
A Machine Learning-Based Framework for Throughput
Estimation of Time-Varying Applications in Multi-Core Servers
Arman Iranfar∗, Wellington Silva De Souza†, Marina Zapater∗, Katzalin Olcoz‡, Samuel Xavier de Souza†, David Atienza∗

∗Embedded Systems Laboratory (ESL), Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
†Universidade Federal do Rio Grande do Norte, Brazil

‡Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain
∗{arman.iranfar, marina.zapater, david.atienza}@epfl.ch, †{wellingtonsouza,samuel}@{imd,dca}.ufrn.br, ‡katzalin@ucm.es

Abstract—Accurate workload prediction and throughput es-
timation are keys in efficient proactive power and performance
management of multi-core platforms. Although hardware perfor-
mance counters available on modern platforms contain important
information about the application behavior, employing them
efficiently is not straightforward when dealing with time-varying
applications even if they have iterative structures. In this work,
we propose a machine learning-based framework for workload
prediction and throughput estimation using hardware events.
Our framework enables throughput estimation over various
available system configurations, namely, number of parallel
threads and operating frequency. In particular, we first employ
workload clustering and classification techniques along with
Markov chains to predict the next workload for each available
system configuration. Then, the predicted workload is used
to estimate the next expected throughput through a machine
learning-based regression model. The comparison with state of
the art demonstrates that our framework is able to improve
Quality of Service (QoS) by 3.4x, while consuming 15% less
power thanks to the more accurate throughput estimation.

I. INTRODUCTION

The advent of next-generation Quality-of-Service (QoS)-
sensitive applications require novel approaches to deal with
power, performance, and time-predictability challenges [1].
To overcome these challenges, deploying the hardware and
software efficiently is vital.

Multi-core platforms play a major role in achieving the
required performance through parallel processing. However,
these platforms include more complex software and hardware,
which pose extra challenges for power management and time-
predictability of applications. Therefore, finding the optimal
number of processors that satisfies the target QoS, while
minimizing power consumption is challenging. In addition,
the workload variations within an application execution time
exacerbates the aforementioned challenge. Moreover, while
Dynamic Voltage and Frequency Scaling (DVFS) makes dy-
namic power management and performance control feasible,
numerous frequencies available in modern processors consid-
erably enlarge the design space. In addition, DVFS is agnostic
to the number of threads assigned to the application. Thus,
due to these workload variations within an application, the
selection of the optimal operating frequency for such a large
design space is very complex.

In order to tackle such a large design space, modern
processors are equipped with hardware performance coun-

This work has been supported by Spanish MINECO (GA. No. TIN2015-
65277-R), the Spanish MINECO (GA. No. S2018/TCS-4423), the SERI Seed
Money project (GA No. SMG1702), the EC H2020 RECIPE project (GA
No. 801137), and the ERC Consolidator Grant COMPUSAPIEN (GA No.
725657).

0 20 40 60
Sample

0

1

2

3

4

5

F
lo

at
in

g 
P

oi
nt

 In
st

ru
ct

io
ns 107

(2.2GHz,4th)
(2.5GHz,4th)
(1.3GHz,8th)

(a)

0 20 40 60
Sample

1

1.5

2

2.5

3

B
us

 C
yc

le
s

108

(2.2GHz,4th)
(2.5GHz,4th)
(1.3GHz,8th)

(b)

Fig. 1. Number of (a) floating point instructions and, (b) bus cycles, every
400 ms, under 3 system configurations: (frequency (GHz), number of threads)

ters that enable non-intrusive performance monitoring of the
processors [2]. Indeed, these counters can provide important
information about workload behavior, which can be used
in workload prediction. This workload prediction, if accom-
plished accurately enough, can be effectively deployed for
power management and performance control of time-varying
QoS-sensitive applications. To this end, hardware event-based
simulators and analytic models have been traditionally used
for workload assessment and prediction. However, due to the
need for fast and dynamic changes of system configurations
for efficient proactive power and performance management,
these approaches are not feasible in practice [3].

