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Abstract
Though deep learning (DL) algorithms are very powerful for image processing tasks, they gen-

erally require a lot of data to reach their full potential. Furthermore, there is no straightforward

way to impose various properties, given by the prior knowledge about the target task, on the

features extracted by a DL model. Therefore, in this thesis we propose several techniques

that rely on the power of graph representations to embed prior knowledge inside the learning

process. This allows to reduce the solution space and leads to faster optimization convergence

and higher accuracy in the representation learning.

In our first work, inspired by the ability of a human to correctly classify rotated, shifted or

flipped objects, we propose an algorithm that permits to inherently encode invariance to

isometric transformations of objects in an image. Our DL architecture is based on graph

representations and consists of three novel layers, which we refer to as graph convolutional,

dynamic pooling and statistical layers. Our experiments on the image classification tasks

show that our network correctly recognizes isometrically transformed objects even though

such types of transformation are not seen by the network at training time. Standard DL

techniques are typically not able to succeed in solving such a problem without extensive data

augmentation.

Then, we propose to exploit the properties of graph-based approaches to efficiently process

images with various types of projective geometry. In particular, we are interested in increas-

ingly popular omnidirectional cameras, which have a 360 degree field of view. Despite their

effectiveness, such cameras create images with specific geometric properties, which require

special techniques for efficient processing. We propose an efficient way of adjusting the

weights of the graph edges to adapt the filter responses to the geometric image properties

introduced by omnidirectional cameras. Our experiments prove that using the proposed

graph with properly adjusted edge weights permits to reach better performance as compared

to using regular grid graph with equal weights.

Finally, the approach described above relies on the isotropic filters, which work well within

our transformation invariant architecture for image classification. However, for other prob-

lems (e.g. image compression) or even when used without dynamic pooling and statistical

layers that are defined within the proposed architecture, these filters are unable to efficiently

encode the information about the object. Thus, we introduce a different technique based

on anisotropic filters that adapt their shape and size according to the omnidirectional image

geometry. The main advantage of this approach compared to the previous one is the ability

to encode the orientation of an image pattern, which is important for various tasks such
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as image compression. Our experiments show that our approach adapts to different image

projective geometries and achieves state-of-the-art performance on image classification and

compression tasks.

Overall we propose several methods, which combine the power of DL and graph signal pro-

cessing towards incorporating prior information about the target task inside the optimization

procedure. We hope that the research efforts presented in this thesis will help the development

of efficient DL algorithms that can use various types of prior knowledge to make them efficient

even when the available training data is scarce, such as medical imaging and omnidirectional

camera processing applications.

Keywords: deep learning, graph signal processing, invariant feature representation, omnidi-

rectional images, geometry-aware architectures.
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Résumé
Malgré la puissance des algorithmes d’apprentissage profond (DL), le grand volume des don-

nées reste un défi pour pouvoir atteindre une performance maximale. De plus, il n’existe

aucun moyen simple pour imposer des informations qu’on connaît a priori sur la tâche cible

et sur les caractéristiques extraites par un modèle DL. Cette thèse apporte une contribution

fondamentale pour modéliser et intégrer des connaissances a priori dans le processus d’ap-

prentissage, en se basant sur des méthodes graphiques. Les méthodes employées présentent

l’avantage de pouvoir réduire l’espace de la solution, d’augmenter la vitesse de convergence

et d’avoir une plus grande précision dans l’apprentissage de la représentation.

L’idée principale s’inspire de la capacité d’un être humain à classifier correctement des objets

pivotés, décalés ou retournés. Dans ce travail, nous proposons un algorithme offrant une

grande flexibilité quant aux transformations isométriques des objets dans une image. Notre

architecture DL est basée sur des représentations de graphes et se compose de trois nouvelles

couches : une couche de convolution sur les graphes, une couche de pooling (« mise en

commun ») dynamique et une couche statistique. Dans les résultats de simulation fournis,

nous démontrons l’efficacité de notre approche pour la classification des images. Le réseau

considéré offre une grande capacité de reconnaître correctement les objets transformés de

manière isométrique, même si ces transformations ne sont pas vies par le réseau au moment

de l’apprentissage. Les techniques DL classiques sont généralement incapables de résoudre

un tel problème sans recours à une augmentation importante des données.

Dans une seconde partie, nous proposons d’exploiter les propriétés des approches basées sur

les graphes pour traiter efficacement des images avec divers types de géométrie projective. En

particulier, nous nous intéressons aux caméras omnidirectionnelles qui sont de plus en plus

populaires pour leur champ de vision de 360 degrés. Malgré leur efficacité, ces caméras créent

des images avec des propriétés géométriques spécifiques. Nous proposons un moyen efficace

d’ajuster les poids des bords du graphe pour adapter les réponses du filtre aux propriétés

géométriques de l’image introduites par les caméras omnidirectionnelles. Nos expériences

prouvent que l’utilisation des graphes avec de poids adaptés pour les bords et correctement

ajustés„ permet d’atteindre des meilleures performances que l’état de l’art, où les méthodes

existantes se limitent à l’utilisation d’un graphe régulier avec des poids uniformes.

L’approche décrite ci-dessus repose sur des filtres isotropes, qui sont efficuces avec notre

architecture invariante pour la classification des images qui contiennent des objets transfor-

més. Cependant, pour d’autres types de problèmes (par exemple la compression d’image),

ces filtres ne peuvent pas coder de manière efficace les informations relatives à l’objet. Dans

ix



Acknowledgements

cette dernière partie, nous introduisons une technique différente basée sur des filtres aniso-

tropes qui s’adaptent (forme et taille) à la géométrie de l’image omnidirectionnelle. L’avantage

principal de cette approche par rapport à la précédente réside dans la possibilité de coder

l’orientation d’un motif dans une image, ce qui est important pour diverses applications

comme la compression d’image. Nos expériences montrent que notre approche s’adapte à

différents types de géométries projectives. Nos résultats ont permis de valider l’efficacité de

cette méthode pour la classification et la compression d’images.

Globalement, nous proposons plusieurs méthodes, qui combinent la puissance du traitement

du signal DL et du graphe pour incorporer des informations données a priori sur la tâche cible

dans la procédure d’optimisation. Nous espérons que les efforts de recherche présentés dans

cette thèse contribuent aux développements des algorithmes DL et permettent d’ouvrir des

possibilités pour l’incorporation de nouveaux modèles pour éviter le problème de manque

des données dans des applications telles que l’imagerie médicale et le traitement des images

omnidirectionnelles.

Mots clés : apprentissage profond, traitement du signal sur les graphes, représentation des

entités invariantes, images omnidirectionnelles, modèles géométriques.
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1 Introduction

1.1 Motivation

Deep learning methods have become widely used for image processing applications in the

recent years. They have achieved state-of-the-art performance in various computer vision

tasks including but not limited to image classification [1], object detection and image seg-

mentation [2]. Despite being very effective, deep learning methods typically require large

amounts of data to achieve their full potential. Large amounts of training examples is generally

beneficial for various machine learning techniques, but deep learning methods more critically

depend on the data as they typically do not rely on any prior knowledge about the data or

the task at hand. Further, even though in many of the real-world problems one has access

to some prior knowledge (e.g., camera parameters etc.), there is no straight-forward way of

incorporating such information inside deep neural networks.

In this thesis, we propose several methods of incorporating the prior knowledge about the

available data or target task, into the learning process. This permits to reduce the solution

search space and, thus to significantly reduce the size of the training set (or the necessary

amount of data augmentation) and leads to important benefits compared to the approaches

that have to learn everything purely based on the data. In this work we focus in particular

on two types of prior information: isometric transformations of data and camera projective

geometry. In order to incorporate these types of prior information in the deep learning

procedure we rely on the power of graph-based representations. In the remainder of this

section we discuss in more details the prior knowledge considered in this work and then

briefly introduce our framework to incorporate these types of information in the deep neural

network architecture.

Isometric transformation of objects. One of the types of prior information, which we con-

sider in this work, is the invariance of classification tasks to isometric transformations of

objects. This property plays an important role in vision, where the outcome of analysis or

classification algorithm shall be independent of the orientation of the object in the image.

1



Chapter 1. Introduction

image feature response image feature response

a) b)

Figure 1.1 – Illustration of the result of convolutional operation with elementary filter [−1,1]
on the images with a pattern in horizontal (a) or vertical (b) orientation. The resulting feature
representation is not invariant to rotation.

image feature response image feature response

a) b)

Figure 1.2 – Illustration of the result of max-pooling operation with non-overlapping patches,
which is widely use in standard ConvNets on the image (a) and the image with the pattern
rotated around the pixel with value “2” (b). The resulting feature representation is not invariant
to rotation.

This is particularly true for the classification of images of objects that can be seen from differ-

ent perspectives or camera viewpoints, or when processing biomedical and/or astronomical

images, where the same objects may appear with a broad variety of orientations. In all these

cases, it is often preferable to have an algorithm that produces the same feature representation

for an object, independently of the isometric transformation (i.e., rotation, flip and translation)

that this object undergoes in the observed image.

There is, however, no straightforward way of incorporating such prior knowledge inside the

classic Convolutional Neural Network (ConvNet) [3] due to the following reasons. Even though

the ConvNets are partially invariant to small translations by their construction of convolutional

and pooling layers, they are not invariant to rotations and flips. This is illustrated in Fig. 1.1

and 1.2, where we can clearly see that convolutional and max-pooling operations that are

frequently used in ConvNets do generally not produce invariant feature representation for an

object that undergoes different isometric transformations.

2



1.1. Motivation

a) b) c) d)

Figure 1.3 – Examples of equirectangular (a,c) and cube-map projection (b,d) representations
of omnidirectional images. The distortion of equirectangular image (a,c) is stronger closer to
the pole and the distortion of cube-map projection (b,d) mostly occurs due to the discontinuity
on the borders of the faces of the cube.

Camera geometry. The second type of prior knowledge that we consider in this work re-

lates to the projective geometry of the camera. This information is directly connected with

various distortion effects that appear in the images captured by non-classical cameras, like

omnidirectional ones. To efficiently use such prior knowledge we developed several methods

that modify deep learning architectures in order to adapt to the geometry distortion effects

introduced by the camera lens and produce features that are independent of such distortions.

In particular, we are interested in omnidirectional cameras, which are frequently used in areas

such as robot navigation and virtual reality due to their wide 360-degree field of view.

Fig. 1.3 illustrates several examples of distortion effects that are introduced by different rep-

resentations of omnidirectional images. One of the most popular ways of representing such

images is to use equirectangular projection [4], which maps the spherical image to a rectangu-

lar one that can then be processed with standard techniques. However, due to the process of

unwrapping of the spherical surface onto a planar one, such representation of omnidirectional

images contains strong distortion artifacts that can be seen in Fig. 1.3 (a,c). This essentially

leads to the same object having different shapes depending on the position at which it appears

on the omnidirectional image.

In order to reduce the influence of such geometric distortion effects, the cube-map projec-

tion [5] maps the image from the spherical surface to an imaginary cube that surrounds it.

Then, this cube is unwrapped and its faces are rearranged in a special order to form a rectan-

gular image. Such an approach prevents the appearance of severe artifacts that are seen in

the case of the equirectangular projection. However, it introduces other artifacts due to the

discontinuity on the boundaries of the cube faces. An example of the cube-map projection of

the omnidirectional image can be seen in Fig. 1.3 (b,d)

Our approach. In this work, we propose to use the power of graph-based representations to

integrate geometric priors into deep learning architectures. We represent an image as a signal

3



Chapter 1. Introduction

on a graph, where each node and the signal value that is associated with it, corresponds to a

pixel location and its intensity value respectively. This representation is very efficient for our

task, due to the following reasons.

First, an undirected graph that represents an image does not have any orientation in space,

as the ordering of the nodes (that represent pixels) can be set arbitrarily. This permits for

development of convolutional filters that operate in the spectral domain and are equivariant

to isometric transformations, which are applied to the image. We present an efficient way

of learning such filters, in Chapter 3. In order to compress this feature representation, we

introduce a special dynamic pooling layer that preserves the original graph structure and

makes the signal sparser. All the aforementioned operations result in learning features that

are equivariant to geometric transformations of the input signal. We further develop a special

statistical layer, which learns multi-scale statistics that are independent of the ordering of

graph nodes and therefore transformation invariant. Combining all these steps results in

a deep learning architecture that is inherently invariant to isometric transformation of the

image signal.

Then, graphs have the natural flexibility to encode the relations between the nodes (pixels)

via the modification of the edge weights that connect these nodes and/or by changing the

connectivity pattern between them. This is particularly useful for incorporating the knowledge

about the geometry of omnidirectional images inside the deep learning framework. In this

work, we suggest two different approaches to achieve this objective. Our first method extends

our previous approach [6] to omnidirectional images by adjusting the weights of the edges

between the graph nodes in such a way that the resulting response of a spectral convolutional

filter is similar for the same image pattern independently of its position on the image. Similarly

to [6], this method operates on images represented as signals on an undirected graph and,

apart from adapting features to the geometry of omnidirectional cameras, it also makes them

invariant to isometric transformations. While effective for such tasks as image classification,

enforcing such invariance is not necessarily ideal in other tasks, such as image compression,

where the orientation of the pattern plays an important role. We, therefore, develop an

alternative approach that relies on multiple directed graphs, which in turn permits learning

anisotropic graph filters. This approach further permits to adjust relative weights of different

filter elements, and also to change the filter’s shape to adapt to the image projective geometry

in the neighborhood of a node (pixel).

1.2 Thesis outline

The goal of this thesis is to present a solution for extending deep learning techniques with a

set of predefined priors using powerful graph-based representations.

As graph signal processing is a central part of the thesis, we start by an introduction of this topic

in Chapter 2. We discuss the generalization of Fourier transform and the filtering operation,

which is performed in the spectral domain of the graph. Then, we review the recent trends
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in the literature related to our approach, where deep learning marries with graph signal

processing tools.

In Chapter 3 we propose a novel graph-based approach to learn image feature representations.

We define quasi-eqivariance property and show that graph filtering operation permits to learn

features that are quasi-equivariant to isometric transformations up to pixel resolution. This

permits to have equivariant representation at the input of fully-connected layer. However,

it is not enough to preserve invariance to isometric transformations, as the neurons of the

fully-connected layers have to learn the representation of the input depending on the iso-

metric transformation it undergoes. Thus, we suggest a novel statistical layer, which creates

inherently isometric invariant representations. These can then be efficiently processed by a

fully-connected layer, since the deformed objects have the same feature representation as

the original ones. Our experiments on the image classification tasks show that our network

is able to correctly recognize isometrically transformed objects even though such type of

transformation was not seen by the network at training time, while standard deep learning

techniques are typically not able to succeed in solving this problem.

Next, in Chapters 4 and 5 we present two different approaches that make the features learned

via a deep neural network invariant to the geometric distortion of the omnidirectional camera.

In Chapter 4, we depart from the proposed approach in Chapter 3 and extend a deep network

architecture to images with a wide field of view, such as omnidirectional images. As images

are represented by a graph, we have the flexibility of choosing different weights of the edges,

which permits to change the response of the graph-based filter with its location in the image.

We benefit from this property by introducing specific weights of the edges between the graph

nodes that force the filter to have similar response for the same image pattern seen at different

positions on the omnidirectional image. It permits learning transformation invariant features,

which are effective for tasks such as image classification. Our experiments show that various

techniques that operate on the graph with properly adjusted edge weights are able to reach

higher accuracy for omnidirectional image classification task as compared to using regular

grid graph with equal weights. This is achieved due to the fact that the network becomes aware

about geometry of the camera.

Finally, processing the orientations of the image patterns is important in some applications like

compression. Therefore, in Chapter 5, we suggest another representation learning algorithm

that relies on multiple directed graphs. It is able to learn anisotropic filters that adapt their

shape and size to the geometry of the images. To achieve this, we introduce a novel anisotropic

filter based on multiple directed graphs. In contrary to the previous method, these filters are

not isotropic and, therefore, are able to encode the orientation of the object in the image, which

is important for various tasks such as omnidirectional image compression. Unlike standard

convolutional neural networks, which use the information from a fixed neighborhood of each

pixel, our filters are capable of adapting their size and shape to the geometry introduced by

omnidirectional cameras, which ultimately results in a more efficient representation of the

object in the image. The design of our graph structure is flexible and capable of modeling
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different image projective geometries. We, finally, show that our approach can be efficiently

used in a more general scenario, where the representation of the image is non-spherical. For

example, we have experimented with a cube-map projection (which is becoming popular

nowadays for representing 360-degree images) and showed that our approach is able to

efficiently cope with the distortion effects that arise in this case. Our network achieves state-

of-the-art performance on different image classification tasks, where images are projected

to various surfaces. Further, when applied to an image compression problem, our method is

able to avoid various artifacts, which appear when using conventional compression methods,

due to the knowledge about the image geometry.
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1.3 Summary of contributions

We propose the following main contributions in the thesis:

• a novel graph-based image representation learning framework, which is inherently

invariant to isometric transformation, and therefore able to correctly classified trans-

formed objects in images, even if such transformations are not present in the training

dataset;

• a new graph-based statistical layer for deep network architectures that leads to an

effective transformation-invariant classification of images;

• a principled way for constructing graphs based on the projective geometry of images,

which leads to a similar feature representation for the same object appearing at various

positions of an image with particular geometry;

• a generic directed graph construction technique that allows developing anisotropic fil-

ters and permits adapting their shapes and sizes to various image projective geometries;

• a novel approach, which exploits image projective geometry and permits reducing

compression artifacts that are specific for cube-map projected images compared to

standard techniques.
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2 Graph signal processing meets deep
learning in vision

Convolutional neural networks (ConvNets) [7] have shown state-of-the-art performance in

various computer vision tasks [1, 2]. They prove to be very effective when working with image

data, which can be seen as type of data with regular (grid) structure. However, in reality there

exist large number of tasks, that focus on working with irregular data, including social networks,

brain signals, pointclouds, etc [8]. These data types typically have an underlying structure,

which, however, cannot be represented as a regular grid. Therefore, applying ConvNets in this

case is challenging as pooling and convolutional layers are not defined for such irregular data.

This problem has recently gained a lot of attention from the research community. The class of

methods that tackle the problem of efficient representation of irregular data and processing

with deep learning technique is typically referred to as geometric deep learning [8]. In this

thesis we focus on one of such representations, namely graph-based representation, which

permits modeling irregular relations between items. Thus, in this chapter we review the most

recent geometric deep learning techniques.

The remainder of the chapter is organized as follows. We start by discussing some graph signal

processing elements that are crucial for the techniques discussed in the following chapters and

for understanding the difference between the existing approaches. We then discuss in more

details different ways of how each of the key ingredients of a convolutional neural network (i.e.

convolutional and pooling layers) can be transformed such that the resulting architecture is

capable of processing irregular data.

2.1 Graph signal processing elements

We now briefly review some elements of graph signal processing. We represent irregular data

as signal y on a graph G , which is able to efficiently represent the underlying geometrical

structure of the data. In more details, G = {V ,E , A} is an undirected, weighted and connected

graph, where V is a set of N vertices, E is a set of edges and A is a weighted adjacency

matrix. An edge e(vi , v j ) that connects two nodes vi and v j is associated with the weight

w(vi , v j ) = w(v j , vi ), which is usually chosen to capture the similarity between both vertices.
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The edge weight is set to zero for pairs of nodes that are not connected, and all the edge

weights together build the adjacency matrix A. Every vertex vn of G carries the luminance

value of the corresponding image pixel. Altogether, the valued vertices define a graph signal

y(vn) : V →R.

Similarly to regular 1-D or 2-D signals, the graph signals can be efficiently analysed via har-

monic analysis and processed in the spectral domain [9]. In that respect, we first consider the

unnormalized graph Laplacian operator of the graph G , defined as

Lu =


d(vi ) , if i = j ,

−w(vi , v j ) , if i 6= j , vi ∼ v j ,

0 , otherwise ,

(2.1)

and then the normalized one, defined as

L =


1 , if i = j , d(vi ) 6= 0 ,

−(
d(vi )d(v j )

)−1/2 , if i 6= j , vi ∼ v j ,

0 , otherwise ,

(2.2)

where vi ∼ v j denotes that node vi is adjacent to the node v j , and d(vi ) is the degree of the

vertex vi , computed as

d(vi ) =
N∑

j=0, j 6=i
w(vi , v j ) . (2.3)

The Laplacian operator is a real symmetric and positive semidefinite matrix, which has a set

of orthonormal eigenvectors and corresponding eigenvalues. Let χ= [χ0,χ1, . . . ,χN−1] denote

these eigenvectors and {0 =λ0 ≤λ1 ≤ ·· · ≤λN−1} denote the corresponding eigenvalues with

λN−1 =λmax = 2 for the normalized Laplacian L . The eigenvectors form a Fourier basis and

the eigenvalues carry a notion of frequencies as in the classical Fourier analysis. The Graph

Fourier Transform ŷ(λi ) at frequency λi for signal y and respectively the inverse graph Fourier

transform for the vertex vn ∈ V are thus defined as:

ŷ(λi ) =
N∑

n=1
y(vn)χ∗i (vn), (2.4)

and

y(vn) =
N−1∑
i=0

ŷ(λi )χi (vn). (2.5)

Equipped with the above notion of Graph Fourier Transform, we can denote the generalized
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convolution of two graph signals y1 and y2 with help of the graph Laplacian eigenvectors as

(y1 ∗ y2)(vn) =
N−1∑
i=0

ŷ1(λi )ŷ2(λi )χi (vn). (2.6)

By comparing the previous relations, we can see that the convolution in the vertex domain is

equivalent to the multiplication in the graph spectral domain. Graph spectral filtering can

further be defined as

ŷ f (λi ) = ŷ(λi )ĥ(λi ), (2.7)

where ĥ(λi ) is the spectral representation of the graph filter h and ŷ f (λi ) is the Graph Fourier

Transform of the filtered signal y f . In a matrix form, the graph filter can be denoted by

H ∈RN×N : H =χĤχT , where Ĥ is a diagonal matrix constructed on the spectral representation

of the graph filter:

Ĥ = diag(ĥ(λ0), . . . , ĥ(λN−1)). (2.8)

The graph filtering process becomes y f = H y , with the vectors y and y f being the graph signal

and its filtered version in the vertex domain. Finally, we can define the generalized translation

operator Tvn for a graph signal y as the convolution of y with a delta function δvn centered at

vertex vn [10]:

Tvn y =p
N (y ∗δvn )

=p
N

∑N−1
i=0 ŷ(λi )χ∗i (vn)χi .

