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In scale-invariant theories of gravity the Planck mass MP, which appears due to spontaneous symmetry
breaking, can be the only scale at the classical level. It was argued that the second scale can be generated by
a quantum nonperturbative gravitational effect. The new scale, associated with the Higgs vacuum
expectation value, can be orders of magnitude below MP, leading to the hierarchy between the Fermi and
the Planck scales. We study a theory in which the nonperturbative effect is sensitive both to the physics at
energy scales as high as MP and to the low-energy, Standard Model physics. This makes it possible to
constrain the mechanism from experiment. We find that the crucial ingredients of the mechanism are
nonminimal coupling of the scalar fields to gravity, the approximate Weyl invariance at high energies, and
the metastability of the low-energy vacuum.

DOI: 10.1103/PhysRevD.99.115018

I. INTRODUCTION AND SETUP

In the Standard Model (SM), the Higgs mass mH is the
only scale at the classical level. Setting it to zero enhances
the symmetry of the model by making it conformally
invariant (CI). It is natural, therefore, to start from a theory
without the classical electroweak (EW) symmetry breaking
and generatemH due to some quantum effect [1,2] (see also
[3]). One possible way to do this is via the quantum
conformal anomaly [4]. It is known that radiative correc-
tions can change the shape of the tree-level Higgs potential
in such a way that a minimum displaced from the origin
appears [5,6]. However, within the SM, this scenario
predicts the values of the Higgs and the top masses being
far from those observed experimentally [7–10]. To over-
come this issue, one can look for different extensions of the
SM by new bosonic degrees of freedom (d.o.f.); see, e.g.,
[11] and references therein.
If the physics beyond the Standard Model (BSM)

contains new heavy d.o.f., it is, in general, a source of
large perturbative corrections to the Higgs mass; for over-
views of the problem see [12,13]. As long as heavy
particles are coupled to the Higgs field, they are expected
to produce contributions to mH that drive the latter towards
the mass scale of those particles. One of the possibilities to
cancel these large contributions is to make the BSM

physics manifest itself close to the EW scale. The examples
include supersymmetry, composite Higgs models, and extra
dimensions [14–16]. Given the absence of signatures of
new physics at the TeV scale [13], the theories extending
the SM by introducing mass thresholds right above the EW
scale become confronted with the problem of fine-tuning,
unless a special mechanism stabilizes mH against large
corrections (see, e.g., [17–20]). In theories with no heavy
mass thresholds, it was argued that quadratic divergences,
which arise when one uses a mass-dependent regularization
scheme, are not physical and do not pose a problem
[21–23].
It is customary to cope with puzzling facts about the SM

physics (such as the quadratic divergences in mH) by
invoking new phenomena at nearby energy scales. An
alternative point of view is to suggest that the low-energy
observables [such as the Higgs vacuum expectation value
(vev) v ≈ 246 GeV [24] ] are sensitive rather to the physics
much above the SM energy domain; see [25,26] and
references therein. In the CI SM framework, and having
assumed no new heavy d.o.f., a plausible candidate for such
physics is quantum gravity.
In this paper, we discuss a possible mechanism of

generation of the Higgs vev, in which gravity plays a
crucial role. In the (nearly) scale-invariant (SI) perturbation
theory based on dimensional regularization, gravitational
corrections to the Higgs potential are suppressed by the
(reduced) Planck mass MP ¼ 2.435 × 1018 GeV and are
numerically small at the weak scale [22,27,28]. Hence, the
mechanism must work due to some nonperturbative gravi-
tational effect. This idea was expressed and implemented in
[25,26]. There it was argued that gravity is indeed capable
of generating a new mass scale associated with the Higgs
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vev. Under certain assumptions about the high-energy
behavior of the theory, the new scale can be many orders
of magnitude below MP, thus reproducing the observed
hierarchy.
The idea behind the mechanism is discussed in [26], and

we briefly outline it here. For simplicity, consider a theory
of one real scalar field φ coupled to dynamical gravity. The
coupling can be nonminimal: for example, in [25] the
models containing the term ∝ Rφ2 were studied.1 If we
switch to the Euclidean signature,2 then the spatially
homogeneous time-independent vev of φ can be evaluated
as follows:

hφi ∼
Z

DφDgμνelogφð0Þ−SE; ð1Þ

where gμν is the metric field, and SE is the Euclidean action
of the theory. We now want to evaluate the path integral in
Eq. (1) via saddle points of the functional

B ¼ − logφð0Þ þ SE: ð2Þ

The legitimacy of such an evaluation is discussed in [26],
and we will repeat the arguments below in this paper. The
saddle points of B are instantons satisfying a boundary
condition provided by the instantaneous source term
− logφð0Þ. Thus, the nonperturbative contribution to the
vev of φ is provided by a suitable instanton configuration.
In the semiclassical approximation

hφi ∼MPe−B; ð3Þ

where B is the instanton value of B.
In the general case, the form of the source term in Eq. (2)

depends on the content of the theory. For example, in [26]
SI models of gravity with two scalar d.o.f. were studied,
and the source was shown to be a logarithm of a certain
polynomial function of the scalar fields.
According to Eq. (3), in order to reproduce the observed

ratio between the Fermi and the Planck scales,

v=MP ∼ 10−16; ð4Þ

one must have B ¼ logMP=v ≈ 37. The instanton action B
is a function of various couplings present in the theory.3 For
some of their values it turns out that jBj ≲ 1, and the
semiclassical approximation made in going from Eq. (1) to
Eq. (3) is not valid. A possible interpretation of this fact is

that, in this case, quantum gravity effects are strong, they
rise hφi up to MP, and no new scale appears. In other
regions of the parameter space it is possible to obtain
B ≫ 1. Now one can say that the nonperturbative gravi-
tational effects are suppressed, and the hierarchy of scales
emerges.
All instanton solutions studied in [25,26] turn out to be

insensitive to the behavior of the theory at energy scales
much below MP. In general, the instanton action B can be
split into the sum of two terms. The first of them, BHE,
represents the contribution from the core region of the
instanton, which probes the UV structure of the theory.
The second term, BLE, is the contribution from the tail of
the instanton, which is determined by low-energy physics.
The scale separating the two domains can be identified with
a cutoff of the low-energy effective theory.4 Then,

