
An Associativity-Agnostic in-Cache Computing
Architecture Optimized for Multiplication

Marco Rios, William Simon, Alexandre Levisse, Marina Zapater and David Atienza
ESL, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

Abstract—With the spread of cloud services and Internet of
Things concept, there is a popularization of machine learning
and artificial intelligence based analytics in our everyday life.
However, an efficient deployment of these data-intensive services
requires performing computations closer to the edge. In this
context, in-cache computing, based on bitline computing, is
promising to execute data-intensive algorithms in an energy
efficient way by mitigating data movement in the cache hierarchy
and exploiting data parallelism. Nevertheless, previous in-cache
computing architectures contain serious circuit-level deficiencies
(i.e., low bitcell density, data corruption risks, and limited
performance), thus report high multiplication latency, which
is a key operation for machine learning and deep learning.
Moreover, no previous work addresses the issue of way mis-
alignment, strongly constraining data placement not to reduce
performance gains. In this work we drastically improve the
previously proposed BLADE architecture for in-cache computing
to efficiently support multiplication operations by enhancing the
local bitline circuitry, enabling associativity-agnostic operations
as well as in-place shifting inside local bitline groups. We imple-
mented and simulated the proposed architecture in CMOS 28nm
bulk technology from TSMC, validating its functionality and
extracting its performance, area, and energy per operation. Then,
we designed a behavioral model of the proposed architecture
to assess its performance with respect to the latest BLADE
architecture. We show a 17.5 and 22% area and energy reduction
thanks to the proposed LG optimization. Finally, for 16bits
multiplication, we demonstrate 44% cycle count, 47% energy
and 41% performances gain versus BLADE and show that 4
embedded shifts is the best trade-off between energy, area and
performances.

I. INTRODUCTION

Deep Neural Networks (DNN) are becoming increasingly
complex and compute intensive, while simultaneously becom-
ing more pervasive across all devices, including low power
and area constrained devices on the so called ”edge” [1].

In this context, energy efficiency as well as design and
manufacturing costs become critical, calling for new accel-
erators and architectural innovations that provide both high
efficiency and high scalability while remaining low-cost.
Among the explored opportunities, in-memory computing (and
particularly in-SRAM computing, or iSC) [2]–[6] appears as a
promising solution, as it mitigates data movement in the cache
hierarchy (i.e., reducing energy consumption) and enables
ultra-wide Single Instruction Multiple Data (SIMD) operations
while being compact and not making drastic changes in the
architecture design and usage [7].

Current iSC solutions are based on BitLine (BL) computing,
a technique consisting of the simultaneous activation of two
or more WordLines (WL) in a SRAM array [3]–[8]. This

simultaneous WL activation results in the corresponding BLs
carrying out the bitwise AND and NOR operations between
the bitcells of the accessed WLs. While bitwise operations
can be useful in some cases, around 90% of the operations
executed in DNNs are convolutions [9], which require word-
level multiplications. Among the existing works, [7], [8] only
support bitwise operations, while [3]–[6] propose support for
addition (ADD) and SHIFT which, when chained, can be
used to perform multiplication. One of the most promising
architectures, BLADE [5], [6], exhibits the best trade-off
between density and performance: (i) thanks to its Local
Group (LG) organization, it does not require WL underdrive
to mitigate data corruption risks [7], [8], and (ii) the use of
LGs reduces array density by only 10 to 15%, making it more
suitable than 8-10T bitcells arrays [3], [10].
However, among SRAM-based solutions none focus on mul-
tiplication optimization specifically, and all strongly rely on
compile-time optimizations [7], [11] to deal with data miss
alignment (i.e., data sharing different positions in regards with
the BL multiplexers must be moved before being computed
together).
In this work, we propose to enhance the BLADE architecture
to enable associativity-agnostic operations as well as highly
efficient multiplication operations.

Overall, the main contributions of this work are:

• We implement local BL multiplexer inside the LG, as
opposed to global multiplexer inside the BL logic, en-
abling area and energy gain at constant performances and
enabling associativity-agnostic operations between miss
aligned data.

