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Abstract
Simulations of the electrical activity of networks of morphologically-detailed neuron models

allow for a better understanding of the brain. Short time to solution is critical in order to study

long biological processes such as synaptic plasticity and learning.

State-of-the-art approaches follow the Bulk Synchronous Parallel execution model based on

the Message Passing Interface runtime system. The efficient simulation of networks of simple

neuron models is a well researched problem. However, the efficient large-scale simulation of

detailed neuron models — including topological information and a wide range of complex

biological mechanisms — remains an open problem, mostly due to the high complexity of the

model, the high heterogeneity of specifications in modern compute architectures, and the

limitations of existing runtime systems.

In this thesis, we explore novel methods for the asynchronous multi-scale simulation of

detailed neuron models on distributed parallel compute networks.

In the first study, we introduce the concept of distributed asynchronous branch-parallelism of

neurons. We present a method that extracts variable dependencies across numerical resolution

of neurons topological trees and the underlying algebraic solver. We demonstrate a method

for the decomposition of the neuron simulation problem into interconnected resolutions of

neuron subtrees. Results demonstrate a significant reduction in runtime on heterogeneous

distributed, multi-core, Single Instruction Multiple Data (SIMD) computing environments.

In the second study, we complement the previous effort with graph-parallelism retrieved from

mathematical dependencies across the systems of Ordinary Differential Equations (ODEs)

that model the activity of neurons. We describe a method for the automatic extraction of

read-after-write variable dependencies, concurrent variable updates, and independent ODEs.

The automation of the methods expose a computation graph of biological mechanisms inter-

dependency, and an embarrassingly-parallel SIMD execution of mechanism instances, leading

to an acceleration of the simulation.

The third part of this thesis pioneers the fully-asynchronous parallel execution model, and the

exhaustive yet not speculative stepping protocol. We apply it to our use case, and demonstrate

that by removing collective synchronization of neurons in time, by utilising a memory-linear

neuron representation, and by advancing neurons based on their synaptic connectivity, a

substantial runtime speed-up is achievable through cache efficiency.

vii



Abstract

The fourth and last part advances the aforementioned fully-asynchronous execution model

with variable-order variable-timestep interpolation methods. We demonstrate low depen-

dency of runtime and step count on volatility of solution, and a high dependency on synaptic

events. We introduce a variable-step execution model that allows for non-speculative asyn-

chronous stepping of neurons on a distributed compute network. We demonstrate higher

numerical accuracy, less interpolation steps, and shorter time to solution, compared to state-

of-the-art implicit fixed-step resolution.

This thesis demonstrates that utilising asynchronous runtime systems is a requirement to

succeed in efficiently simulating complex neuronal activity at large scale. Most contributions

presented follow from first principles in numerical methods and computer science, thus

providing insights for applications on a wide range of scientific domains.

Keywords
Asynchronous simulation, neural networks, NEURON simulator, branch-parallelism, graph-

parallelism, cache-efficiency, variable timestep interpolation, asynchronous runtime systems,

HPX, ParalleX
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Résumé
Il est possible de mieux comprendre le cerveau en simulant l’activité électrique de réseaux de

neurones morphologiquement détaillés. Le temps d’exécution de ces modèles doit être le plus

court possible afin d’étudier de longs processus biologiques tels que la plasticité synaptique et

l’apprentissage.

L’état de l’art actuel suit le modèle d’exécution Bulk Synchronous Parallel basé sur l’environ-

nement d’exécution Message Passing Interface. La simulation efficace de réseaux de modèles

de neurones simples est un problème bien recherché. Néanmoins, la simulation efficace

à grande échelle de modèles neuronaux détaillés — comprenant des informations topolo-

giques et une vaste collection de mécanismes biologiques complexes — reste un problème

ouvert, principalement en raison de la grande complexité du modèle, de la grande hétéro-

généité des spécifications dans les architectures d’ordinateurs modernes et des limites des

environnements d’exécution existants.

Dans cette thèse, nous explorons de nouvelles méthodes pour la simulation asynchrone

multi-échelle de modèles de neurones détaillés sur des réseaux parallèles et distribués de

calcul.

Dans la première étude, nous introduisons le concept de parallélisme de branche asynchrone

et distribué de neurones. Nous présentons une méthode qui extrait des dépendances variables

à travers la résolution numérique des arbres topologiques de neurones et du résolveur algé-

brique sous-jacent. Nous démontrons une méthode pour la décomposition du problème de

simulation de neurones en résolutions interconnectées de sous-arbres de neurones. Les résul-

tats démontrent une réduction significative du temps d’exécution dans des environnements

informatiques hétérogènes distribués, multicœurs, à instruction unique, données multiples

(SIMD).

Dans la deuxième étude, nous poursuivons l’effort précédent avec le parallélisme de graphe

extrait des dépendances mathématiques des systèmes d’équations différentielles ordinaires

(ODE) modélisant l’activité électrique des neurones. Nous décrivons une méthode d’extraction

automatique des dépendances de variable lecture-après-écriture, des mises à jour de variables

simultanées et des ODE indépendants. L’automatisation des méthodes expose un graphe de

calcul d’interdépendance des mécanismes biologiques et une exécution SIMD et parallèle

d’instances de mécanismes, conduisant à une accélération de la simulation.
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Resumé

La troisième partie de cette thèse inaugure le modèle d’exécution complétement asynchrone

et le domaine de simulation exhaustif mais non spéculatif. Nous l’appliquons à notre cas

d’utilisation et démontrons qu’en supprimant la synchronisation collective de l’interpolation

temporelle des neurones, en utilisant une représentation linéaire de neurones en mémoire et

en faisant avancer les neurones dans le temps en fonction de leur connectivité synaptique, une

accélération substantielle de l’exécution est possible grâce à un meilleur accès de la mémoire

cache.

La quatrième partie compléte la méthode asynchrone susmentionnée avec une résolution

numérique basée sur les méthodes implicites avec ordre et pas-de-temps variables. Nous

analysons la sensibilité numérique de nos méthodes et démontrons une faible dépendance

de l’exécution et du nombre d’étapes vis à vis de la volatilité de la solution, ainsi qu’une forte

dépendance vis à vis des événements synaptiques. Nous introduisons un modèle d’exécution

à pas-de-temps variable qui permet une interpolation asynchrone et non-spéculative de

neurones sur un réseau de calcul distribué. Nous démontrons une plus grande précision

numérique, moins de pas-de-temps d’interpolation et un temps de résolution plus court, par

rapport à la résolution implicite de l’état de l’art.

Cette thèse démontre que l’utilisation de systèmes d’exécution asynchrones est une nécessité

pour réussir à simuler efficacement activité neuronale complexe à grande échelle. La plupart

des contributions présentées découlent des principes de base des méthodes numériques et de

la science informatique, fournissant ainsi des pistes pour l’application dans un large éventail

de domaines scientifiques.

Mots-clés
Simulation asynchrone, réseaux de neurones, simulateur NEURON, parallélisme de branche,

parallélisme de graphe, efficacité d’appel de cache, interpolation à pas-de-temps variable,

environnement d’exécution asynchrones, HPX, ParalleX
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1 Introduction

This chapter is adapted from the preprint version of the following articles:

Magalhães B., Hines M., Sterling T., Schürmann F., "Exploiting Flow Graph of System of ODEs to Accelerate

the Simulation of Biologically-Detailed Neural Networks", accepted at IEEE International Parallel &

Distributed Processing Symposium (IPDPS) 2019

Magalhães B., Hines M., Sterling T., Schürmann F., "Asynchronous Branch-Parallel Simulation of Detailed

Neuron Models", submitted to Frontiers in Neuroinformatics 2019

Magalhães B., Hines M., Sterling T., Schürmann F., "Fully-Asynchronous Cache-Efficient Simulation of

Detailed Neural Networks", accepted at International Conference on Computational Science (ICCS) 2019

Magalhaes B., Hines M., Sterling T., Schürmann F., "Fully-Asynchronous Fully-Implicit Variable-Order

Variable-Timestep Simulation of Neural Networks", published on arXiv

Personal contributions: conceptualization, writing.

Over the past years, the simulation of the activity of large neural networks has received increas-

ing interest (Kandel et al., 2013; Markram, 2012; Shepherd et al., 1998). Experimental advances

such as high resolution recording of neurons in vivo and in vitro have supported quanti-

tative modeling. Biologically inspired simulations of neural circuits present an enormous

opportunity for understanding the behaviour of the brain. Simulations can be performed on

different details of neurons activity (Brette et al., 2007), ranging from biochemical reactions

to a conductance-based simulation, or a simpler model such as integrate-and-fire (Brunel &

Hakim, 1999). Moreover, different scales can be simulated, from a point neuron representation

to a more complete morphologically detailed neuron model.

Recent efforts (Markram et al., 2015) presented for the first time a simulation of a morpho-

logically detailed model of the neocortical microcircuit, simulated in the NEURON scientific

application (Hines & Carnevale, 1997; Carnevale & Hines, 2006). This effort was part of the

main mission of the Blue Brain Project (Markram, 2006; Hill & Markram, 2008) to digitally

reconstruct and simulate the brain. The simulation was based on the multi-compartment

Hodgkin-Huxley (HH) formalism (Hodgkin & Huxley, 1952). The HH model computes an

approximation of the current passing through a section of the neuron’s membrane, as a capac-
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Figure 1.1 – The scope of the simulation scale and morphologically detailed neuron models
covered in this thesis. I: The rodent brain with an exposed digital reconstruction of the lower
limb of the primary somatosensory area; II: a cortical column of the previous brain region;
III: model representation of two neurons and a synapse. Each neuron includes an axonic
branch (south of soma, pictured in light) and a spatially-discretized representation of a tree of
dendrites (north of soma, in dark). A synapse is a connection between an axon and a dendrite
of different neurons; IV: the resistor–capacitor circuit (RC circuit) representing the electrical
activity on the membrane of a single capacitor with ionic current leaks, also referred to as
compartment.

itor with ionic conductances. Each neuron is modelled by a system of Ordinary Differential

Equations (ODEs), that includes the change in voltage at the capacitor and the change in the

opening and closing of the ion channels that drive the fluxes of ionic currents at the capacitor’s

membrane. Neurons are coupled with each other through synapses, that are electro-chemical

transductors. For completeness, Figure 1.1 illustrates the scope and scale of the methods

discussed.

Since it is not feasible to analytically solve complex HH equations, simulations typically

employ numerical methods and standard time-discretized ODE solvers (Hines & Carnevale,

1994). The large number of equations involved in such systems leads to computationally

costly simulations, that may be required to run for long periods of time (Helmstaedter & Mitra,

2012). The acceleration of such simulations is particularly relevant for the understanding of

biological phenomena such as synaptic plasticity and learning. Such use cases may focus

on the study of the dynamics between few neurons (Markram et al., 2012), small networks

of neurons (Chindemi, 2018) or large populations of neurons (Morrison et al., 2007), with a

biological time spanning from few minutes to several days to be expressed.

1.1 State of the Art

Similarly to simulations in several scientific fields, acceleration of the simulation of such

models typically follows the Bulk Synchronous Parallel (BSP) execution model (Gerbessiotis &
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Valiant, 1994), computing several neurons simultaneously via a synchronized multi-thredead

distributed execution (Tikidji-Hamburyan et al., 2017). Execution time is divided in equidistant

time intervals, equivalent to the time duration of the shortest synaptic delay across all neuron

pairs in the network (Migliore et al., 2006). The synaptic delay for a given synapse between

a pre- and a post-synaptic neuron is defined by the time for current propagation from the

soma of a pre-synaptic neuron to the extremity of the axon branch, and the neurotransmitter

release to the post-synaptic receptor. Stepping of neurons is performed independently within

the boundaries of each synchronization interval.

The theoretical limit of acceleration on the BSP model is dictated by the most complex compute

kernel in the network, whose state update takes the longest to compute. The extent of a kernel,

representing the activity of a group of neurons, a single neuron, a subsection of the neuron

topology, a compartment, or a biological mechanism such as ion channels, varies extensively

and depends on the implementation and scale of parallelism exposed, as detailed next.

1.1.1 Single Compute Node Executions

Acceleration of the simulation of networks of point neuron models has been previously demon-

strated with multi-core parallelism of individual neurons, combined with Single Instruction

Multiple Data (SIMD or vectorized) computing of neuron state variables, in Brian (Goodman &

Brette, 2008; Brette & Goodman, 2011), Auryn (Zenke & Gerstner, 2014) and NEST simulators

(Gewaltig & Diesmann, 2007).

The acceleration of networks of branched morphologies utilising multi-core Singe Instruction

Single Data (SISD) has been covered extensively by the NEURON simulator (Hines & Carnevale,

1997), with added SIMD capabilities demonstrated by the CoreNeuron (Kumbhar et al., 2016,

2019) and Arbor (Klijn et al., 2017) scientific applications. The SIMD methods proposed take

advantage of the similarity across ODEs of individual neurons, allowing them to be grouped

together in a SIMD-friendly memory layout, enabling full usage of the processor’s register file

width.

Multi-core execution of neurons is typically performed with OpenMP (Dagum & Menon, 1998)

and/or POSIX threads (Butenhof, 1997), with synchronization of neurons stepping performed

with a threading barrier executed at an interval equivalent to the shortest synaptic delay. This

guarantees no overstepping of solution interpolation in time, and no missed synaptic events

in the stepping interval between the current and the next synchronization instants.

1.1.2 Branch-Parallelism

Further acceleration can be achieved on the strong scaling axis with finer-grained parallelism

of individual neuron models, via the decomposition of simulation steps into smaller compute

kernels, leading to the increase of compute units assigned to each neuron. Finer-grained par-

allelism efforts have been demonstrated based on branch sections parallelism, by extracting
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variable dependencies across compartmental neuron trees, and performing a sub-sectioning

of the topological structure of neurons. Related work has been presented on the NEURON

scientific simulator (Hines et al., 2008), demonstrating parallelism of neuron subtrees on a

network of single-core architectures with a Single-Instruction Single-Data (SISD) instruction

stream.

1.1.3 Spatial Decomposition

Orthogonal volumetric decomposition and parallel-distributed processing of volumetric re-

gions have been explored for branched neuron models (Kozloski & Wagner, 2011). This

approach is most suitable for the simulation of spatially organized and computationally costly

elements, as the computation must be large enough to overlap the high communication

required — executed at every computation timestep — between neighbouring spatial regions

in different compute nodes. Memory-wise, such implementations based on spatial decom-

position have been shown to yield a high memory overhead and load imbalance due to the

duplication (ghosting) of branch sections in high density regions in networks of detailed neural

networks (Magalhães et al., 2016).

Alternative implementations based on the tessellation of compartmental space has been

presented for lower scales of simulations, with the main efforts driven by the STEPS simula-

tor (Hepburn et al., 2012) for the stochastic simulation of reaction-diffusion systems at the

molecular level of neuron models and extra-cellular space.

1.1.4 Variable Timestep Interpolation

An acceleration based on improved numerical resolution is also possible by utilizing a method

for variable-step interpolation of individual neurons, and has been presented and imple-

mented in NEURON (Lytton & Hines, 2005). The method details an implementation of

adaptive-step interpolation of individual neurons, by utilising the CVODE library (Cohen

& Hindmarsh, 1996), a C implementation of the VODE algorithm (Brown et al., 1989), part of

the SUNDIALS package (Hindmarsh et al., 2005). The VODE is a Backward Differentiation

Formula (BDF) method of variable-order and variable-step for the resolution of Initial Value

Problems (IVPs) for stiff ordinary differential equations (Cash, 1980). For a given function

and time, it approximates the derivative of a function using information from previous steps

(stored in the state history), thereby increasing the accuracy of the numerical resolution. The

step size is tentatively computed in order to respect an user-provided absolute tolerance,

thus adapting the step size to rapid variations of voltage trajectory. Current events that cause

a discontinuity of solution force the integrator to start again with a new IVP. Interpolation

methods presented allow for two distinct stepping models: (1) a globally synchronous step

for all neurons, mostly suitable for models with short event delays and no discontinuities

such as gap junction and simulations with detailed axon branching; or (2) a local variable

step per neuron advancing neurons speculatively with reversal of state in the occurrence of
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overstepping and missed events.

1.1.5 Distributed Compute Environments

Due to storage and compute requirements, large scale simulations require the use of super-

computing infrastructures. Similarly to single node implementations, executions follow the

BSP execution model, extended to a network of compute nodes. Stepping synchronization

and exchange of synapses are performed at the node and at the network level (Migliore et al.,

2006; Plesser et al., 2007; Morrison et al., 2005). This is typically performed via Message Passing

Interface (MPI) communication (Lusk et al., 2009), alongside local neurons synchronization

via OpenMP or other threading control library. Synaptic communication is performed via

collective communication calls as part of the previous synchronization step, with a collective

scatter-gather (MPI_Alltoall) or gather (MPI_AllGather) operation. A hardware-specific and

more scalable solution has been presented on an IBM BlueGene/P using the Deep Computing

Messaging Framework (DCMF) runtime (Hines et al., 2011; Kumar et al., 2010), based on

immediate selective broadcasts of spikes and a synchronization barrier at the end of every

communication step.

Efficient usage of resources is possible when the input dataset is large enough to allow enough

flexibility to balance neurons across compute units, in such way that static load balancing can

be performed accurately beforehand. This has been demonstrated by the Least Processing

Time (LPT) algorithm (Korf, 1998), yielding quasi-balanced workload distribution by iteratively

assigning neurons to the compute node with the least total computation time.

Simulations at very large scales, particularly those requiring petascale compute power, have

been covered extensively by the NEST simulator (Plesser et al., 2007) for point neuron models.

At such scale, collective communication yields a significant overhead in the overall runtime.

Memory and communication imbalance due to heterogeneous synaptic connectivity are the

major scaling obstacles (Morrison et al., 2005; Kunkel et al., 2012). Studies have been con-

ducted to analyse the technical aspects of running such simulations on large supercomputers

and on the study of brain-scale networks, identifying memory overhead of the connection

framework (i.e. synaptic connectivity) as the scaling limit of present implementations (Helias

et al., 2012). However, the problem of memory imbalance is a hard problem for large network

sizes, due to the heterogeneity in connectivity across synapses, and the overhead of MPI

buffers required for accumulation of synapses throughout computation steps (Ippen et al.,

2017). Communication-level optimizations are possible by taking advantage of the nature of

the problem: neurons are connected to a small subset of other neurons that are held across a

small fraction of the compute network. This allows for an optimization in communication by

grouping synaptic target lists by types and number of synapses of a given type (Kunkel et al.,

2014). Moreover, due to the upper limit of connectivity of single neurons, the connectivity spar-

sity across very large networks of neurons can be exploited by having a two-tier connectivity

table that allows selective scatter-gather of synapses instead of the commonly-used collective
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a) Bulk Synchronous Parallel
with fixed time stepping

b) Bulk Synchronous Parallel
with variable time stepping

neuron 1
neuron 2
neuron 3
neuron 4

time time

c) Fully Asynchronous Parallel
with fixed time stepping

d) Fully Asynchronous Parallel
with variable time stepping

time time

neuron 1
neuron 2
neuron 3
neuron 4

Figure 1.2 – Scope of the interpolation methods discussed, illustrated by four alternative
approaches for the simulation of four neurons, on a left-to-right execution timeline. A gray cell
represents a step of a neuron, with its width representing the timestep duration. Inverted green
triangles represent delivery of synaptic events (solution discontinuities). Vertical bars across
all neurons represent collective communication. Vertical bars across single neurons represent
limit of stepping dictated by pre-synaptic neurons’ time instants. a) Bulk Synchronous Parallel
(BSP) model with fixed timestepping, and collective synchronization; b) BSP model with vari-
able time step implemented in NEURON (Lytton & Hines, 2005) and collective synchronization.
Backstepping operations are omitted; c) Fully-Asynchronous Parallel (FAP) execution model
applied to fixed step interpolation, introduced in Chapter 4, with individual synchronization
of neurons based on their connecting pre-synaptic neurons; d) FAP variable-step method
presented in Chapter 5.

gather operation in NEURON, reducing the size of the MPI receive buffers, eliminating buffers’

growth with the total number of processes, and yielding ideal scaling properties (Jordan et al.,

2018).

An alternative provided by NEURON allows for a distributed execution with variable stepping,

guaranteeing coherent time interpolation by enforcing neurons synchronization with a BSP-

based communication barrier, therefore avoiding synaptic events being delivered in preceding

instants in time (Migliore et al., 2006). Speculative stepping is allowed by a single step that

traverses the synchronization instant, with posterior backstepping for missed events. The step

size is limited to the instant of the nearest synaptic or discontinuity event.

For clarity, the BSP-based distributed implementations of fixed and variable timestep interpo-

lations are illustrated in layouts a) and b) in Figure 1.2, respectively.
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1.2 Limitations

The problem of efficiently computing large scale networks of highly heterogeneous neuron

models is then twofold.

1.2.1 Efficient Usage of Compute Resources

At first, due to the large scale of data and computation involved in the problem specification,

simulations require high performance computing techniques in order to compute the solution

in a feasible time. Thus, acceleration efforts rely on the parallel and distributed computation

of several neurons simultaneously.

The highly-heterogeneous specifications of modern compute architectures requires a com-

putation model that adapts the problem to the host architecture. Due to the wide extent

of scales and models required for different biological use cases, such a computation model

should be flexible enough to fully utilize the available compute resources, independently of

the complexity of the neuron and network models. However, state-of-the-art approaches are

based on a wide collection of simulators that are often scale specific, and/or utilise only a

reduced subset of the compute architecture capabilities.

Moreover, the commonly utilized MPI runtime provides a powerful communication and

synchronization framework for collective operations on distributed compute nodes, with a

minimal interface for point-to-point communication, making it most suitable for problems

characterized by homogeneous data types and computation across compute nodes. Never-

theless, it does not provide core-level parallelism, remote procedure calls, futures, callback

methods, pointer addressing in distributed memory, data balancing primitives, remote flow-

control objects such as semaphores and mutual exclusion gates. In practice, it lacks several

features that would be essential for the resolution of more complex problems. In addition, any

extra feature that is not part of the library requires a strenuous development effort combining

third-party libraries and a user-programmed workflow performing communication of inter-

mediate data structures across nodes. Complementary, state-of-the-art efforts for on node

acceleration such as OpenMP (Dagum & Menon, 1998) and the ones provided by the C++20

standard (Standard C++ Foundation, 2019) provide parallelism and asynchronicity, yet are

limited to a single compute node. The problem is therefore not trivial.

1.2.2 Handling of Complex Neuron Models

As a second point, advancements in biological and computational neuroscience fields intro-

duce new use cases that increase the complexity of the models currently being simulated, and

that have not been properly accounted for by existing methods. To name a few:

• Higher resolution of morphological trees, combined with new ion channels and biologi-
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cal mechanisms, that greatly increase the complexity of the model and the disparity in

computational workload across neurons, and require micro-parallelism techniques that

accelerate the simulation of individual neurons;

• Models of very large networks display highly-heterogeneous spatial and temporal ac-

tivity across neurons and require an interpolation model that adapts the allocation of

compute resources to the neuronal activity of significance during runtime;

• New models of synaptic plasticity require a dynamic reconfiguration of network con-

nectivity throughout the simulation, in order to overcome the limitations of the static-

connectivity graphs currently utilised;

• New models of neuronal branching growth, require dynamic fine-tuning of neuron

topological trees to the hardware specifications throughout execution;

• Further complexity from biological phenomena such as astrocytes, gap junctions, and

learning models that are characterized by highly-correlated and non-linear ODEs, whose

computational implications have not been covered by previous research;

• Multi-scale simulations that combine several physical and time scales, introducing new

data dependencies that go beyond the synaptic delay connectivity utilised in common

simulations.

1.3 Motivation

These limitations motivate the search for a computation model that accelerates the simulation

of networks of detailed neural models, independently of the network size, and on a wide

range of compute architectures, fully utilising multi-core and vector-based capabilities on

distributed networks of compute nodes.

Modern runtime systems such as the High Performance ParalleX 5 (HPX-5) (Sterling et al.,

2014), Charm++ (Kale & Krishnan, 1996), Legion (Bauer et al., 2012), HPX-3 (Kaiser et al., 2014)

and OmpSs (Duran et al., 2011) provide programming models and runtimes for asynchronous

parallelism and heterogeneity, with the capability of handling heterogeneous tasks and control

objects in distributed compute and memory architectures. Such tools increase the possibilities

of new neural simulations use cases — until now restricted to the BSP paradigm and MPI

communication model — and are of particular relevance in the simulation of morphologically

detailed neuron models, due to their capabilities in handling connectivity, computation, and

memory asynchronously. Moreover, better-parallelism of neurons should allow for better

usage of computing resources in modern architectures, and consequently, for simulations to

compute at a runtime closer to real time.

While there is an ongoing debate on the most appropriate execution model, with an open

space of research being continuously pursued to improve current runtime systems, the func-

tionalities provided by existing asynchronous execution models are worth exploring.
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1.4 Research Scope

With that in mind, this thesis explores the field of asynchronous simulation of morphologically

detailed neural networks. Our objective is to investigate the efficient simulation of large

networks of highly-heterogeneous neuron models characterized by diverse activity dynamics,

executed on a network of compute nodes with a wide range of hardware specifications.

We will show that asynchronous runtime systems with distributed memory addressing is not

only very suitable, but very likely the only solution able to handle the high complexity in such

resolution.

Our methods provide novel insights on the development of neuron simulators targeting

efficient executions of complex neuron models on heterogeneous distributed compute archi-

tectures. The extent of the contributions presented covers from micro-parallelism methods

focused on individual neuron models, to the dynamics of medium- and large-sized networks

of neurons. The range of analysis in this thesis includes multi-core and SIMD accelerations,

cache-efficiency, network communication, numerical accuracy, computation flows from nu-

merical resolution, network activity, applications to biological use cases, and reduction of

overall time to solution.

The capabilities of our methods are demonstrated on a prototype implementation devel-

oped on the core compute kernel of the NEURON scientific application, yielding a fully-

asynchronous distributed and parallel simulation of neuron networks. Asynchronicity ca-

pabilities are provided by the HPX-5 runtime system (Sterling et al., 2014) for the ParalleX

execution model (Kaiser et al., 2009) on a global address memory space with transactional

memory capabilities (Kulkarni et al., 2016). We provide implementation details, drawbacks

and a comparison to the BSP counterpart based on MPI and OpenMP. The flexibility in the

distributed, multi-core and vector parallelism methods presented is shown to fully utilise all

computing resources across a wide spectrum of host architectures, when enough computation

is available. To provide substantial evidence of our results, comparisons are provided on four

heterogeneous compute architectures: Intel Xeon 6140, Intel Knights Landing, Intel E5 and

Cray XE6. Performance on distributed executions are demonstrated on a network of Cray XE6

nodes.

Our work addresses several limitations and advances state-of-the-art methods for large scale

neuron simulations and asynchronous computation. Nevertheless, most of the methods

introduced follow from first principles of numerical simulation and computer science, thus

being applicable to a wide range of scientific problems.

1.5 Runtime Systems

A runtime system is a collection of components described as software (binaries, operative

system, libraries), hardware, or both, that allows for an application to run on a system. The
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runtime describes the set of instructions that run throughout the execution of the application.

This includes user-introduced code (the application per se) and the instructions that were

not written but are required for the proper execution of the program. Examples of runtime

systems methods include communication, network bootstrapping, processor interfacing

(threading control, atomic operations, etc.), hardware calls (IO and network), the hardware

instructions set architecture (ISA), synchronization control methods (mutual exclusion objects,

semaphores, atomic updates) and network operations (sending, receiving, querying and

probing for messages), among others.

A wide collection of runtime systems is available nowadays with distinct features, with de-

velopment of new components being actively pursued (Sterling et al., 2017). To name a

few:

• GPU acceleration (Bueno et al., 2012), distributed asynchronous task-based parallelism

(Bueno et al., 2011), hierarchical task-based programming (Planas et al., 2009) and

self-adaptive tasks (Planas et al., 2013) in OmpSs (Duran et al., 2011);

• adaptive dynamic task scheduling to resources (Sterling & Zhang, 2018), message-drive

computation (Brodowicz & Sterling, 2017), multi-level stack and hardware messaging

(Autonomic Performance Environment on eXascale, APEX) (Huck et al., 2015), offload

of computation to network cards (Anderson et al., 2017) in HPX-5 (Sterling et al., 2014);

• passive and active distributed global address space (Kulkarni & Lumsdaine, 2015) , and

execution on embedded devices (van Wagensveld & Margull, 2017) in HPX-3 (Kaiser et

al., 2014) and HPX-5; and

• automated mechanisms for data movement across compute nodes in Legion (Bauer et

al., 2012).