(2.9)

Thus, convolutional filtering operation can be defined using the normalized or unnormalized

Laplacian operators as follows:

F (y) =∑M
m=0αmL m y,

Fu(y) =∑M
m=0αmL m

u y,
(2.10)

where am is a parameter of the convolutional filter and y is a signal defined on graph. Spatially,

these filters operate on the defined m-hop neighbourhood of each vertex. More details about

the above graph signal processing operators can be found in [9].

2.2 Graph-based ConvNets

We now review in more details the recent techniques that adapt convolutional operation,

which is the key component of the classical ConvNets, to irregular data structures. Part of our

chapter is based on the survey [8] extended with the recent state-of-the-art techniques.

In order to define the convolutional operation on a graph a number of methods have been

proposed. These approaches can be roughly divided in three different categories:
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1. Spectral that work with the spectral representation of the graph, following the convolu-

tional theorem, which states that a convolutional operation in the spatial domain (i.e. is

the domain of graph vertexes) is equal to the point-wise multiplication in the spectral

domain.

2. Spectrum-free that are based on the polynomial of Laplacian filters both acts in the

frequency domain of the graph and well-localized on it. These methods can be defined

in spatial domain as well.

3. Spatial that work directly in the spatial domain and represent a filter as a template and

define the convolutional operation as a template matching procedure.

In the remainder of this section we discuss in more details each of these types of approaches.

Convolutional filters in spectral domain. One of the pioneering efforts to define a convo-

lutional filter in spectral domain, was done by [11]. They suggest to use eigendecomposition

and apply Eq. (2.4) to transfer the signal y , defined on a graph, from vertex to spectral domain.

The convolutional operation is then defined in this spectral domain using Eq. (2.6), where

the size of the convolutional filter depends on the number of eigenvectors being used. In [11]

the authors suggest using k first eigenvectors of y , as they represent the low frequencies of

the signal. After the convolutional operation is applied to spectral representation of y , the

result of this operation is converted back from spectral to vertex domain. While effective this

method has certain limitations. First it is prone to overfitting, as it relies on a large number

of parameters, which depends on the number of eigenvalues and eigenvectors. To overcome

this problem and make the method more stable the authors of [12] propose to use smooth

multipliers. This results in eigenvectors being ordered according to their respective eigen-

values and spectral multipliers being parametrized with a fixed interpolation kernel (e.g. a

cubic spline). Further, even though this method has theoretical similarities with the standard

convolutional filter, it is computationally non-effective and time-consuming as it requires

computing expensive matrix multiplication steps O (N 2) during forward and back passes of the

spectral CNN network, where N is the cardinality of the signal. To overcome the computational

complexity of these approaches there were introduce methods, which allow to avoid explicit

computation of Laplacian eigenvectors.

Spectrum-free convolutional filters. In order to avoid complex eigendecomposition, the

method [13] shows that convolutional filters can be represented as Laplacian polynomials

using Eq. (2.10). This permits to do spectral filtering of the signal without its actual conversion

to spectral domain, thus avoiding the time-consuming eigendecomposition operation [6,

14]. This also leads to having a better control on the number of filter parameters, as they

are directly related to the degree of the polynomial. To even further improve the speed

of the convolutional operation the authors in [14] suggest approximating these functions

by Chebyshev polynomials [15], which can be efficiently generated in a recurrent fashion.
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Their approach, which is typically referred to as ChebNet, allows to significantly reduce

the complexity of the filtering operation to O (N M), with M and N being the degree of the

polynomial and the cardinality of the signal respectively.

Further, the work [16] simplifies the aforementioned work by fixing the degree of the poly-

nomial filters to 1. The authors assume that the maximum eigenvalue ' 2, which permits

obtaining a convolution filter, represented by a single parameter. For each graph node p in

the vertex domain, such filter acts on its 1-hop neighborhood and effectively sums the values

of the signal across all the direct neighbours of p and then computes the weighted sum of this

value with the value of the signal at p. The authors in the work [16] show that having such

relatively small filters within the deep learning architecture significantly improves the speed

of the approach and is generally enough for various problems, as the multi-layer structure of

the network allows to model complex relationships between the nodes of the graph.

The disadvantages of ChebNet is that the eigenvalues of the Laplacian, which are used for

spectral filters are concentrated near very few values with the large gaps remained. There-

fore, the authors from [17] propose to replace laplacian filters by the ones based on Cayley

transform, which results in spectral filters on graphs that focus on frequency bands of interest,

which allow to more evenly cover the whole spectrum of frequencies. These Cayley filters are

special cases of filters based on general rational functions of the Laplacian, namely ARMA

filters [18].

The aforementioned techniques assume that graph is undirected and its Laplacian matrix is

symmetric and positive semi-definite with orthogonal eigendecomposition, which leads to

their spectral interpretation. Contrary to these approaches there exist several graph-based

techniques that relax the undirected graph requirement. The work [19] proposes a method

that applies filtering operation directly on a graph, which can be both directed and undirected.

The steady state requirement of this technique is then relaxed by the works [20, 21]. The

work [20] further improves [19] by removing the need in constraining the model parameters

to ensure convergence and the authors in [21] additionally drop the requirement of being

recurrent. Further, the work [22] proposes a different deep learning architecture that they refer

to as MotifNet, which operates on directed graphs by exploiting their motifs that is originally

introduced in [23]. MotifNet outperforms approaches with Laplacian polynomial filters based

on undirected graph for some nodes classification tasks, however, their main limitation is that

they assume that the notion of direction can be derived from the local structural properties of

the graph, which is not always the case.

Another issue with spectral approaches is that different graphs have different eigenvalue

distributions. This essentially makes it impossible to use filters in a certain domain, if they are

learned in a different one, which can be a severe limitation for such tasks as 3D point cloud

segmentation. To overcome this problem the authors of [24] suggest mapping each of the

individual domains to a canonic one using a so-called functional map tool. The main limitation

of this approach is the requirement of eigendecomposition computation for both the Fourier
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and the Inverse Fourier Transforms. A different way of designing a domain independent

architecture is to use the spatial techniques, which we discuss in the following section.

Convolutional filters defined in spatial domain. In this section we briefly discuss the most

recent techniques that introduce different ways of developing a convolutional filter that

operates in the vertex domain of the graph. A standard convolutional filter that operates

on Euclidean data is typically defined as a patch, which has it is local system of coordinates

and can be translated to each of the nodes. The convolutional operation is then defined at

each vertex as a correlation between this defined patch and the neighbourhood of this vertex.

Therefore, in order to define a convolutional operation on a graph, it is necessary to define

both the coordinate system of the filter and the function that allows to compute the value of

the filter for each node of the graph.

We start our discussion with the methods, designed for working with manifolds with the

main focus on learning the correspondences between shapes. The authors in [25] work with

manifold data, where they define the filter patch in a space tangent to the manifold. The filter

is then defined in local polar coordinates of the patch with equal radius and angle steps. A

different approach was taken by the authors in [26], who propose to design a convolutional

filter directly on the manifold shape. They exploit the heat kernel theory on non-Euclidean

data, which suggests that the rate of point temperature change is proportional to the difference

between its own temperature and the temperature of the surrounding points. The authors

propose to modify this heat equation by introducing special parameter, a so-called thermal

conductivity tensor, which permits to model the heat flow depending on the position and

orientation. The work [27] then proposes a specific choice of this tensor for a 2D manifold,

which allows to rotate the flow depending on the maximum curvature direction and control

the degree of anisotropy. Thus, this filter can be written using eigenfunctions and eigenvalues

of the introduced anisotropic Laplacian operator. Further, the authors from [28] propose to

use a discrete version of this operator and use it to form a deep convolutional neural network

that operates on graphs.

Then, the authors of MoNet [29] propose an extension of the aforementioned techniques,

which is able to work not only with manifolds but also with the generic graph structures.

Briefly, they suggest to define a local coordinate system at each patch and the weights of the

convolutional filter are obtained by applying a parametric Gaussian kernel with the mean

vector and the covariance matrix being trainable parameters. The authors show that this

method can be seen as generalization of such methods as ConvNets [3], Geodesic CNN [25]

or Anisotropic CNN [27], and performs well on both shape correspondence problem and

graph classification task. Another work, which can be seen as a particular instance of MoNet is

Graph Attention Network (GAT) [30], where the authors propose to use attention mechanism

to define the weight for a convolutional filter, which is defined as a neighborhood averaging

function. Compared to [29], GAT does not rely on the fact that graph is given and uses node

features measure the similarity between the graph nodes. The method [31] extends the work
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of [30] even further by introducing the notion of primal and dual graph, which permits to learn

features both on the vertexes and the edges of the graph. A different direction was taken by

the authors of SplineNet [32], who suggest training the network directly on the geometrical

structures. Further, compared to general graph methods [14, 16, 17] SplineNet relies not

only on the node’s connectivity information, but also uses the knowledge about the relative

positions of the nodes.

A different set of techniques was proposed for point cloud classification, segmentation and

scene semantic parsing tasks. The pioneering work, which operates directly on the point

sets is PointNet [33]. The idea of this method is to learn spatial local features of each point

independently of the other points of the graph (point cloud). Then all these individual point

representations are aggregated to form a global point cloud signature. This method was

improved by PointNet++ [34], which for each vertex proposes exploring its neighborhood

(according to the metric space distance) in order to enrich the learned local features, which

consequently improves the results comparing to [33]. These methods, however, still treat the

points from the local sets independently and do not consider the relationships between point

pairs, therefore, the authors in [35] propose to perform graph-based edge convolution where

the graph is used to represent the structure of the local neighborhood. Further, based on their

experiments the authors conclude that having a dynamic graph structure that is able to adapt

to the features learned at each layer of the network, as compared to the fixed graph with the

neighborhoods defined according to the spatial distances between the nodes, is beneficial for

the overall performance. Another interesting approach [36] suggests representing 3D points

as a sparse set of samples on a high-dimensional lattice. The key advantage of the work is that

they can jointly work with 2D and 3D points, which gives them the possibility to combine the

information from both the point cloud and the image-based representation of a scene.
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3 Isometric transformation invariant
image representation learning

3.1 Introduction

Deep convolutional networks (ConvNets) have achieved impressive results for various com-

puter vision tasks, such as image classification [1] and segmentation [2]. However, they still

suffer from the potentially high variability of data in high-dimensional image spaces. In par-

ticular, ConvNets that are trained to recognize an object from a given perspective or camera

viewpoint, will likely fail when the viewpoint is changed or the image of the object is simply

rotated. In order to overcome this issue the most natural step is to extend the training dataset

with images of the same objects but seen from different perspectives. This however increases

the complexity of data collection and more importantly leads to the growth of the training

dataset when the variability of the data is high.

Instead of simply augmenting the training set, which may not always be feasible, one can try

to solve the aforementioned problem by making the classification architecture invariant to

transformations of the input signal as illustrated in Fig. 3.1. In that perspective, we propose

to represent input images as signals on the grid graph instead of simple matrices of pixel

intensities. The benefits of this representation is that graph signals do not carry a strict notion

of orientation, while at the same time, signals on a grid graph stay invariant to translation. We

exploit these properties to create features that are invariant to isometric transformations and

we design new graph-based convolutional and pooling layers, which replace their counter-

parts used in the classical deep learning settings. This permits preserving the transformation

equivariance of each intermediate feature representation under both translation and rotation

of the input signals. Specifically, our convolutional layer relies on filters that are polynomials

of the graph Laplacian for effective signal representation without computing eigendecompo-

sitions of the graph signals. We further introduce a new statistical layer that is placed right

before the first fully-connected layer of the network prior to the classification. This layer

is specific to our graph signal representation, and in turn permits combining the rotation

and translation invariance features along with the power of fully-connected layers that are

essential for solving the classification task. We finally design a complete architecture for a
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Figure 3.1 – Illustrative transformation-invariant handwritten digit classification task. Rotated
test images, along with their classification label obtained from ConvNets (Conv) [37], Spatial-
Transformer Network (STN) [38], and our method. (best seen in color)

deep neural network called TIGraNet1, which efficiently combines spectral convolutional,

dynamic pooling, statistical and fully-connected layers to process images represented on grid

graphs. We train our network in order to learn isometric transformation invariant features.

These features are used in sample transformation-invariant image classification tasks, where

our solution outperforms the state-of-the-art algorithms for handwritten digit recognition

and classification of objects seen from different viewpoints.

3.2 Transformation invariant techniques

Most of the recent architectures [3, 1] have been very successful in processing natural images,

but not necessarily in properly handling geometric transformations in the data. We describe

below some of the recent attempts that have been proposed to construct transformation-

invariant architectures.

One intuitive way to make the classification architectures more robust to isometric trans-

formations is to augment the training set with transformed data (e.g., [39]), which however,

increases both the training set and training time. Alternatively, there have been works that

incorporate sort of data augmentation inside the network learning framework. The authors

in [40] construct deep neural networks that operate in parallel on the original and transformed

images simultaneously with weight-shared convolutional filters. Then, the authors in [41]

propose to use max-pooling to combine the outputs of these networks. A different approach

was proposed in [38], where the authors introduce a new spatial transformer layer that de-

forms images according to a predefined transformation class. Then, the work in [42] suggests

using rotated filter banks and a special max pooling operation to combine their outcomes and

improve invariance to transformations. The authors in [43] propose a generalization of the

ConvNets and introduce equivariance to 90° rotations and flips. Finally, the authors in [44]

1The code is available online: https://github.com/LTS4/TIGraNet
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exploit rotation symmetry in the Convolutional Network for the specific problem of galaxy

morphology prediction. This work has been extended in [45] which introduces an additional

layer that makes the network to be partially invariant to rotations. All the above methods,

however, still need to be trained on a large dataset of randomly rotated images in order to be

rotation invariant and achieve effective performance.

Contrary to the previous methods, we propose to directly learn feature representations that

are invariant to isometric data transformations. With such features, our architecture pre-

serves all the advantages of deep networks, but additionally provides invariance to isometric

geometric transformations. The methods in [46, 47, 48] are the closest in spirit to ours. In

order to be invariant to local transformation, the works in [46, 47] propose to replace the

classical convolutional layers with wavelets, which are stable to some deformations. The latter

achieves high performance on texture classification task, however it does not improve the

performance of supervised ConvNets on natural images, due to the fact that the final feature

representations are too rigid and unable to adapt to a specific task. Further, [49, 50] propose

to use convolutional filters in Fourier domain to reduce complexity. The latter introduces

spectral pooling to truncate the representation in the frequency domain. Finally, a recent

work [48] proposes a so called Harmonic Network, which uses specifically designed complex

valued filters to make feature representations equivahereriant to rotations. This method,

however, still requires the training dataset to contain examples of rotated images to achieve its

full potential. On the other hand, we propose building features that are inherently invariant

to isometric transformations, which allows us to train more compact networks and achieve

state-of-the-art results.

A different type of methods, which are very related to our technique are the graph-based

deep learning approaches that are discussed in Chapter 2. However, most of these methods

either integrate graph features directly to the fully-connected layer of the neural network or

are designed for specific applications and cannot be directly applied to our task. Therefore,

to the best of our knowledge, most of the existing approaches to deep learning on graphs

do not provide transformation-invariance in image classification. At the same time, the

methods that specifically target transformation invariance in image datasets mostly rely on

data augmentation, which largely remains an art. We propose to bridge this gap and present a

novel method that uses the power of graph signal processing to add translation and rotation

invariance to the image feature representation learned by deep networks.

3.3 Graph-based convolutional network

We now present the overview of our new architecture, which is illustrated in Fig. 5.6. The input

to our system can be characterized by a normalized Laplacian matrix L computed on the grid

graph G and the signal y0 = (y0(v1), . . . , y0(vN )), where y0(v j ) is the intensity of the pixel j in

the input image and N is the number of pixels in the images. Our network eventually returns

a class label for each input signal.
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Chapter 3. Isometric transformation invariant image representation learning

Figure 3.2 – TIGraNet architecture. The network is composed of an alternation of spectral
convolution layers F l and dynamic pooling layers P l , followed by a statistical layer H ,
multiple fully-connected layers (FC) and a softmax operator (SM). The input of the network is
an image that is represented as a signal y0 on the grid-graph with Laplacian matrix L . The
output of the system is a label that corresponds to the most likely class for the input sample.

Figure 3.3 – Spectral convolutional layer F l in TIGraNet. The outputs of the previous layer
l −1 are fed to a set of filter operators F l

i . The outputs of F l
i are then linearly combined to get

the filter maps z l
i that are further passed to the dynamic pooling layer.

In more details, our deep learning architecture consists of an alternation of spectral convo-

lution layers F l and dynamic pooling layers P l . They are followed by a statistical layer H

and a sequence of fully-connected layers (FC) that precedes a softmax operator (SM) that

produces a categorical distribution over labels to classify the input data. At layer l , both the

spectral convolution and the dynamic pooling layers contain Kl operators denoted by F l
i and

P l
i , i = 1, . . . ,Kl , respectively. Each convolutional layer F l

i is specifically designed to compute

transformation-invariant features on grid graphs. The dynamic pooling layer follows the

same principles as the classical ConvNet’s max-pooling operation but preserves the graph

structure in the signal representation. Finally, the statistical layer H is a new layer designed

specifically to achieve invariance to isometric transformations on grid graphs. It does not have

any correspondent in the classical ConvNets architectures. We discuss more thoroughly each

of these layers in the remainder of this section.

3.3.1 Spectral convolutional layer

Similarly to the convolutional layers in classical architectures, the spectral convolutional layer

l in our network consists of Kl convolutional filters F l
i , as illustrated in Fig. 3.3. However,

each filter i operates in the graph spectral domain. In order to avoid computing the graph

eigen-decomposition that is required to perform filtering through Eq. (2.6), we choose to
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3.3. Graph-based convolutional network

design our graph filters as smooth polynomial filters of order M [10], which can be written as

ĥ(λl ) =
M∑

m=0
αmλ

m
l . (3.1)

As we mentioned before, following the notation of Eq. (2.8), each filter operator in the spectral

convolutional layer l can be written as

F l
i =

M∑
m=0

αl
i ,mL m , (3.2)

where L m denotes the Laplacian matrix of power m. The polynomial coefficients {αl
i ,m} have

to be learned during the training of the network, for each spectral convolutional layer l . Each

column of this N ×N operator corresponds to an instance of the graph filter centered at a

different vertex of the graph [10]. The support of each graph filter is directly controlled by

the degree M of the polynomial kernel, as the filter takes values only on vertices that are less

than M-hop away from the filter center. Larger values of M require more parameters but allow

training more complex filters. Therefore, M can be seen as a counterpart of the filter’s size

parameter in the classical ConvNets.

The filtering operation then simply consists in multiplying the graph signal by the transpose

of the operator defined in Eq. (3.2), namely

ỹ l
i ,k =

[
F l

i |N l−1
i

]T
y l−1

k , (3.3)

where y l
k and ỹ l

i ,k are the graph signals at the input and respectively the output of the l th

spectral convolutional layer (see Fig. 3.3). In particular, y (1)
k = y0 is the input image for the first

level filter, while at the next levels of the network y l
k is rather one of the feature maps output by

the lower layers. We finally use the notation A|N l
i

to represent an operator that preserves the

columns of the matrix A, which have an index in the set N l
i , and set all the other columns to

zero. This operator permits computing the filtering operations only on specific vertices of the

graphs. It is important to note that the spectral graph convolutional filter permits equivariance

to isometric transformations, which is a key property for designing a classifier that is invariant

to rotation and translation.

