometrical factor as it encodes the geometry of the lattice. Note that the

value of Asq actually corresponds to the coordination number between two sublattices zsq = 4,
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2.1. Fully antisymmetric irreps

and that Bsq = zsqγsq,k. It is also important to note that all the terms in H (2) are of the same or-

der in our expansion parameter nc . Now that the expansion has been done, we can reestablish

the constraint (2.8) by setting nc = 1 (but we will keep writing the variable nc in the equations

for general considerations). The terms H (2)
1,...,4 in Eq. (2.15) can be diagonalized separately with

the Bogoliubov transformation described in Appendix section 1.1 in an identical fashion. For

instance, the diagonalisation of bosons aAC ,k,bBD,k in H (2)
1 can be performed with(

ã†
AC ,k

b̃BD,−k

)
=

(
uk vk

vk uk

)(
a†

AC ,k

bBD,−k

)
, (2.17)

where

uk =
√

1

2

(
Asq

ωsq,k
+1

)
, vk =

√
1

2

(
Asq

ωsq,k
−1

)
,

ωsq,k =
√
A2

sq −B2
sq,k.

(2.18)

Hence, the diagonalized quadratic Hamiltonian finally reads as

H (2) = ∑
k∈RBZ

{ ∑
η∈Γ\{AB ,C D}

εsq(k)

[(
ã†
η,kãη,k +

1

2

)
+

(
b̃†
η,kb̃η,k +

1

2

)]

+8Jnc

(
a†

C D,kaC D,k +b†
AB ,kbAB ,k

)}
−8J Nsitesnc ,

(2.19)

where we defined

εsq(k) :=Jncωsq(k)

=Jnc

√
A2

sq −B2
sq,k = 4Jnc

√
1−γ2

sq,k

=4Jnc

√
1−

[
1

2

(
coskx +cosky

)]2

.

(2.20)

The dimensionless energy spectrum ωsq(k) is shown in Figure 2.4. There are 8 dispersive

modes and 2 localised modes of energy 8Jnc . We see that the dispersive modes come from

the bosons of the Bogoliubov transformation in Eq. (2.17) whereas the flat localised modes

originate from the bosons aC D (i ),bAB ( j ).

Let us investigate the flat modes more closely, starting with the mode 8a†
C D aC D . This term

stems from ŜC
C (i )ŜC

C ( j ) and ŜD
D (i )ŜD

D ( j ) (i.e., a†
C D (i )aC D (i )b†

C D ( j )bC D ( j )) of the Hamiltonian

before the square-root expansion. The presence of the boson aC D (i ) on the site i ∈ΛAB actually

implies that we have the state C D on the site i , which would only be possible had there been

two colour exchanges from our initial state AB , by applying two successive ladder operators

(see Figure 2.3). The same reasoning also applies to the second flat mode 8b†
AB bAB from the

perspective of the sublatticeΛC D . We see that these flat modes in fact stem from multipolar

transitions requiring more than one flavour exchanges. These multipolar excitations do not
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(a) Energy spectrum of the dispersive modes.

0
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3

4

(0, 0) (π, 0) (π, π) (0, 0)

ω

k
(b) 2D cut of the energy spectrum.

Figure 2.4 – The energy spectrum of the dispersive modes of the SU(4) m = 2 square lattice,
plotted in the extended Brillouin zone. Figure adapted from Ref [62] with the permission of
the APS, © 2017 American Physical Society.

interact in the quadratic order of our expansion in nc [66, 67, 62], in which only excitations

with one colour exchange interact. As these excitations are local and do not propagate, they

thus appear as flat modes here.7

The 8 dispersive modes given by the dipersion relation (2.57), on the other hand, come from

the exchange of one colour from the initial states AB or C D . There are four ways of exchanging

one colour from AB , the initial state of the first sublattice: A →C , A → D, B →C and B → D

(the exchange A → B is forbidden by antisymmetry). This is illustrated in the weight diagram,

Figure 2.3, by the fact that there are four vertices connecting AB to its four adjacent points.

Similarly, there are also four ways of achieving this from C D. These 4+4 = 8 transitions are

the dynamics described by the 8 dispersive modes in Eq. (2.19). It is worthwhile nothing these

(degenerate) dispersive modes are identical to the dispersion relation of the SU(2) spin-wave

theory on the square lattice. The only difference is the larger number of modes in our model,

which is due to the larger number of possible colour transitions mentioned above.

For future reference, we observe that the Hamiltonian in the extended (structural) Brillouin

zone can be given as follows:

H (2) = ∑
k∈BZ

{
4∑
ζ=1

εsq(k)

(
f̃ †
ζ,k f̃ζ,k +

1

2

)
+8Jnc f †

C D,k fC D,k

}
−8J Nsitesnc . (2.21)

Here, we introduced bosons f̃σ for the dispersive modes and f for the flat modes, all defined

7An example of a physically accessible multipolar mode gaining a dispersion with anisotropy terms in a SU(2)
Hamiltonian can be found in Ref. [66].
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2.1. Fully antisymmetric irreps

on the extended Brillouin zone. We then have 4 dispersive modes and 1 flat mode.

As a last side remark, we also note that the energy per site originating from the quantum

fluctuations is

E

Nsites
=−8Jnc +4 ·

〈
εsq(k)

2

〉
=−1.264Jnc . (2.22)

Ordered moment of the SU(4) square lattice

Now that we have the low-energy spectra of the system, we can think about calculating the

ordered moment—the “magnetisation” so to speak—of the system. Since we assume a large

condensate of the state AB on sublatticeΛAB , we can define the ordered color moment on it

as

mi = 1

nc

〈
a†

AB (i )aAB (i )
〉

= 1

nc

(
nc −

〈 ∑
η∈Γ\{AB }

a†
η(i )aη(i )

〉)
,

(2.23)

so that the fully polarised classical Néel state is mi = 1. On the other hand, if there is no colour

order, then mi = 0. Note that we can define m j for the sublatticeΛC D in the same way,

m j = 1

nc

〈
b†

C D ( j )bC D ( j )
〉

= 1

nc

(
nc −

〈 ∑
η∈S\{C D}

b†
η( j )bη( j )

〉)
, (2.24)

and that mi = m j since the structure of both sublattices is the same. The reduction of the

ordered moment due to quantum fluctuations is the second term in Eq. (2.23),

∆mi = 1

nc

〈 ∑
η∈S\{AB}

a†
η(i )aη(i )

〉

=4
〈

v2
k

〉= 4

〈
1

2

(
Asq

ωsq
−1

)〉
= 0.786,

(2.25)

where we used the fact that〈
a AB†
η (i )a AB

η (i )
〉
= 〈

v2
k

〉
, (2.26a)〈

a AB†
C D (i )a AB

C D (i )
〉
= 0,

〈
aC D†

AB (i )aC D
AB (i )

〉
= 0 (2.26b)
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for η ∈ S\{C D} as a consequence of the Bogoliubov transformation. This reflects the impossibil-

ity for the state AB to fluctuate into the state C D with the bilinear Heisenberg exchange in the

harmonic order, and we see that there is no contribution to the ordered moment calculation

from the flat localised modes found in our harmonic-order Hamiltonian. Finally, the ordered

moment is given by

mi = 1−∆mi = 0.214. (2.27)

As expected, the quantum fluctuations perturb the colour order, so mi is smaller than 1, the

value of the fully polarised state. However, it is still greater than zero, mi > 0, meaning that the

LFWT predicts that our model can potentially retain a long-range colour order. It should be

noted though that the correction is rather big—the reduction of the order is close to 80%.

Let us point out that there is an alternative way of defining the ordered moment. Ref. [22], for

instance, defines the ordred moment of any site i of a SU(N ) bipartite lattice as

malt
i = 2

N

N /2∑
µ=1

Sµµ(i )−
N∑

µ= N
2 +1

Sµµ(i )

 , (2.28)

yielding an ordered moment of mi =±1 for the fully ordered Néel configuration. Here, the

sign of mi depends on the sublattice. This definition is in fact equivalent to the definition of

Eq. (2.23) in the harmonic order, up to a sign that depends on the sublattice:

malt
i = 1

2

(〈
Ŝ A

A

〉+〈
ŜB

B

〉−〈
ŜC

C

〉−〈
ŜD

D

〉)
= 1

2

(〈
d †

AB (i )dAB (i )+d †
AC (i )dAC (i )+d †

D A(i )dD A(i )
〉

+
〈

d †
AB (i )dAB (i )+d †

BC (i )dBC (i )+d †
BD (i )dBD (i )

〉
−

〈
d †

AC (i )dAC (i )+d †
BC (i )dBC (i )+d †

C D (i )dC D (i )
〉

−
〈

d †
D A(i )dD A(i )+d †

BD (i )dBD (i )+d †
C D (i )dC D (i )

〉)
nc→∞−→

〈
d †

AB (i )dAB (i )
〉
=

〈
a†

AB (i )aAB (i )
〉

= 0.214,

(2.29)

where the we took into account the fact that the condensate of the site i is formed by the state

AB .
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Figure 2.5 – The ordered bipartite hexagonal configuration with two colours per site.

2.1.2 Two SU(4) particles per site on the honeycomb lattice

The linear flavour-wave theory of SU(4) m = 2 honeycomb lattice

Now that we have sorted out how to apply the LFWT on the square lattice with two particles

per site, we can easily perform the same calculations for the honeycomb lattice with two

particles SU(4) particles per site by following the method in subsection 2.1.1. The number of

colours N and the number of sublattices remain the same, so we assume two sublatticesΛAB

andΛC D , and Γ= {AB , AC ,D A,BC ,BD,C D} as before. The only difference will be the factors

that depend on the geometry, like the geometrical factor γhon,k. The calculations are otherwise

identical. The assumed colour order is illustrated in Fig. 2.5. From this, we can derive the

harmonic Hamiltonian for the bipartite honeycomb lattice:

H (2) = ∑
k∈BZ

{ ∑
η∈Γ\{AB ,C D}

εhon(k)

[(
ã†
η,kãη,k +

1

2

)
+

(
b̃†
η,kb̃η,k +

1

2

)]

+6Jnc

(
a†

C D,kaC D,k +b†
AB ,kbAB ,k

)}
−6J Nsitesnc .

(2.30)

The sums with k run over the structural Brillouin zone of the honeycomb lattice, i.e. we have

doubly degenerate modes. The dispersion relation of the dispersive (“magnetic”) branch (see

Figure 2.6) is given by

εhon(k) :=Jncωhon(k)

:=Jnc

√
Ahon −|Bhon(k)|2 =Ahon Jnc

√
1− ∣∣γhon(k)

∣∣2

=3Jnc

√
1− ∣∣γhon(k)

∣∣2

(2.31)
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(b) 2D cut of the energy spectrum.

Figure 2.6 – The energy spectrum of the dispersive modes of the SU(4) m = 2 hexagonal lattice.
Figure adapted from Ref [62] with the permission of the APS, © 2017 American Physical Society.

with

Ahon := 3, Bhon := 3γhon,k,

γhon(k) := 1

3

(
e i ky +e

i
(p

3
2 kx− 1

2 ky

)
+e

i
(
−

p
3

2 kx− 1
2 ky

))
.

(2.32)

The energy contribution of the quantum fluctuations is

E/Nsites =−6Jnc +4 ·
〈
εhon(k)

2

〉
=−1.259Jnc .

Ordered moment of the SU(N ) honeycomb

The formula for the reduction of the ordered moment is the same as in Eq. (2.25) as we also

deal with the bipartite SU(4) configuration with two particles per site:

∆mi = 1

nc

〈 ∑
η∈S\{AB }

a†
η(i )aη(i )

〉

=
〈

4 · 1

2

(
Ahon

ωhon
−1

)〉
= 1.0328,
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Figure 2.7 – The ordered tripartite triangular configuration with two colours per site.

The reduction is larger than 1, indicating that it is thus unlikely that a colour order exists for this

model. We observe, however, that the reduction is only marginally above the full-polarization

value (it exceeds it by 3%, to be precise). Hence, it cannot be absolutely excluded that a small

ordered moment might survive quantum fluctuations.

2.1.3 Two SU(6) particles per site on the triangular lattice

The linear flavour-wave theory of SU(6) m = 2 triangular lattice

Let us now consider the triangular lattice with an antiferromagnetic coupling. The simplest

colour configuration without frustration and with more than one particle per site is the three

sublattice order with two different SU(6) colour particles per site, depicted in Figure 2.7. We

thus have an AFM SU(6) Hamiltonian in the irrep .

Even though the symmetry of the Hamiltonian is SU(6) instead of SU(4), and even though we

now have a three-sublattice order rather than the two sublattice order, the physical mecha-

nism of the LFWT and its method remain identical to what we have seen in subsection 2.1.1

and subsection 2.1.2. Following the construction with the SU(4) models, we use the letters

A,B ,C ,D,E and F to label the 6 colours of SU(6). The irrep in question is 15 dimensional,

whose basis Γwill be written in the same way as in Eq. (2.3):

Γ := {AB , AC , AD, AE , AF,BC ,BD,BE ,BF,C D,C E ,C F,DE ,DF,EF }. (2.33)

As in previous SU(4) models, we attribute a bosonic operator dη for each state η ∈ Γ. The

Hamiltonian of our model is then given by Eq. (2.1) written in terms of these bosons d by using

Eq. (2.7).

We now choose the lattice colour configuration such that there is a large condensate of

the state AB on the first sublattice ΛAB , the state C D on the second sublattice ΛC D and

the state EF on the third sublattice ΛEF . As in section 1.2, we will divide the Hamiltonian
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into sub-Hamiltonians containing the bonds between different pairs of sublattices: H =
H AB ,C D +HC D,EF +HEF,AB . From the constraint

∑
η∈Γ

d †
η(i )dη(i ) = nc in (2.8), we obtain the

Holstein-Primakoff bosons

a†
AB (i ), aAB (i ) →

√
nc −

∑
η∈Γ\{AB }

a†
η(i )aη(i ),

b†
C D ( j ),bC D ( j ) →

√
nc −

∑
η∈Γ\{C D}

b†
η( j )bη( j ),

c†
EF (k),cEF (k) →

√
nc −

∑
η∈Γ\{EF }

c†
η(k)cη(k),

(2.34)

where i ∈ΛAB , j ∈ΛC D and k ∈ΛEF . Using the Holstein-Primkoff bosons in the Hamiltonian,

the quadratic Hamiltonian H (2) is obtained. Here, we will show H (2)
AB ,C D only, as the structure

of the other sub-Hamiltonians is the same. After the Fourier transform,

aα(i ) =
√

3

Nsites

∑
k∈RBZ

aα(k)e−i kri , bα( j ) =
√

3

Nsites

∑
k∈RBZ

bα(k)e−i kr j ,

cα(k) =
√

3

Nsites

∑
k∈RBZ

cα(k)e−i krk ,

(2.35)

the quadratic Hamiltonian H (2)
AB ,C D is given by

H (2)
AB ,C D =

4∑
α=0

H (2)
AB ,C D ;α (2.36)

where

H (2)
AB ,C D ;0 = Jnc

∑
k∈RBZ

[
2Atri

(
a†

C D,k aC D,k +b†
AB ,k bAB ,k

)
Atri

(
a†

C E ,k aC E ,k +a†
C F,k aC F,k +a†

DE ,k aDE ,k +a†
DF,k aDE ,k

+b†
AE ,k bAE ,k +b†

AF,k bAF,k +b†
BE ,k bBE ,k +b†

BF,k bBF,k

)]
H (2)

AB ,C D ;1 = Jnc
∑

k∈RBZ

[
Atri

(
a†

AC ,k aAC ,k +b†
BD,k bBD

)
+Btri,k

(
a†

AC ,k b†
BD,−k +aAC ,k bBD,−k

)]
,

H (2)
AB ,C D ;2 = Jnc

∑
k∈RBZ

[
Atri

(
a†

BD,k aBD,k +b†
AC ,k bAC ,k

)
+Btri,k

(
a†

BD,k b†
AC ,−k +aBD,k bAC ,−k

)]
,

H (2)
AB ,C D ;3 = Jnc

∑
k∈RBZ

[
Atri

(
a†

AD,k aAD,k +b†
BC ,k bBC ,k

)
−Btri,k

(
a†

AD,k b†
BC ,−k +aAD,k bBC ,−k

)]
,

H (2)
AB ,C D ;4 = Jnc

∑
k∈RBZ

[
Atri

(
a†

BC ,k aBC ,k +b†
D A,k bD A,k

)
−Btri,k

(
a†

BC ,k b†
AD,−k +aBC ,k bAD,−k

)]
.

(2.37)

It is very similar to the SU(4) Hamiltonian in (2.15), albeit with more flat modes in H (2)
AB ,C D ;0.

It can be seen that only bosons involving colours A,B ,C ,D are present. Since the Hamiltonian
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Figure 2.8 – The energy spectrum of the dispersive modes of the SU(6) m = 2 triangular lattice.
Figure adapted from Ref [62] with the permission of the APS, © 2017 American Physical Society.

H (2)
AB ,C D only involves the bonds bewteen the sublattices ΛAB and ΛC D , it is not possible to

have the colours E ,F by exchanging one colour particle between these two sublattices from

the fully polarised initial condensate. This would be only possible with higher-order exchange

processes, i.e. if we would use the next-order terms in the Hamiltonian expansion.

The sub-Hamiltonians H (2)
AB ,C D ;α, i ∈ {1, . . . ,4}, need diagonalisation. Since their structure is

identical to that of the SU(4) Hamiltonian, we can use the Bogoliubov transformation in (2.17).

Each of these H (2)
AB ,C D ;α yields two diagonalized modes, so we will obtain 8 modes for H (2)

AB ,C D

from this Bogoliubov transformation. The same applies to H (2)
C D,EF and H (2)

EF,AB . Hence, by

gathering the flat modes carefully, the full Hamiltonian H (2) is given by

H (2) = ∑
k∈RBZ

{
εtri(k)

[ ∑
η∈ΓAB

(
ã†
η,kãη,k +

1

2

)
+ ∑
η∈ΓC D

(
b̃†
η,kb̃η,k +

1

2

)
+ ∑
η∈ΓEF

(
c̃†
η,kc̃η,k +

1

2

)]
+2Atri Jnc

(
a†

C D,kaC D,k +a†
EF,kaEF,k +b†

AB ,kbAB ,k +b†
EF,kbEF,k + c†

AB ,kcAB ,k

+c†
C D,kcC D,k +

∑
η∈Γ̄AB

a†
η,kaη,k +

∑
η∈Γ̄C D

b†
η,kbη,k +

∑
η∈Γ̄EF

c†
η,kcη,k

−12J Nsitesnc ,

(2.38)

where the dispersion relation (see Fig. 2.8) is given by
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εtri(k) :=Jncωtri(k)

:=Jnc

√
Atri −|Btri(k)|2 =Atri Jnc

√
1− ∣∣γtri(k)

∣∣2

=3Jnc

√
1− ∣∣γtri(k)

∣∣2

(2.39)

with

Atr i := 3, Btr i := 3γtri,k,

γtri(k) := 1

3

(
e i kx +2e−i 1

2 kx cos

p
3

2
ky

)
.

(2.40)

Furthermore, the following sets have been used for ease of notation:

Γ̄ := Γ\ {AB ,C D,EF },

Γ̄AB := {C E ,C F,DE ,DF } , Γ̄C D := {AE , AF,BE ,BF } , Γ̄EF := {AC , AD,BC ,BD} ,

ΓAB := Γ̄\ Γ̄AB = {AC , AD, AE , AF,BC ,BD,BE ,BF } ,

ΓC D := Γ̄\ Γ̄C D = {AC , AD,BC ,BD,C E ,C F,DE ,DF } ,

ΓEF := Γ̄\ Γ̄EF = {AE , AF,BE ,BF,C E ,C F,DE ,DF } .

(2.41)

The similarity between the geometrical factors of the honeycomb lattice and the triangular

lattice in (2.32) and (2.40) is due to the fact that the geometric bonds linking two sublattices in

both cases have the same angle.

Let us now look at the number of modes that we obtain in this case. As before, we will concen-

trate on the sublatticeΛAB and thus look at the bosons a(i ) in the Hamiltonian (2.38), as the

reasoning will be identical for the two remaining sublattices. We obtain 8 dispersive modes,

ã†
η,kã

η,k with η ∈ ΓAB , that are all associated to permuting one colour in the initial state AB . As

we can change either A or B to C ,D,E ,F without violating the antisymmetry of our irrep, we

obtain 8 modes. The 6 states in Γ̄AB , on the other hand, are obtained by exchanging both A

and B (in the initial state AB) with a different colour, and they correspond precisely to the flat

modes that we obtain in the Hamiltonian (2.38).

As the structure of the sub-Hamiltonian is the same for ΛC D and ΛEF , we can unfold the

modes into the extended (structural) Brillouin zone, as in Hamiltonian (2.21), by introducing

the bosons f̃σ for the dispersive modes and bosons fρ for the flat modes. We then have

H (2) =∑
k

[
ωtri(k)

8∑
ζ=1

(
f̃ †
ζ

(k) f̃ζ(k)+ 1

2

)
+2Atri Jnc

6∑
ρ=1

f †
ρ (k) fρ(k)

]
−12Jnc . (2.42)

We then have 8 dispersive modes corresponding to the possible colour transitions and 6 flat

modes, as explained above.
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Lastly, we observe that the energy per site originating from the quantum fluctuations is

E/N = Jnc

(
−12+8 ·

〈
ωtri(k)

2

〉)
=−2.518Jnc . (2.43)

Ordered moment of the SU(6) m = 2 triangular lattice

We compute the ordered moment mi = 1
nc

〈
a†

AB (i )aAB (i )
〉

as defined in Eq. (2.23). The com-

putation of the reduction of the ordered moment shows that

∆mi = 1

nc

〈 ∑
η=Γ\{AB }

a†
η(i )aη(i )

〉

= 1

nc

〈
8 · 1

2

(
3Jnc

Jncωtri(k)
−1

)〉
= 2.066, (2.44)

where we see again that the flat modes do not contribute to the reduction of the order. As the

reduction is far greater than 1, we can thus conclude that the color order is verly likely to be

destroyed by quantum fluctuations.

2.1.4 General considerations: m particles per site

Let us briefly wrap up what we have seen until here. At the harmonic level of the Hamiltonian

expansion, we have seen that the dispersive modes come from permuting one colour between

two neighbouring sites from the initial condensate states. In the weight diagram, this amounts

to counting the number of weights connected adjacently to the state of the initial condensate.

This is because the only off-diagonal quadratic terms that generate the dispersiveness of the

modes come from such exchange terms in the Heisenberg Hamiltonian (2.1). If we are dealing

with the geometries considered above (bipartite square/honeycomb and tripartite triangular

lattices) with m = N
nsub

particles per site in the fully antisymmetric irrep, then this will always

be the case as a consequence of the structure of SU(N ) irreps and the Holstein-Primakoff

condensate (2.10) and (2.34) from which we only collect terms of the order nc . At this order, it

turns out that the terms that will yield the dispersive modes necessarily come from Sµν(i )Sνµ( j )

in which µ and ν will both be one of the colours of the initial condensates.

We have also seen that the exchange processes requiring more that one colour-exchange

result in flat modes at the end of the calculations in the quadratic order. The flat modes come

from the terms Ŝµν(i )Ŝνµ( j ) and Ŝµµ(i )Ŝµµ( j ) where neither the colour µ nor ν 6= µ is present

in the initial condensates of the sites i and j . And careful inspection of the Hamiltonian

structure allows us to conclude that the energy of the flat band will be at npAJnc , where

np ∈ {2, . . . ,m} is the number of colour permutations required from the original condensate (A
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is the coordination number between two sublattices that was introduced in Eqs. (2.16), (2.32)

and (2.40)).

Hence, the physical picture is very clear here. The states that are attainable by one colour per-

mutation between two neighbouring sites in the initial condensate yield dispersive branches,

and all other states requiring np number of colour-exchanges from the initial state will produce

flat bands in the quadratic Hamiltonian. This behaviour is indeed also observed in the SU(2)

spin-S spin-wave calculations using the multiboson method in Ref. [66]. At the harmonic

order of the expansion, 2S modes emerge in the (extended) Brillouin zone, from which all

but one mode are flat. The sole dispersive branch corresponds to the conventional spin-wave

mode, and it corresponds to flipping one spin- 1
2 from the neighboring sites (it corresponds to

changing the fully polarised spin state Smax =±S by one quantum ∆Sz = 1/2). The rest of the

modes (that are all flat) correspond to higher-order transitions requiring more than one spin

permutation (reducing the polarisation by more than one quantum).

The origin of the terms of order nc from the Hamiltonian (2.1) allows us to write the harmonic

LFWT Hamiltonian of any SU(N ) model of one of the three lattice geometries studied above

with the according value of m, by counting the number of possible colour-exchanges. We only

need to adapt the number of modes according to the geometry we are considering (we know,

for instance, that the honeycomb lattice has twice as many modes as the square lattice due to

the difference in the unit cell). Let us now write down explicitly the general expression of a

harmonic SU(N ) LFWT Hamiltonian for any N in one of the configurations above.

For a given (fully) antisymmetric SU(N ) irrep, the generators Ŝµν on a given site i can be

expressed as

Ŝµν(i ) = ∑
α1,...,αm

α1,...,αm 6=µ,ν

sgn(σ1)sgn(σ2)d †
σ1·(α1...αmν)(i )dσ2·(α1...αmµ)(i ), (2.45)

where the indices α1, . . . ,αm run over the N colors and σ1,σ2 are permutation operators that

order the letters in alphabetical order. This is of course a direct generalisation of Eq. (2.7).

It permutes the color µ with ν while taking care of the sign change in order to respect the

antisymmetry of the states.

After following the procedures described in subsection 2.1.1 for the square lattice with m = N
2

and subsection 2.1.3 for the triangular lattice with m = N
3 , the Hamiltonian will be given by

H (2) =∑
k

εsq/tri(k)
m(N−m)∑
ζ=1

(
f̃ †
ζ

(k) f̃ζ(k)+ 1

2

)
+

m∑
np=2

npAsq/tri Jnc

( m
np )(N−m

np )∑
ρ=1

f †
ρ (k) fρ(k)


− m(N −m)

2
Asq/tri Jnc N ,

(2.46)

where the sum runs over the extended Brillouin zone. The coordination number between
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sublattices areAsq = 4 for the square lattice andAtri = 3 for the triangular lattice (see Eqs. (2.16)

and (2.40)) and the dispersion relations are given by Eqs. (2.20) and (2.39).

This is simply because there exists
(m

np

)(N−m
np

)
accessible states by applying np colour permu-

tations from the initial state. So these transitions will be expressed as flat modes at energy

npAsq/tri Jnc . As for the dispersive branches, there are
(m

1

)(N−m
1

)= m(N −m) of them. When

counting these numbers, one should remember that the dimension of the antisymmetric

irrep we are considering is
(N

m

)
and that the use of the Holstein-Primakoff prescription means

that one boson will be replaced by a number, resulting in
(N

m

)−1 branches in the structural

Brillouin zone in total. Since N and m are not independent (m = N
nsub

), we can even simplify the

numbers further: the square lattice will actually have m2 (or N 2

4 ) dispersive branches and the

triangular lattice will have 2m2 (or 2N 2

9 ) branches. Knowing this, we can compute the ordered

colour moment of the system for a given number of particles per site m, as the reduction

of the magnetisation ∆mi only comes from the dispersive modes, i.e., from the permitted

fluctuation channels from the initial condensate. The quantity ∆mi is then given by

∆msq
i (m) =m2

〈
1

2

(
Asq

ωsq(k)
−1

)〉
= 0.197m2

(2.47)

for the square lattice, and

∆mtri
i (m) = 2m2

〈
1

2

(
Atri

ωtri(k)
−1

)〉
= 0.516m2

(2.48)

for the triangular lattice.

The same conclusion also applies for the honeycomb lattice, with the only difference being

the number of branches that is doubled in the structural Brillouin zone. Introducing an index

χ to account for the doubling of the branches, we obtain

H (2) =∑
k

2∑
χ=1

εhon(k)
m(N−m)∑
ζ=1

(
f̃ †
ζ,χ(k) f̃ζ,χ(k)+ 1

2

)
+

m∑
np=2

npAhon Jnc

( m
np )(N−m

np )∑
ρ=1

f †
ρ,χ(k) fρ,χ(k)


− m(N −m)

2
Ahon Jnc N

(2.49)

for the honeycomb lattice, with Ahon = 3. The reduction of the magnetisation as a function of

m is now given by

∆mhon
i (m) =m2

〈
1

2

(
Ahon

ωhon(k)
−1

)〉
= 0.258m2.
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Since we have seen previously that the reduction of the magnetisation ∆mhon,tri
i is already

larger than 1 for the smallest non-trivial value m = 2 on the honeycomb and triangular lattices,

it seems unlikely that such color-ordered states would be the ground state of these systems. For

the square lattice, it can be seen from Eq. (2.47) that∆msq
i > 1 for m ≥ 3. The only configuration

that could possibly retain a long-range finite color-order as a ground state according to the

multiboson LFWT calculations is the SU(4) m = 2 square lattice. This conclusion indeed

corresponds to the physical picture that quantum fluctuations grow as N becomes larger

(remember that there are N (N −1)/2 pairs of ladder operators (Ŝµν , µ 6= ν) for a given N , i.e., the

potential number of possible colour-permutation grows as N becomes larger). As N becomes

greater (and, consequently, m as well), there are more and more colour permutations: the

number of possible colour permutations from the initial state grows as m(N −m), so there are

more and more fluctuation channels that destroy the potential long-range order.

We can thus conclude that the only candidate for persisting colour long-range order is the

bipartite square lattice with two SU(4) particles per site, filling the corresponding point missing

in the phase diagram of the SU(N ) square lattice in Ref. [69]. In the bipartite honeycomb

configuration, the same SU(4)-symmetry particles have stronger quantum fluctuations and

destroys the colour order, and this is due to the lower coordination number z of the honeycomb

lattice that bolsters the quantum fluctuations. This is a phenomenon also observed with

the SU(2) spin- 1
2 particles in the Néel configuration: the magnetic moment is smaller in the

honeycomb lattice than in the square lattice. Taking the values of the reduction of the magnetic

moment of these two lattices from Refs. [45, 75], one finds the following ratio of ∆m between

the square lattice and the honeycomb lattice: 0.1966/0.2582 = 0.7614. This ratio is the same in

our SU(4) m = 2 models: 0.7864/1.0328 = 0.7614. In both cases, the difference of the magnetic

moments come from the geometry since the particle symmetry is the same in both cases.

It is interesting to note that the data extracted from a pinning-field QMC study [22] shows that

the SU(4) Hubbard model at half-filling on the square lattice indeed seems to retain a finite

magnetisation value in the Heisenberg limit (m = 0.125±0.044) [74], although it is smaller

than our value in Eq. (2.27). This QMC result is indeed in line with the more recent auxiliary

field QMC results with a larger system size in Ref. [74]: m ' 0.11.

2.1.5 Dimensional crossover of the 2D square lattice to 1D chains

This subsection stems from the collaboration with Fakher Assaad, Karlo Penc and Frédéric

Mila [74]. Now that a possible long-range colour order as been established for the SU(4) m = 2

square lattice, we can ask ourselves what the LFWT can tell us about the dimensional crossover,

i.e., when one starts to weaken the vertical bonds of the square lattice to go from the 2D square

lattice to a collection of 1D chains, since it is believed that the ground state of the 1D SU(4)

m = 2 chain is the valence-bond solid (VBS) state. Fakher Assaad’s results of the auxiliary

field QMC simulations with system sizes up to 40×40 show a small local moment in the 2D

model and supports a continuous transition between the Néel state and the VBS state during
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(a) Néel (b) VBS

Figure 2.9 – (a) An illustration of the Néel-like configuration with two particles per site with an
ordering vector q = (π,π). The flavours A,B ,C ,D are represented by the colors blue, yellow,
red, green respectively. (b) A VBS configuration with two particles per site with an ordering
vector q = (π,0). The horizontal lines represent the intra-chain coupling Jx whereas the vertical
dashed lines represent the inter-chain coupling Jy that controls the dimensional crossover.

the dimensional transition. The ground-state candidates in 2D and 1D, namely the Néel-like

configuration and the VBS configuration, are shown in Fig. 2.9.

We first define the anisotropic SU(4) AFM Heisenberg model in 2D with the intra-chain

coupling Jx and the inter-chain coupling Jy ,

H = ∑
〈~ı ,~〉

∑
µ,ν

J~ı ,~ Ŝµν(~ı)Ŝνµ(~). (2.50)

The site indices 〈~ı ,~〉 run over the nearest neighbours, and the indices µ,ν ∈ {A,B ,C ,D} label

the flavours. The nearest-neighbour coupling J~ı ,~ is given by

J~ı ,~ =
Jx for intra-chain bonds (horizontal),

Jy for inter-chain bonds (vertical).
(2.51)

At the isotropic point Jx = Jy , the model describes the square lattice in subsection 2.1.1

whereas the regime
Jy

Jx
= 0 corresponds to decoupled chains. The rest of the calculations

is nearly identical to the LFWT procedure in subsection 2.1.1, so we will only show some

important intermediate equations. The harmonic Hamiltonian H (2) =
4∑

α=0
H (2)

α after the
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Holstein-Primakoff prescription is given by

H (2)
0 = nc

∑
k∈RBZ

2A
[

a†
C D,k aC D,k +b†

AB ,k bAB ,k

]
,

H (2)
1 = nc

∑
k∈RBZ

[
A

(
a†

AC ,k aAC ,k +b†
BD,k bBD

)
+Bk

(
a†

AC ,k b†
BD,−k +aAC ,k bBD,−k

)]
,

H (2)
2 = nc

∑
k∈RBZ

[
A

(
a†

BD,k aBD,k +b†
AC ,k bAC ,k

)
+Bk

(
a†

BD,k b†
AC ,−k +aBD,k bAC ,−k

)]
,

H (2)
3 = nc

∑
k∈RBZ

[
A

(
a†

D A,k aD A,k +b†
BC ,k bBC ,k

)
+Bk

(
a†

D A,k b†
BC ,−k +aD A,k bBC ,−k

)]
,

H (2)
4 = nc

∑
k∈RBZ

[
A

(
a†

BC ,k aBC ,k +b†
D A,k bD A,k

)
+Bk

(
a†

BC ,k b†
D A,−k +aBC ,k bD A,−k

)]
,

(2.52)

with

A := 2Jx +2Jy ,

Bk := 2Jx coskx +2Jy cosky .
(2.53)

The constraint can now be reset to nc = 1. To diagonalize terms H (2)
1,...,4, we use the Bogoliubov

transformation as follows:(
ã†

AC ,k

b̃BD,−k

)
=

(
uk vk

vk uk

)(
a†

AC ,k

bBD,−k

)
, (2.54)

with

uk =
√

1

2

(
A

ωk
+1

)
, vk =

√
1

2

(
A

ωk
−1

)
,

ωk =
√
A2 −B2

k.

(2.55)

Hence, the diagonalized quadratic Hamiltonian finally reads as

H (2) = ∑
k∈RBZ

{ ∑
η∈Γ\{AB ,C D}

εk

[(
ã†
η,kãη,k +

1

2

)
+

(
b̃†
η,kb̃η,k +

1

2

)]

+8
(
a†

C D,kaC D,k +b†
AB ,kbAB ,k

)}
+const.,

(2.56)

with

ωk =
√
A2 −B2

k

= (2Jx +2Jy )

√√√√1−
(

2Jx coskx +2Jy cosky

2Jx +2Jy

)2

.
(2.57)

The spectrum of the isotropic (Jx = Jy = 1) case is plotted in Figure 2.4.
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(a) The ordered moment as a function of Jy .
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(b) The reduction of the order as a function of Jy .

Figure 2.10 – The magnetisation and the reduction of it as a function of Jy . The magnetisation
below J c

y = 0.279 is negative, suggesting that the order is completely destroyed below this
value.

