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PEL RESEARCH FOCUS

MVDC Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Converters
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ĩp(t) vp(t)vp(t)

High Power Electronics
▶ Multilevel Converters
▶ Solid State Transformers
▶ Medium Frequency Conversion

vga vgb vgc

M

Lg

Ls

Vs

Is

ial ibl icl

icribriar

eal ebl ecl

ear ebr ecr

vCal1

vCalN

vCar1

vCarN

vCbr1

vCbrN

vCbl1

vCblN

vCcl1

vCclN

vCcr1

vCcrN

iga igb igc

VPN

P

N

P

ES2

ES4

I

II

IV

VLV

VMV

MFT

MFT

MFT

Components
▶ Semiconductor devices
▶ Magnetics
▶ Characterization

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
[%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs
Selected design 40

60

80

100

120

140

IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 3 of 72



INTRODUCTION and MOTIVATION
Why high power medium frequency transformers are important technology?
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LINE FREQUENCY TRANSFORMERS

IEC 60076-1 definition - Power Transformer: A static piece of appa-
ratus with two or more windings which, by electromagnetic induction,
transforms a systemof alternating voltage and current into another sys-
tem of voltage and current usually of different values and at the same
frequency for the purpose of transmitting electrical power.

Line Frequency Transformers
▶ Around for more than 100 of years
▶ Operated at low (grid) frequencies: 16.7Hz, 25Hz, 50/60Hz
▶ Standardized shapes and materials
▶ Cheap: ≈ 10kUSD / MW
▶ Efficient: above 99% for utility applications
▶ Simple and reliable device

What are the problems?
▶ Bulky - for certain applications
▶ Inefficient - for certain applications
▶ Uncontrollable power flow
▶ Fixed transformation (power, voltage, current, frequency)

▲ Source: www.abb.com
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MEDIUM-HIGH FREQUENCY CONVERSION

Switched Mode Power Supply (SMPS) Technologies
▶ Medium or High frequency conversion is not a new thing!
▶ Widely deployed in low voltage/power applications
▶ High efficiency
▶ Galvanic isolation at high frequency (standardized core sizes and shapes)
▶ Compact size (e.g. laptop chargers)
▶ Increased power density
▶ Cost savings

Could a Solid State Transformer provide that for a High Power Medium Voltage Applications?

▲ SMPS Technologies; Source: www.mouser.ch/new/tdk/epcos-smps/
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SOLID STATE TRANSFORMERS

What is a Solid State Transformers?
▶ Not a transformer replacement?
▶ Should not be compared against 50/60 Hz transformer!

What is it?
▶ A converter
▶ A converter with galvanic isolation
▶ Can be designed for DC and AC (1-ph, 3-ph) grid
▶ Can be used in LV, MV and HV applications
▶ Can be made for AC-AC, DC-DC, AC-DC, DC-AC conversion
▶ Has power electronics on each terminal
▶ Transformer frequency higher than 50/60 Hz

Excellent tutorials are available at: https://www.pes.ee.ethz.ch

xC

AC

AC

xCMFT

▲ Simplified SST concept

Solid-State Transformers 
Key Design Challenges, Applicability, 
and Future Concepts

Johann W. Kolar, Jonas E. Huber
Power Electronic Systems Laboratory

ETH Zurich, Switzerland

Tutorial No. 1
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APPLICATIONS

Railway
▶ 1-phase AC grids [1]
▶ Few voltage levels: 15kV (16.7Hz) or 25kV (50Hz)
▶ Low frequency (historically): (15kV) 16.7Hz or (25kV) 50Hz
▶ On-board installations - serious space constraints
▶ Volume and Weight reduction - system savings
▶ Reliability - high number of devices?
▶ Efficiency - easy to beat traction LFT
▶ Control - similar to existing solutions
▶ Cost?

▲ ABB’s PETT (Source: www.abb.com)

Utility
▶ 3-phase AC grids
▶ Many voltage levels: 3.3, 4.16, 6, 11, 15, 20kV, ...
▶ Grid frequency: 50Hz or 60Hz
▶ Sub-station installations - relatively low space constraints
▶ Volume and Weight reduction - not that relevant
▶ Reliability - even more complex due to 3-phases
▶ Efficiency - hard to beat distribution LFT
▶ Control - improved compared to existing solutions
▶ Cost?

▲ GE’s SST [2] (Source: www.ge.com)
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APPLICATIONS (CONT.)

MVDC Grids
▶ Increased interest into DC grids
▶ Need for high power DC-DC converters
▶ Galvanic isolation seen as necessary
▶ Bidirectional power flow
▶ High efficiency

▲ MVDC grids (Source: www.english.hhi.co.kr)

Marine LVDC / MVDC Distribution
▶ System level benefits
▶ Improved partial load efficiency
▶ No frequency synchronization of generators
▶ Integration of storage technologies
▶ Protection coordination

▲ MVDC marine distribution (Source: www.abb.com)
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RAILWAY ON-BOARD ELECTRICAL SYSTEM

Railway on-board transformers:
▶ Step-down voltage to low levels
▶ Already optimized for low weight and volume
▶ Reduced efficiency as a price to pay
▶ Form factor depends on the mounting method
▶ Predominantly oil cooled / insulated
▶ Air cooled / solid insulation available as well

Few things to consider:
▶ 50Hz transformer is already fairly small
▶ 16.7Hz transformer is relatively bulky and inefficient
▶ Single galvanic isolation - insulation coordination
▶ Often, new train design defines the available space
▶ Design customization is common
▶ Power levels are modest and below 15MW
▶ Different from the utility transformers

▲ Various realization of traction transformers, Source: www.abb.com
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RAILWAY SST

What traction SST offers in perspective:
▶ Improved efficiency (specially for 15kV, 16.7Hz systems)
▶ Weight reduction - less raw materials
▶ Volume reduction - questionable due to insulation coordination
▶ Control features

Why is traction SST not out yet?
▶ Conservative traction market
▶ Lack of business case
▶ Reliability concerns
▶ Very hard to compete in 25kV, 50Hz grids
▶ Not a major performance increase
▶ Increased cost compared to state-of-the-art solutions

Prototypes
▶ ALSTOM
▶ ABB
▶ BOMBARDIER
▶ ...