In the context of our research, we will focus on the methods for asynchronism in Global

Address Space (GAS). Asynchronism refers to the timing of compute, communication and

synchronization operations across compute units not being synchronized, predetermined, or

set at regular intervals. Instead, it is decided dynamically throughout the execution, typically

when a previous operation is completed and the adequate hardware resource becomes avail-

able. A distributed memory space abstracts the addresses of physical memory (or memory

page mapped by the Operative System) into an unique address representation across the whole

network, managed by the runtime system. In practice, it allows unique data and functions

addressing in the global address space across all physical compute nodes and distributed

memory regions.

For brevity, we provide descriptions of two sample runtime systems, that will be utilized

as the base of analysis in the following thesis: the synchronous MPI with no GAS, and the

asynchronous HPX with GAS.
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1.5.1 MPI: Message Passing Interface

The Message Passing Interface (MPI) (Gropp et al., 1999) is a standard of a protocol that defines

operations for communication, network control, Input/Output (IO), management of compute

nodes on the network, among others, running a similar parallel process distributed across all

compute nodes on a network. MPI is the dominant execution model used in high performance

computing in current times (Sur et al., 2006).

The most common MPI-based execution workflow performs a synchronous computation of

similar compute operations in distinct datasets stored across compute nodes, and exchanges

data across nodes at predetermined collective communication steps. MPI works on a dis-

tributed memory environment, however data structures addressing is performed at the level

of memory of individual nodes. Point-to-point messaging allows for selective messaging

across pairs of nodes in the network. Selective broadcasts are possible on communication

windows to a subset of the network. Other methods include collective and individual oper-

ations for input and output, network topology management, and one-way communication

with get/put/accumulate methods on remote memory windows.

The MPI programming challenge is to properly load balance a distinct subset of input data

across the network nodes, serialize and synchronize inter-node data exchange, and program

the control of the execution flow of compute nodes, in order to avoid missed messages,

incoherent data states, deadlocks, etc.

The newest MPI v3 (Forum, 2012) release provides non-blocking collective operations, inexis-

tent in the previous version 2. These, alongside the point-to-point non-blocking routines in

MPI v2, are sometimes also referred to as asynchronous communication routines, to refer an

operation that can be performed without halting the execution on the initiator compute node,

and without waiting for the destination processor to receive the message.

1.5.2 HPX: High Performance ParalleX

The HPX-5 interface and runtime library (Sterling et al., 2014) is a realization of the ParalleX

execution model for exascale execution (Cimini et al., 2011; Kulkarni et al., 2016; Kissel &

Swany, 2016). It consists of lightweight threads and active message parcels, operating within

the context of an active global address space, and synchronizing through lightweight local

control objects (LCOs) such as futures or local reductions and distributed collectives that

support dynamic and irregular participation.

The Global Address Space (GAS) is flat and byte addressable and supports block-based allo-

cation through a malloc/free API. Blocks may be allocated locally or remotely, or as part of

distributed arrays. Array distributions can be cyclic or user-defined. The mapping of blocks to

physical compute nodes (henceforth also denominated as localities) can vary dynamically at

runtime. Threads may access global data directly through local aliases, may access remote

global data through an asynchronous memget/memput API, and/or may send parcels to

11



Chapter 1. Introduction

global addresses.

Parcels contain immediate data, a specification of the action to perform, and continuation

information such as "return to me" or "forward the computed value as an input to an LCO."

When a parcel arrives at the locality associated with its target global address the HPX-5 runtime

will invoke it as a new lightweight thread. The parcel-thread isomorphism and global address

space are key to writing programs that work portably across shared memory, distributed

memory, and hybrid architectures.

HPX-5 applications are written to be adaptive and data-driven. Parcels move computation to

data while LCOs provide runtime-visible data and control dependent execution. Combined

with the ability to remap global data, this design can minimize network traffic and allows a

dynamic scheduler to map irregular computation onto the available resources.

1.6 Reference Implementation

Our use case is the digital reconstruction of an in vivo laboratory experiment, applied to a

previously published network of morphologically detailed neuron models (Markram et al.,

2015).

The reference implementation follows the simulation workflow implemented in NEURON

(Carnevale & Hines, 2006), categorized by the following properties: (1) neurons are branched

representations of spatially-discretized capacitors with ionic current channels — hereinafter

referred to as compartments; (2) neurons are represented by ODEs that define the current on

the capacitor and the voltage-dependent opening of each ion channel or biological mecha-

nism; and (3) ODEs are coupled with a time dependency, based on the synaptic connectivity

between neurons. The mathematical formalism follows.

1.6.1 Computational Model

The topology of a neuron is described by a tree of resistors, with capacitors and nonlinear

resistive current flows at each node (compartment) connected to ground. The RC circuit that

models the electrical current passing through the membrane of a compartment n is modelled

by:

C
dVn

d t
=−∑

i
gi xi (Vn −Ei )+ I (t ) (1.1)

where gi and Ei describe the conductance and reversal potential of the ionic channels, re-

spectively. Synaptic currents or injected current stimuli, if any, are included in I (t). The

term xi models the opening probability of the transmembrane ion channel currents, typically

described by a voltage-gated ODE. The RC circuit underlying the current passing through a

compartment is illustrated in Figure 1.1 IV.

12



1.6. Reference Implementation

The original formulation of ionic activity was introduced by the Hodgkin-Huxley (HH) model,

and includes the activity of the ion channel gating states that model the flux of sodium (index

Na) and potassium (index K) currents. All remaining currents are included in the leak current

(index L), leading to the formulation:∑
i

gi xi (Vn −Ei ) = gN am3h(Vn −EN a)+ gK n4(Vn −EK )+ gL(Vn −EL). (1.2)

For brevity, the equations of the voltage-dependent variables m, n and h describing the

opening of the ion channels as first-order ODEs were omitted. Together with the current

function in Equation 1.1, they describe the system of ODEs that describes the dynamics of

a neuron defined by a single compartment, or a point neuron. A more detailed (extended)

HH model includes a wider range of ion channels and currents such as Calcium. Refer to

Channelpedia (Ranjan et al., 2011) for a collection of existing ion channel specifications.

The computational model does not describe capacitance, resistance and conductance as a

total value but as a value per unit length instead, and adds the axial resistance of the neurites

(between compartments) to the current expression in Equation 1.1, leading to an equation of

the form:

C∆x
dV

d t
=−∑

i
gi∆x(V −Ei )+ I (t )∆x + Vn+1 −V

rn+1∆x
− V −Vn−1

rn−1∆x
(1.3)

where the subscripts n −1 and n +1 represent the indices of the previous and following

compartments. The new contributions are provided by Ohm’s Law and the neuronal cable

theory (Niebur, 2008). The term r defines the axial resistance per unit length as a function of

the diameter and the cytoplasmic resistivity. Dividing both sides of the equation by ∆x leads

to the final formulation:

C
dV

d t
=−∑

i
gi (V −Ei )+ I (t )+ Vn+1 −V

rn+1∆x2 − V −Vn−1

rn−1∆x2 . (1.4)

We can simplify it using the definition of approximation (limx→0) of the second derivative

using finite difference methods:

Vn+1 −V

r∆x2 − V −Vn−1

r∆x2 = 1

r

Vn+1 −2V +Vn−1

∆x2 ≈ 1

r

d 2V

d x2 . (1.5)

We now replace Equation 1.4 with the value for the second derivative, leading to the final

formulation:

C
dV

d t
=−∑

i
gi (V −Ei )+ I (t )+ 1

r

d 2V

d x2 . (1.6)
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1.6.2 Spatial Discretization

As we cannot find an analytical solution on arbitrary neuron geometries/morphologies, we

resort to discretization and numerical approximation as a way to make the problem tractable.

Therefore, we perform a spatial discretization of the neuronal morphology — from biologically

inspired to HH-based compartmental representation. Moreover, the model assumes the

spatial discretization to be small enough, so that the second order correctness implies that

the value at any spatial location is sufficiently close to the average value of the compartment,

represented by the nodal value of the solution to the discretised problem.

Subsequently, it assumes the state of the axonic branches to be constant throughout the

execution, therefore simulating only soma and dendrite sections. Thus, upon an action

potential (known as a spike) of a neuron, the synaptic propagation delay between two neurons

includes the current propagation from the soma (or axon initial segment) to the bouton in the

axon, plus the time required for the electro-chemical reaction and neurotransmitter release at

the synapse.

1.6.3 Branching

A branched representation of a neuron allows for more details from the morphology, by

adding the neighbouring compartments’ contributions according to the neuronal cable theory

for multiple compartments. Branched neuron trees include the terms defining the currents

derived from the parent and children branches, extending Equation 1.3 to the final formulation:

C
dV

d t
=−∑

i
gi (V −Ei )+ I (t ) + Vp(n) −Vn

rp(n) ∆x2 − ∑
c: p(c)=n

Vn −Vc

rc ∆x2 (1.7)

where p(c) :N→N returns the index of the parent compartment of a given compartment c

and rc is the resistance of the connectivity to neighbouring compartments, if any. A parent

compartment is the compartment immediately above on a sequence or tree structure. A

converse logic holds for the definition of children compartments. Due to having no analytic

solution, numerical methods are employed with a problem-optimized solver used for the

resolution of the system of equations.

NEURON’s algebraic solver (Hines, 1984) describes each neuron as a sparse-tridiagonal matrix

that represents the voltage in a compartment as a function of the main diagonal of the matrix,

the contributions from parents and children on the upper and lower diagonals respectively,

and the mechanism contributions to the voltage on the right hand side of the matrix-vector

multiplication. Following the compartment numbering convention used by NEURON (Hines

et al., 2008), the tree of compartments is numbered using a depth-first search scheme from

root to leaves, ensuring that the index of a parent compartment is larger than all its children

and smaller than its parent. The aforementioned ordering rule guarantees that the matrix

is symmetric and in each row i there exists a single non-zero element with columns index j
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Figure 1.3 – The topological structure of a sample neuron, and its representative sparse
tridiagonal dendritic tree representation. Lower and upper diagonals include parent and
children contributions to the current function (a and b in Equation 1.8). Main diagonal (d)
includes the changes to the compartment voltage dV /d t induced by the capacitance and
mechanisms. Remaining terms are included in the right hand side (r hs) vector. Straight lines
display connections between compartments with non-sequential indices (referenced by p).

such that j < i , i.e. a single parent compartment per branch. Upon the computation of all

mechanism contributions, all compartments must solve:

bp(n)Vp(n) +dnVn + ∑
c: p(c)=n

acVc = r hsn (1.8)

where d , a,b ∈ R are the coefficients of the voltage contribution of the compartment n (as

lower, upper and main diagonal respectively), its children and parent compartment, on a

neuron with N compartments. For completeness, refer to Figure 1.3 for a sample neuron and

its sparse tridiagonal matrix representation.

Given a tree with the aforementioned terms updated, the final solution of the system can

be computed by a problem-specific implementation of the Gaussian Elimination, that only

modifies the d and r hs vectors, as a and b are constant. Further details are provided later in

Chapter 2, where branching structure is covered in detail.

1.6.4 Fixed Step Interpolation

Fixed timestep interpolation is possible with either implicit Backward Euler or Crank-Nicholson

methods. The gap between the analytic and numerically solved solution is particularly high

when the system’s voltage is changing rapidly, making the conditionally A-stable Forward Euler

method particularly susceptible to oscillations and therefore not used (Carnevale & Hines,

2006). The Backward Euler method computes the solution of a set of nonlinear simultaneous

equations at each step. To reduce the complexity and number of equations of the system

at each timestep, NEURON uses staggered resolution, and offsets the calculation of gating
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Chapter 1. Introduction

variables and compartment by half-step. Its numerical error is proportional to ∆t , making

it unable to deal accurately with discontinuities, in practice delivering events at the next

timestep and yielding an error propagation with an average of ∆t/2 (Casalegno et al., 2016).

An alternative variant of Crank-Nicholson method applies Strang splitting to calculate the

values of the compartment voltage and Hodgkin-Huxley gating states on interleaved time

intervals, providing second-order accuracy (Carnevale & Hines, 2006). In practice, a direct

solution of voltage equation using a linearized membrane current I (V , t) = g (V −E) at a

timestep t → t +∆t is possible if the conductance g and reversal potential E have second-

order accuracy at time t +∆t/2 . Since the conduction of HH-type channels is given by a

function of state variables n (K +), m and h (N a+), this second-order accuracy at t +∆t/2 is

achieved by performing a calculation with a timestep offset of ∆t/2 from the current voltage

timestep. Nevertheless, NEURON adopts Backward Euler as the default method, as Crank-

Nicholson is not L-stable: its second-order accuracy yields high oscillations around solutions,

particularly for events with infinitesimal small duration such as ideal current pulses and gap

junctions.

Each fixed step iteration is defined by a fixed step size of length ∆t , enough to capture the

resolution of the fastest mechanism — typically the fast N a+ channels. The community-

defined standard value for the fixed step size is 25µs.

1.6.5 Parallel Executions

Parallel executions require the synchronization of stepping across neurons in the simulation.

The maximum time distance that a neuron can distance itself from a given pre-synaptic

neuron is determined by the synaptic delay of the fastest synapse of the pair. The rationale

is that in the event of a spike from a pre-synaptic neuron at time t , the state of the receiving

post-synaptic neuron cannot have been resolved for a later time than t + ts yn — where ts yn

is the synaptic delay between the pre- and the post-synaptic neuron — or the neuron will

have overstepped and missed the interpolation instant. However, an alternative execution is

possible with a speculative execution model. In practice, events delivered in past time instants

are recovered by discarding the extra timesteps and backstepping the state of the neuron to

the delivery time of the event. This topic will be covered in depth later in Chapter 5.

The event delay interval varies extensively across pairs of neurons. Therefore, the shortest

propagation delay in a neural network that rounds down the multiple of the computation

timestep is used as the collective synchronization and communication step size for the ex-

change of synapses to be delivered within the next interval. In our model, this is computed as

0.1 milliseconds, or equivalently four computation timesteps. An illustration of this synchro-

nization protocol is illustrated in diagram a) in Figure 1.2.
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threshold detection
and spikes enqueuing

ionic, synaptic currents

Hines matrix set-up

Hines Gaussian Elimination

neurons’ voltage update

ionic, synaptic states

if TIO: I/O operations

every Tsynch

repeat
Tsynch

∆t

times

collective exchange of spikes

Figure 1.4 – Workflow of a compute step of the numerical resolution of a detailed neuron
interpolation, based on interleaved voltage-states resolution. Ts ynch and TIO are the commu-
nication and IO step intervals, respectively. Simulations on single compute nodes exclude the
step for collective exchange of spikes.

1.6.6 Workflow

The workflow of a computation timestep of duration ∆t , executed on a network of neurons

with minimum synaptic delay Ts ynch , is presented in Figure 1.4 and is as follows:

1. Voltage at the Axon Initial Segment (AIS) compartment of the neuron is checked against

the spike threshold. The threshold value is not constant in the HH model, thus voltage

at AIS is checked against a value high enough to guarantee a spike;

2. Spikes delivered during the previous communication interval are put in a time-ordered

event queue. Neurons check for events to be delivered in the following step, and deliver

them, if any;

3. Mechanisms activation leads to a change in the conductance of the compartments, and

to a new current contribution of each ion channel to the main current function;

4. The Gaussian Elimination method computes the algebraic resolution of the system of

linear equations, providing the compartmental voltages at the new step;

5. The internal states of mechanisms are updated from the new voltage value;
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6. For every step where ∆t divides Ts ynch , a collective communication call delivers the

synapses for the subsequent period. Received spikes are added to the time-ordered

queue. A similar logic applies to TIO for the output of state.

1.7 Thesis Structure

This thesis is organized as a compilation of published and submitted scientific articles, in line

with the following EPFL Regulations: Doctoral Commission (CDoct) Decisions 109 (November

2015) and CDoct 110 (January 2016). The contributions are detailed in four chapters, referring

to individual publications, and summarized in the next sections.

1.7.1 Asynchronous Branch-Parallelism

Chapter 2 advances the topic of distributed asynchronous branch parallelism, a method

that explores dependencies on the topological structure of neurons. The contributions are

organized in six components: (1) a formal description of the data dependencies underlying

the branching structure of neurons; (2) a method that describes and extracts read-after-write

dependencies from the resolution of the underlying solver; (3) a load balancing algorithm

that decomposes neurons representation into an subtrees, enabling a balanced multi-core

execution; (4) a method for the transformation of subtrees into a vector-friendly memory

layout that accelerates execution in the SIMD axis; (5) an asynchronous parallel execution

model for the resolution of the mathematical dependencies between equations of connecting

branches, based on an active producer-consumer execution model supported by distributed

placeholders; and (6) a dynamic finer-grained version of the LPT-based load balancing algo-

rithm for distributed networks, that delegates neuron sections to different compute nodes in

order to balance the computational workload, while minimizing network communication.

The computation model exposes tree parallelism on a distributed memory environment, with

data representations dynamically adapted to maximise multi-core and SIMD processing across

compute nodes in the network. Active point-to-point communication asynchronously updates

three dependency values held on a local memory region or in remote nodes. Communication

is minimized by reducing the number of subtree interconnections on different compute nodes,

and by removing transitive connectivity across remote subtrees. Moreover, we take existing

Gaussian parallelism concepts to the limit in a useful way that yields significant performance

gains in distributed multi-core SIMD architectures.

Benchmark results demonstrate that multi-core and SIMD acceleration are competitive axes of

acceleration, and that there is an optimal value for subtree size that maximizes the achievable

speedup. Benchmarks demonstrate 2.2-10.5x speedup on four distinct compute architectures,

and 1.9-7.4x on a distributed network of 128 Crazy XE6 compute nodes, compared to state-of-

the-art implementations.
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1.7. Thesis Structure

1.7.2 Asynchronous Graph-Parallelism

Chapter 3 describes an automated method for the acceleration of simulations on a wide range

of scientific problems represented by large systems of ODEs. The application of the methods

to our use case exposes a balanced SIMD-enabled computation graph from the system of

equations. The following components are detailed: (1) a method for the extraction of the flow

dependencies and concurrent output operations from the interdependencies across state

variables on a system of ODEs; (2) an algorithm for the embarrassingly parallel processing

of blocks of independent ODEs; (3) a method for SIMD acceleration of blocks of similar

instances of ODEs; (4) a load balancing algorithm for balanced execution blocks based on the

computation time of individual mechanism ODEs; and (5) an asynchronous execution model

that allows for good leverage of computing resources by producing enough micro-parallelism

to fully utilizing compute units on a wide range of architectures, based on a trades off between

two competitive parallel resources — SIMD units versus multiple cores.

Benchmark demonstrates a speedup of 4-7x on the state-of-the-art serial SIMD implemen-

tation and 13-40x over its Single Instruction (SISD) counterpart in four distinct compute

architectures. Benchmark of distributed executions on 128 Cray X6 compute nodes yields a

speedup of 2-8x with almost ideal strong scaling for large datasets.

1.7.3 Fully-Asynchronous Fixed-Step Execution Model

Chapter 4 introduces the fully-asynchronous parallel execution model and the exhaustive

yet not speculative stepping protocol that improve cache locality and provide cache-level

acceleration. The model performs a fully-asynchronous simulation — with asynchronous

computation, communication and synchronization — that advances neurons’ ODEs timestep-

ping beyond synchronization barriers, and based on the time couplings between equations,

as illustrated in layout c) in Figure 1.2.

The strategy includes five components. At first, (1) a fully-asynchronous stepping protocol

that allows elements to perform several timesteps without collective synchronisation. Cache

locality is improved by (2) a fully linear memory representation of the data structure, including

vector, map and priority queue containers, and is further increased by (3) a computation

scheduler that tracks the time progress of ODEs in time and advances the earliest element to

its furthest instant in time. Network communication on distributed executions is minimized

by (4) a point-to-point fully-asynchronous protocol that signals elements’ time advancement

to its dependees laid out in a global memory address space, and by (5) a local communication

reduce operation at every compute node.

The methods introduced allow for an acceleration beyond the BSP theoretical limit, demon-

strating a superlinear speedup of 25%-65% across four distinct compute architectures, and

15%-40% on distributed executions on 32 Cray compute nodes compared to the state-of-the-

art BSP implementation.
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1.7.4 Fully-Asynchronous Variable-Order Variable-Timestep Execution Model

Chapter 5 follows from the aforementioned asynchronous strategy and introduces a fully-

asynchronous fully-implicit solver of variable-order variable-timestep interpolation of detailed

neuron models, that benefits from cache-efficient barrier-free synchronization and performs

timesteps larger than BSP communication intervals. The execution model is illustrated in

layout d) in Figure 1.2.

The description of our methods start with the mathematical formalism underlying the simu-

lation of our use case and its resolution with variable stepping interpolation. We show that

by following an earliest neuron steps next scheduler, we allow for large time interpolation

intervals, and maximise the efficiency of the variable step interpolator beyond what was

believed to be possible in fixed-step executions. We perform an analysis of numerical accuracy,

demonstrating higher precision in our methods compared to the fixed step counterpart, due

to an exact delivery of events on a continuous time line, and better interpolation of the stiff

dynamics that underlie the activity of neurons. An analysis of the sensitivity of our model

follows, based on stiffness in solution and solution discontinuities from synaptic events. The

results demonstrate low dependency of speedup and step count on solution trajectory, and a

high dependency on synaptic activity on up to circa 1000 spikes per minute. The feasibility

of our methods is studied, by performing a digital reconstruction of a laboratory experiment

on 217 thousand neurons. The results demonstrate a substantial possibility for acceleration,

due to a discontinuity rate below the 1000 Hz threshold, and the suitability of our methods for

most (but not all) neurons in the network.

We analyse the efficiency of our variable step methods with a benchmark of the simulation

of neural networks ranging from 1024 to 65536 neurons on 64 Cray XE6 compute nodes. We

simulate the electrical activity of five spiking regimes that characterize distinct dynamics of

the mammal brain. Benchmarks demonstrate a possible acceleration of 544-65x for a mean

spiking rate frequency of 0.25Hz representing a majority of neurons in the brain during regular

activity, down to 7.7-1.8x to a moderate regime of 6.5Hz, and 2x to no acceleration for a spiking

regime of 38 Hz, a pattern of unlike occurrence or of short duration. We detail the dependency

of runtime on input size and spiking activity, and show that the computational complexity of

our method is dependent on the network size and synaptic activity. These results are measured

in the context of the aforementioned laboratory experiment set up, demonstrating a possibility

of a speedup of 224.5-11.9x, for the variable timestep methods with a precise delivery of events

in a continuous time line, on the 1024-65536 dataset tested. Two higher-efficiency yet lower-

accuracy implementations based on half- and full-step fixed-timestep grouping of events

are presented, demonstrating a speedup of 225.1-17.1x and 228.5-24.6x, respectively. Finally,

we demonstrate that preservation of the acceleration achieved is almost fully guaranteed for

larger neuron networks, as over 95% of neurons are characterized by spiking spiking regimes

that demonstrate the preservation of the speedup measured.

Chapter 6 draws the final discussion and conclusions.
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2 Asynchronous Branch-Parallelism
Extracted from Neuron Morphology

This chapter is adapted from the preprint version of the following article:

Magalhães B., Hines M., Sterling T., Schürmann F., "Asynchronous Branch-Parallel Simulation of Detailed

Neuron Models", submitted to Frontiers in Neuroinformatics 2019

Personal contributions: conceptualization, formal analysis, investigation, methodology, software, valida-

tion and writing.

2.1 Abstract

Simulations of the electrical activity of networks of morphologically detailed neuron models

allow for a better understanding of the brain. State-of-the-art simulations describe neurons

by the dynamics of the branching topology, synaptic currents and biochemical processes.

Acceleration of such simulations is possible in the weak scaling limit by modelling neurons

as indivisible computation units and increasing the computing power. Strong scaling and

simulations close to biological time are difficult, yet required, for the study of synaptic plasticity

and other use cases requiring simulation of neurons for long periods of time. Current methods

rely on parallel Gaussian Elimination, computing triangulation and substitution of many

branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time

per neuron leads to high computational load imbalance; and (b) difficulty in providing a

computation model that fully utilises the computing resources on distributed multi-core

architectures with Single Instruction Multiple Data (SIMD) capabilities.

To address these issues, we present a strategy that extracts flow-dependencies between pa-

rameters of the ODEs modelling the current equation and the algebraic solver of individual

neurons. Based on the map of dependencies exposed, we provide three techniques for mem-

ory, communication, and computation reorganization that yield a load-balanced distributed

asynchronous execution. The new computation model distributes datasets and balances com-

putational workload across a distributed memory space, exposing a tree-based parallelism
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of the neuron topological structure, an embarrassingly parallel execution model of neuron

subtrees, and a SIMD acceleration of subtree state updates.

The capabilities of our methods are demonstrated on a prototype implementation developed

on the compute kernel of the NEURON scientific application (Kumbhar et al., 2019), built

on the HPX runtime system for the ParalleX execution model. Our implementation yields an

asynchronous distributed and parallel simulation that accelerates single neuron to medium-

sized neural networks. Benchmark results display better strong scaling properties, finer-

grained parallelism, and lower time to solution compared to the state of the art, on a wide

range of distributed multi-core compute architectures.

2.2 Introduction

This chapter introduces a method for the acceleration of the simulation of individual neurons,

by exploring micro-parallelism extracted from inter-compartmental connectivity in neuron

topological trees.

Finer-grained parallelism of individual neuron models has been exploited in a limited way

through the NEURON multisplit approach (Hines et al., 2008) — henceforth denominated as

previous branch-parallelism efforts or simply multisplit — executed on a single-core, Single

Instruction Single Data, distributed compute architecture. The multisplit method implements

a parallel computation of neuron branches by converting a given topology into a tree-structure

of connecting backbones (linear sequence of unbranched compartments) and leaf subtrees.

The method performs a numerical reduction of each backbone’s tridiagonal matrix to a N-

shaped matrix (diagonal and full first and last columns). All subtrees and backbones are

triangularized simultaneously and the ends of the M backbones form a M ×M reduced tree

matrix that, after Gaussian Elimination, allows backsubstitution, again in parallel of all the

subtrees and backbones. The matrix is later converted to a 2×2 matrix that aggregates the

contributions to be exchanged to parent and leaf subtrees. Subtrees are distributed across

compute nodes. Contributions of subtrees to the main tree are computed independently and

reduced at every computation step. Tree-based parallelism requires information spawn/re-

duce throughout connecting subtrees, yielding a limit of parallelism dictated by the slowest

subtree to perform a computation step. The method provides a substantial speedup on the

architectures tested at the time, however it lacks support for load-balancing and processing

based on SIMD-based acceleration available in modern compute architectures.

Complementary, acceleration of the linear solver describing the system of equations of individ-

ual neurons has been implemented in the NEURON simulator with The Hines Solver (Hines,

1984), allowing a computational complexity of O(n) for a neuron tree with n compartments.

The Hines solver is a specialization of the Gaussian Elimination to the sparse tridiagonal

representation of neuron morphologies detailed — refer to Appendix A for the mathematical

reduction. An acceleration of the Hines solver has also been proposed via Exact Domain

Decomposition on GPUs of Hodgkin-Huxley (HH) based neuron models, where branching is
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Figure 2.1 – Scope and key concepts of the methods presented. I. A spatial discretization of
a neuron into two compartmental trees representing axons and dendrites branching; II. A
sample of a dendritic tree and its representative branching matrix structure in thumbnail.
Simulation dependency parameters across compartmental connectivity and respective matrix
are extracted from these structures; III. A method for load balancing recursively tests for the
optimal tree decomposition, based on the computational workload of each possible subtree.
Initial compartmental tree is decomposed into a tree of subtrees and distributed across a dis-
tributed memory space. Matrix decomposition follows accordingly. Resolution of independent
subtrees is computed asynchronously, with three variable dependencies on parent-children
connectivity across subtrees (in dashed), synchronized throughout the execution; IV. Subtree
memory layouts are reorganized to provide SIMD-acceleration of mechanism (ion channel)
state updates and solver resolution.

performed via Exact Domain Decomposition by creating subdomains at the graph bifurcations

with degree greater or equal than two (Vooturi et al., 2017). However, parallelism based on

bifurcation points does not properly handle detailed topologies that yield a high disparity of

branch lengths, and does not take into account workload imbalance for complex non-HH

compartment models.