Let us now study the magnetisation and the dimensional crossover of the system. Using the

definition of the ordered moment in Eq. (2.23), we obtain

m1(Jx , Jy ) = 1

2

(
B∑

µ=A
Sµµ(i )−

D∑
µ=C

Sµµ(i )

)
= 1− ∑

η∈Γ\{AB}

〈
a†
η(i )aη(i )

〉
= 1−4

〈
v2

k

〉
,

(2.58)

where we used the fact that
〈

a†
C D (i )aC D (i )

〉
= 0, i.e. the localised band does not contribute to

the reduction of the magnetisation. Let us now fix the value of the intra-chain coupling Jx = 1

for simplicity. In the isotropic case, Jy = 1, it has already been concluded in subsection 2.1.1

that the magnetic moment retains a finite value, m = 0.214, and that this would suggest a

potential flavour order of the system. From this isotropic point, we can now investigate the

dimensional crossover by searching for the value of J c
y such that m = 0. The magnetisation m

vanishes when

J c
y = 0.279. (2.59)

as shown in Figure 2.9, in which the ordered moment and its reduction are plotted. Below this

value of Jy , quantum fluctuations completely destroy the flavour order, indicating a possible

phase transition. Hence, the LFWT indeed predicts a phase transition from the Néel ordered

state when sliding into a 1D system, in line with the auxiliary field QMC results in Ref. [74].

However, the Néel-like phase appears to be much more robust within the LFWT calculations,

as the value of J c
y = 0.279 is much lower than the QMC prediction J c

y = 0.74−0.78 [74].
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2.2 SU(3) adjoint irreducible representation

We have seen how to use the LFWT with the multiboson approach in the fully antisymmetric

irreps. The nice aspect we did not mention about these antisymmetric irreps is that the weights

are not degenerate, i.e., the states of these irreps do not belong to a multi-dimensional space in

the weight space. These made things “easy” when we were trying to figure out the transitions

between the states induced by the generators Ŝµν in Eq (2.4). However, for a general irrep with

a potentially mixed symmetry, there exists degenerate weights—some states share the same

weight in the weight diagram. This makes the process of deriving the multibosonic expression

of Ŝµν as in Eq (2.4) less straightforward. In this section, we will apply the steps in section 2.1

to the SU(3) adjoint irrep which has a degenerate zero-weight. The SU(3) adjoint irrep has

a mixed symmetry, and in a way, can be considered a “minimal model” in the SU(N ) world:

it contains all the particular and distinctive features of SU(N ) irreps. Once we know how to

apply the multiboson LFWT with this irrep, we will hold a general recipe for the multiboson

LFWT theory for any arbitrary irrep.

For this, we need a plausible theoretical model involving a colour-order. We thus consider

the antiferromagnetic bipartite chain on which we put three SU(3) particles per site whose

wavefunction lives in . The Hamiltonian of this model is given by

H =J
∑

<i , j>

∑
µ,ν

Ŝµν(i )Ŝνµ( j ) (2.60)

with the colour indices µ,ν ∈ {A,B ,C }, and we assume a classical ground-state configuration

such that we have A A
C on one sublattice and B B

C on the other sublattice.8

The choice of this model is not fortuitous as there is a physical motivation behind it, but we

will come to this in the next chapter and focus on the methodology of the multiboson LFWT

here.

8It is indeed shown in Ref. [76], using the coherent states that Mathur & Sen introduces in Ref. [77], that this
configuration is indeed a ground state. For a given SU(3) irrep of [p, q], the coherent states are given by

|~z, ~w〉[p,q] ≡
1√
p !q !

(~z ·~a†)p (~w ·~b†)q |0〉

with the tracelessness condition ~z · ~w = 0 and the normalisation condition |~z|2 = |~w |2 = 1. In the case of the
adjoint irrep p = q = 1, the expectation of the generators are given by 〈~z, ~w |Ŝα

β
|~z, ~w〉 = p(zα∗z

β
−wαw∗

β
), and our

Hamiltonian using these coherent states are then given by

H = J p2 ∑
i

[|~z∗i ·~zi+1|2 +|~w∗
i · ~wi+1|2 −|~zi · ~wi+1|2 −|~wi ·~zi+1|2

]
.

The classical ground state would then be given by~z2n = ~w∗
2n+1 = ~φ1 and ~w∗

2n =~z2n+1 = ~φ2 such that ~φ1 and ~φ2

are two (normalised) orthogonal fields. In terms of the SU(3) fundamental irrep basis { A , B , C } and its conjugate

irrep basis
{

B
C , A

C , A
B

}
≡ {

Ā, B̄ ,C̄
}
, the bipartite configuration of A A

C and B B
C indeed satisfies these conditions.
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2.2.1 General method for deriving the action of the generators

First things first: let us quickly show again the states of the eight-dimensional SU(3) adjoint

irrep 1 3
2 that we saw in Table 1.1 in section 1.1. Since there are two such eight-dimensional

irreps, 1 2
3 and 1 3

2 , we will use 1 3
2 that is antisymmetric in (12). The specific choice of the

equivalent irreps does not matter, as they all obey the same SU(N ) transformation rules.

The states of the SU(3) adjoint irrep 1 3
2 in Table 1.1 are presented here once more in Table 2.1

(in the bosonic language) as follows:

A A
C ≡ 1p

2

(|AC A〉− |C A A〉) A A
B ≡ 1p

2

(|AB A〉− |B A A〉)
A B
B ≡ 1p

2

(|ABB〉− |B AB〉) B B
C ≡ − 1p

2

(|BC B〉− |C BB〉)
B C
C ≡ − 1p

2

(|BCC〉− |C BC〉) A C
C ≡ − 1p

2

(|ACC〉− |C AC〉)
A B
C ≡ −1

2

(|AC B〉+ |BC A〉 A C
B ≡ 1p

12

(
2 |ABC〉−2 |B AC〉+ |C B A〉

−|C B A〉− |C AB〉) −|C AB〉+ |AC B〉− |BC A〉)
Table 2.1 – The states of the SU(3) adjoint irrep.

Now, let us recall the expression of the generators Sµν(i ) =
3∑

a=1
b†
ν,a(i )bµ,a(i )− 1

3δ
µ
νn̂ in Eq. (1.26),

and see what happens when we apply ŜB
A to the state A B

B :

ŜB
A

A B
B =

3∑
a=1

b†
A,abB ,a

[
1p
2

(|ABB〉− |B AB〉)]= 1p
2

(|AB A〉− |B A A〉)
= A A

B .

(2.61)

This is similar to what we have seen in subsection 2.1.1 with the antisymmetric SU(4) states,

and this is somehow natural and expected when looking at the weight diagram in Figure 2.11.

However, there is a situation that we have not encountered yet: what happens when there

are potentially two states that can be obtained by applying a ladder operator, as is the case

with the two zero-weight states in the middle of the weight diagram in Figure 2.11 ? Let us first

observe what happens when we apply Ŝ A
B onto A A

C :

Ŝ A
B

A A
C =

3∑
a=1

b†
B ,abA,a

[
1p
2

(|AC A〉− |C A A〉)]
= 1p

2

(|BC A〉+ |AC B〉− |C B A〉− |C AB〉)
=−p2 A B

C .

(2.62)

In this case, the colour permutation yields only one of the two states in the zero-weight, i.e.,
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ŜB
A

ŜC
AŜC

B

ŜA
B

ŜA
C ŜB

C

A B
C

A C
B

A A
C

A A
B

A B
B

B B
C

B C
C

A C
C

Figure 2.11 – Weight diagram of the irrep 8 of SU(3) and the direction in which the three pairs
of ladder operators (Ŝµν with µ 6= ν) operate.

the matrix element of the other state is zero:〈
A C
B

∣∣Ŝ A
B

∣∣ A A
C

〉
= 0. (2.63)

Furthermore, it is interesting to observe that we have the factor −p2 popping out (which we

did not have in the antisymmetric case), thus yielding a state whose norm is equal to
p

2. In

the opposite direction, the results are similar:

Ŝ A
B

A B
C =−

p
2 B B

C , Ŝ A
B

A C
B = 0. (2.64)

The opposite transition in the other direction from the opposite state in the weight diagram is

also similar:

ŜB
A

B B
C =p

2 A B
C ,

ŜB
A

A B
C =

p
2 A A

C , ŜB
A

A C
B = 0.

(2.65)

So far, we have looked at one of the three pairs of ladder operators, so let us now look at the

two other directions:

ŜC
A

B C
C = 1p

2
A B
C +

√
3

2
A C
B , Ŝ A

C
A A
B = 1p

2
A B
C +

√
3

2
A C
B ,

ŜC
B

A C
C = 1p

2
A B
C −

√
3

2
A C
B , ŜB

C
A B
B =− 1p

2
A B
C +

√
3

2
A C
B .

(2.66)
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So we see that there is a difference with respect to Ŝ A
B , ŜB

A : here, we obtain a superposition of

both zero-weight states. But the norm of the resulting superposition state is also equal to
p

2.

Note that the pair of ladder operators that generate only one of the two zero-weight states

(as in Eq. (2.64)) can change if we use different basis states for the irrep than the ones used

in Table 2.1. However, the two other pairs of ladder operators will always generate a linear

superposition of both states with the same coefficients as in Eq. (2.66). This is simply the

consequence of the symmetry of SU(3).

The rest of the relations involving the rest of the generators and states are more trivial and

can be derived similarly, together with the fact that Ŝνµ = (
Ŝµν

)†
. Now that we know how the

generators act on the states, let us assign a boson to each state of our irrep as done in chapter I.

We will then express the SU(3) Hamiltonian in terms of these bosons. For convenience, we

first label the eight states of the irrep by colors of their normal product state or by numbers:

A A
C −→ state AC A or 1 A A

B −→ state AB A or 2

A B
B −→ state ABB or 3 B B

C −→ state BC B or 4

B C
C −→ state BCC or 5 A C

C −→ state ACC or 6

A B
C −→ state AC B or 7 A C

B −→ state ABC or 8

(2.67)

The labels are antisymmetric in the first two letters. We associate a boson to each of these

(composite) states, which yields eight pairs of bosons d †
α,dα with α ∈ {1, . . . ,8}.

We can start defining the SU(3) operators Ŝµν in terms of these bosons d with the help of

Eqs. (2.61) to (2.66). For instance, we can infer from Eq. (2.61), ŜB
A

A B
B = A A

B , that ŜB
A has to
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contain the term d †
AB AdABB . All things considered, we obtain



ŜB
A := d †

AB AdABB +d †
ACC dBCC −p

2d †
AC AdAC B +p

2d †
AC B dBC B

Ŝ A
B := (

ŜB
A

)†

ŜC
A :=−d †

AC AdACC +d †
ABB dBC B +d †

AB A

(√
1
2 dAC B +

√
3
2 dABC

)
+

(√
1
2 d †

AC B +
√

3
2 d †

ABC

)
dBCC

Ŝ A
C := (

ŜC
A

)†

ŜC
B := d †

AB AdAC A +d †
BC B dBCC +d †

ABB

(
−

√
1
2 dAC B +

√
3
2 dABC

)
+

(√
1
2 d †

AC B −
√

3
2 d †

ABC

)
dACC

ŜB
C := (

ŜC
B

)†

Ŝ A
A := 2d †

AB AdAB A +2d †
AC AdAC A +d †

ABB dABB +d †
ACC dACC +d †

AC B dAC B +d †
ABC dABC − n̂

= d †
AB AdAB A +d †

AC AdAC A −d †
BCC dBCC −d †

BC B dBC B

ŜB
B := 2d †

ABB dABB +2d †
BC B dBC B +d †

AB AdAB A +d †
BCC dBCC +d †

AC B dAC B +d †
ABC dABC − n̂

= d †
ABB dABB +d †

BC B dBC B −d †
AC AdAC A −d †

ACC dACC

ŜC
C := 2d †

ACC dACC +2d †
BCC dBCC +d †

AC AdAC A +d †
BC B dBC B +d †

AC B dAC B +d †
ABC dABC − n̂

= d †
ACC dACC +d †

BCC dBCC −d †
AB AdAB A −d †

ABB dABB

(2.68)

where

n̂ =d †
AB AdAB A +d †

ABB dABB +d †
BC B dBC B +d †

BCC dBCC

+d †
ACC dACC +d †

AC AdAC A +d †
AC B dAC B +d †

ABC dABC ,
(2.69)

i.e., the sum of the number operators of each state. This is to satisfy the tracelessness condition∑
µ

Sµµ = 0. Without the number operator n̂, we see that the diagonal generators Ŝµµ simply count

the number of the colour µ of each state in the irrep.

The definitions in Eqs. (2.68) obey all the SU(3) commutation relations (1.23). The Hamilto-

nian (2.60) can now be written in terms of the bosons d using Eqs. (2.68) straightaway.

Before continuing, there are two important remarks to be made here. The first is that this

construction, although tedious, gives a general method of writing Ŝµν in terms of bosons

representing each state of an irrep, whatever the irrep that is considered. The second remark

is that since we are working with the adjoint irrep, there is another way of figuring out the

expressions of Ŝµν in terms of the bosons d .

2.2.2 Derive the action of Ŝµν for the adjoint irrep

The N 2−1 states of the adjoint irrep correspond to the N 2−1 generators Ta (a ∈ {
1, . . . , N 2 −1

}
)

because the weights of the SU(N ) adjoint irrep correspond to the roots of SU(N ), and a state

that corresponds to a generator Ta is given by the generator itself, |Ta〉. For more details,

references on Lie algebras or group theory such as Refs. [58, 59, 60] can be consulted. The only
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ŜB
A (E+1)

ŜC
A (E+2)ŜC

B (E+3)

ŜA
B (E−1)

ŜA
C (E−2) ŜB

C (E−3)

(H1) A B
C

A C
B

(H2)
A A
C

A A
B

A B
B

B B
C

B C
C

A C
C

Figure 2.12 – Roots of the irrep 8 of SU(3). The name of the states and the corresponding gen-
erators Ŝµν are indicated. The generators in the Cartan-Weyl basis are also given in parenthesis.
Note that Ŝ A

A = H1 + 1
2 H2, ŜB

B =−H1 + 1
2 H2 and ŜC

C =−H2, see subsection 1.1.2.

properties that matter in this case are as follows:

α |Ta〉+β |Tb〉 =
∣∣αTa +βTb

〉
, Ta |Tb〉 = |[Ta ,Tb]〉 , (2.70)

with α,β ∈C and a,b ∈ {1, . . . ,8}. So a generator can be associated to a state. This means that

the expressions of Ŝµν that we want can be read off directly from the commutation relations of

SU(3). Here is how.

Let us first associate each of the eight generators in the Cartan-Weyl basis to each of the eight

state of our irrep. Since the expression we want for the generators are in terms of the spherical

generators Ŝµν , we need to translate the Cartan-Weyl basis elements to the states
∣∣Sµν〉

(which

are our reference states and which are normalized per definition) using Eqs. (1.21) and (1.22).

We thus get the following correspondence between the states and the generators:

E+1 ∼ A A
C = ∣∣SB

A

〉
, (≡ |E+1〉) E−1 ∼ B B

C = ∣∣S A
B

〉
,

E+2 ∼ A A
B = ∣∣SC

B

〉
, E−2 ∼ B C

C = ∣∣S A
C

〉
,

E+3 ∼ A B
B = ∣∣S A

B

〉
, E−3 ∼ A C

C = ∣∣SB
C

〉
,

H1 ∼ A B
C = p

2 · 1

2

(∣∣S A
A

〉− ∣∣SB
B

〉)
H2 ∼ A C

B =
√

3

2
· 1

3

(∣∣S A
A

〉+ ∣∣SB
B

〉−2
∣∣SC

C

〉)
(
≡p

2 |H1〉
) (

≡
√

3

2
|H2〉

)
(2.71)

Note that there is a normalization factor in front of |H1〉 and |H2〉 in contrast to the other states
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Chapter II. Multiboson Linear Flavour-Wave Method

of the Cartan-Weyl basis |E±N 〉, because they are not normalised (remember that the basis

states
∣∣Sµν〉

are the ones that are normalised). From this, all we have to do is derive Ŝµν in terms

of the bosons d with the help of the defining commutation relations of SU(3) and Eq. (2.71).

For instance,

ŜC
A

B C
C = SC

A

∣∣S A
C

〉= [
SC

A ,S A
C

]= [E+2,E−2]

= H1 + 3

2
H2 = 1p

2

(p
2 |H1〉

)
+

√
3

2

(√
3

2
|H2〉

)

= 1p
2

A B
C +

√
3

2
A C
B ,

(2.72a)

ŜC
A

A B
C = SC

A

∣∣∣∣p2 · 1

2

(
S A

A +SB
B

)〉=
[

E+2,
p

2H1

]
=−

p
2

2
E+2

=− 1p
2

B C
C ,

(2.72b)

Ŝ A
A

B C
C =

(
H1 + 1

2
H2

)∣∣S A
C

〉= [H1,E−2]+ 1

2
[H2,E−2] =−E−2

=− B C
C .

(2.72c)

These expressions correspond to what we have derived in Eqs. (2.66) and (2.68).

2.2.3 The Holstein-Primakoff prescription with the SU(3) adjoint irrep

We now assume that we have a large condensate of state 1 ( A A
C ) on the first sublattice ΛAC A

and a large condensate of state 4 ( B B
C ) on the second sublattice ΛBC B . We now introduce

the expansion parameter nc that will allow us to perform the semiclassical limit nc →∞.9

Physically, it corresponds to the number of composite particles per site, and since we have

one composite particle per site, it will be set back to 1 at the end of the calculations. Since we

have nc particles per site, we can write

8∑
η=1

d †
η(i )dη(i ) = nc ,

8∑
η=1

d †
η( j )dη( j ) = nc , (2.73)

for ∀i ∈ΛAC A and ∀ j ∈ΛBC B . We now replace the bosons dα introduce the Holstein-Primakoff

bosons a(i ) and b( j ) for the sublattices ΛAC A and ΛBC B respectively. The assumption of a

large condensate of state 1 onΛAC A and state 4 onΛBC B means that the equations above can

9In terms of the Young tableaux, having the number nc = 2 would correspond to , and having the number

nc = 3 would correspond to etc. As a consequence, an example of the condensates in the limit nc →∞

would be

nc︷ ︸︸ ︷
A

C
· · · A

C

nc︷ ︸︸ ︷
A · · · A and

nc︷ ︸︸ ︷
B

C
· · · B

C

nc︷ ︸︸ ︷
B · · · B .

46



2.2. SU(3) adjoint irreducible representation

be written as

a†
1(i )a1(i ) = nc −

∑
η 6=1

a†
η(i )aη(i ), b†

4( j )b4( j ) = nc −
∑
η 6=4

b†
η( j )bη( j ), (2.74)

and in the limit where nc →∞, we can use the Holstein-Primakoff prescription:

a†
1(i ), a1(i ) −→

√
nc −

∑
η 6=1

a†
η(i )aη(i ) 'p

nc − 1

2
p

nc

∑
η 6=1

a†
η(i )aη(i ),

b†
4( j ),b4( j ) −→

√
nc −

∑
η 6=4

b†
η( j )bη( j ) 'p

nc − 1

2
p

nc

∑
η 6=4

b†
η( j )bη( j ).

(2.75)

The truncation of the Taylor series at this order is sufficient to obtain all the terms of the

quadratic Hamiltonian of the order nc . It is also worthwhile noting that the commutation

relations (1.23) stay valid up to order O (1) even after this transformation. Gathering all the

terms of the order nc , we obtain the quadratic Hamiltonian H (2) =
3∑

α=0
H (2)

α :

H (2) =H (2)
0 +H (2)

1 +H (2)
2 +H (2)

3 where

H (2)
0 = Jnc

∑
i∈ΛAC A

∑
< j>

[
2a†

8(i )a8(i )+2b†
8( j )b8( j )+3a†

3(i )a3(i )+3a†
5(i )a5(i )

+3b†
2( j )b2( j )+3b†

6( j )b6( j )+4a†
4(i )a4(i )+4b†

1( j )b1( j )
]

H (2)
1 = Jnc

∑
i∈ΛAC A

∑
< j>

[
a†

2(i )a2(i )+b†
5( j )b5( j )+a†

2(i )b†
5( j )+a2(i )b5( j )

]
H (2)

2 = Jnc
∑

i∈ΛAC A

∑
< j>

[
a†

6(i )a6(i )+b†
3( j )b3( j )−a†

6(i )b†
3( j )−a6(i )b3( j )

]
H (2)

3 = Jnc
∑

i∈ΛAC A

∑
< j>

[
2a†

7(i )a7(i )+2b†
7( j )b7( j )−2a†

7(i )b†
7( j )−2a7(i )b7( j )

]
.

(2.76)

After Fourier-transforming,

aη(i ) =
√

2

Nsites

∑
k∈RBZ

aη(k)e−i kri , bη( j ) =
√

2

Nsites

∑
k∈RBZ

bη(k)e−i kr j , (2.77)

with the state index η ∈ {1, . . . ,8} and the number of sites Nsites, the harmonic Hamiltonian in
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Fourier space is then given by

H (2)
0 = Jnc

∑
k∈RBZ

[
4a†

8(k)a8(k)+4b†
8(k)b8(k)+6a†

3(k)a3(k)+6a†
5(k)a5(k)

+6b†
2(k)b2(k)+6b†

6(k)b6(k)+8a†
4(k)a4(k)+8b†

1(k)b1(k)
]

H (2)
1 = Jnc

∑
k∈RBZ

(
u†

1,k ,u1,−k

)
Mk

(
tu1,k

t
u†

1,−k

)
,

H (2)
2 = Jnc

∑
k∈RBZ

(
u†

2,k ,u2,−k

)
Mk

(
tu2k

t
u†

2,−k

)
,

H (2)
3 = Jnc

∑
k∈RBZ

(
u†

3,k ,u3−k

)
2Mk

(
tu3,k

t
u†

3,−k

)
,

(2.78)

where

u†
1,k :=

(
a†

2(k),b†
5(k)

)
, u1,−k := (

a2(−k),b5(−k)
)

,

u†
2,k :=

(
a†

6(k),b†
3(k)

)
, u2,−k := (

a6(−k),b3(−k)
)

,

u†
3,k :=

(
a†

7(k),b†
7(k)

)
, u3,−k := (

a7(−k),b7(−k)
)

,

(2.79a)

Mk :=
(

A Bk

Bk A

)
, A :=

(
1 0

0 1

)
, Bk :=

(
0 γk

γk 0

)
, (2.79b)

with the geometrical factor

γk := cosk. (2.80)

As the structure of the sub-Hamiltonians in subsection 2.1.1 are the same, we can use the

Bogoliubov transformation (2.17). By introducing the new Bogoliubov bosons fζ with ζ ∈
{1, . . . ,6}, the diagonalized quadratic Hamiltonian is finally given by to simplify

H (2)
0 = Jnc

∑
k∈RBZ

[
6∑
ζ=1

ωζ(k)

(
f †
ζ

(k) fζ(k)+ 1

2

)
+4a†

8(k)a8(k)+4b†
8(k)b8(k)+6a†

3(k)a3(k)+6a†
5(k)a5(k)

+6b†
2(k)b2(k)+6b†

6(k)b6(k)+8a†
4(k)a4(k)+8b†

1(k)b1(k)
]
+const.

(2.81)

up to a constant, where

ω1,2,3,4(k) = 2
√

1−cos2(k),

ω5,6(k) = 4
√

1−cos2(k).
(2.82)

These dispersion relations are plotted in Figure 2.13.
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Figure 2.13 – The dispersion relations ω1,...,6 of the bipartite chain.

Let us now look at the modes more closely. There are in total six dispersive modes, f1, . . . , f6,

four of which have the same dispersion relationω1,2,3,4(k) = 2
√

1−cos2(k). These modes come

from the sub-Hamiltonians H (2)
1 and H (2)

2 involving the state 2 ( A A
B ), state 3 ( A B

B ), state 4 ( B B
C ),

and state 5 ( B C
C ). These states are the ones that can be obtained by one colour permutation

between neighbours of the initial condensates, and they lead to dispersive modes as in models

with the antisymmetric irreps in 2.1. There is one more state that can be attained with one

colour permutation from both sublattices, however, and that is the state 7 ( A B
C ). The transition

to this state yields the modes ω5,6(k) stemming from the sub-Hamiltonian H (2)
3 , and these

modes have a factor 2 compared to the other modes ω1,2,3,4(k). This is related to Eq. (2.62),

where we have seen that such a transition yields a state whose norm is equal to sqr t2.

We had also seen in Eq. (2.63) that we cannnot reach the state 8 ( A C
B ) by one colour permutation

starting from the state 1 or 4 that we are condensing, although it looks possible in principle

according to the weight diagram in Figure 2.11. It acutally turns out that

1p
6

(
2SC

B S A
C −S A

B

) A A
C = A C

B , (2.83)

so getting the state 8 requires two colour permutations. Hence, in our harmonic-order Hamil-

tonian in the nc -expansion, the modes a†
8a8 and b†

8b8 related to the state 8 are flat. The value

of this flat energy mode is 4, just like the maximum value of the modes ω5,6 of the state 7.

Equally, the other transitions requiring more than one coulour permutation yield flat modes.

The values of these flat modes are larger when more colour permutations are needed. For

example, from the perspective of the state 1 of the sublattice ΛAC A , the state 4 is further

away than the state 5. This translates into the terms 8a†
4a4 and 6a†

5a5 in the final harmonic

Hamiltonian.
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In conclusion, the states attainable with one colour permutation from the initial condensates

yield the six dispersive modes (with two different velocities), all of whom are linear in k for

small values of k.

2.2.4 Considering different states as condensates

If we decide to use a condensate of the state 2 ( A A
B ) on the first sublattice and a condensate of

the state 5 ( B C
C ) on the second sublattice, the resulting quadratic Hamiltonian right after the

expansion in nc has a different structure than Eq. (2.76). However, after the diagonalisation,

the resulting dispersion relations will be identical to Eq. (2.82). This is what we show in the

following.

Using the same recipe as above, we use the Holstein-Primakoff bosons a and b on the sites of

the sublatticesΛAB A andΛBCC , respectively,

a†
2(i ), a2(i ) −→

√
nc −

∑
η 6=2

a†
η(i )aη(i ) 'p

nc − 1

2
p

nc

∑
η 6=1

a†
η(i )aη(i ),

b†
5( j ),b5( j ) −→

√
nc −

∑
η 6=5

b†
η( j )bη( j ) 'p

nc − 1

2
p

nc

∑
η 6=4

b†
η( j )bη( j ),

(2.84)

after which we obtain the quadratic Hamiltonian by gathering all the terms of the order nc :

H (2) =H (2)
0 +H (2)

1 +H (2)
2 +H (2)

3 where

H (2)
0 = Jnc

∑
i∈ΛAB A

∑
< j>

[
3a†

4(i )a4(i )+3a†
6(i )a6(i )+4a†

5(i )a5(i )

+3b†
1( j )b1( j )+3b†

3( j )b3( j )+4b†
2( j )b2( j )

]
,

H (2)
1 = Jnc

∑
i∈ΛAB A

∑
< j>

[
a†

1(i )a1(i )+b†
4( j )b4( j )+a†

1(i )b†
4( j )+a1(i )b4( j )

]
,

H (2)
2 = Jnc

∑
i∈ΛAB A

∑
< j>

[
a†

3(i )a3(i )+b†
6( j )b6( j )−a†

3(i )b†
6( j )−a3(i )b6( j )

]
,

H (2)
3 = Jnc

∑
i∈ΛAB A

∑
< j>

[
2a†

7(i )a7(i )+2a†
8(i )a8(i )+2b†

7( j )b7( j )+2b†
8( j )b8( j )

+ 1

2
a†

7(i )b†
7( j )+ 1

2
a7(i )b7( j )+ 3

2
a†

8(i )b†
8( j )+ 3

2
a8(i )b8( j )

+
p

3

2
a†

7(i )b†
8( j )+

p
3

2
a7(i )b8( j )+

p
3

2
a†

8(i )b†
7( j )+

p
3

2
a8(i )b7( j )

]
.

(2.85)
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After the Fourier transform, we obtain

H (2)
0 = Jnc

∑
k∈RBZ

[
6a†

4(k)a4(k)+6a†
6(k)a6(k)+8a†

5(k)a5(k)

+6b†
1(k)b1(k)+6b†

3(k)b3(k)+8b†
2(k)b2(k)

]
,

H (2)
1 = Jnc

∑
k∈RBZ

(
u†

1,k ,u1,−k

)
M1,k

(
tu1,k

t
u†

1,−k

)
,

H (2)
2 = Jnc

∑
k∈RBZ

(
u†

2,k ,u2−k

)
M2,k

(
tu2,k

t
u†

2,−k

)
,

H (2)
3 = Jnc

∑
k∈RBZ

(
u†

3,k ,u3,−k

)
M3,k

(
tu3,k

t
u†

3,−k

)
,

(2.86)

where

u†
1,k :=

(
a†

1(k),b†
4(k)

)
, u1,−k := (

a1(−k),b4(−k)
)

,

u†
2,k :=

(
a†

3(k),b†
6(k)

)
, u2,−k := (

a3(−k),b6(−k)
)

,

u†
3,k :=

(
a†

7(k), a†
8(k),b†

7(k),b†
8(k)

)
, u3,−k := (

a7(−k), a8(−k),b7(−k),b8(−k)
)

,

(2.87a)

M1,k :=
(

A1 B1,k

B1,k A1

)
, A1 :=

(
1 0

0 1

)
, B1,k := γk

(
0 1

1 0

)
,

M2,k :=M1,k ,

M3,k =
(

A3 B3,k

B3,k A3

)
, A3 :=


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 , B3,k := γk


0 0 1

2

p
3

2

0 0
p

3
2

3
2

1
2

p
3

2 0 0p
3

2
3
2 0 0

 ,

(2.87b)

with the geometrical factor

γk := cosk. (2.88)

The generalised Bogoliubov transformation can be used to diagonalize the system, and the

matrix that has to be diagonalized is then

M
′
a,k :=

(
Aa Ba,k

−Ba,k −Aa

)
, a ∈ {1,2,3} (2.89)

Its positive eigenvalues yield the frequenciesωµ of the diagonalized Hamiltonian. More details

on the generalised Bogoliubov transformation can be found in Appendix A. All in all, we obtain
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H (2) = Jnc
∑

k∈RBZ

{
8∑
ζ=1

ωζ(k)

(
f †
ζ

(k) fζ(k)+ 1

2

)
+6a†

4(k)a4(k)+6a†
6(k)a6(k)+8a†

5(k)a5(k)

+ 6b†
1(k)b1(k)+6b†

3(k)b3(k)+8b†
2(k)b2(k)

}
+const.,

(2.90)

with

ω1,2,3,4(k) = 2
√

1−cos2(k),

ω5,6(k) = 4
√

1−cos2(k),

ω7,8 = 4,

(2.91)

that are plotted in Figure 2.14.

We indeed see that this Hamiltonian has the same dispersion relations as the Hamilto-

nian (2.81). As in the previous case with a different condensate, the transition to the zero-

weight states (see Eq. (2.66)) from the sub-Hamiltonian H (2)
3 yields the dispersive mode with

the higher velocity, ω4,5. This is seen clearly if we re-express the Hamiltonian (2.76) a bit by

redefining the bosons a bit. Let us define the bosons f and g as follows,

f (i ) = 1p
4

a7(i )+
√

3

4
a8(i ), f ( j ) = 1p

4
a7( j )+

√
3

4
a8( j ),

g (i ) =
√

3

4
a7(i )− 1p

4
a8(i ), g ( j ) =

√
3

4
a7( j )− 1p

4
a8( j ),

(2.92)

such that they satisfy the bosonic commutation relations
[

f , f †
]= 1,

[
g , g †

]= 1,
[

f (†), g (†)
]= 0.

We then see that the harmonic Hamiltonian in (2.76) can be written as

H (2)
3 = Jnc

∑
i∈ΛAB A

∑
< j>

{
2g †(i )g (i )+2g †( j )g ( j )

+2
[

f †(i ) f (i )+ f †( j ) f ( j )+ f †(i ) f †( j )+ f (i ) f ( j )
]}

.

(2.93)

The terms involving the new bosons f (i ), f ( j ) have the same structure as H (2)
1 and H (2)

2 with

a factor 2, and they evidently give the dispersive modes with twice the velocity of the other

dispersive modes. From the definition of the boson f in Eq. (2.92), we see that it corresponds

to the transition to the zero-weight states Ŝ A
C

A A
B or ŜC

A
B C
C described in Eq. (2.66). The new

bosons g (i ), g ( j ) correspond to the states orthogonal to those represented by the bosons

f (i ), f ( j ), and they generate flat modes.
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Figure 2.14 – The dispersion relations ω1,...,8.
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III Linear Flavour-Wave with Mathur and
Sen Bosons

Introduction: low-energy spectra of the SU(3) models

A general prescription for applying the LFWT for any SU(N ) irrep has been described (2.2.1).

However, it can be a bit tedious to derive the representation of the operators, especially if we

are only interested in the dispersive low-energy modes related to the Goldstone modes. Could

there be a different possibility of performing the LFWT? A different bosonic representation for

the generators Ŝµν paves a different way, and this is what we will explore further in this chapter.

We will use the bosons introduced by Mathur and Sen [77] for SU(3) and further used and

developed by others [78, 79, 80]. We will subsequently name these bosons the “Mathur & Sen”

bosons.

The model we will first look at is the bipartite SU(3) chain in the self-conjugate irreps, in

particular the adjoint irrep model introduced in section 2.2. It is a model for which we are

interested in the low-energy spectrum for investigating interesting physical properties, and it

will also allow us to develop a method for performing the LFW expansion using the Mathur

& Sen bosons. It will be shown that the spectra yielded by this bosonic representation are

the same as those derived previously in section 2.2. Once we know how to deal with the

self-conjugate irreps, we will then try to study the low-energy behaviour of the bipartite SU(3)

chain in an arbitrary SU(3) irrep. Although we treat the one-dimensional case only, we note

that it is easily generalisable to any dimensions.

3.1 The SU(3) chain in the self-conjugate irreducible representations

This chapter is the fruit of the collaboration with Kyle Warmer, Miklós Lajkó, Frédéric Mila

and Ian Affleck [76]. The reason why we are particularly interested in the self-conjugate SU(3)

irreps is because of the Lieb-Schulz-Mattis-Affleck theorem. The theorem states that a one-

dimensional chain with half-integer SU(2) spin per unit cell is either gapless or has a ground

state degeneracy, and there exists a generalised version of it for the SU(N ) symmetry. In the

case of SU(3) chains in the symmetric irrep [p,0] that was studied in Ref. [12], it implies that
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Chapter III. Linear Flavour-Wave with Mathur and Sen Bosons

this model must either be gapless or have spontaneously broken translation symmetry for all

values of p that are not a multiple of 3. The case of the self-conjugate irreps [p, p], however, had

not been studied. Consequently, Wamer et al. [76] started working on the self-conjugate SU(3)

irrep chains with field-theoretical calculations to show that the Lieb-Schulz-Mattis-Affleck

theorem fails in this case as the number of boxes is always a multiple of 3, and the system is

always gapped for any [p, p] with an additional feature that the P -symmetry (parity) is broken

for odd values of p only. Some AKLT-type ground states are presented in Ref. [76].

The long-range colour order is thus obviously not a ground state of the SU(3) [p, p] 1D chain—

the Mermin-Wagner-Coleman theorem [54, 55] would forbid it anyway. But it is a useful

assumption to make, as it gives a starting point for field-theoretical calculations. As a con-

sequence, the LFWT calculations were used in the first part of this project to provide an

alternative way of obtaining the low-energy spectra of the system. With this, it was shown that

the model posesses six Goldstone modes and that they have unequal velocities, all of them

being in complete agreement with the results of the field theory.

3.1.1 Mathur & Sen’s bosonic representation

Let us introduce another bosonic representation for the SU(3) irreps which is described

in [77, 79]. We will closely follow the notation in these articles.

