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ABSTRACT

We propose a discretization method for continuous-domain
linear inverse problems with multiple-order total-variation
(TV) regularization. It is based on a recent result that proves
that such inverse problems have sparse polynomial-spline so-
lutions. Our method consists in restricting the search space to
splines with knots on a uniform grid, which results in a stan-
dard convex finite-dimensional problem. As basis functions
for this search space, we use the B-splines matched to the reg-
ularization order, which are optimally localized. This leads
to a well-conditioned, computationally feasible optimization
task. Our proposed iterative multiresolution algorithm then
refines the grid size until a desired level of accuracy is met and
converges to sparse solutions of our inverse problem. Finally,
we present experimental results that validate our approach.

Index Terms— B-splines, inverse problems, total varia-
tion, sparsity, compressed sensing.

1. INTRODUCTION

In recent years, sparsity has become an increasingly important
paradigm in the field of signal processing. It is at the core
of compressed sensing (CS), which has flourished in the past
decade [1-3]. The objective in discrete CS-type problems is
to recover a signal ¢ € R given some linear measurements
y € RM where M < N. To overcome the ill-posedness of
such an inverse problem, the signal is assumed to be sparse
in a certain basis. This assumption is typically enforced with
sparsity-promoting ¢; regularization.

For obvious considerations of computational feasibility,
CS mostly deals with discrete signals; however, most models
of real-world signals are continuously defined. This discrep-
ancy can lead to discretization errors

e in the forward model (e.g., when taking the discrete
Fourier transform instead of samples of the continuous-
domain Fourier transform in MRI reconstructions);

o in the regularization (e.g., when using finite differences
to approximate the derivative for TV regularization).
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To address these limitations, several works attempt to
adapt the theory of discrete CS to the continuous domain
[4-7]. Another prominent example is the study of inverse
problems in spaces of measures [8—11]. In [12], Unser et al.
introduce a framework that includes 1D continuous-domain
inverse problems with Nyth-order TV regularization. Their
main result states that such inverse problems have sparse
polynomial spline solutions (i.e., piecewise polynomials of
degree (INg — 1)) with few knots.

Two main discretization strategies have been proposed to
solve this type of continuous-domain problems numerically

e grid-free algorithms that solve non-convex problems [8,
13-15];

e grid-based methods which lead to convex optimization
problems [16].

In this paper, we opt for a grid-based approach, as it leads
to simple and effective convex-optimization algorithms. The
search space of the optimization problem becomes the space
of polynomial splines of order Ny on a uniform grid. They
can be represented using the Green’s function py, of the
Noth-order derivative Do as basis function as done in [16].
Here, we improve this approach by using the B-spline Sy,
matched to Do, Contrarily to py,, Bn, has finite support,
which leads to much better conditioned problems and, thus,
computationally more feasible algorithms.

We first present some background information on polyno-
mial splines and the continuous-domain framework of [12].
We then show how we discretize and solve continuous-
domain problems by recasting them as standard CS-type
finite-dimensional convex-optimization problem. Next, we
present our multiresolution algorithm that refines the grid
until a desired level of accuracy is met. Finally, we validate
our framework with numerical experiments.

2. POLYNOMIAL SPLINES

In this work, we focus on inverse problems with Nyth-order
TV regularization. As will be clarified in Section 3, such
problems are intimately related to polynomial splines.

A nonuniform polynomial spline of order Ny is defined
as a function s that satisfies DVo{s}(z) = >°, ard(z — xy),



where ai, x; € R. It can be expressed as
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where Do {p} = 0 and 2, := max(0, z). Indeed, px, (7) =
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& is the causal Green’s function of Do, with Do {py, } =

No—1)!
<(5. 0In)other words, s is a piecewise polynomial of degree
(No — 1), of differentiability class CVo~2, and with knots at
locations xy..
Finally, we notate the B-spline [17, 18] matched to Do
as
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where A {f}(z) := (f(x) — f(x — 1)) is a finite-difference
operator. By construction, the B-spline (2) is a cardinal poly-
nomial spline (i.e., it has integer knots z). It has finite sup-
port in [0, Ng]. As will be elaborated in Section 4.1, it is also
a generator of the space of cardinal polynomial splines of or-
der Ny. For a grid size h > 0, the scaled B-spline matched to
D™ s then given by Bn, (%) = Bn, (z/h).