• We implement shift logic inside the LGs (embedded
shifting) and assess the area and energy gains of the
proposed modifications (17.5% and 22% respectively)
through parasitic aware electrical simulations and layout
using the 28nm bulk CMOS TSMC technology PDK.

• We propose an innovative multiplication scheme and
designed an analytical behavioral model to demonstrate
performance under various configurations of the proposed
embedded shift logic. We show 44% cycle count, 47% en-
ergy and 41% performances gain for 16 bit multiplication
compared to BLADE [5].

• We explore the design space of the proposed optimization
and we demonstrate that a 4 bit embedded shift archi-
tecture provides optimal trade-off between performance,
energy consumption and area overhead when performing

in-memory multiplication.
The paper is organized as follows: Section II introduces the

concept of bitline computing and how the iSC multiplication is
performed in-memory. Section III presents the proposed circuit
optimizations within LGs that enable associativity-agnostic
operation and enhance multiplication. Section IV details the
circuit level validation performed as well as our behavioral
model, while Section V analyzes the performances gains of
the proposed architecture. Finally, Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORKS

A. In-SRAM Computing

A conventional SRAM read operation precharges the BL
pair (BL and BL) and activates one WL, in such way that
either the BL and BL discharge depending on the data stored
in the bitcell. A sense amplifier then issues a logic value for
the read operation. This standard operation can be exploited to
perform what is called bitline computing, which consists of ac-
cessing two WLs simultaneously. The resulting BL discharge
results in a pair of logic operations between the bitcells of the
activated WLs, namely AND and NOR. This basic in-SRAM
Computing (iSC) logic can then be extended via a variety of
methods.

Jeloka et al. [8] first demonstrated iSC architectures, which
was then further enhanced via the addition of an extra logic
gate to support XOR ops [7]. Unfortunately, these works are
based on 6T SRAM bitcells and suffer from data corruption,
due to short circuiting between bitcells when multiple WLs are
accessed. Consequently, performance and voltage scaling are
limited to secure reliable operation. To perform iSC operations
at ultra low voltage, Dong et al. [12] rely on an unconventional
4T bitcell design, which suffers from instability and disturb
risks. Neural Cache [4] and DRC2 [3] overcome data corrup-
tion using 8T and 10T SRAM bitcells respectively resulting in
an area overhead of at least 30% [13]. Finally, an intermediate
solution, BLADE, using 6T SRAM bitcells and local bitlines
was proposed in [5], [6]. BLADE divides the array into LGs,
each one contains its own local bitline, suppressing the risk of
data corruption and enabling voltage scaling while maintaining
a low area overhead.

A common limitation of iSC computing is data miss-
alignment regarding the BL multiplexer. In a cache, each
multiplexed BL is named a way. In order to perform in-
situ operations, operands must be aligned along the ways, i.e.
share the same multiplexed BL as shown Figure 1-a. This
is known as operand locality [7]. In this context, operations
between miss-aligned data are not possible, leading to complex
algorithm modifications and operand migration policies for
iSC architectures [7], [11]. In this work, the introduction of
local BL multiplexers per LG periphery enables operations
between miss-aligned operands (i.e., associativity agnostic
operations) when in two different LGs. It is worth to note
that the proposed approach stays compatible with parallel TAG
data access if included in a cache.

B. BLADE Architecture

The BLADE architecture proposed in [5], [6] is an iSC
architecture designed for low voltage edge devices. It performs
bitline computing through an innovative memory array orga-
nization featuring LBLs. By ensuring that the operations are
always performed between two different LGs, the risk of data
corruption when accessing two WLs is eliminated.

Figure 1-a presents the BLADE block schematic. The
architecture considers a n-way cache structure (0 to n-1 BL
multiplexer), these n ways share the same BL logic through the
Global Read BL (GRBL) Multiplexer. Each way consists of
two LG with their private LBLs and peripheral circuitry (Local
Group Periphery - LGP). The LGP in turn, shown figure 1-b,
consists of the local read and write ports, the precharge circuit,
and two Local Sense Amplifiers (LSA).

BLADE computes GRBLs instead of the LBLs. During a
read operation, the LBLs are connected to GRBLs through the
Local Read Port (LRP). This solution prevents the LBLs to
be coupled and short circuiting two bitcells. During a write
operation, the write amplifiers are connected to the LBLs
through Global Write BL (GWBL) [6] not represented in
figure 1-a.