▲ On-board traction system evolution with SST [1]
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ABB - 1.2MW PETT

Characteristics
▶ 1-Phase MVAC to MVDC
▶ Power: 1.2MVA
▶ Input AC voltage: 15kV, 16.7Hz
▶ Output DC voltage: 1500 V
▶ 9 cascaded stages (n + 1)
▶ input-series output-parallel
▶ double stage conversion

99 Semiconductor Devices
▶ HV PEBB: 9 x (6 x 6.5kV IGBT)
▶ LV PEBB: 9 x (2 x 3.3kV IGBT)
▶ Bypass: 9 x (2 x 6.5kV IGBT)
▶ Decoupling: 9 x (1 x 3.3kV Diode)

9 MFTs
▶ Power: 150kW
▶ Frequency: 1.75kHz
▶ Core: Nanocrystalline
▶ Winding: Litz
▶ Insulation / Cooling: oil
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▲ ABB PETT scheme [3], [4]
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ABB - 1.2MW PETT DESIGN

Retrofitted to shunting locomotive
▶ Replaced LFT + SCR rectifier
▶ Propulsion motor - 450kW
▶ 12 months of field service
▶ No power electronic failures
▶ Efficiency around 96%
▶ Weight: ≈ 4.5 t

Technologies
▶ Standard 3.3kV and 6.5kV IGBTs
▶ De-ionized water cooling
▶ Oil cooling/insulation for MFTs
▶ n + 1 redundancy
▶ IGBTs used for bypass switch

Displayed at:
▶ Swiss Museum of Transport
▶ https://www.verkehrshaus.ch

▲ ABB PETT prototype [3], [4]
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UTILITY SST

Quite different from railways
▶ 50 / 60 Hz grids
▶ Higher powers: MW, GW
▶ Much higher voltage: MV, HV
▶ High efficiency needed (> 99 %)
▶ High reliability needed
▶ High availability needed
▶ Weight may not be important
▶ Volume may not be important

Challenges
▶ Business case
▶ Cost
▶ Efficiency
▶ Reliability
▶ Availability

Design of a converter is the least problem! ▲ Possible future grid connections (www.english.hhi.co.kr)
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SUMMARY - SOLID STATE TRANSFORMER

SST Pros
▶ Flexible grid interface
▶ AC-DC, AC-AC, DC-DC, DC-AC
▶ Galvanic isolation
▶ Advanced control features

SST Cons
▶ Compromised efficiency
▶ Increased complexity
▶ Higher cost
▶ Reliability
▶ Scalability

SST Future Research
▶ System level optimization
▶ Efficiency improvements
▶ Insulation coordination
▶ Protection
▶ MFT design optimization
▶ ...
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▲ ABB PETT scheme: Not that simple...
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MEDIUM FREQUENCY TRANSFORMERS
What are the design challenges?
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MOTIVATION

▶ Lower Volume – easier system integration
▶ Lower Weight – especially important for onboard traction applications
▶ Less Material – lower investment cost, lower environmental footprint
▶ Improved Efficiency – application specific case
▶ Modularity – fractional power processing

AP = Pt
KfKuBmJf

size
power

waveform  insulation  material  cooling  frequency 
▲ Approximate transformer scaling relation ▲ Example: frequency impact on the transformer size (Prof. Akagi)
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WHICH ONE IS THE BEST MFT?

ABB: 350kW, 10kHz

IKERLAN: 400kW, 600Hz

STS: 450kW, 8kHz

ABB: 3x150kW, 1.8kHz

FAU-EN: 450kW, 5.6kHz

KTH: 170kW, 4kHz

BOMBARDIER: 350kW, 8kHz

CHALMERS: 50kW, 5kHz

ETHZ: 166kW, 20kHz

ALSTOM: 1500kW, 5kHz

ETHZ: 166kW, 20kHz

EPFL: 100kW, 10kHz

IKERLAN: 400kW, 6kHz

EPFL: 300kW, 2kHz

?
ACME: ???kW, ???kHz

IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 18 of 72



DESIGN CONSTRAINTS

Electrical [1]
▶ Inductance
▶ B < Bsat
▶ Turns ratio
▶ Duty cycle
▶ Frequency
▶ DCR < DCRmax
▶ J < Jmax
▶ Leakage inductance
▶ Self capacitance
▶ Self resonance
▶ Skin and Proximity effects
▶ EMI, EMC
▶ Shielding
▶ Efficiency
▶ Safety
▶ Isolation

Mechanical
▶ Awdg > Awdg−min
▶ Size (L, W, H)
▶ Volume
▶ Surface area
▶ Weight
▶ Safety
▶ Creepage distances
▶ Clearance distances
▶ Insulation class
▶ Materials
▶ Environmental

Thermal
▶ T < Tmax
▶ Pwdq < Pwdg−max
▶ Pcore < Pcore−max
▶ Environmental

[1] Source: George Slama, Würth Elektronik, APEC2019 Educational Seminar
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SKIN AND PROXIMITY EFFECT