The work presented advances the state-of-the-art branch-parallelism method available in the

NEURON simulator (Hines et al., 2008), extending it to an asynchronous execution model

on distributed multi-core SIMD-enabled computing platforms. Our methods are based on

the decomposition of the topological tree of neurons into a tree of subtrees which represent

a subset of the initial problem. Its main object is to provide finer-grained representation of

neuron models and lower time to solution, by performing parallel computation of balanced

SIMD subtrees across a large network of compute nodes. The main point of relevance of this

work is the acceleration of single neurons. However, as we will later demonstrate, the fine

granularity, strong scaling capabilities, and load balancing methods introduced allow as well

for a significant acceleration of medium-sized neural networks of up to few thousand neurons.

The contributions of this chapter are the following: (a) a formal description of the data depen-

dencies underlying the branching structure of neurons; (b) a method that describes and ex-
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tracts read-after-write dependencies from the underlying algebraic solver; (c) a load-balancing

algorithm that decomposes neurons representation into a minimal number of subtrees that

enables a balanced multi-core execution; (d) a method for the transformation of subtrees

into a vector-friendly memory layout that accelerates execution in the SIMD axis; (e) an

asynchronous parallel execution model for the resolution of the mathematical dependencies

between equations of connecting branches, based on an active producer-consumer execution

model of flow dependency variables; and (f) a dynamic finer-grained version of the LPT-based

load balancing algorithm for distributed networks, that delegates neuron sections to different

compute nodes in order to balance the workload, while minimizing network communication.

An overview of the scope of the research and key conceptual advancements covered in this

chapter are displayed in Figure 2.1.

In order to demonstrate the efficiency of the methods presented, our strategy was imple-

mented on the compute kernel of the NEURON scientific application (Kumbhar et al., 2019),

with asynchronicity capabilities provided by the HPX runtime system (Sterling et al., 2014)

for the ParalleX execution model (Kaiser et al., 2009) on a global address memory space with

transactional memory capabilities (Kulkarni et al., 2016). Applied to a network of morphologi-

cally detailed neuron models from (Markram et al., 2015), our strategy is shown to provide

close to full usage of computing resources (when enough computation is available), finer

grained parallelism, and higher multi-threading and SIMD capabilities, validated on three

highly heterogeneous neuron models. The benchmarks of individual neurons demonstrate a

2.2x to 10.5x speedup compared to the reference NEURON multisplit implementation on four

distinct compute architectures. Large scale executions yield a speedup of almost twofold on a

network of 128 Cray XE6 compute nodes simulating 4096 neurons.

2.3 Methods

2.3.1 Dependency Parameters

In Section 1.6.3 we detailed the branching structure of a neuron, and mentioned that each

compartment must resolve bp(n)Vp(n)+dnVn +∑
c: p(c)=n acVc = r hsn at every iteration, where

b, d and a are constants as a term of the parent, current, and children compartment contri-

butions (Equation 1.8). With that in mind, the algorithms describing the implementation of

the matrix set-up and solver resolution methods are presented in Figure 2.2. Parameters that

are required to be communicated between connecting compartments are color-coded. The

direction of the parameter flow dependencies is indicated by the direction of the arrow in

the same color — top-down for parent-to-children, bottom-up for children-to-parent. The

read-after-write dependencies are:

1. Branching contributions to RHS: the set-up of the Right Hand Side requires the contri-

bution of the difference in potential between connecting compartments (vp(n) − vn)

and their constant branching contributions an and bn . An updated voltage from chil-
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Algorithm 1 Matrix Initial Set-up

1: Mechanism contributions to dV/dt and RHS:

2: for n ∈ [1, N ] do
3: dn ← dn + current d(n)
4: rhsn ← rhsn + current rhs(n)
5: end for

6: Branching contributions to RHS:

7: for n ∈ [2, N ] do
8: ⇑ rhsp(n) ← rhsp(n) + an (vp(n) − vn)
9: rhsn ← rhsn − bn (vp(n) − vn)

10: end for

11: Voltage decay and branching contributions to D:

12: for n ∈ [2, N ] do
13: dn ← dn + voltage decay(n)
14: dn ← dn − bn
15: dp(n) ← dp(n) − an
16: end for

Algorithm 2 Hines Solver and Voltage Update

1: Backward triangulation

2: for n ∈ [N, 2] do
3: ⇑ dp(n) ← dp(n) − bn an/dn
4: ⇑ rhsp(n) ← rhsp(n) − rhsn an/dn
5: end for

6: Forward substitution (solution to system of ODEs)

7: rhs0 ← rhs0/d0
8: for n ∈ [2, N ] do
9: ⇓ rhsn ← rhsn − bn rhsp(n)

10: rhsn ← rhsn/dn
11: end for

12: Voltage update with dV/dt

13: for n ∈ [1, N ] do
14: vn ← vn + rhsn
15: end for

Figure 2.2 – Algorithms of the initial matrix values set-up (left) and Gaussian Elimination and
voltage update methods (right) of a neuron discretized by N compartments. Data-dependency
variables are emphasized in coloured text, with direction of arrow in same colour pointing
up if children-to-parent flow dependency, or down otherwise. Variables notation follow
Equation 1.8.

dren to parent (⇑ vn) allows for the computation of the r hs vector set-up, yielding a

children-to-parent flow dependency;

2. Backward triangulation: a children-to-parent flow dependency allows for the com-

pletion of the Backward Triangulation step by providing the children compartment

contributions to their parents’ diagonal and right hand side values (⇑ dn ,r hsn);

3. Forward substitution: r hs values are required to be modified in the root-to-leaves

direction, in order to compute the final value of children’s r hs, leading to a parent-

to-children flow dependency (⇓ r hsp(n)). The outcome of the substitution step is the

updated r hs for the current step, i.e. the voltage values;

For subtrees with a single connection point to a parent node, the back-triangulation is com-

plete, i.e. triangulation at its parent subtree can be initiated immediately after. For subtrees

with two connection points, triangulation stalls until the triangulation on both children

branches is completed. Substitution follows a converse logic, being optimally computed for

leaf (single connection point) subtrees, and requiring substitution at parent subtrees to be

completed beforehand if not a leaf subtree.

Mechanism state update of compartments (current and state functions in the workflow pre-

sented in Figure 1.4) can be performed independently, as long as the previous dependency

variables are resolved. Thus, the finest granularity of parallelism (or the smallest compute

task) can now be modelled at the compartment level.

More importantly, granularity of tasks can be increased and decreased by clustering connecting
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1) 2) 3) 4)

Figure 2.3 – A sample workflow of the algorithm that decomposes neuron morphologies into
a tree of subtrees. Dashed contours display groups of compartments being tested against
the maximum computational complexity threshold. Straight contours represent a set of
compartments with a total computational complexity below the threshold, clustered into a
subtree. 1) The total runtime of the initial tree is computed and compared with the complexity
threshold. 2) The previous cluster exceeds the allowed computational complexity threshold.
The following sequence of non-bifurcated compartments that yields smaller complexity (top
two compartments) is clustered into a subtree. The connecting three branches are tested. 3)
Both left and center sections are benchmarked and their execution time is below the threshold,
thus becoming two independent subtrees. The same threshold test for the right region fails.
The first two compartments in the right region yield less runtime than the complexity threshold
and are clustered into a subtree. 4) The remaining compartments on the right branch of the
tree comply with the complexity test and are clustered, leading to the final data representation.

compartments. With that in mind, the following section provides a clustering method that

takes advantage of this property to perform load-balancing on multi-core execution units.

2.3.2 Neuron Tree Decomposition and Parallel Execution

The problem of scaling the model of a neuron efficiently across any number of compute

units with vectorization (SIMD) capabilities is twofold: at first, there should be a large enough

number of compute tasks to provide enough flexibility in the distribution of tasks. The

rationale is that a high number of tasks allows for a better balancing of the total workload

(sum of task runtimes) across processors. Secondly, the number of total tasks should ideally

be as small as possible, so that vectorization can be maximised inside each task and threading

(de)allocation overhead is minimized. This leads to a competitive trade-off between multi-core

and vector acceleration.

To fine-tune the data representation to the host compute architecture, our strategy takes

advantage of the flexibility in granularity presented in the previous section. A loading al-

gorithm recursively traverses the tree and clusters connecting compartments that yield a

computational workload as close as possible to a given threshold. The cluster is a subtree

of compartments whose computational complexity is provided by the runtime of all com-
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Figure 2.4 – Left: The topological structure of a sample neuron, and its representative sparse
tridiagonal dendritic tree representation; Right: alternative representations of the neuron
model, after the decomposition into subtrees pictured in Figure 2.3. Straight lines represent
parent-children data-dependencies within the same subtree. Dashed lines represent data
dependencies to different subtrees.

partments it contains. Remaining compartments, not included in the previous subtree, will

recursively be clustered using the same maximum-threshold testing algorithm, until all com-

partments are traversed. Bifurcations require independent tests on each branch. Thus, if a

branch connects to several children, then all branches in the lower level are either in the same

subtree as the parent, or on independent subtrees. This rule avoids having subtrees connected

to compartments that are neither root or leaf in other subtrees, so that synchronization of

computation is not required except at terminal compartment connections. The complexity or

maximum computation time assigned to a subtree of a given neuron n is scaled by a constant

k and provided by:

max wor ksubtr ee (n) = k
r unti men

cor es count
(2.1)

an approach similar to NEURON’s multisplit which can be interpreted as each subtree must

yield a max complexity to fit at most 1/k subtrees per compute core. An analogous interpretation

is that the initial neuron tree is decomposed in several subtrees, each guaranteed to have a

runtime of at most r unti men/cor es count scaled to a factor k — where the constant k pro-

vides flexibility in the number of subtrees generated, essential for load balance of computation

across compute cores. An illustrative example of the application of the clustering algorithm to

a single neuron is presented in Figure 2.3. Two cases may lead to a subtree with an assigned

workload which does not approximate Equation 2.1: a linear sequence of compartments of

small complexity that requires a bifurcation into multiple subtrees; or a leaf subtree of the

topology that does not aggregate enough computational complexity.

Following the partitioning algorithm, parallelism of subtrees is possible, requiring synchro-

nization of the connecting flow dependencies at every computation step. Due to the recursive

tree-traversal nature of the algorithm, the final representation of the neuron is a tree of sub-

trees, where each subtree is a tree of compartments by itself. Analogously, the initial solver
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Figure 2.5 – Representation of a neuron topological structure after clustering into 5 subtrees
(top); and memory layouts for the pre- and post- subtree clustering phases presented in
Figure 2.3 (bottom). Morphology includes 17 compartments, and 9 instances (mech 1-9)
of a mechanism type with state variables x, y and z. Distinct mechanism types and solver
parameters a, b, p, d , v and r hs were omitted for simplicity.

problem is now decomposed into several smaller solver problems with a data dependency

between only the root and leaf rows in different subtrees — refer to Figure 2.4 for an illustrative

sample of a neuron and its linear solver structure after the clustering method. This property

allows for a vector-based acceleration of individual subtrees, as will be covered in the following

section.

2.3.3 Vector-based Acceleration

Similarity in the computation of the mechanisms and compartments update function allow

for an acceleration in the SIMD-axis by performing vectorized computation of state variables.

Vectorization can be enabled in two distinct core computations. At first, on the execution of the

Gaussian Elimination method, by performing simultaneous (memory-aligned) read operations

28



2.3. Methods

of a, b and p, and update of the variables d , v and r hs. Secondly, vectorization can also be

achieved by performing simultaneous computation of instances of the same mechanism

types, placed in different compartments, holding different states, yet defined by similar state-

update functions. To enable vectorization, the memory layout for individual subtrees is

serialized and realigned on a SIMD-friendly layout, after the subtrees decomposition algorithm

presented. For completeness, Figure 2.5 displays the post-vectorization memory layout for

the morphological representation studied previously.

The computation workload allocated to each task (subtree) during load balancing is measured

as the runtime of the subtree in the vectorised memory layout. In practice, a test for a subtree

complexity requires the tentative set of compartments to be merged and SIMD memory-

arranged. As high disparity in workload across subtrees may occur, ideal core workload

balancing is not guaranteed. An asynchronous execution model mitigates this issue by dividing

the subtree stepping workflow in smaller kernels and dynamically running available kernels

as soon as dependency variables are resolved. This procedure is detailed next.

2.3.4 Asynchronous Execution of State Updates

To handle the disparity in computation times across subtrees and to fully utilize compute

resources, an asynchronous producer-consumer execution model was implemented. Flow

dependencies can be resolved by actively exchanging information between connecting sub-

trees, providing parent and bottom subtree contributions required for the completion of the

Gaussian Elimination step. Execution is driven by shared placeholders across connecting

subtrees. Compute threads wait for variable update(s) on each placeholder: when all values

have been provided by the value-producing subtrees, the value-consuming subtree is allowed

to continue. The implementation details will be detailed further in Section 2.4.1.

Execution follows an asynchronous threading model where lightweight threads (guiding

connections between subtrees) go dormant and active when waiting for a placeholder or

upon a placeholder value update. Figure 2.6 provides the diagram of the resolution of flow

dependencies based on the three placeholders demonstrated previously, inline with the

algorithm displayed in Figure 2.2. The combination of SIMD-enabled compute tasks, placed

in and out of context of compute cores throughout execution, allows for an asynchronous

execution model and the full utilization of computing resources on a single compute node.

2.3.5 Distributed Load Balancing

The extension of the methods presented to a network of compute nodes rely on a load bal-

ancing algorithm that aims to equalize the workload across the network, while minimizing

inter-node communication. To that extent, the previously mentioned vector vs multi-core

efficiency trade-off is extended with a communication optimisation on distributed localities:

the framework must now deliver enough balanced SIMD-tasks that utilise all compute cores
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Figure 2.6 – Schematic overview of the asynchronous producer-consumer model, displaying
the shared placeholders between subtrees — coloured and matching Figure 2.2. Arrow head
(tail) on placeholders represents a set (get) operation by the producer (consumer) of the
placeholder’s value. Dots in arrow line comprise the update of mechanism states, leading to
an updated voltage value to be used in the following iteration.

across the network, while minimizing the inter-node communication from the placeholders

connecting neuron sections held on different localities.

The load balancing algorithm implemented follows a dynamic distributed implementation

of the Least Processing Time algorithm (Korf, 1998). To allow finer-granularity in the load

balancing, the LPT is applied to groups of connected neuron subtrees instead of whole neurons.

The method relies on the active update of a shared table holding the total computational

time assigned to each locality so far. At the onset of the execution, neurons are loaded across

the network, assigned a weight based on a computational workload (measured as the mean

runtime of 10 sample 100 ms simulations of each subtree), serialized and finally communicated

to the least busy compute node. As a reminder, the workload of individual subtrees remains

quasi-constant throughout the execution, thus justifying (1) static load balancing, once and

at the onset of execution, and (2) the usage of a computationally-heavier yet very accurate

metric of computational workload (weight) based on simulated runtime and not on predictive

methods. In most cases, only whole neurons are moved to other localities. This rationale

allows connecting subtrees to be placed within the same memory region, and reducing inter-

node communication — required once at every synaptic delay between connecting neurons,

and three times per step for connecting subtrees. However, terminal (leaf) subtree groups

of a neuron may be assigned to a different locality if the load imbalance caused by a whole-

cell placement in a single memory region exceeds the locality runtime threshold. To avoid

communication delays caused by more than two computed nodes involved in any resolution

of a single neuron, only terminal sections of neurons are delegated to a remote compute
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node. This rationale avoids transitive communications: in practice, dividing a single neuron

across three localities 1..3 may yield a communication pattern of 1 → 3 and 2 → 3 for two

unconnected arborizations 2 and 3, but not 1 → 2 → 3. The maximum computation threshold

assigned to each compute node is provided by the mean runtime of the dataset per locality

— computed at the onset of the execution — with a tolerance value of about 10% that, when

exceeded, signals the delegation of the remaining arborization of a neuron to a remote memory

locality.

2.4 Benchmark

2.4.1 Implementation

The methods presented rely on the efficient implementation of HPX control objects across

neuron subtrees (or subsets of the initial neuron topology), built on a distributed memory

space. The most relevant implementation features are:

• Subtrees are allocated on the Global Memory Address Space (GAS), with a physical allo-

cation on the compute node provided by the load-balancing method detailed in Section

2.3.5. Each GAS address is unique and can be called transparently from any compute

node. The GAS addresses of connecting parent-children subtrees and synaptically-

connected neurons are shared at the onset of the execution;

• Synaptic deliveries are performed with a remote procedure call to the address of the

target (post-synaptic) subtree, with spiking time as argument;

• Synchronization of neurons time advancement is enforced with a communication

barrier at equidistant time frames, equivalent to the smallest synaptic delay in the

network;

• Computation flow on each neuron is guided by threads attached to the shared place-

holders between connecting subtrees, that go dormant and active when waiting for a

placeholder or upon a placeholder value’s update. The HPX thread scheduler handles

the scheduling of compute resources to the queued compute kernels;

• Shared placeholders for dependency variable among connecting subtrees are built on

top of asynchronous calls to set and get operations, supported by a future for probing

of state. A thread gate (or and gate) underlies the implementation of each placeholder,

with an initial counter set to the number of contributions that must be set before

execution is allowed to continue. There is one contribution to be set for parent-to-

children dependencies, and a number of contributions equal to the number of children

in the converse direction;

• The distributed execution on the GAS is based on remote procedure calls, that initiates a

lightweight thread on the appropriate compute node, or places it on a queue of dormant

31



Chapter 2. Asynchronous Branch-Parallelism Extracted from Neuron Morphology

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

20

40

60

80

number of compartments

n
u
m
b
er

of
n
eu

ro
n
s

0 100 200 300 400 500
0

20

40

number of sections

n
u
m
b
er

of
n
eu

ro
n
s

cell A

cell B

cell C

Figure 2.7 – Left: Morphological structure of the Layer 5 neurons extracted from the digital
reconstruction of the rodent neocortex used as input data. Data provided as a histogram
(50 bins) in terms of distribution of number compartments (top) and number of sections
(unbranched cables of a neuron, bottom). Right: Dendritic compartmental trees of the three
individual neurons used as input dataset on single node benchmarks.

threads to be dynamically allocated to idle compute resources throughout the execution.

Upon the execution of the method at a remote location, an asynchronous call is sent

back to the request initiator with the return value. The runtime system handles the

communication, execution and callbacks for the remote procedure calls.

2.4.2 Use Case

Our benchmark simulates the biological activity of a digital reconstruction of a morpholog-

ically detailed neural network extracted from the model of Markram et al. (Markram et al.,

2015). The reconstruction model underlies the research of synaptic plasticity and learning

from Chindemi et al. (Chindemi, 2018), requiring a simulation of dozens of minutes to several

days to be expressed. Input neurons were extracted from layer 5 of rodent brain neocortex.

Neuron models are characterized by highly heterogeneous neuron topologies — see Figure 2.7

for the distribution of compartments and branches across the dataset. Each neuron requires

4-10MB of memory for the storage of the topological structure, linear solver, mechanisms

states, and dynamic data containers for synaptic events.

For brevity, in the following benchmarks we will refer to our implementation as neurox, as
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in NEURON on HPX. Moreover, the initial load balancing and memory layout realignment

processes take approximately 1-2 seconds of execution time and are excluded from the analysis,

as they are considered negligible in the overall execution.

2.4.3 Hardware Specifications

Execution times on a single compute node were measured on four distinct compute archi-

tectures: (1) Intel Sandy Bridge E5-2670 with 16 cores at 2.6 Ghz, with and AVX capabilities

(256-bit floating point vector operations), and 128 GB of RAM; (2) Intel Knights Landing (KNL)

with 64 cores at 1.3 Ghz, 96 GB of RAM, and AVX-512 (512-bits register file width); (3) Cray XE6

with 2x AMD Opteron 6380 with 16 cores at 2.5 Ghz each, 64 GB of RAM and 256-bit floating

point units; and (4) Intel Xeon Gold 6140 with 18-core at 2.3Ghz with AVX-512, turbo-boost up

to 3.7Ghz, and 98 GB RAM. State values are stored at double floating-point precision, leading

to a maximum SIMD acceleration of 4 and 8 simultaneous operations for 256- and 512-bit

register file width, respectively.

To allow for efficient point-to-point communication, selective broadcasts, and remote direct

access memory, we use specialized Infiniband network hardware on the network of Cray XE6

compute nodes, interfaced via the photon API library (Kissel & Swany, 2016).

2.4.4 SIMD vs Multi-core Trade-off Optimization

The optimal value of the constant k defining the maximum computational complexity per

subtree was computed with a grid search between 0.1 and 2 with a step of 0.2, a method com-

monly used in problems of the same domain (Hines et al., 2008). The optimal value depends

on the number of active cores available at runtime, and was measured at approximately k = 0.8

for 2 cores, k = 1 for 4 cores, k = 1.5 for 8 cores, k = 1.8 for 16 cores and k = 2 for more than 16

cores. A deviation of circa 20% over the aforementioned values is possible, as it depends on

the input morphology and architecture.

2.4.5 Reference Branch-Parallel Implementation

We compared our methods against the reference branch-parallel implementation in the

NEURON multisplit (Hines et al., 2008). Our testbench measures the runtime of the simulation

of one second of the electrical activity of the cell A (illustrated in Figure 2.7), on the four

compute architectures mentioned previously. The benchmark results are presented in Figure

2.10. The speedup achieved was of approximately: 10.5x for the single-core execution, down

to 2.64x on the 64-core execution on the intel KNL; 2.2x-1.8x for single- to 32-core execution

on the Cray XE6; 3.2x-1.8x for single- to 32-core on the Intel E5; and 3.5x-1.9x on the single-

and 18-core implementation on the Intel Xeon 6140.

As expected, better acceleration is achieved by the Intel Xeon and KNL architectures, mostly

33



Chapter 2. Asynchronous Branch-Parallelism Extracted from Neuron Morphology

1 2 4 8 16 32 64
1

2

4

8

16

32

64

128

256

512

number of cores

T
im

e
to

so
lu
ti
o
n
(s
ec
s)

Intel KNL, cell A

1 2 4 8 16 32
1

2

4

8

16

32

64

128

256

512

number of cores

Cray XE6, cell A

1 2 4 8 16
1

2

4

8

16

32

64

128

256

512

number of cores

Intel E5, cell A

1 2 4 8 16
1

2

4

8

16

32

64

128

256

512

number of cores

Intel Xeon 6140, cell A

neurox branch-parallelism NEURON multisplit

Figure 2.8 – Strong scaling plot for the simulation of one second of electrical activity of the
neuron A, illustrated in Figure 2.7. Benchmark results presented for the NEURON multisplit
approach, and our methods (neurox). Hardware specifications: Intel KNL with 64 cores at
1.3 Ghz and AVX-512; Cray XE6 compute node with 2× AMD Opteron 6380 with 16 cores at
2.5 Ghz; Intel E5 with 16 cores at 2.6 Ghz and AVX2; and Intel Xeon Gold 6140 with 18-core at
2.3Ghz with AVX-512.

noticeable for a small number of cores, as the register file width is twice the amount of the XE6

and E5. As an important remark, some of the single-core benchmarks presented (particularly

the KNL) exceed the theoretical limit of SIMD acceleration of 4x or 8x. This acceleration is due

to the structure-of-arrays data layout in memory allowing better memory access compared to

the non-SIMD array-of-structures, allowing an extra speedup on top of the SIMD instruction-

level parallelism.

2.4.6 Scaling of Single Neurons

We analysed the strong scaling properties of our methods, simulating one second of electrical

activity of three neuron morphologies characterized by different levels of width and depth

of branching, illustrated in Figure 2.7. The benchmark results are presented in Figure 2.9.

This analysis provides the theoretical limit of acceleration for single-neuron execution, as

a basis for the study of the acceleration for the larger networks of neurons that will follow.

The benchmark runtimes demonstrate a speedup of: 5.3x, 3.3x and 2.3x for cells A, B and C,

respectively, on the intel KNL; 8.2x, 7.5x and 6.0x on the Cray XE6; 6.3x, 8.2x, and 6.3x on the

Intel E5; and 5.1x, 4.2x and 3.2x on the Intel Xeon 6140.

Linear acceleration with good strong scaling on up to 8 threads on single-core compute

units with Single Instruction Single Data processing has been previously demonstrated by the

NEURON multisplit approach (Hines et al., 2008). Similarly, in our methods, ideal scaling is

not visible and an acceleration beyond 16 threads per neuron is strenuous. This limitation has

already been studied by Hines et al. (2008) on the multisplit method, and is unrelated to the

implementation but due to the nature of the problem instead. Subtrees are quasi-balanced in
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Figure 2.9 – Strong scaling benchmark for the simulation of one second of electrical activity
of three different models of single neurons illustrated in Figure 2.7, benchmarked on four
compute architectures: Intel KNL with 64 cores at 1.3 Ghz and AVX-512; Cray XE6 compute
node with 2× AMD Opteron 6380 with 16 cores at 2.5 Ghz; Intel E5 with 16 cores at 2.6 Ghz
and AVX2; and Intel Xeon Gold 6140 with 18-core at 2.3Ghz with AVX-512.

terms of workload, yet stochastic temporal events such as user-defined current injections and

synaptic activity account for extra computation that can not be accounted for by the subtree

clustering algorithm, leading to an unpredictable imbalance at certain time intervals. More

importantly, the tree structure of the dataset limits the parallelism exposed when computation

is concentrated at higher levels of the neuron tree, such as during Gaussian Elimination. This

property is noticeable when comparing the benchmarks of the three cells A-C with increasing

branching depth, where an increase of the cell depth leads to a reduction in the strong scaling

capabilities of our method.

Finally, the deceleration of the speedup with the increase of compute cores is also related to

the aforementioned trade-off between SIMD parallelism (maximized for single core execution)

and vector-based parallelism: to fully utilize all available cores, smaller SIMD data structures

are created, causing a loss on the exposed vector acceleration, i.e. register file width is not

fully utilised. As a smaller factor of performance loss, an extra overhead is added by threading

(de)allocation as we increase the number of active cores.

2.4.7 Scaling of Networks of Neurons

An analysis of scaling of our implementation on a larger dataset was executed on a network of

128 Cray XE6 compute nodes, performing a simulation of one second of electrical activity on

the same neocortical model. The benchmark presents the scaling properties of our branch-
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Figure 2.10 – Benchmark of the simulation of one second of electrical activity of Layer 5
neurons, on a Cray XE6 cluster with 128 compute nodes. Each node contains two AMD
Opteron 6380 with 16 cores at 2.5 GHz each with 256-bit register file width. Ideal strong scaling
assumes complete overlap of computation and communication.

parallel implementation, similar to the previous section, and compares it against the non

branch-parallel counterpart, that simulates neurons as indivisible units.

The execution runtime for an increasing number of neurons is presented in Figure 2.10.

The first benchmark performs a strong scaling analysis with the same ratio of threads-per-

neuron as the previous single neuron benchmarks. The results demonstrate the preservation

of strong scaling properties between the single and 128 compute nodes use cases. Similar

benchmarks were performed for 16, 32 and 64 compute nodes — omitted for brevity — and

provide identical results. A weak scaling analysis follows by increasing the workload from

128 to 4096 neurons (following the benchmarks from left to right), in the same hardware and

number of compute units. Results suggest that an increase of the input dataset per compute

node approximates the runtime to the ideal strong scaling limit. This is due to an overlap of

computation and communication across different neurons subtrees, leading to a better usage

of compute resources.
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The maximum speedups achieved were of 7.4x for 128 neurons, 5.8x for 256 neurons, 4.2x

for 512 neurons, 2.8x for 1024 neurons, 2.3x for 2048 neurons and 1.9x for 4096 neurons. For

the 128-2048 neuron datasets, most of the speedups are due to the saturation of threads with

compute tasks on the branch-parallel execution, but not on the non-branched execution (due

to an insufficient number of neurons). However, in the scenarios where both implementations

fully utilise their compute units, a significant speedup is noticeable. This property is more

prominent on the largest benchmark tested, where the dataset yields one neuron per thread,

thus providing enough tasks to fully occupy all computing resources on both implementations,

and an acceleration of almost twofold is visible. This speedup is justified by the finer-grained

parallelism and load balancing exposed by our methods, allowing better dynamic allocation

of tasks to threads, thus leading to an overall reduction in runtime.

2.5 Discussion

This chapter presented an algorithm and an implementation that expose numerical depen-

dencies at the topological level of branched neurons, and accelerate the simulation of mor-

phologically detailed neuron models. We detailed the method for the numerical resolution of

our problem, and showed that (1) the activity of the electrical current at the level of neuron

topological trees depends on three parameters of the numerical solver that include current

contributions between connecting tree sections; (2) the previous dependency allows for the

grouping of connecting compartments into subtrees, where each subtree is a subset of the

initial problem, and the set of substrees holds the same data representation as the initial

neuron; and (3) subtrees can be grouped into a tree of subtrees — holding the previous cover

and distinct set properties — and allocated to any locality on the network in order to allow for

accurate distributed load balancing.

