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Abstract. In this article we survey recent results on the structure of
centers of centralizers of unipotent elements u in simple linear algebraic
groups G. We bring forth the case of bad characteristic treated by the
first author as well as a new case-free proof in characteristic 0 of the
second author giving a lower bound for dimZ(CG(u)) in case u is an
even element. We also point out properties of the group Z(CG(u)◦).

1 Introduction

Throughout G will denote a simple linear algebraic group defined over an alge-
braically closed field k of characteristic p ≥ 0, u will denote a unipotent element
of G and e a nilpotent element in the Lie algebra Lie(G). We will say p is bad
for G if p = 2 and G is not of type An or if p = 3 and G is of exceptional type
or if p = 5 and G is of type E8; otherwise we say p is good for G. Characteristic
0 is considered to be good for all G.

It was shown in [Tes95] and [PST00] that if p > 0 and u ∈ G has order p, with
the exception of precisely one conjugacy class of elements, u lies in an A1-type
subgroup of G. In particular, u lies in a closed connected 1-dimensional subgroup

of G. The exception is the Ã
(3)
1 class in G of type G2 when char(k) = 3. Even in

the one exceptional case, u lies in a 1-dimensional closed connected subgroup of
G. Moreover, if p is a good prime for G, it follows from [Sei00, Theorem 1.2] that
there exists a 1-dimensional subgroup U containing u which has particularly nice
properties, for example:

CG(u) = CG(U) = CG(Lie(U)) (1.1)

It is natural to ask: does there exist a canonically defined overgroup of u sat-
isfying the above equalities, either in bad characteristic, or when u no longer
has order p? The conditions CG(U) = CG(u) means that the subgroup U lies
in Z(CG(u)) = CG(CG(u)). The structure of abelian algebraic groups, and in
particular abelian connected unipotent groups, shows that one should aim for a
t-dimensional group if o(u) = pt.
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The first work in this direction was done by Richard Proud in [Pro01], who
showed:

Theorem 1.1. [Pro01, Main Theorem] Let G be a simple algebraic group de-
fined over an algebraically closed field k and assume char(k) = p > 0 is good for
G. Let u ∈ G be of order pt, t > 1. Then there exists a closed connected abelian
t-dimensional unipotent subgroup W ≤ G with u ∈W .

This existence result does not point to any particularly canonical properties
of the overgroup, whereas the group CG(CG(u)) is a canonically defined abelian
overgroup. But is it unipotent? And what about the connected component, which
is also a canonically defined group, associated to u - does it even contain u? These
questions were addressed in [Pro] and [Sei04]. They showed (independently) the
following result, where for an abelian group H we denote by Hu the subgroup
of unipotent elements.

Proposition 1.2. Let G and u be as above.Then Z(CG(u))=Z(G)×Z(CG(u))u.
Moreover, if p is good for G, then Z(CG(u))u =

(
Z(CG(u))

)◦
. In particular, if

p is good, the group
(
Z(CG(u))

)◦
is a (canonically defined) connected abelian

unipotent overgroup of u.

Continuing with the case of good characteristic, we establish here the follow-
ing corollary of [MT09], showing that we have Equality (1.1) above when we
replace U by Z(CG(u))◦.

Proposition 1.3. Let G be a simple algebraic group defined over an algebraically
closed field of characteristic p. Let u ∈ G be unipotent and set Z = Z(CG(u)).
If p is good for G then

CG(u) = CG(Z◦) = CG(Lie(Z◦)).

In what follows we discuss some recent work on describing Z(CG(u)). The
analysis is different depending on whether the characteristic is a bad prime for
G or not. We consider as well the case where the field is of characteristic 0, as
we obtain new results even in this setting.

2 Good characteristic

In this section we consider the case where char(k) is good for G. For some
statements we will need the notion of very good prime: p is very good for G if it
is good and in addition does not divide n+ 1 when G is of type An.

A certain number of very powerful tools are available under our current
assumption on char(k):

• Springer maps: Given G and u, we fix a Springer map, a G-equivariant
homeomorphism ϕ : U → N , between the variety of unipotent elements in G
and the variety of nilpotent elements in Lie(G) (for a discussion of this see
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[McN03, Proposition 29]). Such a bijection exists as long as char(k) is good
for G (and in fact is an isomorphism of varieties as long as the characteristic
is very good for G). So we have CG(u) = CG(ϕ(u)), which allows us to
reduce questions about centralizers of unipotent elements to the study of
centralizers of nilpotent elements in Lie(G).