Effects

▶ Non-uniform current density
▶ Under-utilization of the conductor material
▶ Localized H-field distortion within the conductor volume
▶ Impact on conduction losses
▶ Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

J J J 3J

▲ Generic foil winding geometry

 0.1 [Hz]  (∆ = 0.01)

∗Δ - the penetration ratio

H
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▲ H and J distribution within the core window area
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EDGE EFFECT

MFT with fully filled core window height

▶ Only Hy component exists
▶ H field is tangential to the foil surface

▲ Fully utilized core window height

MFT with 80% filled core window height

▶ Both Hx and Hy components exists
▶ H field is not tangential to the foil surface

▲ Partially utilized core window height
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THERMAL COORDINATION

MFT Losses:
▶ Winding Losses
▶ Core Losses

Heat Transfer Mechanisms:
▶ Conduction
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▶ Heat transfer
Qh = hAΔT

▶ Temperature gradient

ΔT = Qh
hA

▶ Size decrease (A ↘) implies ΔT ↗

Temperature Distribution Example:
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THERMAL COORDINATION (CONT.)

Core Materials:
▶ Thermal conductivity varies from

4Wm/K (ferrites) to 8.35Wm/K
(Nanocrystalline)

▶ Isotropic thermal conductivity (e.g.
ferrites)

▶ Anisotropic thermal conductivity
(laminated cores e.g.
Nanocrystalline)

▲ Ferrite core - Isotropic

▲ Metglas core - Anisotropic

Windings:
▶ Copper and Aluminum conductors

combined with insulation

▶ Low Rth along the conductor path due
low Rth of Cu and Al

▶ High Rth in radial direction due to
layers of insulation with high Rth

δ

λLay

ro

λIso

λAir

h

Rth,tan

Rth,orth/2 Rth,cyc

Rth,tan/2

▲ Cross section of a round wire winding [5]

Winding insulation and cooling:
▶ Much higher insulation level

requirement than within the winding
insulation

▶ Good insulators have very low
thermal conductivity (solid or fluid)

▶ Fluid based insulation provides much
better cooling due to convection

INSULATION
AREA

▲ MFT cross section area
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NONSINUSOIDAL VAVEFORMS

DAB Converter:
MFT

Lσ1 L’σ2Rσ1 R’σ2

N1:N2

Lm
RLV1 V’2

I1

φ

π

V1V2I1
▶ V1,2 square
▶ I non-sinusoidal

Series Resonant Converter:
MFT

Cr Lσ1 L’σ2Rσ1 R’σ2

N1:N2

RLLmV1 V’2
I1

π

V1V2I1
▶ V1,2 square
▶ I sinusoidal

Core Losses:

▲ AC core losses

▶ Data-sheet data is for sinusoidal
excitation

▶ Derived Steinmetz coefficients describe
sinusoidal excitation losses

▶ Core is excited with square pulses
▶ Losses are effected
▶ Generalization of Steinmetz model

Winding Losses:

f

ν

▲ Harmonics

▶ Current waveform impacts the winding
losses

▶ Copper is a linear material
▶ Losses can be evaluated in harmonic

basis
▶ Current harmonic content must be

evaluated
▶ Total losses are the sum of the individual

harmonic losses

IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 24 of 72



INSULATION COORDINATION

MFT Geometry Crossection:

AXIS OF GEOMETRIC SYMMETRY

HF Winding Model:

x

c∆x

c∆x

c∆x

c∆x

∆x
k

tt0

V

∆x
k

∆x
k

∆x
k

MFT Electric Parameters:
▶ Parasitic capacitance cannot be neglected for HF
▶ Capacitances exist between turns, windings and core
▶ For pulse excitation voltage distribution is nonlinear
▶ Higher voltage gradient at the winding input than expected
▶ Damped oscillatory transient due to turn inductance
▶ Higher max voltage than expected during transient
▶ Need for overall insulation reinforcement
▶ Turn to turn insulation must especially be increased

x

Initial
Steady-state
Transient max

Voltage Distribution

V

0 h0
α =0.5

V(x) = V sinh(αx)
sinh(αh)

α =
√

c
k
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ACCURATE MFT ELECTRIC PARAMETER CONTROL

DAB Converter:
MFT

Lσ1 L’σ2Rσ1 R’σ2

N1:N2

Lm
RLV1 V’2

I1

φ

π

V1V2I1
▶ V1,2 square
▶ I non-sinusoidal

Series Resonant Converter:
MFT

Cr Lσ1 L’σ2Rσ1 R’σ2

N1:N2

RLLmV1 V’2
I1

π

V1V2I1
▶ V1,2 square
▶ I sinusoidal

DAB
▶ Leakage Inductance
▶ Controllability of the power flow
▶ Higher than Lσ.min ∶

Lσ.min =
VDC1VDC2φmin(π − φmin)

2Poutπ2fsn
▶ Magnetizing Inductance is normally high

SRC
▶ Leakage inductance is part of resonant circuit
▶ Must match the reference:

Lσ.ref =
1

ω2
0Cr

▶ Magnetizing inductance is normally high
▶ Reduced in case of LLC
▶ Limits the magnetization current to the reference Im.ref
▶ Limits the switch-off current and losses

Lm = nVDC2
4fsIm.ref

▶ Im.ref has to be sufficiently high to maintain ZVS
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MFT CHALLENGES - SUMMARY

▶ Skin and proximity effect losses: impact on efficiency and heating
▶ Cooling: increase of power density⇒ decrease in size⇒ less cooling surface⇒ higher Rth ⇒ higher temperature gradients
▶ Non-sinusoidal excitation: impact on core and winding losses and insulation
▶ Insulation: coordination and testing taking into account high dV

dt characteristic for power electronic converters
▶ Accurate electric parameter control: especially in case of resonant converter applications

Lσ1 Lσ2’Rσ1 Rσ2’

Lm Rm

Ii Io

Vi Vo

t

t

Vi

Vo

Io

Ii

▲ left: Transformer equivalent scheme; middle: typical waveforms for resonant operation; right: MFT heat evacuation issues
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MATERIALS
What design choices are available?
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DESIGNS, TECHNOLOGIES, MATERIALS, ...