Our analysis showed that a numerical resolution with full usage of compute resources on a

distributed network of compute nodes is possible at three layers of parallelism: (1) at the level

of compute nodes, a load balancing method delegates sections of neuron arborizations to

localities at the onset of execution; (2) at the compute node level, load balancing follows anal-

ogously with the clustering of compartments into subtrees, allowing a multi-core acceleration

by dynamically delegating subtrees to compute cores throughout the execution; and (3) at

the core level, where SIMD-based acceleration of state variable updates and numerical solver

acceleration is possible by realigning the memory layout of each subtree.

The methods were implemented on the compute kernel of the NEURON scientific application,

yielding an asynchronous simulator on a global memory address space, with synchronization

and threading supported by the HPX runtime system. The benchmark results compared our

methods with the reference branch-parallelism method in the NEURON simulator, yielding a

speedup of up to 10.5x on an Intel Knights Landing with 64 cores, 2.2x on a 32-core Cray XE6,

3.2x on an 16-core Intel E5, and 3.5x on a 18-core Intel Xeon 6140. A following benchmark

studied the efficiency of our methods on three highly heterogeneous neuron models, display-
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ing good strong scaling properties on up to 16 cores, and a dependency of the parallelism

efficiency on the depth of the neuron tree.

We extended our methods to larger neuron networks, and assessed its scaling properties on a

network of 128 Cray XE6 compute nodes simulating up to 4096 neurons. Our implementation

was shown to deliver a speedup of 7.4x for small datasets, and 1.9x when full occupancy of

compute resources was guaranteed. Moreover, it displayed a good preservation of its strong

scaling properties, with almost ideal scaling on the largest dataset tested.

The preservation of the scaling properties — independently of the network size and compute

cores per neuron — combined with the added capability of generating a varying number

of compute tasks allocated in a balanced way across all localities, allows our strategy to be

fine-tuned to a wide range of distributed architectures and inputs.
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3 Asynchronous Graph-Parallelism
Extracted from ODE Dependencies

This chapter is adapted from the following article:

Magalhães B., Hines M., Sterling T., Schürmann F., "Exploiting Flow Graph of System of ODEs to Accelerate

the Simulation of Biologically-Detailed Neural Networks", accepted at IEEE International Parallel &

Distributed Processing Symposium (IPDPS) 2019

Personal contributions: conceptualization, formal analysis, investigation, methodology, software, valida-

tion and writing.

3.1 Abstract

Exposing parallelism in scientific applications has become a core requirement for efficiently

running on modern distributed multi-core SIMD compute architectures. The granularity of

parallelism that can be attained is a key determinant for the achievable acceleration and time

to solution.

Motivated by a scientific use case that requires the simulation of long spans of time — the study

of plasticity and learning in detailed models of brain tissue — we present a strategy that exposes

and exploits multi-core and SIMD micro-parallelism from unrolling flow dependencies and

concurrent outputs in a large system of coupled ordinary differential equations (ODEs).

An implementation of a parallel simulator is presented, running on the HPX runtime system

for the ParalleX execution model, providing dynamic task-scheduling and asynchronous exe-

cution. The implementation was tested on different architectures using a previously published

brain tissue model. Benchmark of single neurons on a single compute node present a speedup

of circa 4-7x when compared with the state-of-the-art Single Instruction Multiple Data (SIMD)

implementation and 13-40x over its Single Instruction Single Data (SISD) counterpart. Large

scale benchmarks suggest almost ideal strong scaling and a speedup of 2-8x on a distributed

architecture of 128 Cray X6 compute nodes.

39



Chapter 3. Asynchronous Graph-Parallelism Extracted from ODE Dependencies

3.2 Introduction

This chapter describes a strategy that allows for a speedup on the simulation of a wide range

of scientific problems represented by large systems of ODEs, by exposing a balanced SIMD-

enabled computation graph that describes data-flow dependencies and concurrent outputs

across variables on a system of differential equations. The work presented introduces a novel

method for micro-parallelism that allows for further acceleration of individual neurons and

groups of neurons described by similar model descriptions.

Data-flow dependencies via data-flow programming execution models have been previously

explored by the OmpSs (Edwards et al., 2014) and OpenMP (Dagum & Menon, 1998) pro-

gramming models. Such methods require the manual specification of input, output and

input-output data dependencies in order to create Direct Acyclic Graphs (DAGs) of computa-

tion. To put our work into perspective, the methods presented start at the level of mathematical

abstraction and rely on the specification of the system of ODEs, in order to automatically

extract not only the data-flow dependencies (DAG) but also concurrent output/update opera-

tions, without the need of user-provided input/output dependencies. This feature allows for

the automatic extraction of dependencies and DAGs from very large system of ODEs whose

dependencies would be infeasible to extract manually.

The contributions presented are the following: (a) a method for the extraction of flow depen-

dencies and concurrent output operations from the interdependencies across state variables

on a system of ODEs; (b) an algorithm for the embarrassingly parallel processing of blocks of

independent ODEs; (c) a method for SIMD acceleration of blocks of similar instances of ODEs;

(d) a load balancing algorithm for balanced execution blocks based on the computation time of

individual equations; and (e) an asynchronous execution model that allows for good leverage

of computing resources by producing enough micro-parallelism to fully utilize available SIMD

and multi-core compute units on a wide range of architectures, based on a novel method for

strong scaling that trades off between two types of parallel resources — SIMD units vs multiple

cores.

Our methods were applied to the simulation of the electrical activity of a network of biologically

inspired neuron morphologies. Benchmark results are shown to expose a finer-grained level

of parallelism and a large speedup compared to the reference solution on a single compute

node and on distributed architectures. Moreover, the flexibility in the multi-core parallelism

and vectorization methods presented allows the full usage of computing resources across a

wide spectrum of host architectures (when enough computation is available), leading to a

significant acceleration in the strong scale limit.
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3.3. Methods

3.3 Methods

3.3.1 Dependencies from Model Specification

We present a method for the extraction of the flow (read-after-write) dependencies and con-

current write operations between mechanisms and compartments state variables, based on

the mathematical specifications of the ODEs. In our model, mechanism specifications are pro-

vided by NEURON’s domain specific language (NMODL), introduced by Hines and Carnevale

(2000). Our methods parse the textual representation of the mathematical specification of

ODEs defining the change in opening variables and the current contribution of each mecha-

nism, and extract the flow dependencies and concurrent output operations across the set of

mechanisms and the compartments they’re placed on.

The flow dependencies of a given ODE are provided by the list of ODEs whose states updates

must precede it. Conversely, concurrent outputs are defined by the set of parameters whose

updated value must be summed, in order to compute the final value of another parameter.

As an example, take the calcium-activated potassium channels from mammalian brain from

Kohler et al. (1996). The potassium current in this mechanism is formulated by:

IK = gK · z · (V −EK ). (3.1)

The equation provides the current contribution to the ionic current term in Equation 1.7, thus

following the same symbol notation. The equation follows a z activation kinetics described by

a first-order ODE as:

τz
d z

d t
= 1

1+
(

0.00043
[C a]i n

)4.8 − z. (3.2)

where [C a]i n is the internal calcium concentration and τz is the time constant of the channel.

The equilibrium potential for a given ion (in this example K ) is given by the Nernst equation:

EK = RT

zF
ln

( [K ]out

[K ]i n

)
(3.3)

where R is the universal gas constant (8.314JK −1mol−1), T is the temperature in Kelvin

(K = žC +273.15), z is the valence of the ionic species (+1 for N a+, +1 for K +, +2 for C a2+, -1

for C l−), F is the Faraday’s constant (96485C mol−1) and [K ] is the concentration of the ion K

in the intracellular (in) and extracellular (out) neuron fluid.

In brief, the update of the channel state depends on the resting potential of potassium currents

in the system (EK in Eq. 3.3), and the updated value of its gating variable z that depends on

the state of the calcium ions ([C a]i n in Eq. 3.2). On the other hand, the potassium and calcium

currents are voltage-driven (similarly to IK in Eq. 3.1), requiring an updated voltage value at

the compartment. For clarity, the corresponding diagram of flow dependencies is displayed in

Figure 3.1.
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Figure 3.1 – Diagram of the flow dependencies of the SK_E2 potassium ion channel. V repre-
sents the start of the computation with an updated compartment state (voltage), Ca and K
ions are the mechanisms that represent the states of Calcium and Potassium ion currents in
the system. Straight arrow tails illustrate read-after-write dependencies (the DAG) and flow
dependencies between mechanism equations.

Figure 3.2 – Diagram of the flow dependencies (straight lines) and concurrent outputs (dashed
lines) of the SK_E2potassium ion channel. Start and end of computation graph are represented
by V and dV /d t respectively. C a and K ions are the mechanisms that represent the states of
Calcium and Potassium ion currents in the system. Straight arrow tails illustrate read-after-
write dependencies (the DAG) and flow dependencies between mechanism equations. Dashed
arrow tails illustrate concurrent variable updates.

Conversely, the computation of the voltage value dV /d t in Equation 1.7 requires a sum of

the updated values of mechanism currents — i.e. the value of IK in Eq. 3.1 and all remaining

currents — leading to a concurrent update of the value holding the sum of all current contribu-

tions. A similar sum operation is required to update the state of the mechanisms representing

ion currents: in practice, the current contribution of individual ion channels needs to be

summed to the mechanism holding that ion type, leading also to a concurrent update. These

two operations can be inserted into the previous diagram, leading to the dependency diagram

displayed in Figure 3.2.

As a side note, mechanisms and compartment ODE updates interact in a feedback loop and

yield a circular dependency that needs to be resolved: in practice, an update of the state of the

compartment alters the state of the voltage-dependent ODEs, and vice-versa. Although these

interdependencies could be resolved with general numerical method algorithms, our imple-

mentation relies on a problem-specific optimization, the Hines solver (Hines, 1984) imple-

mented in NEURON. In brief, interleaved timestepping handles the mechanism-compartment

interdependency, resolving voltages at every full step and mechanism updates at every half of

a timestep, allowing for a quasi-implicit numerical resolution and without iterations. Once

mechanism states are updated for a new timestep, a Gaussian Elimination is applied to the

branched structure of the neuron, solving Equation 1.7 for connecting compartments in terms

of the voltage of a compartment, its children’s and its parent’s voltage, providing the updated

voltage value V at the new step from the voltage change dV /d t . This procedure refers to the

steps Hines matrix set-up, Hines Gaussian Elimination and neuron’s voltage update on the

workflow displayed in Figure 1.4, and has been covered extensively in Chapter 2.
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To summarize, given the description of a set of ODEs describing the state updates of a given

mechanism A, the dependencies collection proceeds in accordance with the following rules:

(1) if an equation in A depends on a variable of an external mechanism B , then B must be

computed beforehand and the flow dependency B → A must hold; and (2) when a equation

update in A is given by a sum of elements from other mechanisms C1,C2, ..,Cn executed in

parallel, then the updates C1 → A, C2 → A, .., Cn → A lead to a concurrent output. Note that

a concurrent output implies a flow dependency whose individual updates must be handled

with an atomic, sequential or mutually exclusive operation. The application of these methods

to a collection of mechanisms allows the creation of an inter-mechanism flow dependency

and concurrent output, which will be covered in detail in the following section.

3.3.2 Application to NEURON Modelling Language

The mechanism specification provided by NEURON’s domain specific language NMODL

(Hines & Carnevale, 2000) complies with the mathematical description of individual mecha-

nisms. As an example, the function that calculates the conductance of the current ion channel

and individual contribution to the potassium currents of the previous SK_E2 mechanism is

described by:

1 gSK_E2 = gSK_E2bar * z
2 ik = gSK_E2 * (v - ek)

a representation equivalent to Equation 3.1, where gSK_E2bar is the potassium conductance

in the system and ik is the individual contribution to the potassium currents from this mecha-

nism. The update of the internal state of the ion channel is computed based on the derivative

of z, represented by z’ and described similarly to Equation 3.2 as:

1 zInf = 1/(1 + (0.00043 / cai)^4.8)
2 z’ = (zInf - z) / zTau

where zTau is a time constant and cai is the internal calcium concentration in the system.

It follows that the total potassium current ik across this channel depends on the resting

potential of the potassium current in the system ek, the voltage v at the compartment, and

the conductance of the ion channel (gSK_E2, proportional to the gating state z). On the

other hand, z depends on the internal concentration of calcium cai. In brief, it follows

that SK_E2 depends on the compartment voltage, and on the voltage-driven calcium and

potassium currents. Moreover, the total potassium current in the system and the state of the

compartment requires an updated value of all related ionic currents, including the SK_E2
ion channel’s (ik), leading to two concurrent updates. These results follow inline with the

dependencies extracted in the previous section and pictured in Figure 3.2.
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Figure 3.3 – Workflow of the state-of-the-art (sequential) state update function of a neuron
morphology with 23 mechanisms. Execution order displayed as clock-wise, starting on the
compartment state update (V node), followed by the membrane passive currents (pas), ionic
currents, remaining mechanisms, and finishing on the update of the compartment current
ODE (dV/dt node). Nodes with a double contour account for mechanisms that are event-
driven, e.g. current injections or synaptic currents.

3.3.3 Computation Graph from Individual Dependencies

The methods presented were automated and applied to a biologically inspired neuron network

of the somatosensory cortex of the young rodent, with a total of 23 mechanisms and 44 ODEs,

extracted from the work of Markram et al. (Markram et al., 2015). The state of each mechanism

is modelled by a maximum of four distinct ODEs. Mechanism state variable are replicated for

every mechanism instance across all compartments. Thus, a computation graph of distinct

mechanisms is created for the whole network of neurons (or a group of neurons), and the

complexity of a graph is not dependent on the number of neurons, but on the number of

unique ODEs in the system.

The graph extraction procedure follows similarly to the method described in the previous

section: (1) a textual parser builds the syntax tree of all ODEs that describes the mechanism

(model) specifications, in accordance with the NMODL domain specific language; (2) vari-

ables on the left and right hand side of the ODEs are flagged as dependee and dependency,

respectively; (3) the direction of variable dependencies — most specifically which variable

waits for what value — across mechanism ODEs is stored in a dependee-to-dependency

matrix, representing row-to-column variable flow dependencies; and (4) sum operations

over a set of elements, or equivalently multiple columns-per-row dependencies, lead to a

many-to-one flow dependency and are tagged as requiring a concurrent update, and subject

to a memory-protected value update.

For comparison, the serial workflow of mechanism updates adopted in existing state-of-the-

art implementations is displayed in Figure 3.3. The execution order is as follows: (1) update of

passive current in the compartment (pas); (2) sequential update of the states all ionic currents

(3) update of ion channel gating states and remaining mechanisms.
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Figure 3.4 – Computation graph for the parallel execution of the state update function with flow
dependencies and concurrent update. The workflow displays the execution pictured in Figure
3.3, after application of the dependencies extraction method. Execution flow follows from
node V to dV /d t . Single-line arrows represent execution dependencies. Dashed-line arrows
represent concurrent updates to mechanisms’ (upward) or capacitor’s state (downward).
Nodes with a double contour display mechanisms that are event-driven (e.g. current injections
or synaptic currents). The SK_E2 mechanism used for detailing the graph creation processed
is coloured cyan.

The graph of flow dependencies and concurrent updates was extracted from the same model,

using the methods mentioned previously. Individual dependencies were combined to build

the computation graph with the flow dependencies and concurrent update phases displayed

in Figure 3.4. The SK_E2 mechanism exemplified in the previous section is emphasized in

blue colour, with a flow dependency from potassium and calcium ions (K ion and Ca ion,

respectively), and a concurrent output to the current of potassium ions. The resulting compu-

tation graph yields a maximum of 19 parallel kernels, where each node of the graph represents

the set of all instances of that mechanism type. The computation of a timestep terminates

when all updates triggered by the concurrent processes at the bottom level are finalized. As

an important remark, despite the high parallelism exposed, the maximum acceleration is

dictated by the slowest mechanism in the graph. This limitation is a major bottleneck for

use-cases of very high number of instances of the same mechanism, or mechanisms with

high computational runtime per instance. In the following section we will address this issue,

by presenting a method that exposes SIMD-computation, block-parallelism and accurate

computational load balancing by exploring the similarities between instances of the same

mechanisms.

3.3.4 Vector-Parallelism of Mechanism Instances

The graph-based computation detailed in the previous sections exposes the parallelism of

different mechanisms running simultaneously. Notwithstanding, instances of mechanisms

of the same type are independent and defined by similar operations. Therefore, a significant

speedup can be achieved by computing mechanism instances simultaneously, using vector

instructions. In practice, vectorization on the computation of instances of the same mecha-

nism can be efficiently performed if data is represented in a SIMD-friendly memory layout. To
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vectorised memory layout

vectorised-block memory layout

block 1 block 2
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Figure 3.5 – Three alternative memory layouts for the processing of one mechanism with three
state variables (a–c) expressed in five instances (1–5). Standard memory layout represents
data as an array of structures. Vectorised memory layout displays data on a SIMD-friendly
alignment, with added memory padding between variables for vector-instruction processor
alignment. Vectorised-block memory layout follows the SIMD approach, dividing instances
across several blocks of fixed maximum size (2 in the example above).

overcome the limitation of concurrent writing, shadow vectors are populated simultaneously

with individual contributions of instances. A post-mechanism reduce operation sums all

contributions and writes the final update value.

Nevertheless, computation disparity at every node of the graph – describing all instances of a

mechanism type – leads to a computational load imbalance. The theoretical speedup limit

is now dictated by the execution time of the slowest mechanism. This bottleneck is most

prominent when a few mechanisms require a very large runtime and/or are exhibited by a high

number of instances when compared to the remaining mechanisms. In the example above,

this is the case of the ProbAMPANMDA and ProbGABAAB mechanisms, referring to synaptic

connections between neurons, as will be shown later in the benchmark results.

A second limitation occurs on neuron models with a reduced number of mechanisms, or in

compute architectures with a high number of cores. In such scenarios, the parallelism exposed

by the graph may not be enough to fully utilize all compute cores available in the architecture.

These two issues can be circumvented by exploring the parallelism of mechanism instances.

Instances of the same mechanisms can be divided in several blocks (subsets), in accordance

with the SIMD-friendly memory layout of the initial block. This approach solves both the

computational imbalance and lack of exposed parallelism issues mentioned previously: by

creating smaller computation tasks, it allows the dynamic scheduler to better balance the

execution, while creating an embarrassingly parallel execution model for blocks of instances,

that exposes further parallelism. For completeness, Figure 3.5 presents the memory layout of

a sample mechanism in the standard, vectorised, and vectorised-block memory format. The

vectorised-block memory layout approach provides vector-based computation of independent

blocks of instances.

The main question now lies on the decision of instances block size per mechanism. To account
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for the disparity of runtime across single instances of different mechanisms, our method

sets a cap on the total computation assigned to each block. The algorithm is the following:

(1) single instances of every mechanism are executed and benchmarked independently; (2)

the block size for a given mechanism is determined by the number of instances whose total

execution time falls below a maximum computation threshold; and (3) memory layout for

every mechanism instances is reorganized into the vectorised-block layout, based on the block

size assigned to that mechanism. For optimal usage of SIMD compute units, block sizes are

set to a multiple of the width of the processors register file.

The value of the maximum complexity threshold per block plays a critical role in the accelera-

tion provided: the rationale is that this constant needs to reflect the optimal trade-off between

block-size (exposed vector-based acceleration, limited by vector word size) and number of

blocks (exposed thread-base parallelism, limited by number of cores per CPU). In practice,

high thread-parallelism forces a small block-size per thread, leading to high overhead on

thread (de)allocation and possibly insufficient vector-parallelism per thread. On the other

hand, small thread-parallelism will fully utilize SIMD units but may not yield enough tasks to

occupy or correctly load balance all compute cores. Therefore, the acceleration provided by

these two resources becomes competitive for small datasets or highly-parallel architectures,

and the balance of both is defined by the block size constant, by itself dependent on the run-

time of the update functions of each mechanism, which depend on the compute architecture

they are computed on.

To conclude, the detection of the optimal value for the block size is performed following a

grid search approach, commonly used in existing efforts in the same problem domain (Hines

et al., 2008). Although having a direct method for the computation of block size would be

ideal, little work is available on analytical formulations or regression models for the discovery

of optimal execution hyper-parameters (in this case ideal block size for update functions)

based on the input data (number of neurons, distribution of mechanisms and mechanism

instance runtime) and relevant hardware specifications of the host architecture (cache size,

vector-word size, number of cores, number of NUMA sockets, number of simultaneous SIMD

operations, processor clock speed, memory bandwidth, to name a few).

3.4 Benchmark

3.4.1 Implementation

The reference implementation was extracted from the multi-threaded SIMD-optimized com-

pute kernel of the NEURON scientific application (Kumbhar et al., 2019), available as open

source (Blue Brain Project, 2015a), implementing a serial execution of mechanisms workflow

— as illustrated in Figure 3.3. Executions enabled with graph-parallelism exhibit a maximum

numerical discrepancy of 10−5 due to a different order of execution of mechanisms yielded

by the computation graph, considered negligible as the smallest range in values of interest
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Figure 3.6 – Mean and standard deviation of the number of instances per mechanism, extracted
from 1000 neurons in the layer 5 of the Somatosensory cortex of the rodent brain.

represents the opening of ionic channels, a percentual value between 0 and 1. Data is stored as

64-bit double-precision floating point values. Moreover, the runtime of the initial data, graph,

and block set-up methods are excluded from the following measurements as they run on a

minimal runtime compared to the overall simulation.

To allow for an asynchronous execution model and to enable graph- and instance- parallelism

in the reference solution, the communication, threading and memory handling methods were

replaced by HPX routines:

• Graph read-after-write dependencies were implemented via HPX and-gates with an

initial value set to the number of dependencies on the graph node. Upon completion of

the update function, each dependency decrements the and-gate value of its dependees.

When the gate value reaches zero, the update function on the dependee node is executed,

and its gate reset to the initial value. Subsequently, its dependees’ gate values are

decremented at the end of the assigned compute kernel;

• Output dependencies are handled by temporary arrays that store the contribution of

each ODE. After the last update from the dependencies, the final value is computed as

the sum of all contributions. Alternative approaches for concurrent writing — such as

serial writing and mutexes — were tested and were deemed less efficient;

• Inter-node communication (synaptic delivery) is performed via asynchronous one-off

events (remote procedure calls), with the event information being stored by a future

that allows for probing and querying of event state;

• Memory allocations were replaced by HPX methods allowing datasets to be transparently

distributed and accessed across localities. The structure of the parallelism-graph is local
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Figure 3.7 – Average execution time for the timestep update (the current and state functions)
of single instances of the mechanisms, extracted from 1000 neurons in the layer 5 of the
Somatosensory cortex of the rodent brain. Execution times presented for the Intel Sandy
Bridge E5 (top) and Knights Landing architectures (bottom).

to every compute node, for efficiency purposes. Neurons are stored as a distributed

array in the global memory address space;

• The asynchronous execution follows a dynamic thread allocation model. Micro-tasks

such as mechanism function updates or synaptic deliveries are executed by (lightweight)

threads and stay in context until task termination or held by a synchronization object. If

the thread initiator is a timed event (such as incoming synapse), thread is terminated

and cleared. If it is a repetitive event (e.g. a timestep’s update function at every step), its

initiator (and-gate) is reset and thread goes into dormant state, waiting for next wake-up

signal (and-gate counter);

Due to the usage of a global memory address space, synchronization objects may wait, probe
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and initiate processes in remote localities. Moreover, threading, events and procedure calls at

local or remote localities are indistinguishable in terms of implementation.

3.4.2 Use Case

We benchmarked our methods on a morphologically detailed neural network retrieved from

the model of a digital network reconstruction of Markram et al. (Markram et al., 2015). The

benchmark performs a simulation of 100ms or 4000 computation timesteps of biological

activity of the layer 5 of the somatosensory cortex of the young rodent brain. The test case

represents a fraction of the time window of the model for synaptic plasticity from Chindemi

et al. (Chindemi, 2018), which requires from few minutes to several days of simulation to be

expressed. Each neuron is comprised of up to 23 different biological mechanism types, of

which it may instantiate up to several thousands. The total number is varying from neuron to

neuron; how the mechanisms are distributed across multiple neurons is shown in Figure 3.6.

Each neuron requires 4 to 10 MB of memory, comprising topological structure, mechanism

instances metadata, and temporary data structures for communication and events handling.

3.4.3 Hardware Specifications

Single compute node implementations were benchmarked on the following four architectures:

(1) Intel Sandy Bridge E5-2670 with 16 cores at 2.6 Ghz with AVX (256-bit register file width,

allowing vector-processing of four parallel 64-bit floating point units) and 128 GB of RAM;

(2) Intel Knights Landing (KNL) Xeon Phi with 64 cores at 1.3 Ghz with AVX-512 (512-bits

register file width), and 96 GB of RAM; (3) Intel Xeon Gold 6140 with 18-core at 2.3Ghz with a

turbo-boost frequency of up to 3.7Ghz and AVX-512, and 98 GB RAM; and (4) Cray XE6 with 2×
AMD Opteron Abu Dhabi 6380 with 16 cores at 2.5 Ghz each, 256-bit floating point units, and

64 GB of RAM. In practice, an optimal SIMD usage yields 8 simultaneous double-precision

floating point operations on the Xeon 6140 and KNL, and 4 operations on the Cray XE6 and

Intel E5.

3.4.4 Strong Scaling

The average execution time per mechanism instance — measured at the onset of the execu-

tion and utilised to compute the instance block size of each function and mechanism — is

presented in Figure 3.7 for the E5 and KNL architectures. Combined with the heterogeneous

distribution of mechanisms across neurons demonstrated in Figure 3.6, the high disparity of

runtime presented across mechanisms strengthens the need for the micro-parallelism of indi-

vidual neurons and for the load balancing methods, provided by graph and instances-block

parallelism, respectively.

The benchmark results for the multi-core execution on a single compute node on the strong

scaling axis are presented in Figure 3.8, displaying the runtime of a single neuron against an
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Figure 3.8 – Benchmark for the simulation of 100ms of electrical activity of a single neuron
from the somatosensory cortex of the young rodent, on an Intel E5 with 16 cores at 2.6 Ghz and
AVX2, an Cray XE6 compute node with 2× AMD Opteron 6380 with with 16 cores at 2.5 Ghz
each and 256-bit register file width, an Intel KNL with 64 cores at 1.3 Ghz and AVX-512, and an
Intel Xeon Gold 6140 with 18-core at 2.3Ghz with AVX-512. Single neuron acceleration limit
represents the theoretical minimum runtime with multi-threaded execution of the parallel
processes, computed as t i meserial proc. + t i meparallel proc./thr ead s, with serial and parallel
processes taking 13% and 87% of overall time respectively.

increasing range of compute cores. For brevity, the runtime for SISD implementations are

omitted, and only the runtimes for SIMD based-implementations are presented. The ideal

speedup limit on a single neuron is based on the multi-threaded execution of the parallel

processes, and takes into account the serial operations — such as the delivery of events to

synapses and the resolution of the linear solver detailed in Chapter 2 — that are processed

beforehand and hold remaining compute cores as idle during their execution, as dictated by

Amdahl’s law (Hill & Marty, 2008).

The results provide an indication of the acceleration of the simulation by the methods pro-

posed over the single-core SIMD-accelerated reference implementation. Single neuron sim-

ulation yields a speedup of 7.0x on the KNL, 5.4x on the Cray XE6, 4.5x on the Intel E5 and

4.2x on the Xeon 6140, compared to its non-parallel SIMD counterpart. When benchmarked

against the Single Instruction Single Data implementation found in the NEURON simulator,

the speedup achieved was of 40.7x on the KNL, 9.3x on the XE6, 13.1x on the E5 and 14.7x

on the Xeon. Moreover, the methods presented allow for an almost ideal acceleration on the

Intel E5 and Cray XE6. In such scenarios, three efficiency properties are achieved: (1) high

graph-parallelism; (2) high parallelism of instances block; and (3) block sizes large enough to

provide full usage of the processor’s vector compute unit. Ideal scaling is strenuous due to

the overhead of the low-level synchronization and threading calls by the HPX runtime to the

architecture — when handling tasks in the order of nanoseconds — which becomes visible as

we increase the number of compute cores. Good yet not ideal scaling is visible on the Intel KNL

and Xeon architectures. A trade-off between multi-core and vector-based acceleration plays a

major role in accelerating single neuron models in these two architectures, both with 512-bit

register file width. As more processing units are added, the data available for SIMD instruction
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Figure 3.9 – Benchmark for the simulation of 100ms of electrical activity of the neocortex, on
a cluster of 128 Cray XE6 compute node, each with a CPU containing 2x AMD Opteron 6380
with 16 cores at 2.5 GHz. Leftmost top plot displays the single neuron per locality use case,
similar to Figure 3.8; following plots iteratively double the neurons/locality ratio. Ideal strong
scaling assumes full overlap of serial and parallel processes, and is computed as a factor of the
overall runtime as (t i meserial proc. + t i meparallel proc.)/thr ead s.

stream is reduced so that enough work is provided for all cores. Thus, the speedup derived

from vectorization is reduced as the number of instances per mechanism block decreases.

