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PEL RESEARCH FOCUS

MVDC Technologies and Systems High Power Electronics Components
> System Stability » Multilevel Converters » Semiconductor devices
» Protection Coordination » Solid State Transformers > Magnetics
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INTRODUCTION and MOTIVATION

Why high power medium frequency transformers are important technology?

1
T
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LINE FREQUENCY TRANSFORMERS

AR

IEC 60076-1 definition - Power Transformer: A static piece of appa-
ratus with two or more windings which, by electromagnetic induction,
transforms a system of alternating voltage and current into another sys-
tem of voltage and current usually of different values and at the same g
frequency for the purpose of transmitting electrical power. O
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It MIDDLE
or PITTS.

Line Frequency Transformers
» Around for more than 100 of years
» QOperated at low (grid) frequencies: 16.7Hz, 25Hz, 50/60Hz
» Standardized shapes and materials
» Cheap: ~ 10kUSD / MW
> Efficient: above 99 % for utility applications
» Simple and reliable device

What are the problems?
» Bulky - for certain applications
> Inefficient - for certain applications
» Uncontrollable power flow
> Fixed transformation (power, voltage, current, frequency)

4 Source: www.abb.com
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MEDIUM-HIGH FREQUENCY CONVERSION

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Switched Mode Power Supply (SMPS) Technologies

Medium or High frequency conversion is not a new thing!

Widely deployed in low voltage/power applications

High efficiency

Galvanic isolation at high frequency (standardized core sizes and shapes)
Compact size (e.g. laptop chargers)

Increased power density

Cost savings

VVVVVYYVYY

Could a Solid State Transformer provide that for a High Power Medium Voltage Applications?

Input Protection Input Filtering PFC & DC Link Conversion & Control Output Output
Filtering Protection

o RS

.
‘ w J
® [ Control Electronics  fuf

4 SMPS Technologies; Source: www.mouser.ch/new/tdk/epcos-smps/
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SOLID STATE TRANSFORMERS
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What is a Solid State Transformers?
» Not a transformer replacement?
» Should not be compared against 50/60 Hz transformer!
What is it?
» A converter
A converter with galvanic isolation
Can be designed for DC and AC (1-ph, 3-ph) grid
Can be used in LV, MV and HV applications
Can be made for AC-AC, DC-DC, AC-DC, DC-AC conversion
Has power electronics on each terminal
» Transformer frequency higher than 50/60 Hz

vVvVvyyvyy

Excellent tutorials are available at: https:/www.pes.ee.ethz.ch

xC AC

AC| MFT xC

4 Simplified SST concept

=PL  teee PELS Webinar
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Solid-State Transformers
Key Design Challenges, Applicability,
and Future Concepts

Johann W. Kolar, Jonas E. Huber

Power Electronics Laboratory



APPLICATIONS

AR

Railway Utility
» 1-phase AC grids [1] » 3-phase AC grids
» Few voltage levels: 15kV (16.7Hz) or 25kV (50Hz) » Many voltage levels: 3.3,4.16, 6, 11, 15, 20kV, ...
» Low frequency (historically): (15kV) 16.7Hz or (25kV) 50Hz » Grid frequency: 50Hz or 60Hz
» On-board installations - serious space constraints > Sub-station installations - relatively low space constraints
» Volume and Weight reduction - system savings » Volume and Weight reduction - not that relevant
» Reliahility - high number of devices? > Reliability - even more complex due to 3-phases
> Efficiency - easy to beat traction LFT > Efficiency - hard to beat distribution LFT
» Control - similar to existing solutions » Control - improved compared to existing solutions
> Cost? > Cost?

A ABB's PETT (Source: www.abb.com) 4 GE's SST [2] (Source: www.ge.com)
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APPLICATIONS (CONT.)

AR

MVDC Grids Marine LVDC / MVDC Distribution
» Increased interest into DC grids > System level benefits
» Need for high power DC-DC converters » Improved partial load efficiency
» (Galvanic isolation seen as necessary » No frequency synchronization of generators
» Bidirectional power flow > Integration of storage technologies
» High efficiency » Protection coordination

AC Grid

4 MVDC grids (Source: www.english.hhi.co kr) 4 MVDC marine distribution (Source: www.abb.com)
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RAILWAY ON-BOARD ELECTRICAL SYSTEM

AR

Railway on-board transformers:
» Step-down voltage to low levels
> Already optimized for low weight and volume
» Reduced efficiency as a price to pay
» Form factor depends on the mounting method
» Predominantly oil cooled / insulated
> Air cooled / solid insulation available as well

Few things to consider:
» 50Hz transformer is already fairly small
» 16.7Hz transformer is relatively bulky and inefficient
» Single galvanic isolation - insulation coordination
» Often, new train design defines the available space
» Design customization is common

» Power levels are modest and below 15MW
» Different from the utility transformers

A Various realization of traction transformers, Source: www.abb.com
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RAILWAY SST

What traction SST offers in perspective:

» Improved efficiency (specially for 15kV, 16.7Hz systems) F

» Weight reduction - less raw materials

» Volume reduction - questionable due to insulation coordination s , s s

»> Control features [ - 11 _@
Why is traction SST not out yet? . =

> Conservative traction market

> Lack of business case -7

» Reliability concerns

» Very hard to compete in 25kV, 50Hz grids Z

» Not a major performance increase

» Increased cost compared to state-of-the-art solutions : , . .
Prototypes Z

> ALSTOM ZHZI IZHZ @

> ABB

> BOMBARDIER
> .

2

4 On-board traction system evolution with SST [1]
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ABB 1. 2MW PETT

Characteristics

Catenery PETT

| T =

e neg
@ RCE E7+ udc_p_8
Ly —

LEVEL7
TRT @—» Ude_np.7 AUX supply
Piv I 15KVA. 3x400V @ 50HZ
LEVELE 5KVA 36V dc
e o 16
el I

LEVELS
s

input-series output-parallel

LEVELS
RS

> 1-Phase MVAC to MVDC e T E— -
> Power: 1.2MVA v [Line side S 4%, 5. S % Motor side By
> Input AC voltage: 15kV, 16.7Hz , T“

» Output DC voltage: 1500 V f hen

» 9 cascaded stages (n + 1) “\F;; ‘ o™ " e
>

>

double stage conversion
99 Semiconductor Devices
» HV PEBB: 9 x (6 x 6.5kV IGBT)
> LV PEBB: 9 x (2x3.3kV IGBT)
» Bypass: 9 x (2 x 6.5kV IGBT)
» Decoupling: 9 x (1 x 3.3kV Diode)
9 MFTs
» Power: 150kW
» Frequency: 1.75kHz
» Core: Nanocrystalline
» Winding: Litz
» Insulation / Cooling: oil
=PL  teee PELS Webinar Power Electronics Laboratory
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LEVEL4
TRe

LEVEL3
RS

LEVEL2
TR

A ABBPETT scheme [3], [4]