The group SU(3) has rank 2, which means that the states in SU(3) can be written by using two

triplets of bosonic operators[
aµ, a†

ν

]
= δµν,

[
bµ,b†

ν

]
= δµν,

[
aµ,bν

]
=

[
aµ,b†

ν

]
= 0, (3.1)

where µ,ν ∈ {A,B ,C } are the color degrees of freedom. The vacuum state can then be denoted

by
∣∣~0a ,~0b

〉≡ |0〉, and we can define the following number operators

N̂a :=
C∑

µ=A
N̂a,µ =

C∑
µ=A

a†
µaµ, N̂b :=

C∑
µ=A

N̂b,µ =
C∑

µ=A
b†
µbµ, (3.2)

whose eigenvalues will be denoted by na =
C∑

µ=A
na,µ and nb =

C∑
µ=A

nb,µ.

With the help of these bosons and the Gell-Mann matrices λk (k ∈ {1, . . . ,8}), we can now define

the following operators

Qk =
C∑

µ,ν=A
a†
µTk

µνaν−b†
µT ∗

k
µνbν, (3.3)

where Tk are the generators of SU(3) given by Tk := 1
2λk . As they are constructed from the

Gell-Mann matrices, they automatically satisfy the tracelessness condition. Since λk and λ∗
k

are being used, it is clear that the three states a†
µ |0〉 =

∣∣µ〉 ≡ ∣∣
µ

〉
represent the states of the
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fundamental irrep ( or 3) and that the three states b†
ν |0〉 = |ν̄〉 ≡ |ν〉 represent the states of

its conjugate irrep ( or 3̄), with µ,ν {A,B ,C }. From this, it is possible to build states in any

other irrep. For instance, the states in the irrep (or 8) will satisfy na = 1 and nb = 1. This

construction is related to the tensor method that is well explained in Ref. [59]. It is based on the

fact that a representation Tk of the generators of a Lie algebra that satisfies [Tk ,Tl ] = i fkl
mTm

admits a representation T̃k :=−T ∗
k such that[

T̃k , T̃l
]= [Tk ,Tl ]∗ =−i fkl

mT ∗
m = i fkl

mT̃m , (3.4)

and that a state from the fundamental irrep of SU(3) can form a singlet with the state from its

conjugate irrep. We can then write the states of any SU(3) irreps using the tensorial notations

with covariant and contravariant indices and use the contraction of indices like in general

relativity. In this construction, these indices are translated into the bosons aµ and bµ. One

important aspect is that it has to satisfy the tracelessness condition related to the traceless-

ness of the SU(3) generators. If we write a generic SU(3) state using the Einstein summation

convention,

v
µ1...µp
ν1...νq

a†
µ1
· · ·a†

µp
b†
ν1
· · ·b†

νq
|0〉 = v

µ1...µp
ν1...νq

∣∣∣ν1···νq
µ1···µp

〉
, (3.5)

then the coefficients v of a state belonging to the irrep [p, q] have to satisfy

δ
µa
νa

v
µ1...µp
ν1...νq

= 0, (3.6)

where a ∈ {
1, . . . ,min(p, q)

}
.

Let us see what this concretely means by taking the example of the adjoint irrep. The states of

the adjoint irrep have to satisfy na = nb = 1, so we could naively use one boson a†
µ and one

boson b†
ν to create the states of the adjoint irrep. This yields nine states:∣∣AB̄

〉
,
∣∣AC̄

〉
,
∣∣BC̄

〉
,
∣∣B Ā

〉
,
∣∣C Ā

〉
,
∣∣C B̄

〉
,
∣∣A Ā

〉
,
∣∣BB̄

〉
,
∣∣CC̄

〉
. (3.7)

This actually corresponds to ⊗ (or 3× 3̄) as we are using one bosons a and one boson b.

However, we know that this tensor product contains not only the adjoint irrep, but also the

trivial irrep:

⊗ = ⊕· (3.8)

The traceless condition (3.6) precisely corresponds to excluding the singlet of the trivial irrep∣∣A Ā
〉+∣∣BB̄

〉+∣∣CC̄
〉

(up to a normalisation constant). Linear combinations of states in Eq. (3.7)

(namely
∣∣A Ā

〉
,
∣∣BB̄

〉
,
∣∣CC̄

〉
) yield either the singlet or the two zero-weight states of the adjoint

irrep: the states 1p
2

(∣∣A Ā
〉− ∣∣BB̄

〉)
and 1p

6

(∣∣A Ā
〉+ ∣∣BB̄

〉−2
∣∣CC̄

〉)
, see Figure 3.1. They indeed

belong to the adjoint irrep as they are orthogonal to the singlet 1p
6

(∣∣A Ā
〉+ ∣∣BB̄

〉+ ∣∣CC̄
〉)

.

For our purposes, it is more convenient to express the generators in terms of the raising and
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A

C

B

or 3

B̄

C̄

Ā

or 3̄

1√
2(AĀ − BB̄)

1√
6(AĀ + BB̄ − 2CC̄)

AB̄

AC̄BC̄

BĀ

CĀ CB̄

or 8

Figure 3.1 – Weight diagram of the irreps 3, 3̄ and 8. Out of the nine states from 3⊗3̄, the singlet
1p
6

(A Ā+BB̄ +CC̄ ) can be constructed, which is a state annihilated by all the raising operators.

The eight states in 8 can be obtained by enforcing the tracelessness condition, or by acting the
lowering operators on the highest-weight state of 8 which is AC̄ .

lowering operators Ŝµν . Following the construction in subsection 1.1.2, we define

ŜB
A :=Q1 + iQ2, Ŝ A

B :=Q1 − iQ2

ŜC
A :=Q4 + iQ5, Ŝ A

C :=Q4 − iQ5

ŜC
B :=Q6 + iQ7, ŜB

C :=Q6 − iQ7

Ŝ A
A :=Q3 + 1p

3
Q8, ŜB

B :=−Q3 + 1p
3

Q8, ŜC
C :=− 2p

3
Q8,

(3.9)

which, after simplification of the expressions, lead to

Ŝµν =
(
a†
νaµ−b†

µbν
)
−δµν

1

3
(N̂a − N̂b), (3.10)

with µ,ν ∈ {1,2,3}(= {A,B ,C }). This construction naturally satisfies all the commutation rela-
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(a) A A A A

C C
(b) B B B B

C C

p

p

p

p

Figure 3.2 – An example of the states involved in the ground state configuration for p = 2. (a)
The state of sublatticeΛ1 with p times B̄ and p times A. (b) The state of sublatticeΛ2 with p
times Ā and p times B .

tions
[

Sα
β

,Sµν
]
= δανSµ

β
−δµ

β
Sαν and the tracelessness condition

∑
µ

Sµµ = 0.

Henceforth, the bosons a1, a2, a3 will be associated to the colors A, B , C , and the bosons b1,

b2, b3 will be associated to the colors Ā, B̄ , and C̄ (or B
C , A

C and A
B ).

3.1.2 The LFWT with Mathur & Sen bosons

We are now ready to apply the LFWT on the SU(3) antiferromagnetic Heisenberg chain whose

Hamiltonian reads as

H =J
∑

<i , j>

C∑
µ,ν=A

Ŝµν(i )Ŝνµ( j ), (3.11)

The states on each site will be in the self-conjugate irreps represented by the Young tableaux

with p two-box columns and p one-box columns, i.e., irreps given by the Dynkin label [p, p].

As in subsection 2.2.3, we can choose the classical Néel ground state configuration that is

given by p times A and p times B̄ on the sites i in the sublatticeΛAC A ,

∣∣gs
〉

i := 1

p !

(
a†

A(i )b†
B (i )

)p |0〉 ≡ (AB̄)⊗p , (3.12)

and p times B and p times Ā on sites j in the other sublatticeΛBC B :

∣∣gs
〉

j := 1

p !

(
a†

B b†
A

)p |0〉 ≡ (B Ā)⊗p . (3.13)

These two states are depicted in terms of the Weyl tableaux in Figure 3.2.

These states satisfy the following constraints

C∑
µ=A

a†
µaµ = p,

C∑
µ=A

b†
µbµ = p, (3.14)

where p = 1. By taking the semi-classical limit p → ∞ according to our aforementioned

assumption of condensates (AB̄)⊗p on i ∈ΛAC A and (B Ā)⊗p on j ∈ΛBC B , these constraints
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become

a†
A(i )aA(i ) =p − [a†

B (i )aB (i )+a†
C (i )aC (i )],

b†
B (i )bB (i ) =p − [b†

A(i )bA(i )+b†
C (i )bC (i )],

a†
B ( j )aB ( j ) =p − [a†

A( j )aA( j )+a†
C ( j )aC ( j )],

b†
A( j )bA( j ) =p − [b†

B ( j )bB ( j )+b†
C ( j )bC ( j )].

(3.15)

From this, we can perform the Holstein-Primakoff transformation

a†
A(i ), aA(i ) −→

√
p − ∑

µ6=A
a†
µ(i )aµ(i ) ≈p

p − 1

2
p

p

∑
µ6=A

a†
µ(i )aµ(i ),

b†
B (i ),bB (i ) −→

√
p − ∑

µ6=B
b†
µ(i )bµ(i ) ≈p

p − 1

2
p

p

∑
µ6=B

b†
µ(i )bµ(i ),

a†
B ( j ), aB ( j ) −→

√
p − ∑

µ6=B
a†
µ( j )aµ( j ) ≈p

p − 1

2
p

p

∑
µ6=B

a†
µ( j )aµ( j ),

b†
A( j ),bA( j ) −→

√
p − ∑

µ6=A
b†
µ( j )bµ( j ) ≈p

p − 1

2
p

p

∑
µ6=A

b†
µ( j )bµ( j ).

(3.16)

This approximation is justified by the expectation values of the coherent states shown in

Eq. (57) in Ref. [77], namely that

(na ,nb )

〈
~z, ~w

∣∣∣Qk
∣∣∣~z, ~w

〉
(na ,nb )

= na z∗
µλ

k
µνzν−nb w∗

µλ
∗k
µνwν, (3.17)

i.e. the expectation value of the a†
µaµ and b†

µbµ with respect to the coherent states are given by

na,µ and nb,µ, respectively.

The truncation of the Taylor series at this order is sufficient to obtain all the terms of the

quadratic Hamiltonian of the order p. It is also worthwhile noting that the SU(3) commutation

relations (1.23) stay valid up to order O (1) in p even after this tranformation.

We can now apply this transformation on the Hamiltonian (3.11) written with the bosonic
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operators (3.10), which gives the quadratic Hamiltonian H (2) of the order O (p):

H (2) =H (2)
1 +H (2)

2 +H (2)
3 where

H (2)
1 = J

∑
i∈ΛAC A

∑
〈 j〉

p
[

a†
C ( j )aC ( j )+b†

C (i )bC (i )−b†
C (i )a†

C ( j )−bC (i )aC ( j )
]

,

H (2)
2 = J

∑
i∈ΛAC A

∑
〈 j〉

p
[

a†
C (i )aC (i )+b†

C ( j )bC ( j )−a†
C (i )b†

C ( j )−aC (i )bC ( j )
]

,

H (2)
3 = J

∑
i∈ΛAC A

∑
〈 j〉

p
[

2a†
B (i )aB (i )+2a†

A( j )aA( j )+2b†
A(i )bA(i )+2b†

B ( j )bB ( j )

+a†
B (i )a†

A( j )−a†
B (i )b†

B ( j )−b†
A(i )a†

A( j )+b†
A(i )b†

B ( j )

+aB (i )aA( j )−aB (i )bB ( j )−bA(i )aA( j )+bA(i )bB ( j )
]

.

(3.18)

The Fourier transform can be applied with

aµ(i ) =
√

2

Nsites

∑
k∈RBZ

a1
µ(k)e−i kri , aµ( j ) =

√
2

Nsites

∑
k∈RBZ

a2
µ(k)e−i kr j ,

bµ(i ) =
√

2

Nsites

∑
k∈RBZ

b1
µ(k)e−i kri , bµ( j ) =

√
2

Nsites

∑
k∈RBZ

b2
µ(k)e−i kr j

(3.19)

where k runs over the reduced Brillouin zone, Nsites is the number of sites and the superscripts
1 and 2 keep track of the sublattices ΛAC A and ΛBC B respectively. The quadratric Hamilto-

nian (3.18) is then given by

H (2) =
3∑

a=1
H (2)

a = p
3∑

a=1

[
J

∑
k∈RBZ

(
u†

a,k ,ua,−k

)
Ma,k

(
tua,k

t
u†

a,−k

)]
(3.20)

where

u†
1,k :=

(
a1†

C (k),b2†
C (k)

)
,

u†
2,k :=

(
a2†

C (k),b1†
C (k)

)
,

u†
3,k :=

(
a1†

B (k),b1†
A (k), a2†

A (k),b2†
B (k)

)
,

u1,−k :=
(
a1

C (−k),b2
C (−k)

)
,

u2,−k :=
(
a2

C (−k),b1
C (−k)

)
,

u3,−k :=
(
a1

B (−k),b1
A(−k), a2

A(−k),b2
B (−k)

)
,

(3.21)
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Chapter III. Linear Flavour-Wave with Mathur and Sen Bosons

and

M1,k :=
(

A1 B1,k

B1,k A1

)
, A1 :=12, B1,k := γk

(
0 −1

−1 0

)
,

M2,k :=M1,k

M3,k :=
(

A3 B3,k

B†
3,k A3

)
, A3 := 2 ·14, B3,k := γk


0 0 1 −1

0 0 −1 1

1 −1 0 0

−1 1 0 0

 ,

(3.22)

where the geometrical factor

γk := cosk (3.23)

has been introduced. The Hamiltonian can then be diagonalised by using the generalised

Bogoliubov transformation, after which the diagonalised Hamiltonian is given by

H (2) = J
∑

k∈RBZ

{
8∑
ζ=1

ωζ(k)

(
f †
ζ

(k) fζ(k)+ 1

2

)}
+const. (3.24)

up to a constant, where the bosons fµ are the new Bogoliubov bosons, and

ω1,2,3,4(k) = 2p |sink| , ω5,6(k) = 4p |sink| ,
ω7,8(k) = 4p.

(3.25)

We obtain 6 dispersive Goldstone modes with two different velocities, and 2 flat modes. The

plots of the dispersion relations for p = 1 can be found in Figure 3.3.

It can be seen that the dispersion relations here are identical to those obtained with the

multiboson method in section 2.2. The physical process of these modes is a bit less obvious

here, so let us look at what is happening more closely.

The six Goldstone modes ω1,...,6 can each be associated to one of the six off-diagonal gen-

erators acting on the initial condensate. For instance, the modes ω1,2 stemming from the

sub-Hamiltonian H (2)
1 arise from the Holstein-Primakoff bosons a1†

C and b2†
C . These bosons

correspond to the action of the generator Ŝ A
C on

∣∣gs
〉

i on sublatticeΛAC A or the action of SC
A on∣∣gs

〉
j on sublatticeΛBC B . This yields another state of the irrep which differs from the original

condensate by one color. Similarly, the modesω3,4 from the sub-Hamiltonian H (2)
2 come from

bosons a2†
3 and b1†

3 that correspond to acting SC
B on

∣∣gs
〉

i and acting ŜB
C on

∣∣gs
〉

j . These modes

are thus of the same nature as the dispersive modes we had found in the fully antisymmetric

models in section 2.1.

The case of bosons a1†
B ,b1†

A , a2†
A ,b2†

B in the sub-Hamiltonian H (2)
2 is, however, a bit different.

For a better understanding, let us formally rewrite H (2)
3 using the new bosons f and g defined
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−π
2 0

π
2

1

2

3

4

ω1,...,4(k)

−π
2 0

π
2

1

2

3

4

ω5,6(k)

−π
2 0

π
2

1

2

3

4

ω7,8(k)

Figure 3.3 – The dispersion relations ω1,...,8 for p = 1 (adjoint irrep).

as

f 1(i ) = 1p
2

[
a1

B (i )−b1
A(i )

]
, f 2( j ) = 1p

2

[
a2

A( j )−b2
B ( j )

]
,

g 1(i ) = 1p
2

[
a1

B (i )+b1
A(i )

]
, g 2( j ) = 1p

2

[
a2

A( j )+b2
B ( j )

]
.

(3.26)

The sub-Hamiltonian H (2)
3 in (3.18) can then be written as

H (2)
3 = J

∑
i∈ΛAC A

∑
〈 j〉

p
{

2g 1†(i )g 1(i )+2g 2†( j )g 2( j )

+2
[

f 1†(i ) f 1(i )+ f 2†( j ) f 2( j )+ f 1†(i ) f 2†( j )+ f 1(i ) f 2( j )
]}

,

(3.27)

where the new g 1, g 2 bosons clearly give non-dispersive flat modes.
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Let us set p = 1 for a second and consider the adjoint irrep with the help of the weight diagram

in Figure 3.1. The generators Ŝ A
B and ŜB

A applied on our initial condensates
∣∣gs

〉
i or

∣∣gs
〉

j create

the state A Ā −BB̄ that belongs to a two-dimensional subspace in the weight diagram with

zero weights. In terms of the Holstein-Primakoff bosons—remember that we are gathering the

terms linear in p only—this state corresponds to f 1† on sublatticeΛAC A and f 2† on sublattice

ΛBC B up to a factor:

Ŝ A
B (i )

∣∣AB̄
〉

i =
∣∣BB̄

〉
i −

∣∣A Ā
〉

i

=
(
a†

B (i )b†
B (i )−a†

A(i )b†
A(i )

)
|0〉 H-P−→ p

(
a†

B (i )−b†
A(i )

)
|0〉+O (p0)

∼p
2p f 1(i ) |0〉 ,

(3.28a)

ŜB
A( j )

∣∣B Ā
〉

j =
∣∣A Ā

〉
j −

∣∣BB̄
〉

j

=
(
a†

A( j )b†
A( j )−a†

B ( j )b†
B ( j )

)
|0〉 H-P−→ p

(
a†

A( j )−b†
B ( j )

)
|0〉+O (p0)

∼p
2p f 2( j ) |0〉 .

(3.28b)

This corresponds precisely to Eqs. (2.62) and (2.65) in the multiboson representation. These

will give the remaining two propagating Goldstone modes ω1,2 that come from the sub-

Hamiltonian H (2)
3 . The reason why these modes have a velocity two times larger than the

others is because the states created by Ŝ2
1 and Ŝ1

2 from our initial condensate have a squared

norm twice as large as the states created by the other generators, an aspect we already encoun-

tered again Eqs. (2.62) and (2.65). This is also seen in the factor
p

2 in Eqs. (3.28).

The two remaining (flat) modes ω7,8 come from the bosons g 1 and g 2 who simply generate

the states orthogonal to those corresponding to f 1 and f 2 in the matrix M3 as the result of the

diagonalisation of the matrix. The states related to the bosons g 1 and g 2 are
∣∣A Ā

〉
i +

∣∣BB̄
〉

i and∣∣A Ā
〉

j +
∣∣BB̄

〉
j respectively, and they are a mixture of the state A C

B of the irrep [1,1] and of the

singlet of the trivial irrep of SU(3). This happens partly because the Hilbert space is enlarged

with the Mathur & Sen bosons—there are 9 bosons although there are only 8 states in our irrep

in question—and also because of the truncation of our Hamiltonian in the expansion. When

applying the generator Ŝµν on a state of the irrep [1,1], the resulting state always remains in

the same irrep as it should (even though the Mathur & Sen bosons enlarges the Hilbert space).

However, the truncation of these generators to a certain order results in some states having an

overlap with the trivial irrep.

We would like to point out, however, that these flat-mode bosons g 1 and g 2 obtained from

H (2)
3 could also be related to the other remaining zero-weight state 1p

6

(
A Ā+BB̄ −2CC̄

)
of the

irrep [1,1] that cannot be obtained by a single colour flip from
∣∣gs

〉
i or

∣∣gs
〉

j (see Eq. (2.63)). As

already mentioned in Eq. (2.83), what we need is at least two colour permutations:

(
2SC

B S A
C −S A

B

)∣∣AB̄
〉

i =
(
a†

B aA +b†
AbB −2b†

C bB a†
C aA

)∣∣AB̄
〉

i

= ∣∣A Ā
〉

i +
∣∣BB̄

〉
i −2

∣∣CC̄
〉

i .
(3.29)
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Hence, it could be that this state (that is orthogonal to A Ā−BB̄) appears as flat modes, just

as in subsection 2.2.3, and the modes ω7,8 do not correspond to Goldstone modes. In terms

of the Holstein-Primakoff bosons, this state corresponds to the boson g 1(i ) if we gather the

terms with one colour permutation only:∣∣A Ā
〉

i +
∣∣BB̄

〉
i −2

∣∣CC̄
〉

i =
(
a†

B (i )aA(i )+b†
A(i )bB (i )−2b†

C (i )bB (i )a†
C (i )aA(i )

)∣∣AB̄
〉

i

−→ p
p

(
a†

B (i )−b†
A(i )

)
|0〉

∼ p
pg 1(i ) |0〉 .

(3.30)

Note that we need two colour permutations to obtain
∣∣CC̄

〉
i from

∣∣gs
〉

i or
∣∣gs

〉
j . Then, what

we obtain here is exactly what we see in Eq. (3.27).

For p > 1, the logic is the same. The states we obtain by applying the generators S A
B and SB

A

applied on our initial condensates
∣∣gs(i )

〉
or

∣∣gs( j )
〉

is the state (A Ā −BB̄)(AB̄)⊗(p−1) up to

a factor, and it belongs to a two-dimensional subspace in the weight diagram,10 just like in

the adjoint irrep. The other state that lives in this two-dimensional subspace, i.e., (A Ā+BB̄ −
2CC̄ )(AB̄)⊗(p−1), requires at least two colour permutations and manifests itself as flat modes.

All in all, the degenerate points in the weight diagram will always yield flat modes after the

diagonalisation of the Hamiltonian. It is to be noted, however, that there are less flat (localised)

multipolar modes here than with the multiboson method.

Hence, it can be finally concluded that the dispersion relations related to the Goldstone modes

are ω1,...,6 for any p, and the velocities of these six Goldstone modes are given by

c1 := c2 := c3 := c4 := 2p J , c5 := c6 := 4p J . (3.31)

These velocities are in complete agreement with the field-theoretical calculations in Ref.[76].

It should be noted here that the dispersive modes are obtained more easily than with the

multiboson method as we did not need to derive the expressions of Ŝµν separately for the adjoint

irrep. As we will see in the next section, we can easily extend this calculation to a generic SU(3)

irrep [p, q] with the Mathur & Sen bosons. With the multiboson method, however, it would

be very cumbersome to carry out the calculations for a generic irrep [p, q] as the number of

bosons become large.

10For p>1, these states indeed belong to a two-dimensional subspace in the weight diagram, but are not zero-
weight states anymore: the weight is 6= 0 for these states.
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3.2 The SU(3) model in irreducible representation [p, q] on the bi-

partite d-dimensional lattice

Let us now consider a general d-dimensional bipartite system (1D chain, 2D square, 3D cubic,

etc.) with states in any SU(3) irrep [p, q], whose Hamiltonian is given by

H =J
∑

<i , j>

C∑
µ,ν=A

Ŝµν(i )Ŝνµ( j ). (3.32)

If we assume a bipartite configuration in d dimensions with the coordination number 2d , we

want to condense two opposite states in the weight diagram. Without loss of generality, we

can choose to have a condensate of p times A and q times B̄ (e.g. A A A
C for p = 2, q = 1) on the

sublatticeΛ1 and p times B and q times Ā (e.g. B B B
C for p = 2, q = 1) on the other sublattice

Λ2, as we did for the adjoint irrep (see footnote 8 on page 40).

These states satisfy the following constraits

C∑
µ=A

a†
µaµ = p,

C∑
µ=A

b†
µbµ = q. (3.33)

The semi-classical limit can then be taken to be p, q →∞ according to our aforementioned

assumption of condensates A, B̄ on i ∈Λ1 and B , Ā on j ∈Λ2. The constraints thus become

a†
A(i )aA(i ) =p − [a†

B (i )aB (i )+a†
C (i )aC (i )],

b†
B (i )bB (i ) =q − [b†

A(i )bA(i )+b†
C (i )bC (i )],

a†
B ( j )aB ( j ) =p − [a†

A( j )aA( j )+b†
C ( j )aC ( j )],

b†
A( j )bA( j ) =q − [b†

B ( j )bB ( j )+b†
C ( j )bC ( j )].

(3.34)

From this, we can perform the Holstein-Primakoff transformation

a†
A(i ), aA(i ) −→

√
p − ∑

µ6=A
a†
µ(i )aµ(i ) ≈p

p − 1

2
p

p

∑
µ6=A

a†
µ(i )aµ(i ),

b†
B (i ),bB (i ) −→

√
q − ∑

µ6=B
b†
µ(i )bµ(i ) ≈p

q − 1

2
p

q

∑
µ6=B

b†
µ(i )bµ(i ),

a†
B ( j ), aB ( j ) −→

√
p − ∑

µ6=B
a†
µ( j )aµ( j ) ≈p

p − 1

2
p

p

∑
µ6=B

a†
µ( j )aµ( j ),

b†
A( j ),bA( j ) −→

√
q − ∑

µ6=A
b†
µ( j )bµ( j ) ≈p

q − 1

2
p

q

∑
µ6=A

b†
µ( j )bµ( j ).

(3.35)

The truncation of the Taylor series at this order is sufficient to obtain all the terms of the

quadratic Hamiltonian of the order p and of the order q .
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We can now apply this transformation to the SU(3) AFM Hamiltonian (3.36) which yields the

quadratic Hamiltonian of the order O (nc ):

H (2) =H (2)
1 +H (2)

2 +H (2)
3 where

H (2)
1 = J

∑
i∈Λ1

∑
〈 j〉

[
qa†

C ( j )aC ( j )+pb†
C (i )bC (i )−p

pqb†
C (i )a†

C ( j )−p
pqbC (i )aC ( j )

]
,

H (2)
2 = J

∑
i∈Λ1

∑
〈 j〉

[
qa†

C (i )aC (i )+pb†
C ( j )bC ( j )−p

pqa†
C (i )b†

C ( j )−p
pqaC (i )bC ( j )

]
,

H (2)
3 = J

∑
i∈Λ1

∑
〈 j〉

p
[

(p +q)a†
B (i )aB (i )+ (p +q)a†

A( j )aA( j )+ (p +q)b†
A(i )bA(i )+ (p +q)b†

B ( j )bB ( j )

+pa†
B (i )a†

A( j )−p
pqa†

B (i )b†
B ( j )−p

pqb†
A(i )a†

A( j )+qb†
A(i )b†

B ( j )

+paB (i )aA( j )−p
pqaB (i )bB ( j )−p

pqbA(i )aA( j )+qbA(i )bB ( j )
]

.

(3.36)

After Fourier-transforming,

aµ(i ) =
√

2

Nsites

∑
k∈RBZ

a1
µ(k)e−i k·ri , aµ( j ) =

√
2

Nsites

∑
k∈RBZ

a2
µ(k)e−i k·r j ,

bµ(i ) =
√

2

Nsites

∑
k∈RBZ

b1
µ(k)e−i k·ri , bµ( j ) =

√
2

Nsites

∑
k∈RBZ

b2
µ(k)e−i k·r j ,

(3.37)

with the sublattice index 1,2 keeping track of the sublatticesΛ1,Λ2, we obtain

H (2) = J
∑

k∈RBZ

3∑
a=1

(
u†

a,k,ua,−k

)
Ma,k

(
tua,k

t
u†

a,−k

)
(3.38)

where

u†
1,k :=

(
a1†

B (k), a2†
A (k),b2†

B (k),b1†
A (k)

)
,

u†
2,k :=

(
a1†

C (k),b2†
C (k)

)
,

u†
3,k :=

(
a2†

C (k),b1†
C (k)

)
,

u1,−k :=(
a1

B (−k), a2
A(−k),b2

B (−k),b1
A(−k)

)
,

u2,−k :=(
a1

C (−k),b2
C (−k)

)
,

u3,−k :=(
a2

C (−k),b1
C (−k)

)
,

(3.39)
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M1,k :=
(

A1 B1,k

B1,k A1

)
, A1 := 2d

(
q 0

0 p

)
, B1,k := 2dγk

(
0 −ppq

−ppq 0

)
,

M2,k :=M1,k,

M 3
k :=

(
A3,k B3,k

B†
3,k A3,−k

)
,

A3,k := 2d(p +q)14, B3,k := 2dγk


0 p −ppq 0

p 0 0 −ppq

−ppq 0 0 q

0 −ppq q 0

 ,

(3.40)

with the geometrical factor

γk :=



coskx , d = 1
1
2 (coskx +cosky ), d = 2
1
3 (coskx +cosky +coskz ), d = 3

. . .

(3.41)

for the 1D chain, the 2D square lattice, the 3D cubic lattice etc. The generalised Bogoliubov

transformation can be used to diagonalise the system, after which the diagonalised Hamilto-

nian is given by

H (2) = J
∑

k∈RBZ

{
8∑
ζ=1

ωζ(k)

(
f †
ζ

(k) fζ(k)+ 1

2

)}
+const. (3.42)

up to a constant, where the bosons fµ are the new Bogoliubov bosons, and

ω1,2(k) = d
(√

(p +q)2 −4pqγ2
k −p +q

)
,

ω3,4(k) = d
(√

(p +q)2 −4pqγ2
k +p −q

)
,

ω5,6(k) = 2d(p +q)
√

1−γ2
k,

ω7,8(k) = 2d(p +q).

(3.43)

Note that ω3,4,5,6(k) ≥ 0, since√
(p −q)2 =

√
(p +q)2 −4pq

=⇒ (p −q) ≤
√

(p +q)2 −4pqγ2
k.

(3.44)

Let us now concentrate on the 1D case (d = 1) in order to compare the results with the self-
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Figure 3.4 – The dispersion relations of the bipartite chain for p = 2, q = 1.

conjugate irrep calculations done in subsection 3.1.2. For the self-conjugate irreps p = q , the

dispersive spectra become

ω1,2(k) = 2p |sink| , ω3,4(k) = 2p |sink| .
ω5,6(k) = 4p |sink| , ω7,8(k) = 4p,

(3.45)

matching the dispersion relations we had in Eq. (3.25). However, for general p and q , that

is not the case. In general, it is possible to have linear dispersion and quadratic dispersion

simultaneously. The Figure 3.4 shows the dispersion relations for p = 2, q = 1 as an example.

We see that there are two dispersive modes ω5,6 linear in k for small values of k, and four

quadratic modes ω1,2,3,4. Two of them, ω1,2, are gapless whereas ω3,4 are gapped. The be-

haviour of these quadratic modes is reminiscent of the ferrimagnetic models like the antiferro-

magnetic Heisenberg alternating-spin chains with two different spins, S and s. More details
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Chapter III. Linear Flavour-Wave with Mathur and Sen Bosons

on these can be found, for example, in Refs. [81, 82, 83]. These models exhibit one gapless

quadratic mode exactly like ω1,2 and one gapped quadratic mode exactly like ω3,4, where p, q

take the role of S, s. The gapless branch is called the ferromagnetic branch as it reduces the

magnetisation of the system, and the gapped branch is called the antiferromagnetic branch

has it enhances the magnetisation. These ferrimagnetic systems thus show both ferromag-

netic and antiferromagnetic characteristics. Our SU(3) [p, q] model is physically similar to

the ferrimagnetic models: the modes ω3,4,5,6 coming from the generators ŜB
C , ŜC

B , Ŝ A
C , ŜC

A exhibit

a ferrimagnetic behaviour, because the asymmetry of p, q is similar to having two different

spins S, s. In addition, the generators Ŝ A
B , ŜB

A show a purely antiferromagnetic behaviour by

yielding linearly dispersive modes: exchanging one colour A in the initial condensate A A A
C

with a colour B of a neighbouring site is purely antisymmetric in nature as there is no colour B

initially in the condensate.

This model thus has a very unique property of possessing both a ferrimagnetic and an antifer-

romagnetic behaviour. These characteristics have also been confirmed by Kyle Warmer and

Ian Affleck by obtaining the low-energy behaviour of this model using field-theoretical calcula-

tions. It would be worth investigating this model further as there are lots of interesting physical

questions arising from the mixture of ferrimagnetic and antiferromagnetic characteristics.

This concludes the use of the Mathur & Sen bosons for the application of LFWT for arbitrary

SU(3) irreps [p, q]. With this bosonic representation, the process of obtaining the dispersion

relations seems a little easier than with the multiboson method and it yields significantly

less flat modes in which we are not interested in our physical models. However, we have only

discussed the case N = 3 so far. How would things work for N > 3?

3.3 What about N > 3?

The construction of Mathur & Sen rely on the fact that and are conjugate to each other

and that their tensor products can form any other irrep of SU(3). For SU(3), this is great as one

can build states of any irrep easily by using more products of bosons a and b representing

the Young diagrams and , i.e., by “gluing” both types of boxes together next to each other,

as the SU(3) Young tableaux can only have two rows of boxes at most. If we were to consider

SU(4), however, the fundamental irrep and its conjugate irrep are not enough to cover

all the irreps of SU(4), in this logic of putting the Young tableaux together one next to each

other: the self-conjugate antisymmetric irrep would also be needed, which is completely

antisymmetric like .

In fact, there are N−1 completely antisymmetric irreps (with one column in the Young tableau)

in SU(N ) in general, and we thus need N −1 families of bosons aµ,bν, . . .who represent the

states of each of the N −1 completely antisymmetric irrep, as explained in a subsequent article

by Mathur and Mani [78] and in Georgi [59]’s book as well. Hence, the construction we used

for SU(3) can be generalised for any N by introducing more boson families, but the bosonic
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representation of Ŝµν has to be found for the irreps , etc. unlike the irrep and its conjugate

irrep for which the generators Ŝµν are easily expressed.

Coming back to the example of N = 4, we would have the bosons a for and the bosons b

for , similarly to the SU(3) case. In addition, if we were to generalise Eq. (3.3) for SU(4), the

representation of the generators Tk (k ∈ {
1, . . . , N 2 −1

}
) in the irrep would be needed to be

found for the new boson family c1, . . . ,c6 describing the six states of as well. This is, however,

nothing else than the multiboson approach we used in subsection 2.1.1: this is exactly what

we did in (2.4). The conclusion is that the LFWT expansion using the Mathur & Sen bosons

differ from the multiboson approach in general, e.g., with mixed irreps. But if we were to apply

the LFWT with Mathur & Sen bosons for SU(4) model in in subsection 2.1.1, it would be

identical to the multiboson method.

We have now seen the multiboson method and the Mathur & Sen boson method. They deliver

a robust way of performing LFWT, but the calculations can be cumbersome for SU(N ) irreps

with many boxes in the Young tableau. One can then ask the following question: is there

a better-suited bosonic representation for performing the LFWT in general SU(N ) irreps?

Luckily, Mathur and his collaborators have already thought of a bosonic representation that is

more adequate to our need in Ref. [80], and this will be the subject of the next chapter.
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IV Linear Flavour-Wave with Read and
Sachdev Bosons

Introduction: yet another bosonic representation

This chapter is the result of the collaboration with Karlo Penc, Pierre Nataf and Frédéric

Mila [62], along with some useful discussions with Ian Affleck. This time, the harmonic quan-

tum fluctuations will be considered using a different bosonic representation to express the

SU(N ) generators. This bosonic representation is briefly mentioned by Read and Sachdev in

Ref. [8] for SU(N ) irreps corresponding to rectangular Young diagrams (e.g. ) with m rows

and nc columns. It is also mentioned in a different mathematical context by Mathur and his

collaborators in Ref. [80] in a more general way for any general SU(N ) irrep. It is a bosonic

representation that extends the well-known Schwinger bosons in SU(2), and it incorporates

the symmetry of the Young tableaux.

In this chapter, we will name the new bosons the Read & Sachdev bosons. As we shall see, the

computation of the dispersive modes are easier with these bosons for N in general, the way in

which we implement the condensate has to be adapted for different irreps.

4.1 Read and Sachdev bosonic representation for rectangular Young

tableaux

Before proceeding to the general case, let us first settle with SU(N ) irreps with rectangular

Young diagram containing m lines and nc columns. The method will be nearly identical for

arbitrary irreps as well, but this will allow for a clearer presentation.