Finally, the output of the l th spectral convolutional layer is a set of Kl feature maps z l
i . Each

i th feature map is computed as a linear combination of the outputs of the corresponding

polynomial filter as follows:

z l
i =

Kl−1∑
k=1

βl
k ỹ l

i ,k , (3.4)

where the set of signals ỹ l
i ,k are the outputs of the i th polynomial filter applied on the Kl−1

input signals of the spectral convolutional layer with Eq. (3.3). The vector of parameters
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Figure 3.4 – Pooling process, with succession of dynamic pooling layers with operators P l
i

that each selects the vertices with maximum intensity according to Eq. (3.5).

{βl
k }, for each spectral convolutional layer l is learned during the training of the network. The

operations in the spectral convolutional layer are illustrated in Fig. 3.3. Lastly, the complexity

of spectral filtering can be computed based on the fact that L and thus the filters are sparse

matrices. Then, the complexity is O(|EM |N ) where |EM | is a maximum number of nonzero

elements in the columns of F l
i .

3.3.2 Dynamic pooling layer

In classical ConvNets the goal of pooling layers is to summarize the outputs of filters for each

operator at the previous convolutional layer. Inspired by [51] we introduce a novel layer that

we refer to as dynamic pooling layer, which basically consists in preserving only the most

important features at each level of the network.

In more details, we perform a dynamic pooling operation, which is essentially driven by the

set of graph vertices of interestΩl . This set is initialised to include all the nodes of graph, i.e.,

Ω(1) = V . It is then successively refined along the progression through the multiple layers of

the network. More particularly, for each dynamic pooling layer l , we select the Jl vertices that

are part of Ωl−1 and that have the highest values in z l
i . The indexes of these largest valued

vertices form a set of nodes N l
i . The union of these sets for the different features maps z l

i

form the new setΩl , i.e.,

Ωl =
Kl⋃

i=1
N l

i . (3.5)

The setΩl drives the pooling operations at the next dynamic pooling layer P l+1. We note that,

by construction, the different setsΩl are embedded, namely we haveΩl ⊇Ωl+1, ∀l ∈ [1..L].

The Algorithm 1 summarize our approach, and Fig. 3.4 illustrates the effect of the pooling

process through the different network levels.
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3.3. Graph-based convolutional network

Algorithm 1 Dynamic pooling layer at layer l .

1: Input: Feature maps z l
i , i ∈ [1,Kl ]

2: Set of nodes of interestΩl−1

3: Number of active nodes, Jl

4: for i ∈ [1,Kl ] do

5: N l
i = V

6: N l
i =;

7: for j ∈ [1,max
(

Jl , |Ωl−1|)] do
8: ν= argmax

v∈
(
Ωl−1∩N l

i

) z l
i (v)

9: N l
i =N l

i \ {ν}

10: N l
i =N l

i ∪ {ν}
11: end for
12: end for

13: Ωl =
Kl⋃

i=1
N l

i

The sets N l
i are used to control the filtering process at the next layer. The spectral convolu-

tional filters F l+1
i compute the output of filters centred on the nodes in N l

i that are selected

by the dynamic pooling layer, and not necessarily for all the nodes in the graph. The filtering

operation is given by Eq. (3.3).

Finally, we note that one of the major differences with the classical max-pooling operator is

that our dynamic pooling layer is not limited to a small neighbourhood around each node.

Instead, it considers the set of nodes of interestΩl which is selected over all graph’s nodes. The

dynamic pooling operator P l is thus equivariant to the isometric transformations R , similarly

to the spectral convolutional layers, which is a key property in building a transformation-

invariant classification architecture. The complexity of P l is comparable with the classical

pooling operator as the task of P l is equivalent to finding Jl highest statistics.

3.3.3 Upper layers

After the series of alternating spectral convolutional and dynamic pooling layers, we add

output layers that compute the label probability distributions for the input images. Instead

of connecting directly a fully-connected layer as in classical ConvNet architectures, we first

insert a new statistical layer, whose output is then fed into fully-connected layers (see Fig. 5.6).

The main motivation for the statistical layer resides in our objective of designing a transformation-

invariant classification architecture. If fully-connected layers are added directly on top of the

last dynamic pooling layers, their neurons will have to memorize large amounts of information

corresponding to the different positions and rotation of the visual objects. Instead, we propose

to insert a new statistical layer, which computes transformation-invariant statistics of the

23



Chapter 3. Isometric transformation invariant image representation learning

Figure 3.5 – Illustration of the statistical layer, which calculates multiscale statistics by filtering
each input feature map by Chebyshev polynomials filters [15] and taking their second-order
statistics. Resulting statistics are vectorized and build an invariant to graph isometric transfor-
mation.

input signal distributions.

In more details, the statistical layer estimates the distribution of values on the active nodes

after the last pooling layer. The inputs of the statistical layer j are denoted as z̃i , which

correspond to the outputs z j−1
i of the last pooling layer P j−1 where the values on non-active

nodes (i.e., the nodes in N l
i ) are set to zero. We then calculate multiscale statistics of these

input features maps using Chebyshev polynomials of the graph Laplacian. These polynomials

have the advantage of a fast computation due to their iterative construction, and they can be

adapted to distributed implementations [15]. In order to construct these polynomials, we first

shift the spectrum of the Laplacian L to the interval [−1,1], which is the original support of

Chebyshev polynomials. Equivalently, we set L̃ =L − I .

As suggested in [14], for each input feature map z̃i we iteratively construct a set of signals ti ,k

using graph Chebyshev polynomials of order k, with k ≤ Kmax , as

ti ,k = 2L̃ ti ,k−1 − ti ,k−2, (3.6)

with ti ,0 = z̃i and ti ,1 = L̃ z̃i . We finally compute a feature vector that gathers the first order

statistics of the magnitude of these signals, namely the mean µi ,k and variance σ2
i ,k for each

signal |ti ,k | (see Fig. 3.5). This forms a feature vector φi of 2Kmax + 2 elements, i.e., φi =
[µi ,0,σ2

i ,0, . . . ,µi ,Kmax ,σ2
i ,Kmax

]. We choose these particular statistics as they are prone to efficient

gradient computation, which is important during back propagation. Furthermore, we note

that such feature vectors are inherently invariant to transformation such as translation or

rotation.

The feature vectors φi ’s are eventually sent to a series of fully-connected layers similarly to

classical ConvNet architectures. However, since our feature vectors are transformation invari-

ant, the fully-connected layers will also benefit from these properties. This is in opposition to

their counterparts in classical ConvNet systems, which need to compute position-dependent

parameters. The details about fully-connected layer parameters are given in the Section 5.4.1.

The output of the fully-connected layers is then fed to a softmax layer [52], which finally
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3.3. Graph-based convolutional network

returns the probability distribution of a given input sample to belong to a given set of classes.

3.3.4 Training

We use supervised learning and train our network so that it maximizes the log-probability of

estimating the correct class of training samples via logistic regression. Overall, we need to

compute the values of the parameters in each convolutional and in fully-connected layers.

The other layers do not have any parameter to be estimated. We train the network using

a classical back-propagation algorithm and learn the parameters using ADAM stochastic

optimization [53].

We provide more details here about the computation that are specific to our new architec-

ture. We refer the reader to [54] for more details about the overall training procedure. The

back-propagation in the spectral convolutional layer is performed by evaluating the partial

derivatives with respect to the parameters α : α ∈ RKl−1×M of the spectral filters, and to the

parameters β :β ∈RKl−1 of the feature map construction. The partial derivatives read

∂E

∂αl
i ,m

=
Kl−1∑
k=0

βl
k

[
L m |N l−1

i

]
y l−1

k

∂E

∂z l
i

, (3.7)

∂E

∂βl
j

=
M∑

m=0
αl

i ,m

[
L m |N l−1

i

]
y l−1

j
∂E

∂z l
i

, (3.8)

where E is the negative log-likelihood cost function, z l
i = y l

i is the output feature map of layer

l , Kl−1 denotes the number of feature maps at the previous layer of the network, M is the

polynomial degree of the convolutional filter and L is the Laplacian matrix. Then, we further

need to compute the partial derivatives with respect to the previous feature maps as follows

∂E

∂y l−1
j

=βl
j

M∑
m=0

αl
i ,m

[
L m |N l−1

i

] ∂E

∂z l
i

. (3.9)

Our new dynamic pooling layers, as well as our statistical layer do not have parameters to

be trained. Similarly to the max-pooling operator our dynamic pooling layer permits back-

propagation through the active nodes since the gradient is 0 for the non-selected nodes and

not zero for the chosen ones. Further, the statistical layer back-propagates the gradients as

follows:

∂E

∂ti ,k
= 1

N

∂E

∂µi ,k
, (3.10)
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∂E

∂ti ,k
= 2(N −1)

N 2

N∑
i=1

(
ti ,k −µi ,k

) ∂E

∂σ2
i ,k

, (3.11)

where µi ,k ,σ2
i ,k are the inputs to the first fully-connected layer and the outputs of the statistical

layer. The derivatives ∂E/∂z̃i are then computed as:

∂E

∂z̃i
=

Kmax∑
k=0

∂E

∂ti ,k

∂ti ,k

∂z̃i
, (3.12)

where ∂ti ,k /∂z̃i are simply the derivatives of Chebyshev polynomials [15] with maximum order

Kmax . Please note that we use the non-linear absolute function |ti ,k | before statistical layer,

therefore, the gradient at ti ,k = 0 is not defined. In practice, however, we set it to 0, which gives

us a nice property of encouraging some feature map values to be 0 and favors sparsity.

Finally, the parameters of the fully-connected layers are trained in a classical way, similarly to

the training of fully-connected layers in ConvNet architectures [54].

3.4 Equivariance of graph filters

In this section we analyze the equivariance property of the features produced by the graph-

based convolutional layer. We start our analysis by proving that independently of the input

image y , graph filters are equivariant to isometric transformations of y such as image rotations

by multiplier of 90◦ and translations by an integer number of pixels in horizontal and vertical

directions. We refer to these transformations as the graph isometric ones.

We then show that given some constraints on the smoothness conditions on y , our graph-

convolutional filters are quasi-equivariant to any isometric transformations (which comprise

rotations by an angle of any degree and translations by any real number of pixels).

3.4.1 Graph isometric transformation

In this section we formally define isometric transformations g on regular graphs and show

that the Laplacian polynomial filters, introduced in Eq. (3.2), produce inherently equivariant

features with respect to such transformations g .

Definition 1. A graph isometric transformation g is a bijective mapping g : V → V that pre-

serves distances between all pairs of adjacent nodes vi ∼ v j : w(vi , v j ) = 1 and acts as a permu-

tation function for signal y: yg = g (y) that can be formally described as

∀vk ∈ V , ∃ ! v j ∈ V : yg (vk ) = y(v j ) , (3.13)

that preserves their neighbourhood and where ! indicates that the correspondence between
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3.4. Equivariance of graph filters

vertices vk and v j is a bijective mapping.

In other words, a graph isometric transformation g is a permutation of the graph nodes V .

This results in g being a combination of the following basic operations applied to the image

signal y , defined on the regular graph G :

• Image rotations by π
2 ,π, 3π

2 ;

• Image reflection;

• Image translation by an integer number of pixels.

If we ignore the border effects, graph isometric transformations g satisfy the four fundamental

group properties [55] and, therefore, form a group G .

Theorem 1. For any operation g from a group of graph isometric transformations G the re-

sponse of a polynomial filter defined in Eq. (3.2) produces an equivariant feature representation.

Proof of Theorem 1. Let us denote by yg the transformed version of signal y : yg = g (y). Given

the Def. 1 we can prove the theorem by induction. For simplicity and without loss of generality

we prove the theorem for a 4-nn grid graph.

Base case: Let us first consider the polynomial filter F of degree M = 1. The result of the

filtering operation F , introduced in Eq. (3.2), applied to a signal y will then be the following:

F (y) = (α0 +α1L )y , {α0,α1} ∈R . (3.14)

Here L is the normalized Laplacian matrix, introduced in Eq. (2.2). For the sake of simplicity

and in order to avoid border effects we extend the graph by adding nodes to the image

boundary and padding them with zeros. Hence all nodes v j of the initial graph have degree

d(v j ) = 4. Consequently, the filtered signal F
(
y
)
(v j ) at node v j can be computed as:

f (v j ) =
d f

F
(
y
)

(v j ) =α0 y(v j )+α1 y(v j )− α1

4

∑
i :vi∼v j

y(vi ), (3.15)

where vi ∼ v j indicates adjacent nodes.

We then apply the same filter F to the transformed signal yg , which is formed from y via

a graph isometric transformation g . According to its definition (see Eq. (3.13)), g has the

following property: ∀vk 7→ v j : yg (vk ) = y(v j ) and the neighborhood of the node vk maps to

the neighborhood of the node v j . Therefore, the result of F , applied to yg reads

fg (vk ) =
d f

F (yg )(vk ) =α0 yg (vk )+α1 yg (vk )− α1

4

∑
l :vl∼vk

yg (vl ). (3.16)
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Our goal is then to show that fg from Eq. (3.16) is equivariant to f from Eq. (3.15). Accord-

ing to Eq. (3.13), the signal yg in the neighborhood of the vertex vk is identical to y in the

neighborhood of v j . Therefore Eqs. (3.15) and (3.16) are equal, which leads to

fg (vk ) = f (v j ) , (3.17)

where vk ∈G is mapped to v j ∈G via g . Further, Eq. (3.17) is valid for any node vk , and for

each of these vk ’s there exists a mapping to v j according to the graph isometric transformation

g . Therefore, by Def. 1, fg and f are related via g as fg = g ( f ) and we can write:

F (yg ) = g
(
F (y)

)
or, equivalently F

(
g (y)

)= g
(
F (y)

)
. (3.18)

As Eq. (3.18) is obtained without any assumptions on the parameters (α0,α1) of the polynomial

filter F , we can conclude that the response of any Laplacian polynomial filter F of degree

M = 1 is equivariant to graph isometric transformations g . The latter is, therefore, true for a

special case of α1 = 0, which corresponds to the polynomial filters F of degree zero.

Inductive step: We now show that the polynomial filter F of any degree is equivariant to

graph isometric transformation g . We assume that the filter

Fk−1 =
k−1∑
m=0

α′
mL m (3.19)

of degree M = k −1 is equivariant with respect to g . Our goal is then to show that the polyno-

mial filter Fk of degree M = k that has the following form:

Fk (y) =
k∑

m=0
αmL m y =α0 y +L

(
k−1∑
m=0

αm+1L
m y

)
, (3.20)

is also equivariant with respect to g . To do so we take a polynomial filter Fk−1, with coefficients

a′
m = am+1 and rewrite Eq. (3.20) as

Fk (y) =α0 y +L Fk−1(y). (3.21)

We then apply the isometric transformation g to both parts of Eq. (3.21):

g (Fk (y)) = g (α0 y +L Fk−1(y)) =α0g (y)+L g (Fk−1(y)). (3.22)

As by our assumption Fk−1 is equivariant with respect to g and yg =
d f

g (y), we can rewrite

(3.22) as

g (Fk (y)) =α0 yg +L Fk−1(yg ) =
d f

Fk (yg ). (3.23)
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Based on Eqs. (3.22) and (3.23) we can conclude that a polynomial filter of any degree produces

features that are equivariant to the graph isometric transformations.

3.4.2 General isometric transformations

In this section we extend the result of Section 3.4.1 to general isometric transformations. We

start with the introduction of our image model, we then introduce the quasi-equivariance

property and prove that under some assumptions on the image y defined on the graph nodes,

Laplacian polynomial filters are quasi-equivariant to general isometric transformations. The

latter can be represented by any combination of the following basic operations:

• Graph isometric transformations, defined in Section 3.4.1;

• Image rotation by an arbitrary angle γ;

• Image translation by a real number of pixels ξ.

Image model and quasi-equivariance

Camera captures 3D world and represents it as a 2D image. Therefore, an image is an approxi-

mation of a real scene with discrete pixel values. For the sake of simplicity let us represent the

real 3D image signal y as a two-dimensional function f = f (a,b), where 0 ≤ a,b ≤ 1.

Thus, the transformed version of the signal, yg , is also defined ∀(a,b) for any transformation

gγ,ξ. However, the graph filter operations are defined only for such (a,b) that correspond to the

graph nodes, therefore we cannot directly apply gγ,ξ to it if this condition is not satisfied. To

overcome this problem we approximate γ and ξ with γ̄, ξ̄ that satisfy the following conditions:

γ̄ :

γ̄= kπ
2 , k ∈Z;

||γ̄−γ|| ≤ π
4 ,

ξ̄ :

ξ̄= k, k ∈Z;

||ξ̄−ξ|| ≤ 1
2 ,

(3.24)

and introduce the graph isometric transformation ḡγ,ξ = gγ̄,ξ̄, which we refer to as closest

graph isometric transformation of the original general transformation gγ,ξ. As discussed in

Section 3.4.1, such transformation is defined only on graph nodes, which sample signal with

steps ∆a and ∆b. Finally, we introduce the quasi-equivariance property as follows:

Definition 2. The quasi-equivariance of the operator F with respect to the isometric transfor-

mation gγ,ξ is defined as a small absolute value of the difference between signals F (gγ,ξ(y)) and

the graph isometric transformation ḡγ,ξ(F (y)) computed at node v in G. Equivalently, we have:

∣∣F (
gγ,ξ(y)

)
(v)− ḡγ,ξ

(
F (y)(v)

)∣∣≤ ε,∀v, (3.25)
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where ε is a small value, when F is a quasi-equivariant.

In order to prove the quasi-equivariance of the polynomial filters F , defined in Eq. (3.2),

with respect to general isometric transformations we show that the response of F is quasi-

equivariant with respect to each of the basic operations, defined in the beginning of Sec-

tion 3.4.2. In Section 3.4.1 we have shown that polynomial filters are equivariant to any graph

isometric transformation, which also means that the quasi-equivariance property is satisfied.

Therefore, in this section we focus on proving the quasi-equivariance of F with respect to

arbitrary image rotations and image translations by a real number of pixels.

Rotation

In order to prove the quasi-equivariance of polynomial filters to rotation, we first observe that

for every pixel location p in an image, any random image rotation around an arbitrary point

can be decomposed into a set of two translations and one rotation around p. Therefore, in

this section we focus on proving the quasi-equivariance of F with respect to rotation around

the vertex v ∈ G , where F is applied. Then in Section 3.4.2 we discuss in more details the

quasi-equivariance of F with respect to an arbitrary image translation. Further, without loss

of generality, we consider the rotation angle γ to be in the range [−π
4 , π4 ), due to the fact that

any random rotation can be decomposed into an integer number of rotations by π/2 and a

rotation by γ ∈ [−π
4 , π4 ). As illustrated in Section 3.4.1, polynomial filters are equivariant with

respect to rotations by π/2, thus we only need to prove their equivariance with respect to

γ ∈ [−π
4 , π4 ).

Let yg = gγ(y) denote the rotated version of the signal y by γ ∈ [−π
4 , π4 ) around a vertex vr ,

where a polynomial filter F is applied. In the remainder of this section we show that under

some assumptions on the second derivative of the signal y , the Eq. (3.25) is valid for any

polynomial filter F and for any γ that defines the image rotation gγ. Let us denote the

equivariance gap by

∆F =
d f

∣∣F (
gγ(y)

)
(v)− ḡγ

(
F (y)(v)

)∣∣ , (3.26)

where ḡγ is the graph isometric transformation that is closest to g . Due to the fact that F is an

isotropic filter and as we are considering rotations γ ∈ [−π
4 , π4 ) around vertex vr , where F is

applied, we obtain the following equality ḡγ
(
F (y)(v)

)≡F (y)(v) and rewrite Eq. (3.26) as

∆F =
d f

∣∣F (
gγ(y)

)
(v)−F (y)(v)

∣∣ ,∀v. (3.27)

We now have the following theorem.

Theorem 2. The absolute value of the difference ∆F between signals F (gγ(y)) and F (y) satis-
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fies the following inequality:

∆F (v) ≤
(

M∑
k=1

|αk |2k−3

)∣∣(1− sinγ−cosγ)Z̄
∣∣ , (3.28)

where M is the degree of F =∑M
k=0αkL k y and Z̄ depends on the second derivative of the image

signal y =
d f

f (a,b) as follows:

Z̄ = max
0≤a,b≤1

∣∣∣∣[∂2
a f (a,b)

∂2
b f (a,b)

]∣∣∣∣ᵀ[
∆a2

∆b2

]
+o(∆a2)+o(∆b2). (3.29)

Here ∆a,∆b are the distances between the graph nodes in horizontal and vertical directions

respectively which corresponds to the resolution of the image; and o(·) is the “little-o” notation

that describes function’s asymptotic behavior [56].

Proof of Theorem 2. We start the proof with the observation that any polynomial filter F of

degree N is a sum of the trivial polynomial filters F̂k of degrees k = [0..N ], defined as:

F̂k =
d f
αkL k y . (3.30)

Therefore to prove Eq. (3.28), we need to show that

∆F̂k
(v) ≤ 2k−3

∣∣αk (1− sinγ−cosγ)Z̄
∣∣ ,∀k, (3.31)

where ∆F̂ k (v) is the absolute difference between F̂ k (yg ) and F̂ k (y). Then ∆F (v) can be

eventually approximated using the triangle inequality as

∆F (v) ≤
N∑

k=0
∆F̂ k (v) (3.32)

To prove Eq. (3.31) we use the induction method.