B ¼ BHE þ BLE: ð5Þ

The insensitivity of the solution to the low-energy physics
and, in particular, to the SM parameters yields B ≈ BHE. On
the one hand, it is intriguing to conclude that the observed
hierarchy between the weak and the Planck scales can result
purely from features of the theory in the strong-gravity
regime. On the other hand, a certain drawback of this
conclusion is that the properties that can be measured in
experiment (for example, the shape of the effective Higgs
potential in the CI SM) have no impact on the instanton
mechanism and do not put any constraints on it.
In this paper, we study a SI theory of gravity, in which

both the high-energy (the core) and the low-energy (the tail)
parts of the instanton configuration contribute significantly
to the total instanton action. The two regions of energy
scales at which the action is saturated can be separated by
many orders of magnitude. This happens due to a peculiar
behavior of the instanton profile, namely, due to the fact
that the profile is not a monotonic function of the distance
from the center of the configuration.
The short-distance behavior of the instanton shares many

of its properties with the solutions studied previously in the
context of the hierarchy problem [25,26]. We use similar
arguments and employ the same type of UV operators to
eliminate the divergence of the solution at the source point
and to generate the large high-energy contribution BHE. As
for the tail of the instanton, we see that its shape closely
resembles another Euclidean solution—a bounce saturating
the tunneling action [33,34]. In fact, the similarity between
the two types of solutions goes much farther, as it turns out
that they have the same existence conditions. In particular,
it is necessary for the low-energy vacuum identified with
the classical ground state of the theory to be the false
vacuum state.

1A motivation behind studying this type of model lies in their
application to cosmology and inflation [29–32].

2See Sec. II A for the discussion regarding the Euclidean
formulation of a theory.

3However, in the models studied in [25,26], the main behavior
of B is controlled by a single parameter—the nonminimal
coupling of a scalar field to gravity.

4Note that, because of the presence of gravity, the theory under
consideration is nonrenormalizable.
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The intimate relation between the instanton and the
bounce also implies that BLE ≈ Bbounce, where Bbounce is the
tunnelling action. In a realistic setting this means that
BLE ¼ Oð103Þ [35–37]. Hence, in order to reproduce
Eq. (4), BHE must be negative and the difference between
the absolute values of BLE and BHE must be around 1%.
Thus, a fine-tuning is required between the low-energy and
the high-energy domains. Below we will see that this
requirement severely constrains the parameter space of the
theory.
Let us set up the framework. Most of the paper deals with

a SI model of gravity with 2 scalar d.o.f. The scale
symmetry helps to protect the scalar field vev against large
perturbative corrections5 (see, e.g., [38]). Hence, it provides
a suitable framework to attack the problem of hierarchy of
scales with nonperturbative tools. One of the scalars (the
dilaton) develops a classical vev associated with the Planck
mass. Another field is associated with the Higgs d.o.f., and
its vev remains zero at the classical level. By supplementing
the model with the rest of the SM content, one obtains the
theory whose low-energy limit must reproduce the CI SM
and general relativity.
The choice of the model is motivated by its simple

structure and by the possibility of disentangling the dilaton
and the Higgs parts of the Lagrangian. At low energies, the
model is an effective theory with the cutoff scale deter-
mined by MP and coupling constants. When the cutoff is
approached, the low-energy Lagrangian must be supple-
mented with the set of higher-dimensional operators.
Following the above arguments, we require that the scale
symmetry be preserved in the UV regime of the theory and
that no heavy mass thresholds interfere between the weak
and the Planck scales. The requirements constrain the set of
irrelevant operators to be added at high energies, but their
variety remains large, as it follows, e.g., from the Horndeski
construction [39]. Our strategy is to probe a particular set of
operators whose effect on the instanton results in the
desired value of BHE. In other words, we treat the
Lagrangian of the model as relevant for the mechanism
part of the classical Lagrangian of the fundamental theory.6

We do not argue that the theory under consideration is
consistent with a UV complete theory of gravity which is
yet to appear. However, Eq. (4) can be viewed as an
argument in favor of those properties of the fundamental
theory that are relevant for the successful implementation
of the mechanism.
The paper is organized as follows. In Sec. II we introduce

the model, and explain its main features and its connection
to phenomenology. In Sec. III Euclidean classical solutions

arising in the model are studied. Namely, we describe the
tunneling solution and the singular instanton. Similarities
and differences between them are highlighted. In Sec. IV
we discuss the conditions under which the instanton
mechanism of generating the hierarchy of scales works
successfully and Eq. (4) is reproduced. Section V contains
the discussion of our findings and the conclusion.

II. THE MODEL

A. The Lagrangian

In this and the next sections we focus on a particular
model, in which we implement the instanton mechanism of
generating the hierarchy of scales outlined in Sec. I. We
also demonstrate the sensitivity of this mechanism to the
low-energy physics that shapes the instanton profile far
from its core region. The model closely resembles the SI
theories of gravity with two scalar fields studied in [26];
yet, as we will see, the Euclidean solutions obtained here
are qualitatively different from their counterparts consid-
ered previously.
We call the two scalar fields χ and h the dilaton and the

Higgs field, correspondingly. This agrees with [40–43],
where the Higgs-dilaton theory was studied. The global
scale symmetry of the dilaton sector is broken sponta-
neously by the dilaton vev associated with the Planck scale.
Our goal is to show that the semiclassical gravitational
effect breaks the scale invariance of the Higgs sector, by
generating the Higgs vev, and that the ratio of the two
symmetry-breaking scales can be exponentially small.
To address the actual hierarchy problem (4), it is

necessary to supplement the model with the rest of the
SM content. As long as we are interested in the leading-
order contribution to the Higgs vev from the instanton built
of χ, h and the metric fields, the other d.o.f. can be ignored;
we will briefly comment on their inclusion in Sec. IV.
Finally, for the sake of simplicity we work with the
Euclidean formulation of the model. In doing so, one
should be aware of possible issues with the high-energy
limit of Euclidean quantum gravity [44]. We assume that
the correct formulation of gravity in the UV regime
resolves those issues one way or another.
The Euclidean Lagrangian of the model takes the form7

