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Absence of Single-Particle Bose-Einstein Condensation at Low Densities
for Bosons with Correlated Hopping
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Motivated by the physics of mobile triplets in frustrated quantum magnets, the properties of a two-
dimensional model of bosons with correlated hopping are investigated. A mean-field analysis reveals the
presence of a pairing phase without single-particle Bose-Einstein condensation (BEC) at low densities for
sufficiently strong correlated hopping, and of an Ising quantum phase transition towards a BEC phase at
larger density. The physical arguments supporting the mean-field results and their implications for bosonic
and quantum spin systems are discussed.
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FIG. 1. The diagonal bonds (�t0) denote a correlated hopping
process, and the nearest neighboring bonds denote the single-
particle hopping (�t).
The models of interacting bosons (with or without dis-
order) have been a subject of active research. They are
studied for a variety of reasons, coming from different
experimental systems, such as Josephson junction arrays
[1], 4He in porous media [2], disordered films with super-
conducting and insulating phases [3], or more recently in
the context of atoms trapped on an optical lattice [4]. The
interplay of interaction, disorder, and kinetic energy leads
to the ground states that can be a superfluid, a Bose glass, a
Mott insulator, or a supersolid [5–11]. In the context of
spin models too, the Schwinger boson mean-field theories
provide a useful description of magnetism in the bosonic
language [12–15].

Over the past decade, bosons have also been used in the
context of quantum magnetism to describe the magnetiza-
tion process of gapped systems with a singlet ground state
such as spin ladders, the triplets induced by the magnetic
field being treated as hard-core bosons. These bosons may
condense, leading to the ordering of the transverse compo-
nent of the spins, but they might as well undergo a
superfluid-insulator transition, leading to magnetization
plateaux [16]. For pure SU(2) interactions, and without
disorder, the common belief is that the only alternative, not
realized so far in quantum magnets, is a supersolid, i.e., a
coexistence of these phases.

In this Letter, we propose that there is another possibil-
ity, namely, a pairing phase without single-particle Bose
condensation. Our starting point is the observation that the
effective bosonic model of a frustrated quantum magnet
such as SrCu2�BO3�2 [17] contains, in addition to the usual
kinetic and potential terms, a correlated hopping term
where a boson can hop only if there is another boson
nearby, and that this term can be the dominant source of
kinetic energy in geometries such as the orthogonal dimer
model realized in SrCu2�BO3�2 [18,19]. While the possi-
bility of bound state formation was already pointed out in
that context, the consequences of the presence of such a
term on the phase diagram at finite densities have not been
worked out yet.
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For clarity, we concentrate in this Letter on a minimal
version of the model, but we have checked that the con-
clusions apply to the more realistic model derived for
SrCu2�BO3�2 [20]. This model is defined on a square lattice
by the Hamiltonian

H � �t
X

r
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byr��br ��
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nr
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���x
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y
r��br��0 � H:c:g; (1)

where byr and br are boson operators and nr � byr br. t and
t0 are the measures of single-particle and correlated hop-
ping, respectively (see Fig. 1). A hard-core constraint that
excludes multiple occupancy should in principle be in-
cluded. However, we concentrate on the low density limit,
where this constraint is expected to be irrelevant. So in the
following we work with regular (soft-core) bosons.

Since the correlated hopping term in Eq. (1) is quartic in
the single-particle boson operators, the simplest thing to do
is a mean-field theory. Since the system gains energy
through correlated hopping by having two particles nearby,
a natural choice for a mean field is the pairing amplitude.
The particle density and the kinetic amplitudes are the
other choices for the mean fields. In the following, we
formulate a mean-field theory in terms of these order
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FIG. 2. The mean-field quantum phase diagram. n	 is the cri-
tical density at which, for a given � � t0=�t� t0�, the single-
particle condensate density nc becomes zero. This marks the
onset of the pairing phase with gapped quasiparticle excitations.