The converse holds: large mechanism blocks allow for high SIMD acceleration but yields load

imbalance at the core level that reduces multi-core acceleration capabilities.

3.4.5 Distributed Executions

Our performance analysis was extended to a benchmark of a larger neural circuit executed

on a compute cluster of 128 Cray XE6 compute nodes, presented in Figure 3.9. The test case

simulates 100ms of the electrical activity of biologically inspired model of a cortical column of

the rodent neocortex, extracted with the same reconstruction method as the aforementioned

somatosensory cortex. The acceleration provided at such scale becomes relevant to the

simulation of large datasets that require long biological time to express its phenomena, such
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as synaptic plasticity. The benchmark set-up is the following: a strong scaling analysis with

a single neuron per compute unit (in line with the single node use case) is presented at the

leftmost top plot. An analysis of larger datasets follows by presenting the runtime plots for

an increasing number of neurons (128 to 4096 neuron plots, left to right, top to bottom), on

the same hardware configuration. At the largest scaling scenario, both the reference and the

proposed implementations yield enough tasks to utilize all available compute units.

In such distributed executions, acceleration is limited by the slowest compute node in the

network, which is related to the sum of the computational complexity of the neurons it holds.

As a side note, it is relevant to mention that runtime of individual neurons can vary up to

fourfold and neurons are distributed in a round-robin fashion. However, this distribution

does not alter the speedup achieved as both implementations follow the same input data

distribution.

The results suggest that the strong scaling properties for single neuron simulation are pre-

served between the single and the 128 compute nodes use cases. In practice, the speedup

achieved holds for similar ratios of neurons per compute cores. The guaranteed preservation

of scaling properties allows for an accurate performance modelling on a very wide spectrum of

number of neurons per total compute cores across the network, making our model adjustable

to a wide range of distributed architectures.

As the input size increases, an increase of the number of neurons leads to a better overlap of

computation and communication, decreasing the overall runtime in both implementations.

The speedup achieved when utilising all available threads was of 7.9x for 128 neurons, 6.9x

for 256 neurons, 4.2x for 512 neurons, 3.1x for 1024 neurons and 2.6x for 2048 neurons,

due to coarse-grained task parallelism on the reference solution leading to higher compute

load imbalance. At the largest scale of 4096 neurons (rightmost bottom plot), the methods

presented are shown to be executed with a speedup of 2.1x over the reference solution at a

runtime that approximates the optimal speedup given by the ideal limit. In such scenarios,

higher parallelism efficiency is achieved by processing a large enough number of neurons that

allows serial processes to be overlapped with the computation of other neurons, keeping all

compute cores busy. For datasets equal or greater than 4096 neurons, both the proposed and

reference implementations yield enough tasks to allow full usage of computing resources, as

at least one neuron per core is readily available for processing. Nevertheless, an acceleration

of more than twofold of the proposed graph- and instances-parallel version over the reference

implementation is noticeable. Similarly to the branch-parallelism method covered in the

previous chapter, this is due to the finer-grained parallelism exposed, allowing better dynamic

task distribution across compute cores, thus better adapting to the disparity of execution

runtime across neurons.

As closing remarks, the distributed implementation of our methods requires communica-

tion between compute nodes at every synaptic-exchange time interval, contrarily to existing

branch-parallelism efforts (Hines et al., 2008) that require branch-section communication at
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every computation timestep. The low overhead of communication and the overlap of commu-

nication and computation justify the aforementioned preservation of scaling properties.

3.5 Discussion

We developed a strategy for exploiting micro-parallelism of systems of ODEs, based on five

methods: (1) a computation graph extracted from variable dependencies, exposing read-after-

write and concurrent output dependencies; (2) an embarrassingly parallel computation of

blocks of independent ODEs; (3) a vector-based computation of blocks of instances of similar

ODEs; (4) a load balancing scheme based on individual ODEs’ execution time; and (5) an

asynchronous execution model that efficiently delegates tasks to computing resources on a

distributed compute environment.

We applied our strategy to the compute kernel of the NEURON scientific application (Kumbhar

et al., 2019), with asynchronous methods for global memory addressing space, remote pro-

cedure call, threading, synchronization and communication methods provided by the HPX

runtime system. Benchmark results showed that the techniques presented allow for good

strong scaling properties; a single neuron speedup of 7.0x on an Intel Knights Landing com-

pute node, 5.4x on the Cray XE6, 4.5x on the Intel E5 and 4.2x on the Xeon 6140, compared to

the state-of-the-art SIMD implementation; and over threefold this efficiency when compared

to the NEURON simulator with non-vectorized computation.

Applied to a distributed network of 128 Cray X6 compute nodes and a large network of neurons,

our implementation delivered a speedup of 2.1x for a network with a distribution of one neuron

per thread — and full occupancy of compute resources — with the speedup increasing up

to 7.9x for smaller datasets. Moreover, benchmarks of distributed executions showed that

single-node strong scaling properties are preserved, and suggested an approximation to ideal

scaling following an increase of the input size.

Due to the flexibility in the level of fine-grained parallelism exposed, our methods are shown

to allow for an almost ideal usage of computing resources on large datasets on a wide range of

compute architectures.
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4 Fully-Asynchronous Cache-Efficient
Simulation

This chapter is adapted from the preprint version of the following article:

Magalhaes B., Hines M., Sterling T., Schürmann F., "Fully-Asynchronous Cache-Efficient Simulation of

Detailed Neural Networks", accepted at International Conference on Computational Science (ICCS) 2019

Personal contributions: conceptualization, formal analysis, investigation, methodology, software, valida-

tion and writing.

4.1 Abstract

Modern asynchronous runtime systems allow the rethinking of large scale scientific appli-

cations. With the example of a simulator of morphologically detailed neural networks, we

show how detaching from the commonly used Bulk Synchronous Parallel (BSP) execution

model allows for an increase of processor’s prefetching capabilities, increased cache local-

ity, and an overlap of computation and communication, consequently leading to a lower

time to solution. Our strategy removes the operation of collective synchronization of ODEs’

coupling information (i.e. synaptic transmission), and takes advantage of the pairwise time

dependency between equations, leading to a fully-asynchronous parallel execution model,

supported by an exhaustive yet not speculative stepping protocol. Combined with fully linear

data structures, communication reduce at compute node level, and an earliest equation steps

first scheduler, we perform an acceleration at the cache level that reduces communication

and time to solution by maximizing the number of timesteps taken at each stepping iteration.

Our methods were implemented on the compute kernel of the NEURON scientific application.

Asynchronicity and distributed memory space are provided by the HPX runtime system for the

ParalleX execution model. Benchmark results demonstrate a superlinear speedup that leads to

a reduced runtime compared to the bulk synchronous execution, yielding a speedup between

25% to 65% across four distinct compute architectures, and 15% to 40% on a distributed

execution on 32 Cray XE6 compute nodes.
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Figure 4.1 – Distribution of synaptic delays in terms of count (left y-axis) and percentage
(right y-axis) of all synapses in a network of 219.247 neurons, extracted from a biologically
inspired digital reconstructed model of the rodent neocortex from Markram et al. (2015).
Histogram contains one bin per interval of 0.1ms. The leftmost bar (x = 0.1ms) represents the
communication step size of state-of-the-art implementations based on the Bulk Synchronous
Parallel execution model.

4.2 Introduction

Similarly to state-of-the-art approaches for large scale simulations on a wide range of sci-

entific domains, the simulation of the electrical activity of neural networks follows the Bulk

Synchronous Parallel (BSP) execution model. Execution is split in time grids of equidistant

intervals, a period of time with duration equivalent to the minimum synaptic delay across all

pairs of neurons in the system. Neurons are interpolated independently, and their synaptic

activity and stepping is synchronized at the end of each interval.

Synaptic communication is typically performed with Message Passing Interface (MPI). How-

ever, it has been shown that, for extremely large networks of compute nodes, the synchronous

collective communication can account for over 10% of the overall runtime (Ovcharenko et

al., 2015). This limitation is difficult to overcome in current approaches, as acceleration of

the computation of complex models above one-tenth of real time is difficult, due to latency

of inter-process communication (Zenke & Gerstner, 2014). Similar scalability issues derived

from communication and synchronization are also prone to occur and have already been

discussed in other high-impact large scale simulations of time- and space-bounded elements,

such as N-body simulations (Gordon Bell Prize (GBP) winners for the years 2009, 2010 and

2012 (Ishiyama et al., 2012)), cardiac model simulations (GBP 2015 finalist (Randles et al.,

2015)), fluid dynamics (GBP 2013 winner (Rossinelli et al., 2013)), materials crystalization

(GBP 2011 winner (Shimokawabe et al., 2011)), weather forecasting (Rodrigues et al., 2010)

and direct volume rendering (Kutluca et al., 2000).

The stepping constraint implicit in the short interval that determines the communication step

size follows from the assumption of the worst case scenario derived from synaptic activity of

interconnected neurons. The minimum synaptic delay between a pre- and a post-synaptic

neuron defines the maximum difference in stepping allowed, with the guarantee that no spike
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is missed if the pre-synaptic neuron spiked in the previous synaptic delay interval. To ensure

that such guarantee holds for a network of neurons, the minimum synaptic delay across

all pairs of neurons delimits the length of the global synchronization/communication step.

However, the minimum synaptic delay that dictates the communication step size, accounts for

a very small portion of the overall synaptic connectivity. In practice, such value is computed

as 0.1ms or equivalently four compute steps and accounts for circa 0.13% of all the synaptic

delays. For completeness, the histogram of distribution of synaptic delays on a network of 219

thousand neurons is provided in Figure 4.1.

Motivated by the search of new execution models that overcome the aforementioned is-

sues, and accelerate the simulations of detailed neuron models, this chapter presents the

Fully-Asynchronous Parallel (FAP) execution model that improves cache locality and pro-

vides cache-level acceleration by removing synchronous communication steps. The model

presented relies on an exhaustive yet not speculative stepping protocol that advances ODEs

timestepping beyond synchronization barriers, based on the time coupling between equations.

Our strategy includes five components. At first, (1) a fully-asynchronous stepping protocol

that allows elements to perform several timesteps without collective synchronisation. Cache

locality is improved by (2) a fully linear memory representation of the data structure, including

vector, map and priority queue containers, and is further increased by (3) a computation

scheduler that tracks the time progress of ODEs in time and advances the earliest element to

its furthest instant in time. Network communication on distributed executions is minimized

by (4) a point-to-point fully-asynchronous protocol that signals elements’ time advancement

to its dependees laid out in a Global Memory Address Space, and by (5) a local communication

reduce operation at every compute node (locality).

We implemented our methods on the compute kernel of the NEURON scientific application

(Kumbhar et al., 2019), available as open source (Blue Brain Project, 2015a), with communi-

cation, synchronization, and threading enabled by the HPX-5 runtime library (Sterling et al.,

2014). A benchmark was performed on four different compute architectures, and demonstrate

a decrease of 31% to 65% in runtime compared to the reference solution on Intel E5, Intel

Knights Landing and Intel Xeon architectures, and a decrease of 25% to 31% on an AMD

Opteron. A distributed execution on a Cray XE6 compute cluster with 32 compute nodes

demonstrates a speedup of 15%-40%.

4.3 Methods

Significant cache acceleration is difficult to achieve for scientific problems defined by complex

data representations. Typically, the main principles to improve cache-efficiency are based on

the following rules: using smaller data types and organizing the data so that memory alignment

holes are reduced; avoiding the use of algorithms and data structures that exhibit irregular

memory access patterns; using linear data structures, i.e. serial memory representations

that improve access patterns; and improving spatial locality, by using each cache line to the
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Figure 4.2 – Memory representation of linear data structures. Gray arrows represent connec-
tions between contiguous memory regions. a) linear vector; b) linear map; c) linear priority
queue; d) a circular array representing a sample entry in the priority queue.

maximum extent once it has been mapped to the cache. Following this reasoning, the next

section details the implementation of our cache efficiency methods.

4.3.1 Linear Data Structures

To avoid fragmentation of data layouts in memory due to dynamic memory allocations and to

optimize cache memory reutilization, we implemented a fully linear neuron representation,

including class variables and containers. Because the number of elements in the containers

are either fixed or defined by a predictable worst case scenario, the size of the container data

structures can be computed beforehand. A single memory buffer allocation follows, and an

in-place instantiation of state variables and containers yields a single contiguous memory

representation of the whole neuron. The description of the containers follows in the following

paragraphs.

Linear Vector: implemented as a serialization of the std::vector class found in the C++

standard library (Josuttis, 2012), with meta data, pointers, and data elements placed on a

sequential memory space. An illustration of the linear vector data structure is displayed in

Figure 4.2 (a).
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Linear Map: an unordered map structure storing the mapping of a key to a value or to an

array of values. A search for a given key is performed with a binary search across the metadata

containing all (ordered) keys, thus yielding similar computational complexity as the std::map
implementation with a red-black tree, at O(log n). The metadata related to each entry in the

map contains the linear vector holding the elements referring to the respective key. Because

the size of each vector in a wost case scenario can be computed beforehand (e.g. maximum

number of incoming synapses at any given time), a continuous memory region containing

all entry vectors — and consequently a linearization of the map — is possible. Moreover, the

linear data representation of the map values allows for operations such as minimum value,

maximal value and value search can be performed with the same efficiency as a single vector

by traversing the continuous memory of all data arrays. For clarity, the memory layout of the

linear map is presented in Figure 4.2 (b).

Linear Priority Queue: storing time-driven events such as pairs of delivery time and destina-

tion. Capable of handling dynamic insertion and removal of events throughout the simulation

on a queue of time ordered events. Our implementation relies on a map of circular arrays of

ordered time events per pre-synaptic neuron index (the key field). Circular arrays are dimen-

sioned by a pre-computed maximum size, defined by the maximum number of events that can

occur during the time window that two given neurons can be set apart at any time throughout

the execution. As an example, for a given synaptic connectivity A → B with minimum synaptic

delay of 1ms and the converse B → A of 5ms, the maximum stepping time window between

both is 6ms long. To retrieve all subsequent events to be delivered in the following step, the

algorithm loops through all keys, collects all events in the interval, and returns the time-sorted

list of events. This replaces the iterative peak/top and pop operations underlying regular

queue implementations. The memory layout is presented in Figure 4.2 (c). At the level of each

key, given a pre-synaptic neuron index, the list of future events is retrieved in the pop-push

interval of elements in the respective circular array. Push (pop) operations will increment the

push (pop) offset variable and insert (retrieve) the element in that position. For completeness,

Figure 4.2 (d) displays an example of the circular array memory structure for a given key.

As a side note, cache-optimized implementations of priority queues such as funnel heap,

calendar queue or other cache-oblivious queues (Arge et al., 2002) improve memory access

pattern yet do not guarantee a fully-linear memory allocation. For the sake of comparison,

the computational complexity of both ours and the standard library std::priority_queue
implementations are similar, requiring the retrieval of all events within the next timestep

(O(k) for a loop through all the k queues and extraction of the first element on the circular

arrays), plus a sorting operation (with worst-case scenario O(n log n)) for a solution of size

n, compared to the standard library implementation requiring a complexity in the order of

O(n log n) for n retrievals.

As a closing remark, linear data structures allow for better cache locality and introduce a

speedup in the overall execution time by reutilizing previously cached memory locations.
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Figure 4.3 – Representative schema of the time-dependency control method for the synchro-
nization of stepping and spikes, applied to a network of seven neurons. Top: sample network of
neurons (vertices 1-7). Arrow heads (tails) connect to post- (pre-) synaptic neurons. Labels on
edges describe the minimum synaptic delay across all synapses from a pre- to a post-synaptic
neuron connection. Bottom left: outgoing communication for neuron 4. Arrow tail (head)
represents a message to the source (destination) neuron. A neuron transmits the time step
allowed by the post synaptic neuron, given by his present time plus the minimum transmission
delay between itself (the pre-) and the post-synaptic neuron — represented as td pr e → post
and conforming to the graph on the left. Spike notifications (ts , circles) also provide progrss
updates and allow post-synaptic neuron to freely proceed to a time distance equivalent time
of spike plus the refractory period (tr ) of the pre-synaptic neuron. Bottom right: incoming
communication for neuron 4. A post-synaptic neuron actively receives progress notifications
and keeps track of the maximum step allowed based on pre-synaptic neuron status.

The main goal is then to keep these linear data structures in cache for as long as possible,

to maximize their reutilization, or equivalently, the number of steps taken on each stepping

iteration. This topic is detailed in the following section.

4.3.2 Time-Based Elements Synchronization and Stepping

To allow for a flexible progress of neurons in time, that detach stepping from the constraints of

the minimum synaptic delay across all pairs of neurons in the system, our method creates a

distributed graph holding the time dependencies between neurons, as illustrated in Figure

4.3 (top). The main rationale is to allow for a given post-synaptic neuron to advance in time

based on the progress of it pre-synaptic dependencies. The result is an exhaustive stepping

mechanism, that maximises the number of steps per neuron, and an increased reutilisation
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Figure 4.4 – A sample workflow of four iterations of the neuron scheduler applied to the
network of seven neurons displayed in Figure 4.3 (top). On the iteration (frame 1), neuron 4
is the earliest in time (coloured black) and is allowed to proceed to time 1.5ms, dictated by
the transmission delay of the pre-synaptic neurons 2, 6 and 7 (coloured gray). The same logic
follows in the following iterations, with neurons 3, 2 and 5 being the next ones to advance, as
pictured in frame 2), 3) and 4), respectively.

of CPU cache. The pre- to post-synaptic neuron time updates are provided by an active

asynchronous pairwise neuron notification messaging framework. Stepping notifications

from a pre- to a post- synaptic neuron are sent at a period defined by their minimum synaptic

delay. At every computation step, a neuron notifies its post-synaptic neurons of its current step

(if necessary), and stores in a queue the next time instant at which a new notification will be

required. To reduce communication, the transmission of a spike is also handled as a stepping

notification by the post-synaptic size. As a problem-specific optimization, communication is

further reduced by taking into account the refractory period, i.e. the time interval after a spike

during which a neuron is unable to spike again.

A schematic workflow of the time-dependency algorithm is presented in Figure 4.3 (bottom).

This fully-asynchronous execution yields three main advantages compared to its BSP counter-

part: (1) larger stepping intervals by completely removing collective synchronization barriers;

(2) less often communication as the pairwise communication delays are generally two orders

of magnitude longer than the global minimum transmission delay; and (3) full overlap of

computation and communication. To maximise the number of steps taken on any stepping

interval, a neuron scheduler allows for an optimal decision of the next neuron to step, by

keeping track of the progress of neuron throughout simulation. This topic is covered next.

4.3.3 Neuron Scheduler

In order to increase cache efficiency even further, a scheduler was implemented to control

and trigger the advancement of neurons in time based on their simulation time. At every

iteration, the scheduler (one per locality) actively picks the earliest neuron in time and triggers

its stepping. On multi-core architectures, a multi-threaded version of the scheduler allows

for several neurons to be launched in parallel. At the onset of stepping, a neuron queries its

dependencies map for the time allowed by its pre-synaptic dependencies, and performs the
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Figure 4.5 – A sample diagram of the communication required for the selective broadcast and
all-reduce operations using regular (left) versus locality-reduced (right) communication.

maximal stepping allowed. For clarity, Figure 4.4 provides a schematic example of 4 iterations

based on the scheduled stepping.

4.3.4 Communication Reduce

Global Memory Address Space (GAS) — as defined by the ParalleX standard — allows for

remote procedure executions on objects (neurons) distributed across several localities. On a

single locality, each message incurs the overhead of a lightweight thread, as GAS addresses

are an abstraction to a physical address in local memory. However, on a distributed execu-

tion, each call is an instantiation of a procedure to be executed in an object held possibly

in a different locality. Therefore, large amount of object-to-object communications may be-

come a bottleneck by saturating the network bandwidth. This issue is trivial to overcome on

MPI-based implementations, as the sender locality is responsible for buffering, packing and

initiating the communication, while the converse operations must follow from the receiver.

On the ParalleX runtime system, its resolution is not as simple, as data representation in GAS

arrays removes the locality-awareness of each object on a distributed array.

To reduce the overhead of the high amount of point-to-point (inter-neuron) messaging, an

extra layer of communication was introduced. Notifications of stepping and spikes for several

post-synaptic neurons are packed at the onset of the communication phase, as single packets

to remote localities. At the recipient locality, a map of pre-synaptic neuron indices to the

list of local GAS addresses allows for a message to be unfolded and locally spawn to the

recipient GAS addresses in the locality. In practice, for a selective broadcast operation —

typical of a spike exchange — this method replaces n remote communications to neurons, by

l communications to localities followed by a lightweight threads spawn at each locality, where

n À l . For completeness, Figure 4.5 provides an illustration of the communication reduce

methods.
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4.4 Benchmark

4.4.1 Implementation

Our strategy was implemented on the compute kernel of the NEURON scientific application

(Kumbhar et al., 2019), available as open source (Blue Brain Project, 2015a). Communication,

synchronization and memory allocations performed with MPI, OpenMP and malloc, were

replaced by the equivalent HPX counterparts. Both the fully-asynchronous and the reference

implementations follow the same numerical resolution.

The following features were implemented with HPX primitives:

• Memory allocations of individual neurons are performed at the onset of execution.

Neurons are placed on the Global Address space based on an offset given by the pre-

computed (linear buffer) size of each neuron. Neurons metadata and linear containers

are initialized on the previous memory space;

• Point-to-point communication guiding neuron stepping notifications is implemented

with asynchronous remote procedure calls. The delivery of a message updates the

respective pre-synaptic neuron’s entry in the map of interpolation times instant per

pre-synaptic neuron (held on the memory space of the post-synaptic neuron);

• Communication reduce is implemented with a protocol that performs communica-

tion to remote locality addresses (instead of neuron GAS addresses), with posterior

lightweight threads performing the delivery of data to the local neurons;

• The scheduler at every compute node is built with a memory-protected priority queue

holding the time instant of the local neurons, and the set of neurons being processed.

Upon the termination of each stepping iteration, a neuron updates its new time instant

in the scheduler’s priority queue, and removes itself from the set of executing neurons.

The next neuron to be picked by the scheduler is the first in the queue which is not part

of the set of executing neurons.

A mutual exclusion control object (mutex) initiated with a counter equal to the number

of threads serves as progress control gate. When all threads have been assigned a neuron,

the scheduler waits on the mutex. Upon the end of the stepping from a neuron, its

thread goes dormant and atomically decrements the mutex counter, waking up the

scheduler, and updating its progress in the scheduler’s progress map. The waking of

dormant neuron threads is supported by an and-gate per neuron (initiated as 1).

Remaining details on the HPX implementation of other features — such as synaptic delivery —

have been covered in previous chapters and will be omitted for brevity.
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4.4.2 Use Case

The benchmark use case is the simulation of 100ms of electrical activity of a morphologically

detailed neural network of layer 4 and 5 cells of the rodent brain, extracted from the model of

Markram et al. (2015), with the distribution of synaptic connectivity previously presented in

Figure 4.1. Each representation of a neuron requires a total memory of 4 to 12 MB, including

the neuron structure and the supporting data structures for the full-asynchronous execution.

4.4.3 Hardware Specifications

To demonstrate general applicability of our methods to a wide range of compute architectures,

we utilised four different compute architectures with high variability in processor architecture,

CPU frequency, memory bandwidth and cache: (1) Intel Sandy Bridge E5-2670 with 16 cores

at 2.6 Ghz; (2) Cray XE6 compute node with an AMD Opteron 6380 with 16 cores at 2.5 Ghz

each; (3) Intel Knights Landing (KNL) Xeon Phi with 64 cores at 1.3 Ghz; and (4) Intel Xeon

Gold 6140 with 18 cores at 2.3Ghz. The L1, L2 and L3 cache sizes for the architectures are:

448KB, 3.5MB and 35MB for the Intel E5; 768KB, 16MB and 16MB for the Opteron; 16KB, 1MB

and 32 MB for the Intel KNL; and 576KB, 18MB and 24.75MB for the Xeon 6140.

Distributed benchmarks were executed on 32 compute nodes of Cray XE6 compute nodes,

with specialized Infiniband network hardware for efficient point-to-point communication.

4.4.4 Linear Containers

Cache efficiency of linear containers was measured with the likwid suite for performance

monitoring and benchmarking (Treibig et al., 2010) on the Xeon 6140 processor. The perfor-

mance counters were set to measure the containers’ performance only, in order to isolate

its performance analysis from other features. The benchmark testbench compares cache

efficiency of linear versus standard library’s containers. The estimated amount of read/write

operations are:

• a spike or event notification at approximately every 15 ms, requiring a loop through the

map of post-synaptic neurons’ information;

• a delivery of an event — spike information, external currents, time notification — at

circa every 0.05 ms, requiring a query to the priority queue;

• a computation of the maximum time step allowed by querying the map of time instant

per pre-synaptic neuron at every timestep (0.025ms); and

• an insertion of future events to be delivered — with a push to the priority queue — at

almost every time step.

The cache efficiency results on the BSP-based stepping protocol, with four continuous steps
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Bulk Synchronous Parallel execution model (4 steps per iteration)

Metric
128 neurons 256 neurons 512 neurons 1024 neur. 2048 neur.

linear std linear std linear std linear std linear std
Runtime (secs) 2.13 14.42 12.5 64.3 63.7 278 294 1206 1298 5182
Iterations count (×103) 12.9K 12.9K 25.8K 25.8K 51.7K 51.7K 103K 103K 206K 206K
Instructions count (×109) 12.2 50.9 53.2 221 231.5 953.4 1003.2 4089 4327 17.5K
Clock cycles Per Instr. 0.54 0.85 0.71 0.90 0.82 0.87 0.87 0.88 0.90 0.89
L1/L2 data volume (GB) 1.16 1.52 5.47 9.53 32.1 90.6 266 902 2138 5065
L2/L3 data volume (GB) 1.23 1.23 4.64 4.08 20.3 14.7 80.9 56.8 330 233
L3/system data vol. (GB) 0.77 1.81 3.49 6.94 15.8 27.3 63.8 95.4 254 346
Memory data volume (GB) 0.90 1.39 2.87 4.50 11.5 16.1 46.0 58.0 163 222

Scheduler-driven execution (4+ steps per iteration, steps distribution in Figure 4.6)

Metric
128 neurons 256 neurons 512 neurons 1024 neur. 2048 neur.
linear std linear std linear std linear std linear std

Runtime (secs) 2.03 13.6 11.9 60.9 60.4 263.6 277 1143 1222 4913
Iterations count (×103) 4.34 4.34 8.69 8.69 17.39 17.39 34.76 34.76 69.45 69.45
Instructions count (×109) 11.4 47.9 49.9 209 218.3 901.5 948.3 3868 4096 16.4K
Clock cycles Per Instr. 0.54 0.85 0.72 0.87 0.83 0.87 0.87 0.88 0.891 0.888
L1/L2 data volume (GB) 0.68 0.96 4.29 8.34 29.2 78.2 252.9 818.5 2036 4655
L2/L3 data volume (GB) 0.63 0.48 2.60 1.67 13.9 6.10 59.3 24.8 249.3 109.6
L3/system data vol. (GB) 0.43 0.96 2.10 3.95 10.6 13.7 43.03 42.06 172.3 148.1
Memory data volume (GB) 0.42 0.77 1.54 2.42 7.33 9.32 32.48 35.18 123.2 121.2

Table 4.1 – Cache efficiency of linear and standard library (std) containers, for the BSP execu-
tion model (4 steps per neuron, top) and the Fully-Asynchronous Parallel execution model
(bottom, with the steps distribution presented in Figure 4.6 ).

per neuron, and a communication interval at every 0.1ms, is provided in Table 4.1 (top).