The BLADE BL Logic contains a sense amplifier, a carry
ripple adder, an operation multiplexer and a write back cir-
cuitry as shown Figure 1-c. It supports bitwise operations
such as NOR, XOR and AND. With the addition of ADD and
SHIFT, more complex operations can be performed, such as
multiplication, subtraction and greater/less than.

C. in-SRAM Multiplication and Challenges

Performing iSC multiplication requires the use of complex
operations such as SHIFT and ADD. To this end, previous
iSC works have proposed the use of carry ripple adder to
enable array level multiplications [3], [5]; further, Simon et
al. proposed to optimize addition via a Manchester carry chain
adder [6]. However, among these works, multiplication itself
is marginally studied [4], [5] and the effect of data structure
are not discussed.

Multiplication is an operation between the multiplicand
A and multiplier B, with the product C achieved through
the summation of partial products. Traditionally, these partial
products are shifted values of A. Therefore, multiplication is
achieved by shift-and-adding A, according to the bit-values of
B. When performed via iSC, each SHIFT or ADD operation
requires two cycles, one to access the data and compute on
the bitline, and one to Write Back (WB) the result to memory.
Moreover, the total cycle count increases with the operand
size.

In order to simplify binary multiplication, the iSC multi-
plication shifts C instead of A. In each shift/add cycle, the
controller inspects one bit bn in the multiplier B, from the
most (MSB) to the least significant bit (LSB). First, C is left-
shifted. Then if bn = 12, A is accumlated into C.

Table I demonstrates this technique via an example mul-
tiplication between the multiplicand (A = 1010 = 010102)
and the multiplier (B = 910 = 010012). The total number

SRAM

LG
Periphery

GRBL0 GRBL0

Local Group 0

LBL LBL

Way 0

SRAM

Periphery

Local Group 1

LBL LBL

Global Read BL Multiplexer

Carry Riple Adder

ADD NOR XOR AND

ADD
Cn Cn-1

Write back circuit

Sense Ampli�er

BitLine Logic

SHIFTADDn-1

SRAM

Local Group 0

LBL LBL

SRAM

Local Group 0

LBL LBL

Modi�ed LG Periphery

Way 0 Way N-1

BitLine Logic

SRAM

Local Group 1

LBL LBL

SRAM

Local Group 1

LBL LBL

Modi�ed LG Periphery

Local BL multiplexer

Local BL multiplexer

SRAM

Periphery

GRBLN GRBLN

Local Group 0

LBL LBL

Way N-1

SRAM

Periphery

Local Group 1

LBL LBL

(b)

(c)

GRBL GRBL

BitLine Logic

(a)

LG

LGLG

LG Periphery

Sense Ampli�er

Precharge

GRBL

LBL LBL

GRBL

Read
Port

Read
Port

Write
Port

Write
Port

(d)

GRBL

GWBL

GRBL

GWBL

Fig. 1: (a) BLADE memory organization, (b) Local Group Periphery (LGP) block schematic and (c) BitLine Logic block schematic from
[5], [6]. (d) Proposed associativity-agnostic memory organization with modified local group periphery and local BL multiplexer

C - Binary C - Decimal bn Operation Cycle
0 0 0 Shift (C) 2
0 0 1 Shift (C) 4

1 0 1 0 10 Add (C,A) 6
1 0 1 0 0 20 0 Shift (C) 8

1 0 1 0 0 0 40 0 Shift (C) 10
1 0 1 0 0 0 0 80 1 Shift (C) 12
1 0 1 1 0 1 0 90 Add (C,A) 14

TABLE I: Comprehensive example of a multiplication between
A = 1010 and B = 910 with detailed intermediate steps.

of operations for the given example is 7 (2 ADDs and 5
SHIFTs), therefore resulting in a cycle count of 14.

BLADE [5], [6] integrates an ADDn−1 between BL logic
blocks in the operation multiplexer, as illustrated in Figure 1-c.
This accelerates the multiplication by allowing addition results
to be shifted during write back, thus only requiring two cycles
per bit in the operand to complete a multiplication.

