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Abstract: Dredge pumps are usually operated at part-load conditions, in which the low-solidity
centrifugal impeller could experience large internal energy dissipation, related to flow separation and
vortices. In this study, SST k-ω and SAS-SST turbulence models were used, in steady and unsteady
simulations, for a low-head centrifugal pump with a three-bladed impeller. The main focus of the
present work was to investigate the internal energy dissipation in rotating an impeller at part-load
operating conditions, related to flow separation and stall. The unsteady nature of these operating
conditions was investigated. Performance experiments and transient wall pressure measurements
were conducted for validation. A methodology for internal energy dissipation analysis has been
proposed; and the unsteady pressure fluctuations were analyzed in the rotating impeller. The internal
power losses in the volute and the impeller were mostly found in the centrifugal pump. The rotating
stall phenomenon occurred with flow separation and detachment at the part-load operating condition,
leading to a dissipation of the internal energy in the impeller. The rotating impeller experienced
pressure fluctuations with low frequencies, at part-load operating conditions, while in the design
operating condition only experienced rotating frequency.

Keywords: centrifugal pump; internal energy dissipation; vortex flow; rotating stall

1. Introduction

Low-head centrifugal pumps are widely used in small-scale dredging equipment, for delivering
slurry. For the slurry transportation, the centrifugal impellers usually feature three to six blades
with a large expansion ratio of the flow passages. Most studies on slurry pumps were conducted
on pumps with four to six impeller blades [1]. The asymmetric impeller structure with fewer
blades had an important influence on the performance and pressure fluctuation of the pumps. For
single-bladed sewage pump, Nishi et al. [2] performed numerical simulations and experiments and
detected the asymmetric pressure and velocity distribution. Pei et al. [3] investigated the uneven
distribution of pressure fluctuation intensity in the single-bladed impeller and volute, using the CFD
method. Melzer et al. [4] studied the transient pressure in the volute, numerically and experimentally.
The pressure indicated a significant periodicity with the rotation of the impeller. In regards to the
three-bladed dredge pumps, current research has mainly focused on the wear characteristics of solid and
liquid flow [5,6]. Therefore, it is still necessary to investigate the performance and energy loss of dredge
pumps, for geometry and operating parameter modifications in the design and optimization process.
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The energy loss in the centrifugal pump could be divided into flow dissipation, disk friction, and
discharge leakage loss. Kara Omar et al. [7] calculated the losses through empirical and semi-empirical
models, and verified them with experimental results. El-Naggar [8] conducted an experimental
one-dimensional flow analysis and predicted the pump performance in a dimensionless form. Klas et
al. [9] performed simulations on a centrifugal pump and investigated the energy loss in different flow
components, to detect the influence of the component geometry. These studies focused on the whole
energy transformation in flow components, without a detailed loss analysis.

The inner flow characteristic was investigated as the energy loss reasons for centrifugal pumps.
Posa et al. [10] investigated the streamline distribution on the impeller blade surface and found that
a stall phenomenon developed near the impeller shroud. Zhang et al. [11] applied velocity vector
distribution to detect the flow pattern near the volute tongue, and to discuss its effects on the efficiency
fluctuation of a centrifugal pump. Barrio et al. [12] detected a counter-rotating vortex near the interface
between the impeller and the volute, through velocity distribution. Pacot et al. [13] used the pressure
distribution to explore the stall propagation mechanism. Asim et al. [14] applied the Q-criterion to
illustrate that a secondary flow generated near the volute tongue, with an impact on the pump head.
Miorini et al. [15] and Zhou et al. [16] adopted a vorticity study to investigate tip leakage flow and
rotating stall, respectively, to describe the development of these unsteady flow phenomena and to
prove their effects on pump performance. These methods are able to make apparent specific flow
structures inside the centrifugal pump, and could assist the design and optimization of centrifugal
pumps [17–19].

The quantity of energy loss related to these particular flow structures, needs to be investigated
in details, at different operating conditions. Zheng et al. [20] applied an energy gradient function
to describe the energy change rate, along streamlines, and argued that this function represented the
turbulence intensity. More researchers were concentrated on the specific turbulent kinetic energy.
Keller et al. [21] proposed a method of normalized turbulent kinetic energy, and argued that a high
value of normalized turbulent kinetic energy corresponded to the flow detachment. Additionally,
turbulent kinetic energy was used to make apparent flow separation [22], reversed flow [23] and
impeller wake [24] inside the centrifugal pumps, and was linked directly to the energy loss [25].
Meanwhile, the reduction of specific turbulent kinetic energy has been proposed as a corroborative
evidence to prove that the optimized pumps featured a better performance [26,27] and [28]. In fact,
the production of specific turbulent kinetic energy has been linked to the energy transfer from the
mean flow to the turbulent flow. However, the quantity of specific turbulent kinetic energy cannot
directly represent the energy loss [29,30]. Therefore, an accurate method for the quantification of
energy dissipation in centrifugal pumps, still needs to be investigated.