Moreover, in multi-core platforms, information extracted
from the performance counters does not purely indicate the
workload behavior, as the collected data are also affected
by the specific system configuration (i.e., the number of
processors and the operating frequency). Therefore, workload
prediction is not straightforward since with any change in
the system configuration, performance counters may imply
a new workload for the same input of the application. As
an example, Fig. 1 shows the trace of two performance
counters while running a time-varying application (from the
beginning to the end) under three different configurations on
a multicore server. For this specific application, the number of
Bus Cycles are mainly affected by the number of threads rather
than the core frequency. Furthermore, as expected, system
configurations of (2.5, 4) and (1.3, 8) can provide almost the
same average performance, with the former having twice Bus
Cycles. Therefore, in this case, both measures are required to
properly adapt the system configuration.

Nonetheless, when changing the system configuration to
the other, the already-gathered hardware events cannot be
directly used to predict the next values through conventional
workload prediction techniques such as Auto-Regressive In-



tegrated Moving Average (ARIMA) model and its derivatives
[4]. On the contrary, machine learning (ML)-based approaches
represent a promising solution, as they can directly learn from
the data rather than counting on rule-based programming.
More importantly, ML-based approaches are known to provide
scalable solutions for large design spaces with low-overhead
inference time, which make them appropriate candidates for
power and performance management of multi-core platforms.

In this work, we propose an ML-based framework for
workload prediction and throughput estimation of time-varying
applications in multi-core platforms. In particular, the main
contributions of our work are as follows:

• we propose a low-overhead workload prediction approach
based on the hardware events. This approach can be used
with any state-of-the-art many-core platform today.

• we develop a framework which provides the future
throughput estimate under different system configurations
using machine learning,

• we show how accurate workload prediction and through-
put estimation per system configuration can save power
in a multi-core server. Indeed, on average, our proposed
framework provides 15% less power consumption with
3.4x less QoS violations compared to the state of the art.

II. RELATED WORK

Workload prediction methodologies are quite rich in litera-
ture, especially for cloud-based applications. However, since
these applications usually show workload variations on an
hourly, daily, or even weekly basis, many of the previous
works use ARIMA model and its derivatives [5], which is
not necessarily compatible with highly time-varying non-
cloud applications. For the latter, clustering, classification, and
regression models have been widely used to predict the future
workload for different purposes [6], [7]. Despite such a variety
of applications, workload prediction in many-core platforms is
mainly used for dynamic power and performance management.

The correlation of hardware events with performance and
power consumption of the application has been traditionally
used in literature for performance and power analysis, predic-
tion, and tuning [8]. Although performance counters have been
used for different application domains, the most common one
is power and performance prediction and management [9]. For
instance, Borghesi et al. [10] leverage hardware events as a part
of the input to their predictive model for power consumption.
These works, however, do not address power and performance
estimation for different system configurations.

There are a few works that leverage hardware events for
power and performance estimation across different system
configuration. In particular, [11] develops a power estimation
and thread scheduling scheme using a piece-wise model based
on multiple linear regression. Nevertheless, this work is limited
to thread scheduling as their only design parameter. Moreover,
the scalability of the proposed strategy is in question due to the
use of linear regression [3]. Besides, authors in [12] propose
an online strategy for power and performance management
of multithreaded applications using hardware event-based pre-
diction. In their work, however, operating frequency as one of
the main design space scaling factors has been ignored. More

importantly, the scheme of [12] is based on linear regression
which is known to be limited in modeling large design spaces
and runtime hardware changes. Finally, in contrast to [11],
[12], Wu et. al [3] provide low-overhead scalable solution by
training a neural network with performance counter values
to predict power consumption and performance of different
applications at different GPU configurations. Authors, how-
ever, train their neural network with the overall behavior of
complete input kernels rather than with fine-grained input
samples. Such an approach can lead to wrong decisions for
dynamic configuration selection, as it ignores rapid workload
variations within a kernel, which is very typical in latest time-
varying applications with iterative structures (cf. Fig. 3), such
as, latest standards for video streaming.