Base case: We first show that for any F̂ of degree 0 and 1 Eq. (3.31) is valid. In the case of a

polynomial filter of a 0 degree, ∆F̂ 0 = 0, as

gγ
(
F̂ 0(y)

) =
d f

gγ(α0 y) =α0gγ(y) = F̂ 0(gγ(y)). (3.33)

Then, as depicted by Eq. (3.15), for a given node vr ∈G , F̂ 1 operates on the neighborhood

of vr , which can be represented as an image pattern, depicted by Fig. 3.6. For simplicity, we

prove for the 4-nn graph case, however, the proof can be easily extended to the case of other

regular graphs. For the sake of simplicity, we denote by p j the values of y in the nodes of this

pattern as follows:

p j =
d f

f (a j ,b j ) = y(v j ), ∀v j : j ∈ [2,4,5,6,8] , (3.34)
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r6
<latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit><latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit><latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit>

r8
<latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit><latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit><latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit>

�
<latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit><latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit><latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit>

co
s
�

<latexit sha1_base64="KbIaiiWiASoCTH6ThU2HqgZesrQ=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3c2G3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjByUyiYmHBRNyECFFGE2Ip6lmZJBKgnjESD+a3hR+/5FIRUVyr2cpCTkaJzSmGGkj+QEWCgZjxDka1huO3W413U4HOrZz6TavnIIsAN2SNECJ3rD+GYwEzjhJNGZIKd91Uh3mSGqKGZnXgkyRFOEpGhPf0ARxosJ8cfIcnhtlBGMhTSUaLtSfEzniSs14ZDo50hO16hXif56f6fg6zGmSZpokeLkozhjUAhb/wxGVBGs2MwRhSc2tEE+QRFiblGomBHf15b/Ea9od27lrNbpnZRpVcAJOwQVwQRt0wS3oAQ9gIMATeAGvlraerTfrfdlascqZY/AL1sc3l0OQ6A==</latexit><latexit sha1_base64="KbIaiiWiASoCTH6ThU2HqgZesrQ=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3c2G3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjByUyiYmHBRNyECFFGE2Ip6lmZJBKgnjESD+a3hR+/5FIRUVyr2cpCTkaJzSmGGkj+QEWCgZjxDka1huO3W413U4HOrZz6TavnIIsAN2SNECJ3rD+GYwEzjhJNGZIKd91Uh3mSGqKGZnXgkyRFOEpGhPf0ARxosJ8cfIcnhtlBGMhTSUaLtSfEzniSs14ZDo50hO16hXif56f6fg6zGmSZpokeLkozhjUAhb/wxGVBGs2MwRhSc2tEE+QRFiblGomBHf15b/Ea9od27lrNbpnZRpVcAJOwQVwQRt0wS3oAQ9gIMATeAGvlraerTfrfdlascqZY/AL1sc3l0OQ6A==</latexit><latexit sha1_base64="KbIaiiWiASoCTH6ThU2HqgZesrQ=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3c2G3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjByUyiYmHBRNyECFFGE2Ip6lmZJBKgnjESD+a3hR+/5FIRUVyr2cpCTkaJzSmGGkj+QEWCgZjxDka1huO3W413U4HOrZz6TavnIIsAN2SNECJ3rD+GYwEzjhJNGZIKd91Uh3mSGqKGZnXgkyRFOEpGhPf0ARxosJ8cfIcnhtlBGMhTSUaLtSfEzniSs14ZDo50hO16hXif56f6fg6zGmSZpokeLkozhjUAhb/wxGVBGs2MwRhSc2tEE+QRFiblGomBHf15b/Ea9od27lrNbpnZRpVcAJOwQVwQRt0wS3oAQ9gIMATeAGvlraerTfrfdlascqZY/AL1sc3l0OQ6A==</latexit>

sin �
<latexit sha1_base64="1+AtoeBehTBR03WjRCRpFlS6N4E=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3d2E3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjB5VkEhMPJyyRgwgpwqggnqaakUEqCeIRI/1oelP4/UciFU3EvZ6lJORoLGhMMdJG8gNFBQzGiHM0rDccu91qup0OdGzn0m1eOQVZALolaYASvWH9MxglOONEaMyQUr7rpDrMkdQUMzKvBZkiKcJTNCa+oQJxosJ8cfIcnhtlBONEmhIaLtSfEzniSs14ZDo50hO16hXif56f6fg6zKlIM00EXi6KMwZ1Aov/4YhKgjWbGYKwpOZWiCdIIqxNSjUTgrv68l/iNe2O7dy1Gt2zMo0qOAGn4AK4oA264Bb0gAcwSMATeAGvlraerTfrfdlascqZY/AL1sc3nw+Q7Q==</latexit><latexit sha1_base64="1+AtoeBehTBR03WjRCRpFlS6N4E=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3d2E3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjB5VkEhMPJyyRgwgpwqggnqaakUEqCeIRI/1oelP4/UciFU3EvZ6lJORoLGhMMdJG8gNFBQzGiHM0rDccu91qup0OdGzn0m1eOQVZALolaYASvWH9MxglOONEaMyQUr7rpDrMkdQUMzKvBZkiKcJTNCa+oQJxosJ8cfIcnhtlBONEmhIaLtSfEzniSs14ZDo50hO16hXif56f6fg6zKlIM00EXi6KMwZ1Aov/4YhKgjWbGYKwpOZWiCdIIqxNSjUTgrv68l/iNe2O7dy1Gt2zMo0qOAGn4AK4oA264Bb0gAcwSMATeAGvlraerTfrfdlascqZY/AL1sc3nw+Q7Q==</latexit><latexit sha1_base64="1+AtoeBehTBR03WjRCRpFlS6N4E=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LFbBU0hqpfZW8OKxgrGFJJTNdtMu3d2E3Y1QQn+GFw8qXv033vw3btoctPpg4PHeDDPzopRRpR3ny6qsrW9sblW3azu7e/sH9cOjB5VkEhMPJyyRgwgpwqggnqaakUEqCeIRI/1oelP4/UciFU3EvZ6lJORoLGhMMdJG8gNFBQzGiHM0rDccu91qup0OdGzn0m1eOQVZALolaYASvWH9MxglOONEaMyQUr7rpDrMkdQUMzKvBZkiKcJTNCa+oQJxosJ8cfIcnhtlBONEmhIaLtSfEzniSs14ZDo50hO16hXif56f6fg6zKlIM00EXi6KMwZ1Aov/4YhKgjWbGYKwpOZWiCdIIqxNSjUTgrv68l/iNe2O7dy1Gt2zMo0qOAGn4AK4oA264Bb0gAcwSMATeAGvlraerTfrfdlascqZY/AL1sc3nw+Q7Q==</latexit>

Transla%on	by	a	real	offset:

p2
<latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit><latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit><latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit>

p5
<latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit><latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit><latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit>

p4
<latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit><latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit><latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit>

p6
<latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit><latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit><latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit>

p8
<latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit><latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit><latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit>

r2<latexit sha1_base64="HP6830GXnfYkvhDhGQu0sfKecc4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRrLeCF48VjS20oWy2k3bpZhN2N0IJ/QlePKh49R9589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTp+1EmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+mfntJ1SaJ/LBTFIMYjqUPOKMGivdq369X6m6NXcOskq8glShQKtf+eoNEpbFKA0TVOuu56YmyKkynAmclnuZxpSyMR1i11JJY9RBPj91Ss6tMiBRomxJQ+bq74mcxlpP4tB2xtSM9LI3E//zupmJGkHOZZoZlGyxKMoEMQmZ/U0GXCEzYmIJZYrbWwkbUUWZsemUbQje8surxK/Xrmvu3WW12SjSKMEpnMEFeHAFTbiFFvjAYAjP8ApvjnBenHfnY9G65hQzJ/AHzucPboaNZA==</latexit><latexit sha1_base64="HP6830GXnfYkvhDhGQu0sfKecc4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRrLeCF48VjS20oWy2k3bpZhN2N0IJ/QlePKh49R9589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTp+1EmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+mfntJ1SaJ/LBTFIMYjqUPOKMGivdq369X6m6NXcOskq8glShQKtf+eoNEpbFKA0TVOuu56YmyKkynAmclnuZxpSyMR1i11JJY9RBPj91Ss6tMiBRomxJQ+bq74mcxlpP4tB2xtSM9LI3E//zupmJGkHOZZoZlGyxKMoEMQmZ/U0GXCEzYmIJZYrbWwkbUUWZsemUbQje8surxK/Xrmvu3WW12SjSKMEpnMEFeHAFTbiFFvjAYAjP8ApvjnBenHfnY9G65hQzJ/AHzucPboaNZA==</latexit><latexit sha1_base64="HP6830GXnfYkvhDhGQu0sfKecc4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkRrLeCF48VjS20oWy2k3bpZhN2N0IJ/QlePKh49R9589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTp+1EmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+mfntJ1SaJ/LBTFIMYjqUPOKMGivdq369X6m6NXcOskq8glShQKtf+eoNEpbFKA0TVOuu56YmyKkynAmclnuZxpSyMR1i11JJY9RBPj91Ss6tMiBRomxJQ+bq74mcxlpP4tB2xtSM9LI3E//zupmJGkHOZZoZlGyxKMoEMQmZ/U0GXCEzYmIJZYrbWwkbUUWZsemUbQje8surxK/Xrmvu3WW12SjSKMEpnMEFeHAFTbiFFvjAYAjP8ApvjnBenHfnY9G65hQzJ/AHzucPboaNZA==</latexit>

r4<latexit sha1_base64="bLjCRO65Bj0p5tB6CE4QyAfJe0U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZTtqlm03Y3Qgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0qJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8M/PbT6g0T+SDmaQYxHQoecQZNVa6V/3LfrXm1t05yCrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwWullGlPKxnSIXUsljVEH+fzUKTmzyoBEibIlDZmrvydyGms9iUPbGVMz0sveTPzP62YmagQ5l2lmULLFoigTxCRk9jcZcIXMiIkllClubyVsRBVlxqZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/cYyNZg==</latexit><latexit sha1_base64="bLjCRO65Bj0p5tB6CE4QyAfJe0U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZTtqlm03Y3Qgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0qJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8M/PbT6g0T+SDmaQYxHQoecQZNVa6V/3LfrXm1t05yCrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwWullGlPKxnSIXUsljVEH+fzUKTmzyoBEibIlDZmrvydyGms9iUPbGVMz0sveTPzP62YmagQ5l2lmULLFoigTxCRk9jcZcIXMiIkllClubyVsRBVlxqZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/cYyNZg==</latexit><latexit sha1_base64="bLjCRO65Bj0p5tB6CE4QyAfJe0U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZTtqlm03Y3Qgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genj0qJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8M/PbT6g0T+SDmaQYxHQoecQZNVa6V/3LfrXm1t05yCrxClKDAq1+9as3SFgWozRMUK27npuaIKfKcCZwWullGlPKxnSIXUsljVEH+fzUKTmzyoBEibIlDZmrvydyGms9iUPbGVMz0sveTPzP62YmagQ5l2lmULLFoigTxCRk9jcZcIXMiIkllClubyVsRBVlxqZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/cYyNZg==</latexit>

r6
<latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit><latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit><latexit sha1_base64="yTIkdcduNSeCV03prOoyA4vG0ak=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fdJKNaA==</latexit>

r8
<latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit><latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit><latexit sha1_base64="BDsEqYmy0p6hc8H2r5ezqIChMJo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSve43+tWaW3fnIKvEK0gNCrT61a/eIGFZzBUySY3pem6KQU41Cib5tNLLDE8pG9Mh71qqaMxNkM9PnZIzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5th1AhyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXiX9Rv667d5e1ZqNIowwncArn4MEVNOEWWuADgyE8wyu8OdJ5cd6dj0VrySlmjuEPnM8fd5iNag==</latexit>

r5
<latexit sha1_base64="i99kC7+n2hFB0Ure8dw3w9sWxPQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fcw+NZw==</latexit><latexit sha1_base64="i99kC7+n2hFB0Ure8dw3w9sWxPQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fcw+NZw==</latexit><latexit sha1_base64="i99kC7+n2hFB0Ure8dw3w9sWxPQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK10r3uXvUrVrbkzkGXiFaQKBZq9yle3n7As5gqZpMZ0PDfFIKcaBZN8Uu5mhqeUjeiAdyxVNOYmyGenTsipVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwqge5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbQje4svLxD+vXdfcu4tqo16kUYJjOIEz8OAKGnALTfCBwQCe4RXeHOm8OO/Ox7x1xSlmjuAPnM8fcw+NZw==</latexit>

Nota%ons:

-	original	signal

-	transformed	signal

5-pixel	pixel	pa;ern:
p2

<latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit><latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit><latexit sha1_base64="OBGg/PkqZwKbWvcDPvueF+z2ZOU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYL0VvHisYGyhDWWz3bZLdzdhdyKU0L/gxYOKV3+RN/+NSZuDtj4YeLw3w8y8MJbCout+O6WNza3tnfJuZW//4PCoenzyaKPEMO6zSEamG1LLpdDcR4GSd2PDqQol74TT29zvPHFjRaQfcBbzQNGxFiPBKOZSPGhUBtWaW3cXIOvEK0gNCrQH1a/+MGKJ4hqZpNb2PDfGIKUGBZN8XuknlseUTemY9zKqqeI2SBe3zslFpgzJKDJZaSQL9fdESpW1MxVmnYrixK56ufif10tw1AxSoeMEuWbLRaNEEoxI/jgZCsMZyllGKDMiu5WwCTWUYRZPHoK3+vI68Rv1m7p7f1VrNYs0ynAG53AJHlxDC+6gDT4wmMAzvMKbo5wX5935WLaWnGLmFP7A+fwBoIKNdg==</latexit>

p5
<latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit><latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit><latexit sha1_base64="zJEBNU+RSwcJtDGvRCA2DOzp6jM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Koko1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cAWNZQ==</latexit>

p4
<latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit><latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit><latexit sha1_base64="ChZRVl2Ac9Z4kAzOKQpuhXGLMf8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdq/7Fdrbt2dg6wSryA1KNDqV796g4RlMVfIJDWm67kpBjnVKJjk00ovMzylbEyHvGupojE3QT4/dUrOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwll9eJf5F/bru3l3Wmo0ijTKcwCmcgwdX0IRbaIEPDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AG6CjWQ=</latexit>

p6
<latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit><latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit><latexit sha1_base64="5q9lt6xHAN+DLlJy9Ot30WP8QzE=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomI1lvBi8eKxhbaUDbbSbt0swm7G6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6iRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTP3WEyrNE/lgxikGMR1IHnFGjZXu095lr1J1a+4MZJl4BalCgWav8tXtJyyLURomqNYdz01NkFNlOBM4KXczjSllIzrAjqWSxqiDfHbqhJxapU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTIT1YOcyzQzKNl8UZQJYhIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2xC8xZeXiX9eu665dxfVRr1IowTHcAJn4MEVNOAWmuADgwE8wyu8OcJ5cd6dj3nrilPMHMEfOJ8/cYiNZg==</latexit>

p8
<latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit><latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit><latexit sha1_base64="Eio3xU0FhynV+mBC3bMX3sd5QU8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfdpv9Ks1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfDqBHkQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTsSF4yy+vEv+ifl137y5rzUaRRhlO4BTOwYMraMIttMAHBkN4hld4c6Tz4rw7H4vWklPMHMMfOJ8/dI6NaA==</latexit>

⇠
<latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit><latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit><latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit>

⇠
<latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit><latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit><latexit sha1_base64="n8bk4u4h6qMO+9IyITbaEqFH1i0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWNFpoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h/cmyTTjPsskYluh9RwKRT3UaDk7VRzGoeSP4Sjq6n/8Mi1EYm6w3HKg5gOlIgEo2il2+6T6FVrbt2dgSwTryA1KNDqVb+6/YRlMVfIJDWm47kpBjnVKJjkk0o3MzylbEQHvGOpojE3QT47dUJOrNInUaJtKSQz9fdETmNjxnFoO2OKQ7PoTcX/vE6GUSPIhUoz5IrNF0WZJJiQ6d+kLzRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJv5Z/bLu3pzXmo0ijTIcwTGcggcX0IRraIEPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AMYhjZ4=</latexit>

�
<latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit><latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit><latexit sha1_base64="i1+P6hWIsNVMv/8KmXOP1VsbPco=">AAAB7HicbVDLSgNBEJz1GeMr6tHLYBA8hV0RjLeAF48R3CSQLKF3MpuMmccyMyuEJf/gxYOKVz/Im3/jJNmDJhY0FFXddHfFKWfG+v63t7a+sbm1Xdop7+7tHxxWjo5bRmWa0JAornQnBkM5kzS0zHLaSTUFEXPajse3M7/9RLVhSj7YSUojAUPJEkbAOqnVG4IQ0K9U/Zo/B14lQUGqqECzX/nqDRTJBJWWcDCmG/ipjXLQlhFOp+VeZmgKZAxD2nVUgqAmyufXTvG5UwY4UdqVtHiu/p7IQRgzEbHrFGBHZtmbif953cwm9ShnMs0slWSxKMk4tgrPXscDpimxfOIIEM3crZiMQAOxLqCyCyFYfnmVhJe1m5p/f1Vt1Is0SugUnaELFKBr1EB3qIlCRNAjekav6M1T3ov37n0sWte8YuYE/YH3+QPwAo7e</latexit>

Figure 3.6 – [LEFT] Illustration of a 5-pixel image pattern that the polynomial filter F operates
on, with pi , i ∈ [2,4,5,6,8] being the respective pixels intensities. [MIDDLE] The rotation
from the original image signal y (blue rectangles) to the transformed image signal yg (green
rectangles), after applying the transformation gγ around pixel p5. The points ri , i ∈ [2,4,6,8]
schematically show how the position of pi change after applying gγ. [RIGHT] The translation
from the original to the transformed image signal, after applying the transformation gξ by a
real number of pixel intensities ξ.

where (a j ,b j ) are the pixel coordinates of the node v j . Assuming that f is differentiable (as it

is generally done for natural images) we can express p j using a Taylor approximation as


p2

p6

p4

p8

=I p5 −


−∂b f (a5,b5)∆b

−∂a f (a5,b5)∆a

∂a f (a5 −∆a,b5)∆a

∂b f (a5,b5 −∆b)∆b

+


R2(b2)

R2(a6)

R2(a4)

R2(b8)

 , (3.35)

where I = [1,1,1,1]ᵀ : ∂a f ,∂b f are the partial derivatives:

∂a f (a,b) =
d f

∂ f (a,b)

∂a
, ∂b f (a,b) =

d f

∂ f (a,b)

∂b
, (3.36)

and R2(·) is the remainder term of the Taylor expansion, which reads:

R2(ak ) = o(|ak −a5|2) = o(∆a2) ,k ∈ [4,6] ,

R2(bk ) = o(|bk −b5|2) = o(∆b2) ,k ∈ [2,8] .
(3.37)

We further denote the new node values of the rotated pattern gγ(y), depicted by Fig 3.6, as

follows:

r j =
d f

gγ(y)(v j ), j ∈ [2,4,6,8]. (3.38)

We can then approximate the values of r j using bilinear interpolation [57] as illustrated by

Fig. 3.6. This allows us to express the values r j of each node of the rotated pattern based on
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3.4. Equivariance of graph filters

the points p j of the original pattern, which results in:


r2

r4

r6

r8

=I r5 −A sinγ−B cosγ+o(∆a2)+o(∆b2), (3.39)

where

A =


−∂a f (a5,b5)∆a

−∂b f (a5,b5)∆b

∂b f (a5,b5 −∆b)∆b

∂a f (a5 −∆a,b5)∆a

 B =


−∂b f (a5,b5)∆b

∂a f (a5 −∆a,b5)∆a

−∂a f (a5,b5)∆a

∂b f (a5,b5 −∆b)∆b

 (3.40)

Given the introduced notations we can compute the response of a trivial filter F̂ 1 at the graph

node v5 as:

F̂ 1(y)(v5) =−α1

4
Z (v5) , (3.41)

where Z reflects the smoothness of the image signal y and reads:

Z (v5) =
[
∂a f (a5,b5)−∂a f (a5 −∆a,b5)

∂b f (a5,b5)−∂b f (a5,b5 −∆b)

]ᵀ[
∆a

∆b

]
+o(∆a2)+o(∆b2) .