LE ¼ Lχ þ Lh; ð6Þ

where the dilaton Lagrangian is given by

Lχffiffiffi
g

p ¼ −
1

2
ξχχ

2R −
1

2
ð∂χÞ2 þ δ

ð∂χÞ4
χ4

; ð7Þ
5Recall that we work under the assumption that there are no

heavy d.o.f. above the EW scale.
6The exception is the scalar field potential: the latter must be

RG improved for the effect to appear; see, e.g., [37] for the
discussion of this observation in the context of EW vacuum decay
in the SM.

7The Lagrangian must be supplemented with a suitable
boundary term. The latter, however, is not important for our
analysis, and we will omit it [26].
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and the Higgs Lagrangian is

Lhffiffiffi
g

p ¼ −
1

2
ξhh2Rþ 1

2
ð∂hÞ2 þ 1

4
λh4: ð8Þ

Let us comment on the structure of the model. First of all,
both χ and h are nonminimally coupled to gravity with the
positive couplings ξχ and ξh accordingly. Also, there is no
direct coupling between the dilaton and the Higgs sectors.
The signs of the nonminimal coupling terms are determined
by the standard Euclidean continuation prescription [34].
On the contrary, the sign of the dilaton kinetic term ð∂χÞ2 is
chosen opposite to the standard sign of the Higgs kinetic
term ð∂hÞ2. In general, this means that the total kinetic term
of the scalar fields is not positive definite, and one should
carefully determine the region of the parameter and field
spaces where it remains positive definite. As we will see
shortly, it is possible to avoid instabilities in fluctuations
above the classical vacuum of the model. As for the
Euclidean solutions, they will stay confined in the region
of validity of the Lagrangian (6).
The choice of the sign of the dilaton kinetic term is the

crucial feature of the model. If one switches it to the
standard sign, one restores the theory whose close analogs
were studied before in the context of the hierarchy problem
[26], as well as in the light of their phenomenological
implications [42,43]. Because of this similarity between the
two types of models, their Euclidean solutions have many
features in common, but we also point out some remarkable
differences between them.
As for the four-derivative term in Eq. (7), its role is to

regularize the divergence of the instanton solution and to
provide a finite contribution BHE from its core region. After
χ develops the classical vev, hχi ¼ χvac, this term becomes
suppressed by χ4vac; therefore it controls the high-energy
behavior of the model. We choose this particular SI higher-
dimensional operator because of its particularly simple
form; in Sec. V we will comment on a possible generali-
zation of the UV part of the dilaton sector.
The Lagrangian (6) is invariant under global scale

transformations

gμν → σ−2gμν; h → σh; χ → σχ: ð9Þ

The classical vacuum of the model provides one classical
scale associated with the Planck mass:

χvac ≡ MPffiffiffiffiffi
ξχ

p ; hvac ¼ 0: ð10Þ

Note that Lagrangian (6) is not the most general Lagrangian
consistent with the scale symmetry. From the point of view
of the low-energy theory built above the vacuum (10), the
quartic terms

∝ χ2h2; ∝ χ4 ð11Þ

are also allowed. The first of these terms gives rise to the
Higgs mass, and we set it to zero at the classical level.
Then, all perturbative corrections to this term are sup-
pressed by the Planck mass and, hence, are negligible at
low energies. The next term, the dilaton quartic coupling
term, gives rise to the cosmological constant. The latter is
tiny in a realistic setting and can be neglected; see Sec. III A
and [26] for more details.
It is worth noting that the terms in (11) are not invariant

under the constant shifts of the dilaton χ → χ þ const.
Keeping them small is natural according to the ’t Hooft
definition [1], since in their absence (and in the limit ξχ → 0),
the dilaton shift symmetry is restored [38].8 However, the
hierarchy between the couplings, which is necessary to
reproduce the observed ratio between mH and the cosmo-
logical constant [42], is not respected by loop corrections,
and the cosmological constant problem persists.

B. Polar field coordinates

To analyze classical solutions arising in the model (6)
and to understand the behavior of the scalar d.o.f., it is
convenient to diagonalize the kinetic terms of the scalar
fields. To this end, we perform a Weyl rescaling of the
metric, which allows us to eliminate the nonminimal
coupling, followed by the field redefinition9:

gμν ¼ Ω−2g̃μν; Ω2 ¼ ξχχ
2 þ ξhh2

M2
P

;

χ ¼ MP cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 6ξχ

p eρ=MP;

h ¼ MP sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξh

p eρ=MP: ð12Þ

The fields ρ and θ can be thought of as polar coordinates on
the plane spanned by the vectors χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 6ξχ

p
and

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξh

p
. Note that the radial field ρ is exponentiated

in Eqs. (12). Thanks to the exponential mapping, the kinetic
term of the scalar fields becomes canonical (up to constant
multipliers) in the high-energy regime of the model. When
evaluating the vev hhi in the path integral approach, the
exponential term expðρ=MPÞ is added to the Euclidean
action of the model [26], resulting in the functional of the
form (2) whose saddle points are the instanton solutions we
are looking for.

8See also [45] for the reasoning about a mechanism that could
forbid the terms (11).