The specific speed NQE and the number of blades of the studied centrifugal pumps from the
above-mentioned studies are summarized in Table 1. The discharge factor, specific energy factor and
specific speed for the design operating condition, are defined by Equations (1)–(3).

Q0
nD = Q0n−1D−3 (1)

E0
nD = (gH0)n−2D−2 (2)

NQE =
(
Q0

nD

)0.5
/
(
E0

nD

)0.75
(3)

Pei et al. [3] studied a single-bladed pump with a high specific speed. Additionally, References [8,25]
investigated the low-solidity centrifugal pump, however, both pumps had a low specific speed. In
this study, a high-specific-speed dredge pump with a low-solidity centrifugal impeller was used.
In the impeller, the blades were curved with a large ratio between the outlet and the inlet flow
section. Low solidity pumps experience a complex unsteady flow phenomena inside the impeller at
off-design operating conditions [31,32], such as, flow separation, rotating stall, and secondary flow.
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These phenomena have a negative impact on the efficiency and could generate pressure fluctuations
and vibrations.

Table 1. Specific speed and number of blades of the study cases in the cited literature.

References NQE Number of Blades References NQE Number of Blades

3 0.17 1 21 0.09 6
8 0.09 4 22 0.20 5
9 0.03 7 23 0.02 7

10 0.17 6 25 0.04 4
11 0.13 5 26 0.06 5
12 0.07 7 27 0.08 7
16 0.08 6 28 0.04 6
18 0.07 6 - - -

The internal energy dissipation at part-load operating conditions was the focus of this study. The
causes for internal energy dissipation at part-load operating conditions were analyzed for their flow
separation and stall phenomena in the three-bladed centrifugal impeller. Pressure fluctuation time and
dominant frequency were further investigated to establish what comprised the unsteady characteristics
of the pump.

This paper has been structured as follows: in Section 2, the case study has been presented; in
Section 3, the numerical simulation setup, the experimental setup, as well as the internal energy
dissipation methodology have been described; in Section 4, numerical simulating results have been
validated with the help of the available experimental data, analysis on internal power loss in the
simulating domains have been performed, and the results of the internal energy dissipation and
pressure fluctuation have been presented; in Section 5, the analysis on numerical simulating results
have been expressed; and finally, in Section 6, the conclusions of the present work have been provided.

2. Case Study

The studied case was an industrial pump and the impeller outlet diameter was 310 mm. The
discharge and specific energy factors at the design operating conditions (Q0

nD and E0
nD) were 0.16

and 4.15, respectively. The specific speed (NQE) of the pump was 0.14. The assembly drawing and
computing domains of the centrifugal pump of the dredge pump are shown in Figure 1. The calculation
domains included the suction pipe, the centrifugal impeller, front gap, pump-out vanes, the back gap,
and the volute.
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Figure 1. Assembly drawing and computing domains of the centrifugal pump. (a) Cross-sectional 
assembly drawing of the centrifugal pump; (b) computing domains; and (c) meridional view of the 
computing domains. 
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Figure 1. Assembly drawing and computing domains of the centrifugal pump. (a) Cross-sectional
assembly drawing of the centrifugal pump; (b) computing domains; and (c) meridional view of the
computing domains.

3. Methodology

3.1. Governing Equations and Numerical Setup

The continuity equation:
∂Ci
∂Xi

= 0 (4)

The momentum equation:

∂Ci
∂t

+
∂
∂X j

(
CiC j

)
= −

1
ρ

∂p
∂Xi

+
1
ρ
∂
∂X j

(
2µDi j − ρcic j

)
(5)

The specific energy equation:

∂htot

∂t
−

1
ρ

∂p
∂t

+
∂
∂X j

(
C jhtot

)
=

∂
∂X j

(
λt

ρ
∂T
∂X j
− c jh

)
+

1
ρ
∂
∂X j

[
C j

(
2µDi j − ρcic j

)]
(6)

In which, C, Dij, h, htot, p, t, µ, ρ, and λt are velocity, strain rate tensor, specific enthalpy, specific
total enthalpy, pressure, time, dynamic viscosity, density, and thermal conductivity, respectively. The
physical property of water was regarded as a constant in numerical simulations.