In this bosonic representation, we attribute a boson to each colour and each line of the Young

tableau.11 Which means that in our rectangular case, we will have bosons dµa with the colour

index µ ∈ {A,B , . . .} ≡ 1. . . , N and the row index a ∈ {1, . . . ,m}. The SU(N ) generators Ŝµν can

11Note that this is different from the boson representation introduced in subsection 1.1.3. In that case, the bosons
had a colour index and a particle index (related to the number of particles per site).
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then be written as

Ŝµν =
m∑

a=1
d †
νadµa − n̂

N
δµν, (4.1)

where

n̂ =
m∑

a=1
n̂a =

m∑
a=1

N∑
µ=1

d †
µadµa (4.2)

is the total number operator, the Greek letters µ,ν are the color indices and the Latin letters

a,b ∈ {1, . . . ,m} are the row indices. The second term in Eq. (4.1) is to satisfy
∑
µ

Sµµ = 0 and

can be dropped for the subsequent discussion. This construction naturally satisfy the SU(N )

commutation relations (1.23).

If we are working in a given irrep, a set of constraints have to be imposed to ensure that the

states indeed belong to the irrep in question:

N∑
µ=1

d †
µadµb = ncδab , (4.3)

These constraints are a generalisation of the constraints of the SU(2) Schwinger bosons. Here,

the constraints involving different rows enforce the antisymmetry of the irrep.

Finally, the Heisenberg Hamiltonian in this bosonic representation can be given by

H =J
∑

<i , j>

N∑
µ,ν=1

Ŝµν(i )Ŝνµ( j )

=J
∑

<i , j>

N∑
µ,ν=1

m∑
a,b=1

d †
νa(i )dµa(i )d †

µb( j )dνb( j ).

(4.4)

4.1.1 SU(4) m = 2 on the square lattice

Let us now reconsider the SU(4) m = 2,nc = 1 square lattice model that we already explored in

subsection 2.1.1, with the Read & Sachdev bosons this time. It would be instructive to see how

the states of the irrep with m vertical boxes can be created. Let us define the antisymmetric

tensor operator

A†
µ1µ2···µm

= 1p
m!

m∑
a1=1

m∑
a2=2

· · ·
m∑

am=1
εa1,a2,···am d †

µ1a1
d †
µ2a2

· · ·d †
µm am (4.5)

in which the fully antisymmetrical Levi-Civita tensor εa1,a2,···am is used. This tensor operator

contains a sum of m bosonic creation operators. This tensor thus creates a state defined in the
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antisymmetric irrep with m rows when applied on the vacuum, e.g.

A†
µν··· |0〉 =

1p
2

(∣∣µν〉− ∣∣νµ〉)
. (4.6)

Coincidentally, the Read & Sachdev bosons for such a fully antisymmetric irrep are identical to

the defining bosons in subsection 1.1.3.

Moving on to the colour order configuration, we consider, as before, the ordered bipartite

configuration on the square lattice with the colours A and B on the sublattice ΛAB and the

colours C and D on the sublatticeΛC D . Our expansion parameter here is nc , and we go to the

semi-classical limit nc →∞ in which there is the assumption of a condensate composed of

colors A,B on the sites i ∈ΛAB and a condensate of colors C ,D on the sites j ∈ΛC D . To apply

the Holstein-Primakoff in this setting of condensates is, however, somewhat tricky because

there are four condensates which are not independent of one another: for ΛAB , there is the

condensate related to the boson bA1, but also those who are related to the bosons bB1,bA2 and

bB2. This is because number operators 〈n̂A1〉, 〈n̂B1〉, 〈n̂A2〉 and 〈n̂B2〉 are all equally dominant

in the limit of nc → ∞, see Appendix B for more details. If we were to apply the Holstein-

Primakoff prescription with these, one would need to take the constraints involving the same

row indices in Eq. (4.3),

N∑
µ=1

d †
µ1dµ1 = nc ,

N∑
µ=1

d †
µ2dµ2 = nc , (4.7)

and gather somehow the terms that are large for the square-root expansion to be well-defined.

In addition, in order to apply the Holstein-Primakoff prescription consistently, the commuta-

tion relations (1.23) should ideally be satisfied up to order O (1) (this has always been true in the

previous cases). Unfortunately, there is no consistent way of choosing one Holstein-Primakoff

expansion satisfying all the aforementioned requirements, and they all lead to different results

at the end. We hence turn to the Bogoliubov substitution, namely the substitution of the con-

densed bosons with c-numbers, in the spirit of Bogoliubov’s calculations of superfluidity [84].

Since the expectation of 〈n̂A1〉, 〈n̂A2〉, 〈n̂B1〉, 〈n̂B1〉 are large with respect to the others forΛAB

(and 〈n̂C 1〉, 〈n̂C 2〉, 〈n̂D1〉, 〈n̂D2〉 forΛC D ), the c-number substitution in our model is then

d †
Aa(i ) → z∗

Aa , d †
B a(i ) → z∗

B a ,

d †
C a( j ) → z∗

C a , d †
Da( j ) → z∗

Da ,
(4.8)

for any i ∈ ΛAB , j ∈ ΛC D , and a ∈ {1, . . . ,2}. It is worthwhile noting that the conventional

spin-wave calculations of SU(2) using the Holstein-Primakoff bosons in the harmonic order

amounts to using the c-number replacement for condensed bosons.
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With this, the constraints (4.3) for the sublatticeΛAB to order O (nc ) are reduced to
z∗

A1zA1 + z∗
B1zB1 = nc

z∗
A2zA2 + z∗

B2zB2 = nc

z∗
A1zA2 + z∗

B1zB2 = 0.

(4.9)

It is to be noted that the complex-conjugate counterpart of the third equation has been

dropped as both are equivalent. These constraints can be neatly written in a matrix form UAB

by defining

zµa =:
p

nc [UAB ]µa (4.10)

with µ ∈ {A,B} (i.e., the first N
2 colors) and a ∈ {1, . . . ,m}. What is nice about this is that the

constraints (4.9) is translated into a unitarity condition on the matrix UAB . One side remark

here: optionally, it is possible to parametrise the matrix elements of UAB as vectors on the

Bloch sphere. We can write the constraints (4.3) as
∑

a,b z∗
Aaδa,b zAb +

∑
a,b z∗

B aδa,b zBb = 2nc ,∑
a,b z∗

Aaσ
(α)
a,b zAb +

∑
a,b z∗

B aσ
(α)
a,b zBb = 0,

(4.11)

with the Pauli matrices σ(α)
a,b (α= x, y, z), or equivalently,z∗A ·zA +z∗B ·zB = 2nc ,

z∗A ·σ(α) ·zA +z∗B ·σ(α) ·zB = 0.
(4.12)

We can then consider (z∗
A1, z∗

A2) and (z∗
B1, z∗

B2) as two SU(2) spinors, and they can be parametrized

as

zA1 =p
nc e iχAB cos

ϑAB

2
, zA2 =p

nc e iχAB sin
ϑAB

2
e−iϕAB ,

zB1 =p
nc sin

ϑAB

2
, zB2 =−pnc cos

ϑAB

2
e−iϕAB .

(4.13)

This ends the consideration of the constraints for the sublatticeΛAB . The same consideration

naturally applies to the remaining sublatticeΛC D . In the limit of large nc , we again start from

the constraints (4.3) to obtain
z∗

C 1zC 1 + z∗
D1zD1 = nc

z∗
C 2zC 2 + z∗

D2zD2 = nc

z∗
C 1zC 2 + z∗

D1zD2 = 0,

(4.14)

which can be rewritten further in a (unitary) matrix form UC D ,

zµa =:
p

nc [UC D ]µa (4.15)
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with µ ∈ {C ,D} (i.e., the remaining N
2 colors) and a ∈ {1,2} ≡ {1, . . . ,m}. Alternately, the zµa

can be parametrised as

zC 1 =p
nc e iχC D cos

ϑC D

2
, zC 2 =p

nc e iχC D sin
ϑC D

2
e−iϕC D ,

zD1 =p
nc sin

ϑC D

2
, zD2 =−pnc cos

ϑC D

2
e−iϕC D .

(4.16)

We are finally ready to replace the bosons dAa(i ),dB a(i ), dC a( j ), dDa( j ) (with a ∈ {1,2}) and

their adjoint counterparts in the Hamiltonian Eq. (4.4) by the corresponding c-numbers

above. This yields the harmonic Hamiltonian H (2) of the order O (nc ). We can first apply the

Fourier transform by introducing the bosons aµa(k) for the sublatticeΛAC A and bµa(k) for the

sublatticeΛBC B ,

dµa(i ) =
√

2

Nsites

∑
k∈RBZ

aµa(k)e−i kri , bµa( j ) =
√

2

Nsites

∑
k∈RBZ

bµa(k)e−i kr j , (4.17)

with Nsites being the number of sites. The quadratic Hamiltonian H (2) is then given by

H = zsq Jnc

2

∑
k∈RBZ

(
u†

k,u−k

)
Mk

(
tuk

t
u†
−k

)
−2zsq Jnc N , (4.18)

with zsq = 4 the coordination number and

u†
k =

(
a†

C 1(k), a†
C 2(k), a†

D1(k), a†
D2(k),b†

A1(k),b†
A2(k),b†

B1(k),b†
B2(k)

)
,

u−k =
(
aC 1(−k), aC 2(−k), aD1(−k), aD2(−k),bA1(−k),bA2(−k),bB1(−k),bB2(−k)

)
,

Mk =1

2

(
18 Bk

B†
k 18

)
,

Bk =
(

0 γsq,kUᵀ

γsq,kU 0

)
.

(4.19)

The geometrical factor γsq,k = 1
2 (coskx +cosky ) is the one defined in Eq. (2.16). The matrix U

comes from UAB and UC D , i.e., UAB ⊗Uᵀ
C D with permuted columns, and is thus also unitary:

U =


zA1zC 1 zA2zC 1 zA1zD1 zA2zD1

zA1zC 2 zA2zC 2 zA1zD2 zA2zD2

zB1zC 1 zB2zC 1 zB1zD1 zB2zD1

zB1zC 2 zB2zC 2 zB1zD2 zB2zD2

 . (4.20)

It is important to note that this structure of U and of Mk is a consequence of the structure of the

Hamiltonian in Eq. (4.18) inherited from the Bogoliubov prescription and the constraints (4.9)

and (4.14), and it remains true in general for any values of N and corresponding m. For

example, the diagonal entries in Mk being proportional to 1 is a direct consequence of the
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Chapter IV. Linear Flavour-Wave with Read and Sachdev Bosons

constraints involving the same row indices. For a different value of m, the only change will be

the size of the matrices UAB and UC D , but the unitarity condition will still remain, and this

general structure of Mk will not change.

We can now diagonalize the matrix by using the generalised Bogoliubov transformation. As

explained in section 1.2, the matrix Y =σz ⊗18 is used in the Bogoliubov transformation, and

the eigenvalues of the matrix Y Mk yield the dispersion relationsωk. The eigenvalues λζ in this

case can be found easily thanks to the simple block structure of Y Mk and by observing that

B†
kBk =

(∣∣γsq,k
∣∣2
18 0

0
∣∣γsq,k

∣∣2
18

)
(4.21)

for any unitary matrix U . From this, it follows that

Y MkY Mk =1

4

(
1− ∣∣γk

∣∣2
)
116

=λ2
116,

(4.22)

from which we can conclude that the eigenvalues λζ

λζ =±1

2

√
1− ∣∣γsq,k

∣∣2. (4.23)

By regrouping all the terms and by labelling the new Bogoliubov bosons fζ, diagonalized

quadratic Hamiltonian can be finally given by

H = Jnc
∑

k∈RBZ
ωsq(k)

8∑
ζ=1

(
f †
ζ

(k) fζ(k)+ 1

2

)
−2z Jnc N , (4.24)

where the eight-fold degenerate dispersion relation ωsq,k is given by

ωsq(k) = zsq

√
1− ∣∣γsq,k

∣∣2. (4.25)

The dispersion relation obtained here is identical to the dispersion relation (2.20) obtained

with the multiboson method in 2.1.1, which is reassuring. Since we started from mN = N 2

2

bosons for each sublattice and condensed half of the bosons in each sublattice afterwards,

we end up with N 2

2 ·2/2 = N 2

2 = 8 modes in the reduced Brillouin zone (or N 2

4 in the extended

Brillouin zone), which also corresponds to the number of modes obtained with the multiboson

method. Furthermore, there is an added bonus that the multipolar flat modes (in which we

were not interested for our physical problem) are absent when using this method.

Let us briefly draw the reader’s attention to the fact the derivation of the dispersion rela-

tion (4.25) above shows that the dispersion relation does not depend on the choice of the

values of zµa as long as they satisfy the constraints (4.9) and (4.14) of the semi-classical limit.

The constraints here, as we have seen, is equivalent to the unitarity condition of the matrices
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4.1. Read and Sachdev bosonic representation for rectangular Young tableaux

UAB and UC D . If we use the parametrisation (4.13) and (4.16) for simplicity, this means that

the dispersion relation will be the same whatever the choice of values for the set of parameters

ϑAB ,ϕAB ,χAB or ϑC D ,ϕC D ,χC D : there exists a gauge degree of freedom for each sublattice.

4.1.2 SU(6) m = 2 on the triangular lattice

We know from previous considerations that the structure of the Hamiltonian does not funda-

mentally change with the geometry of the lattices considered in section 2.1, since we always

regroup the bonds between two different pairs of sublattices. Hence, this method can be

identically used for the square, honeycomb and triangular lattices in the two-sublattice or

three-sublattice configuration. To briefly illustrate this, let us come back to the the SU(6) m = 2

Heisenberg model on the tripartite triangular lattice subsection 2.1.3. With colours A,B on

the sublatticeΛAB , C ,D onΛC D and E ,F onΛEF , let us decompose the Hamiltonian H into

three sub-Hamiltonians, namely,

H =H AB−C D +HC D−EF +HEF−AB , (4.26)

where HAB contains the bonds betweenΛAB andΛC D etc. If we now concentrate on H AB−C D ,

we arrive to the conclusion that the semi-classical approximation and the Bogoliubov pre-

scription leads to the constraints
z∗

A1(i )zA1(i )+ z∗
B1(i )zB1(i ) = nc

z∗
A2(i )zA2(i )+ z∗

B2(i )zB2(i ) = nc

z∗
A1(i )zA2(i )+ z∗

B1(i )zB2(i ) = 0

(4.27)

for i ∈ΛAB , and
z∗

C 1( j )zC 1( j )+ z∗
D1( j )zD1( j ) = nc

z∗
C 2( j )zC 2( j )+ z∗

D2( j )zD2( j ) = nc

z∗
C 1( j )zC 2( j )+ z∗

D1( j )zD2( j ) = 0,

(4.28)

for j ∈ΛC D , which are identical to Eqs. (4.27) and (4.28). Following the same procedure in sub-

section 4.1.1, one can replace the condensate bosons by c-numbers satisfying the constraints

above. In this case with the three-sublattice order, higher-order terms are generated in the

Hamiltonian, unlike in the two-sublattice order calculations where the resulting Hamiltonian

is purely quadratic. In other words, the c-number replacement will generate

H =H (2) +H (3) +H (4), (4.29)

where H (2) ∝O (nc ), H (1) ∝O (n
1
2
c ) and H (1) ∝O (1). However, once we truncate the Hamil-

tonian to keep the dominant term of the order O (nc ) only, the rest of the calculations are, in

fact, identical. The only differences are the factors that depend on the geometry of the lattice
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such as ztri = 3 and γtri,k = 1
3

(
e i kx +2e−i 1

2 kx cos
p

3
2 ky

)
. Using the Fourier transform,

dµa(i ) =
√

2

Nsites

∑
k∈RBZ

aµa(k)e−i kri , dµa( j ) =
√

2

Nsites

∑
k∈RBZ

bµa(k)e−i kr j , (4.30)

as before with bosons a and b defined on two different sublattices. All in all we obtain an

identical sub-Hamiltonian up to geometrical factors:

H AB−C D = Jnc
∑

k∈RBZ
ωtri(k)

8∑
ζ=1

(
f †
ζ

(k) fζ(k)+ 1

2

)
+const.. (4.31)

with

ωtri(k) = ztri

√
1− ∣∣γtri,k

∣∣2. (4.32)

As for the calculations of HC D−EF and HEF−AB involving the sites l ∈ ΛEF , we need the

constraints,
z∗

E1(l )zE1(l )+ z∗
F 1(l )zF 1(l ) = nc

z∗
E2(l )zE2 + z∗

F 2(l )zF 2(l ) = nc

z∗
E1(l )zE2 + z∗

F 1(l )zF 2(l ) = 0,

(4.33)

and the Fourier transform

dµa(l ) =
√

2

Nsites

∑
k∈RBZ

cµa(k)e−i krl . (4.34)

We see that the calculations will also be identical as in 4.1.1, but with different bosons. Finally,

the sum of all the sub-Hamiltonians yields

H =∑
k

[
ωtri(k)

8∑
ζ=1

(
f †
ζ

(k) fζ(k)+ 1

2

)]
+const. (4.35)

in the extended Brillouin zone. As in the multiboson method, we obtain 8 modes in the

extended Brillouin zone with the same dispersion relation, again without the flat multipolar

modes. The terms that contribute in the order O (nc ) from this sub-Hamiltonian H AB−C D

are the terms that involve the color permutations A,B ↔ C ,D, i.e., the permutation of the

colours that are present in the initial condensate—this is also the case in the multiboson

approach. As we see here, the lattice geometry just needs to be adapted once we have the

method established.

In the next subsection, we briefly present the explicit solutions of the constraints for an

arbitrary m and the corresponding value N .
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4.1. Read and Sachdev bosonic representation for rectangular Young tableaux

4.1.3 Arbitrary m

As explained in the derivation of the dispersion relation of the SU(4) m = 2 square lattice

model, the analysis in subsection 4.1.1 can be straightforwardly applied to any arbitrary m

(and to the corresponding N ) for a given lattice, thanks to the preservation of the structure

of the Hamiltonian (4.18). It has also been pointed out that the resulting dispersion relation

is identical whatever the values of the c-numbers zµa as long as they satisfy the generalized

Schwinger constraints. For practical purposes, however, we can also simply use a definite

value for zµa when calculating the dispersion relation. We thus present here a possible general

solution for the constraints for any value of m and show that it indeed yields the dispersion

relation obtained above in a general way.

For a given m (or corresponding N ), let us assume that we have the color-ordered ground

states we considered in the previous cases (square/honeycomb/triangular lattices). We will

designate the number of the sublattices by nsub, and each sublattice will be denoted by

l ∈ {1, . . . ,nsub}. The colours of the condensate on the sublattice l will be indexed by µ. Since

there are m particles per site, they will take a value between 1 and m. There will also be row

indices a,b ∈ {1, . . . ,m}. After the Bogoliubov prescription in the limit nc →∞, the generalised

Schwinger constraints become

m∑
µl=1

z l∗
µa z l

µb = δabnc . (4.36)

for each sublattice l with corresponding condensate colors µ.

Using the identity
n−1∑

nsub=0
eq 2πi

n nsub = 0, where n ∈ N>2 and q ∈ {1, . . . ,n − 1}, it can be easily

verified that

z l
µa →ϕl

µa(m)

√
nc

m
:=p

ncU l
µa , (4.37)

with the phase ϕl
µa(m) defined by

ϕl
µa(m) := e−i (a−1) 2π

m µ. (4.38)

is a particular solution of the constraints (4.36). An example of the phases for four condensed

bosons per site (m = 4) is shown in Table 4.1. This corresponds to the SU(8) model on the

square/honeycomb lattice or the SU(12) model on the triangular lattice. If we take the values

of Table 4.1 for the square lattice model as an example, we can easily perform the generalised

Bogoliubov transformation and obtain

H =∑
k

[
ωsq(k)

16∑
ζ=1

(
f †
ζ

(k) fζ(k)+ 1

2

)]
+const., (4.39)

i.e. 16 modes in the extended Brillouin zone with the same dispersion relation as in Eq. (4.25).
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µ ∈ {A,B ,C ,D} a = 1 a = 2 a = 3 a = 4
A 0 e−i x e−2i x e−3i x

B 0 e−2i x e−4i x e−6i x

C 0 e−3i x e−6i x e−9i x

D 0 e−4i x e−8i x e−12i x

Table 4.1 – Phases ϕµa(m) of the numbers replacing the condensed bosons that satisfy the
antisymmetry constraints for m = 4. The phase ϕµa for a given µ and a can be read from the
Table, in which x := 2π

m .

This, again, agrees with the results of the multiboson calculations (2.46) without the flat modes.

In general, there are N m bosons per site with the Read & Sachdev bosons, from which
N

nsub
m = m2 bosons are replaced by complex numbers. After the Bogoliubov transformation

to diagonalise the Hamiltonian, this procedure yields N m −m2 = m(N −m) modes in the

extended Brillouin zone: this corresponds to the number of dispersive modes we have found

with the multiboson approach, see. Eq. (2.46) and subsection 2.1.4.

4.1.4 The magnetisation

We have figured out how to derive the low-energy spectra of these models using the Read &

Sachdev bosons, but it would be neat to be able to compute the ordered colour moment as

well. Let us take the SU(4) model with m = 2 on the square lattice, and try to calculate the

ordered moment by using the definition in Eq. (2.28):

mi = 1

2

(
B∑

µ=A
Sµµ(i )−

D∑
µ=C

Sµµ(i )

)
,

= 1

2

(
〈n̂A1 + n̂A2〉+〈n̂B1 + n̂B2〉−〈n̂C 1 + n̂C 2〉−〈n̂D1 + n̂D2〉

)
= 1

2

(
〈n̂A1 + n̂B1〉+〈n̂A2 + n̂B2〉−〈n̂C 1 + n̂C 2〉−〈n̂D1 + n̂D2〉

)
= 1

2

[(
1−〈n̂C 1〉−〈n̂D1〉

)+ (
1−〈n̂C 2〉−〈n̂D2〉

)
−〈n̂C 1 + n̂C 2〉−〈n̂D1 + n̂D2〉]

= 1−
(
〈n̂C 1〉+〈n̂D1〉+〈n̂C 2〉+〈n̂D2〉

)
.

(4.40)

Here, the constraints (4.3) and the assumption of a large condensate of 〈n̂A1〉 ,〈n̂B1〉 ,〈n̂A2〉 ,〈n̂B2〉
have been used in the forth line. The expectation values in the last line depend on the result of

the Bogoliubov transformation which depends on the initial values of zµa .
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If we choose the values

z(∗)
A1 (i ), z(∗)

B2 (i ) →p
nc , z(∗)

C 1 ( j ), z(∗)
D2( j ) →p

nc ,

z(∗)
A2 (i ), z(∗)

B1 (i ) → 0, z(∗)
C 2 ( j ), z(∗)

D1( j ) → 0
(4.41)

that satisfy our constraints and that correspond to having A on the first row and B on the

second row for i ∈ΛAB (and similarly with C and D forΛC D ), then the Hamiltonian we obtain

H =
4∑

α=1
Hα is given by

H1 = nc
∑

k∈RBZ

[
zsq

(
d †

C 1,k dC 1,k +d †
A1,k dA1,k

)
+ zsqγsq,k

(
d †

C 1,k b†
A1,−k +dC 1,k dA1,−k

)]
,

H2 = nc
∑

k∈RBZ

[
zsq

(
d †

C 2,k dC 2,k +d †
B1,k dB1,k

)
+ zsqγsq,k

(
d †

C 2,k d †
B1,−k +dC 2,k dB1,−k

)]
,

H3 = nc
∑

k∈RBZ

[
zsq

(
d †

D1,k dD1,k +d †
A2,k dA2,k

)
+ zsqγsq,k

(
d †

D1,k d †
A2,−k +dD1,k dA2,−k

)]
,

H4 = nc
∑

k∈RBZ

[
zsq

(
d †

D2,k dD2,k +d †
B2,k dB2,k

)
+ zsqγsq,k

(
d †

D2,k d †
B2,−k +dD2,k dB2,−k

)]
.

(4.42)

The structure of the Hamiltonian is identical to the one obtained with the multiboson method,

Eq. (2.15), without the flat modes. Then we can use the same Bogoliubov transformation as

in Eq. (2.17) for each of the sub-Hamiltonians. For instance, we define the new Bogoliubov

bosons d̃ for H1 as(
d̃ †

C 1,k

d̃A1,−k

)
=

(
uk vk

vk uk

)(
d †

C 1,k

dA1,−k

)
, (4.43)

where

uk =
√

1

2

(
zsq

ωsq,k
+1

)
, vk =

√
1

2

(
zsq

ωsq,k
−1

)
,

ωsq(k) = zsq

√
1− ∣∣γsq,k

∣∣2.

(4.44)

The expectation values in Eq. (4.40) can then be computed:

〈n̂C 1〉 = 〈n̂D1〉 = 〈n̂C 2〉 = 〈n̂D2〉 =
〈

v2
k

〉
. (4.45)

This is identical to what we had found in Eq. (2.26) with the multiboson method. We can then

conclude that

mi =1−4
〈

v2
k

〉
= 0.214,

(4.46)

which is consistent with the multiboson approach, see Eq. (2.27).

We can thus conclude that the choice of values for zµa in Eq. (4.41) indeed yields the colour
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magnetisation value that is identical to the value found with the multiboson approach. Such

choice of condensates (putting different colours on different rows) works for the other cases as

well, e.g., the SU(6) m = 3 model on the square lattice, and the calculations are again the same

as in the multiboson method. It should be checked whether this is the case for any solutions

of the constraints (4.36), but we believe that this is true for any solutions.

This wraps up our discussion on the fully antisymmetric irreps using the Read & Sachdev

bosons. Let us now investigate how these bosons could be used in irreps with mixed symme-

tries by taking the SU(3) adjoint model once again.

4.2 The SU(3) adjoint irrep

As an example of the use of the bosonic representation of Read & Sachdev on non-rectangular

irreps, let us come back to the irrep of SU(3) from section 2.2 and chapter III, which

is of dimension 8. To describe the states of this irrep, we will thus need bosons dµa where

µ ∈ {A,B ,C } and a ∈ {1,2} since there are maximum two rows in . We will denote the maximal

row-length of the Young diagram of a given irrep by m, so m = 2 in our case. As before, the

states of this irrep have to satisfy the generalized Schwinger constraints
d †

A1dA1 +d †
B1dB1 +d †

C 1dC 1 = 2

d †
A2dA2 +d †

B2dB2 +d †
C 2dC 2 = 1

d †
A1dA2 +d †

B1dB2 +d †
C 1dC 2 = 0,

(4.47)

The antisymmetry of the rows 1 and 2 is implemented through the last equation of (4.47). Note

that the conjugate of the last equation is not part of the constraints anymore, in contrast to

the irreps with rectangular Young tableaux. The expression of the generators Ŝµν remains the

same as in Eq. (4.2),

Ŝµν =
m∑

a=1
d †
νadµa − n̂

N
δµν, (4.48)

even though the Young diagram of the irrep is not rectangular. We will, once again, drop the

second term that does not influence the rest of our calculations.

4.2.1 Constructing the states with the Read & Sachdev Bosons

Although it is not necessary to have an explicit expression of the states of our irrep in terms of

the Read & Sachdev bosons to perform the LFWT expansion, it is still instructive to look at the

construction of the states.

Following the footsteps in subsection 4.1.1, we could try something similar to Eqs. (4.5)
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and (4.6). To construct the state A A
C ≡ AC A, we could do

A A
C = A†

AC b†
A1 = εabd †

Aad †
C bd †

A1 |0〉 . (4.49)

in which we used the Einstein summation convention. As with the other bosonic representa-

tions we have seen in this thesis, such a construction works well for the states that have no

degeneracy in the weight diagram, but there is a freedom in the choice of the states of the

doubly degenerate zero-weight states (the two states involving three colours A B
C and A C

B ). To

use the same choice of basis as in the rest of the thesis (and this also presents a systematic way

of creating these states with this Read & Sachdev bosonic language), we can take the basis we

had in Table 1.1, and translate it into the Read & Sachdev bosons. For example, let us recall

from Eq. (1.25) that

A A
C ≡ 1p

2
(|AC A〉− |C A A〉) =

(
b†

A,1b†
C ,2 −b†

C ,1b†
A,2

)
b†

A,3 |0〉 (4.50)

if we use the natural bosonic representation in subsection 1.1.3. The first two colour particles

are antisymmetric, and the third colour comes with the particle index 3 indicating that it

is the third particle. In the Weyl diagram, the third particle sits in the second column that

contains one row only. In the Read & Sachdev language, this means that this third colour

particle A should be represented by dA1, i.e., with the row index 1. Proceeding this way and

by adapting the normalisation constant, we can translate all the states in Table 2.1 into the

bosonic representation of Read & Sachdev, the result of which is given as follows in Table 4.2:

A A
C ≡ 1p

3
εabd †

Aad †
C bd †

A1 |0〉 A A
B ≡ 1p

3
εabd †

Aad †
Bbd †

A1 |0〉
A B
B ≡ 1p

3
εabd †

Aad †
Bbd †

B1 |0〉 B B
C ≡ − 1p

3
εabd †

B ad †
C bd †

B1 |0〉
B C
C ≡ − 1p

3
εabd †

B ad †
C bd †

C 1 |0〉 A C
C ≡ − 1p

3
εabd †

Aad †
C bd †

C 1 |0〉
A B
C ≡ − 1p

6

(
εabd †

B ad †
C bd †

A1
A C
B ≡ 1p

2
εabd †

Aad †
Bbd †

C 1 |0〉

+εabd †
Aad †

C bd †
B1

)
|0〉

Table 4.2 – The states of the SU(3) adjoint irrep.

These states obey the constraints (4.47) as it should, and it can be verified that the action

of the generators on one of these states generate the states of this adjoint irrep only, thus

showing that the action of the generators is closed as it should. Also, all the transitions and

their coefficients are identical to those found in subsection 2.2.1 as it should.
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4.2.2 LFWT on a bipartite 1D chain

We now proceed to the computation of the spectrum using the LFWT. Using the SU(3) opera-

tors in the Read & Sachdev bosonic representation (4.48), we obtain the Heisenberg Hamilto-

nian in this representation

H =J
∑

<i , j>

3∑
µ,ν=1

Ŝµν(i )Ŝνµ( j )

=J
∑

<i , j>

3∑
µ,ν=1

m∑
a,b=1

d †
νa(i )dµa(i )d †

µb( j )dνb( j )

(4.51)

up to a constant.

The constraints of this irrep are given by

3∑
µ=1

d †
µ1dµ1 = 2nc

3∑
µ=1

d †
µ2dµ2 = nc

3∑
µ=1

d †
µ1dµ2 = 0,

(4.52)

where µ is the color index, and nc is our expansion parameter as before, which will be set to 1

at the end.

As before, we assume a bipartite system with A A
C on the sublatticeΛAC A and B B

C on the other

sublatticeΛBC B , i.e. we consider∣∣gs(i )
〉

:= C̃
[
εabd †

Aa(i )d †
C b(i )d †

A1(i )
]nc |0〉 ,∣∣gs( j )

〉
:= C̃

[
εabd †

B a( j )d †
C b( j )d †

B1( j )
]nc |0〉 ,

(4.53)

for any i ∈ΛAC A , j ∈ΛBC B and a ∈ {1,2}, with C̃ being the normalisation constant. In the limit

nc →∞, the dominant numbers are〈
d †

A1(i )dA1(i )
〉
=2nc ,

〈
b†

C 2(i )dC 2(i )
〉
= nc ,〈

d †
B1( j )dB1( j )

〉
=2nc ,

〈
d †

C 2( j )dC 2( j )
〉
= nc ,

(4.54)

and other quadratic combinations of bosons are small compared to these values, see sec-
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4.2. The SU(3) adjoint irrep

tion 2.2. Hence, we can use the Holstein-Primakoff approach:

d †
A1(i ),dA1(i ) −→

√
2nc −

∑
µ6=A

b†
µ1(i )dµ1(i ) ≈

√
2nc − 1

2
p

2nc

∑
µ6=A

d †
µ1(i )dµ1(i ),

d †
C 2(i ),dC 2(i ) −→

√
nc −

∑
µ6=C

d †
µ2(i )dµ2(i ) ≈p

nc − 1

2
p

nc

∑
µ6=C

d †
µ2(i )dµ2(i ),

d †
B1( j ),dB1( j ) −→

√
2nc −

∑
µ6=B

d †
µ1( j )dµ1( j ) ≈

√
2nc − 1

2
p

2nc

∑
µ6=B

d †
µ1( j )dµ1( j ),

d †
C 2( j ),dC 2( j ) −→

√
nc −

∑
µ6=C

d †
µ2( j )dµ2( j ) ≈p

nc − 1

2
p

nc

∑
µ6=C

d †
µ2( j )dµ2( j ).

(4.55)

The truncation of the Taylor series at this order is sufficient to obtain all the terms of the

quadratic Hamiltonian of the order nc . As in the other cases where we have used the Holstein-

Primakoff bosons, the commutation relations (1.23) stay valid up to order O (1) even after this

transformation.

Note that the ground states (4.53) (trivially) satisfy the constraints (4.47) in the limit nc →∞:

3∑
α=1

d †
α1(l )dα1(l )

∣∣gs(l )
〉= 2nc

∣∣gs(l )
〉

,

3∑
α=1

d †
α2(l )dα2(l )

∣∣gs(l )
〉= nc

∣∣gs(l )
〉

,

3∑
α=1

d †
α1(l )dα2(l )

∣∣gs(l )
〉= 0,

(4.56)

for any site l .

By using the Holstein-Primakoff bosons, we finally obtain the quadratic Hamiltonian

H (2) =H (2)
1 +H (2)

2 +H (2)
3 where

H (2)
1 = Jnc

∑
i∈ΛAC A

∑
〈 j〉

[
2d †

B1(i )dB1(i )+2d †
A1( j )dA1( j )+2dB1(i )dA1( j )+2d †

B1(i )d †
A1( j )

]
,

H (2)
2 = Jnc

∑
i∈ΛAC A

∑
〈 j〉

[
−d †

A2(i )dA2(i )+d †
A2( j )dA2( j )+d †

C 1(i )dC 1(i )

+ d †
A2(i )dA2( j )+d †

A2( j )dA2(i )+
p

2d †
C 1(i )d †

A2( j )+
p

2dC 1(i )dA2( j )
]

,

H (2)
3 = Jnc

∑
i∈ΛAC A

∑
〈 j〉

[
−d †

B2( j )dB2( j )+d †
B2(i )dB2(i )+d †

C 1( j )dC 1( j )

+ d †
B2(i )dB2( j )+d †

B2( j )dB2(i )+p
2d †

B2(i )d †
C 1( j )+p

2dB2(i )dC 1( j )
]

.

(4.57)
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After Fourier-transforming,

dµa(i ) =
√

2

Nsites

∑
k∈RBZ

aµa(k)e−i kri , dµa( j ) =
√

2

Nsites

∑
k∈RBZ

bµa(k)e−i kr j , (4.58)

with the k-space bosons a and b for sublatticesΛAC A andΛBC B , respectively, and Nsites being

the number of sites, the Hamiltonian is then given by

H (2) = Jnc
∑

k∈RBZ

3∑
a=1

(
u†

a,k ,ua,−k

)
Ma,k

(
tua,k

t
u†

a,−k

)
(4.59)

where

u†
1,k :=

(
a†

B1(k),b†
A1(k)

)
,

u†
2,k :=

(
a†

A2(k),b†
A2(k), a†

C 1(k)
)

,

u†
3,k :=

(
b†

B2(k), a†
B2(k),b†

C 1(k)
)

,

u1,−k :=(
aB1(−k),bA1(−k)

)
,

u2,−k :=(
aA2(−k),bA2(−k), aC 1(−k)

)
,

u3,−k :=(
bB2(−k), aB2(−k),bC 1(−k)

)
,

(4.60a)

M1,k :=
(
A1 B1,k

B1,k A1

)
, A1 :=2 ·12 B1,k :=2

(
0 γk

γk 0

)
,

M2,k :=
(
A2 B2,k

B2,k A2

)
, A2 :=

−1 γk 0

γk 1 0

0 0 1

 , B2,k :=

0 0 0

0 0
p

2γk

0
p

2γk 0

 ,

M3,k :=M2,k ,

(4.60b)

with the geometrical factor of a bipartite chain

γk := cosk. (4.61)

Using the generalized Bogoliubov transformation, i.e. by calculating the positive eigenvalues

of

M ′
k :=

(
A Bk

−Bk −A

)
, (4.62)

we finally obtain the diagonalised Hamiltonian

H (2) = Jnc
∑

k∈RBZ

{
6∑

µ=1
ωµ(k)

(
f †
µ (k) fµ(k)+ 1

2

)
+ω7 f †

7 (k) f7(k)+ω8 f †
8 (k) f8(k)

}
+const.