9The question of equivalence of theories related to each other
by a Weyl rescaling of the metric is discussed in [46].
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In the new variables, the Lagrangian becomes

LEffiffiffĩ
g

p ¼ −
1

2
M2

PR̃þ 1

2aðθÞ ð∂̃ρÞ
2 þ bðθÞ

2
ð∂̃θÞ2

þ ṼðθÞ þ δ
ð∂̃ρÞ4
M4

P
þ � � � ð13Þ

where ∂̃ means that contraction of the derivatives is
performed with the new metric g̃μν, and dots stand for
the terms containing the powers of sin θ · ∂θ, whose precise
form will not be important in what follows. The various
functions appearing in Eq. (13) are defined as follows10:

aðθÞ ¼ 1

6þ 1=ξh
ðsin2θ þ ζcos2θÞ;

bðθÞ ¼ M2
Pζ

ξχ

−tan2θ þ ξχ=ξh
cos2θðtan2θ þ ζÞ2 ;

ṼðθÞ ¼ λM4
P

4ξ2h

1

ð1þ ζcot2θÞ2 ;

ζ ¼ ð1þ 6ξhÞξχ
ð−1þ 6ξχÞξh

: ð14Þ

The action of the scale transformations (9) on the new
field variables is given by

g̃μν → g̃μν; ρ → ρþ const; θ → θ: ð15Þ

To be invariant under the constant shifts of the field ρ, the
Lagrangian (13) must contain it only derivatively. The
classical ground state (10) is written as

ρvac ¼
MP

2
log

�
−1þ 6ξχ

ξχ

�
; θvac ¼ 0: ð16Þ

From Eq. (13) it is easy to obtain the conditions under
which the kinetic term of the scalar fields is positive
definite. We take the following condition:

ξχ >
1

6
; ξh > 0; θ < θmax ¼ arctan

ffiffiffiffiffi
ξχ
ξh

s
: ð17Þ

According to the definition of θ, the third of the above
conditions sets an upper bound on the ratio h=χ, above
which the model must be modified to prevent the appear-
ance of instabilities. The instanton solutions studied below
all satisfy the condition 0 ≤ θ < θmax, and the range of
validity of the Lagrangian (6) is enough for our purposes.
Note also that fluctuations δχ, δh of the scalar fields above
the ground state are healthy as long as

δh < MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 6ξχ
ξhð1þ 6ξhÞ

s �
1þ δχ

χvac

�
: ð18Þ

In what follows, we allow the Higgs quartic coupling λ to
be the function of the angular variable, λ ¼ λðθÞ. The field
dependence of the coupling mimics its renormalization
group (RG) running once extra d.o.f. are added into the
model, which are coupled to the Higgs field. It is necessary
to take into account the running of λ, since the behavior of
the instanton solution and its very existence depend
strongly on the shape of the (effective) Higgs potential
ṼðθÞ. The dependence of the normalization point on θ, and
not on ρ, follows from working in the SI renormalization
scheme [38,47,48]; see Sec. IV.

III. THE BOUNCE AND THE INSTANTON

A. General remarks

In this section, we study two distinct types of Euclidean
classical configurations arising in the model (6) written in
the form (13). The first is the bounce—the regular solution
that interpolates between the regions of the false and true
vacua [33,34]. The bounce exists whenever the function
λðθÞ becomes negative at some values of its argument. The
potential ṼðθÞ then becomes negative as well, its minimum
at θ ¼ θvac ¼ 0 is not global, and the ground state (16)
represents the false vacuum state. Studying the bounce is
important since, as we will see, the singular instanton
solution—the second type of classical configurations con-
sidered here—inherits many of its properties.
Below we restrict our analysis to the Oð4Þ-symmetric

configurations. For the bounce, it is believed that the
spherically symmetric solution saturates the tunneling
action, although the proof is known only for a scalar field
theory in flat space background [49,50].11 For the instanton
solution, one can note that the source term in the action (2)
preserves the spherical symmetry of the model; hence it is
natural to assume that the Oð4Þ-symmetric solution pro-
vides a dominant contribution to the instanton action. We
choose the following ansatz for the metric field g̃μν:

ds̃2 ¼ f2ðrÞdr2 þ r2dΩ2
3; ð19Þ

where dΩ3 is the line element on a unit 3-sphere.
All solutions are required to approach the ground state

(16) at large distances:

f2 → 1; θ → 0; ρ → ρvac; r → ∞: ð20Þ

Note that self-consistency requires us to look for configu-
rations approaching the actual ground state with nonzero

10Apart from the signs in bðθÞ and ζ, these expressions are the
same as the ones obtained in [42].

11Note, however, that even in flat space, examples are known
where a less symmetric configuration dominates the action [51].
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θvac, which is obtained by taking into account the instanton
contributions to the expectation values of χ and h.
However, the difference between the actual solutions and
the ones satisfying Eqs. (20) is revealed at the distances
r≳ v−1, where it cannot produce any noticeable effect.
Note also that in our model the ground state is flat. It is
possible to make it curved by introducing the term ∝ χ4

into the dilaton Lagrangian (7).12 However, since in a
phenomenologically interesting case the characteristic
length of the background geometry significantly exceeds
the characteristic sizes of the bounce and the instanton,
switching to the ground state with nonzero curvature will
not affect any of our results.
In explicit calculations below we will use the toy

function λðθÞ that becomes negative well below θmax for
fixed ξχ , ξh ≲ 1. We choose λðθÞ so that the tunneling
action is of the same order of magnitude as in the SM,
Bbounce ¼ Oð103Þ [35–37]. One of our main results is that
the low-energy contribution to the instanton action, BLE,
virtually coincides with Bbounce.