The SST turbulence model [33] was used for the steady simulations, in which a switching function
was used to combine the k-ω model with the k-ε model. The SST turbulence model was widely used in
numerical simulations of pumps, with satisfying results [34–36]. The SAS–SST turbulence model [37]
was used in the unsteady simulations, which included the von Karman length-scale in the turbulence
eddy frequency equation. The SAS–SST model was proved to satisfactorily describe the unsteady flow
patterns, especially with the complex flow phenomena at the off-design operating conditions [38–40].
To accommodate the streamline curvature and the rotating feature in the centrifugal impeller, curvature
correction [41] was added as an advanced turbulence control [42].

Mesh sensitivity checks were conducted with five different meshes. The influence of the mesh
amount on the head and efficiency at the design operating condition is shown in Figure 2.
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As the differences in head and efficiency in the last three meshes were less than 1%, the mesh set
with 3.75 × 106 elements was utilized in the simulations, considering both the precision and the cost of
calculation. The definitions of head H, power P, and efficiency η are as follows:

H =
1

gQ

∫
Aout

∑ p
ρ
+

→

C
2

2

→C·→ndA−
1

gQ

∫
Ain

∑ p
ρ
+

→

C
2

2

→C·→ndA (7)

P = nTt (8)

η =
ρgQH

P
(9)

where Q is the discharge; Tt is the torque; Ain and Aout represent the inlet and outlet boundary,
respectively. All of mesh elements were structural meshes, except for the impeller computing domain.
The averaged y+ value in each domain was less than 130.

The mass flow rate boundary condition was set at the pipe inlet at an initial temperature of 25 ◦C.
The inlet turbulence intensity was set as 5%. The outlet boundary at the volute outlet was set as the
static pressure. The domains of the impeller and nine pump-out vanes were set as the rotating parts
with the same rotation speed, while others were stationary. The wall boundary was set as smooth wall,
no-slip, and adiabatic. The interface between the rotating and stationary domains corresponded to
frozen rotor in steady simulations and to transient frozen rotor in unsteady simulations. The steady
results were set as the initial flow field of unsteady simulations. The time step in unsteady simulations
was 2 × 10−4 s, which was 1/300 of a rotating period.

Pressure signal was recorded in unsteady simulations. Monitor point arrangements in numerical
simulations are shown in Table 2. The monitor points in the impeller were distributed at the pressure
and suction sides of a flow passage. The cylindrical coordinates of the monitor points are shown in
Figure 3.
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Figure 3. Monitor point arrangements in the numerical simulations. (a) Impeller; (b) volute; and
(c) front chamber.

Table 2. Cylindrical coordinates of the monitor points.

Monitor Point Z (m) R (m) θ (◦) Monitor Point Z (m) R (m) θ (◦)

S11 0.053 0.060 171.8 pbt1 0.000 0.374 36.1
S12 0.047 0.089 131.7 pbt2 0.000 0.292 0.0
S13 0.035 0.100 92.7 pbt3 0.000 0.277 −90.0
S14 0.035 0.119 58.5 pbt4 0.000 0.260 180.0
S15 0.035 0.137 30.0 pbt5 0.000 0.242 90.0
S16 0.035 0.153 −3.9 pbt6 0.000 0.236 66.3
P11 0.053 0.084 58.2 pbt7 0.000 0.270 52.8
P12 0.037 0.098 20.8 FCA1 0.055 0.155 90.0
P13 0.036 0.112 −13.4 FCA2 0.055 0.155 180.0
P14 0.036 0.127 −44.0 FCA3 0.055 0.155 270.0
P15 0.036 0.142 −71.1 FCA4 0.055 0.155 0.0
P16 0.036 0.154 −93.7 - - - -