Construction Choices:
▶ MFT Types

Shell Type Core Type C-Type Coaxial Type

▶ Winding Types

Litz Wire Foil Coaxial Hollow

Materials:

▶ Magnetic Materials
▶ Silicon Steel
▶ Amorphous
▶ Nanocrystalline
▶ Ferrites

▶ Windings
▶ Copper
▶ Aluminum

▶ Insulation
▶ Air
▶ Solid
▶ Oil

▶ Cooling
▶ Air natural/forced
▶ Oil natural/forced
▶ Water
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MAGNETIC MATERIALS - SILICON STEEL

Ferromagnetic - Silicon Steel
▶ Iron based alloy of Silicon provided as isolated laminations
▶ Mostly used for line frequency transformers

Advantages
▶ Wide initial permeability range
▶ High saturation flux density
▶ High Curie-temperature
▶ Relatively low cost
▶ Mechanically robust
▶ Various core shapes available (easy to form)

Disadvantages
▶ High hysteresis loss (irreversible magnetisation)
▶ High eddy current loss (high electric conductivity)
▶ Acoustic noise (magnetostriction)

Saturation B Init. permeability Core loss (10 kHz, 0.5T) Conductivity
0.8 ∼ 2.2 T 0.6 ∼ 100 ⋅ 103 50 ∼ 250 W/kg 2 ⋅ 107 ∼ 5 ⋅ 107 S/m

H
-100 -50 0 50 100

B

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
-100 -50 0 50 100

B

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
25Hz, B = 0.55 T 500Hz, B = 0.55T

▲ Example: Measured B-H curve of M330-35 laminate
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MAGNETIC MATERIALS - AMORPHOUS ALLOY

Ferromagnetic - Amorphous Alloy
▶ Iron based alloy of Silicon as thin tape without crystal structure
▶ For both line frequency and switching frequency applications

Advantages
▶ High saturation flux density
▶ Low hysteresis loss
▶ Low eddy current loss (low electric conductivity)
▶ High Curie-temperature
▶ Mechanically robust

Disadvantages
▶ Relatively narrow initial permeability range
▶ Very high acoustic noise (magnetostriction)
▶ Limited core shapes available (difficult to form)
▶ Relatively expensive

Saturation B Init. permeability Core loss (10kHz, 0.5T) Conductivity
0.5 ∼ 1.6 T 0.8 ⋅ 103 ∼ 50 ⋅ 103 2 ∼ 20 W/kg < 5 ⋅ 103 S/m

1kHz, B = 0.26 T 1kHz, B = 0.9 T

H
-2000 -1000 0 1000 2000

B

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

H
-800 -600 -400 -200 0 200 400 600 800

B

-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30

▲ Example: Measured B-H curve of Metglas 2605SA
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MAGNETIC MATERIALS - NANOCRYSTALLINE ALLOY

Ferromagnetic - Nanocrystalline Alloy
▶ Iron based alloy of silicon as thin tape with minor portion of

crystal structure
▶ For both line frequency and switching frequency applications

Advantages
▶ Relatively narrow initial permeability range
▶ High saturation flux density
▶ Low hysteresis loss
▶ High Curie-temperature
▶ Low acoustic noise

Disadvantages
▶ Eddy current loss (compensated thanks to the thin tape)
▶ Mechanically fragile
▶ Limited core shapes available (difficult to form)
▶ Relatively expensive

Saturation B Init. permeability Core loss (10kHz, 0.5T) Conductivity
1 ∼ 1.2 T 0.5 ⋅ 103 ∼ 100 ⋅ 103 < 50 W/kg 3 ⋅ 103 ∼ 5 ⋅ 104 S/m

Very brittle

1kHz, B = 0.45 T 1kHz, B = 1.1 T

H
-80 -60 -40 -20 0 20 40 60 80

B

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
-30 -20 -10 0 10 20 30

B

-0.45
-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

▲ Example: Measured B-H curve of VITROPERM 500F

IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 32 of 72



MAGNETIC MATERIALS - FERRITES

Ferrimagnetic - Ferrites
▶ Ceramic material made from powder of different oxides and

carbons
▶ For both line frequency and switching frequency applications

Advantages
▶ Relatively narrow initial permeability range
▶ Low hysteresis loss
▶ Very low eddy current loss
▶ Low acoustic noise
▶ Relatively low cost
▶ Various core shapes available

Disadvantages
▶ Low saturation flux density
▶ Narrow range of initial permeability
▶ Magnetic properties deteriorate with temperature increase
▶ Mechanically fragile

Saturation B Init. permeability Core loss (10kHz, 0.5T) Conductivity
0.3 ∼ 0.5 T 0.1 ⋅ 103 ∼ 20 ⋅ 103 5 ∼ 100 W/kg < 1 ⋅ 10−5 S/m

1kHz, B = 0.2 T 1kHz, B = 0.4 T

H
-40 -20 0 20 40

B
-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30

H
-100 -50 0 50 100

B

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

▲ Example: Measured B-H curve of Ferrite N87
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MAGNETIC MATERIALS - CHARACTERIZATION