ABB - 1.2MW PETT DESIGN

AR

Retrofitted to shunting locomotive
Replaced LFT + SCR rectifier
Propulsion motor - 450kW

v

>
» 12 months of field service
» No power electronic failures
» Efficiency around 96%
Weight: ~ 4.5t
Technologies
» Standard 3.3kV and 6.5kV IGBTs
» De-ionized water cooling
» il cooling/insulation for MFTs
» n+ 1 redundancy
» |GBTs used for bypass switch
Displayed at:

v

» Swiss Museum of Transport
> https://www.verkehrshaus.ch T T Oreimsving et

——  Operating with 8 levels

0 200 400 600 800 1000
Output Power [kW]

A ABBPETT prototype [3], [4]

E PFL |EEE PELS Webinar June 19 Power Electronics Laboratory | 12 0f 72



UTILITY SST

AR

Quite different from railways
» 50/ 60 Hz grids
» Higher powers: MW, GW
» Much higher voltage: MV, HV
» High efficiency needed (> 99 %)
» High reliability needed
» High availability needed
» Weight may not be important
» Volume may not be important

AC Grid

2208V
Bi-pale

MVDC

Challenges
» Business case
» Cost
> Efficiency
> Reliahility
> Availability

Design of a converter is the least problem! 4 Possible future grid connections (www.english.hhi.co.kr)

b
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SUMMARY - SOLID STATE TRANSFORMER

SST Pros

Catenery PETT

Ude_nogrviLT =7

MFT design optimization

» Flexible grid interface Pantogaph > 1PV 10ZITE | Pover Klectories TR TaNSEMe! e o
» AC-DC, AC-AC, DC-DC, DC-AC ol Line side ‘%E:; w “L:;C-:my Reorentwaes  Motor side S
» Galvanic isolation ) ! R 7\‘ ‘
» Advanced control features s g m
SST Cons = Py
> Compromised efficiency b =L
» Increased complexity :: B T
» Higher cost ) R
> Reliability T
i I
» Scalability o, 1
SST Future Research LEVZ::! @:*
> System level optimization - G g
> Efficiency improvements mE g e
» Insulation coordination
» Protection o s
>
>

A ABBPETT scheme: Not that simple...
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MEDIUM FREQUENCY TRANSFORMERS

What are the design challenges?

1
T
i
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MOTIVATION

AR

> Lower Volume - easier system integration

» Lower Weight - especially important for onboard traction applications
> Less Material - lower investment cost, lower environmental footprint
» Improved Efficiency - application specific case

» Modularity - fractional power processing

, power
size l

|
_ Pt
Ap = KeKyBmJF

/LN

waveform insulation material cooling frequency

A Approximate transformer scaling relation A Example: frequency impact on the transformer size (Prof. Akagi)

Three-phase 200-V, 5-kVA,

50-Hz Transformer

Single-phase, 250-V, 5-kVA,

20-kHz Transformer
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WHICH ONE IS THE BEST MFT?

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

L)

15 kV terminals

k Gores (snapnass mtr

ABB: 350kW, 10kHz

N T Y

FAU-EN: 450kW, 5.6kHz ~ CHALMERS: 50kW, 5kHz EPFL: 300kW, 2kHz

?

STS: 450kW, 8kHz KTH: 170kW, 4kHz ETHZ: 166kW, 20kHz EPFL: 100kW, 10kHz ACME: 777kW, ?27kHz
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DESIGN CONSTRAINTS

AR

Electrical

>

VVYV VYV VVVVVYVyYVYyVYVYY

Inductance

B < Bgat

Turns ratio

Duty cycle
Frequency

DCR < DCRpax

J < Imax

Leakage inductance
Self capacitance
Self resonance

Skin and Proximity effects
EMI, EMC

Shielding

Efficiency

Safety

Isolation

Mechanical

v

Awdg > Awdg—min
Size (L, W, H)
Volume

Surface area
Weight

Safety

Creepage distances
Clearance distances
Insulation class
Materials

VV VYV VVYVYVYYVYY

Environmental

Source: George Slama, Wiirth Elektronik, APEC2019 Educational Seminar

=PL  teee PELS Webinar

Thermal
> T < Thax
» Pudg < Pwdg-max
» Peore < Peore-max
» Environmental

Power Electronics Laboratory



SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density
» Under-utilization of the conductor material
> Localized H-field distortion within the conductor volume

» Impact on conduction losses
» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

—— 0.1[HZ (A=001)

3J

* A the penetration ratio

4 L L L L L L L L

4 Generic foil winding geometry 4 Hand J distribution within the core window area
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SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density
» Under-utilization of the conductor material
> Localized H-field distortion within the conductor volume

» Impact on conduction losses
» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

] —— 0.1[Hz] (4=001)
J, ——100[HZ] (A=0.3)
©® :

* A the penetration ratio

4 L L ' ' L |

4 Generic foil winding geometry 4 Hand J distribution within the core window area
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SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density
» Under-utilization of the conductor material
> Localized H-field distortion within the conductor volume

» Impact on conduction losses
» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

—— 0.1[HZ] (A=001)

J, J, J, 3J, ——100[HZ] (A=0.3) ! = L — -
OHOTO® 1000 (2] (A =1) -— —
2f F 1F 1 : 1
*A-th i T ’7 - - H
e penetration ratio £
£ 5f v 1
3 .
D 4+ ~ 4
6f 4
4 Generic foil winding geometry 4 Hand J distribution within the core window area
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SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density

» Under-utilization of the conductor material

» Localized H-field distortion within the conductor volume
» Impact on conduction losses

» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

] —— 0.1[Hz] (4=001)
J, ——100[HZ] (A=0.3)
©) (9 1000 [Hz] (4 =1) " — - ; " '
—— 5000 [Hz] (A =2.15) : i i :

* A the penetration ratio

J [A/mm?]

4 Generic foil winding geometry 4 Hand J distribution within the core window area
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SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density

» Under-utilization of the conductor material

» Localized H-field distortion within the conductor volume
» Impact on conduction losses

» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

] —— 0.7[HZ] (4=001)
J ——100[Hz] (A=0.3)
© & 1000 [Hz] (A=1) - ————
——— 5000 [Hz] (A =2.15) ! L L
—— 10000 [HZ] (A =3)
* A the penetration ratio

J [A/mm?]

4 Generic foil winding geometry 4 Hand J distribution within the core window area

E PFL IEEE PELS Webinar June 12,2019 Power Electronics Laboratory | 20 of 72



SKIN AND PROXIMITY EFFECT

AR

Effects

» Non-uniform current density
» Under-utilization of the conductor material
> Localized H-field distortion within the conductor volume

» Impact on conduction losses
» Impact on leakage inductance

Example of the Foil Winding MFT Geometry Cross-Section

W J, J, 3J
OO &® —— 10000 [HZ] (Cu)
—— 70000 [HZ] (A))
}E
5
N
4 Generic foil winding geometry A Hand J distribution within the core window area
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EDGE EFFECT

AR

MFT with fully filled core window height MFT with 80% filled core window height

» Only H, component exists » Both Hy and H, components exists
» Hfield is tangential to the foil surface » Hfield is not tangential to the foil surface

[y
P ] ihhe
1. ve3sE-002 156926002 & i 3 iy
1. 29545002 1. 9405002 =P i 1
| e | B

3. 230E-025
2. 15036080
10735025
2. 10326010

3.52138-003
2.41u2e-203
pp=arae
2.o125e-220

A Fully utilized core window height A Partially utilized core window height
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THERMAL COORDINATION

AR

MFT Losses:

» Winding Losses > Heat transfer

» Core Losses Qn = hAAT
» Temperature gradient
Heat Transfer Mechanisms: AT Qn
» Conduction T hA
. ; » Size decrease (A \) implies AT ~
Q; /

» Convection

» Radiation
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THERMAL COORDINATION (CONT.)