3.2. Experimental Setup

The experimental setup for the centrifugal pump is shown in Figure 4. In the test bed, the
mass flow rate was measured by a magnetic flowmeter (LDG-500S, Shanghai Guanghua Instrument
Co., Ltd., Shanghai, China). The measurement uncertainty of the mass flow rate was ±0.2%. The
flowmeter was installed between the two tanks, which is not shown in the picture. The torque was
measured with a torque meter (JCZL2-500, Powerlink, Instrument Co., Ltd, Changsha, China) and the
measurement uncertainty of the torque was ±0.5%. The pressure transmitter was V15712-HD1A1D7D
(Newsruipu Instrument Co., Ltd, Zhengzhou, China) and the maximum error of the head was 1% of
the measurement range. The pressure fluctuation sensor was CGYL-201 (Hefei Dekong Instruments
Co., Ltd., Hefei, China) with a sampling frequency 4096 Hz. The monitor point set in the volute and
the front gap was the same as that in numerical simulations. The shaft power was calculated by the
torque difference between the torque measured by a torque meter and resistance torque from bearings,
which was measured when the impeller was not installed on the shaft.
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3.3. Energy Analysis Method

From the first law of thermodynamics, the total specific energy balance for the pump system yielded
Equation (10). The gravitational potential energy change and the thermal radiation were ignored.
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According to the URANS method, time averaging was performed on Equation (13), in which, the
time scale was larger than the turbulent time scale, but was much smaller than the time scale of mean
flow 37. Equation (13) read as follows:

De
Dt =

µ
ρ

[(
∇

→

C +∇
→

C
T)

: ∇
→

C +
(
∇

→

C +∇
→
c

T)
: ∇
→

C +
(
∇
→
c +∇

→
c

T)
: ∇
→
c
]
+ λt

ρT

[∑ (
∂T
∂Xi

)2
+

∑(
∂T′
∂Xi

)2
]

(14)

where T is the temperature; and λt is the thermal conductivity of the fluid. The items on the right
side of Equation (14) describes the viscous dissipation, turbulent production, turbulent dissipation,
and dissipation from heat transfer, respectively. Since the turbulent fluctuating flow parameters ∇

→
c
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and T′ could not be obtained directly from the URANS simulations, the internal energy dissipation in
the turbulent fluctuating flow needed to be expressed by mean flow components. Expressions and
approximations from the previous research, based on the eddy viscosity model [43], were adopted.

Viscous dissipation rate:

Φ =
µ

ρ

(
∇

→

C +∇
→

C
T)

: ∇
→

C =
µ

ρ

2(∂Ci
∂Xi

)2

+

(
∂Ci
∂X j

+
∂C j

∂Xi

)2 (15)

Turbulent production rate:

Π =
µ

ρ

(
∇
→
c +∇

→
c

T)
: ∇
→

C =
µt

ρ

(
∇

→

C +∇
→

C
T)

: ∇
→

C =
µt

ρ

2(∂Ci
∂Xi

)2

+

(
∂Ci
∂X j

+
∂C j

∂Xi

)2 (16)

Turbulent dissipation rate:

Θ =
µ

ρ

(
∇
→
c +∇

→
c

T)
: ∇
→
c = ε (17)

Dissipation rate from heat transfer:

Γ =
λt

ρT

∑
(
∂T
∂Xi

)2

+
∑(

∂T′

∂Xi

)2
 = λe f f

ρT

(
∂T
∂Xi

)2

(18)

where µt is the eddy viscosity; ε is the turbulence dissipation rate; and λeff is the effective
thermal conductivity.

The internal energy dissipation rate was expressed as follows:

ρ
De
Dt

= Φ + Π + Θ + Γ = (µ+ µt)

2(∂Ci
∂Xi

)2

+

(
∂Ci
∂X j

+
∂C j

∂Xi

)2+ ρε+
λe f f

T

(
∂T
∂Xi

)2

(19)

The distribution of the dissipated internal energy could explain the local energy transformation
and could be related to the flow structures. The volumetric integration on the left hand of Equation (19),
represents the internal power loss in the whole domain.

Since the internal energy dissipation near the wall could not be calculated accurately from the
above-mentioned method, when y+ value was larger than 50 [44], an approximation for the internal
power loss near the wall, was defined as Equation (20).

Ploss,A =

∫
A

∑
τiCidA (20)

where τi is the wall shear stress vector component. The internal power loss could be expressed as:

Ploss,i =

∫
V

ρ
De
Dt

dV +

∫
A

∑
τiCidA (21)

For the purpose of comparing the internal power loss with the hydraulic power loss, the definition
of the hydraulic power loss is described as Equation (22).