(4.63)
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Figure 4.1 – The dispersion relations ω1,...,8 for p = 1 (adjoint irrep).

where the bosons fµ are the new Bogoliubov bosons, and

ω1,2,3,4(k) = 2
√

1−cos2(k),

ω5,6(k) = 4
√

1−cos2(k),

ω7,8 = 2.

(4.64)

The dispersion relations are plotted in Figure 4.1. The dispersive modes ω1,...,6 are identical to

the dispersive modes obtained with the multiboson method in Eq. (2.82) and with the Mathur

& Sen bosons in Eq. (3.25).

The matrix M1 in the Hamiltonian (4.59) that yields the dispersives modes with higher velocity

comes from the exchange terms Ŝ A
B (i )ŜB

A( j ), ŜB
A(i )Ŝ A

B ( j ), Ŝ A
A(i )Ŝ A

A( j ) and ŜB
B (i )ŜB

B ( j ) in the

Hamiltonian, just as in the two other methods used in this thesis. This also indicates that this
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Chapter IV. Linear Flavour-Wave with Read and Sachdev Bosons

dispersive mode with higher velocity is related to the transition from the condensate states
A A
C to A B

C (or from B B
C to A B

C ), as explained in subsection 2.2.3 with the multiboson method.

The matrices M2 that yield half of the remaining dispersive modes come from Ŝ A
C (i )ŜC

A( j ),

ŜC
A(i )Ŝ A

C ( j ), Ŝ A
A(i )Ŝ A

A( j ) and ŜC
C (i )ŜC

C ( j ), again in line with the two other methods. This corre-

sponds to the transition to the other adjacent states in the weight diagram. The same can be

said about M3. The remaining subspaces of M2 and M3 after the diagonalisation are revealed

as flat modes as with the Mathur & Sen bosons. The Read & Sachdev bosons also seem to yield

flat modes after the diagonalisation of the Hamiltonian when degenerate points are present in

the weight diagram, due to the expression of the states (in terms of Read & Sachdev bosons) in

these degenerate points. However, the exact nature of the flat modes is difficult to extract here

in terms of the Read & Sachdev bosons. We know, though, that these flat modes come from the

colour permutation of A ↔C and B ↔C , whereas the flat modes obtained with the Mathur &

Sen bosons came from A ↔ B . They thus correspond to different multipolar transitions, and

this would explain why the energy of the flat modes differ by a factor 2 in both methods, see

Eq. (4.64).

4.3 The SU(3) model in irreducible representation [p, q] on the bi-

partite d-dimensional lattice

Now that the calculation method is known for the adjoint irrep of SU(3), it is easy to

extend the calculations to the irrep [p, q] in a d-dimensional bipartite system. We admit the

same ground state as in section 3.2. As an example, for p = 2, q = 1, it would be A A A
C on the

sublatticeΛ1 and B B B
C on the other sublatticeΛ2. The coordinate number z here is given by

z = 2d .

The following steps are nearly identical to the calculations of the adjoint irrep. First, the

constraints of this irrep are given by

C∑
µ=A

d †
µ1dµ1 = (p +q)

C∑
µ=A

d †
µ2dµ2 = q

C∑
µ=A

d †
µ1dµ2 = 0,

(4.65)

where µ is the color index. Then, the semi-classical limit of the bosons of the first row (namely

d (†)
A1(i ),d (†)

B1( j )) can be taken to be (p + q) →∞, and the bosons of the second row (namely
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lattice

d (†)
C 2(i ),d (†)

C 2( j )) can be taken to be q →∞. The Holstein-Primakoff approach can then be used:

d †
A1(i ),dA1(i ) −→

√
(p +q)− ∑

µ6=A
d †
µ1(i )dµ1(i ) ≈√

(p +q)− 1

2
√

(p +q)

∑
µ6=A

d †
µ1(i )dµ1(i ),

d †
C 2(i ),dC 2(i ) −→

√
q − ∑

µ6=C
d †
µ2(i )dµ2(i ) ≈p

q − 1

2
p

q

∑
µ6=C

d †
µ2(i )dµ2(i ),

d †
B1( j ),dB1( j ) −→

√
(p +q)− ∑

µ6=B
d †
µ1( j )dµ1( j ) ≈√

(p +q)− 1

2
√

(p +q)

∑
µ6=B

d †
µ1( j )dµ1( j ),

d †
C 2( j ),dC 2( j ) −→

√
q − ∑

µ6=C
d †
µ2( j )dµ2( j ) ≈p

q − 1

2
p

q

∑
µ6=C

d †
µ2( j )dµ2( j ).

(4.66)

By using the Holstein-Primkaoff bosons, we finally obtain the quadratic Hamiltonian of the

order O (nc )

H (2) =H (2)
1 +H (2)

2 +H (2)
3 where

H (2)
1 = J

∑
i∈Λ1

∑
〈 j〉

[
−qd †

A2(i )dA2(i )+pd †
A2( j )dA2( j )+qd †

C 1(i )dC 1(i )

+qd †
A2(i )dA2( j )+qd †

A2( j )dA2(i )

+ √
q(p +q)d †

C 1(i )d †
A2( j )+√

q(p +q)dC 1(i )dA2( j )
]

,

H (2)
2 = J

∑
i∈Λ1

∑
〈 j〉

[
−qd †

B2( j )dB2( j )+pd †
B2(i )dB2(i )+qd †

C 1( j )dC 1( j )

+qd †
B2(i )dB2( j )+qd †

B2( j )dB2(i )

+ √
q(p +q)d †

B2(i )d †
C 1( j )+√

q(p +q)dB2(i )dC 1( j )
]

,

H (2)
3 = J

∑
i∈Λ1

∑
〈 j〉

[
(p +q)d †

B1(i )dB1(i )+ (p +q)d †
A1( j )dA1( j )

+(p +q)dB1(i )dA1( j )+ (p +q)d †
B1(i )d †

A1( j )
]

.

(4.67)

After Fourier-transforming,

dµa(i ) =
√

2

Nsites

∑
k∈RBZ

aµa(k)e−i k·ri , dµa( j ) =
√

2

Nsites

∑
k∈RBZ

bµa(k)e−i k·r j , (4.68)

by introducing two different bosons a and b for sublattices Λ1 and Λ2, respectively, the

Hamiltonian is then given by

H (2) = Jd
∑

k∈RBZ

3∑
a=1

(
u†

a,k,ua,−k

)
Ma,k

(
tua,k

t
u†

a,−k

)
(4.69)
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where

u†
1,k :=

(
a†

A2(k),b†
A2(k), a†

C 1(k)
)

, u1,−k :=
(
aA2(−k),bA2(−k), aC 2(−k)

)
,

u†
2,k :=

(
b†

B2(k), a†
B2(k),b†

C 1(k)
)

, u2,−k :=
(
bB2(−k), aB2(−k),bC 2(−k)

)
,

u†
3,k :=

(
a†

B1(k),b†
A1(k)

)
, u3,−k :=

(
aB1(−k),bA1(−k)

)
,

(4.70)

M1,k :=
(
A1,k B1,k

B†
1,k A

ᵀ
1,−k

)
, A1,k :=

−q qγk 0

qγk p 0

0 0 q

 , B1,k :=

0 0 0

0 0
√

q(p +q)γk

0
√

q(p +q)γk 0

 ,

M2,k :=M1,k,

M3,k :=
(
A3 B3,k

B†
3,k A

ᵀ
3

)
, A3,k :=

(
p +q 0

0 p +q

)
, B3,k :=

(
0 (p +q)γk

(p +q)γk 0

)
,

(4.71)

with the geometrical factor

γk :=



coskx , d = 1
1
2 (coskx +cosky ), d = 2
1
3 (coskx +cosky +coskz ), d = 3

. . .

(4.72)

The generalized Bogoliubov transformation then yields the diagonalized Hamiltonian

H (2) = J
∑

k∈RBZ

{
8∑

µ=1
ωµ(k)

(
f †
µ (k) fµ(k)+ 1

2

)}
+const. (4.73)

where the bosons fµ are the new Bogoliubov bosons, and

ω1,2(k) = d
(√

(p +q)2 −4pqγ2
k −p +q

)
,

ω3,4(k) = d
(√

(p +q)2 −4pqγ2
k +p −q

)
,

ω5,6(k) = 2d(p +q)
√

1−γ2
k,

ω7,8(k) = 2d q.

(4.74)

As noted with the help of Eq. (3.44), ω1,2,3,4(k) are always positive as it should. Encouragingly,

the dispersive spectra ω1,...,6 are identical to those obtained with the method using the Mathur

& Sen bosonic representation. However, the localised ω7,8, again, do not match exactly.
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In 1D (d = 1), if the parameters are again set to be p = 2, q = 1 to take an example of a non-self-

conjugate irrep, we again find linear dispersion relations and quadratic dispersion relations

simultaneously, see Figure 3.4.

This concludes this chapter on the use of Read & Sachdev bosons in the LFWT. The dispersive

spectra obtained with this method are identical to the the ones obtained with the other

methods we used in this thesis. However, the flat modes obtained here do not match exactly

with the other methods, and the way of translating the condensate to a number differs from

one irrep to another in this method.

We have now explored three different boson representations that leading to different schemes

of applying the LFWT. Let us now present a summary of the differences between the boson

representations in the next chapter.
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V Recapitulation of the Boson Represen-
tations

The three different boson representations of SU(N ) that we have encountered in this work—

the multiboson representation, the Mathur & Sen representation and the Read & Sachdev

representation—all present different advantages and inconveniences when performing the

LFWT with them. We will briefly discuss them in this Chapter.

Let us look at the number of bosons of each of the boson representation first. With the multi-

boson method, in a given irrep, there is a one-to-one correspondence between a boson species

and a state of the irrep. Hence, new bosons are introduced each time one considers a different

irrep, as the bosons are tied to the states of each irrep. For instance, the bosons used for SU(3)

will not be the same as those for SU(3) . For an SU(N ) irrep of dimension D , the num-

ber of boson species will be D . This means that the number of bosons can be very large if D is

large (even for a small N ). For obtaining the dispersion relations, the method is straightforward

to apply for any irrep of SU(N ), and the colour transition corresponding to a mode is clear to

see since a boson is directly related to a state in this multiboson representation. However, the

caveat is that it generates many flat modes corresponding to multipolar transitions. As the

dimension of the irrep D increases, the number of flat modes increases as well. For instance,

in the model with the SU(3) adjoint irrep in section 2.2, this method yielded 8 flat modes in the

reduced Brillouin zone although we are only interested in the low-energy Goldstone modes.

The calculations with this method can also be cumbersome as the bosonic representation of

Ŝµν must be found each time that one considers a different irrep.

In terms of the Young tableau, the Mathur & Sen representation introduces a boson for each

state of the fully antisymmetric irreps with one column such as , , etc. In a way, we think in

terms of the columns of the Young tableaux in this boson representation. For instance, in the

model with the SU(3) adjoint irrep that we considered, we used 3 bosons aµ corresponding

to the 3 states of and 3 bosons bν corresponding to the 3 states of , with the constraint that

na = 1 and nb = 1 in addition to the tracelessness condition, see Eq. (3.6). The bosons aµ and

bν then allow us to construct the states of any generic irrep [p, q] of SU(3) for arbitrary values

of p and q with the corresponding constraints (na = p and nb = q) and the tracelessness

condition. If one would extend this logic to SU(4), the states of any given irrep of SU(4) could
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Chapter V. Recapitulation of the Boson Representations

then be described with the 4 bosons aµ of the fundamental irrep , the 4 bosons bν of its

conjugate irrep and the 6 bosons cρ of the self-conjugate irrep . For a general N , we would

need
N−1∑
m=1

(N
m

)= 2N −2 boson species at most, since a fully antisymmetric irrep with m boxes

in the Young tableau with one column has a dimension of
(N

m

)
. Depending on the irrep that

is considered, the span of these bosons can be larger than the Hilbert space of the irrep, as

it was the case with the SU(3) adjoint irrep we treated in previous chapters: the irrep has

dimension D = 8, but the use of one boson aµ and one boson bν together yields 9 states in

total. This is thus the reason why the tracelessness condition has to be enforced. We also saw

that there is a certain degree of freedom in the choice of the states that are degenerate in the

weight diagram, see Figure 3.1. For generic models with SU(3) irreps [p, q], the Mathur & Sen

bosons are, in most cases, the best choice to work with, because the calculations are much

more efficient than the multiboson method and it involves only the bosons of the fundamental

irrep and of its conjugate irrep which are simple to deal with. In addition, the number of flat

modes obtained with this method is smaller than in the multiboson method: for the SU(3)

model with the adjoint irrep in subsection 3.1.2, we only had 2 flat modes (that came from

the colour transition to the state that belongs to the degenerate weight in the weight diagram

of ). In fact, we saw in section 3.2 that the number of flat modes stays constant (2) for any

SU(3) irrep [p, q].

For N > 4, however, the calculations of the dispersion relations can be performed much more

efficiently with the Read & Sachdev bosons. In this formalism, for a given SU(N ) irrep, a boson

dµa is introduced for each colour µ and for each row a of the Young tableau. Since an irrep

of SU(N ) can have a maximum of N −1 rows in the Young tableau, it is possible to describe

the states of any given irrep using N (N −1) boson species at most in conjunction with the

adequate constraints enforcing the symmetry of the irrep (see below). For instance, for the

SU(3) model in the adjoint irrep , the bosons dA1,dB1,dC 1 and dA2,dB2,dC 2 were used for

the three colours of SU(3) and the two rows of the Young tableau. Hence, there is no one-to-one

correspondence between a boson species and a state as it was the case with the multiboson

method, and there is a certain degree of freedom in the choice of the states that are degenerate

in the weight diagram with this boson representation. For any irrep and any N , the calculations

of the dispersion relations are very efficient with this method, and it yields less flat modes

than the multiboson method: for fully antisymmetric models in section 4.1 that contained no

degenerate point in the weight diagram, it yielded no flat modes, and it yielded 2 flat modes

only (due to the degenerate point in the weight diagram) for the SU(3) model in the adjoint

irrep, see section 4.2. However, there is a certain ambiguity in the treatment of the condensate,

depending on the irrep. As an example, the conventional Holstein-Primakoff could not be

used for fully antisymmetric irreps, so the constraints of the irrep had to be implemented

differently into the calculations of the LFWT. But the Holstein-Primakoff could be used for the

SU(3) adjoint irrep. Another caveat of this method is that the nature of the flat modes are not

clear within this framework.

Here is a listed summary of the characteristics of each method:
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1. Multiboson method

• NUMBER OF BOSON SPECIES: D for an SU(N ) irrep of dimension D

• EXPRESSION OF Ŝµν : varies with each irrep

• NUMBER OF MODES

I Bipartite square in fully antisymmetric SU(N ) irreps with N
2 particles per site:

N 2

4 dispersive branches in the extended Brillouin zone,( N
N /2

)−1− N 2

4 flat modes in the extended Brillouin zone.

I Bipartite chain in SU(3) adjoint irrep:

6 dispersive branches in the reduced Brillouin zone,

8 flat modes in the reduced Brillouin zone.

2. Mathur & Sen bosons

• NUMBER OF BOSON SPECIES: 2N −2 for irreps of SU(N )

• EXPRESSION OF Ŝµν : Ŝµν = a†
νaµ−b†

µbν

up to a constant for SU(3), with µ,ν ∈ {A,B ,C }

• CONSTRAINTS FOR A GIVEN IRREP

I For SU(3) irreps [p, q]:

na =
C∑

µ=A
na,µ = p and nb =

C∑
µ=A

nb,µ = q

I Tracelessness condition

δ
µa
νa

v
µ1...µp
ν1...νq

= 0,

where a ∈ {
1, . . . ,min(p, q)

}
, and the coefficients v are given by

v
µ1...µp
ν1...νq

a†
µ1
· · ·a†

µp
b†
ν1
· · ·b†

νq
|0〉 = v

µ1...µp
ν1...νq

∣∣∣ν1···νq
µ1···µp

〉
.

• NUMBER OF MODES

I Bipartite chain in SU(3) adjoint irrep:

6 dispersive branches in the reduced Brillouin zone,

2 flat modes in the reduced Brillouin zone.

3. Read & Sachdev bosons

• NUMBER OF BOSON SPECIES: Maximum N (N −1) for irreps of SU(N )

• EXPRESSION OF Ŝµν : Ŝµν =
m∑

a=1
d †
νadµa

up to a constant for SU(N ) irreps with m rows in Young tableau

• CONSTRAINTS FOR A GIVEN IRREP

I For irreps with rectangular Young tableaux with m rows and nc columns

(a,b are row indices and µ is the colour index):
N∑
µ=1

d †
µad

µb = ncδab
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Chapter V. Recapitulation of the Boson Representations

I For the SU(3) adjoint irrep :

3∑
µ=1

d †
µ1dµ1 = 2nc

3∑
µ=1

d †
µ2dµ2 = nc

3∑
µ=1

d †
µ1dµ2 = 0

(5.1)

• NUMBER OF MODES

I Bipartite square in fully antisymmetric SU(N ) irreps with N
2 particles per site:

N 2

4 dispersive branches in the extended Brillouin zone,

No flat modes.

I Bipartite chain in SU(3) adjoint irrep:

6 dispersive branches in the reduced Brillouin zone,

2 flat modes in the reduced Brillouin zone.

We now turn our attention to a somewhat different subject in the next chapter.
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VI Lifting the Line of Zero-Modes

Introduction: how to lift the accidental zero-modes?

Breaking with the continuity of the subject of the previous chapters, this chapter briefly

presents the attempts made to lift the accidental zero-modes that are present in the dispersion

relations of the AFM SU(3) Heisenberg model in the three-sublattice order in 2D with an

infinitely large classical ground-state degeneracy. These accidental zero-modes are somewhat

problematic when calculating the magnetisation of the system as it always diverges to −∞,

suggesting that the system is not ordered. However, this is an artifact originating from an

extended ground-state degeneracy that can be parametrised by one parameter.

First, a method of establishing a self-consistent equation for the new dispersion relation

using the perturbation theory and some physical assumptions will be presented. As the

perturbation theory is in principle ill-defined when a line of zero-modes is present in the

harmonic spectrum, this attempt will try to address this issue. Such an attempt yields a

magnetisation value that is in reasonable agreement with the existing numerical results.

However, there is a certain arbitrariness in establishing these self-consistent equations.

In the second part, we will present different calculation methods that yield the same result as

the LFWT and pave a path for future investigations—establish the equations of motions of the

system by correctly identifying the variables and their conjugate variables.

6.1 The line of zero-modes: the root of the problem

The model we are interested in is the AFM SU(3) nearest-neighbour Heisenberg model,

H = J1
∑
〈i , j〉

∑
µ,ν

Ŝµν(i )Ŝνµ( j ), (6.1)

on the 2D square lattice. Classically, the model possesses a huge number of ground states—the

ground state degeneracy is, in fact, infinite. This can be seen easily by assuming a (normalised)
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Chapter VI. Lifting the Line of Zero-Modes

Figure 6.1 – The three-sublattice configuration that minimises the zero-point energy, and the
two-sublattice configuration that yields the same energy classically.

wave function of the form

∣∣~φi
〉

:=
C∑

µ=A
φ
µ

i

∣∣µ〉
i (6.2)

for each site i of the system. The energy of a bond is then given by

Ei j =
〈
~φi ⊗~φ j

∣∣H i j
∣∣~φi ⊗~φ j

〉= J1
∣∣~φi ·~φ j

∣∣2
. (6.3)

It can be seen that the only condition for the ground state is then to have orthogonal states on

adjacent sites. There are thus an infinite number of possibilities to achieve this: if we fix a colour

A on one site, the adjacent site can take any linear combination of B and C , and this degree

of freedom exists for every bond on the lattice. The Néel-like bipartite configuration or the

diagonal-striped tripartite configuration depicted in Figure 6.1, which we already introduced

in section 1.2, are notable examples of classical ground-state configurations of our system.

As seen in section 1.2, there is a line of zero-modes in the spectrum obtained with the LFWT

calculations of this three-sublattice order.12 Its existence suggests that there should exist a

manifold of classical ground states with wave vectors corresponding to this line. Tóth et al.

[53] indeed showed that one can parametrise this family of classical ground states with one

parameter and that it connects continuously the Néel two-sublattice configuration and the

three-sublattice configuration. In other words, there is a whole class of “helical” states that

allows one to go from one configuration to the other continuously along a rotation parameter

θ.13 They also show that the three-sublattice order has the lowest zero-point energy EZP =
2
∑

k
ωk
2 (the constant term of the harmonic oscillator term in (1.38))—in particular among

12It is worthwhile noting that the presence of lines of zero-modes depends on the nature of the ground-state
manifold, which itself depends on the choice of the symmetry (irrep) of the system. As seen in section 3.2, Eq. (3.43),
the classical ground state of the SU(3) adjoint model is the bipartite configuration whose dispersion relations do
not feature any line of zero-modes.

13As with the SU(2) spin-wave theory, the LFWT can also be applied to such helical ground states as well by
applying a rotation to the local frame. See Ref. [53] for an example of calculations on a helical state in SU(3).
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6.2. Self-consistent method

the ground states parametrised by θ, see Figure 6.2— hence concluding that the quantum

π

2 π

θ
1.3

1.4

1.5

1.6

1.7

EZP(θ)

Figure 6.2 – The zero point energy EZP(θ) = 2
∑

k
ωk(θ)

2 as a function of the helcal parameter θ.
The calculations have first been done by Tóth et al. [53]. Here, θ = 0,π, . . . correspond to the
two-sublattice order whereas θ = π

2 , . . . correspond to the three-sublattice order. This shows
that the tripartite configuration is the true quantum ground state.

fluctuations stabilise the three-sublattice order in this system. Since the tripartite configuration

is confirmed as the true ground state, one could attempt to compute the magnetisation of this

configuration using the LFWT to determine whether the colour-order survives the quantum

fluctuations or not. However, as pointed out by Bauer et al. [31], the computation of the

magnetisation involves calculating
∫ 1
ωk

dk, an ill-defined 2D integral in the presence of a line

of zeros in the spectrum ωk. This would in principle mean that quantum fluctuations would

destroy the long-range order. However, the line of zero-modes are accidental in the sense

that they come from a specific family of helical (classical) ground states, and since the true

quantum ground state is selected by quantum fluctuations, we could expect that quantum

fluctuations would lift the zero-modes in the true spectrum of the system, in which case the

magnetisation could be finite and positive. Thus, what we ultimately aim to find is a method

to obtain somehow the true (or renormalised) spectrum.

6.2 Self-consistent method

Since the LFWT with Holstein-Primakoff bosons yield an expansion in nc , the perturbation

theory naturally springs to mind when trying to obtain the renormalised spectrum. The pertur-

bation theory, however, cannot be used in this situation due to the aforementioned problem

related to the zero-modes. So if perturbation theory is not well-defined in this problem, what
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Chapter VI. Lifting the Line of Zero-Modes

can we try to solve it?

What we know is that there should be Goldstone modes in the spectrum, due to the sponta-

neous symmetry breaking, at pitch vectors q0 ≡ 0 and q±1 ≡ ±(2π
3 , 2π

3

)
related to our three-

sublattice order. The final renormalised spectrum that we could expect, as shown qualitatively

in Figure 6.3, is then to have the zero-modes lifted between these wave vectors qi and to have

a linear dispersion relation near qi as required by the Goldstone modes for antiferromagnetic

systems. We can thus use this information and take an educated guess for the renormalised

q−1 q0 q+1

ω̃k

k

-π +π

+π

-π

Figure 6.3 – An example of a qualitative behaviour of the expected renormalised spectrum
ω̃ of the AFM SU(3) tripartite configuration. The Goldstone modes are expected at q0 = 0
and q±1 =±(2π

3 , 2π
3

)
, and the other zero-modes along the diagonal of the Brillouin zone are

expected to be lifted.

spectrum with some parameters. We can then equate this to the renormalised spectrum re-

sulting from the perturbation theory applied on our original model (under the provisional

assumption that the perturbation is well-defined), which will result in a self-consistent equa-

tions that have to be solved with respect to the initial parameters.

The easiest way to generate a spectrum with the properties (namely the Goldstone modes at

qi ) that we wish to have is to incorporate one further-neighbour coupling,

H J1,Jn = J1
∑
〈i , j〉
µ,ν

Ŝµν(i )Ŝνµ( j )+ Jn
∑

〈〈i , j ′〉〉
µ,ν

Ŝµν(i )Ŝνµ( j ′), (6.4)

where Jn designates the nth-nearest-neighbour coupling and j ′ sums over the nth-nearest-

neighbour sites with respect to the site i . In our subsequent calculations, we will be using three

different couplings that accomodate our tripartite ground-state configuration: J3 > 0, J6 < 0

and anisotropic J2. This additional term in the Hamiltonian lifts the classical degeneracy and

leaves the Goldstone modes at qi as the only zero-modes in the harmonic spectrum εJn (k) of

the the tripartite configuration. With one further-neighbour coupling Jn , we get one parameter
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6.2. Self-consistent method

for which the self-consistent equation needs to be solved. In principle, the equations from

the Dyson equations without the on-shell approximation need to be solved for each point

in the k-space, and the solutions depend on the integration involving the solution we are

looking for. It is hence naive perhaps to establish a self-consistent equation with only one

parameter. However, the hope is that this will already give a good approximation to the true

solution, given the complicated nature of the equations involved (even in the case where the

perturbation theory is well-defined). After all, the important physical features such as the

Goldstone modes are qualitatively taken into account in the elaboration of our self-consistent

equation. It should hence give a fairly good approximation to the renormalised spectrum.

The first step of the calculations is to come back to the original nearest-neighbour Heisenberg

model and to calculate the perturbative terms using the Rayleigh-Schrödinger perturbation

theory, ignoring the fact that the integrals are ill-defined. To simplify the perturbation calcula-

tions significantly, one can map the antiferromagnetic classical ground state to a ferromagnetic

ground state before applying the LFWT, a procedure often used in SU(2) systems.

6.2.1 Mapping to the ferromagnetic state — rotation of local frames

The aim is choose the local basis for each site i such that the local colour |Ai 〉 is the colour of

the condensate on the site i . In other words, this means that we perform a local SU(3) rotation

on the local frame such that the condensed flavour on each site is relabelled as A. For instance,

on the sites of the sublatticeΛB on which the condensate colour is B , the colour B will become

the basis element |A〉.

This mapping of the AFM configuration to the ferromagnetic configuration14 is given by

H = J1nc
∑

i

∑
j∈{i+~ex ,

i+~ey }

∑
µ,ν

Ŝνµ(i )
(
R†Ŝµν(i +1)R

)
. (6.5)

where the rotation R is given by

R =

0 0 1

1 0 0

0 1 0

. (6.6)

The site j will be the neighbouring site on the top and on the right of i , as it was the case in our

original calculations in section 1.2 (we are supposed to sum over the bonds between two given

sublattices). This will thus be the form of the Hamiltonian that will be used subsequently.

14 Suppose that a SU(3) basis λi is given by a SU(3) rotation R on the reference (absolute) basis η. The action of
this rotation R on the generators Ŝ

µ
ν (i ) is given by the adjoint transformation (i.e., the conjugation). In other words,

it is the adjoint representation of the group SU(3) (in the basis λi ):

AdR Ŝ
µ
ν = RŜ

µ
νR−1.
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Chapter VI. Lifting the Line of Zero-Modes

Ultimately, instead of having three bosons for each of the three sublattices — totalling nine

bosons — the rotation of the local frames will result in three bosons only, in total.

6.2.2 Hamiltonian in the rotated frame

The subsequent computations are much simpler in the locally rotated frame. Now that our

antiferromagnetic configuration is mapped into a ferromagnetic configuration, the only bo-

son that is condensated is the boson bA on each site. Hence, after the Holstein-Primakoff

prescription, only bB and bC remain.

Up to order O (n0
c ), our nearest-neighbour Hamiltonian H is then given by

H =H (2) +H (3) +H (4) +O

(√
1

nc

)
where

H (2) =J1nc
∑

i

∑
j∈{i+~ex ,

i+~ey }

[
b†

B (i )bB (i )+b†
C ( j )bC ( j )+b†

B (i )b†
C ( j )+bB (i )bC ( j )

]
,

H (3) =J1
p

nc
∑

i

∑
j∈{i+~ex ,

i+~ey }

[
b†

C (i )bB (i )bB ( j )+b†
C (i )b†

C ( j )bB ( j )+b†
B (i )b†

B ( j )bC (i )+b†
B ( j )bC (i )bC ( j )

]
,

H (4) =− J1
∑

i

∑
j∈{i+~ex ,

i+~ey }

1

2

[
b†

B (i )bB (i )bB (i )bC ( j )+b†
B (i )b†

C ( j )b†
C ( j )bC ( j )+b†

B (i )b†
C ( j )b†

B ( j )bB ( j )

+b†
B (i )b†

C ( j )b†
C (i )bC (i )+b†

C (i )b†
C ( j )bC (i )bC ( j )+b†

B (i )b†
B ( j )bB ( j )bB (i )

+2b†
B (i )b†

C ( j )bB (i )bC ( j )−b†
C (i )b†

B ( j )bC (i )bB ( j )+h.c.
]

.

(6.7)

Notice the appearance of the cubic terms H (3) unlike in the collinear antiferromagnetic SU(2)

models. The reason why the development of H was carried out to the quartic terms H (4) is

because the quartic terms in the first order of the perturbation theory will yield corrections to

the harmonic spectrum which is of the order ∼ 1
nc

, just like the cubic terms H (3) in the second

order of the perturbation theory that will give corrections of the order ∼
p

nc
2

n2
c

= 1
nc

.

We first start by diagonalising H (2) using the Bogoliubov transformation to obtain the har-

monic energy spectrum εk. The procedure here is very similar to the one in section 1.2 (it

is in fact the same as the Bogoliubov transformation used for the sub-Hamiltonians Hµν in

section 1.2). Using the Fourier transform

bµ(l ) =
√

1

N

∑
k

bµ(k)e−i krl , (6.8)
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6.2. Self-consistent method

with µ ∈ {B ,C }, we now denote the new Bogoliubov bosons by ηµ, which are given by

b†
C (k) = u∗

kη
†
C (k)− vkηB (−k),

bC (k) = ukηC (k)− vkη
†
B (−k),

b†
B (k) =−vkηC (−k)+ukη

†
B (k),

bB (k) =−vkη
†
C (−k)+u∗

kηB (k).

(6.9)

As in Appendix A, we have the following relations:

εk =
√
A2 −|Bk|2, (6.10a)

|uk|2 + v2
k = A

εk
, 2ukvk = Bk

εk
, (6.10b)

uk =
√

1

2

(
A

εk
+1

)
e i argBk =

√
1

2

(
A

εk
+1

)
e i argγk , (6.10c)

vk =
√

1

2

(
A

εk
−1

)
, (6.10d)

with

γk = 1

2
(e i kx +e i ky ),

A= 2J1nc , Bk = 2J1ncγk,
(6.11)

and the number z = 2 is the coordination number (the number of links) between two sublat-

tices. The spectrum obtained here is identical to that in section 1.2 as it should. Note that we

have the properties that

u−k = u∗
k , v−k = vk, (6.12a)

γ−k = γ∗k , ω−k =ωk. (6.12b)

We now look for the renormalised spectrum ε̃k, that will have the following form:

ε̃(k) = ε(k)+Σ(3)(k)+Σ(4)(k). (6.13)

This is in fact the Dyson equation. The self-energy Σ(3)(k) is the corrections coming from H (3)

and the self-energy Σ(4)(k) is the corrections coming from H (4). Let us first look at the quartic

contributions.
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Chapter VI. Lifting the Line of Zero-Modes

6.2.3 The corrections from H (4)

The quartic Hamiltonian can be written as H (4) = δE (4) +δH (2) +H̃ (4). The uniform energy

shift δE (4) can be ignored for our purpose, as well as the two-particle scattering process H̃ (4).

The term δH (2) is the term of our interest: it is the corrections to the harmonic spectrum that

comes from the quartic term.

We perform the Wick decoupling to calculate the quadratic average in real-space to simplify

the calculations, as done in Ref. [85] whose calculation method we will closely follow and adapt

to our SU(3) calculations. The details of the calculations in this subsection can be consulted in

Appendix C. As an example, let us show here the computation of one of the possible averages

of a pair of bosons,
〈

b†
B (i )bB (i )

〉
. By using the ground state of H (2) which is the Bogoliubov

vacuum |0〉, we obtain

〈
b†

B (i )bB (i )
〉
= 1

N

〈
0

∣∣∣∣∣∑
i

b†
B (i )bB (i )

∣∣∣∣∣0

〉
= 1

N

〈
0

∣∣∣∣∣∑
k

b†
B (k)bB (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(
−vkηC (−k)+ukη

†
B (k)

)(
−vkη

†
C (−k)+u∗

kηB (k)
)∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

v2
kηC ,−kη

†
C ,−k

∣∣∣∣∣0

〉

= 1

N

∑
k

v2
k

(6.10)= 1

N

∑
k

[
1

2

(
A

ωk
−1

)]
=:n.

(6.14)

Similarly, we also obtain
〈

b†
C ( j )bC ( j )

〉
=

〈
b†

B ( j )bB ( j )
〉
=

〈
b†

C (i )bC (i )
〉
= n. The other non-

zero possible Hartree-Fock average is given by

〈
b†

B (i )b†
C ( j )

〉
=

〈
b†

C ( j )b†
B (i )

〉
= 〈

bC ( j )bB (i )
〉= 〈

bB (i )bC ( j )
〉=− 1

N

∑
k

∣∣γk
∣∣ |Bk|

2ωk

= :∆γ.

(6.15)

We can now use them to compute δH (2). The Wick theorem states that the term δH (2) in

which we are interested is the sum of the normal-ordered quartic terms : H (4) : with one

contraction (in all possible combinations). As an example, let us just take the first term of H (4)

in Eq. (6.7), b†
B (i )bB (i )bB (i )bC ( j ), without the numerical factor −1

2 :

∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )bB (i )bB (i )bC ( j )
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ε
(4)
k

Figure 6.4 – The corrections ε(4)
k .

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )bB (i )bB (i )bC ( j ): + :b†
B (i )bB (i )bB (i )bC ( j ): + :b†

B (i )bB (i )bB (i )bC ( j ):

+ :b†
B (i )bB (i )bB (i )bC ( j ): + :b†

B (i )bB (i )bB (i )bC ( j ): + :b†
B (i )bB (i )bB (i )bC ( j ):

]
=z

∑
k

[
nγ∗k :bB (−k)bC (k): +nγ∗k :bB (−k)bC (k): +0

+0+∆∗
γ :b†

B (−k)bB (−k): +∆∗
γ :b†

B (−k)bB (−k):
]

=z
∑

k

[
2nγ∗k :bB (−k)bC (k): +2∆∗

γ :b†
B (−k)bB (−k):

]
.