AR

Core Materials:

» Thermal conductivity varies from
4Wm/K (ferrites) to 8.35Wm/K
(Nanocrystalline)

> Isotropic thermal conductivity (e.g.
ferrites)

> Anisotropic thermal conductivity
(laminated cores e.g.
Nanocrystalline)

4 Ferrite core - Isotropic

4 Metglas core - Anisotropic

=PL  teee PELS Webinar

Windings:

Winding insulation and cooling:

» Much higher insulation level
requirement than within the winding
insulation

» Copper and Aluminum conductors
combined with insulation

» Low Ry, along the conductor path due
low Ry, of Cuand Al » Good insulators have very low

thermal conductivity (solid or fluid)

» High Ry, in radial direction due to
layers of insulation with high Ry,

» Fluid based insulation provides much
better cooling due to convection

INSULATION
AREA

a4 MFT cross section area

June 12,2019 Power Electronics Laboratory | 23 of 72



NONSINUSOIDAL VAVEFORMS

: > V7 2 square

é? 7l

Series Resonant Converter:

MFT

2 =02

& Cily Ry RyL
},

» | non-sinusoidal

I
I

v,
? > Vy 5 square

IEEE PELS Webinar

» | sinusoidal

10! 5 10 KHz  10°

A AC core losses

Winding Losses:
%

hll.f

A Harmonics

>

AR

Data-sheet data is for sinusoidal
excitation

Derived Steinmetz coefficients describe
sinusoidal excitation losses

Core is excited with square pulses
Losses are effected
Generalization of Steinmetz model

Current waveform impacts the winding
losses

Copper is a linear material

Losses can be evaluated in harmonic
basis

Current harmonic content must be
evaluated

Total losses are the sum of the individual
harmonic losses

Power Electronics Laboratory



INSULATION COORDINATION

AR

MFT Geometry Crossection: HF Winding Model: MFT Electric Parameters:
> Parasitic capacitance cannot be neglected for HF
» Capacitances exist between turns, windings and core
> For pulse excitation voltage distribution is nonlinear
> Higher voltage gradient at the winding input than expected
_|_—| l— » Damped oscillatory transient due to turn inductance
- » Higher max voltage than expected during transient
> Need for overall insulation reinforcement
» Turn to turn insulation must especially be increased

A BT
oax X Voltage Distribution
_|__| L -—-Initial

p *?_teady-state
/- "~ —--Transient max ;
/ < sinh(ax
vk Vix) = vSinn(@)
\ sinh(ah)

AXIS OF GEOMETRIC SYMMETRY /i
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ACCURATE MFT ELECTRIC PARAMETER CONTROL

I
L\

%
— 7 > V7 2 square

g

» | non-sinusoidal

2 > Vy 5 square

\]

» | sinusoidal

IEEE PELS Webinar

DAB
> Leakage Inductance
» Controllability of the power flow
» Higher than Lg.min

Voe1Voeo @m/n(ﬂ Pmin)
2P, outl fs

» Magnetizing Inductance is normally high

LU min =

SRC
» |eakage inductance is part of resonant circuit
» Must match the reference:
1
» Magnetizing inductance is normally high
» Reduced in case of LLC
P Limits the magnetization current to the reference I, e
P Limits the switch-off current and losses

L= _"Vbeo
m 4fs/m.ref

» | ref has to be sufficiently high to maintain ZVS

Lo.ref =

Power Electronics Laboratory



MFT CHALLENGES - SUMMARY

AR

> Skin and proximity effect losses: impact on efficiency and heating

» Cooling: increase of power density = decrease in size = less cooling surface = higher Ry, = higher temperature gradients
> Non-sinusoidal excitation: impact on core and winding losses and insulation

» Insulation: coordination and testing taking into account high % characteristic for power electronic converters

> Accurate electric parameter control: especially in case of resonant converter applications

Lo7 R(ﬂ ROZ/ LUQ’ V/ —

—El-{ ——{ /

| S
// /o t
Vo
% L R, v, T —
t
L[

a |eft: Transformer equivalent scheme; middle: typical waveforms for resonant operation; right: MFT heat evacuation issues
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MATERIALS

What design choices are available?
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DESIGNS, TECHNOLOGIES, MATERIALS, ...

AR

Construction Choices: Materials:
» MFT Types
» Magnetic Materials

> Silicon Steel
> Amorphous
> Nanocrystalline
> Ferrites
Py
P » Windings

> Copper
Shell Type Core Type C-Type Coaxial Type > Aluminum

» Winding Types » Insulation
> Air

> Solid
> 0l
Litz Wire Foil Coaxial Hollow

» Cooling
> Air natural/forced
> Qil natural/forced
> Water
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MAGNETIC MATERIALS - SILICON STEEL
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Ferromagnetic - Silicon Steel
» Iron based alloy of Silicon provided as isolated laminations
» Mostly used for line frequency transformers
Advantages
» Wide initial permeability range
» High saturation flux density
» High Curie-temperature
> Relatively low cost
» Mechanically robust

» Various core shapes available (easy to form) 25Hz, B 055 T 500Hz, B = 0.55T
Disadvantages o 7
» High hysteresis loss (irreversible magnetisation) : / / 7
» High eddy current loss (high electric conductivity) o / l/ . // //
> Acoustic noise (magnetostriction) ° /I // B // //
} / / : /
Saturation B ‘ Init. permeability Core loss (10 kHz, 0.5T) ‘ Conductivity :
[ 0.8~227 | 0.6-10010° | 50 ~ 250 W/kg [ 20 -510sm | q il 1= 1l

4 Example: Measured B-H curve of M330-35 laminate
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MAGNETIC MATERIALS - AMORPHOUS ALLOY

AR

Ferromagnetic - Amorphous Alloy
» Iron based alloy of Silicon as thin tape without crystal structure

» For both line frequency and switching frequency applications
Advantages

» High saturation flux density °
» Low hysteresis loss
» Low eddy current loss (low electric conductivity) ‘

» High Curie-temperature
» Mechanically robust

Disadvantages 1kHz,B=0.26 T 1kHz,B=09T
0
> Relatively narrow initial permeability range g%
9 0.
» Very high acoustic noise (magnetostriction) 8 o
g o
» Limited core shapes available (difficult to form) 8% o
: ) o 2 oo
> Relatively expensive 3% K
o -
s o
l Saturation B [ Init. permeability [ Core loss (10kHz, 0.5T) [ Conductivity ] F °
[ 05~1.67 [ 08107~5010° | 2~ 20 W/kg [ <50%sm | E o