• Smoothness of centralizers. We can use the result of Slodowy [Slo80, p.38]:
if char(k) is a very good prime for G, then Lie(CG(x)) = CLieG(x) where x
is either a unipotent element of G or a nilpotent element in Lie(G).

• The Bala-Carter-Pommerening classification of unipotent classes in G and
nilpotent orbits in Lie(G) (see [BC76a], [BC76b], [Pom77] and [Pom80]).

• For each nilpotent element e ∈ Lie(G), there exists an associated cocharacter.
The definition is given below and the existence is given by [Pom77, Satz (3.1)]
or [Pre03, Theorem A].

We can now prove Proposition 1.3.

Proof (Proof of Proposition 1.3.). The first equality follows from Proposition 1.2.
The containment

CG(Z◦) ⊂ CG(Lie(Z◦))

is clear. For the reverse inclusion, we fix a Springer map ϕ as above and set
e = ϕ(u); so CG(e) = CG(u). If G is of type An then it follows from the explicit
description of Z◦ given in [LT11, §4.1] that e ∈ Lie(Z). If G is not of type
An, then using [MT09, Theorem A], we again have e ∈ Lie(Z). In all cases
e ∈ Lie(Z◦), so CG(Lie(Z◦)) ⊂ CG(e).

In order to state some results from [LT11], we will require the following two
definitions.

Definition 2.1. Let H be a connected reductive algebraic group. We say that a
nilpotent element e ∈ Lie(H) is a distinguished nilpotent element in Lie(H) if
CH(e)◦ contains no noncentral semisimple elements or, equivalently, each torus
of CH(e) lies in Z(H).

Note that taking S to be a maximal torus of CG(e), we have that e is distin-
guished in the Lie algebra of the reductive subgroup CG(S) (a Levi subgroup of
G).

Definition 2.2. Let e ∈ Lie(G) be nilpotent. A morphism τ : k∗ → G is said to
be an associated cocharacter for e if

i. τ(c)e = c2e for all c ∈ k∗, and
ii. im(τ) ⊆ [L,L], for some Levi subgroup of G, such that e is distinguished in

Lie(L).

One can show that any two cocharacters associated to e are conjugate by an
element of CG(e)◦(see [Jan04, Lemma 5.3]). Moreover, an associated cocharacter
determines a unique weighted Dynkin diagram where each node is labelled with
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an integer iα ∈ {0, 1, 2}. (This is analogous to the usual Kostant-Dynkin theory
in characteristic 0.) We will call this the weighted Dynkin diagram of e.

Assume for the moment that the characteristic is very good for G. Since im(τ)
normalizes CG(e) it acts on the subspace Lie(CG(e)) with a certain set of (inte-
gral) weights. The assumption on char(k) implies that Lie(CG(e)) = CLieG(e).
We denote by CLieG(e)+ the subalgebra spanned by the set of im(τ)-weight
spaces associated to strictly positive weights. We also have CG(e) = CR, a semi-
direct product of R = Ru(CG(e)) and a reductive (not necessarily connected)
group C. In fact, C = CG(e) ∩ CG(im(τ)) (see [Jan04, Proposition 5.10]) and
Lie(R) = CLieG(e)+. The following description of Lie(Z(CG(e))) allows one to
determine this object computationally.

Theorem 2.3. [LT11, Theorem 3.9] Let e, τ , and C be as above and assume

char(k) is very good for G. Then Lie(Z(CG(e))) =
(
Z(CLieG(e)+)

)C
, that is the

fixed points of C acting on Z(CLieG(e)+).

In order to apply Theorem 2.3 one has to: find a basis for Z(CLieG(e)+) (if G
is classical, this can be deduced from the basis for Z(CLieG(e)) given by Yakimova
in [Yak09, §2]), determine the fixed point space of the connected reductive group
C◦ acting there, and find representatives for the component group C/C◦ and let
them act as well. In the exceptional groups, lengthy case-by-case considerations
are required for most results.

In order to state one of the main results we will need the following additional
definition.

Definition 2.4. We write ∆e for the weighted Dynkin diagram of e and n2(∆e)
for the number of weights equal to 2 in ∆e. We say that e is even if all weights
of τ are even, so the weighted Dynkin diagram has all labels either 0 or 2. (For
example, distinguished nilpotent elements are even.)

Theorem 2.5. [LT11, Theorem 2] Let G be as above and assume char(k) is
good for G. Let e ∈ Lie(G) be an even nilpotent element. Then

dimZ(CG(e)) = n2(∆e) = dimZ(CG(im(τ))).