Material characterisation
▶ Data sheet are often not sufficient
▶ Power electronics = non-sinusoidal waveforms

Calorimetric approach
▶ Core sample placed in thermally isolated chamber
▶ Measure temperature difference between the inlet- and outlet coolant
▶ Time consuming and difficult to exclude winding loss

Electrical approach
▶ Two windings installed on the sample core
▶ RF Power amplifier provides sinusoidal on the primary winding
▶ Primary winding current sensing using shunt resistor, to obtain H
▶ Secondary winding voltage sensing using resistor divider, integrated to get B
▶ Control unit for reference signal generation and data acquisition

▲ Commercial B-H Analyser; Source: www.iti.iwatsu.co.jp/en

+

-

Ctrl
Unit

Core
Sample

Shunt LEM

Voltage
measure

Power
amplifier

▲ EPFL characterisation setup for magnetic materials
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WINDING MATERIALS

Copper winding
▶ Flat wire - low frequency, easy to use
▶ Litz wire - high frequency, limited bending
▶ Foil - provide flat windings
▶ Hollow tubes - provide cooling efficiency
▶ Better conductor
▶ More expensive
▶ Better mechanical properties

Copper Parameters

Electrical conductivity 58.5 ⋅ 106 S/m
Electrical resistivity 1.7 ⋅ 10−8 Ωm
Thermal conductivity 401W/mK

TEC (from 0◦ to 100◦ C) 17 ⋅ 10−6 K−1

Density 8.9 g/cm3

Melting point 1083 ◦C

Aluminium winding
▶ Flat wire
▶ Foil - skin effect differences compared to Copper
▶ Hollow tubes
▶ Difficult to interface with copper
▶ Offer some weight savings
▶ Cheaper
▶ Somewhat difficult mechanical manipulations

Aluminum Parameters

Electrical conductivity 36.9 ⋅ 106 S/m
Electrical resistivity 2.7 ⋅ 10−8 Ωm
Thermal conductivity 237W/mK

TEC (from 0◦ to 100◦ C) 23.5 ⋅ 10−6 K−1

Density 2.7 g/cm3

Melting point 660 ◦C
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INSULATING MATERIALS

Multiple influencing factors
▶ Operating voltage levels
▶ Over-voltage category
▶ Environment - IP class
▶ Temperature
▶ Moisture
▶ Cooling implications
▶ Ageing (self-healing?)
▶ Manufacturing complexity
▶ Partial Discharge
▶ BIL
▶ Cost

Dielectric properties
▶ Breakdown voltage (dielectric strength)
▶ Permittivity
▶ Conductivity
▶ Loss angle
▶ ...

Dielectric material Dielectric strength (kV/mm) Dielectric constant
Air 3 1
Oil 5 - 20 2 - 5

Mica tape 60 - 230 5 - 9
NOMEX 410 18 - 27 1.6 - 3.7

PTFE 60 - 170 2.1
Mylar 80 - 600 3.1
Paper 16 3.85
PE 35 - 50 2.3

XLPE 35 - 50 2.3
KAPTON 118 - 236 3.9

▲ Variety of choices available...
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INSULATING MATERIALS - AIR

Air
▶ Generally good electric insulator
▶ Available
▶ Add no mass to design
▶ Free
▶ Provides cooling
▶ Not sufficient alone
▶ Additional insulation (e.g. turn-to-turn)
▶ Generally, not the smallest design
▶ Dielectric strength variation - Pachen Law

VBD = Bpd

ln(Apd) − ln(ln(1 + 1
γse ))

▶ VBD breakdown voltage in volts
▶ p - pressure in pascals
▶ d - gap distance in meters
▶ γse - secondary electron emission coef.
▶ A, B - parameters experimentally determined

▲ Paschen curve for air
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INSULATING MATERIALS - OIL

Oil
▶ In use for a very long time
▶ Excellent insulating properties
▶ Good thermal conductivity
▶ High voltage transformers
▶ Insulate and cool at the same time
▶ Natural or forced convection
▶ Self-healing (PD)
▶ Environmental concerns

Challenges
▶ Not a power electronics technology
▶ Integration issues
▶ Thermal expansion
▶ Forced convection - need for pumo
▶ Flammability (mineral oils)
▶ Adds weight to the design
▶ Oil degradation

▲ left: Distribution oil transformer; right: New traction oil transformer; www.abb.com

▲ Oil insulated HFT PD testing [6]
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INSULATING MATERIALS - SOLIDS

Solid Insulation
▶ Dry Type designs
▶ Vacuum-Pressure Impregnation (VPI)
▶ Vacuum-immersion (resin-encapsulated)
▶ Vacuum-fill (solid-cast)
▶ Variety of resin mixtures available
▶ Need for specialized equipment

Challenges
▶ Direct impact on thermal design
▶ Adds weight to the design
▶ Ageaing uncertainty
▶ Mixed frequency stress
▶ Partial Discharge
▶ Mechanical strength - cracks
▶ CTI - Creepage distances

▲ left: www.sts-trafo.com; right: www.siemens.com

▲ Resin-Encapsulated transformer winding (www.schneider-electric.com)

▲ Solid-Cast transformer winding (www.schneider-electric.com)
IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 39 of 72