In contrast to [3], our framework is able to provide fine-
grained workload prediction across different system configu-
rations to provide more accurate throughput estimation which
can ultimately result in less power consumption.

III. PROPOSED FRAMEWORK

Fig. 2 shows an overview of our proposed machine learning-
based framework. The goal of our work is to estimate the
future throughput of an application with iterative structure
(as shown in Fig. 3) for different system configurations (i.e.,
core frequency and number of cores), given a set of hardware
performance counters (PCj(t)) at time t, obtained from a
particular system configuration (j). Since at time t, the only
available information is PCj(t), it is not straightforward to
estimate the future throughput for all other configurations
directly. Therefore, first, PCj(t) is used to specify the current
workload (WLj(t)) of the application through clustering and
classification algorithms. This workload accounts for input and
system configuration. Then, WLj(t), in conjunction with the
previous workload of the application under the same configu-
ration (WLj(t− 1)), is used to predict the next workload for
all available system configurations, Configk(t+1). Next, the
predicted workload (WL

′

k(t+1)) is employed to estimate the
future throughput of the application for each configuration.

When using performance counters, the first step is to
determine the most relevant counters that carry useful informa-
tion about system and application. Therefore, in this section,
we first explain how to choose these performance counters.
Second, we explain in detail the steps we take for the per-
configuration throughput estimation depicted in Fig. 2.

A. Counters Selection
Although there can be hundreds of counters available on

a machine [13], the number of counters that can be simul-
taneously collected without time multiplexing are limited.
Also, precision of the measured counters degrades when more
counters are to be read. Moreover, using more counters as
the system and application features for estimating the future
throughput does not necessarily improve the accuracy. Finally,
using redundant features may ultimately lead to more runtime
overhead due to the increased complexity. Therefore, it is vital
to select counters that carry the most relevant information
regarding the target system and application behavior.

For each application in control, starting from the main
hardware counters introduced in the literature [12], we use



Classification

Workload Prediction

Regression

PCj(t)

WLj(t-1)

WLk(t-1) WLk(t)

WLk(t+1)

WLj(t)

C
o

n
fi

g
k(

t+
1

)

fo
r 

a
ll 

k

THk(t+1)

PC Estimator

PCk(t+1)

Inter-Configuration
Workload Mapper

Fig. 2. Proposed ML-based frame-
work

Stage N

Input 3
Input 2

Input 1

Output 1
Output 2

Output 3

Stage 1

Stage 1

Ap
pl

ic
at

io
n 

Ex
ec

ut
io

n 
St

ag
e

Fig. 3. Example of an application
with iterative structure

the Pearson Correlation [14] to determine those that contain
the most relevant information according to the throughput. For
our purpose, these counters are the ones with larger correlation
coefficient with respect to the throughput, which are less
correlated with each other to avoid redundant information.

B. Workload Clustering and Classification
For a single application, the values of the performance

counters and the application’s throughput vary within different
system configurations. Moreover, for the same system configu-
ration, these values can change due to the workload variations
at different stages of the application. Since with the same
application and input size, each system configuration may lead
to a different set of performance counters and throughput for
a particular stage of the whole application, the workload type
under process should be studied per configuration. Therefore,
we propose to qualify WLk based on PCk for each Configk.

With a constant performance counter sampling rate, a dif-
ferent number of workload types can be observed for each
configuration. For configurations with higher frequency and
larger number of cores, the sampling rate can be comparable
to the execution time of one iteration of the application, while
with lower frequency and smaller number of cores, it can be
much higher than the execution time. Hence, for the latter,
PC(t) may indicate the difference between different stages
of the application while for the former, PC(t) may only
show the difference between different inputs. Imagine a video
encoding application that outputs one frame per second under
a particular configuration. In such a case, with a sampling rate
of 10 Hz, 10 sets of performance counters exist for a single
frame. On the contrary, if with a different configuration the
application outputs 10 frames per second, there would be one
set of performance counter samples per frame.