A Example: Measured B-H curve of Metglas 2605SA
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MAGNETIC MATERIALS - NANOCRYSTALLINE ALLOY

AR

Ferromagnetic - Nanocrystalline Alloy

» Iron based alloy of silicon as thin tape with minor portion of
crystal structure

» For both line frequency and switching frequency applications
Advantages

> Relatively narrow initial permeability range

» High saturation flux density

> Low hysteresis loss

Very brittle —

» High Curie-temperature
» Low acoustic noise

D‘ d t o 1kHz, B=0.45T . 1kHz,B=1.1T
isadvantages o : —
» Eddy current loss (compensated thanks to the thin tape) : /
» Mechanically fragile 5 o
> Limited core shapes available (difficult to form) o °
> Relatively expensive 3 p
o 7 ) /
[ ion B [ Init. permeability [ Core loss (10kHz, 0.5T) [ Conductivity ] b a l -
[ 1127 [ 05.10"~10010° | < 50 Wikg 30 swsm | 7 ° &7 o

A Example: Measured B-H curve of VITROPERM 500F
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MAGNETIC MATERIALS - FERRITES

AR

Ferrimagnetic - Ferrites

» Ceramic material made from powder of different oxides and

carbons

» For both line frequency and switching frequency applications
Advantages

> Relatively narrow initial permeability range

> Low hysteresis loss

» Very low eddy current loss

» Low acoustic noise

> Relatively low cost
) ) 1kHz, B=0.2T . 1kHz, B=04T
» Various core shapes available -
o
Disadvantages a
> Low saturation flux density ; .
» Narrow range of initial permeability mjggo - 7
. . . . . -00e -
» Magnetic properties deteriorate with temperature increase 5% o /
> Mechanically fragile b -
i o
[ Saturation B [ Init. permeability [ Core loss (10kHz, 0.5T) [ Conductivity ] D ‘ s oo
[ 03~05T [ 01-107~2010° | 5~ 100 W/kg [ <1-107s/m | a Example: Measured B-H curve of Ferrite N87
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MAGNETIC MATERIALS - CHARACTERIZATION

AR

Material characterisation

» Data sheet are often not sufficient
» Power electronics = non-sinusoidal waveforms

Calorimetric approach

Voltage
measure

» Core sample placed in thermally isolated chamber
» Measure temperature difference between the inlet- and outlet coolant
» Time consuming and difficult to exclude winding loss
Electrical approach
» Two windings installed on the sample core
» RF Power amplifier provides sinusoidal on the primary winding
» Primary winding current sensing using shunt resistor, to obtain H
» Secondary winding voltage sensing using resistor divider, integrated to get B
» Control unit for reference signal generation and data acquisition

o -*:,lj—- E

4 Commercial B-H Analyser; Source: www.iti.iwatsu.co.jp/en A EPFL characterisation setup for magnetic materials
EPFL \EEE PELS Webinar e )19 Power Electronics Laboratory | 34 of 72



WINDING MATERIALS

Copper winding Aluminium winding
> Flat wire - low frequency, easy to use > Flat wire
> Litz wire - high frequency, limited bending > Foil - skin effect differences compared to Copper
» Foil - provide flat windings » Hollow tubes
» Hollow tubes - provide cooling efficiency > Difficult to interface with copper
» Better conductor > Offer some weight savings
» More expensive » Cheaper
» Better mechanical properties » Somewhat difficult mechanical manipulations

Copper Parameters

Aluminum Parameters

Electrical conductivity | 58.5- 10° S/m Electrical conductivity 36.9-10° S/m
Electrical resistivity 1.7-10 %am Electrical resistivity 2.7-10%am
Thermal conductivity 401 W/mK Thermal conductivity 237 W/mK
TEC (from 0° to 100°C) | 17-10 K TEC (from 0° to 100° C) | 23.5-10° K
Density 8.9 g/cm3 Density 2.7 g/cm3
Melting point 1083°C Melting point 660 °C

L 1E€EPELS Webinar
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INSULATING MATERIALS

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Multiple influencing factors Dielectric material | Dielectric strength (kV/mm) | Dielectric constant
» Operating voltage levels Air 3 1
» Over-voltage category Qil 5-20 2-5
» Environment - IP class Mica tape 60-230 5-9
» Temperature NOMEX 410 18-27 1.6-37
» Moisture PTFE 60-170 2.1
» Cooling implications Mylar 80- 600 3.1
> Ageing (self-healing?) Paper 16 3.85
» Manufacturing complexity PE 35-50 23
» Partial Discharge XLPE 35-50 23
> BIL KAPTON 118-236 3.9
> Cost

Dielectric properties o
» Breakdown voltage (dielectric strength) / -
» Permittivity ' . e
> Conductivity —P/ 2 ‘ i E
> Lossangle L | = |
>

=Pr |_ IEEE PELS Webinar

A Variety of choices available...
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INSULATING MATERIALS - AIR

Air Breakdown Voltage vs. Pressure x Gap

> Generally good electric insulator (Air)
> Available 100000
» Add no mass to design %
> Free >

@ 10000
> Provides cooling g
> Not sufficient alone % G
» Additional insulation (e.g. turn-to-turn) _§ 1000
» Generally, not the smallest design E 1
> Dielectric strength variation - Pachen Law a i

1.00E-02 1.00E-01 1.00EH00  1.00E+01 T00EHIZ2  1.00E+03  1.00E+04
Vep = de : Pressure x Gap - Torr Inches
In{Apd) — m(”’“ + E)) A Paschen curve for air
» Vpgp breakdown voltage in volts
» p-pressure in pascals
» d-gap distance in meters
» v, - secondary electron emission coef.
> A, B - parameters experimentally determined
=PFL e PELS Webinar Power Electronics Laboratory



INSULATING MATERIALS - OIL

AR

il

In use for a very long time
Excellent insulating properties
Good thermal conductivity

High voltage transformers
Insulate and cool at the same time
Natural or forced convection
Self-healing (PD)

Environmental concerns

vVVvVVvVYyVvVVYVYY

Challenges
Not a power electronics technology

v

Integration issues

Thermal expansion

Forced convection - need for pumo
Flammability (mineral oils)

Adds weight to the design

0il degradation

vVvVvyyVvyTyvyy

=PL  teee PELS Webinar

Coupling capacitor
2nF

HV electrode
with double toroid
finish

Shorted and
grounded primary{"

4 Qilinsulated HFT PD testing [6]
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INSULATING MATERIALS - SOLIDS

AR

Solid Insulation
» Dry Type designs
» Vacuum-Pressure Impregnation (VPI)
» Vacuum-immersion (resin-encapsulated)
» Vacuum-fill (solid-cast)
» Variety of resin mixtures available
> Need for specialized equipment

Challenges
» Direct impact on thermal design
> Adds weight to the design
> Ageaing uncertainty
> Mixed frequency stress
» Partial Discharge

» Mechanical strength - cracks
» CTI - Creepage distances

4 Solid-Cast transformer winding (www.schneider-electric.com)
E P F L \EEE PELS Webinar Power Electronics Laboratory




SUMMARY - TECHNOLOGIES AND MATERIALS

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

15 kV terminals

Cores (mrpnaus matera

ABB: 350kW, 10kHz

—— T e

.