III. PROPOSED CIRCUIT OPTIMIZATIONS

In this section we present first the circuit innovations pro-
posed in this work to enable associativity-agnostic operations.
Then, we introduce the concept of embedded shifts inside the
LGs and we show how such architecture can accelerate iSC
multiplications.

A. Associativity-Agnostic Local Group

Associativity-agnostic operations simplify the controller at
the system level, as well as it mitigates one of the major
drawbacks in iSC, namely, data miss-alignment. If we consider
a 4-ways, 2 LG array with 32WLs per LG, each operand
has only 32 potential available operands to which it can be
multiplied with (it must be recalled that operands must occupy
distinct LGs [5]). By including the BL multiplexer inside

2 3 4 5 6 7 8
Number of Local Groups

0

200

400

600

800

1000

Av
ai

la
bl

e
Po

si
tio

ns
 [w

or
ds

]

2x
4x

No associativity-agnostic
2-ways - Associativity-agnostic
4-ways - Associativity-agnostic

Fig. 2: Available positions for operands (i.e., misalignment mitiga-
tion) versus the number of LGs for the proposed and baseline BL
computing memories.

the LG, available positions for operands increases by the BL
multiplexer width (4× for a 4-way cache associativity). More
positions can be made available by increasing the number of
LGs as shown Figure 2.

In this work, by moving the BL multiplexer from the BL
logic to the LGP, all the ways share the same LGP. Controlling
independently each local BL multiplexer, two different ways
can couple into the same GRBLs, as depicted in figure 1-d.

This solution reduces the circuit complexity and improves
the energy and area efficiency. By reducing the number of
GRBLs and GWBLs by n×, the array controller is simplified
and the energy efficiency is improved as less GRBL demand
less energy during the precharge phase. Furthermore, this work
greatly enhances the area efficiency. Whereas BLADE needs n
LGP blocks per BL logic, we employ just one. The BL logic
area reduces 34% thanks to the read and write multiplexers
moved to the LGs.

B. Efficient Multiplication With Embedded Shift

Thanks to the use of local BL multiplexer, we propose
in this section to integrate what we call embedded shifting
circuitry in the LG. As shown Figure 3, the output of the

Fig. 3: Local Read Port extended for N embedded shifts. with
corresponding circuit layout

Result (C)

Multiplicand (A)

BitLine Logic
Write back (C)

LG0

LG1

1 0 1 0 0 0 0
+ 0 0 0 1 0 1 0

1 0 1 1 0 1 0

Fig. 4: Shifted addition path inside the memory array and its
arithmetic representation.

Local Sense Amplifiers (LSA) are connected to a neighbour
Local Read Port (LRP), i.e., to the neighbour GRBL. In this
context, from the BL logic point of view, the data is shifted.
During an iSC operation between two operands, this feature
enables direct shifting of one of the operands without requiring
any preliminary SHIFT + WB cycle.

We implemented the proposed modifications in a LG. Addi-
tional circuitry incurs a small area cost, with each embedded
shift increasing the LG layout length by 0.39 µm when pitched
on 2µm (4 bitcells width).

Table II shows the chain of operations that have to be
executed for Embedded Shift Numbers (NES) going from 0
to 4. Column NES = 0 has no shift logic, and therefore the
SHIFT operation count equals the size of the operands, while
the number of ADDs to be performed equals the count of
’1’s in the multiplier. For NES = 1, ADD and SHIFT can be
performed in one cycle by shifting the result inside the LG
before performing an iSC operation with the multiplicand, as
illustrated in Figure 4. Thus, NES = 1 reduces the operation
count to just the number of bits in the operand, matching the
performance of BLADE while simplifying the bitline logic.

It is possible to extend NES to greater values, enabling
operands to be shifted by more than one bit at a time. Such
an architecture can be used to accelerate multiplication by
analyzing the bit pattern of the multiplicand. Specifically, bit
patterns with leading 0s can be accelerated. For example, for

Shift Register
Shift control

Bn-1 Bn-2 Bn-3 Bn-4 Bn-5 B4 B3 B2 B1 B0

1 Shift(C) +
Add(C,A)

2 Shift(C) +
Add(C,A)

3 Shift(C) +
Add(C,A)

4 Shift(C) +
Add(C,A)

4Shift(C)

14 3 2

B8 B7 B6 B5
. . .