Ploss,h = P(1− η) (22)
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4. Results

4.1. Validation of Numerical Simulating Results

Since the centrifugal impeller was composed of three blades, steady simulations were conducted
at three different clocking positions, between the impeller and the volute. The influence of the clocking
positions between the three-bladed impeller and the volute on the head and power, varied at different
operating conditions, see Figure 5. The result was consistent with the previous research on centrifugal
pump [39]. The averaged results were regarded as the final results in the steady simulations. A
comparison of the head and efficiency between the steady numerical simulations and the experimental
results, are shown in Figure 6. There was a good quantitative agreement for the operating conditions
near the design operating condition, while the difference was larger at the part and overload conditions.
The maximum relative errors were less than 5% for the 13 operating conditions.
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The numerical simulation and experimental results of the pressure signal in the stationary volute
and front gap were compared to verify the reliability of the unsteady simulations. The fast Fourier
transform (FFT) method was applied to analyze the pressure signals. The pressure normalization cp

was defined as Equation (23), in which the U2 is the rotating velocity at the impeller outlet [45]. Both,
the time history and frequency domain of the monitor points pbt5 and FCA1, from the numerical
and experimental results, at 1.0 × Q0 and 0.8 × Q0 operating conditions, are shown in Figure 7,
where n represents the rotating frequency. In Figure 7a,c,e,g, it can be seen that there were three
oscillations during one impeller revolution. In Figure 7b,d,f,h, the dominant frequency was the blade
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passing frequency as 3 × n. The pressure analysis from unsteady numerical simulation results can
basically describe the periodical change of pressure fluctuations, while there exists differences in the
pressure amplitudes.

cp =
(p− p)

0.5ρU2
2

(23)
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4.2. Internal Power Loss 
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and experimental results (a) Time history (pbt5, 1.0×Q0); (b) frequency domain (pbt5, 1.0×Q0); (c) time
history (FCA1, 1.0 × Q0); (d) frequency domain (FCA1, 1.0 × Q0); (e) time history (pbt5, 0.8 × Q0);
(f) frequency domain (pbt5, 0.8 × Q0); (g) time history (FCA1, 0.8 × Q0); and (h) frequency domain
(FCA1, 0.8 × Q0).
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4.2. Internal Power Loss

The influence of the discharge on both the internal and hydraulic power losses, see Equations (21)
and (22), are shown in Figure 8. With an increase in discharge, both, internal and hydraulic power
losses increased. The internal power loss was in accordance with the hydraulic power loss. Near
the design point, the difference between the internal power loss and the hydraulic power loss was
small, while the difference was larger at the part and overload operating conditions. In general, the
methodology mentioned above could be used to describe the internal energy dissipation inside the
centrifugal pump.
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Influence of the discharge on the internal power loss, in each flow component for the centrifugal
pump is shown in Figure 9. The pump-out vanes and the impeller were regarded as a whole flow
component. The internal power losses inside the volute and the impeller accounted for the most power
loss in the pump, at all operating conditions, and increased with discharge. The internal power losses
inside the other flow components were similar at different operating conditions.
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4.3. Local Internal Energy Dissipation in the Impeller

Relative flow velocity vectors on the cross-section A, near the impeller shroud (Z = 0.03 m)
in the impeller, at the design and part-load operating conditions are shown in Figure 10. At the
design operating condition, see Figure 10b, the flow in the impeller was smooth, without obvious
flow separation or vortices. With a reduction in discharge, the vortex flow developed near the blade
suction side. At 0.9 × Q0 operating condition, see Figure 10c, the vortex with low velocity was
observed near the trailing edge of the blade suction side, in one flow passage. At 0.8 × Q0 and 0.7 × Q0
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operating conditions, see Figure 10d,e, the vortex flow existed in two flow passages. At 0.6 × Q0 and
0.5 × Q0 operating conditions, see Figure 10f,g, the low-velocity vortices were apparent in all the three
flow passages.Energies 2019, 12, x 12 of 20 
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(g) 0.5 × Q0.

Unsteady results at the 1.0 × Q0, 0.8 × Q0, and 0.5 × Q0 operating conditions were applied to
analyze the variation of internal energy dissipation rate distribution, in the rotating impeller. The
distribution of internal energy dissipation rate on the cross-section A at six different instances of
the 0.8 × Q0 operating condition, is shown in Figure 11. In each flow passage, the internal energy
dissipation rate near the blade suction side was larger than that near the pressure side. The internal
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energy dissipation rate was the most significant near the blade suction side of Blade 2. The large
internal energy dissipation region existed with an invariable relative position during the rotating
period. However, the strength of the internal energy dissipation rate changed with the impeller rotation.
The region with large internal energy dissipation rate also existed near the outlet of impeller, especially
at the trailing edge of three impeller blades, as shown with the triangle marked in Figure 11b,d,f.Energies 2019, 12, x 13 of 20 
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Figure 11. Internal energy dissipation rate on the cross-section A at six different moments at 0.8 × Q0

operating condition (a) t = 0.84 s (0◦); (b) t = 0.85 s (60◦); (c) t = 0.86 s (120◦); (d) t = 0.87 s (180◦);
(e) t = 0.88 s (240◦); and (f) t = 0.89 s (300◦).