B. The bounce

Regularity of the bounce imposes the following boun-
dary conditions at the origin:

f2ð0Þ ¼ 1; θ0ð0Þ ¼ ρ0ð0Þ ¼ 0: ð21Þ

Together with Eqs. (20), they select a unique solution of the
Euclidean equations of motion. The detailed analysis of the
tunneling solution in a model similar to (6) was performed

in [53], where the question of stability of the EW vacuum in
the Higgs-dilaton theory was addressed. Here we repeat the
main steps of this analysis. First, let us switch the four-
derivative term off for the moment, δ ¼ 0. Then, applying
the ansatz (19) to the equation of motion of the field ρ, one
finds

ρ0r3

faðθÞ ¼ C ð22Þ

with C an arbitrary constant. Inspecting the short-distance
limit of the equations of motion, one concludes that the
conditions (21) can be fulfilled only if C ¼ 0.
Equation (22) then implies

ρ ¼ const ¼ ρvac; ð23Þ

or, in terms of the original field variables,

ð−1þ 6ξχÞχ2 þ ð1þ 6ξhÞh2 ¼ M�2
P ; ð24Þ

where

M�2
P ¼ M2

P

−1þ 6ξχ
ξχ

: ð25Þ

Thus, in the plane spanned by the vectors χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 6ξχ

p
and

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξh

p
, the bounce trajectory draws an arc of the circle,

with the endpoints at θð∞Þ ¼ 0 and some θð0Þ < θmax; see
Fig. 1(a). The radius of the circle is determined by the
dilaton vev as the latter appears in the rhs of Eq. (24).
Exploiting the Einstein equations, one obtains the tunneling
action:

FIG. 1. The classical solutions in the model (6) satisfying the boundary conditions (20) at infinity. We take λðθÞ ¼ 0.01 cos 4θ,
ξχ ¼ 0.2, ξh ¼ 0.02. Left panel: The solid line represents the bounce, and the dashed line is a circle of radius M�

P [see Eqs. (24) and
(25)]. Right panel: The solid line represents the singular instanton solution. Its trajectory, if drawn from r ¼ ∞, follows the path of the
bounce until the turning point, after which θ starts decreasing according to the asymptotics (33), while ρ starts growing according to
Eq. (30).

12Another way to introduce the cosmological constant is to
replace general relativity by unimodular gravity; see [41,52] and
references therein.
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Bbounce ¼ −2π2
Z

∞

0

drr3fṼðθÞ: ð26Þ

The correction to this formula coming from the nonzero
Higgs vev is negligible; see the discussion in Sec. III A.
Let us now restore the higher-dimensional operator in the

dilaton sector. One can expect that this operator provides a
small correction to the above solution as long as δ ≪ 1. The
correction to the tunneling action is given by

δBbounce ¼ 2π2δ

Z
∞

0

drr3f−3θ04 tan4 θ ð27Þ

and is small compared to the main contribution (26) even
for δ ¼ 1; see Fig. 2(b). Still, as we will see, for the ratio of
the Higgs vev generated due to instantons to the classical
dilaton vev to be exponentially small, one should
require δ ≪ 1.

C. The instanton

According to Eqs. (12) and the discussion in Sec. I, the
functional whose saddle points are the instanton solutions
we are interested in is given by

B ¼ −
ρð0Þ
MP

þ
Z

d4xLE; ð28Þ

where LE is given in Eq. (13). The first term is the
instantaneous source of the radial field. The source term
fixes the center of the configuration and provides an
additional boundary condition on it. Together with the
vacuum boundary conditions (20) and the condition for θ to
approach a definite value at r → 0, they select a unique
solution of the Euclidean equations of motion. Due to the

source, this solution is singular, hence the name “singular
instanton” adopted in [25,26] (see also [54]).
Since the dilaton four-derivative operator is suppressed

byM4
P, we expect it to affect the instanton behavior only at

short distances, r≲M−1
P . The tail of the instanton, which

contributes to BLE, is independent of δ. For this reason,
below we consider first the case δ ¼ 0, and then the general
case δ > 0.

1. The case δ= 0

Varying Eq. (28) with respect to ρ, we arrive at Eq. (22)
with

C ¼ −
1

MP
: ð29Þ

Hence, for the instanton ρ ≠ const, and this makes it differ
qualitatively from the bounce, at least near the origin. The
analysis of the equations of motion gives the following
asymptotics of the radial field in the core region:

ρ ∼ −MPγ logMPr; γ ¼
ffiffiffiffiffiffiffi
6a0

p
; ð30Þ

where

a0 ≡ að0Þ ¼ 1

6 − 1=ξχ
; ð31Þ

and aðθÞ is defined in Eqs. (14). Next, we require the
angular field θ to approach some definite finite value at
r → 0. Otherwise, the solution will experience infinite
oscillations which, via the four-derivative term, will pro-
duce an infinite contribution to the instanton action. Note
that this argument to discard the oscillating solutions does
not depend on a particular structure of the model [26].

(a) (b)

FIG. 2. Left panel: The profile of the angular field component of the bounce (the solid red line with nonzero asymptotics at r → 0) and
of the instanton (the solid blue line with zero asymptotics at r → 0). One sees that at rMP ≫ 1 the two Euclidean solutions almost
coincide. The dashed line denotes the upper limit of θ, above which the kinetic term of the scalar fields of the model (6) is not positive
definite. Right panel: The solid line is the Euclidean Lagrangian (13) computed on the bounce or on the instanton. The dashed line is the
correction to the Euclidean Lagrangian, δLE, due to nonzero δ, δBbounce ¼

R
drMPδLE [see Eq. (27)]. Here we take δ ¼ 1. The

parameters of the model are λðθÞ ¼ 0.01 cos 4θ, ξχ ¼ 0.2, and ξh ¼ 0.02.
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Then, the only admissible short-distance asymptotics
for θ are

θ → πk; k ¼ 0; 1; 2;…; r → 0: ð32Þ

Again, we see the difference from the bounce for which any
positive θ < θmax is suited. We focus on the case k ¼ 0,
since numerical analysis shows that for all k > 0 the
solutions do not fall off at infinity as required by
Eqs. (20). The asymptotic behavior of θ is

θ ∼ rβ; β ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξh=ξχ

q
: ð33Þ

The crucial observation is that the angular field is not a
monotonically decreasing function of r. Instead, it grows
from zero at the center of the instanton up to some finite
value and then bounces back and falls down to zero at large
r; see Fig. 1(b). This somewhat surprising behavior is due
to the asymptotics (32). The latter, in turn, are traced back
to the sign of the dilaton kinetic term in Eq. (7).13

The turning point at which the bounce occurs specifies
the second characteristic scale of the instanton solution, and
this scale can be many orders of magnitude smaller than the
Planck scale determining the size of the core region. The
behavior of the instanton at this scale is controlled not by
the higher-dimensional Planck-suppressed operators but by
the effective Higgs potential ṼðθÞ. The turning point (and,
hence, the instanton itself) exists under the same conditions
as the tunneling solution considered in Sec. III B. As Fig. 2
demonstrates, near the turning point the instanton profile is
indistinguishable from the profile of the tunneling solution.