Fig. 5: 4-bits multiplication controller block schematic for n-bits
word.

NES = 2, whenever the iSC controller detects a 02 in the
most significant bit, a 2 bit shift can be performed as opposed
to 1. The two new available operations are:

1) Bn = 00→ 2 × Shift(C) + WB(C).
2) Bn = 01→ 2 × Shift(C) + Add(C,A) + WB(C).

For NES = 3, the patterns that are accelerated are:
1) Bn = 000→ 3 × Shift(C) + WB(C).
2) Bn = 001→ 3 × Shift(C) + Add(C,A) + WB(C).
So, for each LG shifting, the number of concatenated

SHIFTs that is performed simultaneously increases. But as
these occurrences are statistically less common, the gain
saturates. For the given example, the operations executed for
NES = 2 and 3 are 3 and 2, respectively. Representing 71%
cycles count reduction in comparison with no embedded shift.

C. Multiplication Controller

In order to perform data dependent operations, a dedicated
control logic block must be considered. In this work we
propose a multiplication controller and we assume that such
logic is included inside the sub-array controller.

Figure 5 presents the block schematic of a NES = 4
controller and it can be used for a n-bits word size. The circuit
is composed of one shift register and logic gates. Before any
multiplication, as described in [5], one of the operands (ideally
the one containing the least ’1’s) is stored inside the shift reg-
ister. Then, at each cycle of the multiplication, depending on
the MSBs (4 last bits in the case of a NES = 4 controller), the
operation to be performed is calculated and processed as iSC
operations in the memory. Then, before the next multiplication
cycle, the register is shifted depending on the word structure.
As an example, in Figure 5, if B15, B14, B13, B12 = 00002,
the issued operations are 4 shifts and then B stored in the
shift register is shifted 4 times. It must be noted that here, we
assume only one multiplication per subarray.

IV. EXPERIMENTAL SETUP

A. Electrical validation

To validate electrically this work, and assess its perfor-
mance, energy consumption and area efficiency, we implement
a 256×64 (32WL per LG) SRAM array using a 28nm CMOS
bulk technology PDK from TSMC, simulated at 1V. We follow
a design methodology equivalent to [6] and only simulate the

Result Vector (C) bn NES = 0 NES = 1 NES = 2 NES = 3
0 0 Shift (C) Shift (C)

2×Shift (C) + Add(C,A) 2×Shift (C) + Add(C,A)0 1 Shift (C) Shift (C) + Add(C,A)1 0 1 0 Add (C,A)
1 0 1 0 0 0 Shift (C) Shift (C) 2×Shift (C)

3×Shift (C) + Add(C,A)1 0 1 0 0 0 0 Shift (C) Shift (C)
1 0 1 0 0 0 0 1 Shift (C) Shift (C) + Add(C,A) Shift (C) + Add(C,A)1 0 1 1 0 1 0 Add (C,A)

TABLE II: Extended multiplication example, with the operations performed by the controller for NES going from 0 to 4.

0 20 40 60 80
Cycles Count

0

0.2

0.4

0.6

0.8

1 Shift = 0
Shift = 1
Shift = 2
Shift = 3
Shift = 4
Shift = 5

34.4%

62.8%

63.2%

NES = 1

NES = 4

NES = 5
1σ

8%

N
or

m
al

iz
ed

 d
ist

rib
ut

io
n

of
 C

yc
le

s C
ou

nt

Fig. 6: Cycle count distribution of 16bits multiplications.

critical paths with equivalent parasitics and gates to optimize
the design and simulation time. In order to compare the
proposed circuit optimizations to BLADE, we layout the LG
as shown Figure 3.

B. Behavioral model

To evaluate the performances of the proposed multiplication
scheme, we designed an analytical behavioral model of the
memory and multiplication controller. For a given set of
parameters (NES , word length, multiplier value), the model
calculates the amount of cycles required to perform the mul-
tiplication. We then extract statistical data considering all the
possible values (i.e. from 0 to 216−1 for 16 bits operands) to
assess the cycles count distribution. Normalized representation
are shown Figure 6.