The internal energy dissipation rate on the cross-section A at six different moments at 0.5 × Q0

operating condition is shown in Figure 12. In all flow passages, there were regions with large internal
energy dissipation rate. The strength of the internal energy dissipation rate in each passage, varied
with time. It is similar to the flow characteristic at the 0.8 × Q0 operating condition. Taking the
flow structure between Blade 1 and Blade 3 as an example, when the impeller rotated from 0◦ to 60◦,
the internal energy dissipation strengthened. At the relative position of 120◦, the flow separation
and detachment developed with a large internal energy dissipation. With the impeller rotating, the
detached flow propagated downstream to the trailing edge of the blade suction side and the internal
energy dissipation rate decreased. Vortex flow with high internal energy dissipation rate occupied a
large area of the flow passage, causing flow blockage. Compared with the 0.8 ×Q0 operating condition,
the internal energy dissipation near the impeller outlet was not significant.

When analyzing the contour of each source term in the internal energy dissipation rate, it was
found that the distribution of each term was similar. The turbulent production and turbulent dissipation
were the main causes for internal energy dissipation, in the centrifugal pump. It was in accordance
with the characteristic of a high Reynold number flow [46].



Energies 2019, 12, 2013 14 of 20

Energies 2019, 12, x 14 of 20 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. Internal energy dissipation rate on the cross-section A at six different moments at 0.5 × Q0 
operating condition. (a) t = 0.84 s (0°); (b) t = 0.85 s (60°); (c) t = 0.86 s (120°); (d) t = 0.87 s (180°); (e) t = 
0.88 s (240°); (f) t = 0.89 s (300°) 

4.4. Pressure Fluctuations in the Impeller 

The pressure fluctuation in the rotating impeller was analyzed by the FFT method. The 
characteristic frequencies and amplitudes of pressure fluctuations at 1.0 × Q0, 0.8 × Q0, and 0.5 × Q0 
operating conditions are listed in Table 3. 

Table 3. Characteristic frequencies and amplitudes of pressure fluctuations at 1.0 × Q0, 0.8 × Q0, and 
0.5 × Q0 operating conditions. 

Discharge Position Characteristic 
Frequency 

Maximum 
|cp| 

Monitor Point with Maximum 
|cp| 

1.0 × Q0 Pressure Side n 0.079 P15 
1.0 × Q0 Suction Side n 0.065 S16 
0.8 × Q0 Pressure Side n 0.050 P15 
0.8 × Q0 Pressure Side 0.5 × n 0.011 P16 
0.8 × Q0 Suction Side n 0.043 S16 
0.8 × Q0 Suction Side 0.5 × n 0.008 S14 
0.5 × Q0 Pressure Side 3 × n 0.030 P11 
0.5 × Q0 Pressure Side 0.7 × n 0.012 P11 
0.5 × Q0 Suction Side 3 × n 0.034 S11 
0.5 × Q0 Suction Side 0.7 × n 0.011 S13 

The dominant frequency in the rotating impeller was n under 1.0 × Q0 and 0.8 × Q0 operating 
conditions, and the amplitudes decreased with a smaller discharge. In addition, a low-frequency like 
0.5 × n was found with a relatively small amplitude at the 0.8 × Q0 operating condition. 

Figure 12. Internal energy dissipation rate on the cross-section A at six different moments at 0.5 × Q0

operating condition. (a) t = 0.84 s (0◦); (b) t = 0.85 s (60◦); (c) t = 0.86 s (120◦); (d) t = 0.87 s (180◦);
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4.4. Pressure Fluctuations in the Impeller

The pressure fluctuation in the rotating impeller was analyzed by the FFT method. The
characteristic frequencies and amplitudes of pressure fluctuations at 1.0 × Q0, 0.8 × Q0, and 0.5 × Q0

operating conditions are listed in Table 3.

Table 3. Characteristic frequencies and amplitudes of pressure fluctuations at 1.0 × Q0, 0.8 × Q0, and
0.5 × Q0 operating conditions.