If the energy scale probed by the bounce is much below
MP, the contribution of the tail of the instanton to the action
is nearly the same as the contribution of the bounce:

BLE ≈ Bbounce: ð34Þ

In the computations below the two characteristic scales of
the instanton will be well separated, and Eq. (34) will hold
with great accuracy.
It is worth mentioning again that our considerations are

limited to the range 0 ≤ θ < θmax, where θmax is defined in
Eqs. (17). The turning point of the bounce and of the
instanton is determined by the shape of the potential ṼðθÞ;
it may be above θmax, in which case the model (6) must be
extended. However, having the potential fixed, it is possible
to adjust the parameters of the model (mainly, the non-
minimal coupling of the Higgs field ξh) so that the solution
does not go beyond the threshold, and we follow this
strategy.
Shown in Fig. 3(a) is the dependence of BLE on the

nonminimal couplings ξχ , ξh and for some choice of the
function λðθÞ. We see that varying the Higgs nonminimal
coupling ξh does not change BLE, at least when ξh ≲ 10−2.
The range of ξh is confined to small values to assure
that the solution stays within the region of validity of
Lagrangian (6).
Let us now turn to the high-energy part of the instanton,

where the fields follow the asymptotics (30) and (33). From
Eqs. (28) and (30) we see immediately that the divergence
of the radial field at the origin prevents the finite con-
tribution to BHE. This issue is resolved by switching on the
four-derivative operator, which makes the magnitude of ρ at
the center of the instanton finite, thus removing the
divergence and partially regularizing the singularity. We
proceed to this step below.

(a) (b)

FIG. 3. Left panel: The low-energy contribution to the instanton action (28) as a function of ξh and for different values of ξχ . From the
top to the bottom line, 6ξχ − 1 ¼ 10−1, 10−2, 10−3. We see that BLE is independent of ξh, at least when ξh ≲ 10−2. Here
λðθÞ ¼ 0.01 cos 4θ. Right panel: The high-energy contribution to the instanton action (28) as a function of δ and for different values
of ξχ . From the low to the large inclination, 6ξχ − 1 ¼ 10−1, 10−2, 10−3. We see that jBHEj shows powerlike dependence on the deviation
of ξχ from the conformal limit, in accordance with Eq. (43), while the sign of BHE is different for the different values of δ, and small δ are
needed to obtain BHE < 0.

13The “usual” choice of the sign would result in the asymp-
totics θ → π=2 and in the monotonic solution; see Sec. 4.3
of [26].
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2. The case δ ≠ 0

Expressing χ via ρ and θ in the four-derivative operator,
one obtains

ffiffiffi
g

p
δ
ð∂χÞ4
χ4

¼
ffiffiffĩ
g

p
δ
ð∂̃ρÞ4
M4

P
þ � � � ð35Þ

where dots stand for the terms proportional to sin θ · ∂θ. At
large distances from the center of the instanton, these terms
are negligible, the argument being the same as in the case of
the bounce. At short distances these terms are again
negligible due to the asymptotics (33). Thus, the only
sizable effect from introducing the higher-dimensional
operator in the dilaton sector is the modification of the
equation for the radial field:

4δ

M4
P

ρ03r3

f3
þ ρ0r3

faðθÞ ¼ −
1

MP
: ð36Þ

The first term in this equation becomes dominant when
r≲ r̄, where r̄ is found from

r̄ ¼ M−1
P δ1=6aðθðr̄ÞÞ1=2: ð37Þ

Inspecting the shape of the instanton, one concludes that, in
fact, αðθðr̄ÞÞ ≈ a0; hence

r̄ ≈M−1
P δ1=6a1=20 : ð38Þ

Solving the equations of motion at r≲ r̄, one obtains

ρ0 ∼ −M2
Pδ

−1=6: ð39Þ

We see that the radial field does not diverge anymore. The
higher-dimensional operator (35) partially cures the singu-
larity of the solution. The cure is not perfect, as one can see,
e.g., by computing the scalar curvature near the origin:

R̃ ∼ r−2; r≲ r̄: ð40Þ

It is, however, enough for our purposes, as the contribution
to the instanton action (28) supplemented with the source
term is now finite. Indeed, for the source term one can make
the following estimation [26]:

ρð0Þ=MP ∼ a1=20 ðlogðδa−30 Þ þOð1ÞÞ: ð41Þ

Next, using the Einstein equations and Eq. (39), one
obtains, for the high-energy contribution to the instanton
action,

2π2
Z

r̄

0

drr3fδ
ρ04

f4M4
P
∼ a1=20 : ð42Þ

Overall, BHE is finite. It is interesting to note that, despite
being singular and, in the case δ ¼ 0, even divergent, the
instanton brings a finite contribution to the Euclidean
action [54]. Note also that, somewhat unexpectedly,
Eq. (42) shows no powerlike dependence of the instanton
action on δ.
From Eqs. (41) and (42) we conclude that

BHE ∼ a1=20 : ð43Þ

This means that, unless a cancellation occurs between the
terms with subdominant dependence on a0, the high-energy
part of the instanton action (28) can be made large by
making the coefficient a0 large. According to Eq. (31),
large values of a0 are achieved by choosing the dilaton
nonminimal coupling ξχ to be close to the conformal limit,
6ξχ − 1 ≪ 1. We will say more about this in Sec. V.14 The
quantity a−10 serves as a small parameter that justifies the
applicability of the saddle-point approximation made in
obtaining Eq. (3).
The simple estimate (43) does not allow us to compute

the sign of BHE. The latter is determined by the balance
between the negative source term and the positive
contribution from the higher-dimensional operator. As
Fig. 3(b) shows, both signs are realized for different choices
of the parameters a0 and δ. Recall that our goal is to make
the total contribution BHE þ BLE of the order 10, in which
case the hierarchy (4) between the weak and the Planck
scales is reproduced. In view of Eq. (34), this means
that one should look for the values of a0 and δ for which
BHE < 0 and jBHEj ¼ Oð103Þ. In the next section we will
see that this puts strong constraints on the parameters of the
model. Furthermore, this implies some fine-tuning between
the Higgs and the dilaton sectors of Lagrangian (6).