In order to qualify the workload type per configuration, we
propose to use the Kmeans + + clustering algorithm [15].
We consider the Silhouette [16] criterion to find the optimal
number of clusters per configuration. Thereafter, considering
the Random Forest (RF) [17] with 50 weak learners as the
classification algorithm, we train an ensemble of bagged
classification trees using the performance counter samples as

the input features and the workload type (WL) obtained from
the clustering as the output labels. While these two phases
are performed offline, the obtained classification model is
employed at runtime to qualify WLj(t) from PCj(t). We
note that, RF suits well our purpose since we need to deal
with a multi-class classification problem rather than a binary
one. Moreover, RF is suitable when coping with a mixture of
numerical and categorical features which leads us to use the
features (performance counters) on their own various scales.

C. Inter-Configuration Workload Matching and Prediction

Once WLj(t) is recognized from PCj(t), for each available
configuration (Configk(t + 1)) the next workload should be
predicted. We propose to create a discrete-time, finite-state
Markov chain [18] from workload transitions for each config-
uration using the same training data as in the workload classi-
fication. Thus, the next workload can be predicted considering
the probability of transitioning to a new workload according to
an already-observed chain of transitions. During runtime, we
keep updating the transition probabilities to enhance the next
workload prediction within a single configuration. We note that
the length of this chain depends on (i) the application nature,
(ii) the frequency of the workload changes within a certain
configuration, and (iii) the performance counter sampling
frequency. For our purpose, we found 10 Hz sampling rate
and a chain length of two sufficient to account for workload
variations without adding extra load to the system.

The Kmeans + + algorithm finds the optimal centroid
seeds by first choosing seeds from a random observation of
the data set. Consequently, as we run the algorithm for each
configuration, the outcome clusters of one configuration are
not in the same order as the clusters obtained for another
configuration. For instance, the first cluster of the jth config-
uration may correspond to any workload type in the kth con-
figuration, where j 6= k. Moreover, as aforementioned, there
can be different numbers of clusters (i.e., workload labels)
for each configuration. Therefore, to predict WLk(t + 1) for
Configk(t+1) using Markov chain, we need to know about
its current workload WLk(t). Since at runtime, we only know
about WLj(t) where j 6= k, we need to define the translation
to the workload labels of other configurations. Thus, in order
to find the best matching workload in configuration k with
Nwlk workload types (number of labels), we use the squared
Euclidean distance metric (DEuc2 ), as follows:

wl∗k ← argmin
wl

′
k

(DEuc2 (PCcentroid(WLj(t)), PCcentroid(wl
′
k))

wl
′
k = {1, ..., Nwlk}

(1)

where wl∗k is the workload type of configuration k which
is well matched to the current workload of configuration
j, WLj(t). In this formulation, PCcentroid(WLj(t)) shows
the performance counter values related to cluster centroid of
the workload at Configj(t), and wl

′

k represents all known
workloads for configuration k. Finally, we find the inter-
configuration workload matches offline, and refer to them as
a look-up table during runtime.



D. Performance Counter Estimator and Regression Model
Once the next workload for each configuration is predicted

(WL
′

k(t+1)), the future throughput can be predicted through
a regression model. As discussed earlier, each workload label
corresponds to a cluster centroid composed of a set of per-
formance counters. As shown in Section III-A, we can find a
set of performance counters correlated with the throughput
with smaller correlation coefficients between them. These
counters are suitable candidates to provide a regression model
to estimate the throughput. In this work, we consider Random
Forest [17] with 50 weak learners for the regression algorithm,
as it is able to sufficiently handle non-linear dependencies.
We train an ensemble of bagged regression trees with this
set of performance counters as the input features, and the
corresponding throughputs, as the response variable.