Discharge Position Characteristic
Frequency Maximum |cp|

Monitor Point with
Maximum |cp|

1.0 × Q0 Pressure Side n 0.079 P15
1.0 × Q0 Suction Side n 0.065 S16
0.8 × Q0 Pressure Side n 0.050 P15
0.8 × Q0 Pressure Side 0.5 × n 0.011 P16
0.8 × Q0 Suction Side n 0.043 S16
0.8 × Q0 Suction Side 0.5 × n 0.008 S14
0.5 × Q0 Pressure Side 3 × n 0.030 P11
0.5 × Q0 Pressure Side 0.7 × n 0.012 P11
0.5 × Q0 Suction Side 3 × n 0.034 S11
0.5 × Q0 Suction Side 0.7 × n 0.011 S13
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The dominant frequency in the rotating impeller was n under 1.0 × Q0 and 0.8 × Q0 operating
conditions, and the amplitudes decreased with a smaller discharge. In addition, a low-frequency like
0.5 × n was found with a relatively small amplitude at the 0.8 × Q0 operating condition.

At 0.5 ×Q0 operating condition, the dominant frequency was 3 × n with the maximum amplitudes
at the blade leading edge. The low-frequency component was more significant with a frequency of
0.7 × n. Its amplitude reached 40% of the amplitude of 3 × n, at monitor point P11 and was 38% of the
amplitude of 3 × n at the monitor point S13.

The inverse fast Fourier transform (IFFT) method was applied to decompose the pressure signal
of the monitor points P11 and S13 at the 0.5 × Q0 operating condition. Time history of the pressure
signal and pressure components of frequencies, like 3 × n and 0.7 × n, at 0.5 × Q0 operating condition
is shown in Figure 13. It was found that the pressure signal was mainly affected by the two pressure
components of 3 × n and 0.7 × n. The pressure signal in monitor point P11 was more complex than the
superposition of the two waves.
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5. Discussion

In numerical simulations, the disk friction loss between the impeller hub and the back gap was
not taken into account, since the back gap was regarded as a stationary flow domain. The wall friction
loss and the discharge leaked through the seal were not considered. These factors led to the difference
between the numerical and experimental results on performance. In experiments, the recording time
of pressure signal was longer and the sampling time was shorter than that in numerical simulations,
which had an impact on the difference of unsteady pressure fluctuations, between the numerical and
experimental data.

When analyzing the integral internal energy dissipation, the flow irregularity at the off-design
operating conditions had an influence on the error between the internal and hydraulic power losses,
since the approximation was applied in the near-wall region. The internal energy dissipation inside
the volute accounted for the most among the flow components. The section area in the volute of the
centrifugal dredge pump was designed to be larger than that of other centrifugal pumps, to reduce the
impact and friction from the slurry to the volute wall. There could be non-uniform flow structures
inside the volute, causing internal energy dissipation.

With the discharge decreasing, the angle between the relative velocity and tangential velocity
decreased and the angle of attack increased at the impeller inlet. The impeller experienced flow
separation, near the blade suction. The vortices were more evident at the part-load operating conditions,
with smaller discharge.

At 0.8 × Q0 operating condition, the internal energy dissipation rate of the vortex inside one
flow passage changed with the rotating impeller. The vortex flow was related to the internal energy
dissipation in the impeller and had an unsteady feature. This flow structure brought about a pressure
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fluctuation with a low-frequency, which is 50% of the rotating frequency. The amplitude was not
obvious because the separating vortex flow only existed in one impeller passage and occupied a small
part of the passage.

In addition, the internal energy dissipation was obvious near the trailing edge of the impeller
blades. It was due to the rotor–stator interaction between the impeller and the volute. The wake
flow of the rotating blades impacted the flow field downstream and led to an energy loss involving
the viscous effect [47,48]. The rotor–stator interaction caused a pressure fluctuation with the rotating
frequency n and the maximum amplitudes were found at the blade trailing edge.

At 0.5 × Q0 operating condition, the vortex detachment and propagation generated the internal
energy dissipation and enhanced the unsteady characteristic. The periodical change of internal energy
dissipation strength showed that the vortex structure was a form of rotating stall. The periodical
separation and detachment made the low-frequency components more complicated, with higher
amplitudes. The characteristic frequency was 70% of the rotating frequency, which corresponded with
the feature of the rotating stall phenomenon, inside the impeller [49–52].