PRL 95, 110406 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 SEPTEMBER 2005
parameters defined by

� � hbyr b
y
r��i �pairing amplitude�;

� � hbyr br��i;

�0 � hbyr��br��0 i �kinetic amplitudes�;

n � hbyr bri �particle density�;

where � � �0, and �; �0 � x; y. The particle density is
taken to be uniform and the kinetic amplitudes real. In
principle, we can allow for an internal phase in the pairing
amplitude (a nonzero phase between x and y direction
bonds) as in the mean-field theory of the t-J model in the
context of the high-Tc cuprates. Here, we take the internal
phase to be zero (the extended s-wave pairing). The cor-
responding mean-field Hamiltonian has the following
form:

HMF � E0 �
X
k

f�kb
y
kbk ��k�b

y
kb
y
�k � H:c:�g; (2)

where E0, �k, and �k are given by

E0 � 8t0L��2 � �2 � n�0�;

�k � �2�t� 4t0���coskx � cosky� � 8t0n coskx cosky

� ��� 8t0�0�;

�k � 4t0��coskx � cosky�:

The Hamiltonian HMF can easily be diagonalized using
Bogoliubov transformation for bosons. The canonical free
energy density for HMF is given as
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where Ek �
���������������������
�2

k � 4�2
k

q
is the quasiparticle dispersion,

� � 1=kBT, and � � �� 8t0�0 is the effective chemical
potential. Redefining the chemical potential in this way
makes �0 a redundant order parameter in the mean-field
theory. Note that � and �0 appear with the right combina-
tion to give � as the new chemical potential in �k. Hence,
for a given n, f is purely a function of �, �, and �.

The self-consistent equations for the order parameters
can be written
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where nc is the condensate density (the occupancy of the
zero-energy mode if any). Since the model is two-
dimensional, nc � 0 for T > 0. At T � 0, nc may or may
not be zero, and solutions must be searched with two
strategies: assume nc � 0 and solve these equations for
the unknowns (�, �, �), or assume there is a zero-energy
mode (which fixes �) and solve for the unknowns (�, �,
nc). In that case, the wave vector corresponding to the zero-
energy mode (k � 0 here) must be excluded from the sum.
If several solutions are found for a given density, the one
with the lowest energy should be chosen. In practice, we
found only one solution for a given density. In general,
these equations are solved by simple iteration. Note, how-
ever, that, when nc � 0, Eqs. (4) and (5) can still be solved
by iteration, but Eq. (6) needs to be solved for � by some
numerical method at each step of the iteration.

Let us first discuss the T � 0 results. The most remark-
able feature is that it turned out to be impossible to find a
solution with a nonzero condensate at low enough density
unless t0 is very small. In other words, as soon as the
correlated hopping is not too small, there is no single-
particle Bose-Einstein condensation (BEC) at low density.
The critical density n	 below which this is the case is
plotted as a function of � � t0=�t� t0� in Fig. 2. This figure
calls for some comments. First of all, t0=t need not be large
for the effect to be observable, which ensures the relevance
of the present discussion for the quantum magnets such as
SrCu2�BO3�2. Besides, the critical value n	 is quite small
even when t0 dominates, and our approximation to treat
triplets as soft-core bosons is expected to be good in the
whole range of Fig. 2. Finally, densities of a few percent are
definitely accessible in the context of quantum magnets,
the density being equivalent to the magnetization relative
to the saturation value.

Next we turn to the nature of this non-BEC phase.
Clearly this cannot be a commensurate insulating phase
of the type observed before since it occurs for a range of
densities. In fact, its nature is best revealed by looking at
the order parameters. While nc � 0 in the pairing phase
6-2
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FIG. 4. The behavior of different order parameters as a func-
tion of � for n � 0:05. For � * 0:78, the condensate density
(nc) vanishes, and the system goes into the pairing ground state.
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FIG. 3. The variation of the quasiparticle gap and the mean-
field order parameters as a function of n for a fixed �. While
nc � 0 only in the single-particle BEC phase (n * 0:072), the
pairing amplitude � � 0 in both phases.
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and Egap � 0 in the single-particle BEC phase, the mean-
field solution for � and � is nonzero on both sides. In Fig. 3
the behavior of nc, �, and � is shown as a function of n for
� � 0:99. It is not surprising that � is nonzero in the
single-particle BEC phase. In fact, the single-particle
BEC state means hbyi � 0, which further implies that
hbybyi 
 hbyi2 � 0. Hence � will always be nonzero in
the single-particle BEC phase. The correct measure of the
existence of the pairing (independent of the contribution
from the single-particle BEC) is �� nc. We know from
the calculation (see Fig. 4) that for the noninteracting Bose
gas (� � 0), � � nc, as it should be. However, for any
finite � we find �� nc > 0. Thus, for arbitrarily small
values of the correlated hopping, the system develops a
tendency towards pair formation. However, it does not
suppress the single-particle BEC in favor of a purely pair-
ing phase until sufficiently strong � is reached for suffi-
ciently small n.