3. CONTINUOUS-DOMAIN INVERSE PROBLEMS

‘We now introduce the framework and notations of [12], which
is the basis of our work. We focus on continuous-domain in-
verse problems, where the goal is to recover a signal s : R —
R given a finite number of measurements y € R . They are
acquired via a measurement operator v : s — v(s) € RM,
This forward model models the physics of the acquisition sys-
tem (e.g., Fourier samples for MRI imaging). We thus have
that y = v(s) + n, where the additive noise n € R models
the measurement errors.

Next, let M(IR) be the space of finite Radon measures en-
dowed with the norm || - || o4, which is the continuous counter-
part of the /1 norm. For the regularization, we use the Nyth-
order TV semi-norm || - ||y vy defined as
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where S(R) is Schwartz’ space of smooth and rapidly de-
caying functions on R. The native space of our optimiza-
tion problem is then given by My, (R) = {f € S'(R) :
I/ lrvve) < +oo}, where S'(R) is the space of tempered
distributions. We now state the main result of [12] (to which
we refer for the most general case), expressed in an equivalent
form formulated in [16].

Theorem 1. Let Ny > 0 and let v : My, (R) — RM bpe
a weak”-continuous' linear measurement operator. Assume

IThis is a mild albeit technical assumption. We refer to [12] for the defi-
nition, and to section 6 for some examples.

that v(p) # 0 for all polynomials p of degree less than Ny.
Then, the linear inverse problem

s = argmin {|v(f) = yl3 + M fllvon | @
FEMu, (R)

has a nonempty weak™-compact convex solution set S whose
extreme points are nonuniform polynomial splines of the form
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where the sparsity index K verifies K < (M — Ng).

4. EXACT DISCRETIZATION

4.1. Search Space

We now seek to discretize Problem (4) in the space of uniform
polynomial splines with grid size h (i.e., with knots x}, € hZ).
This choice is guided by the form (5) of the solutions, since
our search space contains functions that are arbitrarily close
to the latter when £ is sufficiently small. Another key justifi-
cation is that our search space leads to a convex optimization
problem, which is much easier to solve than the original prob-
lem (4).
We introduce the search space
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where the equality is justified by the fact that uniform splines
can be represented using pn, or Sn,,n as basis functions. The
space (6) satisfies My, 1 (R) C M, (R). The sequence d
is characterized by its z transform Dy, (z) = (1 — z=1)No,
The first representation in (6) is known as the Green’s func-
tion basis and is used in [16]. However, pn, has an infinite
support, which leads to severely ill-conditioned problems in
practice. We therefore prefer the second formulation in (6)
(the B-spline basis), since Sy, 5 has finite support. It forms a
Riesz basis [17], which leads to good conditioning and, thus,
efficient implementations.

4.2. Discrete Formulation

Now that the search space (6) has been specified, solving
Problem (4) in My, »,(R) amounts to an infinite-dimensional
discrete optimization problem over the B-spline coefficients
clk], k € Z. In practice, however, most real-world signals



have the finite support It = [0,7] where T > 0. Let I =
{kmin, - - - s kmax } (With N = #1I ~ T/h) be the set of in-
dices such that the support of 8y, »(- — hk) intersects with
Ir if and only if k£ € I. Since there is no need to optimize
over coefficients c[k| such that k ¢ I, Problem (4) restricted
to the search space My, 1(R) is exactly equivalent® to the
discrete problem
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where the system matrix H € RM*¥ is given by

H= [hkmin s hklnax] : hk = V(BNo,h(' — hk)) (8)

and the regularization matrix L, € ROW=No)xN py
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Note that the so-called penalized basis pursuit (PBP) problem
(7) has the same form as typical discrete CS-type problem.
However, there are subtle but important differences due to the
fact that contrary to purely discrete frameworks, our method
uses optimal basis functions that are matched to the regular-
ization.