SUMMARY - TECHNOLOGIES AND MATERIALS

ABB: 350kW, 10kHz

IKERLAN: 400kW, 600Hz

STS: 450kW, 8kHz

ABB: 3x150kW, 1.8kHz

FAU-EN: 450kW, 5.6kHz

KTH: 170kW, 4kHz

BOMBARDIER: 350kW, 8kHz

CHALMERS: 50kW, 5kHz

ETHZ: 166kW, 20kHz

ALSTOM: 1500kW, 5kHz

ETHZ: 166kW, 20kHz

EPFL: 100kW, 10kHz

IKERLAN: 400kW, 6kHz

EPFL: 300kW, 2kHz

?
ACME: ???kW, ???kHz
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MFT MODELING
The underlying analytical descriptions?
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MODELING: RELEVANT EFFECTS

▶ Core Losses
▶ Winding Losses
▶ Leakage Inductance
▶ Magnetizing Inductance
▶ Thermal Model
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MODELING: CORE LOSSES

Different core loss models:
▶ Based on characterization of magnetic hysteresis [7], [8], [9]
▶ Based on loss separation [10]
▶ Time domain core loss model [11]
▶ Based on Steinmetz Equation (MSE [12], IGSE [13], iIGSE [14])

Original Steinmetz Equation:

Pc = Kf αB β
m

Characteristic Waveform:

DT/2
Vi(t)

B(t)

(1-D)T/2

Vdc
Bm

-Vdc

T

t

»»»»»» dB(t)dt
»»»»»» = ⎧⎪⎪⎨⎪⎪⎩ 0 for (1 − D)T

2ΔB
DT for DT

Improved Generalized Steinmetz Equation (IGSE): Application of IGSE on the Characteristic Waveform:

Pc =
1
T ∫ T0 ki

»»»»»»» dB(t)dt
»»»»»»»α(ΔB)β−αdt Ps = 2α+βkif

αB β
mD1−α

ki =
K(2π)α−1 ∫ 2π0 ∣cos(θ)∣α2β−αdθ ki =

K
2β−1πα−1 (0.2761 + 1.7061

α+1.354 )
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MODELING: WINDING LOSSES

Foil Winding Electromagnetic Field Analysis:
▶ Dowell foil winding loss model [15]
▶ Porosity factor validity analysis [16], [17]
▶ Round wire winding loss model [18]
▶ ...

Foil Winding Electromagnetic Field Analysis:
deq

Jz(x)

Hy,extHy,int

x

y

z

heq

Hy = Hext
sinh(αx)
sinh(αdeq) − Hint

sinh(α(x − deq))
sinh(αdeq)

Jz = αHext
cosh(αx)
sinh(αdeq) − αHint

cosh(α(x − deq))
sinh(αdeq)

α = 1 + j
δ ; δ =

√
ρ
πμf ;

Foil Winding Loss Calculation:

Pσ = 1
σ ∫ JJ∗dv; Pσ = I2 Lw

δσhw
m [ς1 + 2

3 (m2 − 1)ς2] ;
ς1 =

sinh(2Δ) + sin(2Δ)
cosh(2Δ) − cos(2Δ) ; ς2 =

sinh(Δ) − sin(Δ)
cosh(Δ) + cos(Δ) ; Δ =

deq
δ ;

Winding Equivalence:

hw

dw1 dw2

Hw

dd

d deq

heq

H

x

H

x

H

x

∆≤1
∆>1

∆≤1
∆>1

∆≤1
∆>1

SYMMETRY AXIS

di
1

i

Nsv

1 Nsh

deq = d
√π
4 ; di =

dw − Nshdeq
Nsh − 1 ; m = Nsh;

Nsh =
√

Ns
Kw

; Nsv =
√
KwNs;

Kw = hw
dw

Δ′ = √ηΔ; η = deq
Nsv
Hw

;
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MODELING: F-DEPENDENT LEAKAGE INDUCTANCE

Application of Dowell’s Model on the Equivalent Foil Winding:

Lσ = N2
1μ0

lw
Hw

[ dw1eqmw1
3 Fw1 +

dw2eqmw2
3 Fw2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Frequency dependent portion due to the magnetic
energy within the copper volume of the windings

+ ddÍÑÏ
Portion due to magnetic energy within
the inter-winding dielectric volume

+ dw1i
(mw1 − 1)(2mw1 − 1)

6mw1ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Portion due to magnetic energy within the
inter-layer dielectric of the primary winding

+ dw2i
(mw2 − 1)(2mw2 − 1)

6mw2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Portion due to magnetic energy within the

inter-layer dielectric of the secondary winding

]
where:

Fw = 1
2m2Δ

[(4m2 − 1)φ1 − 2(m2 − 1)φ2]
φ1 =

sinh(2Δ) − sin(2Δ)
cosh(2Δ) − cos(2Δ) ; φ2 =

sinh(Δ) − sin(Δ)
cosh(Δ) − cos(Δ) ;

Winding Equivalence:

hw

dw1 dw2

Hw

dd

d deq

heq

H

x

H

x

H

x

∆≤1
∆>1

∆≤1
∆>1

∆≤1
∆>1

SYMMETRY AXIS

di
1

i

Nsv

1 Nsh

Δ′ = √ηΔ; η = deq
Nsv
Hw

; m = Nsh; di =
dw − Nshdeq
Nsh − 1 ;

10.1

101

102

103

F R [p
.u

.]

m = 22
m = 27
m = 32
m = 37

∆ [p.u.]