IV. THE HIERARCHY

In the previous section we analyzed the properties of the
instanton solution in the model (6) with the toy potential for
the field h. Our conclusion was that the total instanton
action B consists of the equally important contributions
from the core of the instanton, BHE, and from the tail of the
instanton, BLE ≈ Bbounce. The former can be of any magni-
tude and sign, depending on the parameters of the model,
mainly on the dilaton nonminimal coupling ξχ and the
quartic derivative coupling δ. It is, therefore, possible, by
adjusting these parameters, to obtain B ¼ logMP=v.
Let us embed the model (6) into a realistic setting. First,

we identify h with the Higgs field d.o.f. in the unitary
gauge,

14The condition a0 ≫ 1 can also be understood from a geo-
metric point of view. From Eqs. (13) and (31) one can infer that
sending a0 to infinity amounts to blowing up the curvature in the
space of scalar fields ρ, θ; see [55].
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φ ¼ 1=
ffiffiffi
2

p
ð0; hÞT: ð44Þ

Then, we supplement Lagrangian (6) with the rest of the
SM content. This content does not modify the results of the
leading-order saddle-point evaluation of the action (28).
The SM fields are the source of perturbative corrections to
the Higgs vev. These corrections are well known [5] and, as
was mentioned in Sec. I, they are not capable of generating
the observed value of the EW scale. Note also that, since
the dilaton sector is decoupled from the rest of the theory,
the dilaton field contributes to hhi only via graviton loops,
and this contribution is numerically small at low energies
[28,43]. Thus, under the assumption of the absence of new
heavy particles coupled to the Higgs field, the instanton
studied above provides the dominant, nonperturbative
contribution to hhi.
Although the fields other than χ, h and gμν do not

participate in building the instanton solution, their presence
is important because of their interaction with the Higgs field.
The interaction determines the RG running of the Higgs
quartic coupling.With the aim to explicitly preserve the scale
symmetry of themodel at the perturbative quantum level, we
implement the SI renormalization procedure [38,47,56–59].
It amounts to replacing the ’t Hooft-Veltman normalization
point μ [27] by a field-dependent scale, μ2 ¼ Fðh; χÞμ̂2=M2

P,
where the function F reflects the choice of the renormaliza-
tion prescription and μ̂ denotes the usual momentum scale in
theRGequations, λ ¼ λðμ̂Þ, onwhich nothing depends in the
final result.15 We choose the momentum scale as follows
[43,62]:

μ̂2 ¼ y2t
2

M2
Ph

2

ξχχ
2 þ ξhh2

; ð45Þ

where yt is the top quark Yukawa coupling. In the polar field
variables, this gives

μ̂2 ¼ y2t
2ξh

M2
P

1þ ζ cot2 θ
; ð46Þ

and, according to Eqs. (15), the scale symmetry is manifestly
preserved.
Currently, the largest uncertainty in the shape of the

effective Higgs potential comes from uncertainties in the
top mass measurements [63–65]. Therefore, we use mt as
the parameter controlling the low-energy contribution to
the instanton action. Note that it is possible, within the
current uncertainties, for λ to stay positive all the way up to
the Planck scale [63], in which case no instanton with the
finite action exists in the model (6). Thus, the mechanism of
generating the hierarchy of scales discussed here strongly
relies on the metastability of the EW vacuum. The RG
running of λ is computed using the code based on [66,67].
Shown in Fig. 4 are dependencies of the total instanton

action B onmt and ξχ , for a fixed ξh ¼ 0.02 and for the two
values of δ. The range of mt is chosen around the central
value mt ¼ 172.25 GeV [68]. We take mt to be above the
critical value separating the domains of stability and
metastability of the EW vacuum. The value of ξh is chosen
to stay within the region of validity of Lagrangian (6). As
was discussed in Sec. III, the dependence of B on ξh is very
mild, at least for ξh ≲ 10−2; see Fig. 3(a).
We observe that the values B ¼ Oð10Þ are achieved

in a certain window of the parameter space. Namely, the
dilaton coupling must be close to the conformal limit,

FIG. 4. The instanton action B plotted against mt and ξχ , with ξh ¼ 0.02 and δ ¼ 10−18 (left panel), and δ ¼ 10−20 (right panel). The
grey dashed isoparametric curves are plotted with stepsΔB ¼ �2000, starting from B ¼ logMP=v ≈ 37. Here we take the function λðθÞ
as the Higgs self-coupling constant undergoing RG running within the SM and under the SI renormalization scheme; see the text for
details. The vertical dashed line marks the central value of the top mass mt ¼ 172.25 GeV [68], and the running of λ is computed at the
central value of the Higgs mass mH ¼ 125.09 GeV [69].

15Note that, since the theory under consideration is non-
renormalizable, the results depend on the choice of the function
F [43,60,61].
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6ξχ − 1 ≤ Oð10−5Þ. As for the coupling δ, it must be
extremely close to zero, 0 < δ≲ 10−16, at least when mt
stays within the 2σ uncertainty region 172.25� 1.26 GeV
[68]. This constraint is due to the requirement for BHE to be
large and negative, in order to compensate the large and
positive contribution from the potential; see Fig. 3(b). It is
also due to the fact that δ enters the expression for BHE only
logarithmically. Despite its smallness, the coupling does
not affect much the energy scale at which the UV part of the
model comes into play, as it follows, e.g., from Eq. (38).
Note also that δ does not bring about new interaction scales
much belowMP. Moreover, having small δ is natural, since
setting it to zero (along with taking the limit ξχ → 1=6)
enhances the symmetry of the dilaton sector by making it
Weyl invariant. One can check that at low energies no fine-
tuning is required to keep δ that small. Indeed, in
perturbation theory the main correction to δ comes from
Higgs and graviton loops; see Fig. 5. They generate a
correction of the order of ðξχ − 1=6Þ2 ¼ ð36a0Þ−2. Thus, as
soon as δ≳ ðξχ − 1=6Þ2, no fine-tuning is needed to set it as
close to zero as necessary. From Fig. 4 we see that this
condition is consistent both with having B ¼ logMP=v and
with the top mass lying in its current uncertainty region
close to the central value.