For NES = 0, each bit, if it is a ’1’, takes 4 cycles (SHIFT,
WB, ADD, WB) while if it is a ’0’, it only takes 2 (SHIFT,
WB). In the end, the distribution spans from 32 to 64 cycles.

For NES = 1, the number of operations is equal to the
size of the operand, regardless of the data structure, thus the
distribution is concentrated in 32 cycles.

For NES higher than 2, the right tail of the distribution
always equals 32 cycles, representing the worst case of multi-
plier (B = 216−1) when all bits are 1. The average, however,
decreases accordingly to higher values of embedded shift.
For each successive embedded shift, the accelerated patterns
becomes more rare, lessening the potential gain. The difference
between the average cycles count for NES = 4 and 5 is less
than half cycle.

While the average gain for NES > 2 exceed 60%, it must
be noted that the computation time is highly data dependant.

A
re

a,
 E

ne
rg

y
an

d
D

el
ay

 n
or

m
al

iz
ed

-22%
-10%

+10%

+35%

Embedded Shi� Number (N��)

-17.5%

Fig. 7: Area overhead, read delay and energy evolution of the
proposed work normalized with BLADE (lower is better).

For a neural network execution, forcing the weights to respect
a given sparsity may enable additional gains with reduced
performances drop. As a reference, for NES = 5, considering
a data structure where the accumulated cycle count of several
multiplications shifts from the average to one sigma left, it
represents an extra gain of 8%.

V. PERFORMANCE RESULTS

In this section we analyze the effect of the proposed
architecture modifications at both circuit and system level and
combine them to gain a global picture of the enhancement.
First, we perform an electrical characterization to assess the
energy and delay gain of the operations in function of NES .
Then, we combine these results with the full multiplication
cycle count extracted from Section III-B. Finally, we identify
area/energy/performances optimums.

A. Electrical Characterization and Area Estimations

Figure 7 shows the specifications (area,. delay, energy) of
the proposed solution compared to BLADE. By attaching
more transistors in the LRP, the overall parasitic capacitance
of the GRBL and of the LSA output increases, rising the
energy consumption and reducing the performances. Thanks
to the GRBL optimization enabled by the use of local BL
multiplexer, this effect is compensated. Finally, for NES = 0,
the energy is reduced by 22% for one operation. Beyond
NES = 7, the energy consumption overcomes BLADE.

Concerning the read delay, for NES = 0, the delay is
similar to BLADE, less than 2% reduction. For higher values
of NES , however, the value surpass BLADE because the path
covered by the signal is longer, each embedded shift increases

35

40

45

50

NES = 7, same area
overhead as BLADE

55

60

65

0

10

20

30

40

50

60

70

0 3 6 9 12 15

Ar
ea

 o
ve

rh
ea

d
(%

)

Av
er

ag
e

cy
cl

es
 g

ai
n

(%
)

Mul�plica�on
Area Overhead - This Work
Area Overhead - BLADE

Embedded Shi� Number (N��)

Same cycle count
as BLADE

44%

Fig. 8: Cycle gain and area overhead per embedded shift

in 2µm the signal propagation distance (it could be noted
that increasing the LSA drive may mitigate this effect while
increasing the LG area). The read delay is 10% higher for
NES = 4 and it exceeds 35% for NES > 15.

Finally, we extract the corresponding area from the layout
(as shown Figure 3) and we show a 17% density improvement
for NES = 0. It must be noted that the proposed solution
becomes larger than BLADE for NES > 7.

B. System Level Assessment

Figure 8 shows the average cycles gain and area overhead
in function of the embedded shift number. For the same
multiplication performance as BLADE, (NES = 1), we show
a 9% area overhead reduction. On the other hand, Figure 8
also showcase a gain saturation that can be explained by the
fact that after a point, more embedded shifts only accelerate
a marginal portion of the words possibilities, i.e., saturating
the average gain. Compared to BLADE, we show 44% cycle
count reduction.