(3.42)

Similarly, based on Eqs. (3.39) and (3.40) we can compute the response of the same filter F̂ 1

applied to the rotated signal yg = gγ(y) at the node v5 as:

F̂ 1(yg )(v5) =−α1

4
(sinγ+cosγ)Z (v5) (3.43)

We can then calculate the difference between the filter responses presented in Eqs. (3.41)

and (3.43) as follows:

∆F̂ 1 (v5) = α1

4
(1− sinγ−cosγ)Z (v5). (3.44)

In order to compute ∆F̂ 1 in a general case (that is for an arbitrary rotation γ), we can rewrite

Z as:

Z (v5) =
[
∂2

a f (a5,b5)

∂2
b f (a5,b5)

]ᵀ[
∆a2

∆b2

]
+o(∆a2)+o(∆b2), (3.45)

which for any node v in G has its upper bound Z̄ :

|Z (v)| ≤ Z̄ = max
0≤a,b≤1

∣∣∣∣[∂2
a f (a,b)

∂2
b f (a,b)

]∣∣∣∣ᵀ[
∆a2

∆b2

]
+o(∆a2)+o(∆b2) . (3.46)
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Chapter 3. Isometric transformation invariant image representation learning

Based on Eqs. (3.44) and (3.46) we obtain the following condition:

∆F̂ 1 (v) ≤ 2−2
∣∣α1(1− sinγ−cosγ)Z̄

∣∣ ,∀v ∈G , (3.47)

for any trivial polynomial filter F of degree 1 and any image rotation gγ, which concludes the

proof of the base case.

Inductive step: We first denote the polynomial filter of degree M by F̂ M =αM L M y . Then we

assume that Eq. (3.31) is satisfied for a filter F̂ M−1 =αM LM−1 y of degree M −1 for every node

v in graph G , which brings us to the following inequality:

∆F̂ M−1 (v) < 2(M−1)−3
∣∣αM (1− sinγ−cosγ)Z̄

∣∣ , (3.48)

where ∆F̂ M−1 is the difference between the responses of filter F̂ M−1 applied to the original

and transformed signals. For the sake of simplicity we denote the right hand side of Eq. (3.48)

by εγ. Then our goal is to prove that∣∣∆F̂ M (v)
∣∣≤ 2εγ, ∀v ∈G . (3.49)

To do so, we use the same representation of the filter F̂ M , as in Eq. (3.21), which allows us to

rewrite ∆F̂ M as:

∆F̂ M =L F̂ M−1(yg )− gγ(L F̂ M−1(y)) , (3.50)

where L is the Laplacian matrix. Further, due to the linearity of the isometric transformation

gγ, we can rewrite ∆F̂ M as

∆F̂ M =L
(
F̂ M−1(yg )− gγ(F̂ M−1(y))

) =
d f

L
(
∆F̂ M−1

)
, (3.51)

that can be expressed as

∆F̂ M (v j ) =∆F̂ M−1 (v j )+ 1

4

∑
i :vi∼v j

∆F̂ M−1 (vi ), ∀v j ∈G . (3.52)

We can then apply triangle inequality to Eq. (3.52) and write:

∆F̂ M (v) ≤ max
v∈G

∆F̂ M (v) ≤

≤ max
v∈G

(
∆F̂ M−1 (v)+ 1

4

∑
i :vi∼v

∆F̂ M−1 (vi )

)
(3.53)

As every node v has at most 4 neighbors and given Eq. (3.48): |∆F̂ M−1 (v)| ≤ εγ,∀v ∈G , we can

rewrite Eq. (3.53) as:

∆F̂ M (v) ≤ max
v∈G

∆F̂ M (v) = εγ+ 1

4
(4εγ) = 2εγ . (3.54)
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3.4. Equivariance of graph filters

Based on Eqs. (3.48) and (3.54), we can then write the general condition on∆F̂ M (v) for a trivial

polynomial filter of any degree M , for every node v in G as follows:

∆F̂ M (v) ≤ 2M−3
∣∣αM (1−cosγ− sinγ)Z̄

∣∣ , (3.55)

which is identical to Eq. (3.31). We then obtain Eq. (3.28) by simply combining Eq. (3.55) with

Eq. (3.32), which concludes the proof of the theorem.

It is worth noting that in the special case of γ being equal to one of the following values:

[0,π/2,π,3π/2], the general isometric transformation gγ becomes a graph isometric trans-

formation, which is thoroughly discussed in Section 3.4.1. This essentially means that for

any signal y the difference between filter responses is 0. As we can see from Eq. (3.28), this is

indeed true, as ∆F = 0 independently of Z̄ .

Translation

We now prove the quasi-equivariance of F with respect to an arbitrary image translation

gξ. We start with a simple observation that any arbitrary translation of an image signal

by a real number of pixels can be decomposed into a graph isometric one (i.e translation

by an integer number of pixels) and an image translation by ξ that is less than 1 pixel. As

illustrated in Section 3.4.1, polynomial filters F are equivariant with respect to the graph

isometric translation, therefore, in this section we prove their quasi-equivariance with respect

to translation by ξ ∈ [−1
2 , 1

2 ) pixels.

Similarly to Section 3.4.2, let yg = gξ(y) denote the translated version of the signal y by

ξ ∈ [−1
2 , 1

2 ). Let us then denote the equivariance gap by

∆F =
d f

∣∣F (
gξ(y)

)
(v)− ḡξ

(
F (y)(v)

)∣∣ , (3.56)

where ḡξ is graph isometric transformation that is the closest to g . Due to the fact that F is

an isotropic filter and as we are considering rotation γ ∈ [−π
4 , π4 ] around vertex vr , where F is

applied], we obtain the following equality ḡξ
(
F (y)(v)

)≡F (y)(v) and rewrite Eq. (3.56) as

∆F =
d f

∣∣F (
gξ(y)

)
(v)−F (y)(v)

∣∣ ,∀v. (3.57)

and prove the following theorem.

Theorem 3. The absolute value of the difference ∆F (v) between signals F (gξ(y)) and F (y) for

any node v defined on the graph G, satisfies the following inequality:

∆F (v) ≤
(

M∑
k=1

|ak |2k−3

)∣∣Z̄ +o(∆a2)+o(∆b2)
∣∣ , (3.58)

where M is the degree of F =∑M
k=0αkL k y and Z̄ depends on the third partial derivatives of
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Chapter 3. Isometric transformation invariant image representation learning

the image signal y =
d f

f (a,b) as

Z̄ = max
0≤a,b≤1

∣∣∣∣∣∣∣∣∣∣


∂3

a f (a,b)

∂3
b f (a,b)

∂a∂
2
b f (a,b)

∂b∂
2
a f (a,b)


∣∣∣∣∣∣∣∣∣∣

ᵀ
∆a3

∆b3

∆b2∆a

∆a2∆b

 (3.59)

with ∆a,∆b being the distances between the graph nodes in horizontal and vertical directions

of the 2D image, respectively.

Proof of Theorem 3. We follow similar steps as in the proof of Theorem 2 and show that, for

each trivial filter F̂ k =αkL k y , the following relation is valid:

∆F̂ k = 2k−3
∣∣αk (Z̄ +o(∆a2)+o(∆b2))

∣∣ . (3.60)

Here ∆F̂ k is the difference between responses of F̂ k =αkL k y applied to the original signal y

and the transformed version yg , and Z̄ is defined in Eq. (3.59). Then, based on Eq. (3.60) and

triangle inequality, we can show that Eq. (3.58) is valid for any polynomial filter F that can be

written as a sum of trivial filters.

Similarly to Theorem 2, in order to prove Eq. (3.60), we use the induction method. Further, we

use the fact that any random translation gξ can be represented as a sum of the translations in

horizontal and vertical directions.

Base case: We need to prove that Eq. (3.60) is valid for any filter F̂ of degree 0 and 1. The proof

of the following equality:

gγ
(
F̂ 0(y)

) =
d f

gγ(α0 y) =α0gγ(y) = F̂ 0(gγ(y)), (3.61)

is identical to the proof of Theorem 2, which validates the base case for the trivial filter of

degree 0. Then we need to show that Eq. (3.60) is valid for any trivial filter F̂ 1 of degree 1. To

do so, we first compute the response of F̂ 1(y) = α1L y at a random vertex v5 ∈ G with the

coordinates (a5,b5) (see Fig. 3.6 (right)) as:

F̂ 1(y)(v5) =α1

(
f (a5,b5)− 1

4

∑
i=[2,4,6,8]

f (ai ,bi )

)
. (3.62)

We then apply the same F̂ 1 to the transformed signal yg that is a version of the signal y , shifted
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horizontally by ξ pixels. Using a Taylor expansion, we obtain the following:

F̂ 1(yg )(v5) =α1

(
f (a5,b5)− 1

4

∑
i=[2,4,6,8]

f (ai ,bi )+o(∆a2)

)
+

+ α1

4


∂a f (a5,b5)

∂a f (a5 −∆a,b5)

∂a f (a5 +∆a,b5)

∂a f (a5,b5 +∆b)

∂a f (a5,b5 −∆b)



ᵀ
4

−1

−1

−1

−1

∆a .

(3.63)

Equipped with Eqs. (3.62) and (3.63) we compute the difference between filter responses ∆F̂ 1

at node v5 in G and obtain

∆F̂ 1 (v5) = α1

4


∂a f (a5,b5)

∂a f (a5 −∆a,b5)

∂a f (a5 +∆a,b5)

∂a f (a5,b5 +∆b)

∂a f (a5,b5 −∆b)


ᵀ

4

−1

−1

−1

−1

∆a +o(∆a2) . (3.64)

After applying matrix multiplication and Taylor expansion, Eq. (3.64) boils down to

∆F̂ 1 (v5) = α1

4

[
∂3

a f (a5,b5)∆a

∂a∂
2
b f (a5,b5)∆a

]ᵀ[
∆a2

∆b2

]
+o(∆a2)+o(∆b2) , (3.65)

which permits to write the following upper bound for all nodes v in the graph G :

∆F̂ 1 (v) ≤ max
v∈G

∆F (v) = o(∆a2)+o(∆b2)+

+ max
0≤a,b≤1

∣∣∣∣∣α1

4

[
∂3

a f (a,b)∆a

∂a∂
2
b f (a,b)∆a

]∣∣∣∣∣
ᵀ[
∆a2

∆b2

]
.

(3.66)

This concludes the derivation of the upper bound on
∣∣∆F̂ 1 (v)

∣∣ for an arbitrary horizontal

translation gξ. We then perform the exact same steps for the vertical image translation and

obtain:

∆F̂ 1 (v) ≤ max
v∈G

∆F (v) = o(∆a2)+o(∆b2)+

+ max
0≤a,b≤1

∣∣∣∣∣α1

4

[
∂3

b f (a,b)∆b

∂b∂
2
a f (a,b)∆b

]∣∣∣∣∣
ᵀ[
∆b2

∆a2

]
.

(3.67)

Finally, for an arbitrary image translation we add Eqs. (3.66) and (3.67) and obtain Eq. (3.60),

which proves the base case of the theorem.

Inductive step: To prove the inductive step of the theorem we need to show that for any filter

F̂ M of degree M and every node v in G the following holds:

∆F̂ M (v) ≤ 2εξ , (3.68)
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under the assumption that for a filter F̂ M−1 = αM L M−1 y of degree M −1, the following is

valid:

∆F̂ M−1 (v) ≤ εξ, εξ = 2k−3
∣∣αM (Z̄ +o(∆a2)+o(∆b2))

∣∣ . (3.69)

The proof of this fact is identical to the inductive step of the Theorem 2, which concludes the

proof of this theorem.

As we can see from Theorem 3 polynomial filter quasi-equivariant to arbitrary image trans-

lation. Further, Eqs. (3.66) and (3.67) show that the equivariance gap depends on the image

properties, such as the maximum value of the third derivative of the input signal y , which is

directly related to the smoothness of y .

Discussion

The Theorems 2 and 3 permit to obtain the following result.

Lemma 1. For a high resolution image signals y and yg (i.e., the distances between graph nodes

∆a,∆b are small) the difference between the responses of the polynomial filters ∆F , defined in

Eqs. (3.28) and (3.58) is smaller than (or equal to) the difference of the responses of the same

filter F , applied to the lower resolution versions of the same images y and yg .

The proof of this naturally follows from the Theorems 2 and 3. Based on these theorems, we

can derive a formal condition on the resolution of the image signal y that guarantees that the

response of any polynomial filter F of a given degree is quasi-equivariant to random image

rotations.

Lemma 2. For a polynomial filter F of a given degree there exist positive values ∆a and ∆b,

which define the resolution of an image signal y = f (a,b), such that the equivariance gap ∆F

between F (y) and its rotated version F (yg ) is lower then a predefined constant εdef.

Proof of Lemma 2. Our goal is to derive an upper bound on the values of ∆a and ∆b such that

∆F is lower then a predefined constant εdef > 0. The values ∆a and ∆b are directly related to

the resolution of the image y as they define the distance between the neighboring nodes of

the graph G , which is small for high resolution images and large for the low resolution ones.

Here we show the derivation of the upper bounds on ∆a and ∆b for a polynomial filter F of

degree 1. Similar proof can be done for the polynomial filters of any arbitrary degree.

Let us introduce the following notations:

εa =
d f

(
∂2

a f (a5,b5)∆a2 +o(∆a2)
)

(1− sinγ−cosγ),

εb =
d f

(
∂2

b f (a5,b5)∆b2 +o(∆b2)
)

(1− sinγ−cosγ).
(3.70)
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Based on Eqs. (3.44) and (3.29) we can represent the equivariance gap ∆F as

∆F =
d f

|εa +εb | ≤ |εa |+ |εb | ≤
εdef

2
+ εdef

2
= εdef . (3.71)

Then, we can express the bounds on the distances between the adjacent grid nodes in hori-

zontal and vertical directions as

∆a ≤
√
εdef

2

∣∣(∂2
a f +o(1)

)
(1− sinγ−cosγ)

∣∣−1
,

∆b ≤
√
εdef

2

∣∣(∂2
b f +o(1)

)
(1− sinγ−cosγ)

∣∣−1
.

(3.72)

Therefore, for the image resolution defined by ∆a, ∆b from Eq. (3.72) the equivariance gap

∆F is lower or equal than εdef.

To sum up, we have shown that our polynomial filters are quasi-equivariant to random image

rotations and translations. Additionally, as shown in Section 3.4.1 our polynomial filter F

is equivariant to reflection transformation, which is an even stronger property than quasi-

equivariance. This, altogether, proves that our polynomial filters are quasi-equivariant to

any isometric transformation as the latter can be represented as the combination of rotation,

translation and reflection.

3.5 Experiments

In this section we analyze the results and compare our network to the state-of-the-art transformation-

invariant classification algorithms. We first describe the experimental settings. We then ana-

lyze our architecture and the influence of the different design parameters. Further, we show

that equivariance gap ∆F is lower for higher resolution images which confirms our theoretical

results. Finally we compare our network to the state-of-the-art transformation-invariant

classification algorithms.

3.5.1 Experimental settings

The initialization of the system may have some influence on the actual values of the parameters

after training. We have chosen to initialize the parameters αl
i ,m (Eq. 3.2) of our spectral

convolutional filters so that the different filters uniformly cover the full spectral domain. We

first create a set of Z overlapping rectangular functions z(µ, ai ,bi )

z(µ, ai ,bi ) =
1 if ai <µ< bi ,

0 otherwise.
(3.73)
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Method Architecture

Experiments on
MNIST-012

ConvNet [37] C[3]-P[2]-C[6]-P[2]-FC[50]-FC[30]-FC[10]
STN [38] C[3]-ST[6]-C[6]-ST[6]-FC[50]-FC[30]-FC[10]
TIGraNet SC[3, 3]-DP[300]-SC[6, 3]-DP[100]-S[10]-FC[50]-FC[30]-FC[10]

Other experi-
ments

ConvNet [37] C[10]-P[2]-C[20]-P[2]-FC[500]-FC[300]-FC[100]
STN [38] C[10]-ST[6]-C[20]-ST[6]-FC[500]-FC[300]-FC[100]
DeepScat [46] W[2, 5]-PCA[20]
HarmNet [48] HRC[1, 10]-HCN[10]-HRC[10, 10]-HRC[10, 20]-HCN[20]-HRC[20, 20]
TIGraNet SC[10, 4]-DP[600]-SC[20, 4]-DP[300]-S[12]-FC[500]-FC[300]-FC[100]

Table 3.1 – Architectures used for the experiments.

The non-zero regions for all functions have the same size, and the set of functions covers the

full spectrum of the normalized laplacian L , i.e., [0,2]. We finally approximate each of these

rectangular functions by a M-order polynomial, which produces a set of initial coefficients

αl
i ,m that are used to define the initial version of the spectral filter F l

i . Then, the initial values

of the parameters β in the spectral convolutional layer are distributed uniformly in [0,1] and

those of the parameters in the fully-connected layers are selected uniformly in [−1,1].

We run experiments with different numbers of layers and parameters. For each architec-

ture, the network is trained using back-propagation with Adam [53] optimization. The exact

formulas of the partial derivatives are provided in the supplementary material.

Our architecture has been trained and tested on different datasets, namely:

• MNIST-012. This is a small subset of the MNIST dataset [58]. It includes 500 training,

100 validation and 100 test images selected randomly from the MNIST images with

labels ‘0’, ‘1’ and ‘2’. This small dataset permits studying the behavior of our network in

detail and to analyze the influence of each of the layers on the performance.

• Rotated and translated MNIST. To test the invariance to rotation and translation of the

objects in an image we create MNIST-rot and MNIST-trans datasets respectively. Both

of these datasets contain 50k training, 3k validation and ∼9k test images. We use all

MNIST digits [58] except ‘9’ as it is rotated version resembles ‘6’. In order to be able

to apply transformation to the digits, we resize the MNIST-rot to the size 26×26 and

MNIST-trans to the 34×34. The training and validation data of these datasets contain

images of digits without any transformation. However, the testing set of MNIST-rot

contains randomly rotated digits by angles in range [0°,360°], while the testing set of
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Figure 3.7 – Sample images from ETH-80 dataset.

MNIST-trans comprises randomly translated MNIST examples up to ±6 pixels in both

vertical and horizontal directions.

• ETH-80. This dataset [59] contains images of 80 objects that belong to 8 classes. Each

object is represented by 41 images captured from different viewpoints located on a

hemisphere (see Fig. 3.7). The dataset shows a real life example where isometric trans-

formation invariant features are useful for the object classification. We resize the images

to [50×50] and randomly select 2300 and 300 of them as the training and validation sets

and we use the rest of the images for testing.

For all these datasets, we define G as a grid graph where each node corresponds to a pixel

location and is connected with 8 its nearest neighbors with a weight that is equal to 1. The

pixel luminance values finally define the signal y on the graph G for each image.

3.5.2 TIGraNet Analysis

We analyze the performance of our new architecture on the MNIST-012 dataset. We first give

some examples of feature maps that are produced by our network. We then illustrate the

spectral kernels learned by our system, and discuss the influence of dynamic pooling operator.

We first confirm the transformation invariant properties of our architecture. Even though

our classifier is trained on images without any transformations, it is able to correctly classify

rotated images in the test set, since our spectral convolutional layer learns filters that are

equivariant to isometric transformations. We illustrate this in Fig. 3.8, which depicts several

examples of feature maps y2
i from the second spectral convolutional layer for randomly rotated

input digits in the test set. Each row of Fig. 3.8 corresponds to images of a different digit, and

we see that the corresponding feature maps are very close to each other (up to the image
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Figure 3.8 – Feature maps from the second spectral convolutional layer for test images that
are rotated versions of an image of the digit ‘2’. The predicted label for each of the images is
further shown in the right bottom corner of each image.

rotation) even when the rotation angle is quite large. This confirms that our architecture is able

to learn features that are preserved with rotation, even if the training has been performed on

non-transformed images. Despite important similarities in feature maps of rotated digits, one

may however observe some slightly different values for the intensity. This can be explained by

the fact that rotated versions of the input images may differ a bit from the original images due

to interpolation artifacts.

Fig. 3.9 then shows the spectral representation of the kernels learned for the first two spectral

convolutional layers of our network. As expected, the network learns filters that are quite dif-

ferent from each other in the spectral domain but that altogether cover the full spectrum. They

permit to efficiently combine information in the different bands of frequency in the spectral

representation of the input signal. Generally, the filters in the upper spectral convolutional

layers are more diverse and represent more complicated features than those for the lower

ones.

Further, we look at the influence of the new dynamic pooling layers in our architecture.

Recall that dynamic pooling is used to reduce the network complexity and to focus on the
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a) b)

Figure 3.9 – Sample trained filters in the spectral domain for (a) first and (b) second convolu-
tional layers. Different colors represent different filters on each of the layers.

Figure 3.10 – Feature maps after pooling Each row shows different digits. The left most
column depicts the original images, while the other columns show the features maps after
dynamic pooling at the first, second and third layers respectively. The degree of the polynomial
filters has been set to M = 3 for each layer in this experiment.

representative parts of the input signal. Fig. 3.10 depicts the intermediate feature maps of the

network for sample test images. We can see that after each pooling operation the signal is

getting more and more sparse, while structure of the data that is important for discriminating

images in different classes is preserved. That shows that our dynamic pooling operator is

able to retain the important information in the feature maps constructed by the spectral

convolutional layers.

3.5.3 Influence of the image resolution on the quasi-equivariance

As we show in Section 3.4.2 the difference between filter responses of the polynomial filters

∆F , defined in Eqs. (3.28) and (3.58) depends on the resolution of the image ∆a,∆b. To verify

our theoretical result we run the following experiment.