(6.16)

By doing this with all the terms of the quartic Hamiltonian and by expressing them in terms of

the Bogoliubov bosons ηk, the term δH (2) is then given by

δH (2) =2J
∑

k

[
ω(4)

k η†
B ,kηB ,k +ω(4)

k η†
C ,kηC ,k +B (4)

k

∗
ηB ,−kηC ,k +B (4)

k η†
B ,−kη

†
C ,k

]
=∑

k

[
ε(4)

k η†
B ,kηB ,k +ε(4)

k η†
C ,kηC ,k + J z

(
B (4)

k

∗
ηB ,−kηC ,k +B (4)

k η†
B ,−kη

†
C ,k

)]
,

(6.17)

where

δA :=−3
(
n +∆γ

)
, δBk :=−γk

(
3n +2∆γ

)
,

ω(4)
k :=

(∣∣uk

∣∣2 + v2
k

)
δA−2Re

(
u∗

k vkδBk
)

,

ε(4)
k := 2J1ω

(4)
k .

(6.18)

The two last terms involving B (4)
k , i.e., two-particle scattering process, can be ignored for the

magnetisation calculations: we only keep track of ε(4)
k which corresponds to the first-order

magnon energy correction, depicted in terms of the Feynmann diagram in Figure 6.4. The

self-energy Σ(4)(k) that renormalises the harmonic spectrum is then simpliy given by ε(4)
k :

Σ(4)(k) ≡ ε(4)
k . (6.19)
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6.2.4 The corrections from H (3)

Let us now look at the cubic terms. After the Fourier transform and with the Bogoliubov bosons

η, the cubic Hamiltonian H (3) is given by

H (3) = 2J1
p

nc

√
1

N

∑
k,q

[
Γ̃B

1 (q,k−q;k)η†
C ,qη

†
C ,k−qηB ,k + Γ̃B

2 (q,−k−q,k)η†
B ,qη

†
B ,−k−qη

†
B ,k

+ Γ̃C
1 (q,k−q;k)η†

B ,qη
†
B ,k−qηC ,k + Γ̃C

2 (q,−k−q,k)η†
C ,qη

†
C ,−k−qη

†
C ,k +h.c.

] (6.20)

with

Γ̃B
1 = Γ̃C

1 =−γ−ku∗
q u−kvk−q −γqu∗

k−qu−kvq −γqv−kvk−qvq

+γq−ku∗
k−qu∗

q u−k +γku∗
q v−kvk−q +γ−qu∗

q v−kvk−q,

Γ̃B
2 = Γ̃C

2 =γqu∗
k v−k−qvq −γ−ku∗

k u∗
q v−k−q. (6.21)

These terms are symmetric in B and C . We now symmetrise Γ̃1(q,k−q;k) with respect to q and

k−q, and Γ̃2(q,k−q,k) with respect to q, k−q and k, as it is easier to apply the second-order

perturbation theory with symmetrised terms. We finally obtain

H (3) = 2J1
p

nc

√
1

N

∑
k,q

[
1

2!
Γ1(q,k−q;k)η†

C ,qη
†
C ,k−qηB ,k +

1

3!
Γ2(q,−k−q,k)η†

B ,qη
†
B ,−k−qη

†
B ,k

+ 1

2!
Γ1(q,k−q;k)η†

B ,qη
†
B ,k−qηC ,k +

1

3!
Γ2(q,−k−q,k)η†

C ,qη
†
C ,−k−qη

†
C ,k +h.c.

]
.

(6.22)

The diagrammatic representation of the Γ1,2 are depicted in Figure 6.5.

Γ1

(a) Vertex Γ1 in H (3).

Γ2

(b) Source vertex Γ1 in H (3).

Γ1 Γ∗
1 Γ∗

2 Γ2

(c) Normal self-energies from the 2nd-order perturbation theory with the cubic vertices Γ1,2.

Figure 6.5 – Diagrammatic representation of the cubic vertices Γ1,2 and their contribution to
the renormalised spectrum Σ(3).
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6.2. Self-consistent method

From this expression of H (3), its contribution to the renormalised spectrum can be finally

obtained with the second-order perturbation theory:

Σ(3)(k) =2J1

1

2

1

σBZ

∫
BZ

∣∣Γ1(q;k)
∣∣2

ε(k)−ε(q)−ε(k−q)
dq

− 1

2

1

σBZ

∫
BZ

∣∣Γ2(q;k)
∣∣2

ε(k)+ε(q)+ε(k+q)
dq

 .

(6.23)

The factor σBZ is the surface of the Brillouin zone. This expression also corresponds to the

Dyson equation with the on-shell approximation. This completes the expression of the renor-

malised spectrum εk that we are looking for, ε̃(k) = ε(k)+Σ(3)(k)+Σ(4)(k), with the self-energies

Σ(3)(k) and Σ(4)(k).

As a side remark, we highlight the fact that Goldstone modes are preserved to all orders of the

perturbation. If the harmonic spectrum ε has a Goldstone mode at q̄, then Σ(3)(q̄),Σ(4)(q̄) all

diverge because εq̄ = 0. However, the divergency of Σ(3) is exactly cancelled by Σ(4), yielding

ε̃(q̄) = 0 as it should. This non-trivial cancellation could have been used as a small sanity check

for our perturbation calculations if these calculations had been well-defined—this is of course

not the case here. However, the AFM J1 − J3 model does not have any lines of zero-modes in

the harmonic spectrum. This means that the perturbation calculations can be carried out

without any problems, and we thus checked numerically that Σ(3)
J1,J3

(k)+Σ(4)
J1,J3

(k) → 0 as k → q̄,

as it should for this model. As the colour-configuration of the J3-neighbours are similar to

that of the J1-neighbours, the perturbative terms H (3)
J1,J3,H (4)

J1,J3 in the real-space are nearly

identical to those of the original J1 model: only the sum over the third-nearest neighbors has

to be added. In this sense, checking the preservation of the Goldstone modes with the J1 − J3

model can also serve as a small sanity check for the calculations of the perturbative terms of

our J1 model, to some degree. Albeit very indirectly.

6.2.5 Using Jn to get the renormalised spectrum

The expression that is sought after is ε̃k, i.e., the LHS of Eq. (6.13). However, as mentioned

earlier, the RHS of this equation that we obtained is, in fact, infrared-divergent. Thus, the

idea is to establish a self-consistent equation with it by using our physical knowledge that the

authentic quantum spectrum would most certainly lift the line of zero-modes except at q0,±1

where the linear Goldstone modes are expected. As we expect that renormalised spectrum

will qualitatively resemble the harmonic spectrum of the J1 − Jn model due to quantum

fluctuations, we thus make the assumption that the renormalized spectrum on the LHS is

given by the bare spectrum of the J1− Jn model, ε̃k ≡ εJ1,Jn . We also replace all the bare spectra

ε(k) in the expressions of the self-energies Σ(3),Σ(4) on the RHS by εJ1,Jn (k) which does not

possess any line of zero-modes to treat the divergence problem. This yields a self-consistent
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Chapter VI. Lifting the Line of Zero-Modes

equation that can be solved for Jn for a specific value of k:

ε̃(k) = ε(k)+Σ(3)(k)+Σ(4)(k)

↓
εJ1,Jn (k; Jn)

!= ε(k)+Σ(3)
J1,Jn

(k; Jn)+Σ(4)
J1,Jn

(k; Jn)

≡ ε̃(k).

(6.24)

We note that this replacement also applies to the expressions of uk and vk in the self-energies,

as they also depend implicitly on εk, see Eqs. (6.10):

uk −→ u(k; Jn) =
√

1

2

(
A

εJ1,Jn (k)
+1

)
e i argBJn (k), (6.25a)

vk −→ v(k; Jn) =
√

1

2

(
A

εJ1,Jn (k)
−1

)
. (6.25b)

All in all, the new self-consistent self energies on the RHS will be given by

Σ(3)
J1,Jn

(k) =2J1

1

2

1

σBZ

∫
BZ

∣∣Γ1
(
q;k;εJ1,Jn (k)

)∣∣2

εJ1,Jn (k)−εJ1,Jn (q)−εJ1,Jn (k−q)
dq

− 1

2

1

σBZ

∫
BZ

∣∣Γ2
(
q;k;εJ1,Jn (k)

)∣∣2

εJ1,Jn (k)+εJ1,Jn (q)+εJ1,Jn (k+q)
dq

 ,

Σ(4)
J1,Jn

(k) =2J1ω
(4)
k

(
εJ1,Jn (k)

)
,

(6.26)

where the dependence on εJ1,Jn (k) of Γ1, Γ2 and ω(4)
k come from their dependence on u(k; Jn)

and v(k; Jn).

As there is only have one parameter Jn in this self-consistent equation, we cannot hope to

obtain one universal solution Jn for all the values of k. We will thus take one particular point

in the Brillouin zone, k̄ = (π3 , π3 ) to solve this equation. In this sense, it is a very crude approach.

However, this has the advantage that the infrared divergency is eliminated and that it is very

simple to solve. The reason for this particular choice of k̄ is because it is supposedly the point

at which the gap is the largest, thus endowing it with a certain significance in our attempt

of creating a gap in the spectrum. Furthermore, the self consistent equation not being an

exact perturbation calculations, the cancellation of the divergencies is not achieved at the

Goldstone points q0,±1, so it is desirable to solve the equation at the furthest possible point

from the Goldstone points, which is precisely the point k̄.

With this in mind, we start with the calculations of the harmonic spectrum of the J1 − Jn

models.15

15Note that the application of the LFWT to the further-neighbour coupling is identical to the nearest-neighbour
Hamiltonian.
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The J1 − J3 model

Let us first include the third-furthest-neighbour coupling J3 (coupling between a site and its

second-nearest horizontal/vertical neighbours). If J3 > 0, it then stabilises the three-sublattice

J3

Figure 6.6 – The antiferromagnetic J3-coupling with the three-sublattice order.

configuration. The colour configuration of the third-furthest neighbours is similar to the

nearest-neighbours, only spatially inverted with respect to the reference site. Hence, the diag-

onalisation of H (2)
J1,J3

can be carried out in a similar fashion to that of H (2) in subsection 6.2.2.

The dispersion relation of H (2)
J1,J3

is then be given by

εJ1,J3 (k) :=nc

√
A2

J3
− ∣∣BJ3 (k)

∣∣2, (6.27)

where

AJ3 =4(J1 + J3),

BJ3 (k) =4(J1γk + J3γ−2k).
(6.28)

The J1 − J6 model

It is also possible to include the ferromagnetic sixth-nearest-neighbour coupling J6 < 0 (or

the third-nearest horizontal/vertical neighbours) to stabilise our tripartite configuration, see

Figure 6.7: As we already have the quadratic Hamiltonian of the initial J1-model, we only

need to take care of the J6-part of the J1 − J6 Hamiltonian. All the J6-bonds connect one

sublattice with itself, since the J6-coupling is ferromagnetic. As we only derived the expression

of the quadratic Hamiltonian for antiferromagnetic bonds until now, we need to derive the

expression of the quadratic Hamiltonian for ferromagnetic bonds using the Holstein-Primakoff

bosons by replacing bA(i ) by
p

nc . This is simply given by

H (2)
J6

=J6nc · 1

2

∑
i

∑
〈〈 j ′〉〉

[
bB (i )b†

B ( j ′)+bC (i )b†
C ( j ′)+b†

B (i )bB ( j ′)+b†
C (i )bC ( j ′)

−b†
B (i )bB (i )−b†

B ( j ′)bB ( j ′)−b†
C (i )bC (i )−b†

C ( j ′)bC ( j ′)
]

.

(6.29)
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J6

Figure 6.7 – The ferromagnetic J6-coupling with the three-sublattice order.

The
〈〈

j ′
〉〉

refers to the sixth-nearest-neighbours of i . The Fourier transform yields

H (2)
J6

=J6nc
∑

k

[(
4γJ6 (k)−4

)
b†

B (k)bB (k)+ (
4γJ6 (k)−4

)
b†

C (k)bC (k)
]
+cst, (6.30)

with

γJ6 (k) = 1

2
(cos3kx +cos3ky ). (6.31)

We can now add these terms with the terms from the J1-Hamiltonian, Eq. (1.36), and perform

the Bogoliubov transformation to obtain the dispersion relation of the J1 − J6 model. The

resulting dispersion relation εJ6 is given by

εJ1,J6 (k) :=nc

√
AJ6 (k)2 − ∣∣BJ6 (k)

∣∣2, (6.32)

with

AJ6 (k) =2J1 +4J6(γJ6 (k)−1),

BJ6 (k) =2J1γk.
(6.33)

The J1 − J2 model

The choice of the sign of the second-next-nearest-neighbour coupling J2 should not be

isotropic in the sense that the sign of the coupling must depend on the direction of the

coupling to stabilise our tripartite configuration. Two of the diagonal couplings are ferro-

magnetic whereas the two other directions are antiferromagnetic: the north-west/south-east

bonds should be ferromagnetic whereas the north-east/south-west bonds should be antifer-

romagnetic, see Figure 6.1. By convention, let us choose the value of J2 to be positive. Using

Eq. (1.36) for antiferromagnetic bonds and Eq. (6.29) for ferromagnetic bonds, it is straightfor-
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J2

Figure 6.8 – The J2-coupling with the three-sublattice order. The black dotted lines represent
the antiferromagnetic bonds and the red dotted lines represent the ferromagnetic bonds.

ward to compute the dispersion relation. The result of the diagonalisation of the J1 − J2 model

is given by

εJ1,J2 (k) :=nc

√
AJ2 (k)2 − ∣∣BJ2 (k)

∣∣2, (6.34)

with

AJ2 (k) =2J1 +
[

J2 −2J2
(
cos(kx −ky )−1

)]
,

BJ2 (k) =2J1γk + J2γ
∗
k .

(6.35)

6.2.6 Magnetisation depending on the Jn

We now solve the equation εJ1,Jn (k̄; Jn)
!= ε(k̄)+Σ(3)

J1,Jn
(k̄; Jn)+Σ(4)

J1,Jn
(k̄; Jn) for Jn at the k-point

k̄ = (±π
3 ,±π

3

)
as mentioned before, where the gap is supposed to be the largest. For this, we set

the value of the nearest-neighbour coupling J1 = 1. For different Jn couplings, we obtain the

solutions as follows:

• ε̃≡ εJ1,J3 → J3 ≈ 0.0689

• ε̃≡ εJ1,J6 → J6 ≈−0.0324

• ε̃≡ εJ1,J2 → J2 ≈ 0.1334

(6.36)

They are depicted in Figure 6.9 below.

Once we have the renormalised spectrum ε̃≡ εJ1,Jn , we can compute the corrected value of

the magnetisation m ≡ m J1,Jn as in Ref. [31], but using the harmonic spectrum of the J1 − Jn
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(a) Dispersion relation ε of the original J1 model. (b) Dispersion relation εJ1,J3 of the J1 − J3 model.

(c) Dispersion relation εJ1,J6 of the J1 − J6 model. (d) Dispersion relation εJ1,J2 of the J1 − J2 model.

Figure 6.9 – The spectrum ε of the original J1 model and the dispersion relations εJ1,Jn with
the solutions Jn of the self-consistent equations. The spectra are all doubly degenerate in the
extended Brillouin zone. We thus have 6 Goldstone modes in all the models.

model, as follows:

m = 〈
Ŝ A

A(i )
〉

= nc −
〈

b A†
B (i )b A

B (i )+b A†
C (i )b A

C (i )
〉

= nc −2
〈

v(k; Jn)2〉 .

(6.37)

The resulting results for the ordered moment are

• ε̃≡ εJ1,J3 → m ≈ 0.220

• ε̃≡ εJ1,J6 → m ≈ 0.242

• ε̃≡ εJ1,J2 → m ≈ 0.301

(6.38)
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6.2. Self-consistent method

(a) εJ1,J3 and εJ1,J6 (b) εJ1,J3 and εJ1,J2

Figure 6.10 – Comparing the spectra εJ1,J3 with εJ1,J6 and εJ1,J2 with the solutions J3 ≈ 0.0689,
J6 ≈−0.0324, J2 ≈ 0.1334 of the respective self-consistent equations.

The value of m J1,Jn all vary, but they lie between 0.220−0.301. They are all larger than zero,

suggesting that the long-range colour-order would survive quantum fluctuations. These esti-

mates of m are all within the numerical estimates 0.2−0.4 suggested by the iPEPS and DMRG

calculations in Ref. [31]. The linear fit of the largest system-size results of the iPEPS simulations

seems to suggest the lower range of the estimate (0.2), so our estimates of m seem to be fairly

consistent with these numerical results, given the rather basic nature of our calculations.

We would nonetheless point out the fact that the choice of Jn is very arbitrary, since any

choice of Jn stabilising our tripartite configuration would be justified. Hence, it would be

desirable to render these self-consistent equations more systematic in some way—perhaps by

including more parameters. It could be conceivable to think that the true solution could be

approached by adding more further-neighbour couplings. However, our attempt to solve the

self-consistent equation based on the J1 − J2 − J3 model in order to have two parameters has

been hampered by numerical problems and has not been successful, probably due to the very

crude nature of this self-consistent equation which makes it somewhat inconsistent with two

such parameters.

It is however interesting to observe that the corrected magnetisation value is roughly similar

between the three Jn that was used here, J2, J3, J6. Indeed, it can be seen in Figure 6.10 that

the dispersion relations of εJ1,J2 , εJ1,J3 and εJ1,J6 seem to be quite similar. More precisely, if

we compare the velocity of the Goldstone modes of each of the εJ1,Jn , it can be seen that the

velocities are similar. By denoting the velocity in the direction kx = ky (i.e., in the direction of

the line of zero-modes in the original model) by c1 and the velocity of the orthogonal direction
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kx =−ky by c2, we find that

• εJ1,J3 : c J1,J3
1 = 3

p
2
√

J1 J3 = 1.114 c J1,J3
2 =

p
2
√

J 2
1 +5J1 J3 +4J 2

3 = 1.651

• εJ1,J3 : c J1,J6
1 = 6

√
J1 |J6| = 1.080 c J1,J6

2 =p
2
√

J 2
1 +18J1 |J6| = 1.779

• εJ1,J3 : c J1,J2
1 = 3

√
J1 J2 = 1.096 c J1,J2

2 =
√

2J 2
1 +9J1 J2 +4J 2

2 = 1.809

(6.39)

where we used J1 = 1 and the solutions of Jn obtained in Eq. (6.36) for the values of Jn . The

reduction of the magnetisation is proportional to
∫ 1
εJ1,Jn

dk, thus the largest contribution to

the magnetisation comes from the vicinity of the Goldstone modes. Since the velocities of the

Goldstone modes are similar in all the three models, the magnetisation value m also turn out

to be comparable in all three cases.

6.3 Different methods also show the line of zero-modes

As pointed out earlier, the line of zero-modes that appear in the quadratic spectrum of the

SU(3) J1-Hamiltonian in the three-sublattice configuration is due to the infinite classical

ground-state degeneracy: it is not an artifact related to the LFWT method itself. To show this,

we will derive the velocities of the Goldstone modes with two different calculations: first using

the nonlinear sigma model (NLσM), and then by solving the quantum equations of motion of

the generators Ŝµν , i.e., ˙̂Sµν(i ) = i
[
H , Ŝµν(i )

]
.

The equivalence of the velocity of the Goldstone modes obtained will all these methods is

already known with the AFM SU(2) spin models. Indeed, the O(3) nonlinear sigma model [86]

and the computation of the equations of motions of the spin operator Si all yield the same

velocity as the conventional spin-wave theory.16 We will show here that it is also the case with

our SU(3) model.

6.3.1 Non-linear σmodel

The aim is to derive the velocities of the Goldstone modes from the action S in the continuum

limit. For this, we closely follow the procedure used in [87, 12] for the SU(3) irreps with one

row in the Young tableau (which includes the fundamental irrep we are considering).

The 2D SU(3) colour configuration considered here is the tripartite configuration. We first

define the three-sublattice the unit cell as shown in Figure 6.11. With this in hand, we then

define the primitive translation vectors

a1 = (3,0)a & a2 = (−1,1)a (6.40)

where a is the lattice spacing (that we will set to 1). From here onwards, we can write the

16Ref. [43] shows how to solve the equations of motions of the spin operator for the ferromagnetic case. The
antiferromagnetic case can be consulted in the Appendix E.
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position of a unit cell as a two-dimensional vector (i , j ) ∈ N2 in the basis {a1,a2}. We now

express the ground-state colour configuration of each of the three sites in the unit cell (i , j )

with the three-dimensional complex vectors ~ϕ1(i , j ),~ϕ2(i , j ),~ϕ3(i , j ). Since the fields ~ϕ1,2,3

a1

a2

φ3φ1 φ2

Figure 6.11 – The unit cell at the position (i , j ) is depicted by the dashed box. The three
orthogonal colours of the ground states ~φ1(i , j ), ~φ2(i , j ) and ~φ3(i , j ) are shown. The translation
vectors a1 and a2 are shown by the arrows.

describe the ground-state configuration, they are all orthogonal to each other. In addition, in

our ground-state configuration, there is a remaining U(1)×U(1) symmetry that has no effect

on the energy of the bonds in the unit cell. Hence, the three vectors ~ϕ1,2,3 form together a

matrix U ∈ SU(3) \ (U(1)×U(1)). This means that the matrix U can then be generated from the

six non-diagonal Gell-Mann matrices17 of SU(3) out of the eight Gell-Mann matrices that exist,

λ1 :=

0 1 0

1 0 0

0 0 0

 , λ2 :=

0 0 1

0 0 0

1 0 0

 , λ3 :=

0 0 0

0 0 1

0 1 0

 ,

λ4 :=

0 −i 0

i 0 0

0 0 0

 , λ5 :=

0 0 −i

0 0 0

i 0 0

 , λ6 :=

0 0 0

0 0 −i

0 i 0

 ,

λ7 :=

1 0 0

0 −1 0

0 0 0

 , λ8 := 1p
3

1 0 0

0 1 0

0 0 −2

 ,

(6.41)

since the two diagonal matrices λ7,8 are related to the remaining U(1)×U(1) symmetry. We

thus conclude that

U := exp

(
i

6∑
k=1

θk (i , j ,τ)λk

)
(6.42)

17Note that the numbering order of the Gell-Mann matrices are different from the one used in subsection 1.1.2
for practical purposes.
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and

t~ϕi (i , j ,τ) = t~ei U (i , j ,τ). (6.43)

Note here that the symmetry of our system is reduced to H := U(1)×U(1) in our tripartite

configuration from the initial G := SU(3) symmetry.18 The number of Goldstone modes is then

given by

dim
(
G \ H

)
= dim(G)−dim(H)

= dim
(
SU(3)

)
−dim

(
U(1)×U(1)

)
= 8−2

= 6.

(6.44)

This indeed corresponds to the number of Goldstone modes that we expect in the case where

the accidental zero-modes are lifted, see Figure 6.9.

To allow the fluctuations from our ground-state configuration, we define the L matrices

L1 :=

cos l1 sin l1 0

sin l1 cos l1 0

0 0 1

 , L2 :=

cos l2 0 sin l2

0 1 0

sin l2 0 cos l2

 , L3 :=

1 0 0

0 cos l3 sin l3

0 sin l3 cos l3

 ,

L4 :=

 cos l4 i sin l4 0

−i sin l4 cos l4 0

0 0 1

 , L5 :=

 cos l5 0 −i sin l5

0 1 0

i sin l5 0 cos l5

 , L6 :=

1 0 0

0 cos l6 i sin l6

0 −i sin l6 cos l6

 .

(6.45)

We can then generate a general fluctuation matrix L by multiplying all the Lk together. Before

doing this, let us first attach the factor a
p to the lk to explicitly make the fluctuations small,

where p is the number of horizontal boxes of the Young tableaux , , . . . which corre-

sponds to our expansion parameter that allows us to reach the classical limit, p →∞ (p will

be set to 1 at the end of our calculations). To the order a2

p2 , L is then given by

L(~l ) =
6∏

k=1
Lk (lk )

=:


√

1− a2

p2

(|L12|2 +|L13|2
) a

p L12
a
p L13

a
p L∗

12

√
1− a2

p2

(|L12|2 +|L23|2
) a

p L23

a
p L∗

13
a
p L∗

23

√
1− a2

p2

(|L13|2 +|L23|2
)


=: L(L12,L23,L13),

(6.46)

where we now parametrise L with its matrix elements defined by L12 := l1 + l4, L23 := l3 + l6

18The remaining symmetry group H is what is known as the little group in physics. In algebraic mathematics, it
is called a stabiliser.
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and L13 := l∗2 + l∗5 to simplify the subsequent calculations. This matrix skews any pair of axes

out of the three axes in the three dimensional complex space. Hence, it allows us to generate

states departing from the ground state. A state φi from an arbitrary configuration is then given

by

t~φi (i , j ,τ) =t~ei LU (i , j ,τ). (6.47)

We are now ready to write down the action S of our system. With appropriately defined

spin coherent states and the Haas measure, whose details can be found in Ref. [87, 12], the

imaginary-time partition function can be given as

Tr
(
e−βH

)
=

∫
D[~φ]exp

−
β∫

0

dτ

[(⊗
i , j

〈〉~φ(i , j ;τ)
∣∣)H

(⊗
i , j

∣∣~φ(i , j ;τ)
〉)+∑

i , j
p~φ∗(i , j ;τ)∂τ~φ(i , j ;τ)

]
=

∫
D[~φ]e−S[~φ]

(6.48)

using the standard field-theoretical calculation techniques with the Lie-Trotter decomposition.

The last term is the Berry phase. The SU(3) Hamiltonian that will be considered here is the

J1 − J3 Hamiltonian,

H = J1
∑
〈i , j〉
µ,ν

Sµν(i )Sνµ( j )+ J3
∑

〈〈i , j ′〉〉
µ,ν

Sµν(i )Sνµ( j ′). (6.49)

This will allow us to derive the velocity of the Goldstone modes of the J1 − J3 model as well as

the J1 model in which we are interested. The action S of our discrete 2D lattice model with the

J1 − J3 couplings is then given by

S =
β∫

0

∑
i , j∈N

{
p2 J1

[∣∣~φ∗
1 (i , j ) ·~φ2(i , j )

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ3(i , j )

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ1(i +1, j )

∣∣2

+ ∣∣~φ∗
1 (i , j ) ·~φ2(i , j +1)

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ3(i , j +1)

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ1(i +1, j +1)

∣∣2
]

+p2 J3

[∣∣~φ∗
1 (i , j ) ·~φ3(i , j )

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ1(i +1, j )

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ2(i +1, j )

∣∣2

+ ∣∣~φ∗
1 (i , j ) ·~φ3(i , j +2)

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ1(i +1, j +2)

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ2(i +1, j +2)

∣∣2
]

+p
3∑

n=1

~φ∗
n(i , j ) ·∂τ~φn(i , j )

}
dτ,

(6.50)

where the τ-dependency is implicit and the individual terms come from each bond of the

unit cell. In the continuum limit, the fluctuations L12, L23, L13 can be integrated out, after
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Chapter VI. Lifting the Line of Zero-Modes

which the fields ~ϕ can be linearised in θk —remember that U := exp

(
i

6∑
k=1

θk (i , j ,τ)λk

)
—such

that we can obtain the low-energy behaviour of our system. Furthermore, we now consider a

coordinate basis {x ′, y ′} rotated by π
2 such that we can conveniently calculate the velocities of

the Goldstone modes in the direction of the line of zero-modes in the Brillouin zone (kx = ky )

and in its orthogonal direction kx =−ky . The details of all these calculations can be found in

Appendix D. All in all, the linearised action S0[θ] is given by

S0[θ] =
∫

d x ′d y ′dτL =
∫

d x ′d y ′dτ
6∑

i=1

(
χ |∂τθi |2 +ρ1 |∂1θi |2 +ρ2 |∂2θi |2

)
(6.51)

with ∂1 = ∂
∂x ′ , ∂2 = ∂

∂y ′ and

χ := 1

2(J1 + J3)
, ρ1 := 9a2p2

(
− J3

J1 + J3
+ J3

)
, ρ2 := a2p2 (J1 +4J3) . (6.52)

We will now set a = 1 and p = 1. The Euler-Lagrange equations of our action S0[θ] yield the

equations of motion,

∂µ

(
∂L

∂(∂µθk )

)
− δL

δθi
= 0 =⇒ (

χ∂2
τ+ρ1∂

2
1 +ρ2∂

2
2

)= 0, (6.53)

with µ ∈ {
x ′, y ′,τ

}
. They can be solved with the ansatz θi =Ci

(
e i k·r+ωi ,kτ+ c.c.

)
, yielding the

solution for ωi ,k:

=⇒ ωi ,k =
√
ρ1

χ
k2

x ′ + ρ2

χ
k2

y ′

=:
√

c2
1k2

x ′ + c2
2k2

y ′ ,

(6.54)

where i ∈ {1, . . . ,6}. The velocities of the Goldstone modes c J1,J3
1 and c J1,J3

2 are then given by

c J1,J3
1 =

√
ρ1

χ
= ap3

p
2
√

J1 J3,

c J1,J3
2 =

√
ρ2

χ
= ap

p
2
√

J 2
1 +5J1 J3 +4J 2

3

(6.55)

for each of the 6 modes ωi . We thus obtain 6 Goldstone modes related the broken rotational

symmetries λ1,...,6. The c J1,J3
1 and c J1,J3

2 indeed correspond to the velocities of the J1 − J3 model

obtained with the LFWT in Eq. (6.39) in section 6.1. In particular, the velocity of the J1 model

(i.e., J3 = 0) in the kx ′ direction is 0 as it should according to the LFWT:

c J1
1 = 0, c J1

2 =
p

2J1. (6.56)

We also note that (6.54) is reminiscent of the hydrodynamic investigation of the magnetic spin
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6.3. Different methods also show the line of zero-modes

systems where the spin-wave velocity c is indeed given by c =
√

ρ
χ [88, 89, 90, 91] in isotropic

Goldstone modes, with ρ being the stiffness constant and χ the magnetic susceptibility.

6.3.2 The Liouville equation

Let us now compute the velocities of the Goldstone modes using the quantum version of the

Liouville equation. It yields a system of differential equations (equations of motion) to solve. It

can be instructive to first perform these calculations for the conventional AFM SU(2) spins on

the square lattice—details of which can be found in the Appendix E. Here, we start with our

usual SU(3) Hamiltonian

H = J
∑
〈i , j〉

∑
µ,ν

Ŝµν(i )Ŝνµ( j ), (6.57)

where µ,ν are the colour indices. One should note that the Hamiltonian is written using 9

generators instead of 8 generators (i.e., they are not all independent) and that they are written

in terms of ladder operators.

For ease of readability, we will exceptionally use the numbers 1,2,3 instead of the letters

A,B ,C to designate the three SU(3) colours in this subsection, and we will also omit the hat

symbol ˆ from the operators Ŝµν . The sites in each of the three sublattices of our ground-state

configuration will be denoted by i ∈Λ1, j ∈Λ2, k ∈Λ3. Furthermore, the colour indices will be

denoted by α,β,µ,ν ∈ {1,2,3}.

Using the SU(3) commutation relations, let us calculate the Liouville equation for Sα
β

(i ) for

any α,β ∈ {1,2,3} and i ∈Λ1:

Ṡα
β

(i ) =i
[
H ,Sαβ(i )

]
=i J

∑
〈 j∈{ex ,ey }〉

3∑
µ,ν=1

[
Sµν(i ),Sαβ(i )

]
Sνµ( j )+ i J

∑
〈k∈{−ex ,−ey }〉

3∑
µ,ν=1

Sµν(k)
[

Sνµ(i ),Sαβ(i )
]

=i J
3∑

µ,ν=1

{∑
〈 j〉

(
δ
µ

β
Sαν (i )−δανSµ

β
(i )

)
Sνµ( j )+∑

〈k〉
Sµν(k)

(
δνβSαµ(i )−δαµSνβ(i )

)}

=i J
3∑

µ=1

{∑
〈 j〉

(
Sαµ(i )Sµ

β
( j )−Sµ

β
(i )Sαµ( j )

)
+∑

〈k〉

(
Sµ
β

(k)Sαµ(i )−Sαµ(k)Sµ
β

(i )
)}

.

(6.58)

Due to the symmetry of the order we consider, the Liouville equations for Sα
β

( j ) and Sα
β

(k) are

identical to (6.58) up to a cyclic rotation of the site indices i , j ,k.

We now consider the colours on each site to beC3 vectors with length nc (just as we would

assume that the spin has length S in the SU(2) calculations). Given aC3 basis {e1,e2,e3}, we

can assume that the colour of the sublatticeΛα is given by nc eα with α ∈ {1,2,3}. Taking into

account the action of the generators on these vectors, we can conclude that the generators
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Chapter VI. Lifting the Line of Zero-Modes

can be approximated by

Sαβ(i ; t ) = ncδ
α
1 δ

1
β+δSαβ(i ; t ),

Sαβ( j ; t ) = ncδ
α
2 δ

2
β+δSαβ( j ; t ),

Sαβ(k; t ) = ncδ
α
3 δ

3
β+δSαβ(k; t ).

(6.59)

Plugging this approximation into Eq. (6.58) yields

δṠα
β

(i ) = i Jnc

{ ∑
〈 j〉

[
δ2
β
δSα2 (i )+δα1 δS1

β
( j )−δα2 δS2

β
(i )−δ1

β
δSα1 ( j )

]
+ ∑

〈k〉

[
δα1 δS1

β
(k)+δ3

β
δSα3 (i )−δ1

β
δSα1 (k)−δα3 δS3

β
(i )

]}
,

δṠα
β

( j ) = i Jnc

{∑
〈k〉

[
δ3
β
δSα3 ( j )+δα2 δS2

β
(k)−δα3 δS3

β
( j )−δ2

β
δSα2 (k)

]
+ ∑

〈i 〉

[
δα2 δS2

β
(i )+δ1

β
δSα1 ( j )−δ2

β
δSα2 (i )−δα1 δS1

β
( j )

]}
,

δṠα
β

(k) = i Jnc

{∑
〈i 〉

[
δ1
β
δSα1 (k)+δα3 δS3

β
(i )−δα1 δS1

β
(k)−δ3

β
δSα3 (i )

]
+ ∑
〈 j〉

[
δα3 δS3

β
( j )+δ2

β
δSα2 (k)−δ3

β
δSα3 ( j )−δα2 δS2

β
(k)

]}
,

(6.60)

up to order O (δS2). The time dependence is implicit in these equations as a matter of conve-

nience.

Taking advantage of the periodicity of the order, we can go to the Fourier space to help to solve

the equations. Let us define the Fourier transform

δSαβ,l (p) =
√

3

N

∑
l∈Λl

δSαβ(l )e−i p·Rl , (6.61)

and the coordination number between two sublattices z = 2 as well as the geometrical factor

γk = 1

2

(
e i kx +e i ky

)
. (6.62)
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6.3. Different methods also show the line of zero-modes

Then, the equations (6.60) become19



δṠα
α,l ,p(t ) = δṠ2

3,i ,p(t ) = δṠ3
2,i ,p(t ) = δṠ3

1, j ,p(t ) = δṠ1
3, j ,p(t ) = δṠ1

2,k,p(t ) = δṠ2
1,k,p(t ) = 0,

δṠ1
2,i ,p(t ) =+i Jnc z

[
δS1

2,i ,p(t )+γp δS1
2, j ,p(t )+γ∗p δS1

2,k,p(t )
]

,

δṠ2
1,i ,p(t ) =−i Jnc z

[
δS2

1,i ,p(t )+γp δS2
1, j ,p(t )+γ∗p δS2

1,k,p(t )
]

,

δṠ1
3,i ,p(t ) =+i Jnc z

[
δS1

3,i ,p(t )+γp δS1
3, j ,p(t )+γ∗p δS1

3,k,p(t )
]

,

δṠ3
1,i ,p(t ) =−i Jnc z

[
δS3

1,i ,p(t )+γp δS3
1, j ,p(t )+γ∗p δS3

1,k,p(t )
]

,

δṠ2
3, j ,p(t ) =+i Jnc z

[
δS2

3, j ,p(t )+γp δS2
3,k,p(t )+γ∗p δS2

3,i ,p(t )
]

,

δṠ3
2, j ,p(t ) =−i Jnc z

[
δS3

2, j ,p(t )+γp δS3
2,k,p(t )+γ∗p δS3

2,i ,p(t )
]

,

δṠ2
1, j ,p(t ) =+i Jnc z

[
δS2

1, j ,p(t )+γp δS2
1,k,p(t )+γ∗p δS2

1,i ,p(t )
]

,

δṠ1
2, j ,p(t ) =−i Jnc z

[
δS1

2, j ,p(t )+γp δS1
2,k,p(t )+γ∗p δS1

2,i ,p(t )
]

,

δṠ3
1,k,p(t ) =+i Jnc z

[
δS3

1,k,p(t )+γp δS3
1,i ,p(t )+γ∗p δS3

1, j ,p(t )
]

,

δṠ1
3,k,p(t ) =−i Jnc z

[
δS1

3,k,p(t )+γp δS1
3,i ,p(t )+γ∗p δS1

3, j ,p(t )
]

,

δṠ3
2,k,p(t ) =+i Jnc z

[
δS3

2,k,p(t )+γp δS3
2,i ,p(t )+γ∗p δS3

2, j ,p(t )
]

,

δṠ2
3,k,p(t ) =−i Jnc z

[
δS2

3,k,p(t )+γp δS2
3,i ,p(t )+γ∗p δS2

3, j ,p(t )
]

.