Nevertheless, in the real-time execution, only a unique set of
performance counter values can be extracted from WL

′

k(t+1).
Using these values into the trained regression model may cause
a large prediction error, as the actual performance counter
values may not be close enough to the centroids. Therefore,
in order to compensate this error, we propose to use the
ratio of actual performance counter values at time t and the
estimated ones at time t by the centroids as a scaling factor
for PCk(t+ 1), as follows:

PC
′
k(t+ 1) = PCcentroid(WLk(t+ 1))�

(PCj(t)� PCcentroid(WLj(t))),
(2)

where PCcentroid(WLk(t + 1)) is the performance counter
values of the centroid that corresponds to the workload at
time t + 1 for the kth configuration, and � and � represent
the element-wise product and division operations, respectively.
Finally, the estimated performance counters, PC

′

k(t+ 1), can
be used in the trained regression model to predict the next
throughput, THk(t+1), for all available future configurations,
Configk(t+ 1).

IV. CASE STUDY: REAL-TIME HIGH EFFICIENCY VIDEO
CODING (HEVC)

High Efficiency Video Coding (HEVC) is a next-generation
video coding standard with doubled quality as its predeces-
sors, H.264, for the same bitrate, at the cost of increased
computational complexity [19]. This increased computational
complexity makes real-time power-efficient video encoding
very challenging. Nonetheless, HEVC is equipped with power-
ful tools that enable multi-threaded processing. Such features
make multicore platforms promising to achieve real-time video
encoding through workload parallelization. In this context, the
real-time encoding is processing a particular number of frames
every second, usually denoted as frame rate and measured in
Frames Per Second (FPS). In this work, we consider a frame
rate of 24 FPS, which is the most common in state of the art.
However, the functionality of our proposed framework does
not depend on the target throughput.

Real-time HEVC encoding is a highly time-varying applica-
tion with iterative nature, i.e., it goes through different phases
of the application several times as shown in Fig. 3 (as a
video is composed of hundreds or thousands of frames). This
nature of the video encoder makes the workload prediction

and throughput estimation a promising technique for power
and performance management. The main difference of HEVC
encoding from other applications with an iterative structure is
the rapid variation of the workload in each iteration of the
encoder, as the frame contents within a video vary [20].

Real-time power efficient HEVC encoding has recently
attracted a lot of attention [21], [22]. In particular, one of
the most recent works [22] proposed a multi-agent reinforce-
ment learning solution. However, such an approach requires
application-specific hyper-parameter tuning to achieve the op-
timal performance. Thus, it cannot be used as a comprehensive
framework for any arbitrary application.

V. EXPERIMENTAL SETUP

We perform our experiments on a server equipped with
two Intel Xeon E5 v4 CPUs providing a total number of 32
threads. Our server is able to perform DVFS with 16 available
frequencies ranging from 1.2 GHZ to 3.6 GHz. Therefore,
there are 32 × 16 = 512 different system configurations
available for running each application. We use the Linux Perf
tool [23] to collect the performance counters data. In order to
provide accurate data about the application behavior, we use
Docker containers to isolate the application from any possible
background tasks.

Depending on the target frame rate, some of the system
configurations can never satisfy the real-time HEVC encoder
requirements, while some others may result in excessive
throughput which increases power consumption and require
larger buffers. Furthermore, if trained with all spare configura-
tions that can never provide a satisfactory power consumption
with the target throughput, the accuracy of the workload
prediction and throughput estimation framework can degrade
considerably. Hence, for our target case-study application,
based on our observation when collecting training data for
our framework, we narrow down the available configurations
to 192 configurations. This selection is obtained by assuming
two threshold values for the output framerate. In particular, in
this work, we considered configurations that are able to reach
at least 18 FPS once in the whole execution and do not provide
an average framerate of larger than 35 FPS. We experimentally
found this boundary around the target framerate (24 FPS)
sufficient to account for any content variation within a video
and between different videos.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first evaluate the accuracy and efficiency
of each block in the proposed framework w.r.t. our case-
study application. Afterwards, we provide a comparison with
a neural network-based approach to assess the throughput
estimation accuracy when dealing with a power minimization
problem under QoS constraint. In particular, we adapt [3] for
the design space of our target multi-core server. Since this
work similar to ours, only relies on performance counters, we
can directly adapt it to our own setup (CPUs instead of GPUs).