Results demonstrate a lower time to solution of circa 4x on the linear implementations versus

standard library’s, caused by: (1) less instructions, suggesting a more efficient implementation;

(2) less data volume across different cache levels and system, suggesting higher reutilisation

of data structures across all memory layers; and (3) less memory data volume, suggesting a

more compact representation of data leading to more information loaded per cache line. As a

relevant remark, Layer 3 cache in the Xeon 6140 architecture is a victim cache, or a refill path

of CPU cache. Thus, the L2/L3 data volume is higher in our implementation due to demotions

of L2 data to L3 instead of main RAM, representing an advantageous behaviour compared to

the reference implementation.

4.4.5 Neuron Scheduler and Asynchronous Stepping

Our analysis was extended with asynchronous stepping. Neuron step scheduling for earliest

neuron steps first was enabled and the distribution of steps size for different input datasets

was measured and is presented in Figure 4.6 (c). The step sizes vary depending on the circuit

size due to an increased inter-neuron connectivity for larger circuits. In practice, an increase

in the number of neurons leads to a possibly increased amount of pre-synaptic connectivity,

and to a higher probability of having a smaller minimum synaptic delay for a given pair of

neurons, leading to smaller stepping intervals.

With this in mind, we performed a similar cache efficiency benchmark for the asynchronous
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Figure 4.6 – a) Time to solution of the methods presented (neurox async.) and the Bulk
Synchronous Parallel equivalent (NEURON BSP) on the simulation of 100ms of the electrical
activity of differently sized neural networks, on four different hardware specifications. b)
Benchmark results for the simulation of 100ms of electrical activity of an increasing number of
neurons extracted, on a network of 32 Cray XE6 compute nodes. c) Distribution of maximum
step size allowed when following the earliest neuron steps first scheduler in the network with
synaptic delays represented in Figure 4.1.

execution model, and the details are provided in Table 4.1 (bottom). Results of linear versus

standard library’s (std) implementations follow in line with the BSP use case, displaying

better memory access and lower time to solution when comparing both implementations.

Asynchronous scheduled stepping yielded a lower runtime in the order of 5−10%, and a more

efficient memory access compared with the previous BSP benchmark, on both linear and std

implementations.

4.4.6 Communication Reduce

The efficiency of the communication reduce was benchmarked on a network of 32 Cray XE6

compute nodes, measuring the runtime, number of point-to-point (p2p) and number of

reduce operations per locality, on the previous testbench. A benchmark compares the reduced
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BSP execution; 32 compute nodes; p2p comm. for spiking, reduce at every 0.1ms

Metric
512 neurons 1024 neurons 2048 neurons 4096 neurons 8192 neurons

reduce simple reduce simple reduce simple reduce simple reduce simple
Runtime (secs) 3.90 4.07 4.93 5.51 7.48 8.70 12.96 15.66 28.38 31.61
point-to-point 2168 2327 7543 8855 24.3K 33.4K 70.1K 124K 188K 480K
reduce comm. 100 1600 100 3200 100 6400 100 12.8K 100 25.6K

Asynchronous Execution; 32 compute nodes; p2p for spiking and stepping notification

Metric
512 neur. 1024 neur. 2048 neurons 4096 neurons 8192 neurons

red. simple red. simple reduce simple reduce simple reduce simple
Runtime (secs) 3.60 3.80 4.07 4.42 6.66 6.53 12.14 13.27 26.75 28.31
point-to-point 623K 665K 2.34M 2.72M 8.25M 11.09M 44.77M 25.79M 71.75M 181.46M

Table 4.2 – Performance of regular versus locality-reduced communication in terms of run-
time, and number of point-to-point and reduce communications, on the BSP (top) and
asynchronous (bottom) execution models.

versus non-reduced (simple) communication implementations. Results are presented for the

BSP execution model — with a point-to-point communication for transmission of synapses

and a reduce operation for the synchronization of neurons stepping — and the FAP model,

where point-to-point communication guides synaptic activity and neurons stepping notifica-

tions. The results are provided in Table 4.2 and demonstrate a reduction of communication

workload and runtime, on both the BSP and the FAP models. The gap in communication

workload between reduced and non-reduced implementations increases with the circuit size,

as more neurons incur more synaptic activity and communication. An acceleration of circa

5%−10% is visible when moving from the BSP to the asynchronous execution model.

4.4.7 Single Compute Node Executions

The benchmark for a single compute node of the four aforementioned compute architectures

is displayed in Figure 4.6 (top) and compares our methods (neurox async.) with the reference

solution (NEURON BSP), for an increasing number of interconnected neurons. The results

demonstrate that the speedup achieved decreases as we increase the number of neurons in the

dataset. This property is due to the reduction of maximal step allowed by the neuron scheduler

as we increase the number of neurons, as presented in Figure 4.6 (c). On the Intel Xeon 6140,

the methods yield a speedup between 31% — for the largest network of 2048 neurons — and

51% for the network of 16 neurons. The speedups for the remaining architectures are 36%-65%

for the KNL, 35%-54% on the Intel E5, and 26%-31% on the Cray XE6.

4.4.8 Distributed Executions

In order to understand whether the efficiency of the fully-asynchronous execution model

in single compute nodes holds in a distributed compute environment, we extended our

benchmark to a network of 32 Cray X6 compute nodes. Similarly to the single compute node

use case, the test bench provides the runtime for an increasing number of neurons, in this

case for a fixed network of 32 compute nodes. The results are presented in Figure 4.6 (b), and
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display a speedup of 16% for the largest dataset of 32768 neurons, up to 40% for 256 neurons

i.e. one neuron per core per locality.

4.5 Discussion

In this chapter, we explored the capabilities of new runtime systems for the numerical sim-

ulation of large systems of ODEs. We presented the fully-asynchronous parallel execution

model, with the capability of removal of global synchronization barriers, leading to better

cache-efficiency and lower time to solution, due to long timestepping of individual equations

based on their time coupling information.

We detailed the implementation of a fully-asynchronous, cache-accelerated, parallel and dis-

tributed simulation strategy supported by the HPX runtime system for the ParalleX execution

model, providing a Global Address Memory space, remote procedure calls and asynchrony

capabilities. Five components were introduced and detailed: (1) a linear data representation of

a vector, map and priority queue containers that allow for the sequential instantiation of whole

neuron data structures in memory; (2) an exhaustive yet not speculative stepping of individual

equations based on their time dependencies, supported by (3) a point-to-point communi-

cation protocol that actively notifies neuron time dependencies of the time advancement of

their dependees, and allows for the full overlap of computation and communication; (4) an

object scheduler that further improves cache locality by maximising the number of steps per

run by tracking equations progress throughout the execution; and (5) a local communication

reduce operation that translates point-to-point to point-to-locality communication in a global

address memory space.

Our methods were implemented on the compute kernel of the NEURON scientific application

and tested on a biologically inspired branched neural network. We analysed and demonstrated

the efficiency of the features introduced in terms of communication, cache efficiency, patterns

of data loading, and time to solution. Benchmark results yielded a significant speedup in

runtime in the order of 25% to 65% across different compute architectures and up to 40% on

distributed executions.
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5 Fully-Asynchronous Fully-Implicit
Variable-Order Variable-Timestep
Simulation

This chapter is adapted from the preprint version of the following article:

Magalhaes B., Hines M., Sterling T., Schürmann F., "Fully-Asynchronous Fully-Implicit Variable-Order

Variable-Timestep Simulation of Neural Networks", published on arXiv

Personal contributions: conceptualization, formal analysis, investigation, methodology, software, valida-

tion and writings.

5.1 Abstract

State-of-the-art simulations of detailed neural models follow the Bulk Synchronous Paral-

lel (BSP) execution model. Execution is divided in equidistant communication intervals,

equivalent to the shortest synaptic delay in the network. Neurons stepping is performed inde-

pendently, with collective communication guiding synchronization and exchange of synaptic

events.

Commonly to most biological simulations, the interpolation step size is fixed and chosen

based on some prior knowledge of the fastest possible dynamics in the system. However,

simulations driven by a stiff dynamics or a wide range of time scales — such as multiscale

simulations of neural networks — struggle with fixed step interpolation methods, yielding

excessive computation of intervals of quasi-constant activity, inaccurate interpolation of

periods of high volatility in solution, and being incapable of handling unknown or distinct

time constants. A common alternative is the usage of adaptive stepping methods, however

they have been deemed inefficient in parallel executions due to computational load imbalance

at the synchronization barriers that characterize the BSP execution model.

We introduce a distributed fully-asynchronous execution model that removes global commu-
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nication and synchronization, allowing for long variable timestep interpolation of neurons.

Asynchronicity is provided by active point-to-point communication notifying neurons’ time

advancement to synaptic connectivities. Time stepping is driven by scheduled neurons time

advancement based on synaptic delays across neurons, yielding an exhaustive yet not specula-

tive adaptive-step execution.

Execution benchmarks on 64 Cray XE6 compute nodes demonstrate a reduced number of

interpolation steps, higher numerical accuracy and a lower time to solution, compared to

state-of-the-art methods. Efficiency is shown to be activity-dependent, with scaling of the

algorithm demonstrated on a simulation of a laboratory experiment.

5.2 Introduction

In the previous Chapter 4, we presented a method for acceleration at the cache level, where we

pioneered the Fully-Asynchronous Parallel (FAP) execution model applied to fixed timestep

interpolations, illustrated in diagram c) in Figure 1.2. The underlying logic is that, because

the BSP communication interval refers to the shortest event delay across the system, the

removal of collective synchronization barriers and stepping neurons based on their pairwise

connectivities, allows for stepping intervals longer than the BSP communication timeframe.

This was shown to promote better processor prefetching, lower data volume across memory

layers, data representations being kept longer in faster cache levels, and ultimately, a reduced

time to solution.

An orthogonal axis of acceleration relies on improved numerical resolution by utilizing a

variable step interpolation of individual neurons, with synchronization at each BSP communi-

cation interval. Lytton et al. (Lytton & Hines, 2005) presented an implementation of adaptive

step interpolation in NEURON, by utilising the CVODE library (Cohen & Hindmarsh, 1996).

For a given function and time, the CVODE approximates the derivative of a function using

information from previous steps (stored in the state history), thereby increasing the accuracy

of the numerical resolution. The step size is tentatively computed in order to respect a user-

provided tolerance (atol), thus adapting the step size to rapid variations of voltage trajectory.

Current events that cause a discontinuity of solution forces the integrator to start again with a

new state. The method guarantees coherent variable stepping on distributed compute nodes

by exchanging events at BSP-based communication barriers, therefore avoiding synapses

being delivered in preceding instants in time. However, it limits the steps length to the BSP

communication barrier, or the instant of the nearest synaptic or discontinuity event. For

clarity, an illustration of this method is dispayed in layout b) in Figure 1.2.

Following from the two previous efforts, this chapter introduces a method for the distributed

fully-asynchronous variable-order variable-timestep interpolation of detailed neuron mod-

els, that benefits from cache-efficient barrier-free synchronization and performs variable

timesteps on the FAP execution model. We show that by following an earliest neuron steps next

scheduler, we allow for large time interpolation intervals, and maximise the efficiency of the
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variable step interpolator beyond what was believed to be possible in BSP-based executions.

The scope of our methods are presented in Figure 1.2, layout d).

The contributions of this chapter are as follows. We present the mathematical formalism

underlying the simulation of our use case and its resolution with variable step interpolation.

We perform a study of numerical precision on the electrical activity of a single neuron and

demonstrate higher numerical accuracy than its fixed step counterpart found in NEURON.

We analyse and discuss the benefits and bottlenecks of two distinct distributed variable-step

execution models —- a speculative model with backstepping, and a scheduled non-speculative

model — and provide insights on their feasibility on distributed simulations of large networks

of neurons. We demonstrate a low sensitivity of our model to stiffness of solution (spiking

rate), and high susceptibility to discontinuity events (synaptic activity) with a guaranteed

speedup for a discontinuity rate below approx. 1000 Hz. To measure the relevance of our

findings on a real use case, we simulate a laboratory experiment based on the spontaneous

activity of 219 thousand neurons, demonstrating a mean discontinuity frequency of 94 Hz,

and large periods of absence of discontinuities, demonstrating the suitability of our methods

to the problem domain.

An implementation of our methods on the compute kernel of the NEURON scientific applica-

tion is detailed, and a benchmark is performed on 64 Cray XE6 compute nodes. Distributed

asynchrony and multi-core executions on a global memory address space is provided by the

HPX runtime system (Sterling et al., 2014). We simulate five spiking regimes that characterize

several dynamics of the mammal brain, on an input of 1024 to 65536 neurons, and compare

our methods against five state-of-the-art numerical solvers. Results demonstrate a speedup

of 544-65x for a quiet spiking regime of 0.25Hz representing a majority of neurons in regular

brain activity, down to 7.7-1.8x to a moderate regime of 6.5Hz, and 2x to no acceleration for 38

Hz, a pattern of unlike occurrence or short duration. An analysis of the overall performance

achievable on the previous laboratory experiment demonstrates a speedup of 224.5-11.9x

for an execution with precise delivery of events, increasing to 225.1-17.1x and 228.5-24.6x

for two optimized alternatives that group events delivery in the next half and full timestep (a

numerical precision similar to the state-of-the-art fixed-step methods). To finalize, we show

that over 95% of neurons fall in three spiking regimes that guarantee the preservation of the

speedup in larger networks, demonstrating good scaling properties of our methods to very

large networks of neurons.

5.3 Methods

5.3.1 Resolution of Simple and Complex Neuron Models

In Section 1.6 we detailed a problem specific optimization that allows for a substantial speedup

on the resolution of simple neuron models such as the Hodgkin-Huxley (Equation 1.2), where

state variables m, n and h are described by linear ODEs and depend only on the voltage V ,
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and vice-versa. In such scenarios, an implicit resolution based on interleaved timestepping of

voltage and states, by solving voltages at a given time t and states at time t +∆t/2, allows for

the resolution of the system of ODEs as a system of linear equations.

Resolution of complex models, including non-linear and/or correlated state equations cannot

be resolved with the aforementioned method, and require a fully-implicit resolution. A use

case of high importance is the model of synaptic plasticity and learning, such as the one

presented by Graupner et al. (Graupner & Brunel, 2012), with cubic ODEs and correlated

calcium and synaptic efficacy values, or Chindemi et al. (Chindemi, 2018) with higher com-

plexity introduced by ODEs describing synaptic weight and calcium activity models. For such

scenarios, numerically reliable resolutions rely on fixed-step iterative implicit methods such

as the Backward Euler. Alternatively, an implicit variable timestep method with variable order

is possible, and its application to our use case is detailed in the following paragraphs.

5.3.2 Variable Step Implementation

The CVODE — C Variable-step solver for ODEs, (Cohen & Hindmarsh, 1996) — is an imple-

mentation of the Backward Differentiation Formula (BDF) for the variable-step multistep

implicit method solving the Initial Value Problem (IVP, ẏ = f (t , y), y(t0) = y0 where y ∈RN ) for

ODEs as:

q∑
i
αn,i yn−i +∆tnβn ẏ = 0 (5.1)

where y = [...,Vk−1,Vk ,Vk+1, .., xi−1, xi , xi+1, ...] is a vector representing the state variables of a

neuron or a set of neurons, following the variable notation in Equation 1.1. q is the order of

the current iteration, α and β are the BDF-method coefficients which are q-dependent and

unfolded as:

BDF-1: yn − yn−1 =∆tn ẏ ;

BDF-2: 3yn −4yn−1 + yn−2 = 2∆tn ẏ ;

BDF-3: 11yn −8yn−1 +9yn−2 −2yn−3 = 6∆tn ẏ ;

BDF-4: 25yn −48yn−1 +36yn−2 −13yn−1 +3yn−4 = 12∆tn ẏ ;

BDF-5: 137yn −300yn−1 +300yn−2 −200yn−3 +75yn−4 −12yn−5 = 60∆tn ẏ ;

(5.2)

Note that the interpolation of order 1 refers to the Backward Euler. In brief, CVODE returns the

∆tn and yn that solve BDF-q for an user-provided tolerance. The computation is performed

iteratively, with a suggested step size for each iteration based on the solution gradient and

order q . For a new step n, iteration m: (1) CVODE suggests yn(m) and ∆tn based on the user

provided jacobian ẏn . The initial guess yn(0) is computed explicitly from history; (2) CVODE

provides the Right Hand Side (RHS) computed from the BDF-q formula, and expects an user

provided yn(m+1); (3) the implicit resolution relies on Newton iterations, with a stop condition
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Figure 5.1 – Illustrative workflow of the distributed variable timestep methods analysed. Left:
Speculative interpolation advances neurons iteratively; I. Neuron 1 performs a step (blue
area) and spikes during the step interval, with spike instant marked with an inverted triangle.
Spike delivery times to post-synaptic neurons 2 and 3 are marked with blue arrow heads; II.
Neuron 2 steps next. Its current interpolation time exceeds the spike delivery time, requiring
backstepping to the missed event delivery time (red arrow); III. Neuron 3 interpolates until the
next (spike) event time. Right: Non-Speculative scheduled time stepping advances the earliest
neuron in time, and steps until the next event delivery time or maximum time allowed by
pre-synaptic connectivity (green area), to guarantee no backstepping; I. Neuron 1 advances to
the earliest time instant allowed (red arrow heads), given by the time instants of pre-synaptic
neurons 2, 3 and 4 and synaptic delays 2→1, 3→1, and 4→1, respectively; II. Neuron 3 is now
the earliest neuron in time, and follows analogously based on the synaptic delays of neurons 1
and 4; III. Neuron 2 advances based on the synaptic connectivity of neurons 1 and 3.

based on an test of ‖yn(m) − yn(0)‖ ≤ ε. If error is greater than threshold, a reiteration follows

with a smaller∆tn(m+1); if error is smaller, proceeds to step n+1 with larger∆t(n+1)(0). The user

provides the function that computes the ODE right-hand side for a given value of time t and

state vector y ; and the function that computes the Jacobian j = ∂ f /∂y or an approximation to

it.

We utilise the Jacobian function with the CVODE-based preconditioning function that solves

P x = b, where b is the input and P approximates M = I − γ J . This is the default Jaco-

bian in NEURON. Two alternative Jacobian implementations were tested and deemed in-

feasible: (1) a diagonal linear approximation to the Jacobian, given by J y = ẏ , displayed

faster computation yet highly inaccurate results; and (2) a dense matrix approximation

Ji j = ( fi (y +h j , t)− fi (y, t))/h j for a parameter variation h j was shown to be accurate yet

infeasible due to the high time to solution and high memory requirements for the dense

matrix of states.
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5.3.3 Asynchronous Timestepping of Networks of Neurons

Control of neurons time advancement on synchronized distributed executions is a solved

problem, by enforcing a BSP-like synchronization barrier (Hines & Carnevale, 1997), as in

layouts a) and b) in Figure 1.2. Here we discuss alternatives following an asynchronous execu-

tion model. We implemented and analysed the feasibility of two distinct fully-asynchronous

barrier-free execution models, displayed in Figure 5.1 and detailed next.

The initial approach is inspired on the speculative interpolator previously designed for NEU-

RON for a single compute node (Lytton & Hines, 2005). Neurons are described by individual

interpolators, and advance in time under the best assumption that no discontinuity of solu-

tion (synaptic current) will arrive with a delivery time earlier than the neuron current time.

Discontinuities lead to a reset of the IVP problem and interpolator state history, and con-

sequently to small steps in the following iterations. When a discontinuity is required to be

delivered in a past instant in time, a backstepping operation must precede, in order to reset

the recent step and interpolate neuron state back to a time instant of confidence (the time

of the discontinuity). Simulations of small neuron networks on single compute nodes are

possible and have previously shown a substantial runtime acceleration utilising this model

(Lytton & Hines, 2005). The state of neurons is local to the compute node, thus backstep-

ping of neuron states and synaptic activity are not computationally heavy and do not require

communication. However, in our implementation this approach demonstrated two main

drawbacks: (1) large spiking networks lead to a high number of IVP resets, and large amount

of time spent on speculative stepping with posterior backstepping. This is mainly due to,

in practice, one being unable to tell which neuron should be stepped at a time, such that

the risk of backstepping would be minimized and the step length maximized. Moreover, (2)

on distributed executions, a main problem arises when synaptic activity (exchanged across

different compute nodes) needs to be reverted, requiring further communication. On large

networks of neurons, the reversal may lead to an extremely complex cascade chain of reversal

notifications and backstepping across neurons on different compute nodes, leading to a high

communication and computation workload, deeming this methodology infeasible.

An alternative approach was implemented, based on the non-speculative asynchronous step-

ping methodology detailed in the previous Chapter 4. Neurons hold a map storing the time

instant of their pre-synaptic connectivities. The map is updated by stepping notifications

received actively at a certain frequency, throughout the stepping of its pre-synaptic dependen-

cies. The frequency value is set at a neuron pair level, to a minimum value that guarantees no

deadlocking. More importantly, this value is at least the BSP communication interval of 0.1ms,

and can reach up to several milliseconds (Figure 4.1), thus minimising overall communication.

Neurons step to the maximum time allowed by their synaptic connectivities. This guarantees

synapses to be delivered in future time instants, thus removing backstepping and reversion of

sent synaptic spikes. The method is improved with an earliest neuron steps first scheduler at

each compute node that keeps track of neurons advancement, and picks the earliest neuron

in time as the next to interpolate. This guarantees the maximisation of the step length and
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Figure 5.2 – Voltage potential at the soma and interpolation steps for a layer 5 pyramidal
cell (L5_TTPC2_cADpyr232_1 (Human Brain Project, 2014)) during a 6ms (left) and 100ms
simulation (right) of a 1.3m A continuous current injection, interpolated with Backward Euler
(top) and CVODE (bottom) methods, respectively. The reference implementations are the
Backward Euler method with ∆t = 1µs and CVODE with absolute tolerance 10−1, presented in
black and considered indistinguishable. The standard NEURON step size and tolerance values
are ∆t = 25µs and 10−3 and are presented in red.

provides a larger variable step interval. Due to the reduced communication and computation,

the removal of solution resets and backstepping, and larger stepping intervals, this method

will be the default used in the asynchronous variable step simulations of networks of neurons.

5.4 Results

5.4.1 Numerical Accuracy

Backward Euler is an A-stable and L-stable method of order 1. The numerical accuracy of

CVODE depends on the order of the Backward Differential Formula iteration and the user-

provided tolerance. The underlying BDF is A-stable at order 1 or 2. At orders 3 to 5, it is not

A-stable but stiffly-stable: the region of instability grows as the order increases from 3 to 5, and

stability depends on the step size (Cohen & Hindmarsh, 1996).

We compare the numerical accuracy of both models by measuring the time difference of the

main unit of interest in the activity of spiking neuron networks — the spiking time instants.

Figure 5.2 presents the voltage trajectory and number of steps of a 1.3m A current clamp

experiment for a single (6ms) and several (100ms) spikes of a layer 5 pyramidal cell. The

default settings utilised in NEURON are plotted in red, with ∆t = 25µs and atol = 10−3 for

Euler and CVODE methods, respectively. The reference solutions are plotted in black, with

∆t = 1µs and atol = 10−4, and their numerical difference is considered negligible.

Results on the single spike voltage trajectory (6ms) display a reduced step count and better

adaptation to trajectory change when comparing CVODE to Euler method. The rationale
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Figure 5.3 – Interpolation steps and runtime for the 1000ms simulation of the injection of a
continuous constant current as a percentage of the threshold current (0.206m A), on a layer 5
pyramidal cell (L5_TTPC2_cADpyr232_1 (Human Brain Project, 2014)). Results presented for
the Backward Euler with ∆t = 25µs and CVODE with atol=10−3. Hardware specifications: Intel
core i5 with 2×1.6 Ghz.

behind the better performance of adaptive stepping is that it is gradient sensitive and thus

it follows the natural behaviour of a neuron: a cell spike requires small timesteps for higher

precision, followed by interspike intervals or resting periods with little synaptic input therefore

allowing large step sizes. CVODE displays less steps during long periods of low gradient (e.g.

1−2.5ms), and greater number of steps for steep trajectories (the uprising trajectory of the

spike) and sudden changes in gradient (the trajectory proximal to the peak voltage).

The 100ms simulation studies the impact and numerical accuracy of both interpolators to

longer executions. Results display a phase shift in solution (measured as the time difference

between peak voltage values of the reference and benchmark curves) that increases with the

increase of the step size on the Euler methods. In practice, the timestep determines the fastest

reaction time of the system. Thus, a large timestep will inevitably cause the system dynamics

to be slow. The analysis of the performance of the CVODE tolerance values show that tolerance

of 10−2 approximates the resolution of the default Euler step size of 25µs, with a significant

reduction of 7× in step count. At longer runs, the variable step demonstrated to be more

precise, due to no accumulation of phase shift, with the maximum trajectory shift measured

at approximately 1.1ms. On the other hand, a tolerance value of 10−3 approximates closely

the optimal solution with 40% less steps, and with a margin of error similar to its 5µs Euler

counterpart for the period of 100ms, while yielding 22× less interpolations.

On a longer execution, the measured phase shifting of the trajectory for a period of 1000ms

of simulation (omitted for brevity) was of approximately 2ms for ∆t = 5µs, and 6.5ms for

∆t = 25µs, considered a large value in the timescale of neurons activity. The 100ms execu-

tion displayed demonstrated a phase shifting of approximately a tenth of the whole second

simulation.
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Figure 5.4 – Interpolation steps and runtime for the 1000ms simulation of injection of short
1µs current pulses of different amplitudes I at different frequencies, on a layer 5 pyramidal cell
(L5_TTPC2_cADpyr232_1 (Human Brain Project, 2014)). Results presented for the Backward
Euler with ∆t = 25µs and CVODE with atol=10−3. Hardware specifications: Intel core i5 with
2×1.6 Ghz.

5.4.2 Performance Dependency on Solution Stiffness

We measured the response of both stepping methods with the NEURON default parameters to

different levels of changes in spiking frequency. Changes in trajectory were enforced by inject-

ing a continuous current of a given amplitude on a neuron during 1000ms. Current intensity

is measured as a percentage of the threshold current, the minimum continuous current value

that needs to be injected to force the neuron to spike. Performance was measured in terms

of steps count and time to solution on an Intel i5 at 1.6 GHz. Results are presented in Figure

5.3, and demonstrate that high dynamics of the solution degrade the CVODE performance.

This is justified by CVODE requiring smaller steps on high trajectory variations in order to

respect the absolute tolerance value. For the range of tested scenarios, CVODE runs on less

steps and shorter time to solution when compared to Backward Euler. For a neuron without

any spikes, or equivalently for a current injection below the spiking threshold, it was measured

a reduction of: (1) 434× in step count and 98× in runtime for injected currents below 50%; (2)

62× step count and 11.6× runtime for 100% of the threshold current; and (3) 9.4× step count

and 2.5× runtime for 500% of the threshold current, a worst case scenario of little probability

of occurrence.

5.4.3 Performance Dependency on State Discontinuities

We measured the effect of discontinuities on both methods by injecting several current pulses

at a fixed frequency on a neuron soma, in the same Intel i5 compute architecture, mimicking

synaptic events. The experiment results are displayed in Figure 5.4 and suggest that the

performance depends on the trajectory change from each discontinuity, i.e. the amplitude

of the current injected. This is due to the increase of the voltage trajectory being dependent

on the amount of current injected. The larger the voltage increase, the larger the change

in trajectory gradient, thus the more interpolation steps are required. Furthermore, and as
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expected, results demonstrate that the number of discontinuities plays a major role on the

CVODE performance. CVODE is shown to deliver a reduction of steps in the order of 153−322×
for a frequency of 10 discontinuities per second. The equilibrium between Euler and CVODE

method lies in the interval betwen 103.1 −103.2H z for the current values of 1m A to 0.1µA.

The runtime demonstrates a similar dependency on the injected current, yielding a speedup

of 51× for 10H z decreasing linearly up to the speedup equilibrium value at 1000H z for the

strongest current. For the lightest current injection, a speedup of 100× is visible for the 10H z

discontinuity rate, decreasing to an Euler matching value at circa 1600 events per second

(103.2H z). Although this exercise does not represent the stochastic pattern of spikes arrival

on real neurons, typically described by a Poisson distribution with a long tail, it provides

an estimation of the CVODE speedup allowance. With that in mind, the following section

measures the discontinuity rates on a simulation of a laboratory experiment.