L σ [µ
H

]

8

7.5

6.5

7

10.1

m = 22
m = 27
m = 32
m = 37

∆ [p.u.]
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MODELING: LEAKAGE INDUCTANCE (HYBRID MODEL)

Influence of Winding Geometry on Leakage inductance:

7

8

9

10

11

12

13

40 50 60 70 80 90 100
0

10

20

30

40

50

Leakage Inductance [μH]

FEM
Dowell Model

hw/Hw [%]

Estimation Error [%]

Dowell Model

Hybrid Leakage Inductance Model [19]:

▶ Rogowski correction factor:

heq =
hw
KR

KR = 1 − 1 − e−πhw/(dw1+dd+dw2)
πhw/(dw1 + dd + dw2)

▶ Correction of Dowell’s model (Hw → heq):

Lσ = N2
1μ0

lw
Hw

[ dw1eqmw1
3 Fw1 +

dw2eqmw2
3 Fw2 + dd

+ dw1i
(mw1 − 1)(2mw1 − 1)

6mw1
+ dw2i

(mw2 − 1)(2mw2 − 1)
6mw2

]
Δ′ = √ηΔ; η = deq

Nsv
Hw

;
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MODELING: LEAKAGE INDUCTANCE (HYBRID MODEL)

Influence of Winding Geometry on Leakage inductance:

7

8

9

10

11

12

13

40 50 60 70 80 90 100
0

10

20

30

40

50

Leakage Inductance [μH]

FEM

Hybrid Model
Dowell Model

hw/Hw [%]

Estimation Error [%]

Hybrid Model
Dowell Model

Hybrid Leakage Inductance Model [19]:

▶ Rogowski correction factor:

heq =
hw
KR

KR = 1 − 1 − e−πhw/(dw1+dd+dw2)
πhw/(dw1 + dd + dw2)

▶ Correction of Dowell’s model (Hw → heq):

Lσ = N2
1μ0

lw
heq

[ dw1eqmw1
3 Fw1 +

dw2eqmw2
3 Fw2 + dd

+ dw1i
(mw1 − 1)(2mw1 − 1)

6mw1
+ dw2i

(mw2 − 1)(2mw2 − 1)
6mw2

]
Δ′ = √ηΔ; η = deq

Nsv
heq

;
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MODELING: MAGNETIZING INDUCTANCE

Magnetic Circuit with an Air-Gap:

d

lm

NI

Hw

µr µ0

Magnetizing Inductance Calculation:

Lm = μ0N
2Ac

lm
μr + d

Air-Gap Calculation:

d = μ0
N2Ac
Lm

−
lm
μr

Fringing Effect:

L
′

m = LmFFR; FFR = 1 + d√
Ac

ln ( 2Hw
d ) ;

0 2 3 4 51
1

1.3

1.15

F FR
 [p

.u
.]

d [mm]

Ac

1

1.3

1.15

0 2 3 4 51

F FR
 [p

.u
.]

d [mm]

Hw
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MODELING: HEAT-TRANSFER MECHANISMS

Conduction Qh = kA ΔT
L Qh Qh

T1 T2

Top:
Qh

Ts

T∞ h =
k(0.65+0.36R1/6aL )2

L L = Area
Perimeter

Convection
over

Hot-Plate Qh = hA(Ts − T∞) Side: Qh

Ts T∞

h = k
L (0.825 + 0.387R1/6aL(1+(0.492/Pr)9/16)8/27 )

2

L = Height

Bottom:
Qh

Ts

T∞ h =
k0.27R1/4aL

L L = Area
Perimeter

Radiation Qh = hA(T1 − T2) Qh
T1 T2

h = εσ (T1+273.15)4−(T2+273.15)4(T1−T2)
where: RaL - Rayleigh number, Pr - Prandtl number, ε - Emissivity, σ - Stefan–Boltzmann constant [20], [21], [22]
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MODELING: THERMAL MODEL

Modes Of Heat Transfer:
▶ Conduction
▶ Convection
▶ Radiation

Planes of Symmetry:

Partitioning Into Zones:

Zone2
Outer Limb

Zone3
Bottom Yoke

Zone1
Top Yoke

Zone4
Center Limb

AXIS OF GEOMETRIC SYMMETRY

Zone9
(W2)

Zone6
(W1)

Top Cooler

Bottom Cooler

Detailed Thermal Network Model [23]:
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MODELING: THERMAL MODEL IMPLEMENTATION

Implementation of Thermal Network Model:
▶ Admittance Matrix:

Q(n) = Yth(nxn)ΔT(n)
▶ Rearranging the nodes:[ QA(m)

0(p) ] = [YthAA(mxm) YthAB(mxp)
YthBA(pxm) YthBB(pxp) ] [ ΔTA(m)

ΔTB(p) ]
▶ Kron reduction:

ΔTA(m) = (YthAA(mxm) − YthAB(mxp)Y−1thBB(pxp)YthBA(pxm) )−1 QA(m)
ΔTA(m) = Y−1Kron(mxm)QA(m)

▶ Kron matrix:
YKron(mxm) = YthAA(mxm) − YthAB(mxp)Y−1thBB(pxp)YthBA(pxm)

Analytical Model Results for the optimal MFT prototype:

T1 [oC] T2 [oC] T3 [oC] T4 [oC] T6 [oC] T9 [oC]
51.3 59.9 58.4 73.75 124.6 116.3

Detailed Thermal Network Model [23]:
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MODELING: THERMAL FEM ANALYSIS AND VERIFICATION

Results:
▶ Different cooling conditions inside and

outside of core window
▶ High thermal conduction equalizes the

temp along the conductors
▶ Full 3D model estimations correlate

well with analytical ones

Hot-Spot Temperature Estimation Comparison:

Hot-spot nodes T1 [oC] T2 [oC] T3 [oC] T4 [oC] T6 [oC] T9 [oC]
FEM 2D detail 1 / / / 70 120 106
FEM 2D detail 2 / / / 76 127 125
FEM 3D full / / / 75 122 113
Analytical 51.3 59.9 58.4 73.75 124.6 116.3