We down-sample 400 high resolution images from [60] using bicubic interpolation with several
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Figure 3.11 – Influence of the image resolution on the quasi-equivariance property. The
x-axis illustrates the change in the image resolution that is defined by the down-sampling
factor t of the original image. The y-axis shows the mean equivariance gap E[∆F ](t ) computed
across a set of images with different transformations. The green and orange lines correspond
to the set of image translations and rotations respectively. (best seen in color)

down-sampling factors t ∈ {2,3,4,5,6}. Thus, we obtain a set of images yt , t ∈ {2,3,4,5,6} with

different resolutions.

For each of these images, we apply isometric transformation T (yt ) and filters Fi , i = 1, ...,20 of

degree 4, with random coefficients αi ,m ∈ [−1,1]. Then, we calculate the following differences

E[∆F ](t ) = 1

20

20∑
i=1

T −1(Fi
(
T (yt )

))−Fi (yt ), (3.74)

where T −1 is inverse transformation. In our experiments we apply the following transforma-

tions:

• rotation by π/18,π/9,π/6,π/4;

• translation by (0.1,0.1), (0.2,0.2), (0.3,0.3), (0.4,0.4) pixels;

and evaluate the mean equivariance gap E[∆F ](t ) across various transformations and images.

Fig. 3.11 shows that E[∆F ](t) is growing with the increase of the down-sampling factor t , or

equivalently the decrease in resolution of the images. Also, we can see that translation gives

smaller values of E[∆F ](t ),∀t rather than rotation transformation, which confirms our results

from Theorem 2 and 3, where it was shown that the upper bound on the equivariance gap

depends on the maximum value of the second and third derivatives of the image signal y for

rotation and translation transformations respectively.
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3.5.4 Performance evaluation

Here, we compare TIGraNet to state-of-the art algorithms for transformation-invariant image

classification tasks, i.e., ConvNet [37], Spatial Transformer Network (STN) [38], Deep Scatter-

ing (DeepScat) [46] and Harmonic Networks (HarmNet) [48]. Briefly, ConvNet is a classical

convolutional deep network that is invariant to small image translations. STN compensates for

image transformations by learning the affine transformation matrix. Further, DeepScat uses

filters based on rich wavelet representation to achieve transformation invariance; however, it

does not contain any parameters for the convolutional layers. Finally, HarmNet trains complex

valued filters that are equivariant to signal rotations. For the sake of fairness in our compar-

isons, we use versions of these architectures that have roughly the same number of parameters,

which means that each of the approaches learns features with a comparable complexity. For

the DeepScat we use the default architecture. For HarmNet we preserve the default network

structure, keeping the same number of complex harmonic filters, as the number of spectral

convolutional filters that we have in TIGraNet.

We first compare the performance of our algorithm to the ones of ConvNet and STN for the

small digit dataset MNIST-012. The specific architectures used in this experiments are given in

Table 3.1, where we use the following notations to describe it: C[X1], P[X2], FC[X3] correspond

to the convolutional, pooling and fully-connected layers respectively, with X1 being the num-

ber of 3×3 filters, X2 – the size of the max-pooling area and X3 – the number of hidden units.

ST[X4] denotes the spatial transform layer with X4 affine transformation parameters. W[O, J ]

and PCA[X5] denote the parameters of DeepScat network with wavelet-based filters of order

O and maximum scales J , with dimension of the affine PCA classifier X5. HRC[X6, X7] depicts

the harmonic cross-correlation filter operating on the X7 neighborhood with X6 feature maps.

HCN[X8] is the complex nonlinearity layer of HarmNet with X8 parameters. Finally, SC[Kl , M ]

is a spectral convolutional layer with Kl filters of degree M , DP[Jl ] is a dynamic pooling that

retains Jl most important values. Lastly, S[Kmax ] is a statistical layer with Kmax the maximum

order of Chebyshev polynomials.

The results of this first experiment are presented in Table. 3.2. We can see that, if we train

the methods on the dataset that does not contain rotated images, and test on the rotated

images of digits, our approach achieves a significant increase in performance (i.e., 86%), due

to its inherent transformation invariant characteristics. We further run experiments where a

simple augmentation of the training set is implemented with randomly rotated images. This

permits increasing the performance of all algorithms, as expected, possibly at the price of

more complex training. Still, due to the rotation invariant nature of its features, TIGraNet is

able to achieve higher classification accuracy than all its competitors.

We then run experiments on the MNIST-rot and MNIST-trans datasets. Note that both of them

do not contain any isometric transformation in training and validation sets, but the test set

contains transformed images. For all the methods we have used the architectures defined

in Table 3.1. Table 3.3 shows that our algorithm significantly outperforms the competitor
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Training set Validation set Rotated test set

Training set with data augmentation

ConvNet 99 94 78±2.1
STN 100 97 93±0.97

Training set without data augmentation

ConvNet 100 100 55±5
STN 100 98 50±5
TIGraNet 98 97 94 ± 0.42

Table 3.2 – Classification accuracy of ConvNet, STN and TIGraNet on MNIST-012. The methods
are trained without and with transformed images. We average the performance of all the
methods across 10 runs with different transformations of the test data.

MNIST-rot MNIST-trans

ConvNet 44.3 43.5
STN 44.5 67.1
TIGraNet 83.8 79.6

Table 3.3 – Evaluation of the accuracy of the ConvNet, STN and TIGraNet on the MNIST-rot
and MNIST-trans datasets. All the methods are trained on sets without transformed images.

Accuracy (%)

STN [38] 45.1
ConvNet [37] 80.1
DeepScat [46] 87.3
HarmNet [48] 94.0
TIGraNet 95.1

Table 3.4 – Performance evaluation for ConvNet, STN, DeepScat, HarmNet and TIGraNet on
classification of images from the ETH-80 dataset.

methods on both datasets due to its transformation invariant features.

To further analyze the performance of our network we illustrate several sample feature maps

for the different filters of the first two spectral convolutional layers of TIGraNet in Fig. 3.12, for

the MNIST-rot and MNIST-trans datasets. We can see a few examples of misclassification of

our network; for example, the algorithm predicts label ‘5’ for the digit ‘6’. This mostly happens

due to the border artifacts; if the digit is shifted too close to the border due to an isometric

transformation, then the neighborhood of some nodes may change. This problem can be

solved by increasing the image borders or applying filters only to the central pixel locations.
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Figure 3.12 – Network feature maps visualization. Each row shows the feature maps of
different digits after the first and the second spectral convolutional layers. The misclassified
images are marked by red bounding boxes. (best seen in color)
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Further, we evaluate the performance of our algorithm in more realistic settings where the

objective is to classify images of objects that are captured from different viewpoints. This task

requires having a classifier that is invariant to isometric transformations of the input signal.

We run experiments on the ETH-80 dataset and compare the classification performance of

TIGraNet to those of ConvNet, STN, DeepScat and HarmNet. The architectures of the different

methods are described in Table 3.1.

Table 3.4 shows the classification results in this experiment. We can see that our approach

outperforms the state-of-the-art methods due to its transformation invariant features. The

closest performance is achieved by Harmonic Networks, since this architecture also learns

equivariant features. It is important to note that the ETH-80 dataset contains less training

examples than other publicly available datasets that are commonly used for the training of

deep neural networks. This likely results in decrease of accuracy for methods such as ConvNets

and STN. On the contrary, our method is able to achieve good accuracy even with small

amounts of training data, due to its inherent invariance to isometric transformations.

Finally, we run an additional experiment to show the influence of the amount of training data

augmentation on the performance of our method. In this experiment we construct several

training datasets Di based on the training MNIST-rot images. To build each of these datasets

Di we randomly rotate its test images on one of KDi predefined angles. For example, KDi = 4

means that training images are randomly rotated by 0,π/2,π,3π/2 degrees. The Fig. 3.13 shows

the performance of different methods on the test dataset containing MNIST-rot images rotated

on random angle with respect to the number KDi . As we can notice, our method trained on the

dataset without any transformation outperforms the convolutional network even if it contains

examples of many different rotations in the training data. However, the Spatial Transformer

Network outperforms our method on the dataset with KDi > 8. It happens because our network

is inherently equivariant to graph isometric transformations that preserve graph structure (see

Section 3.4). Rotations on 45 degrees, however, introduces interpolation artifacts. Therefore,

to be complete we also train our method on Di , which allows our method to overcome these

issues and again outperform other methods.

Overall, all the above experiments confirm the benefit of our transformation invariant classifi-

cation architecture, which learns features that are invariant to transformation by construction.

Classification performance improves with these features, such that the algorithm is able to

reach sustained performance even if the training set is relatively small, or does not contain

similar transformed images as in the test set. These are very important advantages in practice.

3.6 Conclusion

In this chapter, we have presented a new transformation invariant classification architecture,

which combines the power of deep networks and graph signal processing to develop filters

that are equivariant to translation and rotation. A novel statistical layer further renders our

full network invariant to the isometric transformations. This permits outperforming state-of-
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Figure 3.13 – Performance of the different approaches depending on the number of random
rotations KDi in the training set. Each of the dataset Di is build based of the MNIST-rot dataset.
Red line corresponds to our method which is trained on the data without any augmentation.

the-art algorithms on various illustrative benchmarks. Our new method is able to correctly

classify rotated and translated images even if such transformed images do not appear in the

training set. This confirms its high potential in practical settings where the training sets are

limited but where the data is expected to present high variability.
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4 Graph-Based Classification of Omnidi-
rectional Images

4.1 Introduction

In the previous chapter we showed that graphs can be efficiently used to incorporate some

desired properties of the features (i.e. isometric transformation invariance) inside the deep

learning framework. In this chapter we further extend graph-based representation learning to

modeling a different type of prior information about the task at hand, namely the projective

geometry of omnidirectional cameras.

Omnidirectional cameras are very attractive for various applications in robotics [61, 62] and

computer vision [63, 64] thanks to their wide viewing angle. Despite this advantage, working

with the raw images, taken by such cameras is difficult because of severe distortion effects

introduced by the camera geometry or lens optics, which has a significant impact on local

image statistics. Therefore, all methods that aim at solving different computer vision tasks (e.g.

detection, points matching, classification) on the images from the omnidirectional cameras

need to find a way of compensating for this distortion.

A ‘naive’, approach is to apply standard techniques directly to raw (distorted) images. However,

algorithms proposed for the planar images lead to non-optimal solutions when applied to

distorted images. One example of such standard techniques are the Convolutional Neural

Networks (ConvNets) [37], which are primarily designed for regular domains [7] and have

achieved remarkable success in various areas of computer vision [65, 66, 67]. The drawback

of this solution is that ConvNets require a lot of training data for omnidirectional image

classification task, as the same object will not have the same local statistics, for different image

locations, which results in different filter responses. Therefore, the dataset should include

images where same objects are seen in different parts of the image in order to reach invariance

to distortions.

In this chapter we propose to design a solution for image classification that inherently takes

into account the camera geometry. Developing such a technique based on the classic ConvNets

is, however, complicated due to the two main reasons. First as we mentioned before the
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Figure 4.1 – The proposed graph construction method makes response of the filter similar
regardless of different position of the pattern on an image from an omnidirectional camera.

features, extracted by the network, need to be invariant to positions of objects in the scene and

different orientations with respect to the omnidirectional camera. Second, it is challenging to

incorporate lens geometry knowledge in the structure of convolutional filters.

To tackle the first of the aforementioned challenges we propose to extend method from

previous chapter. However, direct application of this approach is not able to take advantage

of the knowledge about the geometry of omnidirectional images, as the same object seen

at different positions of an omnidirectional image still remains different from the network

point of view. Thus, we suggest to incorporate the knowledge about the geometry of the

omnidirectional camera lens into the signal representation, namely in the structure of the

graph (see Fig. 4.1). This permits filters output to remain the same regardless position of

the object on the omnidirectional image. In summary, we therefore propose the following

contributions:

• a principled way of graph construction based on geometry of omnidirectional images;

• graph-based deep learning architecture for the omnidirectional image classification

task.

4.2 Wide field of view image processing

In this section we review several techniques designed for wide-angle cameras for different

computer vision applications. We then briefly discuss the main difference of our proposed

technique with the approaches discussed in Chapter 2.

A broad variety of computer vision tasks benefit from having wide-angle cameras. For ex-

ample, images from fisheye [68], which can reach field of view (FOV) of more than 180°, or

omnidirectional cameras, that provide 360° FOV [69, 70] are widely used in virtual reality and

robotics [69, 71] applications. Despite their benefits these images are challenging to process

due to the fact that most of the approaches are developed for planar images and suffer from

distortion effects when applied to images captured by cameras with wide field of view [68].
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There exist different ways of acquiring an omnidirectional image. First such an image can be

built based on a set of multiple images, taken either by a camera that is rotated around its

center of projection, or by multiple calibrated cameras. Rotating camera systems, however

cannot be applied to dynamic scenes, while multi-camera systems suffer from calibration

difficulties. Alternatively, one can obtain an omnidirectional image from dioptric or catadiop-

tric cameras [72]. Most of the existing catadioptric cameras have the following mirror types:

eliptic, parabolic and hyperbolic. The authors in [73] show that such mirror types allow for

a bijective mapping of the lens surface to a sphere, which simplifies processing of omnidi-

rectional images. We work with this spherical representation of catadioptric omnidirectional

cameras. The analysis of images from wide-angle cameras remains however an open problem.

For example, the standard approaches for interest point matching propose affine-invariant

descriptors such as SIFT [74], GIST [75]. However, designing descriptors that preserve in-

variance to geometric distortions for wide-angle camera’s images is challenging. One of the

attempts to achieve such invariance is proposed by [76], where the authors extend the GIST

descriptor to omnidirectional images by exploiting their circular nature. Instead of using

hand-crafted descriptors, the authors in [77] suggest to learn them from the data by creating a

similarity preserving hashing function. Further, inspired by the aforementioned method, the

work in [64] proposes to learn descriptors for images from omnidirectional cameras using a

siamese neural network [78]. While this method is not using specific geometry of the lens, it

significantly outperforms state-of-the-art as it encodes transformations that are present in the

omnidirectional images. However, the method requires carefully constructed training dataset

to learn all possible variations of the data.

Contrary to the previous approaches, the methods in [63, 79, 80] design a scale invariant SIFT

descriptor for the wide-angle cameras based on the result of the work in [73] that introduced

a bijection mapping between omnidirectional images and a spherical surface. In particular,

the method in [63] maps images to a unit sphere, and those in [79] propose two SIFT-based

algorithms, which work in spherical coordinates. The first approach (local spherical) matches

points between two omnidirectional images, while the second one (local planar) works be-

tween spherical and planar images. Finally, the authors in [80] adapt a Harris interest point

detector [81] to spherical nature of images from omnidirectional cameras. All the aforemen-

tioned works are designed for interest point matching task. In our work we use the similar idea

of mapping omnidirectional images to the spherical surface [73] for omnidirectional image

classification problem.

Omnidirectional cameras have also been widely used in other computer vision and robotics

tasks. For example, the authors in [82] propose a segmentation method for catadioptric

cameras. They derive explicit expression for edge detection and smoothing differential oper-

ators and design a new energy functional to solve segmentation problem. The work in [83]

then develops a stereo-based depth estimation approach from multiple cameras. Further,

the authors in [72] extend previous geometry-based calibration approach to compute depth

and disparity maps from images captured by a pair of omnidirectional cameras. They also
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suggest an efficient way of sparse 3D scene representation. The works in [69, 70] then use

omnidirectional cameras for robot self-localisation and reliable estimation of the 3D map of

the environment (SLAM). Further, the authors in [84] suggest an object detection approach for

omnidirectional images by modifying the traditional HOG-based approach both geometrically

and by applying Riemannian metric on the sphere model. The authors in [85] propose a

motion estimation method for catadioptric omnidirectional images by the evaluation of the

correlation between them from arbitrary viewpoints. Finally, the work in [86] utilizes geome-

try of the omnidirectional camera to adapt the quantization tables of ordinary block-based

transform codecs for panoramic images computed by equirectangular projection.

In summary, processing images from omnidirectional cameras becomes an important topic in

the computer vision community. However, most of the existing solutions rely on methods de-

veloped for planar images. In this chapter we are particularly interested in image classification

tasks and propose a solution based on a combination of powerful deep learning architecture

and camera lens geometry that we encode using the graph-based representation of the input

image. Therefore, our approach is also related to the methods that are designed for working

with graphs that are summarized in Chapter 2. However, the main difference of our method

with these approaches is that instead of designing a novel deep learning architecture that

could generalize to any types of data, we focus on the development on a graph construc-

tion mechanism that embeds the knowledge of the omnidirectional camera lens geometry

inside the neural network. The latter can eventually be incorporated in any graph-based deep

learning architecture, as we show in this chapter on the example of [6, 14].

4.3 Graph-based representation

4.3.1 Image model

An omnidirectional image is typically represented as a spherical one (see Fig. 4.2), where each

point Xk from 3D space is projected to the points xk on the spherical surface S with radius r ,

which we set to r = 1 without loss of generality. The point xk is then uniquely defined by its

longitude θk ∈ [−π,π] and latitude φk ∈ [−π
2 , π2 ] and its coordinates can be written as:

xk :

cosθk cosφk

sinθk cosφk

sinφk

 ,k ∈ [1..N ]. (4.1)

We consider objects on a plane that is tangent to the sphere S. We denote by Xk,i a 3D

space point on the plane Ti tangent to the sphere at (φi ,θi ). The point Xk,i is defined by

the coordinates (xk,i , yk,i ) on the plane Ti . We, further, denote by xk,i : (φk ,θk ) the points on

the surface of the sphere that are obtained by connecting its center and the point Xk,i on Ti .

We can find coordinates of each point Xk,i on Ti by using the gnomonic projection, which
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Figure 4.2 – Example of the gnomonic projection. An object from tangent plane Ti is projected
to the sphere at tangency point X0,i , which is defined by spherical coordinates φi ,θi . The
point Xk,i is defined by coordinates (xk,i , yk,i ) on the plane.

generally provides a good model for omnidirectional images [87]:

xk,i = cosφk sin(θk−θi )
cosc ,

yk,i = cosφi sinφk−sinφi cosφk cos(θk−θi )
cosc ,

(4.2)

where c is the angular distance between the point (xk,i , yk,i ) and the center of projection X0,i

and is defined as follows:

cosc = sinφi sinφk +cosφi cosφk cos(θk −θi ),

c = tan−1
(√

x2
k,i + y2

k,i

)
.

(4.3)

Fig. 4.2 illustrates an example of this gnomonic projection.

In order to easily process the signal defined on the spherical surface, it is typically projected to

an equirectangular image (see Fig. 4.3). The latter represents the signal on the regular grid

with step sizes ∆θ and ∆φ for angles θ and φ respectively. We work with these equirectangular

images and assume that the object, which we are classifying, is lying on a plane Ti tangent

to the sphere S at the point (φi ,θi ). Our work could however be adapted to other projection

models, such as [88]. Finally, each point on the equirectangular image is considered as a

vertex vk in our graph representation. The graph then connects nearest neighbors of the

equirectangular image y(vi ) = y(φi ,θi )

4.3.2 Weight design

Our goal is to develop a transformation invariant system, which can recognize the same object

on different planes Ti that are tangent to S at different points (φi ,θi ) without any extra training.

The challenge of building such a system is to design a proper graph signal representation
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Figure 4.3 – Example of the equirectangular representation of the image. On the left, the figure
depicts the original image on the tangent plane Ti , on the right, projected to the points of the
sphere. To build an equirectangular image the values points on the discrete regular grid are
often approximated from the values of projected points by interpolation.

that allow compensating for the distortion effects that appear on different elevations of S. In

order to properly define the structure, namely to compute the weights that satisfy the above

condition we analyze, how a pattern projected a plane Te at equator (φe = 0,θe = 0) varies on

S with respect to the same pattern projected onto another plane Ti tangent to the sphere at

(φi ,θi ). We use this result to minimize the difference between filter responses of two projected

pattern versions. Generally, the weight choice depends on distances di j between neighboring

nodes of graph wi j = g (di j ). In this section we show that the function g (di j ) = 1
di j

satisfies the

above invariance condition.

Pattern choice. For simplicity we consider a 5-point pattern {p0, . . . , p4} on a tangent plane,

which is depicted by the Fig. 4.4:

p j := X j ,e , ∀ j ∈ [0..4], (4.4)

where X j ,e are the points on the plane Te tangent to an equator point φe = 0,θe = 0 and

X0,e = x0,e is the tangency point. Further, pattern points {p0, . . . , p4} are also chosen in such a

way that they are projected to the following locations on the sphere S:

p0 7→ (0,0)

p2, p4 7→ (0±∆φ,0)

p1, p3 7→ (0,0±∆θ)

. (4.5)

These essentially correspond to the pixel locations of the equirectangular representation

of the spherical surface introduced in Section 4.3.1. The chosen pattern has the following

coordinates on the tangent plane at equator Te :

X0,e = (0,0)

X2,e ,X4,e = (0,± tan∆φ)

X1,e ,X3,e = (± tan∆θ,0)

. (4.6)
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4.3. Graph-based representation

a) b) c)

Figure 4.4 – a) We choose pattern p0, .., p4 from an object on tangent plane Te at equator
(φe = 0,θe = 0) (red points) and then, b) move this object on the sphere by moving the tangent
plane Ti to point (φi ,θi ). c) Thus, the filter localized at tangency point (φi ,θi ) uses values
pi ,1, pi ,3 (blue points) which we can obtain by interpolation.