A. Performance and Accuracy of the Proposed Framework

1) Counter Selection: TABLE I lists the Pearson correlation
matrix with one digit precision for the main counters and the



TABLE I
PEARSON CORRELATION MATRIX OF DIFFERENT PERFORMANCE

COUNTERS AND HEVC ENCODER THROUGHPUT (FPS)

branch
miss

bus
cycle

L2
miss

floating
point instr.

total
Instr. FPS

branch miss 1.0 0.0 0.0 0.6 0.0 0.1
bus cycle 0.0 1.0 0.0 0.7 0.9 0.8
L2 miss 0.0 0.0 1.0 0.0 0.0 0.0

floating point instr. 0.6 0.7 0.0 1.0 0.8 0.8
total Instr. 0.0 0.9 0.0 0.8 1.0 0.9

FPS 0.1 0.8 0.0 0.8 0.9 1.0

throughput, FPS. On one hand, the total number of retired
instructions (total Instr.) has the highest correlation with the
output FPS. The next two hardware events with the largest
correlation coefficient w.r.t. the throughput are, respectively,
floating point arithmetic retired instructions (floating point
Instr.) and bus cycles. On the other hand, total Instr. is highly
correlated with the other two events, while bus cycles and
floating point Instr. are less correlated. Hence, we consider
only floating point Instr. and bus cycles which can well
model the FPS through regression. On the contrary, for the
workload clustering and classification, we consider all the
listed counters, except for total Instr., as each of the rest can
demonstrate a particular aspect of the workload.

2) Per-Configuration Workload Clustering and Classifica-
tion: As discussed in Section III-B, for each configuration, a
different optimal number of clusters (workload labels) can be
found. For our case-study application, we found 128 configu-
rations with 2, 59 configurations with 3, and 5 configurations
with 4 workload labels. Our study shows that, within those
configurations providing higher throughputs more workload
types can be found. Subsequently, Fig. 4 shows the histogram
of the workload classification accuracy for the system config-
uration based on the observed event counters. On average, our
classification achieves an accuracy higher than 99%.

3) Per-Configuration Workload Prediction: Fig. 5 shows
the histogram of the workload prediction accuracy for the
system configuration. While the average accuracy is 87%,
lower accuracy values (e.g., around 70%) are mainly due to the
fact that for some configurations with very large throughput,
there is a rapid traverse from one content to a completely
different one (and hence, different workload). Nonetheless, in
practice, since these particular configurations often provide
very large unnecessary throughput and, thus, higher power
consumption, they are not proper candidates when solving
the power minimization problem. Hence, as shown in Section
VI-B, the overall results are only slightly affected.

4) Throughput Regression: The regression accuracy is com-
puted across all configurations in terms of Root Mean Square
Error (RMSE). In our case of study, the RMSE is 0.54 FPS.

B. Throughput Estimation Accuracy and Evaluation for Power
Minimization

As explained earlier, the proposed framework provides
throughput estimates for different available system configu-
rations. In order to evaluate the accuracy of these estimates,
we consider a power minimization problem in which system
configuration changes dynamically to satisfy the required QoS

92 94 96 98 100
Accuracy (%)

0

50

100

150

N
um

be
r 

of
 C

on
fig

ur
at

io
ns

Fig. 4. Classification accuracy

70 80 90 100
Accuracy (%)

0

20

40

60

80

N
um

be
r 

of
 C

on
fig

ur
at

io
ns

Fig. 5. Prediction accuracy

Algorithm 1: Power Minimization

Input : TH
′
(Configk(t+ 1))

Output: Configopt(t+ 1)