In [LT11], the dimension of Z(CG(e)) was determined for e in any nilpotent
orbit. Indeed, [LT11, Theorem 4] gives a formula for dimZ(CG(e)) as a function
of the weighted Dynkin diagram ∆e. The formula for noneven elements is more
technical and we refer the reader to the original article for the precise statement.

In the same article, the authors establish the following connection between
the degrees of the invariant polynomials of the Weyl group for G and the weights
of an associated cocharacter τ for e on CLieG(e)+. Again, the proof for the
exceptional groups follows from lengthy case-by-case analysis.

Theorem 2.6. [LT11, Theorem 1] Let e ∈ Lie(G) be a distinguished nilpotent
element, with associated cocharacter τ . Let d1, · · · , d` be the degrees of the in-
variant polynomials of the Weyl group of G, ordered such that d` is ` if G is of
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type D`, and otherwise d` is max{di}, and di < dj if i < j < `. Then the weights
of im(τ) on Lie(Z(CG(e))) are the n2(∆e) integers 2di − 2 for i ∈ S∆, where

S∆ =

{
{1, . . . , n2(∆e)− 1, `} if G is of type D` and ∆ = · · · 22 ;
{1, . . . , n2(∆e)− 1, n2(∆e)} otherwise.

Here · · · 22 stands for any weighted Dynkin diagram of type D` for which the last
two nodes (in Bourbaki notation) have label 2.

Open Problems 1 1. Find a proof in characteristic 0 (free of case-by-case
analysis) that for an even nilpotent element e we have dimZ(CG(e)) =
n2(∆e). In what follows we give a proof for the inequality dimZ(CG(e)) ≥
n2(∆e).

2. Give a case-free proof of the more general formula for dimZ(CG(e)) in
[LT11, Theorem 4].

3. Theorem 2.6 was deduced from the case-by-case considerations in [LT11]. If
k = C and e is regular then this result was established in [Kos59] (see §4
for the definition of regular). Give a case-free proof of Theorem 2.6, at least
over fields of characteristic 0.

2.1 A proof of an inequality in characteristic 0

Here we assume that e is a non-zero even element and that k is the field of
complex numbers C. With this assumption, there exist h and f in Lie(G) such
that [h, e] = 2e, [h, f ] = −2f and [e, f ] = h and in particular e, h, f span an sl2-
subalgebra of Lie(G) which we denote by a (see [Jac58]). Moreover, CLieG(e) =
CLieG(a)⊕r where r is nilpotent and CLieG(a) is a reductive subalgebra. Moreover
h spans the Lie algebra of im(τ) where τ is an associated cocharacter for e. So
CG(im(τ)) = CG(h).

Lemma 2.7. Let e ∈ Lie(G) be a nonzero even nilpotent element. Then
dimCG(e) = dimCLieG(e) is equal to the dimension of the 0 weight space for
ad(h), and hence, for all t ∈ C∗ we have

dimCLieG(e) = dimCLieG(h) = dimCG(h) = dimCG(th) = dimCLieG(th)

= dimCLieG(th+ e).

Proof. Since we are assuming that e is an even element, in a decomposition of
Lie(G) into a direct sum of irreducible a-submodules, each irreducible summand
has an even highest weight and the zero weight occurs with multiplicity 1 in each
irreducible summand. Moreover, CLieG(e) is precisely the set of fixed points for
ad(e) acting on Lie(G), and there is a 1-dimensional subspace of such vectors in
each irreducible summand. This establishes the first equality. The second, third
and fourth equalities are clear. The last equality follows from the fact that th and
th+ e are conjugate under the action of the closed connected (P)SL2-subgroup
A ⊆ G with Lie(A) = a.
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In characteristic 0 it is not difficult to prove the Lie algebra version of Propo-
sition 1.2. In fact, we have Z(CLieG(e)) ⊆ r. Using this and some basic facts about
centralizers and centers, we can show:

Lemma 2.8. Lie(Z(CG(e))) =
(
Z(CLieG(e))

)C
where C = CG(e) ∩CG(im(τ)).

For the proof of the following inequality we use an argument based upon
ideas in [Kos59, Theorem 5.7].

Proposition 2.9. If e ∈ LieG is a non-zero even element then dimZ(CG(e)) ≥
n2(∆e) = dimZ(CG(h)).