(6.63)

We will use a compacter notation δSαβl ,p
± for δSα

β,l (p) and δSβ
α,l (p) whose expressions have

opposite signs. The notation δSαβ±l ,p thus designates two equations. We may, however, drop the

superscript ± in certain equations for ease of notation.

We now proceed to solving the equations to obtain the frequency ω. The structure of the

differential equations are not exactly the same as in the SU(2) case in Appendix E due to

the more complex structure of SU(3). For instance, one can observe that δS12
i ,p is coupled to

δS12
j ,p and δS12

k,p unlike in the SU(2) calculations. However, the most important fact here is that

the first line in Eq. (6.63) implies that δS12
k,p is a constant in time. We thus have a system of

19The fact that

δṠ2
3,i ,p(t ) = δṠ3

2,i ,p(t ) = δṠ3
1, j ,p(t ) = δṠ1

3, j ,p(t ) = δṠ1
2,k,p(t ) = δṠ2

1,k,p(t ) = 0

are zero is reminiscent of the fact that the exponential map of the SU(3) manifold—which is a first-order
approximation—considers geodesics along the “longitudinal lines” of the manifold starting from the origin.
The “latitudinal lines” are not described by the first-order terms of the exponential map.
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inhomogeneous differential equations to solve, and the Ansätze20

δS12
i ,p

±(t ) = δS12
i ,p

± e iωαβp
±t +Cαβ

i ,p
±,

δS12
j ,p

±(t ) = δS12
j ,p

± e iωαβp
±t +Cαβ

j ,p
±,

δS12
k,p

±(t ) = δS12
k,p

±,

(6.64)

can be used. This then yields



iω12
p δṠ12

i ,pe iω12
p t =±i Jnc z

{[
δS12

i ,p +γp δS12
j ,p

]
e iω12

p t +
[
C 12

i ,p +γpC 12
j ,p +γ∗p δS12

k,p

]}
,

iω12
p δṠ12

j ,pe iω12
p t =∓i Jnc z

{[
δS12

j ,p +γ∗p δS12
i ,p

]
e iω12

p t +
[
C 12

j ,p +γpC 12
i ,p +γp δS12

k,p

]}
,iω13

p δṠ13
i ,pe iω12

p t =±i Jnc z
{[
δS13

i ,p +γ∗p δS13
k,p

]
e iω13

p t +
[
C 13

i ,p +γpC 13
k,p +γp δS13

p,p

]}
,

iω13
p δṠ13

k,pe iω12
p t =∓i Jnc z

{[
δS13

k,p +γp δS13
i ,p

]
e iω13

p t +
[
C 13

k,p +γpC 13
i ,p +γ∗p δS13

j ,p

]}
,iω23

p δṠ23
j ,pe iω23

p t =±i Jnc z
{[
δS23

j ,p +γp δS23
k,p

]
e iω23

p t +
[
C 23

j ,p +γpC 23
k,p +γ∗p δS23

i ,p

]}
,

iω23
p δṠ23

k,pe iω12
p t =∓i Jnc z

{[
δS23

k,p +γ∗p δS23
j ,p

]
e iω23

p t +
[
C 23

k,p +γpC 23
j ,p +γp δS23

i ,p

]}
,

(6.65)

i.e., a system of 12 equations in subsets of 2 equations. The inhomogeneous parts and the

homogeneous parts are to be solved separately. The solutions of the inhomogeneous parts can

be found in the Appendix E. Here, we only concentrate on the time-dependent homogeneous

part that will yield ωp. Looking at the first subset of (6.65), we have

ω12
p

±
(
δS12

i ,p
±

δS12
j ,p

±

)
=±Jnc z

(
1 γp

−γ∗p −1

)(
δS12

i ,p
±

δS12
j ,p

±

)
(6.66)

⇔
(
±Jnc z −ω12

p
± ±Jnc zγp

∓Jnc zγ∗p ∓Jnc z −ω12
p

±

)
= 0

⇒ (Jnc z −ω12
p

±)(−Jnc z −ω12
p

±)+ ∣∣γp
∣∣2 = 0

⇒ ω12
p

± = Jnc z
√

1− ∣∣γp
∣∣2

The other subsets of equations are similar and yield the same characteristic polynomial. We

hence obtain the following 6 degenerate modes:

ω1
2(p) =ω2

1(p) =ω2
3(p) =ω3

2(p) =ω3
1(p) =ω1

3(p) = Jnc z
√

1− ∣∣γp
∣∣2 . (6.67)

The dispersion relation obtained here is indeed identical to those calculated with the LFWT,

see Eq. (1.39). In both methods, we obtain 6 degenerate modes that come from the exchange

of two neighbouring colours, as suggested by the indices ωα
β

used here (with α 6=β). From this

20Note that the solution of a simple inhomogeneous differential equation a
d f (x)

d x +b f (x)+ c = 0 is given by

f (x) = Ae−
b
a x − c

b .
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expression of ωα
β

we have obtained here, we finally find that

c J1
1 = 0, c J1

2 =p
2J1 (6.68)

along the diagonal lines of the Brillouin zone, again in agreement with the LFWT.

This concludes our comparison of different calculation methods for finding the velocity of

the Goldstone modes. We indeed see that all of the methods show that the velocity is indeed

zero along the diagonal line of the Brillouin zone. The accidental zeros related to the infinite

ground-state degeneracy are not an artifact related to a method.

6.4 The path forward

A different way of generating a finite velocity must be found to circumvent the accidental zero-

modes in the system. Rau et al. [92] recently showed that the accidental degeneracies can be

lifted by computing the curvature of the classical and quantum zero-point energy manifolds in

the variable θ that parametrises the classically degenerate manifold and its conjugate variable

φ, and the resulting spectrum is in agreement with the renormalised spectrum obtained

with the perturbation theory. Unfortunately, this cannot be applied in our case as numerical

calculations of EZP(θ) (see Figure 6.2) of our system suggest that ∂2EZP
∂θ2 seems to be ill-defined

at the three-sublattice configuration point θ = π
2 .21 However, by correctly identifying and

defining the variables θ and φ in our three-sublattice configuration of the SU(3) model, it

could pave the way to establishing a set of equations of motion in a similar fashion to Ref. [93],

whose solutions would correctly generate the true Goldstone velocity.

21We note that this is also the case with the SU(2) J1 − J2 model at J2 = J1
2 with the variable θ that parametrises a

family of helical ground states, connecting notably the Néel configuration (the true quantum minimum) and the
spin-columnar configuration. At the minimum of EZP, its second derivative with respect to θ is ill-defined.
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VII Conclusion

This concludes our investigation of the LFWT on AFM SU(N ) Heisenberg models with long-

range colour-ordered ground states. As the recent progress in experimental techniques of ultra-

cold atomic gas manipulations in optical lattices make it possible to realise SU(N )-symmetric

models, it is crucial to have a simple yet useful analytical method such as the LFWT to investi-

gate the low-energy properties of such models.

First, the multiboson method of LFWT has been introduced in chapter II. This method intro-

duces one bosonic species for each state in a given irrep. This allows to perform the Holstein-

Primakoff expansion with ease as in the SU(2) spin-wave theory, yielding the low-energy

spectra of the Heisenberg Hamiltonian and allowing the computation of the ordered moment

of the system. The method yields the dispersive energy modes containing the Goldstone

modes which are linear in k in the low-energy limit in the absence of frustration, and it also

yields multipolar energy modes that appear as flat modes in the harmonic order of the Hamil-

tonian expansion. The method was applied on the square/honeycomb/triangular lattices

in the bipartite/tripartite colour configuration for various SU(N ) particles with m > 1 par-

ticle per site in completely antisymmetric irreps. It was found that the LFWT supports the

long-range colour order for only one model, namely the AFM SU(4) Heisenberg model on the

square lattice with two particles per site, for which the quantum corrections to the ordered

moment is already large (∼ 79%) with respect to the classical value. For N > 4 and m > 2,

and for other lattice geometries, the quantum fluctuations become large as N or m increases,

thus destroying the long-range colour order. The multiboson method was also used to derive

the energy spectra of the AFM SU(3) Heisenberg chain in the adjoint irrep and in a bipartite

configuration. It showed that the model yields Goldstone modes with two different velocities,

a feature inherited from the algebraic group structure of SU(3).

The Mathur & Sen bosons were then introduced in chapter III for SU(3). Two sets of boson

triplets were introduced: one for the fundamental irrep and one for its conjugate irrep. These

bosons also allow us to apply the Holstein-Primakoff prescription consistently, and we have

found for the AFM SU(3) Heisenberg chain in the adjoint irrep that they yield identical dis-

persive modes to those obtained with the multiboson method in chapter II. This method also
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yields multipolar flat modes, whose nature is slightly different from the ones with the multi-

boson method: the flat modes obtained here come only from the states that are degenerate

in the weight-diagram, and their nature is not completely clear. The Mathur & Sen bosonic

method can easily generalise the adjoint irrep model to any arbitrary irrep [p, q] of SU(3). Con-

sequently, it was found that the energy spectra of the model in non-self-conjugate irreps show

linear and quadratic behaviour in small k, exhibiting ferromagnetic and antiferromagnetic

behaviour simultaneously as in SU(2) ferrimagnetic models.

We also included one last bosonic representation in chapter IV: the Read & Sachdev bosons. In

this bosonic representation, there is one boson per colour and per row of the Young tableau.

The semi-classical expansion of the condensate bosons is not straightforward in this case, but

the computation of the energy modes is easier than with the other methods for general irreps

of SU(N ). The models in chapter II and chapter III were treated using the Read & Sachdev

bosons, and the resulting dispersive energy modes were identical to those found with the two

previous methods. They also yield flat modes whose nature is similar to the flat modes of the

Mathur & Sen bosonic method.

We briefly mention here that only the boson representations have been used in this work,

as we were interested in studying the low-energy excitation spectra of long-range colour-

ordered states, in which case the bosons are well adapted to the study the flavour waves with a

large condensate as it is the case with the SU(2) spin waves. However, it is worth noting that

the fermion representations can be more adapted for other types of ground states, such as

the valence cluster states (VCS) comprising of singlets formed across multiple sites [69] or

disordered states such as SU(N ) chiral spin liquids (CSL) for which the fermion representation

works well [69, 94]. It is also interesting to know that Read & Sachdev [8] indeed introduced

a fermion representation for SU(N ) generators already for the 1
N expansion they perform by

taking N →∞ with m ∝ N and nc fixed. They point out that the boson representation is more

useful when taking the other large-N limit where nc ∝ N and m fixed as in Ref. [95], and that

the properties of the Hamiltonian does not depend on the choice of bosonic or fermionic

operators.

The chapter VI was dedicated to the attempt of lifting the accidental zero-modes that exist in

the harmonic spectrum of the SU(3) Heisenberg model on the square lattice with one particle

per site and in a tripartite configuration. The line of zero-modes in the spectrum is related to

an infinite number of ground-states that are related by a helical rotation, and such accidental

modes can also be found in SU(2) models such as the J1 − J2 model. We showed that the

accidental zero modes are not an artifact related to the LFWT, as field-theoretical calculations

and quantum equations of motion also show the same feature. Such lines of zero modes in

the harmonic spectrum lead to computations showing an absence of long-range colour order,

but such conclusions can be premature as the zero modes are accidental. We thus established

self-consistent equations using qualitative physical arguments that allowed us to estimate

the ordered moment of the system, and the resulting magnetisation was in line with existing

numerical simulations. Our approximation method is however very simple and needs to be
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more systematic. As a further perspective to solve this problem of accidental zero modes, one

could possibly try to set up a different way of establishing the set of equations of motions in

the SU(3) manifold in the vein of Refs. [92, 93].
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A The Bogoliubov transformation

1.1 The Bogoliubov transformation with two bosons

Let us take the following Hamiltonian H AB in section 1.2 as an example on which we will

perform the Bogoliubov transformation:

H AB = z Jnc
∑

k∈RBZ

[
bB†

A,kbB
A,k +b A†

B ,−kb A
B ,−k +γkb A†

B ,−kbB†
A,k +γ∗kb A

B ,−kbB
A,k

]
. (1.1)

The factor z = 2 is the coordination number between two sublattices, i.e., the number of bonds

connecting a site from the sublatticeΛA to the sites from the sublatticeΛB . In addition, the

geometrical factor γk is given by

γk = 1

2

(
e i kx +e i ky

)
. (1.2)

The Bogoliubov transformation is given by(
b̃B†

A,k

b̃ A
B ,−k

)
=

(
uk vk

vk u∗
k

)
︸ ︷︷ ︸

=:M

(
bB†

A,k

b A
B ,−k

)
, (1.3)

We now define the inverse Bogoliubov transformation:(
bB†

A,k

b A
B ,−k

)
=

(
u∗

k −vk

−vk uk

)
︸ ︷︷ ︸

=M−1

(
b̃B†

A,k

b̃ A
B ,−k

)
. (1.4)

Since M−1M = (|u|2 −|v |2)1 != 1, it follows that we can write uk = |uk|e i t = coshθk e i t and

vk = sinhθk, i.e. uk ∈ C, vk ∈ R. The phase e i t will turn out to be equal to the phase of γ(k)

(ei argγk ).
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We can now diagonalise H AB . Let and A := 1, Bk := γk . Then

H AB = z Jnc
∑

k∈RBZ

[(
bB

A,k b A†
B ,−k

)(
1 γ∗k
γk 1

)(
bB†

A,k

b A
B ,−k

)
−1

]

= z Jnc
∑

k∈RBZ

(
bB

A,k b A†
B ,−k

)(
A B∗

k
Bk A

)(
bB†

A,k

b A
B ,−k

)
− z Jnc

N

3

= z Jnc
∑

k∈RBZ

(
b̃B

A,k b̃ A†
B ,−k

)(
M−1)†

(
A B∗

k
Bk A

)
M−1

︸ ︷︷ ︸
=:

 D O

O∗ D



(
b̃B†

A,k

b̃ A
B ,−k

)
−2Jnc

N

3

= z Jnc
∑

k∈RBZ

(
b̃B

A,k b̃ A†
B ,−k

)(
D O

O∗ D

)(
b̃B†

A,k

b̃ A
B ,−k

)
− z Jnc

N

3
,

(1.5)

where

D :=A(|u|2 + v2)−2 |B| |u|v,

O := e i t [−2A |u|v +B(|u|2 + v2)],

From the requirement that O
!= 0 and D

!=ωk, we obtain

D =ωk

=⇒
|uk|2 + v2

k = A
ωk

2 |uk|vk = |B|
ωk

=⇒ ωk =
√
A2 −|Bk|2, (1.6)

leading us finally to

H AB = z Jnc
∑

k∈RBZ

(
b̃B

A,k b̃ A†
B ,−k

)(
ωk 0

0 ω−k

)(
b̃B†

A,k

b̃ A
B ,−k

)
− z Jnc

N

3

= ∑
k∈RBZ

ωk

(
b̃B†

A,kb̃B
A,k + b̃ A†

B ,kb̃ A†
B ,k +1

)
− z Jnc

N

3

= z Jnc
∑

k∈RBZ

∑
µ∈{A,B}

∑
ν6=µ

ωk

(
b̃ν†
µ,kb̃νµ,k +

1

2

)
− z Jnc

N

3
. (1.7)

The Bogoliubov transformation can also be achieved by demanding that

[
H , b̃B (−k)

] !=−z Jncω(−k)b̃B (−k). (1.8)
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Since [
H ,bB (−k)

]= z Jnc

(
−AbB (−k)−Bkb†

A(k)
)

,[
H ,b†

A(k)
]
= z Jnc

(
Ab†

B (k)+B∗
kbB (−k)

)
,

(1.9)

we conclude that[
H , b̃B (−k)

]=[
H , v∗

k b†
A(k)+u∗

k bB (−k)
]

=(
Av∗

k −Bku∗
k

)
b†

A(k)+ (
B∗

k v∗
k −Au∗

k

)
bB (−k)

!=− z Jncω(−k)b̃B (−k) =−z Jncω(−k)
(
v∗

k b†
A(k)+u∗

k bB (−k)
)

.

(1.10)

By comparing the coefficients of the bosons b†
A(k) and bB (−k), we finally obtain the same

spectrum as in (1.6):−v∗
kω(−k) =Av∗

k −Bku∗
k

−u∗
kω(−k) =−Au∗

k +B∗
k v∗

k

=⇒
(
−A B∗

k
−Bk A

)(
u∗

k
v∗

k

)
=−ω(−k)

(
u∗

k
v∗

k

)
(1.11)

=⇒ ωk =
√
A2 −|Bk|2. (1.12)

Note that from the first equation of (1.11), namely vk(A+ω−k) = γku∗
k , we infer that

uk =
√

1

2

(
A

ωk
+1

)
e i argγk , (1.13a)

vk =
√

1

2

(
A

ωk
−1

)
. (1.13b)

1.2 The generalised Bogoliubov transformation

When having more than two bosons, the method commonly known as the generalised Bo-

goliubov transformation can be used, the details of which can be found in Ref. [96]. A generic

Hamiltonian can be written as

H (2) =∑
k

N∑
µ,ν=1

[
Aµν

k d †
µ,kdν,k +

(
Bµν

k d †
µ,kd †

ν,−k +Bµν∗
k dµ,kdν,−k

)]
, (1.14)

in which there are n boson species and the indices µ,ν label the boson species.We will write

it in a more suitable form for the transformation by doubling the number of bosons in the

grading of the matrix Mk:

H (2) =∑
k

(
d†

k,d−k

) 1

2
Mk

(
tdk

t
d†
−k

)
, (1.15)
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where

d†
k =t(

d †
1(k), . . . , d †

µ(k)
)

, d−k =t(
d1(−k), . . . , dµ(−k)

)
,

Mk :=
(
Ak Bk

B†
k AT

−k

)
=

(
Ak Bk

B∗
−k A∗

−k

)
.

(1.16)

Note that the equalities

AT
k =A∗

k , B†
k =B∗

−k (1.17)

hold in general. The dispersion relations of such a Hamiltonian is then given by the diagonali-

sation of

Y Mk :=
(
1 0

0 −1

)(
Ak Bk

B †
k AT

−k

)
=

(
Ak Bk

−B †
k −AT

−k

)
(1.18)

as we shall see.

The aim is to find a transformation Uk for the bosons dk that would diagonalise Mk. Let us

consider new bosons d̃µ that satisfy

d̃k =U1,kdk +U2,k
t
d†
−k

=⇒ d̃†
−k =t

U †
1,−kd†

−k +
t
U †

2,−kdk

=⇒
(

d̃k
d̃†
−k

)
=

(
U1,k U2,k

U∗
2,−k U∗

1,−k

)
︸ ︷︷ ︸

=:T −1

(
dk

d†
−k

)
,

(1.19)

in which we have defined

T −1
k :=

(
U1,k U2,k

U∗
2,−k U∗

1,−k

)
. (1.20)

They also have to satisfy[
d̃µ,k, d̃ †

ν,p

]
= δµνδkp,

[
d̃µ,k, d̃ν,p

]
=

[
d̃ †
µ,k, d̃ †

ν,p

]
= 0. (1.21)

Using the Einstein summation convention without distinguishing between the covariant and
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contravariant indices, we note that Eqs. (1.21) imply[
d̃µ,k, d̃ †

ν,p

]
=

[
[U1,k]µρdρ,k + [U2,k]µρd †

ρ,−k, [U∗
1,p]νσd †

σ,p + [U∗
2,p]νσdσ,−p

]
=[U1,k]µρ[U∗

1,p]νσ
[

dρ,k,d †
σ,p

]
︸ ︷︷ ︸

=δρσδkp

+[U2,k]µρ[U∗
2,p]νσ

[
d †
ρ,−k,dσ,−p

]
︸ ︷︷ ︸

=−δρσδkp

=[U1,k]µρ [U∗
1,p]νρ︸ ︷︷ ︸

t[U∗
1,p]ρν

δkp − [U2,k]µρ [U∗
2,p]νρ︸ ︷︷ ︸

t[U∗
2,p]ρν

δkp

=
{

[U1,kU †
1,p]µν− [U2,kU †

2,p]µν
}
δkp

!=δµνδkp

=⇒ U1,kU †
1,k −U2,kU †

2,k =1, (1.22)

as well as[
d̃i ,k, d̃ j ,p

]
=

[
d̃ †

i ,k, d̃ †
j ,p

]
= 0

=⇒ U1,k
tU2,p −U2,k

tU1,p = 0 ∀k,∀p,

=⇒ U1,k
tU2,−k −U2,k

tU1,−k = 0. (1.23)

After the introduction of the matrix Y ,

Y :=
(
1 0

0 −1

)
, (1.24)

Eqs. (1.22) and (1.23) can be written compactly as follows:

Y T −1
k Y (T −1

k )† =1 ⇔ Y T †
k Y Tk =1. (1.25)

This finally results in

T †
k = Y T −1

k Y . (1.26)

Let us now apply all the results on the Hamiltonian in Eq. (1.15):

H (2) =1

2

∑
k

(
d†

k,d−k

)
Mk

(
tdk

t
d†
−k

)
(1.19)= 1

2

∑
k

(
d̃†

k, d̃−k

)
T †

k MkTk

( t
d̃k

t
d̃†
−k

)

(1.26)= 1

2

∑
k

(
d̃†

k, d̃−k

)
Y [T −1

k (Y Mk)Tk]︸ ︷︷ ︸
=:Dk

( t
d̃k

t
d̃†
−k

)
.

(1.27)
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To this end, Tk must be the matrix that diagonalise Y Mk. Without loss of generality, let T −1
k :=(

U1,k U2,k

U∗
2,−k U∗

1,−k

)
be a 2n ×2n matrix, and write it as follows:

Tk =
(

X1,k · · · Xn,k Xn+1,k · · · X2n,k

Y1,k · · · Yn,k Yn+1,k · · · Y2n,k

)
. (1.28)

Then vµ,k =
(

Xµ,k

Yµ,k

)
is an eigenvector of Y Mk with eigenvalue ω̃i ,k, where i ∈ {1, . . . , 2n}. Then

it follows that

Y Mkvi ,k =ω̃i ,kvi ,k ⇔
AkXi ,k +BkYi ,k = ω̃i ,kXi,k

−B †
kXi ,k − AT

−kYi ,k = ω̃i ,kYi,k

(1.29)

The conjugation of the latter (along with the properties (1.17)) givesA∗
kX∗

i ,k +B∗
k Y∗

i ,k = ω̃∗
i ,kX∗

i,k

B−kX∗
i ,k + A−kY∗

i ,k =−ω̃∗
i ,kY∗

i,k

⇒
A∗

kX∗
i ,−k +B∗

−kY∗
i ,−k = ω̃∗

i ,−kX∗
i,−k

BkX∗
i ,−k + AkY∗

i ,−k =−ω̃∗
i ,−kY∗

i,−k

(1.30)

Finally, by defining

X′
i ,k :=Y∗

i ,−k, Y′
i ,k :=X∗

i ,−k,

ω̃′
i ,k :=− ω̃∗

i ,−k,
(1.31)

we obtain

=⇒
AkX′

i ,k +BkY′
i ,k = ω̃′

i ,kX′
i,k

B∗
k X′

i ,k + A∗
kY′

i ,k =−ω̃′
i ,kY′

i,k

(1.32)

Hence, we can immediately infer that the vector

(
X′

i ,k

Y′
i ,k

)
=

(
Y∗

i ,−k

X∗
i ,−k

)
is also an eigenvector of

Y Mk with eigenvalue −ω̃∗
i ,−k by comparing Eq. (1.30) and Eq. (1.31). The eigenvectors and
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eigenvalues of Y Mk are finally given by

Tk =
(

X1,k · · · Xn,k Y∗
1,−k · · · Y∗

n,−k

Y1,k · · · Yn,k X∗
1,−k · · · X∗

n,−k

)
,

Dk =



ω̃1,k
. . .

ω̃n,k

−ω̃∗
1,−k

. . .

−ω̃∗
n,−k


.

(1.33)

Ultimately, the Hamiltonian will then have the following form:

H (2) =1

2

∑
k

(
d̃†

k, d̃−k

)
Y Dk

( t
d̃k

t
d̃†
−k

)

=1

2

∑
k

n∑
i=1

[
ω̃i ,kd̃ †

i (k)d̃i (k)+ ω̃∗
i ,−kd̃i (−k)d̃ †

i (−k)
]

=1

2

∑
k

n∑
i=1

2 Re(ω̃i ,k)︸ ︷︷ ︸
=:ωi ,k

d̃ †
i (k)d̃i (k)+ ω̃∗

i ,−k


=∑

k

n∑
i=1

Re(ω̃i ,k)︸ ︷︷ ︸
=:ωi ,k

d̃ †
i (k)d̃i (k)+ ω̃∗

i ,−k

 .

(1.34)

The semi-positivity of the eigenvalues and the existence of matrix Tk are guaranteed by the

fact that Mk is positive definite when γk 6= 0, and by the fact that it is semi-positive definite

when γk = 0 (which is the consequence of the Goldstone-symmetry breaking).
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B The expectation values with Read and
Sachdev bosons

2.1 Case of SU(4) m = 2 irrep

We consider the square lattice and its ordered state in subsection 4.1.1. Let us assume that color

A and B sit on the sublatticeΛAB and the color C and D on the sublatticeΛC D of the square

lattice (we are considering the irrep with m = 2). We have deliberately broken the symmetry

by choosing specific colors for the sublattice. Then the ground-state can be expressed as

C̃
∏
i , j

i∈Λ1
j∈Λ2

A†
AB (i )A†

C D ( j ) |0〉 , (2.1)

where C̃ is a normalisation constant. When assuming a condensate of colors A and B on site

i by taking the semi-classical limit (i.e. by taking the limit M →∞), the ground-state is then

written as∣∣g s
〉=C

∏
i , j

i∈Λ1
j∈Λ2

(
A†

AB (i )A†
C D ( j )

)nc |0〉 , (2.2)

with N being the number of sites and C another normalisation factor.

We first observe that∣∣g s(i )
〉

:=C̃
(

A†
AB

)nc |0〉

=C̃
(
d †

A1d †
B2 −d †

B1d †
A2

)nc |0〉

=C̃
nc∑

k=0

(
M

k

)(
d †

A1d †
B2

)nc−k (
−d †

B1d †
A2

)k |0〉 ,

(2.3)
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where C̃ = 1
(nc !)2(1+nc ) is the normalisation factor. Then it follows that

=⇒
〈

g s(i )
∣∣∣d †

A2dA2

∣∣∣g s(i )
〉
= 1

(nc !)2(1+nc )
(nc !)2

nc∑
k=1

k︸ ︷︷ ︸
=(1+nc ) nc

2

=nc

2
.

(2.4)

Hence, we conclude that〈
d †
µa(i )dµa(i )

〉
=

〈
g s

∣∣∣d †
µa(i )dµa(i )

∣∣∣g s
〉
= M

2
,〈

d †
νa( j )dνa( j )

〉
=

〈
g s

∣∣∣d †
νa( j )dνa( j )

∣∣∣g s
〉
= M

2
,

(2.5)

with ∀i ∈ΛAB , ∀ j ∈ΛC D and µ ∈ {A,B}, ν ∈ {C ,D}, a ∈ {1,2}. Other quadratic combinations of

bosons yield zero.

2.2 Case of SU(3) adjoint irrep

We refer here to subsection 4.2.2. We now assume that there is a large condensate of the

ground state εabd †
Aad †

C bd †
A1 |0〉 onΛ1 and a large condensate of εabd †

B ad †
C bd †

B1 |0〉 onΛ2, i.e.,

we consider∣∣gs(i )
〉

:= C̃
[
εabd †

Aa(i )d †
C b(i )d †

A1(i )
]nc |0〉 ,∣∣gs( j )

〉
:= C̃

[
εabd †

B a( j )d †
C b( j )d †

B1( j )
]nc |0〉 ,

(2.6)

for any i ∈Λ1, j ∈Λ2 and a ∈ {1,2}, with C̃ being the normalisation constant and nc being the

control parameter such that nc →∞. We will concentrate on the sublatticeΛ1 from hereon as

the argument will be identical for the sublatticeΛ2.

Let us first state two identities will be useful for our subsequent calculations:

nc∑
k=0

(cnc −k)!

(nc −k)!
= (cnC +1)(cnc )!

nc ! [(c −1)nc +1]

= (cnc +1)!

nc ! [(c −1)nc +1]
nc∑

k=0

(cnc −k)!

(nc −k)!
k = cnc (cnc +1)(cnc −1)!

(nc −1)! [(c −1)nc +1][(c −1)nc +2]

= (cnc +1)!

(nc −1)! [(c −1)nc +1][(c −1)nc +2]
.

(2.7)

These equations are true for any non-zero integer c.
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Let us now determine the renormalisation constant C̃ :

C̃
∣∣g s(i )

〉=(
εabd †

Aad †
C bd †

A1

)nc |0〉

=
(
d †

A1d †
C 2d †

A1 −d †
C 1d †

A2d †
A1

)nc |0〉

=
nc∑

k=0

(
nc

k

)(
d †

A1d †
C 2d †

A1

)nc−k (
−d †

C 1d †
A2d †

A1

)k |0〉

=
nc∑

k=0

nc !

(nc −k)!k !
(−1)k

(
d †

A1

)2(nc−k)+k (
d †

C 1

)k (
d †

A2

)k (
d †

C 2

)nc−k |0〉

=
nc∑

k=0

nc !

(nc −k)!k !
(−1)k

√
(2nc −k)!

p
k !
p

k !
√

(nc −k)! |(2nc −k)A1, (k)C 1, (k)A2, (nc −k)C 2〉

=nc !
nc∑

k=0
(−1)k

√
(2nc −k)!√
(nc −k)!

|(2nc −k)A1, (k)C 1, (k)A2, (nc −k)C 2〉 .

(2.8)

=⇒ 〈
g s(i )

∣∣ g s(i )
〉= C̃ 2(nc !)2

nc∑
k=0

(2nc −k)!

(nc −k)!
!= 1

=⇒ C̃ 2 =
[

(nc !)2
nc∑

k=0

(2nc −k)!

(nc −k)!

]−1

.

(2.9)

From Eq. (2.8), it is easy to see that〈
g s(i )

∣∣∣d †
A1dA2

∣∣∣g s(i )
〉
=0,

〈
g s(i )

∣∣∣d †
C 1dC 2

∣∣∣g s(i )
〉
= 0, (2.10)

and we also trivially obtain〈
g s(i )

∣∣∣d †
B adB a

∣∣∣g s(i )
〉
=0,

〈
g s(i )

∣∣∣d †
DadDa

∣∣∣g s(i )
〉
= 0, (2.11)

for a ∈ {1,2}. The number expectation value of 〈nA1〉 is given by

〈
g s(i )

∣∣∣d †
A1dA1

∣∣∣g s(i )
〉
=C̃ 2(nc !)2

nc∑
k=0

(2nc −k)!

(nc −k)!
(2nc −k)

=2nc −

nc∑
k=0

(2nc−k)!
(nc−k)! k

nc∑
k=0

(2nc−k)!
(nc−k)!

(2.7)= 2nc +3

nc +2
nc .

(2.12)
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Similarly, we obtain

〈
g s(i )

∣∣∣d †
C 2dC 2

∣∣∣g s(i )
〉
=C̃ 2(nc !)2

nc∑
k=0

(2nc −k)!

(nc −k)!
(nc −k) = nc −

nc∑
k=0

(2nc−k)!
(nc−k)! k

nc∑
k=0

(2nc−k)!
(nc−k)!

(2.7)= nc +1

nc +2
nc ,

〈
g s(i )

∣∣∣d †
C 1dC 1

∣∣∣g s(i )
〉
=C̃ 2(nc !)2

nc∑
k=0

(2nc −k)!

(nc −k)!
k =

nc∑
k=0

(2nc−k)!
(nc−k)! k

nc∑
k=0

(2nc−k)!
(nc−k)!

(2.7)= 1

nc +2
nc ,〈

g s(i )
∣∣∣d †

A2dA2

∣∣∣g s(i )
〉
=C̃ 2(nc !)2

nc∑
k=0

(2nc −k)!

(nc −k)!
k

(2.7)= 1

nc +2
nc .

(2.13)

However, what we are really interested in is these number expectation values in the limit

nc →∞:

lim
nc→∞

1

nc

〈
d †

A1dA1

〉
= lim

nc→∞
2nc +3

nc +2
= 2,

lim
nc→∞

1

nc

〈
d †

C 2dC 2

〉
= lim

nc→∞
nc +1

nc +2
= 1,

lim
nc→∞

1

nc

〈
d †

C 1dC 1

〉
= lim

nc→∞
1

nc +2
= 0,

lim
nc→∞

1

nc

〈
d †

A2dA2

〉
= lim

nc→∞
1

nc +2
= 0.

(2.14)

Hence, all these expectation values indeed justify the Holstein-Primakoff approach in Eq. (4.55):

b†
A1(i ),bA1(i ) −→

√
2nc −

∑
µ6=A

d †
µ1(i )dµ1(i ) ≈

√
2nc − 1

2
p

2nc

∑
µ6=A

d †
µ1(i )dµ1(i ),

b†
C 2(i ),bC 2(i ) −→

√
nc −

∑
µ6=C

b†
µ2(i )bµ2(i ) ≈p

nc − 1

2
p

nc

∑
µ6=C

b†
µ2(i )bµ2(i ).

(2.15)

Furthermore, they show that the expectation values of the LHS of the constraints respect the
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2.2. Case of SU(3) adjoint irrep

constraints (4.47) in the limit nc →∞:

〈
3∑

α=1
d †
α1(l )dα1(l )

〉
= 2nc ,〈

3∑
α=1

d †
α2(l )dα2(l )

〉
= nc ,〈

3∑
α=1

d †
α1(l )dα2(l )

〉
= 0.

(2.16)
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C The corrections from the SU(3) quar-
tic terms H (4)

3.1 Wick decoupling/Hartree-Fock average of the quartic terms

As explained in subsection 6.2.3, the quartic Hamiltonian can be written as H (4) = δE (4) +
δH (2)+H̃ (4), where δH (2) is the term of our interest: it is the renormalisation of the spectrum

that comes from the quartic term. Following the procedure in Ref. [85], we perform the Wick

decoupling to calculate the quadratic average in real-space to simplify. With the coordination

number between two sublattices z = 2, the possible Hartree-Fock averages in H (4) are given

as follows:

(i)

〈
b†

B (i )bB (i )
〉
= 1

N

〈
0

∣∣∣∣∣∑
i

b†
B (i )bB (i )

∣∣∣∣∣0

〉
= 1

N

〈
0

∣∣∣∣∣∑
k

b†
B (k)bB (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(
−vkηC (−k)+ukη

†
B (k)

)(
−vkη

†
C (−k)+u∗

kηB (k)
)∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

v2
kηC ,−kη

†
C ,−k

∣∣∣∣∣0

〉
= 1

N

∑
k

v2
k

(6.10)= 1

N

∑
k

[
1

2

(
A

ωk
−1

)]
=:n,

and similarly,
〈

b†
C ( j )bC ( j )

〉
=

〈
b†

B ( j )bB ( j )
〉
=

〈
b†

C (i )bC (i )
〉
= n.