Filter response. Our objective is to design a graph, which can encode the geometry of an

omnidirectional camera in the final feature representation of an image. Ideally, the same object

at different positions on the sphere should have the same feature response (see Fig. 4.1) or

equivalently they should generate the same response to given filters. Therefore, we choose the

graph construction, or equivalently the weights of the graph in such a way that the difference

between the responses of a filter applied to gnomonic projection of the same pattern on

different tangent planes Ti is minimized. We consider a graph where each node is connected

with 4 of its nearest neighbours and take as an example the polynomial spectral filter F =Lu

of degree 1 (α0, j = 0,α1, j = 1), we can compute the filter response according to the Eq. (2.1)

and Eq. (2.10):

F (y(vi )) = Di i y(vi )− ∑
j∈E

Ai j y(v j ), (4.7)

at the vertex p0, one can write in particular:

F (y(p0)) = 2(wV +wH )y(p0)−wV (y(p2)+y(p4))

−wH (y(p1)+y(p3)),
(4.8)

where wV , wH are the weight of the ‘vertical’ and ‘horizontal’ edges of the graph. For the

graph nodes representing points pl : (θl ,φl ) and pm : (θm ,φm) we refer to edges as ‘vertical’ or

‘horizontal’ if θl = θm ,φl 6=φm or θl 6= θm ,φl =φm correspondingly.

We now calculate the filter response F (y(p0,i )) for a point p0 on the tangent plane Ti and

compare the result with Eq. (4.8). For simplicity, we assume that we shift the position of the

tangent plane by an integer number of pixel positions on the spherical surface, namely φi ,θi

corresponds to a node of the graph given by the equirectangular image.

According to the gnomonic projection (Eq. (4.2)), the locations of pk,i ,k = [0, ..,4] defined
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Chapter 4. Graph-Based Classification of Omnidirectional Images

on the surface of S as (φi ,θi ), (φi ±∆φ,θi ), (φi ,θi ±∆θ) correspond to the following positions

xk,i = (xk,i , yk,i ) on the tangent plane Ti :

X0,i = (0,0)

X2,i ,X4,i = (0,± tan∆φ)

X1,i ,X3,i =
(
± cosφi sin∆θ

sin2φi+cos2φi cos∆θ
, sinφi cosφi (1−cos∆θ)

sin2φi+cos2φi cos∆θ

) (4.9)

The tangent plane’s positions of points X0,i ,X2,i ,X4,i are independent of (φi ,θi ), therefore their

values remain the same as those of p0, p2 and p4 respectively. However, the positions of points

X1,i ,X3,i depend on (φi ,θi ), so that we need to interpolate the values of the pattern signal at

the vertices pi ,1 and pi ,3 (see Fig. 4.4).

We can approximate the values at pi ,1 and pi ,3 using the bilinear interpolation method [89].

We denote by A,B ,C ,D the distances between the corresponding points of the pattern Ti , as

shown in Fig. 4.4 (c). We can then express pi ,1 and pi ,3 as:

y(pi ,1) = E−1(ADy(p1)+BDy(p0)+C By(p2)),

y(pi ,3) = E−1(ADy(p3)+BDy(p0)+C By(p2)),
(4.10)

where, using Eq (4.9),

E = (C +D)(A+B),

A+B = tan∆θ,

C +D = tan∆φ

. (4.11)

Using Eq. (4.10) we can then write the expression for the filter response F (y(p0,i )), as follows:

F (y(p0,i )) = 2(wi ,V +wi ,H )y(p0)

−wi ,V (y(p2)+y(p4))

−wi ,H (y(pi ,1)+y(pi ,3)),

(4.12)

where wi ,H and wi ,V are the weights of the ‘horizontal’ and ‘vertical’ edges of the graph at

points with the elevation φi .

Objective function. We now want the filter responses a p0 and p0,i in (Eq. (4.8) and Eq. (4.12))

to be close to each other in order to build translation-invariant features. Therefore, we need to

find weights wH , wV , wi ,H and wi ,V such that the following distance is minimized:∣∣F (y(p0,e ))−F (y(p0,i ))
∣∣ . (4.13)

Additionally, as we want to build a unique graph independently of the tangency point of Ti

and S, we have additional constraint of wV = wi ,V . The latter is important, as from Eq. (4.9)

we can see that ‘vertical’ (or elevation) distances are not affected by translation of the tangent
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4.3. Graph-based representation

plane.

We assume that the camera has a good resolution, which leads to ∆θ ' 0. Therefore, based on

Eq. (4.13), we can derive the following:wH '
(

cosφi cos∆θ
sin2φi+cos2φi cos∆θ

)
wi ,H = wi ,H cosφi ,

cos∆θ ' 1.
(4.14)

Therefore, under our assumptions, we can conclude that the difference between filter re-

sponses, defined by Eq. (4.13) is minimized if the following condition is valid:

wi ,H = wH
(
cosφi

)−1 , (4.15)

where wH is the weight of the edge between points on the equator of the sphere S.

Now, we can use this result to choose a proper function g (di j ) to define the weights wi ,H

based on the Euclidean distances between two neighboring points (xi ,x j ) on the sphere S. For

the case when φi =φ j =φ∗,θi 6= θ j the Euclidean distance can be expressed as follows:

d 2
i j = r 2(1−cos∆θ)(1+cos2φ∗) = r 2 cos2φ∗. (4.16)

For simplicity let us denote di j = dφ∗ , where φ∗ is the elevation of the points xi ,x j . Using

these notations, we can compute the proportion between distances dφe and dφ∗ , which are

the distances between neighboring points at equator φe = 0 and elevations φ∗ respectively. It

reads:

dφ∗

dφe

= cosφ∗
cosφe

. (4.17)

Given Eq. (4.15), we can rewrite Eq. (4.17) for elevation φ∗ =φi as:

cosφi =
dφi

dφe

= wH

wi ,H
. (4.18)

As we can see, the distance between neighboring points on different elevation levels φi , is

proportional to cosφi . Given Eq. (4.13), we can see that making weights inversely proportional

to Euclidean distance allows to minimize difference between filter responses. Therefore, we

propose using wi ,H as:

wi ,H = 1

dφi

. (4.19)

This formula can also be used to compute the weights for vertical edges, as the distance d

between any pair neighboring points (xi ,x j ), for which θi = θ j and φi 6=φ j is constant. This

nicely fits with our assumption that the weights of ‘vertical’ edges should not depend on the
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tangency point of plane Ti and sphere S.

Thus, summing it up we choose the weights wi j of a graph based on the Euclidean distance

between pixels on spherical surface di j as follows:

wi j = 1

di j
. (4.20)

The graph representation finally forms the set of signals y that are fed into the network

architecture defined in chapter 3.

4.4 Experiments

In this section we present our experiments. We first describe the datasets that we use for

evaluation of our algorithm. We then compare our method to state-of-the-art algorithms.

We have used the following two datasets for the evaluation of our approach.

MNIST-012 is based on a fraction of the popular MNIST dataset [58] that consists of 1100

images of size 28× 28, subdivided in three different digit classes: ‘0’, ‘1’ and ‘2’. We then

randomly split these images into training, validation and test sets of 600, 200 and 300 images

respectively. In order to make this data suitable for our task we project them to the sphere at

a point (φi ,θi ), as depicted by Fig. 4.2. To evaluate accuracy with the change of (φi ,θi ), for

each image we randomly sample from 9 different positions: φi ∈ {0,1/8,1/4},θi ∈ {±1/8,0}.

Finally we compute equirectangular images (see Fig. 4.2) from these projections, as defined in

Section 4.3.1 and use the resulting images to analyze the performance of our method.

ETH-80 is a modified version of the dataset introduced in [59]. It comprises 3280 images of

size 128×128 that features 80 different objects from 8 classes, each seen from 41 different

viewpoints. We further resize them to 50×50 and randomly split these images into 2300 and

650 training and test images, respectively. We use the remaining 330 ones for validation. Finally,

we follow the similar procedure to project them onto the sphere and create equirectangular

images as we do for MNIST-012 dataset.

For our first set of experiments we train the network in [6] with the following parameters.

We use two spectral convolutional layers with 10 and 20 filters correspondingly, with global

pooling which selects P1 and P2 nodes, where the parameters P1 = 2000 and P2 = 200 for

MNIST-012 dataset and P1 = 2000 , P2 = 700 for ETH-80 dataset. We then use a statistical layer

with 12×2 statistics and three fully-connected layers with ReLU and 500, 300, 100 neurons

correspondingly.

We have evaluated our approaches with respect to baseline methods in terms of classifica-

tion accuracy. The MNIST-012 dataset is then primarily used for the analysis of both the

architecture and the graph construction approach. We then report the final comparisons to
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Figure 4.5 – Example of the feature maps of the last spectral convolutional layer extracted from
equirectangular images. The first column corresponds to the original images created for the
same object, which is projected from different tangent planes Ti , with φi ∈ {0, 1

8 , 1
4 }; the last

two columns show the feature maps given by two randomly selected filters.

state-of-the-art approaches on the ETH-80 dataset.

First of all, we visually show that feature maps on the last convolutional layer of our net-

work are similar for different positions, namely for different tangent planes Ti with the same

object. Fig. 4.5 and 4.6 depict some feature maps of images from MNIST-012 and ETH-80

correspondingly.

The first column of each figure shows original equirectangular images of the same object

projected to different elevations φi = [0,1/8,1/4] and the rest visualize feature maps produced

by two randomly selected filters. We can see, that the feature maps stay similar independently

of the distortion of the corresponding input image. We believe that this, further, leads to closer

feature representations, which is essential for good classification.

We recall that the goal of our new method is to construct a graph to process images from

omnidirectional camera and use it to create similar feature vectors for the same object for

different positions (φi ,θi ) of the tangent plane. To justify the advantage of proposed approach

we design the following experiment. First of all, we randomly select three images of digits ‘2’,

‘1’ an ‘0’ from the test set of MNIST-012. We then project each of these images to 9 positions

on the sphere φi ∈ {0,1/8,1/4},θi ∈ {±1/8,0}. We then evaluate Euclidean distances between

the features that are given by the statistical layer of the network for all pairs of these 27 images.

Fig. 4.7 presents the resulting [27×27] matrix of this experiment for a grid graph and for the

proposed graph representation, which captures the lens geometry. Ideally we expect that

images with the same digit give the same feature vector regardless of different elevations φi of

the tangent plane. This essentially means that cells of the distance matrix should have low
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Input F0(y) F1(y)

0

1
8

1
4

Figure 4.6 – Example of feature maps of equirectangular images from ETH-80 datasets. Here,
we randomly select an input image from the test set and project it on three elevation φi ∈
{0,1/8,1/4} and two spectral filters, which are named F1 and F2. The figure illustrates resulting
feature maps given by the selected filters (second and third columns) and input images (first
column).

ETH-80
method graph type # Parameters Accuracy (%)

classic Deep Learning:

FC Nets – 1.4M 71.3
STN [38] – 1.1M 73.1
ConvNets [37] – 1.1M 76.7

graph-based DLA:

ChebNet [14] grid 3.8M 72.9
TIGraNet [6] grid 0.4M 74.2
ChebNet [14] geometry 3.8M 78.6

Ours geometry 0.4M 80.7

Table 4.1 – Comparison to the state-of-the-art methods on the ETH-80 datasets. We select
the architecture of different methods to feature similar number of convolutional filters and
neurons in the fully-connected layers.

value on the [9×9] diagonal sub-matrices, which correspond to the same object, and high

values on the rest of the matrix elements. Fig. 4.7 shows that our method gives more similar

features for the same object compared to the approach based on a grid graph. This suggests

that building graph based on image geometry, as described in Section 4.2, makes features

less sensitive to image distortions. This consequently simplifies the learning process of the

algorithm.
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a) b)

Figure 4.7 – Illustration of the Euclidean distances between the features given by the networks
of a) [6] and b) our geometry-aware graph. This figure depicts resulting matrix [27×27] for
the images from 3 classes and 9 different positions, where axises correspond to the image
indexes. Each diagonal [9×9] sub-matrix corresponds to the same object (digits “2", “1", “0"),
the lowest value (blue) corresponds to the most similar features and the highest value (red) to
the least similar (best seen in color).

We further evaluated our approach with respect to the state-of-the-art methods on ETH-80

dataset. The competing deep learning approaches can be divided in classical and graph-based

methods. Among the former ones we use Fully-connected Networks (FCN), Convolutional

Network (ConvNets) [37] and Spatial Transformer Networks (STN) [38]. STN has an additional

to ConvNets layer which is able to learn specific transformation of a given input image. Among

the graph-based methods, we choose ChebNet [14] and TIGraNet [6] for our experiments.

ChebNet is a network designed based on Chebyshev polynomial filters. TIGraNet is a method

invariant to isometric transformation of the input signal. The architectures are selected such

that the number of parameters in convolutional and fully-connected layers roughly match

each other across different techniques. More precisely, all networks have 2 convolutional

layers with 10 and 20 filters, correspondingly, and 3 fully-connected layers with 300,200 and

100 neurons. Filter size of the convolutional layer in classical architectures is 5×5. For ChebNet

we try polynomials of degree 5 and 10 and pick the latter one as it produces better results. For

TIGraNet we use polynomial filters of degree 5. The results of this experiment are presented in

Table 4.1.

Table 4.1 further shows that ConvNet [37] outperforms TIGraNet [6]. This likely happens as

[6] gathers global statistics and loses the information about the location of the particular

object. This information, however, is crucial for the network to adapt to different distortions

on omnidirectional images. We can see that the introduced graph construction method helps

to create similar feature representations for the same object at different elevations, which

results into different distortion effects but similar feature response. Therefore, the object looks

similar for the network and global statistics become more meaningful compared to a method

based on the regular grid graph [6].
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Further, we can see that the proposed graph construction method allows to improve accuracy

of both graph-based algorithms: ChebNet-geometry outperforms ChebNet-grid, and proposed

algorithm based on TIGraNet outperforms the same method on the grid-graph [6]. Finally, we

also notice that our geometry-based method performs better than ChebNet-geometry on the

ETH-80 task due to the isometric transformation invariant features; these are an advantage for

the image classification problems, where images are captured from different viewpoints.

Thus, we can conclude that our algorithm produces similar filter responses for the same object

at different positions. This, in combination with global graph-based statistics, leads to the

better classification accuracy.

4.5 Conclusion

In this chapter we have proposed a novel image classification method based on deep neural

network that is specifically designed for omnidirectional cameras, which introduce geometric

distortion effects. Our graph construction method allows for learning filters that respond

similarly to the same object seen at different positions on the equirectangular image. We

evaluated our method on challenging datasets and prove its effectiveness in comparison to

state-of-the-art approaches that are agnostic to the geometry of the images.

Our discussion in this chapter was limited to specific type of the mapping projection. However,

the graph-based solution has the potential to be extended to more general geometries of the

camera lenses, which we explore in the next chapter.
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5 Projective geometry-aware
anisotropic convolutional filters

5.1 Introduction

In the previous chapter we showed that, by modifying the weights between edges in the graph

that is used to represent an omnidirectional image, we can adapt the network to learn features

that are aware of the geometry of such images. In Chapter 3 we presented one way of defining

an isotropic convolutional filter that operates on an image represented as a signal on an

undirected graph. While these filters can be efficiently used within the TIGraNet framework

for such tasks as image classification, using these filters for other problems (for example

compression or even for the same image classification task, but without dynamic pooling and

statistical layers used in the TIGraNet framework) is challenging, as by construction they are

not able to encode the orientation of object seen in the image. Fig. 5.1 illustrates this issue

on a sample compression task. The images processed by the network that is composed of

graph-based polynomial filters (Fig. 5.1(b,d)) are over-smoothed and have particular blocking

artifacts, which appear due to the isotropic nature of the filters. To overcome this problem we

introduce in this chapter a different way of constructing graph-based image representations.

It not only permits to adapt to the geometry of an omnidirectional image, but also to learn

anisotropic filters, which have a much broader application area than isotropic ones that are

discussed in the previous chapters.

(a) (b) (c) (d)

Figure 5.1 – Example of original (a,c) and decompressed (b,d) image encoded with graph-based
isotropic filters. The images are the result of deep network compression algorithm, [90], where
convolutional filters are replaced by graph-based isometric ones introduced in Chapter 4.
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Chapter 5. Projective geometry-aware anisotropic convolutional filters

Figure 5.2 – Our network adapts the size and shape of the filter with respect to the elevation of
omnidirectional image, where it is applied.

5.2 Omnidirectional image processing

As we discussed in the previous chapter, the most typical way of dealing with images taken by

omnidirectional cameras is to apply standard image processing techniques directly on the

equirectangular projection images [86]. However, due to the strong distortion effects intro-

duced by the process of unwrapping of the projection surface to a plane, standard techniques

lose much of their efficiency, as the appearance of the same object may change depending on

its location in the image. To overcome this problem in the previous chapter we introduced

an approach that relies on the graph-based special convolutional filers, which adapt to the

geometry of omnidirectional images. This method, however, relies on the convolutional op-

eration defined in the spectral domain of the graph, which leads to isotropic filters and may

reduce the complexity of trained filters. In this chapter we, on the other hand, propose to build

anisotropic graphs-based convolutional filters that do not have this limitation. Thus, in this

section we discuss recent approaches, which use anisotropic filters to extend deep learning

algorithms for the omnidirectional camera geometry.

The authors of [91] suggest adapting the size of the convolutional kernel to the elevation of

the equirectangular image. The main limitation of this technique, however, is that it requires

a significantly larger number of parameters than the competing techniques, as it does not

have the weight sharing property of CNNs. It rather requires learning different convolutional

filters for different elevations of the equirectangular image. Further, [92] propose to learn the

shape of the convolutional filter, by learning the sampling locations (position offsets), where

the elements of the filter are evaluated. The authors of [93] extend later this idea and suggest

learning dynamic offsets of the filter elements depending on the image content, which allows

the filters to adapt to different parts of the image. This method is quite flexible, however in the

context of omnidirectional images requires an extensive training set, as the network needs

to learn how it should react to various objects appearing at any possible elevation. In our
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work we rather take advantage of the knowledge of the image projective geometry and use

this knowledge in the design of our architecture to adapt the size and shape of convolutional

filters.

A different approach is suggested by [94], who introduces a CNN that is designed for spherical

shapes and define filters directly on its surface. This method, however, is specifically designed

for processing spherical images, while our approach is easily adapted to different kind of

shapes, which we show in our experiments. Further, the methods of [95, 96] suggest a different

way of compensating for the distortion of omnidirectional image. They suggest adapting the

sampling locations of the convolutional filters to the geometry of the lens by projecting kernels

to the sphere and using interpolated pixel values on the projected locations for implementing

the convolutional filters. While these works are the closest to in spirit to ours, we propose a

more general architecture, which permits to adapt the shape and size of the convolutional

kernel to the location of omnidirectional image, and therefore to use the information about all

the pixels and not only of a subset of them.

Then, the authors in [97, 98] suggest a completely different approach to tackle the distortion

of omnidirectional images. Instead of working with equirectangular images, they propose to

project an omnidirectional image to a cube, where each of its faces represents an image that

would have been seen through a regular perspective camera, with the optical center located in

the center of the cube [5]. Representing an omnidirectional image in this way allows having

less noticeable distortion effects as compared to equirectangular images. This representation,

however, suffers from another type of distortion that appears due to discontinuity effect on the

borders between the faces of the cube. To mitigate this issue, [97] propose to apply a smooth-

ing filter as a post-processing step and [98] suggest an algorithm that enforces consistency

between the neighboring facets of the cube. Contrary to the mentioned approaches, as we

model cube surface as a graph, our algorithm can easily handle the discontinuity problem

and adapt to image distortions introduced by the cube-map projection.

5.3 Geometry-aware CNN

In this section we describe our algorithm, which adapts convolutional filters to the distortion

of omnidirectional images. In order to achieve this, we build a graph G in such a way that the

neighbourhood of each node is different for different elevations of the omnidirectional image.

In the following section we describe two approaches that rely on undirected and directed

graphs and define isotropic and anisotropic geometry-aware (GA) filters respectively.

Undirected graph construction for adaptive filtering. To adapt F to the elevation level we

construct a graph G with nodes that have different neighborhoods depending on the elevation.

To do so we define a circular area on a tangent plane T , centered in the tangency point. Then

we move T such that it becomes tangent to the sphere S in different positions vp and project

the circular area onto S . For every point of S this creates a neighborhood Np , which changes
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its shape and size together with the elevation, as can be seen in Fig. 5.2.

Based on this geometry adaptive neighborhood, we then construct the graph G in the following

way. We connect the node vp ∈G , corresponding to a tangent point on the sphere, with the

node v j ∈ Np . The corresponding edge epi has a weight wpi that is inversely proportional to

the Euclidean distance between vp and vi , which are defined on the sphere:

wpi = ||vp − vi ||−1
L2

, vi ∈ Np ,

wpi = 0, vi ∉ Np .
(5.1)

This allows us to vary the size of the neighbourhood according to the geometry of the omnidi-

rectional image for each node in G , and weight the contribution of the nodes to the final filter

response according to their distances to vp . Therefore, depending on the elevation the filter is

changing its shape and size.