BOMBARDIER: 350kW, 8kHz ALSTOM: 1500kW, 5kHz ~ IKERLAN: 400kW, 6kHz

N —
j A

EPFL: 300kW, 2kHz

...................................

?

[ ]
STS: 450kW, 8kHz KTH: 170kW, 4kHz ETHZ: 166kW, 20kHz EPFL: 100kW, 10kHz ACME: 777kW, ?27kHz
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MFT MODELING

The underlying analytical descriptions?

1
o
i
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MODELING: RELEVANT EFFECTS

» Core Losses

» Winding Losses

> |eakage Inductance

» Magnetizing Inductance
» Thermal Model

E P F L \EEE PELS Webinar Power Electronics Laboratory



MODELING: CORE LOSSES

////////////////////////////////////////////////////////////////////////////

Different core loss models:
» Based on characterization of magnetic hysteresis [7], [8], [9]
» Based on loss separation [10]
» Time domain core loss model [11]
» Based on Steinmetz Equation (MSE [12], IGSE [13], iIGSE [14])

Original Steinmetz Equation:
P, = Kf B,
Improved Generalized Steinmetz Equation (IGSE):
Pe= 1k ‘ (ABYF Ut

B K
(2m)e= /2" cos()|28-de

=PL  teee PELS Webinar

///////////

Ve B(t,
5 V)

v

DT/?\ 1-D)7/2

dt
DT

0 for(1-D)T
288 o pr

Application of IGSE on the Characteristic Waveform:

Py = 24P 8.Lp!

K

-a

25 Tne=1(0.2761 +

1.7061 )
a+1.354

Power Electronics Laboratory



MODELING: WINDING LOSSES

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Foil Winding Electromagnetic Field Analysis: Winding Equivalence:
» Dowell foil winding loss model [15] Sl SHMMETAY A0S
» Porosity factor validity analysis [16], [17]

» Round wire winding loss model [18]
| S

Foil Winding Electromagnetic Field Analysis:
Geg, sinh(ax) sinh(a(x — deg))

w = Heantad,y) ~ Mt Sinh(ads,)

cosh(ax) cosh(a(x — deg))

‘ Jz = tHex sinh(adeg) Qe sinh(adeq)

“"y
Y - _ 1t _ [P
2—” i N 4

Foil Winding Loss Calculation:
P, = %/JJ*dv; P = IZL—WIT{Q + %(m2 - 1)@2}

6oh,,
_sinh(24) + sin(24) _ sinh(A) =sin(d) ., _ Ueg
1= Cosh(28) —cos(2d)’ 2~ cosh(B) + cos(d)’ T 6

E PFL |EEE PELS Webinar June 12,2019 Power Electronics Laboratory



MODELING: F-DEPENDENT LEAKAGE INDUCTANCE

AR

Application of Dowell's Model on the Equivalent Foil Winding: Winding Equivalence:
| d, d,d, | SYMMETRY AXIS
2y Ay egMw duzeqMu2 ! i v
L0=N1,u07 3 Fu1 + 3 Fuw2
w

Frequency dependent portion due to the magnetic

energy within the copper volume of the windings
+ dd

.’
Portion due to magnetic energy within
the inter-winding dielectric volume
(M1 = 1)(2mu1 = 1)

+ Ay 6m,
w

Portion due to magnetic energy within the
inter-layer dielectric of the primary winding

. g, meDEme )

6mW2
Portion due to magnetic energy within the
inter-layer dielectric of the secondary winding s
Where: .I 2 2 " —m=22 7.5 —m=22
Fu = 5oy (4" = 11 =2’ = 1) L e e
[ =7 —m=37
_sinh(2A) = sin(24) sinh(A) = sin(A) 10/ o5
917 Cosh(2b) —cos2a)’ 2~ Gosh(A) —cos(d)’
0.1 1 0.1 1
Alpul Aloul

Power Electronics Laboratory | 45 of 72
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MODELING: LEAKAGE INDUCTANCE (HYBRID MODEL)

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

ng Geometry on Leakage inductance: Hybrid Leakage Inductance Model [19]:

A L. AR
H U » Rogowski correction factor:
b 4 b4 L} b o hy
eq KR
Leakage /{zductance [/.'/H] ' ' ' 1 e-ﬂhw/(dvm +dg+yg)
o Kp=1- /—7————
12y = boelivods | mhy/(dw1 + g + duo)
1t 1
0} 1 )
ol i » Correction of Dowell's model (Hy, — heg):
8t i
1| dyregm dyegM
S amp— e Mo Yeimemem e o Ly = N%NOHl Wwe% wi Fun + erg w2 Fuy +dg
50 Estimation Error [%] v
. —-%-— Dowell Model (mm - 1)<2mw1 - 1) (mWZ - 1)(2mw2 - 1)
Lo~ 1 + dyj + dwoi
40 \_\x\\ dw1l 6mw1 de« 6mw2
30t e 1
‘X\_\ i N
207 Sl 1 A =\nb;  n= dequs%
~.o w
10 e TN 1
0 ‘ ‘ B I
40 50 60 70 80 90 700
h/H, 14
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MODELING: LEAKAGE INDUCTANCE (HYBRID MODEL)

AR

Influence of Winding Geometry on Leakage inductance: Hybrid Leakage Inductance Model [19]:
=
A R.E R . , .
]D[ ]D[ H » Rogowski correction factor:
= ‘
- - ~ [ hw
heq = Kip
Leakage Inductance [uH] 1- e—nhw/(dM +dy+dwp)
: : : : Ke=1-
N %~ boweliocel | Mty /(D1 +dg + da)
1 >3 — & — Hybrid Model
0f TN 1 )
ol | » Correction of Dowell's model (Hy, — heg):
8 - == ~— .
=g . _ I, | dwiegm dyegm
fo Smv— e VS VS RV, = LG — N%ljohl wWeg wi FW‘\ + erg w2 FW2 + dd
50 Estimation Error [%] 4
(*-\_\ —-%-— Dowell Model +d v(mWW - 1)(2mw1 - 1) +d _(mWZ - 1)(2mw2 - 1)
40 ¢ \\'X\\ — © — Hybrid Model wili 6mw‘] w2i 6mw2
30 =~ 4
‘X\\- i N
207r S, ] A =\nb;  n= deths%
- eq
10F ‘-x\_\_ 1
0 Il N Sy e - et
40 50 60 70 80 90 100
h,/H,, %]
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MODELING: MAGNETIZING INDUCTANCE

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Magnetizing Inductance Calculation:

HoN"Ag
Lm - /7
Im
T d
| Air-Gap Calculation:
: ; 2
3 | _ NA
d= Fo Lm Hr
——1O Fringing Effect:
G//;D LM M 9ing ' d 2H
A0 Ly = LmFrr; Frr=1+ */”(J)i
G%D NI 4d JA»C ‘
=P : ’
| ~ Iy
E 115 % //// E 1.15
W 7 = -
! 7 3 7 5 ! 1 2 §
dlmm] d[mm]
=PL  teee PELS Webinar
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MODELING: HEAT-TRANSFER MECHANISMS

AR

; — kA AT n 18
Conduction ~ Qy = kA5 o'oh
Q, k(0.65+0.36Ry/%)?
. _ . . _ A
Top: T h=—7—"— L = seiveer
Convection
over 1/6
) _ ~ o Q _k _ 038Ry = Hei
Hot-Plate  Qp = hA(Ts — Too)  Side: > h=f (0.825 + o s2re P L = Height
e k0.27R)/* A
Bottom: T h=—7" L= raimewr
Q,
X424 q
o B Yol v Y, _ o (114273.15) ~(1,+273.15)*
Radiation @y = hA(Ty — Ty) ?.8‘;% h=eo T

where: Rg; - Rayleigh number, Py - Prandtl number, & - Emissivity, o - Stefan-Boltzmann constant [20], [21], [22]

cPFL

IEEE PELS Webinar
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MODELING: THERMAL MODEL

AR

Modes Of Heat Transfer: Partitioning Into Zones: Detailed Thermal Network Model [23]:
» Conduction

Rea,ov3

» Convection
» Radiation

Top Cooler

Zonel
Top Yoke

Ted,s,out

Planes of Symmetry:

Zone2
Outer Limb

Recsyb

Zoned
Rwi
Center Limb o
Twl,sc
Zone3
Rwla,cv

Bottom Yoke
m I I I I Bottom Cooler
1
i
1
i
i
i
i
]

AXIS OF GEOMETRIC SYMMETRY /|
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MODELING: THERMAL MODEL

AR

ning Into Zones: Detailed Thermal Network Model [23]:

Modes Of Heat Transfer: Par
» Conduction R

» Convection
» Radiation

Raa,r3 CORE

Rec syt

. T

— —
Rechl Reh2
Rec v @ P Recv3 I
Pov2
© ©
= Povl

Ta3

Top Cooler

Zonel
Top Yoke

Planes of Symmetry:

Zone2
Outer Limb

Zonea
Center Limb Rw2cr I I
SECONDARY

Tw2sc Ru2.cl Tw2hs  Rwacd| Tozswd [ T, sc
— — — —

Zone3

Bottom Yoke
m I I I I Bottom Cooler
1
i
1
i
i
i
i
]

AXIS OF GEOMETRIC SYMMETRY /|
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MODELING: THERMAL MODEL

AR

Modes Of Heat Transfer: Partitioning Into Zones:
» Conduction
» Convection
» Radiation

Top Cooler

Zonel
Top Yoke

Planes of Symmetry:

Zone2
Outer Limb

Zone4
Center Limb:

SECONDARY

Rw2,cdl  TW2.hs  Rw2,cd2| Tw2 swi
— —

Zone3

Bottom Yoke
m I I I I Bottom Cooler
1
i
1
i
i
i
i
]

AXIS OF GEOMETRIC SYMMETRY /|

Rw2a,
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MODELING: THERMAL MODEL

AR

Modes Of Heat Transfer: Partitioning Into Zones:
» Conduction
» Convection
» Radiation

Top Cooler

Zonel
Top Yoke

Planes of Symmetry:

Zone2
Outer Limb

Zone4
Center Limb:

Zone3

Bottom Yoke
m I I I I Bottom Cooler
1
i
1
i
i
i
i
]

AXIS OF GEOMETRIC SYMMETRY /|
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MODELING: THERMAL MODEL IMPLEMENTATION

Implementation of Thermal Network Model:

» Admittance Matrix:
Q) = Yingp ) ATy

» Rearranging the nodes:
{ Qa }_{YthAA(mxm) YthAB(mXp)H ATy }
O) YinBap,m  YthBBpp || ATey
» Kron reduction:

- -1 u
ATay = (Y‘hAA(mme B YthAB(""xD)YthBB(PxD)YthBA(me)) Qi

-1
ATa iy = Ykronm,m Qi

» Kron matrix:

- _ -1
Yironmym = YihAA ) — YthAB(, o YinBB p, ) YthBA G, m)

Rwiv2,cd

Analytical Model Results for the optimal MFT prototype: ' : Rua e

T;[°C) | T,[°C) | Ts[°C] | Tu1°C] | Te[°C] | To[°C]
51.3 59.9 58.4 73.75 124.6 116.3
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MODELING: THERMAL FEM ANALYSIS AND VERIFICATION

D AR

///////////////////////////////////////////////////////////////////////////////////////

Results: Hot-Spot Temperature Estimation Comparison:
> Diffe_rent cooling _conditions inside and Hot-spotnodes | T1[°C] | To[°C] | Ts[°C] | T4[°C] | Te[°C] | To[°C]
outside of core window FEM2D detal 1 |/ / / 70 120 | 106
> ngh thermal conduction equalizes the FEM 2D detail 2 / / / 76 127 125
N temp along the conductors FEM 3D full / / / 75 122 113
Full 3D model estimations correlate Analytical 513 | 599 | 584 | 7375 | 1246 | 1163
well with analytical ones
2D symmetry detail 1: 2D symmetry detail 2: Full 3D model:

N
b

120
120
110
110
100
20
90
TEY
80
70
70
60
60

=PL  teee PELS Webinar
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MFT DESIGN OPTIMIZATION

Brute force academic example? You may do it differently!

1
T
i
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SELECTED TECHNOLOGIES AND MATERIALS

AR

» Magnetic Materials
> Silicon Steel
> Amorphous
> Nanocrystalline
> Ferrites

Construction Choices: Materials:
» Windings

> M ypes
> Copper

Shell Type Core Type C-Type Coaxial Type > Aluminum

» Winding Types » Insulation
> Air

> Solid
> Qil
Litz Wire Foil Coaxial Hollow

» Cooling
> Air natural/forced
> Qil natural/forced
> Water
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DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRICAL INPUTS ) (D\ELECTR\C DISTANCES w ( OPTIMISATION VAR RANGES )

( U1, DLl J L Gy, G0 J L N, J, AWG, K, K, K, J
(" CORE MATERIALS DATA [ | » Used Software Platform:
B,.KaBouF, DIRECT USER > MathWorks MATLAB
DATA BASE INPUTS

(ﬁ INPUTS
CORE DIMENSIONS DATA [ PREPARE DATA l

Datasheet values L
t » Used Hardware Platform:
Winding Losses Calculation | 2 Laptop PC (i7>2,1 GHZ, 8GB RAM)

12
Magnetic Energy Calculation

» Performance Measure:

Calculate d tomatch L,

¥ > 59000 designs are generated in less
l Calculate /, to match L, . l than 190 seconds
¥
l Core Losses Calculation l
v
l Mass and Volume Calculation l » Electrical SpeCiﬂcat]onS:
L2
l Hot-Spot Temperature Calculation l Pn 1 OOkW fSW 1 OkHZ
] v, 750V | v, 750V
[ OPTIMISATION ENGINE H Lovp  3.27uH | Ly 1.8mH
v
[ SAVE DESIGN |