The results of our mean-field calculation are similar to
those obtained on a different problem in the context of the
atomic gases [21]. These are studies regarding the transi-
tion from a purely molecular condensate (MC) to an atomic
condensate (AC) with a nonzero fraction of the molecular
condensate present (AC�MC) across the Feshbach reso-
nance. Our pairing phase is like the MC, and the single-
particle BEC phase is analogous to the AC�MC.

The nature of the transition based on symmetry consid-
erations is also similar. The mean-field Hamiltonian, HMF,
explicitly breaks the U(1) gauge symmetry; however, it is
still invariant under global Z2 symmetry, that is, under
br ! �br. In other words, gauge symmetry, byr ! byr ei�

leaves HMF invariant for � � 	. This residual Ising-like
symmetry will also be broken if there is single-particle
BEC (because hbi � 0). What we have in Fig. 2 is such an
Ising symmetry breaking quantum phase transition, where
nc is the relevant order parameter. The pairing phase
respects this Z2 symmetry while the single-particle BEC
phase breaks it spontaneously.
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The temperature dependence of various quantities in the
mean-field theory is shown in Fig. 5. The temperature at
which � becomes zero is called Tc. This quantifies the
mean-field phase transition from a normal Bose gas at high
temperatures to a pairing phase below Tc. The inset of
Fig. 5 shows Tc as a function of n. Remarkably, there is no
detectable anomaly upon going through the critical density
n	. Since we are in 2D, we do not expect to have a true
BEC of pairs, but rather a Kosterlitz-Thouless (KT) tran-
sition. These results suggest that the system should
undergo one KT transition whatever the density, followed
by an Ising transition if n > n	.

To check the validity of the mean-field approximation,
hence of our conclusions, it would be very useful to have
unbiased numerical results on the model of Eq. (1).
However, we have good reasons to believe that the predic-
tions of the present mean-field theory are physically rele-
vant. Mathematically, the structure of the mean-field
equations and the results of the calculations are similar to
the Schwinger boson mean-field theory of the quantum
spin system [13,15]. In that context, the single-particle
BEC phase implies an ordered phase in the spin variables,
while the pairing phase denotes a disordered phase. Now
the physical relevance of these disordered phases is well
established in the context of quantum magnets [22,23], and
we expect the same to be true here.

The model studied in this Letter has similarities with the
ring exchange model of bosonic Cooper pairs introduced
some time ago by Paramekanti and collaborators [24]. In
their model, the pairs of bosons hop on the opposite corners
of a plaquette. The low temperature physics is significantly
different however. In their model, the number of bosons is
conserved on each row and column of the square lattice,
leading to the Luttinger liquid like physics and critical
correlations in the ground state. In our model, the corre-
lated hopping does not sustain any such conservation law,
and the ground state is expected to develop a true long-
range order.
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FIG. 5. The temperature dependence of �, �, and n for a given
� and �. Inset: dependence of Tc on the density.
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Finally, let us briefly discuss the physical implications of
these results for the magnetization process of gapped
quantum magnets. The thermodynamics was already dis-
cussed in the boson language: we expect to observe a KT
transition for any magnetization, followed by an Ising
transition if the magnetization is larger than a critical
value. This will remain essentially true for 3D systems,
the KT transition being replaced by a true phase transition
toward an ordered phase. However, we also expect very
significant differences between the zero temperature
phases. Single-particle BEC means magnetic long-range
order, and the system is expected to have gapless transverse
spin waves. In other words, the gap detected in spectros-
copies such as inelastic neutron scattering or NMR will
vanish. However, at low magnetization, we have only pair
BEC. The order implied by this pair BEC will be of
nematic type since the transverse components of the spins
within a pair can be flipped without changing the correla-
tions. But more importantly, there is a gap to single-particle
excitations, i.e., to single spin flips. Although the system is
gapless in this phase, we thus expect to observe a gap in
neutron scattering or NMR, the gapless excitations appear-
ing only in the channel �S � 2.

In summary, we have shown that the correlated hopping
can change drastically the properties of bosons, leading at
low densities to a pairing phase without single-particle
BEC, and with gapped quasiparticle excitations. In the
context of quantum frustrated magnets, this leads to the
prediction of an Ising phase transition (for low magnetiza-
tion) as a function of the magnetic field, for systems where
frustration reduces direct hopping of triplets, thus making
correlated hopping the dominant process of kinetic energy.

Beyond frustrated magnets, these results will have im-
plications on all systems where correlated hopping may be
the dominant source of kinetic energy. One such class of
systems is the atomic gases, where different external pa-
rameters control the hopping and the Coulomb terms.
Whether instabilities of the kind described here can be
11040
induced in these systems by reducing the single-particle
kinetic energy is left for future investigation.
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