1 Configcandidate ← Find(Configk(t+ 1))

2 s.t. TH
′
(Configk(t+ 1)) ≥ THconst

3 Configopt(t+ 1)← argmin
Config

k
′
(PRF (Config

k
′ ),

Config
k
′ ∈ Configcandidate

while providing the minimum power consumption. For this
purpose, we provide a general power model. In particular, we
run PARSEC 3.0 benchmark suit [24] with native input size
under all available configurations and measure the average
power consumption of package and DRAM. Then, we train
an ensemble of bagged regression trees of RF with 50 weak
learners. We consider the system configurations as the input
features and the measured power consumption as the response
variable. We test our trained ensemble with measured power
consumption of HEVC encoder under different configurations.
Our model provides an average error of 5.3% with standard
deviation of 3.9%

Using the obtained power model, we apply Algorithm
1 to the output of our proposed framework and that of
[3]. The input to this algorithm is the estimated through-
put, TH

′
(Configk(t + 1)), for all available configurations.

Here, the goal is to find a configuration by which the min-
imum power consumption can be achieved, while satisfy-
ing the throughout constraint, THconst. In this algorithm,
Configcandidate shows a vector of all configurations which
are predicted to achieve a throughput larger than the constraint
(Line 1 and 2). We use the obtained power model from the
RF algorithm (PRF ) to estimate the power consumption of
each candidate configuration. Finally, the one that achieves the
minimum power consumption is used to run the application
for the next time slot (Line 3).

Fig. 6(a) shows the throughput estimation obtained from
our framework, the actual throughput, the average throughput,
and the target throughput for a particular runtime window.
Then, Fig. 6(b) shows the same plots as in Fig. 6(a) for
the same test video, but as obtained from [3]. As shown in
these figures, our framework is able to provide more accurate
throughput estimation. For the test case shown in these figures,
our framework is able to predict the output framerate with only
6.8% error, while this error for [3] is 20.5%. Furthermore,
in the shown window, our framework violates the target
throughput only once, while [3] shows four QoS violations.

As shown in Fig. 6(a), our framework is able to provide very



5 10 15
Samples

22

24

26

28

30

32
F

P
S

FPS
pred

FPS
actual

FPS
avg

FPS
target

(a) Our framework

5 10 15
Samples

22

24

26

28

30

32

F
P

S

(b) State of the art [3]

Fig. 6. Throughput prediction and actual throughput

TABLE II
AVERAGE THROUGHPUT ESTIMATION ERROR AND QOS VIOLATIONS

Min.(%) Max.(%) Mean(%) STD(%) #QoS Violations
Proposed 0.0 26.1 7.5 6.1 18
SoA [3] 14.4 30.0 20.1 5.5 61

accurate estimates for some samples, while for some others
the estimation error is larger (e.g., 25% as for sample 15).
The main source of such an error is the Workload Prediction
rather than the Workload Classification, since as shown in
Section VI-A2, the latter is highly accurate. In particular, such
a large error can occur if the selected configuration for the next
time slot is the one for which the average workload prediction
accuracy is not sufficiently high. For this specific sample, the
selected configuration is (1.5GHz, 10threads)with a work-
load prediction accuracy of 70%, on average.

In addition, we perform a K-fold cross-validation analysis.
In contrast to our proposed framework, the work of [3] is more
sensitive to the training data. The reason lies in the fact that [3]
trains its neural network with the average throughput of each
configuration. Consequently, it performs more accurately if the
test data (i.e., video in our case) comes with almost the same
variation range compared to the training data. However, this is
not the case for HEVC and other highly time-varying applica-
tions. In particular, TABLE II shows the average throughput
estimation error and QoS violations. On average, for different
folds considered in our sensitivity analysis, our framework
violates the target throughput 3.4x less than [3].