Overall, we show several non-aligned trends: (i) the average
multiplication performances gain (i.e., cycle count) tends to
saturate with NES . (ii) The area overhead and energy are
beneficial for a low amount of shifts (i.e., less than 7) but
becomes disadvantageous beyond. (iii) The operation delay
degrades with the number of embedded shifts.

Figure 9-a shows the time spent in ns (blue) and the energy
consumed in pJ (orange) to perform a complete 16bits multi-
plication (considering ADD, SHIFT and WB time and energy).
The optimum values for energy and time are NES = 5 and 7,
respectively. On the other hand, as shown Figure 9-b, when
including area considerations (i.e., multiplying the time and
energy by the total memory area), we show a Time×Area and
Energy×Area optimum for NES = 4. Compared to BLADE,
a NES = 4 enables 47% and 41% of average performance
gain for energy and delay, respectively. Moreover, the area
overhead is reduced by 4%.

VI. CONCLUSION

In this work, we proposed circuit optimizations for iSC
architectures enabling highly efficient associativity-agnostic
multiplication. We apply these optimizations to the BLADE

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5

6

7

8

9

10

11

1 2 4 8 16

En
er

gy
 (p

j)

Ti
m

e
(n

s)

Time per mul�plica�on
Energy per mul�plica�on

20

24

28

32

36

40

1.5

2

2.5

3

3.5

4

1 2 4 8 16

To
ta

l E
ne

rg
y

(p
j)

x
Ar

ea
 (u

m
²)

To
ta

l �
m

e
(n

s)
 x

 A
re

a
(u

m
²)

Energy x Area

(a) (b)Embedded Shi� Number (N��) Embedded Shi� Number (N��)

Delay x Area

Fig. 9: Total energy and delay for multiplication performed under
different values of embedded shift.

iSC architecture as it appears to be the most promising
reported solution in terms of operation voltage range, perfor-
mances, reliability and density. By including the BL multi-
plexer and adding embedded shifts inside the LGs, we show
44% cycle count, 47% energy and 41% performances gain
for 16bits multiplication and show that multiplication can be
highly accelerated if data structure is optimized. Finally, we
show that the best area/energy/performances trade-off appears
for 4 embedded shifts.

ACKNOWLEDGEMENTS

This work has been supported by the ERC Consolidator
Grant COMPUSAPIEN (GA No. 725657).

REFERENCES

[1] B. Reese. Ai at the edge: A gigaom research byte. GigaOm, 2019.
[2] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky. Efficient algorithms

for in-memory fixed point multiplication using magic. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), 2018.

[3] K.-C. Akyel et al. DRC2: Dynamically reconfigurable computing circuit
based on memory architecture. In IEEE ICRC, 2016.

[4] C. Eckert et al. Neural cache: Bit-serial in-cache acceleration of deep
neural networks. CoRR, 2018.

[5] A.-W. Simon et al. Blade: Bitline accelerator for devices of the edge.
ACM GLSVLSI, 2019.

[6] A.-W. Simon et al. A fast, reliable and wide-voltage-range in-memory
computing architecture. IEEE/ACM DAC, 2019.

[7] S. Aga et al. Compute caches. In HPCA, 2017.
[8] S. Jeloka et al. A 28 nm configurable memory (TCAM/BCAM/SRAM)

using push-rule 6t bit cell enabling logic-in-memory. IEEE JSSC, 2016.
[9] M. Chang et al. Hardware accelerator for boosting convolution com-

putation in image classification applications. In 2017 IEEE 6th Global
Conference on Consumer Electronics (GCCE), 2017.

[10] A. Agrawal et al. X-sram: Enabling in-memory boolean computations
in cmos static random access memories. Trans. Circuits Syst. I, 2018.

[11] M. Kooli et al. Smart instruction codes for in-memory computing
architectures compatible with standard sram interfaces. IEEE/ACM
DATE, 2018.

[12] Qing Dong et al. A 0.3 v vddmin 4+ 2t sram for searching and in-
memory computing using 55nm ddc technology. In 2017 Symp. on
VLSI Circ. IEEE, 2017.

[13] L. Chang et al. A 5.3ghz 8t-sram with operation down to 0.41v in 65nm
cmos. In VLSI Symp., 2007.