5.4.4 Simulation of a Laboratory Experiment

We tested the suitability of variable step methods to our problem by measuring the spiking

activity of a simulation of 7.5 secs of electrical activity mimicking a laboratory experiment. The

experimental set-up performs a fixed step simulation of the spontaneous activity of 219.247

neurons during tonic depolarization. The network exhibits spontaneous slow oscillatory

population bursts, initiated in layer 5 (L5), spreading down to L6, and then up to L4 and L2/3

with secondary bursts spreading back to L6. For further details, refer to section Simulating

Spontaneous Activity in (Markram et al., 2015).

A representative distribution of discontinuity events for three groups of neurons — organized

by highest 1%, median 1%, and lowest 1% number of discontinuities — is displayed in Figure

5.5. The simulation incurred a total of circa 155 million events, with the following distribution:

(a) top 1% of neurons, between 3040 and 6146 events in 7.5 secs, or 405-820 Hz; (b) median

1%, from 541 to 558 events (72-74.4 Hz); and (c) bottom 1%: less than 100 events (≤10 Hz).

The average number of events was of 707 events for the 7.5 secs of simulation, or equivalently,

94 Hz, significantly below the 1000H z threshold discussed in the previous section. Moreover,

the results on the distributions of time interval between discontinuities, plotted in red on the

right, display large periods of silence between events arrival in the median and bottom use

cases, but not on the top, suggesting the suitability of adaptive stepping to most (but not all)

neurons in the population.

5.5 Benchmark

5.5.1 Implementation

Our methods were implemented on the compute kernel of the NEURON scientific application

(Kumbhar et al., 2019). The mathematical specifications of biological mechanisms were
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Figure 5.5 – Number of discontinuity events (incoming spike currents, bin size 0.25ms, left) and
distribution of events time difference (bin size 0.1ms, right) throughout 7.5 secs of simulation,
for a sample neuron collected from the a) top 1% neurons, receiving between 3040 and 6146
events; b) median 1%, from 541 to 558 events; and c) bottom 1% of neurons receiving less than
100 events. Total events count: circa 155 Million; mean per neuron: 707.
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provided by the NEURON modelling language (NMODL). Code changes to support SIMD

capabilities and methods for variable step interpolation were added to the MODL-to-C code

generator (Hines & Carnevale, 2000).

Single Instruction Multiple Data (SIMD) capabilities were implemented on all fixed and vari-

able timestep methods discussed hereafter. Communication, synchronisation control objects,

memory allocation, threading, distributed execution and parallelism were implemented with

HPX. Implementation details have been covered in Chapter 4, and will be omitted for brevity.

Resolution of variable timestep interpolation was implemented via the CVODE library (Cohen

& Hindmarsh, 1996), a C implementation of the VODE algorithm (Brown et al., 1989), part of

SUNDIALS (Suite of nonlinear and differential/algebraic equation solvers (Hindmarsh et al.,

2005)).

5.5.2 Use Case

We simulate one second of biological activity of a digital reconstruction of a morphologically

detailed neural network extracted from the model of Markram et al. (Markram et al., 2015).

Neuron models include 23 distinct biological mechanism types modelled by 44 ODEs, and

highly heterogeneous neuron morphologies. Each neuron requires a storage of 4-10 MB for

its state, times q for a q−order interpolation, plus circa 4 MB for intermediate storage of

data structures supporting the fully-asynchronous execution model. Our CVODE solver is

configured to utilise the default maximum BDF order value of 5.

On the set-up of the simulation test bench, it is relevant to mention that neuronal activity is

highly dependent on the mammal specie, brain region and momentary activity, among other

factors. Moreover, the network behaviour simulated must approximate a real use case, as

spiking activity affect heavily the performance of variable step methods, as detailed in Section

5.4.3. An analysis of a single simulation combining several brain dynamics would be of little

interest in the context of efficiency analysis, due to all free variables that affect performance.

Therefore, our test bench simulates and studies the efficiency of five different brain dynamics

described in the literature:

1. a model of quiet dynamics with a mean spiking rate of 0.25 Hz per neuron, representing

neurons almost at rest and/or with little activity. This model is of high relevance, as it

provides an upper bound of the runtime of circa 90% of neurons in the brain during

regular activity — see Table 1 in Shoham et al. (Shoham et al., 2006) for evidence of silence

and highly sparse activity among neurons; supported by Kerr et at. (Kerr et al., 2005) for

estimates of rat’s neocortex spiking rate at circa 0.1 Hz due to sparsity of activity; and the

estimation of 0.16 Hz by Lennie et al. (Lennie, 2003) based on brain energy levels;

2. a model of slow dynamics at 1.5Hz, representing the lower bound of active neurons, de-

scribed next;
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3. a model of moderate dynamics with a spiking rate of 6.5 Hz, an approximation of the

irregular regime of slow oscillations displayed by the Brunel network (Brunel, 2000); also an

upper limit to the 0.005-5Hz spiking rate of the rate frontal cortex (Watson et al., 2016); and

a lose approximation of the to visual cortex of the cats in the 3-4 Hz interval(Baddeley et al.,

1997).

4. a model of fast dynamics of 38 Hz, in the range of 30-40 Hz characterizing cortical and

thalamic neuronal activity during periods of high vigilance (Steriade et al., 1998); and

the regular regime of the theoretical model of inhibition-dominated model of the Brunel

Network (Brunel, 2000); and

5. a model of burst dynamics at 55.8 Hz, typically a by-product of depolarizing current in-

jections, similar to the first instants of simulation in Figure 5.5; and representative of the

fast spiking regime of the inhibition-dominated irregular dynamics of the Brunel Network

(Brunel, 2000).

The following benchmarks measure the scaling of our methods by simulating quasi-homogeneous

activity across neurons on densely connected neural networks. This set-up is mostly favourable

to fixed step and BSP-based methods, therefore the results presented next are a lower bound

of possible acceleration. Neurons activity is triggered by a constant current injection in all

neurons throughout the whole duration of the simulation, strong enough to approximate the

spiking rate of the network to the regimes described.

For complete coverage of the topic, we include the following state-of-the-art solvers for simple

neuron models (labelled 1a to 1c, and restrained to linear ODEs with uncorrelated states) and

complex models (2a-2c), both detailed previously in Section 5.3.1:

1a) the cnexp fixed step solver in NEURON, with added SIMD, providing an intercalated

resolution of current and states as linear equations, with an analytical resolution of the

first order ODE describing state variables;

1b) the Euler solver in NEURON, with added SIMD, resolving the current-states dependency

with an Euler method with staggered voltage-states timestepping, and as a linear equa-

tions; a model computationally less expensive than the previous due to no exponential

and division operator;

1c) the same Euler method on a fully-asynchronous parallel execution model, presented in

Chapter 4, and illustrated in diagram c in Figure 1.2;

2a) the BSP fixed step derivimplicit solver available in NEURON, with added SIMD, with

interleaved-timestep resolution of current as a linear equation, and implicit resolution of

individual mechanism state ODEs;

2b) the BSP variable step method in NEURON with added SIMD and a collective communica-

tion barrier (diagram b in Figure 1.2); and
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2c) the SIMD-enabled fully-asynchronous protocol with variable timestepping introduced in

this chapter (diagram d in Figure 1.2).

The following biological constraints were taken into account to guarantee that variable-step

runtimes represent a biologically plausible use case: we verified that there were no continuous

periods of silence in the network, and no collective synchrony of spiking or voltage trajectory

across neurons, that would promote additional efficiency in variable timestep methods. Our

input data is retrieved from neurons in layers 4 and 5 of the brain, typically represented by

the longest dendritic trees, therefore representing a worst case scenario in terms of number

of pre-synaptic (dependency) neurons. Finally, the number of synapses as AMPA and GABA

receptors was measured, and are characterized by a mean of 2289.7 and 4418.8 and a std. dev.

of 1284.9 and 3200.4 per neuron, below the counts described in the literature, but inline with

the reference digital reconstruction of the rodent brain detailed in Section 5.4.4.

Execution times were collected on 64 Cray XE6 compute nodes, powered by an AMD Opteron

6380 with 16 cores at 2.5 GHz, 64 GB of RAM and 256-bit floating point units. Efficient

point-to-point communication and remote direct access memory is provided with specialized

Infiniband network hardware, interfaced via the photon API library (Kissel & Swany, 2016). To

study the dependency of the algorithm on the input size and synaptic connectivity, we tested

our methods in neural networks ranging from 1024 to 65536 neurons, a scale that approximates

two columns in the rodent neocortex, and the maximum allowed due to memory requirements

of the BDF solver of order 5 we used. Neurons were equally distributed in a round robin fashion

across compute nodes. Due to the long simulation time required, runtimes for moderate, fast

and burst dynamics were extrapolated from an execution of 250, 100 and 100ms, respectively.

The benchmark results are presented in Figure 5.6. The FAP variable step method (2c•) is

presented alongside two variants — labelled 2c• and 2c• — that group and deliver instantly the

discontinuity events within an interval equivalent to the timestep ∆t/2 of the interleaved fixed

timestep method, and the ∆t of the regular fixed step methods, respectively. This approach

yields a level of reduced precision in the delivery of events — similar to fixed step methods —

however maintaining the same high variable-order variable-step accuracy during periods of

activity without discontinuities, with the main advantage of reducing significantly the number

in IVP resets. CVODE-based executions are displayed for an absolute tolerance (atol) of 10−3,

a value equal to the default value in the NEURON simulator. Executions with an absolute

tolerance of 10−2 yielded a reduction in runtime of 5%-8%, and were omitted for brevity. The

performance analysis for fixed-step simple model solvers (1a-1c) was covered in depth in the

previous Chapter 4, and is omitted for brevity.

5.5.3 Fixed- vs Variable-Timestep Interpolators

Fixed step methods do not yield significantly-different execution times across different spiking

regimes. This is due to the homogeneous computation of neuron state updates throughout

time, and the light computation attached to synaptic events and collective communication
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Figure 5.6 – Runtime for the simulation of one second of biological activity of five neuron
networks described by distinct spiking rate dynamics. Results measured for increasing input
sizes on a network of 64 Cray XE6 nodes, with an AMD Opteron 6380 with 16 cores at 2.5
Ghz. Key: BSP: Bulk Synchronous Parallel; FAP: Fully-Asynchronous Parallel; atol: absolute
tolerance; EG: event grouping interval; †: able to solve non-linear ODEs implicitly, and unable
to solve correlated mechanism states implicitly.
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not yielding a substantial increase of runtime. The difference in execution times measured

across the five regimes was of about 2%, which we consider negligible. On the other hand, as

expected, variable step executions are penalized on regimes with high discontinuity rates. It is

noticeable that the runtimes of fixed- and variable-step solvers approximate as we increase

the spiking rate, i.e. the increase of runtimes with the input size is steeper for variable timestep

(2b• and 2c•••) compared to fixed timestep methods (2a•). This is due to discontinuities in

variable-step being delivered throughout a continuous time line, compared to the discrete

delivery instants of the fixed-step methods — therefore increase the number of interpolation

steps; and the iterative model of the variable timestep reinitializing the state computation with

small step sizes on each IVP reset, compared to the constant-sized step of fixed step methods.

A remarkable performance is visible on the quiet dynamics use case, where our fully-implicit

ODE solver of complex models (with Newton iterations), still runs faster than the simple solver

resolving only a system of linear equations. The underlying rationale is that — despite the

inherent computation cost of Newton iterations in the variable step methods — the low level

of discontinuities allow for very long steps, that surpass the simulation throughput of simple

solvers running on fixed step methods. The measured speedup of our reference method (2c•)

compared to the reference fixed step method (2a•) was of 544-65× across input sizes for the

quiet dynamics, down to 7.7-1.8× to the moderate dynamics. The fast dynamics presented a

speedup of twofold for the dataset of 1024 neurons, and a similar runtime for the 66K neurons.

The burst dynamics, although of very unlikely probability of occurrence, demonstrated an

acceleration of 1.5× for 1024 neurons and a deceleration of 1.5× for 66K neurons.

5.5.4 Variable Step Event Grouping

On the analysis of the performance of the CVODE with grouping of events within half fixed

timestep (2c•), when applied to the largest dataset tested, the previous acceleration was

reduced to 47× for quiet, 4.4× for slow, and 1.2× for moderate dynamics, with an inferior per-

formance on the remaining regimes. A further reduction of speedup to 33× for quiet and 1.9×
for slow dynamics was noticeable on the CVODE implementation without events grouping

(2c•), with lower performance for the remaining spike regimes. Although being more precise

and solving correlated states implicitly, this method runs slower than the reference implicit

fixed step method 2a• in the use cases characterized by a high number of neurons and/or

strong network activity. This goes in line with the conclusions in Section 5.4.4, confirming

that performance is activity dependent, and the achievable speedup depends on the network

connectivity.

The speedup introduced across FAP CVODE variants (2c•••) increases with the amount of

discontinuities in the system — correlated to high network activity or size — as the efficiency

of the event grouping method is related to the amount of events in the same grouping interval

that are delivered at once. No difference in runtime was measured for the smallest dataset

tested due to the high sparsity of synaptic events in small networks.
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Figure 5.7 – Distribution of neuron counts by spiking rates collected from the central minicol-
umn (31346 neurons) of the network utilized in the simulation of the laboratory experiment
described in Section 5.4.4, in the interval 2-4 secs. Orange bars represent the frequencies 0.25
Hz, 1.5 Hz, 6.5 Hz, 38 Hz and 55 Hz that describe the boundaries of the 5 spiking regimes
analysed. Top: a bin accounts for 1Hz. Max. FR is the maximum firing rate measured; Bottom:
zoomed dataset with a cut off at 0-40 Hz. A bin accounts for 0.1 Hz.

5.5.5 Fully-Asynchronous vs Bulk-Synchonous Execution Models

Our next analysis focuses on the performance difference between the BSP and FAP execution

models. Results show that the runtimes of both implementations approximate with the

increase of the input. This is visible by comparing the fixed step trajectories 1b� and 1c�, and

the variable step trajectories 2b• and 2c•. For small network sizes, the difference in runtime is

noticeably few orders of magnitude higher than for larger network sizes. On large models, the

runtimes are similar. This property was demonstrated in Chapter 4. In brief, an increase of

network leads to a higher number of network connectivity, therefore reducing the maximum

allowed stepping interval per neuron, and approximating it to the minimum communication

delay utilised in the BSP methods. On fixed step methods, it is noticeable a similar runtime on

large (66K) networks of neurons, as timesteps are computationally homogeneous. On variable

step methods, similar runtimes are only noticeable when significant network activity is present

(moderate, fast and burst dynamics), as little network activity leads to few discontinuities,

allowing stepping intervals to be modelled in a reduced number of variable steps.

5.5.6 Runtime Dependency on Input Size and Spike Activity

It is known that, on simulations of small networks, variable-timestep methods yield a signifi-

cant acceleration in time to solution compared to fixed timestep methods (Lytton & Hines,
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2005). The rationale is that the small number of neurons in the network leads to a reduced

number of synapses per neuron, thus less discontinuities. However, the connectivity in larger

networks reaches up to 10 thousand synapses per neuron, with the number of discontinuities

being related also to the overall network activity. The question lies now on which conditions

are required for similar computation complexity in both interpolators. To that extent, we

measured the regions of similar runtime growth for the reference fixed step (2b•) and our

variable step methods (2c•). The region is labelled as in Figure 5.6.

As expected, fixed step methods yield a quasi-linear runtime growth with the increase of the

input size, and are independent of the spiking regime, due to the almost ideal scaling of the

algorithm in the BSP model. On the other hand, the runtime of variable timestep methods —

dependent on the number of discontinuities — demonstrates a rapidly increasing growth with

the input size outside the region of similar growth, and almost linearly inside. Moreover, as it

depends on the network activity, the lower limit of the region increases with the spiking rate,

and is delimited at 16.4K, 32.8K and 32.8K neurons or more for the quiet, slow and moderate

dynamics, while not visible in the fast and burst dynamics. In the three spiking regimes where

such region exists, the similar growth in both approaches provides a confidence of the scaling

capabilities of our methods in larger network models. This is of high importance as it provides

an estimation of runtime upper bound in simulations combining neurons with heterogeneous

spiking rates, as discussed next.

5.5.7 Overall Runtime Speedup Estimation

To conclude our analysis, we computed an estimation of the performance acceleration on

a simulation combining several spiking regimes. For that purpose, we measured the the

distribution of neuron spike rates and neurons per spiking regime, following the laboratory

experiment simulation described in Section 5.4.4. Estimations were collected from the central

minicolumn (31346 neurons) of the 219K neurons network, to avoid boundary-effects that

would improve results due to neurons placed on the edges, with reduced connectivity. The

counts relate to the 2-4s simulation time interval, to exclude the initial artificial synaptic burst

due to the current injection. The results are presented in Figure 5.7. The measured percentage

of neurons on each regime is 31.43%, 38.44%, 27.02%, 3.10% and 0.01%, relating to 68.9K,

84.3K, 59.2K, 6.8K and 22 neurons. Following the runtimes described in Section 5.5.3, the

speedup range for the interval of 1024-66K neurons when comparing our methods with the

state-of-the-art solver for complex models (2a•) are estimated as: 224.5-11.9x for the variable

step method with precise event delivery (2c•); 225.1-17.1x for the similar implementation with

delivery of events within the next half timestep (2c•); and 228.5-24.6x for the use case with

full-timestep event group delivery (2c•). As a side note, the percentage of neurons in the quiet

dynamics regime does not agree with the 90% described in the literature. We believe this is

due to the reduced size of the network, and that simulations of larger networks and complete

brain models include a larger portion of neurons in this regime. Therefore, we assume these

results to be a lower bound estimate of possible acceleration.
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Moreover, since the quiet, slow and moderate dynamics regimes weight over 95% in the

runtime calculation, and as for datasets above 32.8K the reference vs benchmark runtimes

have a similar runtime growth in those regimes, we believe the overall runtime for larger

circuits do not yield a significant reduction in the speedup values presented, and that the

scaling properties are almost fully-preserved on larger networks.

5.6 Discussion

This chapter presented a strategy for the fully-asynchronous distributed simulation of detailed

neuron models with variable-order variable-timestep interpolation. We detailed state-of-

the-art approaches based on the Bulk Synchronous Parallel execution model (BSP), their

limitations on the numerical resolution of complex neuron models, and computation load

imbalance at synchronization barriers in variable-step simulations. We discussed the problem

of synaptic exchange and synchronization of networks of neurons in speculative variable-

step executions, and the inherent issue of a cascade chain of states reset and reversal of false

synaptic events. To overcome this issue, we proposed an alternative non-speculative scheduled

execution model on a distributed network of compute nodes. The approach follows a novel

Fully-Asynchronous Parallel (FAP) execution model (yielding asynchronous computation,

communication and synchronisation), that relies on the individual stepping of neurons based

on the time instant of their synaptic connectivities, avoiding backstepping and allowing for

stepping intervals beyond the BSP-based synchronization interval. Step lengths are maximised

by a scheduler that tracks neurons’ time advancement and dynamically allocates compute

resources to the earliest neurons in time.

We performed an analysis of numerical accuracy and demonstrated better precision and less

interpolation steps of the methods presented compared to the reference fixed-step implicit

solver in the NEURON scientific application. An analysis of variable-step performance based

on step count and time to solution was performed on three experimental set-ups. (1) A contin-

uous current injection causing fast gradient changes in state on a single neuron demonstrated

a reduced step count and runtime, and low dependency of performance on the stiffness of

solution. (2) An injection of a sequence of current pulses simulating network activity demon-

strated a high dependency of step count and runtime on incoming synaptic activity, which

cause a solution discontinuity and a reset of solution state. We demonstrated a reduced step

count for an incoming spike current rates between 1000 and 1600 Hz, depending on the

current value. (3) A digital reconstruction of a laboratory experiment on a network of 219

thousand neurons measured the relevance of our result to a real use case. Results displayed a

highly heterogeneous distribution of discontinuity rates across neurons, demonstrating the

suitability of our methods to the problem domain.

A proof of concept simulator was implemented on the compute kernel of the NEURON

scientific application. Distributed asynchrony, global memory addressing space, remote

procedure call, threading, synchronization and communication methods were replaced and
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implemented by the HPX runtime system (Sterling et al., 2014). We analysed and benchmarked

five spiking regimes that describe distinct patterns of brain activity in mammals, and six state-

of-the-art solvers for simple and complex neuron models. Benchmark results on a network of

1024-65536 neurons demonstrate an overall reduction in runtime in the order of 224.5-11.9x for

the most accurate method with precise delivery of events in a continuous timeline, and 225.1-

17.1x and 228.5-24.6x for two optimized variants with half-step and full-step grouped delivery

of events. We demonstrated that performance is activity-dependent and that almost ideal

scaling is possible, as over 95% of neurons in a biologically inspired neuron network — from a

simulated laboratory experiment — fall in spiking regimes with guaranteed preservation of

the speedup achieved.
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6 General Discussion and Conclusions

6.1 Summary

The general object of this thesis was to introduce new computational models that underlie an

efficient numerical resolution of the simulation of highly-heterogeneous neuron models via

asynchronous runtime systems on parallel-distributed compute resources.

Chapter 1 introduced the scope of our research, the problem description, our motivation, a

literature review, a review of state-of-the-art approaches, and an analysis of runtime systems.

We described our mathematical formulation, based on an extended Hodgkin-Huxley model

(Hodgkin & Huxley, 1952), and our use case, extracted from a previously published digital

reconstruction of the young rodent brain (Markram et al., 2015). We analysed our dataset

and demonstrated high heterogeneity in neuron topological structure, ionic current activity,

synaptic delays, and thus highly-heterogeneous computational complexity across neurons

in the dataset. We discussed new asynchronous runtime systems and methodologies that

introduce new possibilities in the simulation of such detailed neuron models.

6.1.1 Micro-Parallelism of Detailed Neuron Models

Chapter 2 developed the field of distributed asynchronous micro-parallelism exposed from

the decomposition of neuron morphological trees into interconnected subtrees. The work

detailed numerical dependencies across compartments, and presented a data decomposition

method yielding load-balanced multi-core execution of neuron subtrees, with Single Instruc-

tion Multiple Data (SIMD) processing biological mechanisms on the compartments of each

subtree. Two major scaling limitations were identified and discussed: (1) the dependency of

parallelism on the depth of the neuron topology, and (2) the competitive speedup provided

by vector and multi-core acceleration on single compute nodes. Benchmarks of the simula-

tion of three distinct neurons on four compute architectures (Intel KNL, Intel i5, Intel Xeon

and AMD Opteron) demonstrated a significant speedup compared to the branched Single

Instruction Single Data (SISD) implementation in NEURON, with the speedup decreasing
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with the increase of compute cores. The application of the methods to a distributed network

of 128 Cray XE6 compute nodes simulating medium-sized networks of up to 4000 neurons,

demonstrated a time to solution that approximates the theoretical strong scaling limit, with

a twofold speedup compared to its non-branched SIMD counterpart due to finer-grained

parallelism and improved task scheduling.

In Chapter 3, we introduced a novel approach for the micro-parallelism of neuron state

updates, by extracting flow dependencies, concurrent variable updates, and independent

variables from ODE specifications. The methods presented accelerate the simulation of

individual neurons or sets of neurons by exposing a computation graph of interdependent

Ordinary Differential Equations (ODEs). We detailed a method that automates the parsing of

ODEs specified by NEURON’s domain specific language. We applied the parsing method to a

neuron model of 23 biological mechanisms modelled by 44 ODEs, demonstrating up to 19

parallel mechanism kernels. Further kernel parallelism was provided by a method that extracts

a load-balanced embarrassingly parallel execution model of similar and independent ODE

instances, providing multi-core- and SIMD-parallel acceleration of individual mechanisms.

A single neuron benchmark was performed and demonstrated a speedup very proximal

to the theoretical limit of the state update function, on the aforementioned four compute

architectures. A distributed execution on 128 Cray XE6 compute nodes, simulating networks

ranging from 128-4096 neurons yielded an acceleration that approximated ideal strong scaling

limit with the increase of the input size. A speedup of over twofold was measured when

comparing graph- versus non-graph parallel implementations, due to dynamic workload

balancing of finer-grained compute tasks.

6.1.2 Fully-Asynchronous Execution Model

Chapter 4 introduced the fully-asynchronous parallel execution model, and the exhaustive

yet not speculative stepping protocol, that replaced collective synchronization of neurons

with active point-to-point messaging that provides time stepping notifications to synaptic

connectivities. We detailed a method for fully linearizing neurons memory representation in

memory, yielding a reduction of memory read operations and improved cache efficiency. A

method for neuron scheduling was provided, that further improves performance by dynami-

cally allocating available compute resources to the earliest neuron in time, leading to better

cache locality due to a higher number of steps performed in cache. The method delivered up

to a 100× increase in the number of steps on a single stepping iteration, decreasing with the

number of neurons in the network, due to the implicit shorter synaptic delays of larger net-

works. Complementarily, we implemented a communication reduce from neuron-to-neuron

to neuron-to-locality, and demonstrated its efficiency in terms of communication count and

time to solution compared to the non-reduced counterpart. A benchmark measuring the

overall speedup followed, and displayed a reduction of 25%-65% in time to solution across

the four architectures tested for a network of 16 to 2048 neurons, and a reduction of circa

15%-40% on 32 Cray XE6 nodes simulating 512 to 32768 neurons.
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The fully-asynchronous execution model was further developed in Chapter 5, where we

studied the application of variable-order variable-timestep interpolation in the resolution of

complex neuron models that define use cases such as synaptic plasticity and learning. We

tested and demonstrated higher numerical accuracy of adaptive-step methods compared to

fixed-step methods. We measured the efficiency in terms of number of interpolation steps and

runtime, and we showed that the performance of variable-step methods is highly-dependent

on synaptic currents (discontinuities), and little dependent on the solution trajectory or

stiffness. These insights were verified against a simulated reconstruction of a laboratory

experiment and demonstrated high heterogeneity in discontinuities across neurons, and

the general suitability of variable-step methods to the problem domain. On the context of

distributed asynchronous variable-step executions, we identified speculative stepping with

synaptic spiking as the main issue in distributed variable-timestep interpolation methods

for network of neurons. To overcome the limitation, we introduced a new method that

— contrarily to existing methods — yields no solution discontinuities, no backstepping of

solution for missed synaptic events, and no BSP-based collective synchronization.

We described and benchmarked five networks with distinct spike frequencies that characterize

different regimes of brain activity in mammals, and compared our methods with six state-of-

the-art solvers, on a network of 64 Cray XE6 compute nodes, and increasing input ranging from

1024 to 65536 neurons. Results demonstrated a speedup of 544-65× against the state-of-the-

art fixed-step counterpart, for the quiet spiking regime representing the majority of neurons

in regular brain activity. The speedup was shown to decrease with an increase of network

activity due to the higher number of events implicit, and a similar runtime was measured at

a spike frequency close to a moderate spike regime of 6.8 Hz. A speedup estimation applied

to the same laboratory experiment, presented a possibility of an acceleration in the order of

224.5-11.9x for the most precise variable timestep method described, and 225.1-17.1x and

228.5-24.6x for two detailed optimized variants that group and deliver discontinuities within

half- and full-step fixed-timestep intervals, with a small loss in precision. Finally, we showed

that over 95% of the input dataset is defined by a quiet to a moderate spiking regime that yields

a linear speedup dependency on the input size, demonstrating good scaling properties of the

asynchronous variable-step methods to biologically inspired use cases.

6.2 Contributions

This thesis advanced the state of the art in simulation and distributed parallel executions, and

provided insights on the future directions of neural simulations. We provided methods for

the acceleration of simulations via modern asynchronous runtime systems on the use case

of simulation of morphologically detailed neural networks, and improved state-of-the-art

methods in scheduling and compute heterogeneity in a distributed memory space.

In the study of small- and medium-sized networks, ranging from a single to few thousand

neurons, our scientific advancements pushed micro-parallelism by exploring increased strong
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scaling parallelism via graph-parallelism from variable dependencies across systems of ODEs,

and via branch-parallelism from dependencies across topological trees of individual neurons.