Finally, our proposed framework is able to save 15% more
power consumption than the proposed approach in [3]. This
additional power saving is due to the more accurate throughput
estimation obtained from our framework. In fact, as shown in
Fig. 6(b), there are several points where [3] underestimates
the throughput and has to select a configuration with either
higher frequency or larger number of threads than required,
which leads to higher power consumption. In particular, from
Sample 11 to Sample 15, [3] chooses 1.6 GHz as the op-
erating frequency of 10 threads, and is unable to find any
other configuration to satisfy the QoS with a lower power
consumption. Nevertheless, 1.5 GHz and 9 threads as system
configuration could also satisfy the QoS requirement with less
power consumption. Unfortunately, [3] discards this configu-
ration because it mispredicts the corresponding throughput to
be less than 24 FPS (see Line 1 in Algorithm 1).

VII. CONCLUSION

In this work, we have proposed a machine learning-based
framework for proactive power and performance manage-
ment of time-varying applications. We compared the pro-
posed framework with the state of the art considering real-
time HEVC encoder as a case-study which represents a
QoS-sensitive application with iterative structure and large
workload variations. Our results showed that our framework
improves QoS violations by 3.4x, while decreasing power
consumption by 15% due to its more accurate predictions than
state-of-the-art approaches.

REFERENCES

[1] J. Flich et al., “Mango: Exploring manycore architectures for next-
generation hpc systems,” in DSD. IEEE, 2017.

[2] I. Intel, “and ia-32 architectures software developers manual,” Volume
3A: System Programming Guide, Part, vol. 1, no. 64, p. 64, 64.

[3] G. Wu et al., “GPGPU performance and power estimation using machine
learning,” in HPCA. IEEE, 2015.

[4] V. Podolskiy et al., “Forecasting models for self-adaptive cloud appli-
cations: A comparative study,” in SASO. IEEE, 2018.

[5] R. N. Calheiros et al., “Workload prediction using arima model and
its impact on cloud applications qos,” IEEE Transactions on Cloud
Computing, vol. 3, no. 4, pp. 449–458, 2015.

[6] D. Yi et al., “New driver workload prediction using clustering-aided
approaches,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 1, pp. 64–70, 2019.

[7] Y. Tan et al., “Workload prediction and dynamic voltage scaling for
mpeg decoding,” in ASP-DAC. IEEE, 2006.

[8] S. Browne et al., “A scalable cross-platform infrastructure for application
performance tuning using hardware counters,” in SC’00: Proceedings of
the 2000 ACM/IEEE Conference on Supercomputing. IEEE, 2000.

[9] X. Zheng et al., “Accurate phase-level cross-platform power and perfor-
mance estimation,” in DAC. IEEE, 2016.

[10] A. Borghesi et al., “Predictive modeling for job power consumption in
hpc systems,” in HiPC. Springer, 2016.

[11] K. Singh et al., “Real time power estimation and thread scheduling via
performance counters,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 2, pp. 46–55, 2009.

[12] M. Curtis-Maury et al., “Online power-performance adaptation of mul-
tithreaded programs using hardware event-based prediction,” in ICS.
ACM, 2006.

[13] A. C. De Melo, “The new linuxperftools,” in Slides from Linux Kongress,
vol. 18, 2010.

[14] J. Benesty et al., “Pearson correlation coefficient,” in Noise reduction
in speech processing. Springer, 2009, pp. 1–4.

[15] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[16] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[17] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[18] R. G. Gallager, Stochastic processes: theory for applications. Cam-
bridge University Press, 2013.

[19] G. J. Sullivan et al., “Overview of the high efficiency video coding
(hevc) standard,” IEEE Transactions on circuits and systems for video
technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[20] A. Iranfar et al., “Machine learning-based quality-aware power and
thermal management of multistream HEVC encoding on multicore
servers,” IEEE TPDS, vol. 29, no. 10, 2018.

[21] ——, “Online efficient bio-medical video transcoding on MPSoCs
through content-aware workload allocation,” in DATE. IEEE, 2018.

[22] L. Costero et al., “Multi-agent reinforcement learning for efficient real-
time multi-user video transcoding,” in DATE, 2019.

[23] A. C. De Melo, “The new linuxperftools,” in Slides from Linux Kongress,
vol. 18, 2010.

[24] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.