2D symmetry detail 1: 2D symmetry detail 2: Full 3D model:
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MFT DESIGN OPTIMIZATION
Brute force academic example? You may do it differently!
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SELECTED TECHNOLOGIES AND MATERIALS

Construction Choices:
▶ MFT Types

Shell Type Core Type C-Type Coaxial Type

▶ Winding Types

Litz Wire Foil Coaxial Hollow

Materials:

▶ Magnetic Materials
▶ Silicon Steel
▶ Amorphous
▶ Nanocrystalline
▶ Ferrites

▶ Windings
▶ Copper
▶ Aluminum

▶ Insulation
▶ Air
▶ Solid
▶ Oil

▶ Cooling
▶ Air natural/forced
▶ Oil natural/forced
▶ Water
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DESIGN OPTIMIZATION: ALGORITHM

ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match Lσ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, Lσ,ref  dw1c, dw2c, dw1w2

 Bsat, K, α, β, ρ, µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

▲ MFT design optimization algorithm

Algorithm Specifications:

▶ Used Software Platform:
▶ MathWorks MATLAB

▶ Used Hardware Platform:
▶ Laptop PC (i7-2.1GHz, 8GB RAM)

▶ Performance Measure:
▶ 59000 designs are generated in less

than 190 seconds

▶ Electrical Specifications:
Pn 100kW fsw 10kHz
V1 750V V2 750V
Lσ1,2 3.27μH Lm 1.8mH
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

150 100 / / /
Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

130 80 9 24 99.72

Number of Designs:
▶ More than 1.8 Million

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs

Power Density [kW/kg]
0 1 2 3 4 5 6 7 8 9

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs

▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

130 80 9 24 99.72

Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

135 80 10 24 99.6

Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

135 80 10 24 99.6

Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature

IEEE PELS Webinar June 12, 2019 Power Electronics Laboratory | 60 of 72



100kW, 10kHz MFT PROTOTYPE
Assembly, testing and design tool verification!
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MFT PROTOTYPE: DESIGN ASSEMBLY

Optimal MFT Design 3D-CAD Coil-Formers 3D-CAD Coil-Formers 3D-Print Primary Winding Secondary Winding

Core Assembly MFT Assembly 1 MFT Assembly 2 Litz-Wire Termination MFT Prototype
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CONVERTER READY MFT

MFT Prototype

▲ 100kW, 10kHz MFT including resonant capacitors

Prototype Specifications:

▶ Core:
▶ 12 stacks of 4 x SiFERRITE U-Cores (UU9316 - CF139)

▶ Windings:
▶ 8-Turns
▶ Square Litz Wire (8.7x8.7mm, 1400 strands, AWG 32,

43.69mm2)

▶ Coil-Formers:
▶ Additive manufacturing process (3-D printing)
▶ High strength thermally resistant plastic (PA2200)

▶ Resonant Capacitor Banks:
▶ (7x5μF + 1x2.5μF) AC film capacitors in parallel
▶ Custom designed copper bus-bars

▶ Electrical Ratings:
Pn 100kW V1 750V Lσ1,2 4.2μH
fsw 10kHz V2 750V Lm 750μH
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MEASUREMENTS: ELECTRIC PARAMETERS

Measurement of Electric Parameters:
▶ Network Analyzer Bode100
▶ Impedance Measurement
▶ Results at 10kHz: Lσ = 8.4μH, Lm = 750μH, Rσ = 0.2μΩ

LV Measurement Setup:

▲ Electrical measurements using Bode100

Series Resistance Measurement:
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Leakage Inductance Measurement:
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MEASUREMENTS: DIELECTRIC PARAMETERS

Dielectric Withstand Test:
▶ Partial Discharge measurement between all conductive parts
▶ High Voltage 50Hz source within a Faraday cage
▶ 10pC - between primary and secondary winding at 4kV

HV Measurement Setup:

▲ MFT during AC test

PD Test Settings:
▶ Front of the voltage profile: V = 6kV
▶ Flat back of the voltage profile: V = 4kV
▶ Peak PD at periods where ∣dV/dt∣ increases after the V peak
▶ PD is influenced by combination of V and ∣dV/dt∣

Measured PD at flat back V = 4kV:

▲ MPD600 obtained measurement results
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MEASUREMENTS: LOAD TEST

Test Setup Topology:
▶ B2B Resonant Converter
▶ Input voltage maintained by UDC
▶ Power circulation via IDC

Lσ1 Lσ2’Rσ1 Rσ2’

Lm

N1:N2

Cr1

MFT
Cr2

IDC

UDC 1 I1 I2
2

3

4

Test Setup:

▲ B2B MFT test setup

Measurement Results:
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▲ Experimental results: left: MFT primary waveforms; right: MFT secondary waveforms
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MEASUREMENTS: THERMAL RUN

Measurement Setup:

Thermal Run:
▶ No-Load Operation:
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▶ Full-Load Operation:
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▲ Thermal heat run results
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CONCLUSION

▶ Complex and challenging design
optimization

▶ Large number of available materials
▶ Customized designs prevail
▶ Research opportunities...

Components & Materials

Prototype

Design Selection

ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match L ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, L ,ref  dw1c, dw2c, dw1w2

 Bsat, K, , , , µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

Algorithm

3D-DesignTesting
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CONCLUSION

▶ Complex and challenging design
optimization

▶ Large number of available materials
▶ Customized designs prevail
▶ Research opportunities...
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Q AND A

Tutorial pdf can be downloaded from:
▶ https://pel.epfl.ch/publications_talks_en
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