The stall blocked the impeller passage and reduced the flow interference downstream. The
internal energy dissipation near the blade trailing edge was not evident. The rotating frequency was
not significant in the pressure fluctuation spectra. The dominant frequency was the blade passing
frequency, with the maximum amplitudes at the blade leading edge, which was caused by the
rotor–stator interaction between the suction pipe and the impeller. Flow pattern on the midsection of
the suction pipe at 0.5 × Q0 operating condition is shown in Figure 14. The reverse flow developed at
the suction pipe outlet, which had an influence on the flow and the pressure fluctuations, downstream
of the impeller. Therefore, the pressure fluctuation at the blade leading edge contained more complex
frequency components.
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6. Conclusions

In this study, an investigation of the internal energy dissipation at part-load operating conditions
has been presented for a low-head pump. This pump was a high-specific-speed dredge pump, with a
low-solidity centrifugal impeller.

The numerical simulation domains included a suction pipe, a three-bladed centrifugal impeller,
pump-out vanes, a volute, as well as the front and back side gaps. The flow was solved by steady and
unsteady numerical simulations with consideration of the total energy balance equation. SST k-ω and
SAS–SST turbulence models with curvature correction, were applied.

The performance and pressure fluctuations were compared between the numerical simulation
results and the experimental results, to validate the simulations. The internal power losses were in
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accordance with the hydraulic power loss, at the design and off-design operating conditions. The
internal power losses in the impeller and the volute account for the most among all flow components.
For the volute, the large section area of the volute in the dredge pump, weakened the control of the
volute on the flow.

The causes for the internal energy dissipation inside the impeller at the part-load operating
conditions were the flow separation and the rotating stall. When discharge decreased from the design
operating condition, flow separation generated near the impeller shroud and led to a periodical change
of internal energy dissipation rate. At 0.5 × Q0 operating condition, the impeller experienced an
unsteady rotating stall. The pressure fluctuation analysis made the unsteady characteristic of these
flow phenomena apparent. At the 0.5 × Q0 operating condition, there was an obvious low-frequency
of pressure fluctuation, like 0.7 × n in the impeller, which was related to the rotating stall phenomenon.
The reverse flow near the interface between the suction pipe and the impeller had an influence on the
flow patterns, downstream. The cause for the complicated pressure components at the blade leading
edge was explained as the reverse flow at the pipe outlet.

Rotor–stator interaction between the impeller and the volute tongue caused internal energy
dissipation rate near the blade trailing edge and brings about pressure fluctuation with rotating
frequency. Since the stall occupied a large area in the flow passage at 0.5 × Q0 operating condition,
the internal energy dissipation due to the rotor–stator interaction and pressure amplitudes of rotating
frequency were not obvious. The blade passing frequency was the dominant frequency at the impeller
inlet, due to the flow interaction between the pipe and the impeller.
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Nomenclature

A Area (m2)
Ain Inlet boundary area (m2)
Aout Outlet boundary area (m2)
cp Pressure normalization (-)
→

C Flow velocity (m·s−1)

D Impeller diameter (m)

D Strain rate tensor (s−1)
e Specific internal energy (J·kg−1)
E0

nD Specific energy factor at design operating condition (-)
g Gravitational acceleration (m·s−2)
h Specific enthalpy (J·kg−1)
htot Specific total enthalpy (J·kg−1)
H Head (m)
H0 Rated head (m)

I Unit tensor (-)
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n Rotating speed (s−1)
NQE Specific speed (-)
p Pressure (Pa)
P Power (W)

P Total stress tensor (Pa)
Ploss,A Internal power loss near wall (W)
Ploss,h Hydraulic power loss (W)
Ploss,i Internal power loss (W)
→
q Heat flux (W·m−2)
Q Discharge (m3

·s−1)
Q0 Design discharge (m3

·s−1)
Q0

nD Discharge factor at design operating condition (-)
R Radial coordinate (m)
t Time (s)
T Temperature (K)
Tt Torque (N·m)
U2 Circumferential velocity at the impeller outlet (m·s−1)
V Volume (m3)
y+ Dimensionless wall distance (-)
Z Height coordinate (m)
ε Turbulence dissipation rate (m2

·s−3)
λe f f Effective thermal conductivity (W·K−1

·m−1)
λt Thermal conductivity (W·K−1

·m−1)
η Efficiency (-)
µ Dynamic viscosity (kg·m−1

·s−1)
µt Eddy viscosity (kg·m−1

·s−1)
ρ Density (kg·m−3)
τ Wall shear stress (Pa)
θ Angular coordinate (◦)
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