A MFT design optimization algorithm
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DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRICAL INPUTS W (D\ELECTR\C DISTANCES W ( OPTIMISATION VAR RANGES W
U 0hPholy ) [ Telube ) [ NIMEK KK )
(" CORE MATERIALS DATA [ | » Used Software Platform:

B,.KaBouF, DIRECT USER > MathWorks MATLAB

DATA BASE INPUTS

(ﬁ INPUTS
CORE DIMENSIONS DATA [ PREPARE DATA l

Datasheet values L
t » Used Hardware Platform:
Winding Losses Calculation | 2 Laptop PC (i7>2,1 GHZ, 8GB RAM)

12
Magnetic Energy Calculation

» Performance Measure:

Calculate d tomatch L,

¥ > 59000 designs are generated in less
l Calculate /, to match L, . l than 190 seconds
¥
l Core Losses Calculation l
v
l Mass and Volume Calculation l » Electrical SpeCiﬂcat]onS:
L2
l Hot-Spot Temperature Calculation l Pn 1 OOkW fSW 1 OkHZ
] v, 750V | v, 750V
[ OPTIMISATION ENGINE H Lovp  3.27uH | Ly 1.8mH
v
[ SAVE DESIGN |

A MFT design optimization algorithm

E P F L |EEE PELS Webinar e )19 Power Electronics Laboratory | 54 of 72



DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRICAL INPUTS W (D\ELECTR\CDISTANCESW (OPT\M\SAT\ONVARRANGES W
Uiyl ) | deelabon ) | NodAWGK KK

P —
CORE MATERIALS DATA [ | » Used Software Platform:
_ B.KaBpKF, DIRECT USER > MathWorks MATLAB
D — DATA BASE INPUTS
CORE DIMEENSIONS DATA WeUTS PREPARE DATA l

Datasheet values L

WIRE DATA t » Used Hardware Platform:

AWG, K, F,, Winding Losses Calculation | Laptop PC (i7»2,1 GHz, 8GB RAM)
¥
Magnetic Energy Calculation

» Performance Measure:

Calculate d tomatch L,

¥ > 59000 designs are generated in less
l Calculate / tomatch L l than 190 seconds
¥
l Core Losses Calculation l
v
l Mass and Volume Calculation l » Electrical SpeCiﬂcat]onS:
L2
l Hot-Spot Temperature Calculation l Pn 1 OOkW fSW 1 OkHZ
] v, 750V | v, 750V
[ OPTIMISATION ENGINE H Lovp  3.27uH | Ly 1.8mH
v
[ SAVE DESIGN |

A MFT design optimization algorithm
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DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRICAL INPUTS W (D\ELECTR\CDISTANCESW (OPT\M\SAT\ONVARRANGES W
Uiyl ) | deelabon ) | NodAWGK KK

P

CORE MATERIALS DATA [ | » Used Software Platform:

B,.KaBpuF, DIRECT USER > MathWorks MATLAB

— DATA BASE INPUT:

CORE DIMENSIONS DATA INPUTS (] TR l

Datasheet values U T
ST [ » Used Hardware Platform:
AWG, K, F,, Winding Losses Calculation | Laptop PC (i7»2,1 GHz, 8GB RAM)

12
Magnetic Energy Calculation

» Performance Measure:

Calculate d tomatch L,

¥ > 59000 designs are generated in less
l Calculate / tomatch L l than 190 seconds
¥
l Core Losses Calculation l
v
l Mass and Volume Calculation l » Electrical SpeCiﬂcat]onS:
L2
l Hot-Spot Temperature Calculation l Pn 1 OOkW fSW 1 OkHZ
] v, 750V | v, 750V
[ OPTIMISATION ENGINE H Lovp  3.27uH | Ly 1.8mH
v
[ SAVE DESIGN |

A MFT design optimization algorithm
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DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRCALINPUTS | [ DIELECTRICDISTANCES | [ OPTIMISATION VARRANGES |
Ul 0O bol ) | Gt ) | MUAWGK K,
g
CORE MATERIALS DATA I | » Used Software Platform:

B Kappu,F, DIRECT USER
" 0GPPRTy
. DATABASE INPUT: > MathWorks MATLAB

S ——
CORE DIMENSIONS DATA INPUTS (\
U

Datasheet values

PREPARE DATA U
I

* » Used Hardware Platform:

WIRE DATA 13
AWG, K., F,, Winding Losses Calculation > Laptop PC (i7>2,1 GHz, 8GB RAM)
k2

Magnetic Energy Calculation

» Performance Measure:

> 59000 designs are generated in less

|
|
Calculate d,, to match L ‘
i | than 190 seconds
|
|
|

orel

k2

Core Losses Calculation

L2

Mass and Volume Calculation

» Electrical Specifications:
Hot-Spot Temper’ature Calculation Pn 1 OOkW fSW 1 OkHZ
i Vi 750V Vy 750V
[ OPTIMISATION ENGINE H Lorp  3.27uH | Ly 1.8mH

\
\
\
‘ Calculate | to match L,
\
\
\

v
[ SAVE DESIGN ]

A MFT design optimization algorithm
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DESIGN OPTIMIZATION: ALGORITHM

AR

Algorithm Specifications:

( ELECTRICAL INPUTS I (DIELECTRIC DISTANCES I ( OPTIMISATION VAR RANGES I

0ty ) [ totuton ) [ MM
p
CORE MATERIALS DATA [ | » Used Software Platform:
B KaBpp,F,
. _— o sen > MathWorks MATLAB
CORE DIMENSIONS DATA weuTs (| A |
Datasheet values U 1
.
STy — » Used Hardware Platform:
AWG, K., F,, Winding Losses Calculation > Laptop PC (i7-2.1GHz, 8GB RAM)
¥

Magnetic Energy Calculation

Calculate d, to match L, » Performance Measure:

> 59000 designs are generated in less
k2
Core Losses Calculation
L2
Mass and Volume Calculation » Electrical Speciﬂcations:
i 2

I

I

I k2

| Calculate | to match L,
I

I

I

|
|
|
- | than 190 seconds
|
|
|

Hot-Spot Temperature Calculation Pn 1 OOkW fSW 1 OkHZ
i Vi 750V Vo, 750V
U OPTIMISATION ENGINE B— Lot 2 3.27uH Lm 1.8mH

v
I SAVE DESIGN I

A MFT design optimization algorithm
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DESIGN OPTIMIZATION: ALGORITHM

AR

(

ELECTRICAL INPUTS

W (D\ELECTR\C DISTANCES W ( OPTIMISATION VAR RANGES w

~ U EDL L J U deldwtoe ) ([ MJAWGK KK, )
CORE MATERIALS DATA
B KappuF, DIRECT USER
DATABASE INPUT:
INPUTS
CORE DIMENSIONS DATA (| PREPARE DATA |
Datasheet values U T
f———
WIRE DATA 13
AWG, K, F,; Winding Losses Calculation
k2