While effective, filter F does not have a defined orientation in space as according to Eq. (2.10)

the filter applies the same weights αl to all nodes in the l-hoop neighborhood, with the

contribution of each node being weighted by the distance to vp . This results in F being

isotropic, which leads to suboptimal representation, as the network is not able to encode the

orientation of the object.

Directed graphs construction. In order to overcome the limitations of isotropic filters, we

propose to replace a single undirected graph G with multiple directed graphs Gk , where each

Gk defines its own orientation. Let us consider the case of a 3x3 classical convolutional filter.

In this case the filter has 9 distinct elements. To mimic the same structure with our graph

convolutional filters we employ the following algorithm. First we define 9 non-overlapping

areas sk ,k = 1..9 on the tangent plane, which together form a rectangular region that is

centered in the tangency point vp of T as defined in the Fig. 5.3. This rectangular region

effectively defines the receptive field of the filter on the tangent plane. Then we build a set of

nine directed graphs Gk ,k = 1..9 in the similar way, as mentioned in the previous section for

undirected graph. In particular in order to build graph Gk we do as follows. For the area sk

and for every node vp we move the tangent plane at point vp and then project sk from T onto

the sphere. This operation defines a specific neighborhood Nk (p) on the sphere that consists

of the points that belong to the projection of the region sk from the plane T . We then connect

vp with a directed edge to each of these points, where the weight of the edge is defined in

Eq. (5.1). Note that the direction of the edge is very important, because connecting vp and vi

with an undirected edge forces vp to be part of the neighborhood Nk (i ). This, however, is not

possible, as the neighborhood Nk (i ) is computed by projecting the area sk from the plane T

that is tangent to the sphere at point vi and does not include vp .

This results in construction of the directed graph Gk , which corresponds to the k th region of

the filter, illustrated in Fig. 5.3. We repeat this operation for all the areas sk ,k = 1..9 of our filter,

which leads to creation of 9 directed graphs Gk ,k = 1..9. Given this set of graphs Gk we define
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the resulting convolutional operation F as follows:

F =
9∑

k=1
Fk , (5.2)

where Fk is the filtering operation defined on the graph Gk . Note that this filtering operation

is slightly different from the operation that is used when working with undirected graphs and

is discussed in more details in the following section.

Figure 5.3 – Illustration of 3×3 GA-filter kernel, defined on the tangent plane. Projection of
area sk forms the neighborhood Nk (p) of the node vp , where the GA-filter is applied. The right
part of the figure illustrates the change of the neighborhood Nk (p) depending on the location
of vp and the chosen filter area sk .

To sum up, the introduced graph construction process allows having anisotropic filters F ,

defined in Eq. (5.2) that are capable of capturing the orientation of the object and therefore

learn more meaningful feature representation for an image compared to the isotropic graph-

based filters. It is important to note that in our work we use the set of 9 non-overlapping

rectangular areas defined on the tangent plane, as shown by Fig. 5.3, due to their rough

correspondence to the elements of a 3×3 convolutional filter. However, our method can be

easily extended to an arbitrary number of such areas with arbitrary shapes.

Geometry aware anisotropic filters. For directed graphs Gk Laplacian matrix is not defined,

therefore, we use the polynomial filters proposed in [99]. Instead of the Laplacian matrix these

filters rely on the normalized adjacency matrix Ak , which is defined as follows:

Ak = D−1
k Ak , (5.3)

where Ak and Dk are the weighted adjacency and the diagonal degree matrices of graph Gk

respectively. The elements of Dk are computed as Dk (m,m) =∑
n Ak (m,n). Then, we define
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filters in the following way:

Fk =α(k)
0 +α(k)

1 Ak , (5.4)

where α(k)
0 ,α(k)

1 are the training parameters of our filter. Here, we use polynomial filters of

degree 1, as they achieve good balance between speed and performance.

Network architecture. The introduced approach focuses on the modification of the convo-

lutional layer to incorporate the knowledge about the image projective geometry inside the

neural network. Thus, it can be applied for a broad variety of tasks. In this chapter we focus on

the image classification and compression problems. For the former one we use a relatively

standard architecture that consists of a sequence of convolutional layers with the introduced

graph-based filters, followed by a sequence of the fully connected layers. For the compression

task we use the architecture proposed in [90] and replace its convolutional filters with the

proposed graph-based ones.

Discussion. Our method can be seen as a generalization of different approaches that have

been developed for omnidirectional images. For example, if the node vp at elevation φi has

only one neighbor in each direction and the weight of the edges between nodes is always

equal to one, it will be the standard CNN method [3]. Further, if these neighbors correspond to

the projected points it becomes the recently proposed algorithm of [95]. Finally, if we replace

directed graphs with a single undirected one we get the same behavior of the polynomial

filters as described in graph-based deep learning methods [14, 16].

5.4 Results

In this section we illustrate the performance of our approach. We start by evaluating our

method with respect to competing approaches on the task of classification images that are

projected to different surfaces. Finally, to show the generality of our approach and illustrate

the effectiveness of the anisotropic graph-based filters, we evaluate our method on the image

compression task.

5.4.1 Image Classification

In this section we first introduce the datasets that we used for the evaluation of our method.

We then discuss the baseline approaches and architectures, which we use in our experiments.

Finally, we show the quantitative comparison of our method with the competing ones.

Datasets. We evaluate our method on three different types of data, which represent different

surface geometries, where images are projected:
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(a) (b) (c) (d)

Figure 5.4 – Illustration of surfaces (a,c) and corresponding equirectangular images (b,d) of
the digit 9 projected to these surfaces at random positions. White color of surfaces highlights
the furthest points to the spherical surface of the same radius in terms of Euclidean distance;
blue color indicates the closest points.

• Spherical dataset (S) consists of images projected on different locations on a sphere. The

resulting spherical images are then unwrapped to equirectangular images, as described

in Section 4.3.1.

• Mod-spherical dataset (MS) features image projections on complicated surfaces that

are depicted by Fig. 5.4 together with the representative examples of projected images.

This dataset itself consists of three different versions: MS1, MS2, MS3 which correspond

to the surfaces which are getting further away from the spherical one. A more detailed

discussion about the type of projection and the surface geometry used in these datasets

can be found in the Appendix.

• Fish-eye dataset (F) consists of images projected on different locations on a sphere

using stereographic projection [100], which is frequently used in fish-eye cameras.

• Cube-map dataset (CM) features projection of the images on the cube as shown by

Fig. 5.5. This type of projection has recently gained popularity for handling omnidi-

rectional images, due to its ability to reduce distortion artifacts that appear due to the

spherical geometry.

In all these datasets we use MNIST images from [58], which are divided into training, validation

and test sets with 54k, 6k and 10k samples respectively.

Architecture. We compare our approach with standard ConvNets, the algorithm proposed

in [94] and other graph-based methods. For the graph-based methods, we investigate three

possible ways of constructing the graph G :

• Regular grid-graph with 8 neighbors and all equal weights wi j = 1;
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(a) (b) (c)

Figure 5.5 – Cube-map projection: (a) schematic illustration of the unwrapping process of the
cube surface with a baseball arrangement [5] onto a planar surface; (b,c) sample projections
of images from the MNIST dataset on the cube surface unwrapped into rectangular images.

• Regular grid-graph with 8 neighbors and weights that depend on the Euclidean distance

di j between the nodes, as proposed in [101], i.e., wi j = d−1
i j ;

• Irregular GA-graph with wi j = d−1
i j (isotropic filters from Section 5.3).

For all of them we build a normalized Laplacian matrix and use polynomial filters of degree 1,

which is equivalent to using 3×3 convolutional kernels. Therefore, for the standard ConvNet

architecture we similarly rely on filters of size 3×3. We present our results in Table 5.11.

Fig. 5.6 illustrates the architecture of our classification network. All the competing approaches

Figure 5.6 – Our classification network consists of three geometry-aware graph-based con-
volutional layers (GAL) with stride 2. Each of the GAL [X ×Y , stride 2] convolutional layers
contains Y filters with X parameters. The convolutional layers are followed by an average
pooling operation AP and two fully-connected layers FC[Z ] with Z neurons each.

use networks of roughly the same complexity. For all the methods we use the architectures

of similar structure and roughly the same number of parameters. For all the graph-based

approaches we use the graph-based convolutions with stride two on each layer, which in turn

requires building a graph for each new layer according to its respective sampling. For the

method of [94] we used the architecture proposed in the paper with roughly the same number

of parameters as in the competing approaches that we evaluate.

Evaluation. We compare the performance of our approach with the one of baseline methods

in Table 5.1. Our method significantly outperforms the standard ConvNets, as it is designed to

1We were unable to compare our method to the recent work of [95] as to the best of our knowledge, there is no
publicly available implementation.

72



5.4. Results

Table 5.1 – Evaluation of different approaches on Spherical (S), Mod-Spherical (MS1, MS2,
MS2), Fish-eye (F) and Cube-Map (CM) datasets.

Method S MS1 MS2 MS3 F CM

regular graph (wi j = 1) 69.4 64.3 64.1 62.8 71.8 40.0
regular graph (wi j = 1/di j ) 69.8 63.4 64.5 62.5 70.2 40.5
GA graph (wi j = 1/di j ) 70.2 63.9 62.5 62.8 72.1 44.2
ConvNets 94.2 91.3 91.2 90.5 93.4 79.4
SphereNet [94] 95.2 84.5 83.3 80.9 94.9 –
Ours 96.9 95.1 95.3 94.9 95.7 84.3

explicitly use the geometry of the omnidirectional images. Further it shows a much higher ac-

curacy then other graph-based techniques, which rely on isotropic filters. Further, our method

achieves comparable accuracy to [94] on spherical image representation and it outperforms

[94] on other datasets. Finally, we are able to run our approach on cub-map projection while

the SphericalCNN by design is not applicable to such kind of images.

5.4.2 Image Compression

In all our previous experiments we have focused on evaluating our approach on the image clas-

sification task. To show the generality of our method and better illustrate the effectiveness of

anisotropic graph-based filters, we now evaluate their performance on an image compression

problem. For this task, we choose to modify the architecture introduced in [90] by replacing

the ordinary convolutional layers with our own graph-based convolutions. In this section

we first introduce our approach and then compare the performance of the two graph-based

methods, which rely on isotropic and anisotropic graph-based filters respectively.

Image compression framework. The method introduced in [90], presents the process of

image compression is an optimization of the tradeoff between having small distortion of the

pixel intensity values and the small number of bits that are required for storing the compressed

representation of these values. As described in [102, 90], this optimization can be represented

as a variational autoencoder.

We briefly describe the compression approach, proposed by [90]. An input image x is encoded

using a function ga(x;α), which results in the respective latent representation y . Then, y is

quantized into ŷ , which can be losslessly compressed using entropy coding algorithms. The

quantized representation ŷ is then passed to the decoder gs(ŷ ;β) at the decompression step,

which results in a decompressed image x̂. Here, we denote by α and β the parameters of

the encoding and decoding algorithms respectively. While both encoder and decoder can

be represented as a differentiable function, the process of quantization is non-differentiable.
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Figure 5.7 – Architecture of compression algorithm. For our experiment we use omnidirec-
tional images projected to the cube surface with a baseball arrangement with size [256×384×3]
grouped in batches of size 2. Here, ConvX and TrConvX denote convolutional and transpose
convolutional layers with stride 2, where X corresponds to the possible choice of either stan-
dard convolutional or proposed geometry-aware graph-based filters; and GDN is a normaliza-
tion layer, which is proposed by [102].

Therefore the authors of [102] propose to replace the quantization with an additive uniform

noise at the training step as follows:

ỹi = y +∆y, (5.5)

where ∆y denotes additive i.i.d uniform noise. This trick allows to perform the end-to-end

optimization of both the encoder and decoder parameters using the following loss function:

L(α,β) =Ex,∆y

[
−∑

i
log2p ỹi (ga(x;α)+∆y)+ λd(gs(ga(x;α)+∆y ;β), x)

]
, (5.6)

where gs , ga are convolutional deep neural networks, d represents the distance between

the images and λ is a weighting parameter. Thus, during the training step, we add noise

(according to Eq. (5.5)) to be able to back propagate the error. At the inference time we apply

quantization to the latent representation y . The overall architecture that we use is similar

to the one proposed in [90] and is summarized in Fig. 5.7. The method of [90] relies on the

standard convolutional layers, which are practical for ordinary images: they allow learning

local image structures independently of their location in the image. Instead, we replace the

standard convolutional filters by our new GA-filters.
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Figure 5.8 – PSNR results of the decompressed images for different filter types with respect to
bit per pixel values.

Evaluation. We now evaluate the performance of our approach. For this experiment we

have implemented two versions of our system. One with isotropic graph-based filters and the

other one with the anisotropic ones. We further evaluate the original method [90] for the sake

of completeness. All three methods are trained and tested on the same splits of the modified

version of the dataset [103], which consists of omnidirectional images projected onto a cube.

From this dataset we use 3900 images for training and 1000 for testing of the methods.

We compare the methods in terms of the Peak Signal to Noise Ratio (PSNR) with respect to the

average number of bits per pixel (bpp). The results of the evaluation are presented in Fig. 5.8.

As we can see, our method with anisotropic filters and [90] show similar PSNR values and

significantly outperform the architecture with isotropic filters. Further, due to the fact that

PSNR value depends on the average difference in pixel values between the compressed image

and the original one it is not able to reliably detect small artifacts that appear in the cube-map

images, which are noticeable for humans. These artifacts are clearly seen in Fig. 5.9, which

shows that, due to the knowledge of the image projective geometry, our approach correctly

reconstructs the areas along cube borders, while the method of [90] over-smooths these areas.

Fig. 5.10 further illustrates some visual comparisons of the methods. We can see that isotropic

filters produce over-smoothed decompressed images, which do not look realistic and result

in very low PSNR values. On the other hand our method with anisotropic filters is able to

produce sharp results, which is an important property for VR applications.

5.5 Conclusion

In this chapter we have presented generic method of graph construction that allows incor-

porating the information about the image geometry inside the neural network architecture.

Further, we have introduced the graph-based geometry aware convolutional filters that adapt
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(a)

(b)

(c)

Figure 5.9 – Cube-map projection’s artifacts appear due to the discontinuity between un-
wrapped face’s borders. On the left corners of original (a) and decompressed images (b,c) we
show zoomed version of the image patch that illustrates the borders of the cube faces. The
decompressed results (c), obtained by our proposed anisotropic geometry-aware filters does
not smooth border of the faces as our method has access to the information about cube-map
geometry, while the result (b) obtained with convolutional filter from [90] smooths these
borders. This smoothing can lead to perceptutally unpleasant result in various applications
(e.g., virtual reality). (best seen in color)
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(a)

(b)

(c)

(d)

Figure 5.10 – Decompression result: original images (a); decompressed image obtained by
our algorithm with isotropic geometry-aware (b), proposed anisotropic geometry-aware (c)
and convolutional filters from [90] (d). (best seen in colors)

77



Chapter 5. Projective geometry-aware anisotropic convolutional filters

their shape and size to the geometry of the image projection surface. In contrast to many exist-

ing graph-based filters, our filters are anisotropic, which allows to better adjust to the specific

properties of the problem. Our illustrative experiments show state-of-the-art performance of

our approach applied to image classification and compression tasks in the presence of various

types of image distortions.
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6 Conclusion

6.1 Achievements

In this thesis we have addressed the problem of using prior knowledge about a given task

to improve representation learning and proposed several frameworks that are all based on

effective combination of deep networks and graph-based representation. In particular, we pro-

pose an architecture that achieves invariance to isometric transformations by using isotropic

graph-based filters. Further, we extend our approach to work with omnidirectional images

by modifying the weights of the edges of the graph in such a way that graph-based filters are

able to adapt to distortions that appear at various elevations of equirectangular images. This

permits to have a similar feature representation of an object regardless of its position on the

image. Finally, we show that, even though isotropic filters are effective for such tasks, where

isometric feature invariance is important, there exist other tasks (e.g. image compression)

where correctly recovering the orientation of the image pattern is crucial and therefore relying

on isotropic filter is detrimental to the overall quality of the approach. Therefore, we introduce

another method that builds anisotropic graph-based filters. These filters are able to adapt

their size and shape to any image projective geometry that can be encoded by a graph. Below,

we summarize each of our contributions in more details.

Our first contribution resides in leveraging graph signal processing tools to create isometry

invariant deep neural network for a classification task. To achieve this, we rely on the polyno-

mial spectral graph filters that operate on an undirected graph. These filters are isotropic by

nature and permit us to create feature representations of an input signal that are equivariant

to rotations, translations and flips. This in turn permits to avoid training networks on all the

possible transformations, because equivariance is inherently encoded inside the filter. To

preserve this equivariance property we also introduce a special graph pooling layer that makes

the signal sparser on the graph. Further, we propose a specific statistical layer, which collects

the equivariant representation of the input signal and creates a new one that remains the

same for all isometric transformations of an object. Our experiments show that our network is

able to predict correct classification labels even when an object appears under unseen trans-
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formations. It further outperforms classical ConvNet architectures on various classification

tasks.

Then, we extend our previous approach to omnidirectional camera geometry. We theoretically

show that, under some assumptions about the image signal, we can change the weights of the

graph in such a way that polynomial filters respond similarly regardless of the object locations

and corresponding distortion effects. This property combined with our TIGraNet architecture

permits to create a network that learns a feature representation that is invariant to geometric

distortion effects in an omnidirectional camera.

Finally, we extend our framework to a wider class of tasks. We show that such problems

as deep learning based compression require anisotropic filters to be able to decode sharp

image details. We therefore introduce a principled way of building anisotropic graph-based

filters that are able to adapt their size and shape to the geometry of omnidirectional images.

In our experiments we show that our method performs well on both the classification and

compression tasks and is able to adapt to different types of image projective geometry.

Overall, in this thesis, we have combined the power of deep learning and graph signal process-

ing tools that altogether permit to incorporate prior knowledge about the target task inside

the learning procedure.

6.2 Future directions

While this thesis has demonstrated the effectiveness of adding graph-based priors to the tasks

solved by deep learning networks, there remain many opportunities for extending the scope

of this work. In this section we discuss some of the possible future directions.

Scale invariance. In Chapter 3 we introduced the image classification system that is invari-

ant to isometric transformations of the input signal. However, in the real world applications,

objects not only be captured from different view points but can also appear at different dis-

tances from the camera. Therefore, an interesting extension of this work would be to design a

system, which is also invariant to the scale changes of an object in a scene. This property of

the network may lead to improving the accuracy and give the network the ability to correctly

classify objects that appear at unseen scales. This will ultimately lead to further decrease in

the size of the necessary training dataset and the amount of augmentation that is applied to

the data.

Adaptation to any geometry. In Chapters 4 and 5 we propose approaches that adapt the

filters of the network to different object elevations in omnidirectional images, assuming that

the projective and sampling geometry is known. An interesting extension of these approaches

is to have the network infer the underlying image geometry and/or camera parameters on its
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own. This is a considerably more complex problem for the network. Therefore, the algorithm

may require more examples to make the network infer the image geometry. Such an approach,

however, will allow the network to adapt to any type of images and will not require the camera

calibration, which is often a tedious procedure.

Geometrical transfer learning. Another interesting direction is to train a network on one

type of camera geometry (e.g., planar images) and then adapt this knowledge to another

domain (e.g., fish-eye camera). This direction is very interesting as there exist a large number of

datasets with standard (undistorted) images. However, to the best of our knowledge, there are

very few datasets available that comprise images from fish-eye and omnidirectional cameras.

In this case having a system that would be able to easily adapt to any kind of distortions will

be very useful for various applications.

Other target tasks. In this thesis, we show that anisotropic filters permit solving a broader

variety of problems as compared to isotropic ones. Therefore, another possible extension of

the method proposed in Chapter 5 is to apply the suggested approach to different applications

including but not limited to object detection, segmentation, noise reduction or omnidirec-

tional images generation. All these omndirectional image problems may benefit from using

the geometrical prior.
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A An appendix

A.1 Modified spherical surface projection

In Chapter 5 in order to compute the projections of the MNIST digits on the modified spherical

surfaces we have used the following projective mapping, which is a modification of the

mapping defined in Eq. (4.2):

x = cos(φi )sin(θi −θ0)

y = (cos(φ0)sin(φi +p(φi ,r, l ))− sin(φ0 +p(φ0,r, l ))cos(φi )cos(θi −θ0))/c,

c = sin(φi +p(φi ,r, l ))sin(φ0 +p(φ0,r, l ))+cos(φi )cos(φ0)cos(θi −θ0),

(A.1)

where (x, y) are the coordinates on the tangent plane and p(φ,r, l ) is the perturbation function

that can be written as

p(φ,r, l ) = r sin−1(sin(lφ)), (A.2)

where φ is the elevation level; r is the parameter that regulates the perturbation magnitude

and l defines frequency of the perturbation signal. In our experiments we have set l = 10. Note

that for a specific case of r = 0 we get the ordinary spherical surface.
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