Proof. Set f = dimZ(CLieG(th + e)) and d = dimCLieG(h) = dimCLieG(e) =
dimCLieG(th + e), for all t ∈ C by Lemma 2.7. Choose a sequence {tn} ⊂ C
with tnh + e converging to e. We consider the Grassmannian of d-dimensional
subspaces of Lie(G), which is a compact space. Hence, eventually after refining
{tn}, we may assume that the sequence of d-dimensional subalgebras CLieG(tnh+
e) converges to a d-dimensional subspace u in the Grassmannian. Let w1, . . . , wd
be a basis of u, and for each 1 ≤ i ≤ d, choose {wni ∈ CLieG(tnh + e)}n∈N such
that {wni } converges to wi. Since [wni , tnh+ e] = 0 for all n, we have [wi, e] = 0
for all i. Hence u ⊆ CLieG(e). But by our assumption that e is an even element
and Lemma 2.7, we have that d = dimCLieG(e) and so u = CLieG(e).

After again extracting a subsequence, we may assume that the sequence
of f -dimensional subspaces Z(CLieG(tnh + e)) converges to an f -dimensional
subspace z of Lie(G). As before we have that z ⊆ CLieG(e) and we claim that
z ⊆ Z(CLieG(e))C . Take a basis {z1, . . . , zf} of z and for each j a sequence
{znj ∈ Z(CLieG(tnh + e))}n∈N such that {znj } converges to zj . In particular,
[znj , w

n
i ] = 0 for all n, since wni ∈ CLieG(tnkh + e). So [zj , wi] = 0 for all i, j

which shows that zj ∈ Z(CLieG(e)). Moreover

Z(CLieG(tnh+ e)) = Lie(Z(CG(tnh+ e))),

since CG(tnh+e) is connected, and this latter is equal to Lie(CG(tnh+e))CG(tnh+e).
But since

C = CG(e) ∩ CG(h) ⊆ CG(tnh+ e) for all tn,

we also have that C fixes all elements in Z(CLieG(tnh+e)) and so C fixes the znj
and hence fixes zj for all j. This shows that the f -dimensional subspace z indeed
lies in Z(CLieG(e))C . By Lemma 2.8, it follows that z ⊆ Lie(Z(CG(e)) and we
conclude that dimZ(CG(e)) ≥ n2(∆e).

3 Bad characteristic

In this section we focus on the case where G is of exceptional type and the
characteristic of k is bad for G. The most recent reference on unipotent and
nilpotent classes, with an extensive treatment of bad characteristic, is [LS12].
In this setting almost all main tools used in the analysis for good characteristic
fail. The difficulties are:
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• No Springer isomorphism. Liebeck and Seitz show that if the characteristic
is not 2 then there is a bijective correspondence between nilpotent orbits and
unipotent classes which comes close to a Springer map (see [LS12, Theorem
1]). They also show that in the case of characteristic 2 there is an injective
map from unipotent to nilpotent orbits satisfying some useful properties.

• Centralizers are not smooth, that is, for u ∈ G unipotent, we do not always
have Lie(CG(u)) = CLieG(u). So now studying CG(u) and Z(CG(u)) cannot
be ‘linearized’.

• For u unipotent, we do not necessarily have u in CG(u)◦ and so Z(CG(u))◦

will not work as a canonically defined connected abelian overgroup of u.
Springer showed in [Spr66b] that for u ∈ G regular and char(k) a bad prime
for G, then u 6∈ CG(u)◦. All classes u for which u 6∈ CG(u)◦ were determined
in [LS12, Corollary 4].

• Associated cocharacters still exist but several of the useful properties of
their good-characteristic counterparts are lost. For more details see [LS12,
Theorem 9.1].

In order to complete the analysis of Z(CG(u)) by extending it to bad char-
acteristic, the following description of Z(CG(u))◦ can be used to algorithmically
determine this group.

Theorem 3.1. [Sim13, Theorem A] Let B be a Borel subgroup of a simple al-
gebraic group G defined over an algebraically closed field and set U = Ru(B).
Let u ∈ G be a unipotent element and suppose that B contains a Borel subgroup
of CG(u). Then (

Z(CG(u))
)◦

= CZ(CU (u)◦)◦(Tu, Ã)◦

where Tu is a maximal torus of CB(u) and Ã is a set of coset representatives for
CG(u)◦ in CG(u).

A consequence of this is

Corollary 3.2. [Sim13, Corollary 2.8] With notation as in Theorem 3.1 and
under the assumption that the characteristic of the field is 0 we have

LieZ(CG(u)) = Z(CLieG(u))Ã.