V. DISCUSSION AND CONCLUSION

Let us summarize our findings and outline the features of
the nonperturbative mechanism of generation of a new
scale, the ones which are specific to the model (6), and the
ones which this model has in common with the theories
studied previously in [25,26].
First of all, the nonminimal couplings of the scalar fields

to gravity are the essential ingredient of the mechanism.
When evaluating the vev of the scalar field, these couplings
naturally lead to the appearance of the source term. This
happens because the low-energy canonical scalar d.o.f. are
related to their high-energy counterparts via an exponential
mapping.
The higher-dimensional operator (35) is also an impor-

tant ingredient of the mechanism. Thanks to this operator,
the instanton configuration does not diverge at the origin,
leading to the finite contribution from the source term. As
for the instanton action, it is finite even without the partial

regularization provided by the derivative operator.16 Note
that, unlike the theories studied in [26], in our case it is
sufficient to consider UV modifications of the dilaton
sector, while leaving the Higgs sector intact. This is the
consequence of the peculiar behavior of the instanton
solution in the model (6). Since the dilaton field is coupled
to the rest of the theory only gravitationally, probing
different UV operators composed of χ does not endanger
the SM physics. The operator (35) provides us with the
simplest but not unique possibility to cure the divergence of
the instanton. Other types of SI operators containing χ and
its first derivative can also work; see the discussion in [26].
As was already pointed out, the main feature of the

instanton contribution to the Higgs vev in the model (6) is
that it consists of two equally important parts. One part is
saturated in the core of the instanton, where the higher-
dimensional operator from the dilaton sector takes over,
and the other is saturated in the tail where the physics much
below the Planck scale dominates. As we see, the necessary
instanton existence condition is the negativity of λ in a
certain region of energy scales, which implies metastability
of the Higgs vacuum, given that Bbounce ¼ Oð103Þ. This
enables us to constrain the mechanism from experiment.
Equation (34) tells us that the high-energy contribution

to the instanton action must compensate 2 orders of
magnitude in the difference between BLE and the desired
value of B. This implies a balance between different energy
domains of the theory and between its dilaton and Higgs
sectors. This balance is successful for quite special values
of the parameters of the dilaton sector, ξχ and δ. Namely,
they must be close to the point in the parameter space where
the dilaton Lagrangian (7) becomes Weyl invariant. We find
this interesting, since in the theories considered in [25,26],
the approximate Weyl invariance in the high-energy regime
was also identified as one of the conditions necessary for
the successful implementation of the mechanism.
Let us make one more comment regarding the dilaton

derivative coupling δ. We saw above that it should belong
to the interval 0 < δ≲ 10−16, where it is natural and can be
made stable against loop corrections at low energies. As
was discussed in Sec. II A, the simplest way to obtain the
SM Higgs potential at low energies is to supplement the
model (6) with the Higgs-dilaton coupling term αχ2h2.
Then, phenomenology requires α to be of the order of
ξχðmH=MPÞ2 ∼ 10−33 [42]. One may wonder if our con-
siderations amount to just trading one small coupling (α)
for another (δ). We believe that this is not the case. The
difference between the two ways to obtain the hierarchy of
scales is revealed in respect to the scale symmetry. Indeed,
the instanton breaks the scale invariance of the model
semiclassically, while the χ2h2-term breaks it spontane-
ously via the vev of the dilaton field. One can contemplate

FIG. 5. Schematic form of diagrams providing the leading
correction to δ in perturbation theory above the classical
vacuum (10). Here h̃μν is the metric fluctuation above the flat
background.

16This fact was employed in [54], where similar singular
classical configurations were treated as tunneling solutions.
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the mechanism that would forbid the Higgs-dilaton cou-
pling term but allow for the dilaton four-derivative term
(see, e.g., [45]).
To conclude, in this paper we elaborated on the hypoth-

esis that the exponentially small ratio of the Fermi to the
Planck scales can be generated by the nonperturbative
gravitational effect. At the semiclassical level, the effect
manifests itself in the existence of an instanton configu-
ration contributing to the vev of the scalar field. The
resulting hierarchy between the scales is determined by
the instanton action. Being nonperturbative, this instanton
mechanism is sensitive to physics at energy scales as high
as the Planck scale. In this paper we demonstrated that the
mechanism can also be sensitive to physics at low energies.
We worked in the CI SM framework extended by the
nonminimal coupling of the Higgs field to gravity and by
the dilaton sector, Eq. (7). The high-energy contribution to
the instanton action is controlled by the UV structure of the
dilaton sector, while the low-energy contribution is deter-
mined by the SM parameters. The sensitivity of the
mechanism to the SM physics is a distinct feature of the
theory under consideration, as it was absent in the variety of

models studied before in [25,26]. Nevertheless, we found
many similarities between all examples that have been
considered. Among them are the nonminimal coupling of
the scalar fields to gravity and the (approximate) Weyl
invariance of the dilaton sector in the UV regime.
There remain open questions concerning the instanton

mechanism and its implementation. One of them concerns
fluctuations above the instanton background. Studying the
latter may shed some light on physical implications of the
singular Euclidean solutions that we use. Another natural
question is whether the instantons of a similar kind can be
helpful in resolving the cosmological constant problem. So
far it is only clear that more or less straightforward attempts
to implement the same approach to the vev of the curvature
fail. We will address these questions in future work.
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