We showed that:

• The Bulk Synchronous Parallel runtime commonly used on the resolution of such

complex neuron morphologies, is inadequate in the resolution of small datasets due to

computational load imbalance;

• State-of-the-art simulation methods provide insufficient compute granularity. An in-

crease of granularity is possible with micro-parallelism;

• Micro-parallelism techniques allow for the decomposition of a problem of any large

size, down to a workflow of interconnected smaller kernels. The sequence of branch,

compartment, mechanism, and mechanism instance decomposition allows for an

extremely large number of micro-kernels that easily saturate all parallel units in modern

compute architectures;

• Distributed micro-parallelism requires a coherent decomposition and cross-linkage of

neuron kernels across distributed memory regions. This is a task of direct implementa-

tion with the global memory space underlying modern asynchronous runtime systems,

yet a strenuous task for BSP-based execution models;

• Distributed threading, remote procedure calls, placeholders and execution gates with

support to a global memory address space allow for an efficient asynchronous ker-

nel synchronization and message-passing execution. This feature removes BSP-like

synchronization across compute units, yielding a major performance increase;

• On-the-fly decomposition and aggregation of underlying kernels — at neuron, subtree,

mechanism, and mechanism instance levels — allows for the fitting of the complexity of

the problem to the hardware specifications. However, the computational complexity of

each kernel is guided by a constant value whose fine-tuning is not trivial;

• The limit in acceleration provided by micro-parallelism techniques are limited by (1)

Amdalah’s law due to serial processes in graph-parallelism methods; and (2) depth of

neuronal topology in branch-parallel workflows;

• Ideal strong scaling of branch-parallelism of individual neurons is not possible as multi-

core and vector processing units provide competitive acceleration efforts, due to a

trade-off between SIMD acceleration from kernel size (related to the deficient usage of

the full register file width), and multi-core acceleration from the number of kernels (due

to the overhead of managing a very high number of small compute kernels), with such

limitation being most prominent on multi-core executions beyond 16 cores;

• Contrarily to the common belief that micro-parallelism is mostly necessary for single-

neuron simulations, the techniques are also relevant to achieve ideal strong scaling of
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medium-sized networks on distributed executions with 4 or more neurons per compute

node. This is due to the overlap of computation and communication, and better load

balancing due to finer-grained parallelism.

The data decomposition of the dataset in distributed load-balanced kernels allowed for the de-

tachment of the problem representation from the hardware specifications, and introduced —

to our knowledge — the first implementation of a distributed, multi-core, SIMD-enabled neu-

ron simulator that fine-tunes the data memory layout to the host architecture on a distributed

network of compute nodes. The overlap of asynchronous computation and communication

maximises the usage of compute units, when computation is available. These properties

demonstrate that asynchronous runtime systems are suitable for the efficient simulation

of highly-heterogeneous data representations on highly-heterogeneous compute architec-

tures, and due to the quasi-infinitesimal number of kernels that can be generated by the

decomposition methods, the computational complexity of detailed neuron models can be

fine-tuned to any host architecture.

On the study of the activity of medium and large networks of neurons, our work demonstrated

that the synaptic time-dependency across neurons enforces a synchronization barrier in the

simulation that delimits the performance of BSP-based executions. To that extent, we intro-

duced the fully-asynchronous execution model, characterized by three axes of asynchrony:

1. Asynchronous computation, defined by the independent stepping of neuron ODEs in a

distributed multi-core compute environment;

2. Asynchronous communication, via non-blocking point-to-point communication and

remote procedure calls between neurons;

3. Asynchronous synchronization, enabled by the removal of synchronization barriers and

collective communication operations, replaced by:

(a) Non-speculative stepping of ODEs based on pre-synaptic connectivity delays; and

(b) Active stepping notification to post-synaptic connections of neurons.

Our work showed that:

• A cache-level acceleration of individual neurons is possible with an asynchronous

execution. Unlike micro-parallelism efforts that accelerate solution in the strong scaling

axis by increasing the number of compute units for a fixed-sized problem size, the

fully-asynchronous methods allow for a super-linear speedup due to cache efficiency

and an acceleration beyond the BSP theoretical limit, without an increase of computing

power;

• Neuron data structures can be fully linearized, including dynamic containers for map

and priority queue implementations, due to a reliable estimation of worst-case scenario

memory layout; and

93



Chapter 6. General Discussion and Conclusions

• Cache-efficiency is correlated to the number of steps in cache, and performance can be

increased with a scheduler; however it decreases with an increase of the network size

due to implicit shorter stepping intervals from synaptic delays.

As a relevant remark, the exploration of the cache-efficiency axis of acceleration and the

fully-asynchronous execution model requires mechanisms for remote execution flow con-

trol (thread gates, mutual exclusion, conditional gates and futures), available only in asyn-

chronous runtime systems with global memory addressing capabilities.

Our final contribution focuses on the activity of individual neurons and network dynamics of

biologically inspired use cases with complex neuron models. We showed that:

• The activity of neurons is defined by a stiff solution, with long periods of low activity

and brief periods of high volatility;

• The dynamics of a network during the activity of a biologically inspired use case is

characterized by neurons that spike at highly heterogeneous spiking rates;

• Gradient-sensitive variable-step methods allow for a better interpolation of solution

during action potential and a reduced number of steps during periods of refraction and

low activity, yielding an overall reduction in interpolation time steps and a shorter time

to solution;

• Most neurons that characterize regular brain activity are defined by low volatility in

solution and low rate of discontinuities, and thus can be simulated with a significant

increase of accuracy and speedup with variable-step methods;

• Variable-step interpolation of individual neurons is little sensitive to variation of solution

(in terms of runtime and step count), yet highly sensitive to synaptic activity that causes

discontinuity of solutions;

• The BSP execution model is not suitable for distributed variable-step methods due to

the computational load imbalance at synchronization barriers;

• Regular speculative stepping models are not suitable for asynchronous distributed

executions due to discontinuity events requiring a reset of solution state. This issue

represents a performance bottleneck, due to distributed synapses communication

requiring to be reversed as part of the backstepping mechanism;

• Asynchronous non-speculative interpolations (beyond communication barriers of the

BSP model) are possible as long as neurons do not surpass the stepping limit dictated

by the interval of confidence computed from pre-synaptic connectivity, as it guarantees

no backstepping and no reversal of states;

• Asynchronous variable timestep executions allow for large stepping intervals that go

beyond the BSP-based collective synchronization barriers, promoting a significant

speedup due better cache-efficiency and larger individual steps;
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• Variable timestepping allows for precise interpolation of solution trajectories and deliv-

ery of events on a continuous time frame, to the cost of a runtime increase in neurons

with a high number of discontinuities. This limitation is overcome by grouping disconti-

nuities in a similar fashion to fixed timestep, increasing the performance and providing

a similar numerical accuracy to its fixed step counterpart;

In brief, we showed that brain activity is characterized by very distinct behavioural patterns

across space and time, and that the BSP-based fixed-step methods are not optimal to sim-

ulate the activity of large networks of complex neuron models due to: (1) an unnecessary

large amount of interpolation steps during periods of low volatility in solution trajectory;

and (2) insufficient interpolation steps during periods of high volatility, and as a conse-

quence low numerical accuracy. Moreover, brain activity is driven by time-bounded ODEs

with highly-heterogeneous solution trajectories. Thus, asynchronous variable stepping pro-

vides an efficient simulation of biologically inspired use cases, and accounts correctly for

the combination of multiple scales and time constants that characterizes detailed brain

models.

6.3 Performance Outlook

We provide an overview of expected performance of the techniques presented for models

covering larger parts of the cortex, and possible future bottlenecks derived from input and

compute architectures heterogeneity.

Branch-Parallelism of Neuron Topologies. The efficiency of the branch-parallelism tech-

niques in future applications will depend on the directions of hardware development and

the network size. Single neurons may be accelerated extensively on multi-node multi-core

architectures, yet performance increase will be limited for 16 or more compute cores. Medium-

sized networks of neurons (up to a few thousand neurons) can benefit from this method due

to improved computational load balancing at synchronization barriers from finer-grained

parallelism. However, very large networks of neurons may be computed efficiently with-

out branch-parallelism (Ovcharenko et al., 2015), when it is guaranteed that (1) an accurate

strategy for computational load balancing of neurons across compute units — such as the

Least Processing Time (Korf, 1998) applied in NEURON — provides a similar total workload

per compute unit, and (2) the dataset is large enough to allow for enough flexibility in the

distribution of neurons across compute units, in order for the aforementioned algorithm to be

able to balance the dataset.

Compute architectures with large vector units such as GPUs may not be fully leveraged by

this method, as only linear solver variables — but not mechanism state variables — in most

models tested are expressed in enough instances to fully occupy the large register file width of

commons graphic processors.
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As a final remark, the efficiency and applicability of the branch-level parallelism method

is expected to increase with neuron models characterized by more detailed topologies —

particularly models including axonal branching, long-range connectivity and myelinated

brain areas — as they add further complexity in the topological structure of neurons, and

therefore increased opportunities for parallelism.

Graph-Parallelism of Neuron State Updates. Graph-parallelism was demonstrated for the

dependencies across ODEs that describe the state of individual neurons. In this technique,

SIMD acceleration was provided by memory-aligning similar ODEs across compartments on

each neuron. While we demonstrated its efficiency on multi-core CPU architectures and up

to a few thousand neurons, this method is also highly advantageous on very large networks

of neurons and on compute architectures with large vector units such as GPUs. At first, the

grouping of similar ODEs can be performed across groups of neurons, yielding a SIMD-friendly

data structure that yields several thousands of memory-aligned similar ODEs. Secondly, it

reduces the number of compute kernels — that would otherwise reach the order of millions in

large executions — reducing the computational overhead of thread handling.

Moreover, we demonstrated that the efficiency of this method in single neuron executions

is limited by the acceleration of the state update kernel in the single-step workflow. A com-

bination of branch-parallelism with graph-parallelism overcomes this limitation, providing

promising results in achieving linear strong scaling of individual neurons. On individual

neurons characterized by a small system of ODEs — i.e. low graph-parallelism — or very large

number of compute cores, the need for the combination of graph- and branch-parallelism

becomes more prominent. However, on neuron networks composed by a few neurons we

demonstrated that ideal strong scaling is possible across a wide range of multi-core and

SIMD-defined compute architectures, using only graph-parallelism.

Fully-Asynchronous Cache-Efficient Fixed-Step Executions. The Fully-Asynchronous Par-

allel (FAP) execution model demonstrated a significant speedup of small datasets, with a

decrease of acceleration following an increase of the network size. For large network models,

it is expected for the maximum number of steps per stepping iteration — and consequently

the time to solution — to approximate the Bulk Synchronous Parallel (BSP) execution model.

On the other hand, cache-efficiency techniques such as neuron memory linearisation provide

a general speedup to networks of any size and neuron model complexity. Furthermore, the

communication reduce methods presented provide a significant speedup for large network

models, and we expect this efficiency to increase with the network size, due to the increased

number of point-to-point communication calls involved.

As an important remark, benchmark results of the FAP execution model in regular compute

networks (omitted for brevity) demonstrated that an efficient implementation of the FAP —

on both fixed- and variable-step methods — requires specialized point-to-point network hard-
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ware such as the Infiniband utilised in our test bench. This limitation is possibly not as heavy

on executions of neuron models with a higher complexity (or higher attached computational

workload), as the communication overhead may be partially overlapped with computation.

Fully-Asynchronous Variable-Step Executions. The speedup presented for the FAP variable-

step implementation is preserved for large neuron networks on single compute node execu-

tions, where compute cores are guaranteed to be fully-occupied with computation. However,

an efficient execution of distributed variable-step simulations is a major challenge, whose

efficiency relies heavily on the data distribution of neurons across compute nodes. In practice,

the computational workload of individual neurons depends on their momentary activity,

which cannot be predicted beforehand. We believe this is the major challenge in scaling

fully-asynchronous variable-step interpolation techniques to large networks of neurons, and

further research needs to be pursued in this direction. To that extent, two alternative static

and dynamic load balancing strategies are detailed in the following Future Work section.

Finally, we emphasize that the acceleration results of the 65536 neuron network tested are

a lower-bound of the capabilities of our methods, and that simulations of larger neuron

networks are expected to yield an increase of performance beyond the results presented, due

to a higher ratio of neurons in low spiking-activity brain regions.

6.4 Future Work

Due to the extent of the research fields covered by this thesis, several methods for improved

numerical resolution and asynchronous computation are yet to be assessed, and are listed

next.

6.4.1 Combined Micro-Parallelism Methods

Our work developed the field of micro-parallelism of neuron networks in several independent

approaches. However, both micro-parallelism efforts displayed a hard limit in strong scaling.

As future work, we believe that the combination of the branch-parallelism, graph-parallelism

and cache-efficiency methods presented allows for improved strong scaling on the simulation

of individual neurons, and to a simulation with a runtime faster than biological time.

6.4.2 Automatic Tuning of Data Layout to Hardware Specifications

An important area of research in the work presented focused on the fine tuning of the data

layout to the hardware specifications. Similarly to other implementations found in literature,

this parametrization is performed beforehand with a grid search approach. An approach

based on an optimization method would be ideal, yet the complexity of such optimization

is tremendous, due to the high dimensionality of the variables in the problem, hardware
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specifications and neuron topology definitions. This problem is of general concern in the field

of computer science, and we expect to cover a problem-specific implementation in future

work.

6.4.3 Variable Timestepping Without Discontinuities

The variable timestepping interpolation can be improved for models that incur no discontinu-

ities. Adding the axonal branch information to the simulation would allow for a continuous

interpolation of the synaptic state throughout the branch and at axon terminal, so far limited

to a model of discontinuity events caused by a timed synaptic activation function in the shape

of a current pulse (Dirac delta function). For such use cases, the network of neurons could be

interpolated by a single solver that would include the state of all the neurons in the network. A

similar approach has been implemented by the module global vardt in NEURON (Lytton &

Hines, 2005), lacking SIMD speedup capabilities.

6.4.4 Finer-Tuned CVODE Execution and Parameters

The variable timestep results could be improved by exploring the flexibility of the methods

in the CVODE (C Variable-step solver for ODEs) library. To that extent, we propose an eval-

uation of a more accurate Jacobian, a lower-order resolution of the BDF for lower memory

consumption, finely-tuned tolerance values (relative tolerance in CVODE, and forward and

adjoint sensitivity analysis capabilities in CVODES (Serban & Hindmarsh, 2005), a superset of

CVODE), and a method for the fallback to a fixed step implicit resolution — e.g. by discarding

user-provided tolerance values and enforcing a minimum step size on the BDF order 1 — for

neurons with very large number of discontinuities.

6.4.5 Asynchronous Speculative Execution

The exhaustive yet not speculative asynchronous execution model demonstrated in Chapter 4

and Chapter 5 took advantage of the maximum time instant allowed by the pre-synaptic con-

nectivities to compute the stepping interval of confidence. This allows for a non-speculative

execution and guarantees that no events are missed. This is of particular importance as a

missed event would cause a reset of state at a previous time instant of confidence. Neverthe-

less, and in particular in the case of variable tine stepping where the computational complexity

of neurons is highly heterogeneous and activity dependent, this may lead to periods of idleness

at the compute nodes.

An alternative implementation based on a carefully speculative execution model would im-

prove the performance of the system. This method would allow neurons to step speculatively

(beyond the synaptic delay -based instant of confidence), while being careful enough to avoid

situations that would initiate a cascade of spiking and solution resets throughout neurons. In

practice, this could possibly be implemented by enforcing an interpolation limit at instants of
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spike initiation in speculative steps.

6.4.6 Distributed Load Balancing

Our simulation model provided an efficient execution of a static data structure of a neuronal

ensemble whose internal state changed over time. Distributed load balancing and rearrange-

ment of data memory layouts are precomputed and performed once at the onset of execution.

However, complex use cases require mutable data structures or dynamic redistribution of

neurons across compute nodes. To name a few:

Synaptic plasticity. A major use case is the structural plasticity covered in our model, driven

by the recruitment of new glutamatergic receptors in existing synaptic spines. Such change is

simply modelled by a change in the total capacitance of the ion channel mechanism. Ongoing

research aims at modelling structural plasticity from the growth of new synapses. This would

require new instantiations of mechanisms being created on the compartments during runtime

and new connections between neurons.

Growth of neural morphologies. A second example of dynamic data structures relates to

the growth of neuronal arborization, important during embryonal and adult neurogenesis,

and essential for the regeneration of neuronal connections and the increase of neuronal

connectivity. The study of a theoretical model for topological development of neurons has

already been presented (Kanari, 2018), yet it lacks an implementation that accounts for the

growth of data structures.

Load balancing on the simulation of distributed variable-timestep methods. We showed

in Chapter 5 that the simulation time of individual neurons in variable timestep executions is

highly dependent on the discontinuity events triggered by the synaptic activity in the network.

However, while in small neuron networks the spiking activity is quasi-homogeneous across

neurons, we demonstrated that it is highly heterogeneous in large networks. A distribution

of neurons across compute nodes based on activity would provide a balanced compute

workload across compute resources, leading to a significant reduction in overall time to

solution. However, the computational workload depends on the momentary activity, which

cannot be predicted beforehand and changes throughout the simulation.

One possible solution is the static load balancing at the onset of the execution, with a round-

robin allocation of neurons to compute architectures, based on their physical location in the

neural network. The rationale is that neighbouring neurons are highly connected and likely

to produce similar activity throughout time. Thus, this would potentially yield a distribution

of sets of neurons with similar activity across compute nodes, delivering a similar amount of

workload.
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A second option is the dynamic allocation of neurons to compute resources throughout the

simulation. A possible implementation could rely on a hypergraph partitioning method that

continuously allocates neurons to compute nodes at a predetermined interval, based on

their most recent activity. As a relevant remark, the FAP execution model combined with a

dynamic load balancing schema may solve the long-standing problem of computational load

imbalance at synchronization barriers, common to BSP-based variable-step simulations.

Multi-scale simulation. A final example covers the modelling of neuronal activity at multiple

levels, defined by high heterogeneity of computation across the combined data structures

that represent population, point, compartmental, and molecular information of neurons. At

such level, the load balancing task is already a complex task, with an increased complexity in

the event of dynamic data structures. Additionally, computations utilising cross-referencing

(pointers) of data structures becomes an extremely convoluted process as data dependencies

may lie anywhere in the compute network. This is particularly a hard task in regular memory

structures with local (RAM level) memory addressing, as internal pointers and host rank

should be updated if data structures are required to be moved to other compute nodes.

To overcome these issues, dynamic load balancing on a global address space would be a viable

solution. The active GAS capabilities in HPX provide support for automatic dynamic on-the-fly

data movement across compute nodes, based on user-provided (de)serialization functions.

Similarly to the passive GAS implementation implemented in this thesis, cross-referencing

would be automatically solved with global (distributed) address pointers managed by the

runtime system.

6.4.7 Support for Graphics Processing Units

Graphics Processing Units (GPUs) perform limited operations very quickly and in parallel,

due to a reduced instruction set that performs specialised operations in thousands of threads

simultaneously. Benchmarks of synchronous executions of our simulation model using GPUs

are part of ongoing research and have been described in the literature (Kumbhar et al., 2019).

Results demonstrated a high computational throughput of similar kernels derived from several

instances of similar mechanisms, mostly visible in datasets with large networks of neurons

due to a high number of similar ODEs. GPU support is not provided by HPX but has been

introduced in different asynchronous runtime systems such as OmpSs (Bueno et al., 2012)

and Legion (Bauer et al., 2012). Therefore, the feasibility of GPU-like compute units in asyn-

chronous execution models should be investigated in the future.

6.5 Closing Discussion

Modern advancements in digital imaging techniques allow for new levels of detail in neu-

ronal topologies that were not possible until recent times. Such advancements allow for the
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discovery of new computational models of biological phenomena that unveil a level of compu-

tational complexity that goes way beyond the original Hodgkin-Huxley and Integrate-and-Fire

formulations of point neuron models.

On the other hand, the spectrum of available computing resources continues expanding in

several directions, with state-of-the art compute architectures being defined by highly-distinct

hardware specifications. To this extent, massively-parallel multi core CPUs, neuromorphic

chips, embedded devices, and highly-vectorized compute units such as GPUs are being

developed concurrently. The efficient usage of such wide range of hardware specifications

on the simulation of networks of detailed neuron models is a hard problem. In addition,

simulations of large networks require the usage of distributed networks of compute nodes,

increasing even further the problem difficulty due to the added distributed memory and

communication axes that needs to be taken into account.

Runtime systems play a major role in the handling of such convolution of problem and hard-

ware complexity. However, common runtime systems — particularly the Message Passing

Interface (MPI) — are mostly suitable for problems defined by homogeneous computation

across neurons, with synchronized activity at node and network level. Nonetheless, the intro-

duction of asynchronous runtime systems with distributed memory addressing capabilities,

allows for the rethinking of current strategies for the resolution of simulations characterized.

The general object of this thesis was to explore novel computational methods from the us-

age of asynchronous runtime system on the simulation of neural networks. Our research

demonstrated that asynchronous computation is a requirement for succeeding in efficiently

utilising the compute capabilities of modern compute architectures. This is of particular

relevance for the study of networks of detailed Hodgkin–Huxley neuron models, characterized

by a large collection of biological mechanisms and an extensive arborization. At such level

of complexity, we demonstrated the efficiency of asynchronous runtime systems with global

memory addressing space, and the limitations of the current synchronous runtime systems

based on the BSP execution model.

The application of our research methods to a biologically inspired neural network yielded: (1)

improved load balancing and lower time to solution from distributed micro-parallelism of

asynchronous tasks; (2) efficient asynchronous execution of neuron kernels across different

memory localities; (3) acceleration of solution at the SIMD, cache, multi-core and network

axes; (4) a fully-asynchronous execution model providing asynchronous communication,

computation, and synchronization; and (5) an adaptive-step method for the efficient and

accurate interpolation of the periods of stiffness and low volatility in solution that charac-

terizes regular neurons activity. The scientific advancements introduced were shown to be

possible only via asynchronous runtime systems, due to the unavailability of distributed mem-

ory management and asynchronous control flow objects in synchronous runtime systems.

Moreover, the behaviour of neurons in large networks was shown to be very distinct across

physical locations and throughout simulation time, therefore making unrealistic the usage of
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heuristics such as predetermined load balancing techniques that would promote an efficient

BSP-based execution, characteristic of synchronous runtime systems.

Although our use case introduced already a high intricacy of distinct dynamics in the simula-

tion, the complexity of future simulations tends to increase even further. A major use case is

the multi-scale modelling of neuronal activity, part of the mission of the Blue Brain Project.

Future simulations shall combine models of large populations of neurons (Omurtag et al.,

2000), point neuron information (NEST simulator (Gewaltig & Diesmann, 2007)), molecular

level information (STEPS simulator (Hepburn et al., 2012)), and the Hodgkin-Huxley neuron

models covered in this thesis (Hodgkin & Huxley, 1952). The complexity increases further

with models for the growth of branches and synapses in the system, and other biological

entities such as glial cells, extra-cellular space and gap junctions, are also part of ongoing

research. For such use cases, a computational model such as the one presented, with dynamic

allocation of compute tasks to distributed compute resources and adaptive-step interpolation

of the dynamics of individual ODEs, may very likely be the only viable solution to efficiently

manage the complexity derived from the highly-heterogeneous time scales and temporal

activity across different biological mechanisms.

As a final remark, this thesis provided insights for the design of future simulators across a wide

range of scientific domains, driven by large heterogeneous datasets and compute architec-

tures. Although being applied to a network of neuron models, several methods presented are

problem-independent and do not require intrinsic knowledge of the problem domain from

the user, therefore opening the prospectus for the acceleration of a wide domain of scientific

problems modelled by systems of ODEs.
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A Generalization: from Gaussian Elimi-
nation to Hines Solver

We have mentioned in Chapter 2 that the Hines Solver utilised on the NEURON multisplit is a

specialisation of a reverted Gaussian Elimination applied to a tree branching structure. We will

present the proof for the Backward Triangulation step. The proof for the Forward Substitution

step is analogous.

Take the regular Gaussian elimination formulation:

1. Forward-triangulation:

cel ln ← cel ln − bn
dn−1

cel ln−1

2. Backward-substitution:

cel ln ← (r hsn −an ∗ r hsn+1)/di

where cel ln is an iterator over all elements in row n , i.e. an , dn , bn and r hsn ; and cel ln−1

is the element immediately above cel ln in the matrix. We present the proof of the Gaussian

Elimination generalization for Eq. 1. The proof for Eq. 2 follows analogously. Starting with

a tridiagonal matrix representing a linear sequence of compartments, changing function

variable in Eq. 1 from n to n +1 leads to:

cel ln+1 ← cel ln+1 − bn+1

dn
cel ln .

Converting the loop from a regular (top-down) to a reversed (bottom-up) representation:

cel ln−1 ← cel ln−1 − an−1

dn
cel ln .

Top compartment (cell soma) has no parent compartment and bottom (last index) com-

partment has no children. To fit the representation in a matrix with the same dimension as

compartments count, Hines solver shifts down all elements in the bottom diagonal (a) by one

position. Voltage contributions to (from) parent compartment are now represented on the
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upper (left) cell, respectively:

cel ln−1 ← cel ln−1 − an

dn
cel ln .

By replacing parent compartment index on the single linear cable (n −1) by the index on a

tree-based representation (p(n)) we get:

cel lp(n) ← cel lp(n) − an

dn
cel ln .

Finally, a and b are terms in order of the inter-compartmental resistances that are assumed to

be constant. Also, the term bn lies above dn+1 is in the Hines solver matrix. Thus, by unfolding

the iterator cel ln in the non-constant dn and r hsn elements, one must only solve at every

step:

dp(n) ← dp(n) − an

dn
bn , and

r hsp(n) ← r hsp(n) − an

dn
r hsn .

leading to the formulation of Backward Triangulation step presented by the Hines solver in

Figure 2.2.
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B Methods Availability and Repro-
ducibility

The source code of the application utilised in the benchmarks detailed in this thesis is available

in the Blue Brain Project’s neurox repository (Bruno Magalhaes, 2017a). The code is provided

as is, and is believed to be stable and tested thoroughly with the dependencies and datasets

detailed hereafter.

Dependencies The fixed step data structures and interface with mechanism files are pro-

vided by Coreneuron (Blue Brain Project, 2015a). The NMODL to C code generation extends

the original MOD2C application (Blue Brain Project, 2015b) with variable step and micro-

parallelism capabilities, and is available in a specialized branch of MOD2C (Bruno Magalhaes,

2017b). Additionally, the following external dependencies are also required: cmake 2.8.12+,

HPX-5 4+, google tclap 1.2.1+, and Sundials CVODES 3.1.0+.

Input datasets The datasets for this study were generated with the Blue Brain Project’s

Neurodamus toolkit dated 4th July 2018, and will be made available by the authors, without

undue reservation, to any qualified researcher.

Compilation Compilation instructions are detailed in the main README.md file of the neurox

source code.

Execution Execution parameters and modules are defined by command line flags. Existing

options include the configuration of constant and minimum step size for fixed and variable

step interpolators, tolerance values, Jacobian methods and parameters, BSP and FAP execu-

tion model, mechanisms graph-parallelism, branch parallelism, load balancing complexity

constants, communication reduce, and output of distribution of mechanisms and topological

informations. Detailed execution flags information is provided by running neurox_exec
--help.
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Testing and Validation Unit and numerical testing relies on the Coreneuron library test suite

and can be executed with make test. Validation of numerical results is performed on-the-fly

throughout the execution with bitwise comparison of state variables against Coreneuron, and

is activated by compiling neurox with debugging flags.

Coding Standard Coding format and layout follows the Google C++ Style Guide standards.

API documentaion Documentation follows the doxygen notation and can be exported after

compilation with make doc.
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List of scientific papers prepared or published during the doctoral studies:

1. Magalhaes B., Hines M., Sterling T., Schürmann F., Asynchronous SIMD-Enabled Branch-

Parallelism of Morphologically-Detailed Neuron Models, submitted to Frontiers in Neu-

roInformatics;

2. Magalhaes B., Hines M., Sterling T., Schürmann F., Exploiting Implicit Flow Graph of

System of ODEs to Accelerate the Simulation of Neural Networks, published at Proc.

International Parallel & Distributed Processing Symposium (IPDPS 2019), Rio de Janeiro,

Brazil;

3. Magalhaes B., Hines M., Sterling T., Schürmann F., Fully-Asynchronous Cache-Efficient

Simulation of Detailed Neural Networks, published at Proc. International Conference

on Computational Science (ICCS 2019), Faro, Portugal;

4. Magalhaes B., Hines M., Sterling T., Schürmann F., Fully Implicit, Fully-Asynchronous,

Variable Order, Variable Timestep Simulation of Detailed Neural Networks, published

on arXiv;

5. Magalhães B., Tauheed F., Heinis T., Ailamaki A., Schürmann F., An efficient parallel

load-balancing strategy for orthogonal decomposition of geometrical data, published at

Proc. International Super Computing (ISC 2016), Frankfurt, Germany;

6. Markram H., Muller E., Ramaswamy S., Reimann M.W., et al., Reconstruction and

Simulation of Neocortical Microcircuitry, published at Cell 163 vol. 163, 2015;
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