Using a Springer map one has a similar statement for nilpotent elements
which gives a proof of Lemma 2.8. This corollary shows that the component
group of the centralizer plays an important role in determining the double
centralizer and can be viewed as a justification for the difficulty of showing
dimZ(CG(e)) ≤ n2(∆e) other than through a case-by-case analysis.

In order to apply Theorem 3.1, one first needs to find a Borel subgroup which
contains a Borel subgroup of the centralizer. Once this is determined one can
computationally obtain Z(CU (u)◦)◦. This was carried out case by case in [Sim13]
for each class of unipotent elements in the exceptional algebraic groups defined
over fields of bad characteristic:
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Theorem 3.3. [Sim13, Theorem D] Suppose that G is of exceptional type and
that the characteristic of k is bad for G. Let u ∈ G be a unipotent element. Then
dimZ(CG(u)) is explicitly determined; the tables are given in [Sim13, §9].

Moreover, the analysis determines if u lies in Z(CG(u))◦, and when u lies in
Z(CG(u)◦)◦. In particular, we find that u does not necessarily lie in Z(CG(u))◦,
even if u does lie in CG(u)◦. Note that in all cases, we have

Z(CG(u))◦ ⊂ Z(CG(u)◦)◦ ⊂ Z(CG(u)◦) ⊂ CG(u)◦ ⊂ CG(u).

Clearly, when u 6∈ CG(u)◦, we have u 6∈ Z(CG(u))◦. But in fact, there exist
u with u ∈ CG(u)◦, but u 6∈ Z(CG(u))◦. There are examples which show that
each of the above inclusions may be proper:

Corollary 3.4. Let G be an exceptional algebraic group and suppose that the
characteristic is 2. Except for the classes A2 and A2A1 in E6, an element u lies
in Z(CG(u))◦ if and only if it has order 2.

Open Problems 2 The problem of determining dimZ(CG(u)), for u a unipo-
tent element in an orthogonal or symplectic group over a field of characteristic
2, is still open.

4 Related questions

The results mentioned so far can be used to address related questions. The
questions considered here revolve around several characterizations of regular
unipotent elements.

Definition 4.1. We call an element x of G regular if dimCG(x) is minimal.

If u is unipotent, then there are various characterizations of the condition that
dimCG(u) is minimal. More precisely, if the characteristic is good for G then we
have

u regular unipotent⇔ dimCG(u) = rank(G) (4.2)

⇔ G.u dense in the variety of unipotent elements of G (4.3)

⇔ CG(u) abelian (4.4)

⇔ CG(u)◦ abelian (4.5)

⇔ dimZ(CG(u)) = rank(G) (4.6)

⇔ dimZ(CG(u)◦) = rank(G) (4.7)

whereas in bad characteristic only the first three equivalences remain true.
For the first two equivalences we refer the reader to [SS70, Chapter III].

In [Spr66a], Springer proved that for a regular unipotent element u, CG(u)◦ is
abelian. Then Lou showed in [Lou68] that for regular unipotent elements the
full centralizer CG(u) is abelian. In [Kur83] Kurtzke showed that in good char-
acteristic a unipotent element u ∈ G is regular if and only if CG(u)◦ is abelian.
Lawther extended these results to cover bad characteristics, so the equivalence
in (4.4 ) is true:
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Theorem 4.2. [Law12, Theorem 2] Let u be a unipotent element in G. Then u
is regular if and only if CG(u) is abelian.

The result of Kurtzke does not generalize however. In (4.5 ) we only have
‘⇒’ in general. Our analysis gives a second proof for exceptional groups in bad
characteristic of the following result.

Theorem 4.3. [Law12, Theorem 1] For u ∈ G unipotent, with CG(u)◦ abelian,
then either u is regular, or u ∈ G = G2, p = 3 and u lies in the class of subregular
elements.

The implications ‘⇒’ in (4.6 ) and (4.7 ) follow from (4.4 ), (4.5 ) and (4.2 ).
That the reversed implications do not hold in general can be deduced from
Theorem 3.3.

Corollary 4.4. Let G be of exceptional type and suppose that char(k) is bad for
G. If u ∈ G is unipotent then

i. dimZ(CG(u)◦) ≤ rank(G) unless p = 2, G is of type F4 and u is in the
F4(a3) class; in this case dimZ(CG(u)◦) = 6.

ii. dimZ(CG(u)) = rank(G) if and only if u is in the regular class or (G, p, class

of u) is one of the triples (G2, 3, Ã
(3)
1 ), (F4, 2, F4(a1)) and (F4, 2, C3(a1)(2));

in these cases dimZ(CG(u)) = dimZ(CG(u)◦).