Magnetic Energy Calculation

Calculate d, tomatch L,

k2

Core Losses Calculation

£ 2

Mass and Volume Calculation

v

|
|
|
¥
Calculate [ tomatch |
|
|
|

Hot-Spot Temperature Calculation

[

v
OPTIMISATION ENGINE B—
|

[

A4
+
¥
[ SAVE DESIGN ]

A MFT design optimization algorithm

cPFL

IEEE PELS Webinar

Algorithm Specifications:

» Used Software Platform:
> MathWorks MATLAB

» Used Hardware Platform:
> Laptop PC (i7-2.1GHz, 8GB RAM)

» Performance Measure:

> 59000 designs are generated in less
than 190 seconds

» Electrical Specifications:

P, T00kW | fey  10kHz
i 750V |V, 750V
Lyro B327uH | Ly 1.8mH
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DESIGN OPTIMIZATION: ALGORITHM
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Algorithm Specifications:
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A MFT design optimization algorithm
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DESIGN OPTIMIZATION: RESULTS
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Applied Filters: Number of Designs:

0 0 .
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A Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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DESIGN OPTIMIZATION: RESULTS
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DESIGN OPTIMIZATION: RESULTS
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DESIGN OPTIMIZATION: RESULTS
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DESIGN OPTIMIZATION: RESULTS
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100kW, 10kHz MFT PROTOTYPE

Assembly, testing and design tool verification!
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MFT PROTOTYPE: DESIGN ASSEMBLY

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

4

Py

fvwﬂ’n ; 74
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-

Optimal MFT Design 3D-CAD Coil-Formers 3D-CAD Coil-Formers 3D-Print Primary Winding Secondary Winding

Core Assembly MFT Assembly 1 MFT Assembly 2 Litz-Wire Termination MFT Prototype
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CONVERTER READY MFT

AR

MFT Prototype Prototype Specifications:

» Core:
> 12 stacks of 4 x SIFERRITE U-Cores (UU9316 - CF139)

» Windings:
> 8-Tumns
> Square Litz Wire (8.7x8.7mm, 1400 strands, AWG 32,
43.69mm’)

» Coil-Formers:

> Additive manufacturing process (3-D printing)
> High strength thermally resistant plastic (PA2200)

» Resonant Capacitor Banks:

> (7x5uF + 1x2.5uF) AC film capacitors in parallel
> Custom designed copper bus-bars

> Electrical Ratings:
Py, 100kW | Vi 750V | Lg1o  4.2uH
for  10kHz | Vo 750V | Ly 750pH

4 100kW, 10kHz MFT including resonant capacitors
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MEASUREMENTS: ELECTRIC PARAMETERS
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Measurement of Electric Parameters: Series Resistance Measurement:
Series Resistance R_ [0] Estimation Error [%]
> Network Analyzer Bode100 10 ‘ L 20 : R
» Impedance Measurement T Hamaenent 0 i
» Results at 10kHz: Ly = 8.4uH, Ly, = 750pH, Ry = 0.2Q o Y
0 i
. \
LV Measurement Setup: 10 \
-20 NS
10°— - L L =30 L L L )
10° 10° 10* 10° 10° 107 10° 10° 10° 10°
Frequency [Hz] Frequency [Hz]
Leakage Inductance Measurement:
Leakage Inductance L [uH] Estimation Error [%]
Measurement 20 — — — Hybrid Mode!
— — = Hybrid Model i —-=-= Dowell Model
85F T —-~-~ Dowell Model 15 R A | .
8
10
7.5] \
5
L i et e AN I
ob Tl it
6% a 10 10° 7\0( 10° 10 10° 10°
: 30 . ; - -
4 Electrical measurements using Bode100 Frequency [Hz] Frequency [Hz]
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MEASUREMENTS: DIELECTRIC PARAMETERS

AR

Dielectric Withstand Test:
» Partial Discharge measurement between all conductive parts
» High Voltage 50Hz source within a Faraday cage
» 10pC - between primary and secondary winding at 4kV

HV Measurement Setup:

4 MFT during AC test

cPFL

IEEE PELS Webinar

PD Test Settings:
> Front of the voltage profile: V = 6kV
> Flat back of the voltage profile: V = 4kV
» Peak PD at periods where |dV/dt| increases after the V peak
» PDis influenced by combination of V and |dV/dt|

Measured PD at flat back V = 4kV:

Intensity
Gamutppsis]

653 434 288 191 127 nst-uss-o:n uzs-ms-w -007
0o
5000 ms 5000 ms 200ms 1600 ms 20

HPD 600 1.1

Quec
197 114.99 pC

Freq. ntegr

rom: 100K

coforming, Caltratd
oday 3 131847

Line:
50.00 Hz
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MEASUREMENTS: LOAD TEST

AR

Test Setup Topology: Measurement Results:
» B2B Resonant Converter UM oo Y i ' ' '
» Input voltage maintained by Upc m
0 0
» Power circulation via Ipc
Ucn [ V] UCrZ [ V]
MFT T T T
sOge@E aE e Lt ) "
U, — —
[ d .y a Lo O 0/\/\ 0/\/\
Q) LAt @ -100 -100
= | | L) €
ﬁ} I 1, 1Al LAl
200 200 i - i
0/\/\/ om
Test Setup: 200 200
20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

t[us]

0% ——20% 40% ——60% ——80% ——100%

300, 300,

0% ——20% 40% ——60% ——80% ——100%

200 200

100 100

0 0F

-100 \ / \ -100

N7/ ,
;‘ -200) LA N? \/ -200 I, Al
I AL 00240 60 @0 100 120 140 160 160 200 W20 40 0 a0 100 120 140 160 160 200
tus] tlus]

4 BZBMFT test setup A Experimental results: left: MFT primary waveforms; right: MFT secondary waveforms
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MEASUREMENTS: THERMAL RUN
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Thermal Profile:

80 T T T T T
— Top Cooler Surface
60 + = —— Between Top Cooler and Core -
Between Bottom Cooler and Core
40+ 4 = B
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S——45 80 720 760200 0 40 80 o0 160 200 Secondary Winding Hot-Spot Temperature [°C]
tlus] tlus] 150 T T T T T T T T
—— Measurement Point 1
— Measurement Point 2
100 1
50+ a
0 No-Lload | Ful/-Loazli | | Cotl)/down |
0 1 2 3 4 5 6 7 8 9

IEEE PELS Webinar
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Cooler Central Point Temperature [°C]

4 Thermal heat run results
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CONCLUSION

» Complex and challenging design
optimization

» Large number of available materials

Customized designs prevail

v

» Research opportunities...

esign

g~ 50

Prototype
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CONCLUSION

» Complex and challenging design

EPE’'17

optimization
» Large number of available materials ECCE EUROPE
» Customized designs prevail September 11-14,2017
» Research opportunities... Warsaw, Poland, www.EPE2017.com
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Tutorial pdf can be downloaded from:
» https://pel.epfl.ch/publications_talks_en
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