(3.1)
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(ii)

〈
b†

B (i )bB ( j )
〉
= 1

N

〈
0

∣∣∣∣∣∣∣∣
∑

i

1

2

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )bB ( j )

∣∣∣∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

1

2
(e−i kx +e−i ky )b†

B (k)bB (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γ∗kb†

B (k)bB (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γ∗k v2

kηC ,−kη
†
C ,−k

∣∣∣∣∣0

〉
= 1

N

∑
k
γ∗k v2

k

(6.10)= 1

N

∑
k
γ∗k

[
1

2

(
A

ωk
−1

)]
=:n∗

C

=0 because
∫

BZ

γkdk = 0, and vk is even in BZ,

and similarly,
〈

b†
B ( j )bB (i )

〉
=

〈
b†

C ( j )bC (i )
〉
=

〈
b†

C (i )bC ( j )
〉
= 0.

(3.2)

(iii)

〈
b†

B (i )b†
C ( j )

〉
= 1

N

〈
0

∣∣∣∣∣∣∣∣
∑

i

1

2

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

C ( j )

∣∣∣∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

1

2
(e i kx +e i ky )b†

B (−k)b†
C (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γk

(
−vkηC (k)+u∗

kη
†
B (−k)

)(
u∗

kη
†
C (k)− vkηB (−k)

)∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(−γku∗
k vk)ηC ,kη

†
C ,k

∣∣∣∣∣0

〉
=− 1

N

∑
k
γku∗

k vk

(6.10)= − 1

N

∑
k
γk

B∗
k

2ωk

=:∆γ,

and similarly,
〈

b†
C ( j )b†

B (i )
〉
=∆γ,〈

bC ( j )bB (i )
〉= 〈

bB (i )bC ( j )
〉=∆∗

γ,

(3.3)
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where it is worth noting that〈
b†

B (i )b†
C ( j )

〉
=− 1

N

∑
k
γku∗

k vk
(6.10)= − 1

N

∑
k

∣∣γk

∣∣ |uk|vk

(6.10)= − 1

N

∑
k

∣∣γk
∣∣ |Bk|

2ωk

=⇒ ∆γ =∆∗
γ.

(3.4)

(iv)

〈
b†

C (i )b†
B ( j )

〉
= 1

N

〈
0

∣∣∣∣∣∣∣∣
∑

i

1

2

∑
j∈{i+~ex ,

i+~ey }

b†
C (i )b†

B ( j )

∣∣∣∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

1

2
(e−i kx +e−i ky )b†

C (k)b†
B (−k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γ∗k

(
u∗

kη
†
C (k)− vkηB (−k)

)(
−vkηC (k)+u∗

kη
†
B (−k)

)∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(−γ∗ku∗
k vk)ηB ,−kη

†
B ,−k

∣∣∣∣∣0

〉

=− 1

N

∑
k
γ∗ku∗

k vk

=0 because
∫

BZ

γ∗kdk = 0,

and similarly,
〈

bB ( j )bC (i )
〉= 〈

b†
B ( j )b†

C (i )
〉
= 〈

bC (i )bB ( j )
〉= 0.

(3.5)
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(v)

〈
b†

B (i )b†
C (i )

〉
= 1

N

〈
0

∣∣∣∣∣∑
i

b†
B (i )b†

C (i )

∣∣∣∣∣0

〉
= 1

N

〈
0

∣∣∣∣∣∑
k

b†
B (−k)b†

C (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(
−vkηC (k)+u∗

kη
†
B (−k)

)(
u∗

kη
†
C (k)− vkηB (−k)

)∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

(−u∗
k vk)ηC ,kη

†
C ,k

∣∣∣∣∣0

〉
=− 1

N

∑
k

u∗
k vk

(6.10)= − 1

N

∑
k

B∗
k

2ωk

(6.10)= − 1

N

∑
k

z J1ncγk

2ωk

=:∆

=0 because
∫

BZ

γkdk = 0, and ωk is even in BZ,

and similarly,
〈

bC (i )bB (i )
〉= 0.

(3.6)

(vi)

〈
b†

B (i )bC ( j )
〉
= 1

N

〈
0

∣∣∣∣∣∣∣∣
∑

i

1

2

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )bC ( j )

∣∣∣∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

1

2
(e−i kx +e−i ky )b†

B (−k)bC (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γ−k

(
−vkηC (k)+u∗

kη
†
B (−k)

)(
ukηC (k)− vkη

†
B (−k)

)∣∣∣∣∣0

〉
=0,

and similarly,
〈

b†
C (i )bB ( j )

〉
=

〈
b†

B (i )bC (i )
〉
= 0.

(3.7)
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(vii)

〈
bB (i )bB ( j )

〉= 1

N

〈
0

∣∣∣∣∣∣∣∣
∑

i

1

2

∑
j∈{i+~ex ,

i+~ey }

bB (i )bB ( j )

∣∣∣∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k

1

2
(e−i kx +e−i ky )bB (k)bB (k)

∣∣∣∣∣0

〉

= 1

N

〈
0

∣∣∣∣∣∑
k
γ−k

(
−vkη

†
C (−k)+u∗

kηB (k)
)(
−vkη

†
C (−k)+u∗

kηB (k)
)∣∣∣∣∣0

〉
=0,

and similarly,
〈

b†
B (i )b†

B ( j )
〉
= 〈

bB (i )bB (i )
〉= 〈

b†
B (i )b†

B (i )
〉
= 0,〈

b†
C (i )b†

C ( j )
〉
= 〈

bC (i )bC (i )
〉= 〈

b†
C (i )b†

C (i )
〉
= 0.

(3.8)

The Wick theorem can now be used. The term δH (2) we are looking for is the sum of the

normal-ordered quartic terms : H (4) : containing one contraction in all possible combinations.

For each of the quartic terms in H (4) in Eq. (6.7), we obtain the following:

(i) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )bB (i )bB (i )bC ( j )

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )bB (i )bB (i )bC ( j ): + :b†
B (i )bB (i )bB (i )bC ( j ): + :b†

B (i )bB (i )bB (i )bC ( j ):

+ :b†
B (i )bB (i )bB (i )bC ( j ): + :b†

B (i )bB (i )bB (i )bC ( j ): + :b†
B (i )bB (i )bB (i )bC ( j ):

]
=z

∑
k

[
nC∗

k :bB (−k)bC (k): +nC∗
k :bB (−k)bC (k): +0

+0+∆∗
C :b†

B (−k)bB (−k): +∆∗
C :b†

B (−k)bB (−k):
]

=z
∑

k

[
2nC∗

k :bB (−k)bC (k): +2∆∗
C :b†

B (−k)bB (−k):
]

.

(3.9)

(ii) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

C ( j )b†
C ( j )bC ( j )
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−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )b†
C ( j )b†

C ( j )bC ( j ): + :b†
B (i )b†

C ( j )b†
C ( j )bC ( j ): + :b†

B (i )b†
C ( j )b†

C ( j )bC ( j ):

+ :b†
B (i )b†

C ( j )b†
C ( j )bC ( j ): + :b†

B (i )b†
C ( j )b†

C ( j )bC ( j ): + :b†
B (i )b†

C ( j )b†
C ( j )bC ( j ):

=z
∑

k

[
∆γ :b†

C (k)bC (k): +∆γ :b†
C (k)bC (k): +0

+0+nCk :b†
B (−k)b†

C (k): +nCk :b†
B (−k)b†

C (k):
]

=z
∑

k

[
2∆γ :b†

C (k)bC (k): +2nCk :b†
B (−k)b†

C (k):
]

,

(3.10)

(iii) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

C ( j )b†
B ( j )bB ( j )

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )b†
C ( j )b†

B ( j )bB ( j ): + :b†
B (i )b†

C ( j )b†
B ( j )bB ( j ): + :b†

B (i )b†
C ( j )b†

B ( j )bB ( j ):

+ :b†
B (i )b†

C ( j )b†
B ( j )bB ( j ): + :b†

B (i )b†
C ( j )b†

B ( j )bB ( j ): + :b†
B (i )b†

C ( j )b†
B ( j )bB ( j ):

=z
∑

k

[
∆γ :b†

B (−k)bB (−k): +0+0

+0+0+nCk :b†
B (−k)b†

C (k):
]

=z
∑

k

[
∆γ :b†

B (−k)bB (−k): +nCk :b†
B (−k)b†

C (k):
]

,

(3.11)

(vi) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

C ( j )b†
C (i )bC (i )

150



3.1. Wick decoupling/Hartree-Fock average of the quartic terms

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )b†
C ( j )b†

C (i )bC (i ): + :b†
B (i )b†

C ( j )b†
C (i )bC (i ): + :b†

B (i )b†
C ( j )b†

C (i )bC (i ):

+ :b†
B (i )b†

C ( j )b†
C (i )bC (i ): + :b†

B (i )b†
C ( j )b†

C (i )bC (i ): + :b†
B (i )b†

C ( j )b†
C (i )bC (i ):

=z
∑

k

[
∆γ :b†

C (k)bC (k): +0+0

+0+0+nγk :b†
B (−k)b†

C (k):
]

=z
∑

k

[
∆γ :b†

C (k)bC (k): +nγk :b†
B (−k)b†

C (k):
]

,

(3.12)

(v) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
C (i )b†

C ( j )bC (i )bC ( j )

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

C (i )b†
C ( j )bC (i )bC ( j ): + :b†

C (i )b†
C ( j )bC (i )bC ( j ): + :b†

C (i )b†
C ( j )bC (i )bC ( j ):

+ :b†
C (i )b†

C ( j )bC (i )bC ( j ): + :b†
C (i )b†

C ( j )bC (i )bC ( j ): + :b†
C (i )b†

C ( j )bC (i )bC ( j ):

=z
∑

k

[
0+n :b†

C (k)bC (k): +0

+0+n :b†
C (k)bC (k): +0

]
=z

∑
k

2n :b†
C (k)bC (k):,

(3.13)

(vi) ∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

B ( j )bB ( j )bB (i )
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−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )b†
B ( j )bB ( j )bB (i ): + :b†

B (i )b†
B ( j )bB ( j )bB (i ): + :b†

B (i )b†
B ( j )bB ( j )bB (i ):

+ :b†
B (i )b†

B ( j )bB ( j )bB (i ): + :b†
B (i )b†

B ( j )bB ( j )bB (i ): + :b†
B (i )b†

B ( j )bB ( j )bB (i ):

=z
∑

k

[
0+0+n :b†

B (−k)bB (−k):

+n :b†
B (−k)bB (−k):

]
=z

∑
k

2n :b†
B (−k)bB (−k):,

(3.14)

(vii)∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
B (i )b†

C ( j )bC ( j )bB (i )

−→∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

B (i )b†
C ( j )bC ( j )bB (i ): + :b†

B (i )b†
C ( j )bC ( j )bB (i ): + :b†

B (i )b†
C ( j )bC ( j )bB (i ):

+ :b†
B (i )b†

C ( j )bC ( j )bB (i ): + :b†
B (i )b†

C ( j )bC ( j )bB (i ): + :b†
B (i )b†

C ( j )bC ( j )bB (i ):

=z
∑

k

[
∆γC∗

k :bC (k)bB (−k): +0+n :b†
C (k)bC (k):

+n :b†
B (−k)bB (−k): +0+∆∗

C Ck :b†
C (k)b†

B (k):
]

=z
∑

k

[
n :b†

C (k)bC (k): +n :b†
B (−k)bB (−k): +∆γC∗

k :bC (k)bB (−k): +∆∗
C Ck :b†

C (k)b†
B (−k):

]
.

(3.15)

(viii)

−∑
i

∑
j∈{i+~ex ,

i+~ey }

b†
C (i )b†

B ( j )bC (i )bB ( j )
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3.1. Wick decoupling/Hartree-Fock average of the quartic terms

−→−∑
i

∑
j∈{i+~ex ,

i+~ey }

[
:b†

C (i )b†
B ( j )bC (i )bB ( j ): + :b†

C (i )b†
B ( j )bC (i )bB ( j ): + :b†

C (i )b†
B ( j )bC (i )bB ( j ):

+ :b†
C (i )b†

B ( j )bC (i )bB ( j ): + :b†
C (i )b†

B ( j )bC (i )bB ( j ): + :b†
C (i )b†

B ( j )bC (i )bB ( j ):

=− z
∑

k

[
∆γC∗

k :bC (k)bB (−k): +n :b†
B (−k)bB (−k): +0

+0+n :b†
C (k)bC (k): +∆∗

C Ck :b†
C (k)b†

B (−k):
]

=− z
∑

k

[
n :b†

C (k)bC (k): +n :b†
B (−k)bB (−k): +∆γC∗

k :bC (k)bB (−k): +∆∗
C Ck :b†

C (k)b†
B (−k):

]
.

(3.16)

By regrouping all these terms and their Hermitian conjugate as well as the overall factor −1
2

from Eq. (6.7), the term δH (2) is then given by

δH (2) = J z
∑

k

[
δAB

−k :b†
B ,−kbB ,−k: +δAC

k :b†
C ,kbC ,k: +δB∗

k :bB ,−kbC ,k: +δBk :b†
B ,−kb†

C ,k:
]

, (3.17)

where

δAB
−k =− 1

2

(
3n +3∆γ+h.c.

)=−Re
(
3n +3∆γ

)
=−3

[
n +Re

(
∆γ

)]
=:δA,

δAC
k =− 1

2

(
3n +3∆γ+h.c.

)
=δA,

δBk =− 1

2

(
6nγk +4∆∗

γγk

)
=−γk

(
3n +2∆∗

γ

)
.

(3.18)
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Appendix C. The corrections from the SU(3) quartic terms H (4)

We will now write δH (2) in terms of the Bogoliubov bosons ηk by using

:b†
B.−kbB ,−k: =:(−vkηC ,k +u∗

kη
†
B ,−k)(−vkη

†
C ,k +ukηB ,−k):

= v2
kη

†
C ,kηC ,k +

∣∣uk

∣∣2
η†

B ,−kηB ,−k −ukvkηC ,kηB ,−k −u∗
k vkη

†
B ,−kη

†
C ,k,

:b†
C ,kbC ,k: =:(u∗

kη
†
C ,k − vkηB ,−k)(ukηC ,k − vkη

†
B ,−k):

= ∣∣uk

∣∣2
η†

C ,kηC ,k + v2
kη

†
B ,−kηB ,−k −ukvkηB ,−kηC ,k −u∗

k vkη
†
C ,kη

†
B ,−k, (3.19)

:bB ,−kbC ,k: =:(−vkη
†
C ,k +ukηB ,−k)(ukηC ,k − vkη

†
B ,−k):

=−ukvkη
†
C ,kηC ,k −ukvkη

†
B ,−kηB ,−k + v2

kη
†
C ,kη

†
B ,−k +u2

kηB ,−kηC ,k,

:b†
C ,kb†

B ,−k: =:(u∗
kη

†
C ,k − vkηB ,−k)(−vkηC ,k +u∗

kη
†
B ,−k):

=−u∗
k vkη

†
C ,kηC ,k −u∗

k vkη
†
B ,−kηB ,−k +u∗

k
2
η†

C ,kη
†
B ,−k + v2

kηB ,−kηC ,k

We thus obtain

δH (2) =J z
∑

k

[
δAB

−k :b†
B ,−kbB ,−k: +δAC

k :b†
C ,kbC ,k: +δB∗

k :bB ,−kbC ,k: +δBk :b†
B ,−kb†

C ,k:
]

(3.20)

=J z
∑

k

[
ωB(4)
−k η†

B ,−kηB ,−k +ωC (4)
k η†

C ,kηC ,k +B (4)
k

∗
ηB ,−kηC ,k +B (4)

k η†
B ,−kη

†
C ,k

]
,

(3.21)

with

ωB(4)
−k = ∣∣uk

∣∣2
δAB

−k + v2
kδAC

k −ukvkδB∗
k −u∗

k vkδBk

=
(∣∣uk

∣∣2 + v2
k

)
δA−2Re

(
u∗

k vkδBk
)

= A

ωk
δA−2Re

( B∗
k

2ωk
δBk

)
=:ω(4)

−k

=ω(4)
k ,

ωC (4)
k = v2

kδAB
−k +

∣∣uk

∣∣2
δAC

k −ukvkδB∗
k −u∗

k vkδBk

=
(∣∣uk

∣∣2 + v2
k

)
δA−2Re

(
u∗

k vkδBk
)

=ω(4)
k .

(3.22)

All in all, we obtain

δH (2) =∑
k

[
ε(4)

k η†
B ,kηB ,k +ε(4)

k η†
C ,kηC ,k + J z

(
B (4)

k

∗
ηB ,−kηC ,k +B (4)

k η†
B ,−kη

†
C ,k

)]
, (3.23)

where we defined

ε(4)
k := J zω(4)

k . (3.24)
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D The nonlinear sigma model of
SU(3) \ (U(1)×U(1))

From subsection 6.3.1, the action S of the discrete 2D lattice model of the SU(3) J1 − J3 Hamil-

tonian is given by

S =
β∫

0

∑
i , j∈N

{
p2 J1

[∣∣~φ∗
1 (i , j ) ·~φ2(i , j )

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ3(i , j )

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ1(i +1, j )

∣∣2

+ ∣∣~φ∗
1 (i , j ) ·~φ2(i , j +1)

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ3(i , j +1)

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ1(i +1, j +1)

∣∣2
]

+p2 J3

[∣∣~φ∗
1 (i , j ) ·~φ3(i , j )

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ1(i +1, j )

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ2(i +1, j )

∣∣2

+ ∣∣~φ∗
1 (i , j ) ·~φ3(i , j +2)

∣∣2 + ∣∣~φ∗
2 (i , j ) ·~φ1(i +1, j +2)

∣∣2 + ∣∣~φ∗
3 (i , j ) ·~φ2(i +1, j +2)

∣∣2
]

+p
3∑

n=1

~φ∗
n(i , j ) ·∂τ~φn(i , j )

}
dτ,

(4.1)

where the τ-dependency is implicit. We now go to the continuum limit by using the Riemann

sum

lim
N→∞

∆A
N−1∑
i , j=0

f (i , j ) −→
∫

f (x, y)d xd y, (4.2)

in which f (x, y) represents the expression of the Taylor expansion of f (i , j ) in x and y , and

∆A = 3a2 is the volume of the unit cell. In this case,

U (i ±1, j ) −→U (x, y)±3a∂xU (x, y)+O (a2),

U (i , j ±1) −→U (x, y)±a[−∂xU (x, y)+∂yU (x, y)]+O (a2),

U (i , j +2) −→U (x, y)+2a[−∂xU (x, y)+∂yU (x, y)]+O (a2),

U (i +1, j +1) −→U (x, y)±a[2∂xU (x, y)+∂yU (x, y)]+O (a2),

U (i +1, j +2) −→U (x, y)±a[∂xU (x, y)+2∂yU (x, y)]+O (a2).

(4.3)
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Appendix D. The nonlinear sigma model of SU(3) \ (U(1)×U(1))

This gradient expansion can be used on the terms in Eq. (4.1). For instance, the second term is

given by

p2
∣∣~φ∗

2 (i , j ) ·~φ3(i , j )
∣∣2 = p2

∣∣(~e2
ᵀLU )∗(~e3

ᵀLU )ᵀ
∣∣2

= p2
(

a2

p2 L12L∗
13 +2

a

p
L∗

23

)(
a2

p2 L∗
12L13 +2

a

p
L23

)
O (a5)

= 4a2 |L23|2 +O (a3)

(4.4)

up to a2. Performing this gradient expansion on on the action S (4.1) up to the the order a2,

and with the help of theΛn matrices defined by

Λ1 =

1 0 0

0 0 0

0 0 0

 , Λ2 =

0 0 0

0 1 0

0 0 0

 , Λ3 =

0 0 0

0 0 0

0 0 1

 , (4.5)

we obtain the action S[U ,L] (remember that U contains the fields ~ϕ) in the continuum limit:

S[U ,L] = 1

3a2

∫
d xd ydτ

(
L12[U ,L12]+L23[U ,L23]+L13[U ,L13]+LU [U ]

)
, (4.6)

with

L12[U ,L12] :=a
[

2L12(∂τUU †)21 +2L∗
12(∂τUU †)12

]
+a2 [

8(J1 + J3) |L12|2
]

+a2pL12

{
J1

[
−2(∂xUU †)21 +2(∂yUU †)21

]
+ J3

[
−8(∂xUU †)21 −4(∂yUU †)21

]}
+a2pL∗

12

{
J1

[
−2(U∂xU †)12 +2(U∂yU †)12

]
+ J3

[
−8(U∂xU †)12 −4(U∂yU †)12

]}
,

(4.7a)

L23[U ,L23] :=a
[

2L23(∂τUU †)32 +2L∗
23(∂τUU †)23

]
+a2 [

8(J1 + J3) |L23|2
]

+a2pL23

{
J1

[
−2(∂xUU †)32 +2(∂yUU †)32

]
+ J3

[
−8(∂xUU †)32 −4(∂yUU †)32

]}
+a2pL∗

23

{
J1

[
−2(U∂xU †)23 +2(U∂yU †)23

]
+ J3

[
−8(U∂xU †)23 −4(U∂yU †)23

]}
,

(4.7b)

L13[U ,L13] :=a
[

2L13(∂τUU †)31 +2L∗
13(∂τUU †)13

]
+a2 [

8(J1 + J3) |L13|2
]

+a2pL∗
13

{
J1

[
10(∂xUU †)13 +2(∂yUU †)13

]
+ J3

[
4(∂xUU †)13 −4(∂yUU †)13

]}
+a2pL13

{
J1

[
10(U∂xU †)31 +2(U∂yU †)31

]
+ J3

[
4(U∂xU †)31 −4(U∂yU †)31

]}
,

(4.7c)

156



LU [U ] :=a2p2
{

J1

[ ∑
r∈{x,y}

3∑
n=1

Tr[Λn−1(U∂r U †)Λn(∂r UU †)]

−
3∑

n=1

(
Tr[Λn−1(U∂xU †)Λn(∂yUU †)]+Tr[Λn−1(U∂yU †)Λn(∂xUU †)]

)
+12Tr[Λ3(U∂xU †)Λ1(∂xUU †)]

+3
(
Tr[Λ3(U∂xU †)Λ1(∂yUU †)]+Tr[Λ3(U∂yU †)Λ1(∂xUU †)]

)]
+ J3

[ 3∑
n=1

(
10Tr[Λn−1(U∂xU †)Λn(∂xUU †)]+4Tr[Λn−1(U∂yU †)Λn(∂yUU †)]

)
+2

3∑
n=1

(
Tr[Λn−1(U∂xU †)Λn(∂yUU †)]+Tr[Λn−1(U∂yU †)Λn(∂xUU †)]

)
−6Tr[Λ3(U∂xU †)Λ1(∂xUU †)]

−6
(
Tr[Λ3(U∂xU †)Λ1(∂yUU †)]+Tr[Λ3(U∂yU †)Λ1(∂xUU †)]

)]}
.

(4.7d)

The shorthand notation An
µν := Tr

[
Λn−1

(
U∂µU †

)
Λn

(
∂νUU †

)]
will be used in the subsequent

calculations for the ease of notation, with n ∈ {1,2,3}22. The L fields describing the fluctuations

can now be integrated out by using∫
d z∗d z e−z∗ωz+u∗z+v z∗ = π

ω
e

u∗v
ω , (4.8)

which yields the action S[U ]:

S[U ] =
∫

d xd ydτ

{
3∑

n=1

{
1

a2

1

6(J1 + J3)
An
ττ

p2 + An
xx

[
1

6(J1 + J3)

(−J 2
1 −8J1 J3 −16J 2

3

)+ 1

3
J1 + J3

10

3

]
p2 + An

y y

[
1

6(J1 + J3)

(−J 2
1 +4J1 J3 −4J 2

3

)+ 1

3
J1 + J3

4

3

]
+p2(An

x y + An
y x )

[
1

6(J1 + J3)

(
J 2

1 +2J1 J3 −8J 2
3

)− 1

3
J1 + J3

2

3

]
+p

a

1

6(J1 + J3)

[
(An

xτ− An
τx )+ (An

τy − An
yτ)

]
(J1 +4J3)

}
+p2 A1

xx

[
2

J1 + J3

(−2J 2
1 − J1 J3 + J 2

3

)+4J1 −2J3

]
+p2(A1

x y + A1
y x )

[
1

J1 + J3

(
−J 2

1 +
4

3
J1 J3 +2J 2

3

)
+ J1 −2J3

]
+p

a
(A1

xτ− A1
τx )

}
.

(4.9)

22When n = 0, it corresponds to n = 3.
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Appendix D. The nonlinear sigma model of SU(3) \ (U(1)×U(1))

As we are looking for the velocity of the Goldstone modes to compare it with the velocity

obtained with the LFWT along the diagonal of the Brillouin zone (kx = ky ) along which there

is a line of zero-modes in the J1 model, we consider a new (rotated) coordinate basis {x ′, y ′}:

x ′ = 1p
2

(x + y)

y ′ = 1p
2

(−x + y)
=⇒



∂

∂x
= ∂x ′

∂x

∂

∂x ′ +
∂x ′

∂x

∂

∂x ′ =
1p
2

(
∂

∂x ′ −
∂

∂y ′ )

=:
1p
2

(∂1 −∂2)

∂

∂y
= 1p

2
(
∂

∂x ′ +
∂

∂y ′ )

=:
1p
2

(∂1 +∂2)

(4.10)

In this rotated basis, the action S[U ] in Eq. (4.9) becomes

S[U ] =
∫

d x ′d y ′dτ
3∑

n=1

[
1

2(J1 + J3)
An
ττ+9a2p2 An

11

(
− J 2

3

J1 + J3
+ J3

)
+a2p2 An

22(J1 +4J3)

]

+
∫

d x ′d y ′dτ

{
3∑

n=1

[
ap(An

1τ− An
τ1)

J3

J1 + J3

3
p

2

2
+ap(An

τ2 − An
2τ)

p
2

3

]

−ap(A1
1τ− A1

τ1)
3
p

2

2
−ap(A1

τ2 − A1
2τ)

3
p

2

2

}
.

(4.11)

As we are looking for the low-energy behaviour of our system, we now linearise U (or the fields

~ϕ) by truncating the exponential in Eq. (6.42) at the linear order of θk (x ′, y ′,τ):

U [θ] = exp

(
i

6∑
k=1

θkλk

)
≈

 1 θ1 + iθ4 −θ2 + iθ5

−θ1 + iθ4 1 θ3 + iθ6

θ2 + iθ5 −θ3 + iθ6 1

 , or

~ϕ1 ≈

 1

θ1 + iθ4

−θ2 + iθ5

 , ~ϕ2 ≈

−θ1 + iθ4

1

θ3 + iθ6

 , ~ϕ3 ≈

 θ2 + iθ5

−θ3 + iθ6

1

 .

(4.12)

After this linearisation, the action S[U ] in Eq. (4.11) finally simplies into the linearised action

S0[θ]:

S0[θ] =
∫

d x ′d y ′dτL =
∫

d x ′d y ′dτ
6∑

k=1

(
χ |∂τθk |2 +ρ1 |∂1θk |2 +ρ2 |∂2θk |2

)
(4.13)

with

χ := 1

2(J1 + J3)
, ρ1 := 9a2p2

(
− J3

J1 + J3
+ J3

)
, ρ2 := a2p2 (J1 +4J3) . (4.14)
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E The quantum Liouville equations

5.1 The antiferromagnetic SU(2) model

We start with the Hamiltonian

H =J
∑
〈i , j〉

Si ·S j = J
∑

i

′ ∑
〈 j〉

Si ·S j , (5.1)

where the reduced sum
∑
〈i 〉

′
indicates that the sum is taken over one sublattice only, and

〈
j
〉

indicates the sum over the nearest neighbors of i .

Let us denote the two sublattices byΛi andΛ j . From hereon, the sites that belong toΛi will

be denoted by i , and the sites belonging to Λ j will be denoted by j . What we are interested

in is the equation of motion of the operator Si where i ∈ Λi . To this end, we will use the

commutation relation of the spin operators,[
Sαl ,Sβl

]
= iεαβγSγ ⇔ Sl ×Sl = i~S, (5.2)

where α,β,γ ∈ {
x, y, z

}
and l ∈ {

i , j
}
.

We are now ready to calculate the equation of motion of Si . According to the quantum Liou-

ville’s theorem, we derive

dSi

d t
= i

~
[H ,Si ]

=i


[
H ,Sx

i

][
H ,S y

i

][
H ,Sz

i

]
= i J

~
∑
〈 j〉


[
S y

i ,Sx
i

]
S y

j +
[
Sz

i ,Sx
i

]
Sz

j[
Sx

i ,S y
i

]
Sx

j +
[
Sz

i ,S y
i

]
Sz

j[
Sx

i ,Sz
i

]
Sx

j +
[
S y

i ,Sz
i

]
S y

j

=−J
∑
〈 j〉


−Sz

i S y
j +S y

i Sz
j

Sz
i Sx

j −Sx
i Sz

j

−S y
i Sx

j +Sx
i S y

j


=J

∑
〈 j〉

S j ×Si .

(5.3)
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Similarly, for j ∈Λ j , we obtain

dS j

d t
= i

[
H ,S j

]= J
∑
〈i 〉

Si ×S j , (5.4)

leading us finally to a set of equations
dSi
d t = J

∑
〈 j〉

S j ×Si ,

dS j

d t = J
∑
〈i 〉

Si ×S j .
(5.5)

We will work in natural units from hereon so that ~= 1.

Let us assume that the spins are classical in the three-dimensional space, aligned along the

z-axis (S = Sez). With the further assumption that the fluctuations are small, we can write

Si (t ) = S+δSi (t ), S j (t ) =−S+δS j (t ). (5.6)

The equations of motion (5.5) then become
δṠi = J

∑
〈 j〉

[
(−S×δSi )+ (

δS j ×S
)]

δṠ j = J
∑
〈i 〉

[(
S×δS j

)+ (δSi ×−S)
] (5.7)

up to order O (δS2). The time dependence has been omitted to simplify the notation. We now

perform the Fourier transform

δSi ,k =
√

2

N

∑
i∈Λi

′
δSi e−i k·Ri , δS j ,k =

√
2

N

∑
j∈Λ j

′
δS j e−i k·R j , (5.8)

to obtain

d Ṡi ,k = z J
[(−S×δSi ,k

)+γk
(
δS j ,k ×S

)]
d Ṡ j ,k = z J

[(
S×δS j ,k

)+γk
(
δSi ,k ×−S

)] ⇔



dṠx
i ,k = z JS

(
δS y

i ,k +γkδS y
j ,k

)
dṠ y

i ,k =−z JS
(
δSx

i ,k +γkδSx
j ,k

)
dṠz

i ,k = 0

dṠx
j ,k =−z JS

(
δS y

j ,k +γkδS y
i ,k

)
dṠ y

j ,k = z JS
(
δSx

j ,k +γkδSx
i ,k

)
dṠz

j ,k = 0

(5.9)

where z = 4 is the coordination number and γk = 1
2

(
coskx +cosky

)
is the geometrical factor.

Let us now reexpress the spin operators Sα in the spherical basis (i.e., in terms of ladder
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5.1. The antiferromagnetic SU(2) model

operators) S±, as we will work in the ladder-operator basis for the SU(3) case. By defining

δS±
l ,k = δSx

l ,k ± iδS y
l ,k, (5.10)

the equations (5.9) become

dṠ±
i ,k =∓i z JS

(
δS±

i ,k +γkδS±
j ,k

)
dṠz

i ,k = 0

dṠ±
j ,k =±i z JS

(
δS±

j ,k +γkδS±
i ,k

)
dṠz

j ,k = 0.

(5.11)

We can ignore the trivial equations, thus being left with four equations to solve:dṠ±
i ,k =∓i z JS

(
δS±

i ,k +γkδS±
j ,k

)
dṠ±

j ,k =±i z JS
(
δS±

j ,k +γkδS±
i ,k

)
.

(5.12)

The equations can now be solved in time. We observe that δS+
i ,k is coupled to δS+

j ,k and that

δS−
i ,k is coupled to δS−

i ,k. This allows us to make the ansatz

δS±
l ,k(t ) ∝ δS±

l ,ke iω±
k t , (5.13)

i.e., there is one frequency ω+
k for δS+

i ,k and δS+
j ,k. The same applies to their negative counter-

parts. The equations (5.12) are then given byiω±
k dṠ±

i ,ke iω±
k t =∓i z JS

(
δS±

i ,k +γkδS±
j ,k

)
e iω±

k t

iω±
k dṠ±

j ,ke iω±
k t =±i z JS

(
δS±

j ,k +γkδS±
i ,k

)
e iω±

k t
(5.14)

⇔ ω±
k

(
S±

i ,k

S±
j ,k

)
=∓

(
z JS z JSγk

−z JSγk −z JSγ

)(
S±

i ,k

S±
j ,k

)
= 0

⇔
[
∓

(
z JS z JSγk

−z JSγk −z JSγ

)
−ω±

k1

](
S±

i ,k

S±
j ,k

)
= 0.

The determinant of the matrix on the LHS finally yields the solutions:

⇒ ω±
k

2 − (z JS)2(1−γ2
k ) = 0

⇒ ω±
k = z JS

√
1−γ2

k.

Hence, we obtain two spectra that are identical to that of the spin-wave theory with Holstein-
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Appendix E. The quantum Liouville equations

Primakoff transformation:

ω+
k = z JS

√
1−γ2

k

ω−
k = z JS

√
1−γ2

k

(5.15)

5.2 The inhomogeneous solutions of the AFM SU(3) model

We first consider the inhomogeneous part of the equations in subsection 6.3.2. We want them

to be equal to zero in order to be able to solve the homogeneous part. Let us consider the first

subset of (6.63) only as the other subsets have similar structures: ±
(
C 12

i ,p +γpC 12
j ,p +γ∗p δS12

k,p

)
= 0

∓
(
C 12

j ,p +γpC 12
i ,p +γp δS12

k,p

)
= 0

⇔ ±
(

1 γp

−γp −1

)(
C 12

i ,p

C 12
j ,p

)
=

(
−γ∗p
+γp

)
δS12

k,p (5.16)

⇒
(

C 12
i ,p

C 12
j ,p

)
=±

(
1 γp

−γp −1

)−1 (
−γ∗p
+γp

)
δS12

k,p

⇒
(

C 12
i ,p

C 12
j ,p

)
=± 1

1−γ2
p

(
1 γp

−γp −1

)(
−γ∗p
+γp

)
δS12

k,p

⇒
C 12

i ,p
± =±δS12

k,p
± 1

1−γ2
p

(
γ2

p −γ∗p
)

C 12
j ,p

± =±δS12
k,p

± 1
1−γ2

p

(∣∣γp
∣∣2 −γp

) (5.17)

Similarly, the remaining constants from the other subsets



C 13
i ,p

± =±δS13
j ,p

± 1
1−γ2

p

(∣∣γp
∣∣2 −γp

)
C 13

k,p
± =±δS13

j ,p
± 1

1−γ2
p

(
γ2

p −γ∗p
)

C 23
j ,p

± =±δS23
i ,p

± 1
1−γ2

p

(
γ2

p −γ∗p
)

C 23
k,p

± =±δS23
i ,p

± 1
1−γ2

p

(∣∣γp
∣∣2 −γp

) (5.18)

can be obtained. These (time-)constants are, however, not of interest for us.

If we consider the equations up to order O (δS2) as we did here, we could in fact physically

argue that the (time-)constants

δS2
3,i (p) = δS3

2,i (p) = δS3
1, j (p) = δS1

3, j (p) = δS1
2,k (p) = δS2

1,k (p) = 0

can be set to zero, as they are second-order colour transitions. This is something that we
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had also observed in the LFWT: in the harmonic order, only the colours of the condensate

are involved. This assumption would yield homogeneous equations as in the SU(2) case

which are easier to solve (and lead to the same homogeneous solutions for SU(3) obtained in

subsection 6.3.2). However, our treatment of these constants here is, of course, more general.
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