In fact, it is not known whether the inequality dimZ(CG(u)) ≤ rank(G) holds
in general. From [LT11, Theorem 4] and Theorem 3.3 we deduce the following

Corollary 4.5. Assume p 6= 2 if G is of type Bn, Cn or Dn. Then dimZ(CG(u))
≤ rank(G).

Open Problems 3 1. Give a case-free proof of the inequality dimZ(CG(u)) ≤
rank(G), in characteristic 0, or even in good positive characteristic.

2. Determine whether dimZ(CG(u)) ≤ rank(G) in the cases which are excluded
in Corollary 4.5.

We conclude by showing that if the characteristic is good for G then the
implications ‘⇐’ in (4.6 ) and (4.7 ) hold. The implication ‘⇐’ in (6) follows
from [LT11, Theorem 4]. We therefore turn our attention to Z(CG(u)◦).

For exceptional groups, if the characteristic is good, the dimension of Z(CG(u)◦)
can be deduced from the tables in [LT11], where a basis for Z\ = Z(CLieG(e)+)C

◦

is given. We need the following lemma.

Lemma 4.6. Assume char(k) is a very good prime for G. Then

Lie(Z(CG(e)◦)) = Z(CLieG(e)+)C
◦
.
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Proof. By [Sim13, Lemma 2.6], Z(CG(u)◦) = Z(CG(u)◦)u × (Z(G) ∩ CG(u)◦),
for all unipotent elements u ∈ G; so via a Springer map, the analogous statement
is true for all nilpotent elements e ∈ LieG. In particular, setting CG(e) = CR,
where R = Ru(CG(e)) as in §2, we have Z(CG(e)◦)◦ ⊆ R. So

LieZ(CG(e)◦) = Lie(CG(e)◦)C
◦R ∩ LieR

= (LieC ⊕ LieR)C
◦R ∩ LieR

= (LieR)RC
◦

= (LieZ(R))C
◦
.

Now we argue as in the proofs of Propositions [LT11, 3.7,3.8,3.9], to see that
Z(LieR) = Lie(Z(R)). So finally we have Lie(Z(CG(e)◦)) = Z(LieR)C

◦
=

Z(CLieG(e)+)C
◦

= Z\.

In particular, we now deduce from [LT11, Section 11] that for the exceptional
groups defined over fields of characteristic 0 or good characteristic p, we have
dimZ(CG(u)◦) = rank(G) if and only if u is regular.

We finish by establishing this result for the classical groups.

Lemma 4.7. Let G be a classical group defined over a field of characteristic 0 or
of good characteristic p. Let u ∈ G be unipotent. Then dimZ(CG(u)◦) = rank(G)
if and only if u is regular.

Proof. Using a Springer map, we will consider e ∈ LieG nilpotent. If e is regular
nilpotent, then by Theorem 4.2, CG(e) is abelian and so we have the result.

Now take e ∈ LieG a non regular nilpotent element.

If G is of type An, then CG(e) is connected and so Z(CG(e)◦) = Z(CG(e))
and Theorem [LT11, Theorem 4] shows that the latter is of dimension strictly
less than rank(G).

For G of type Bn, Cn and Dn, set Y = 〈e, e3, . . . 〉, the subspace of LieG
spanned by the odd powers of e. By [Yak09, Theorem 2.3], Z(CLieG(e)) = Y ,
unless G is of type Bn or Dn and e has at least 3 Jordan blocks on the natural
module for G, 2 of which are blocks of odd sizes strictly bigger than 1. In the
exceptional cases, Z(CLieG(e)) = Y ⊕ 〈x〉 for some 0 6= x ∈ LieG. Using the
known Jordan block structure of nilpotent elements in LieG acting on the natural
module for G (for example as given in [Car85, Chapter 13]), we deduce that
dimY < rank(G) for all nonregular nilpotent elements e, and dimY + 1 <
rank(G), unless G has type Bn and e has a Jordan block of size 2n − 1 on
the natural kG-module. In the latter case, e has exactly three blocks of sizes
2n − 1, 1 and 1, and so [Yak09, Theorem 2.3] implies that Z(CLieG(e)) = Y .
Since Lie(Z(CG(e)◦)) ⊂ Z(Lie(CG(e)◦)) = Z(LieCG(e)) = Z(CLieG(e)), we have
that dimZ(CG(e)◦) < rank(G).
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