4.3. Reaching a Sparse Solution

In practice, Problem (7) can be solved using a standard convex
optimization algorithm such as ADMM [19]. However, the
solution set S, is non-unique in general, whereas we only
seek sparse solutions of the form (5).

To reach an extreme point of Sp,, we adopt a pipeline
adapted from [16]:

e reach a solution ¢ € S using ADMM and compute
Yy, = He;

e recast Problem (7) as a linear program (for which y, is
needed) and reach an extreme point c* of Sj, using the
simplex algorithm [20].

5. MULTIRESOLUTION STRATEGY

Section 4 detailed how to reach a sparse solution of Problem
(4) for a fixed grid size h. However, the determination of an
appropriate grid size highly depends on the type of problem.
We address this issue by adopting now a multiresolution strat-
egy based on grid refinement. More precisely, we take grid
sizes (hy, = T/2")p>n,. Where h,,, is the starting grid size.

2under a mild condition over the measurement operator v

Input: v, Ny, T, y, A\, ng, €
n = ng; ¢ = 0; cost, = +oo; error =€+ 1
while error > e do
h=T/2"
compute H,L.; // Depends on h,v, Ny, T
c < ADMM(ero; H, L, y, \)
error = |cost(c) — cost,|/cost,,
cost,, = cost(c)
n<—n+1
end
yy = He
return ¢* = Simplex(H, L, y, A\, y,)

Algorithm 1: Pseudocode of our algorithm

Clearly, a spline with knots in h,,Z also has knots in h,, 17
since hy,Z C h,+17. This implies that the search spaces are
embedded like

MNOyhn (R) C MNo,thrl (R) (10)

This allows us to use a solution ¢ € S, as a warm start for
the next finer grid size, by converting it to a vector ¢4 that
represents the same continuous-domain signal. The use of a
warm start leads to a substantial acceleration of the algorithm.
Finally, the embedding (10) guarantees that the cost will de-
crease at every grid size, so that J;) > J;  where J}) is
the optimal cost of Problem (7). As termination criterion, we
stop the refinement as soon as the sequence (.7, }?n )n>n, CEases
to decrease within a certain user-defined tolerance € > 0. For-
mally, this translates to (77 =70 )/J0 | <e

The pseudocode of our multiresolution algorithm is given
in Algorithm 1. Note that the simplex step is only required at
the final grid size, since any solution (not necessarily a sparse
one) can be used to compute the optimal cost 7 .

6. EXPERIMENTS

We now show numerical applications of Algorithm 1. Our
code was implemented in Matlab using GlobalBiolm [21],
an inverse-problem library developed in our group, and the
Gurobi optimizer® for the simplex step. In all our experi-
ments, we use a tolerance ¢ = 10~ for the grid refinement.
In our first experiment (Figure 1), we set Ng = 1 (TV
regularization) with M = 10 measurements of the form

Vm(f) = f(xm) :

This amounts to an interpolation problem using a piecewise-
constant signal. The ground-truth signal is not shown in
Figure 1, only its measurements. The sparsity of the recon-
structed signal is consistent with Theorem 1 (its sparsity index
K = 9satisfies K < (M — Np)). Observe that the coarse
grid h = 1/25 is sufficient to get an adequate reconstruction.

Tm € [0,T]. an

3LLC Gurobi Optimization, Gurobi optimizer reference, 2018.
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Fig. 1: Reconstructed signal for an interpolation problem with
TV regularization (Ny = 1) for M = 10 and h = 1/2°.
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Fig. 2: Reconstructions using ideal samples (SNR= 12.03
dB) and Fourier-domain measurements (SNR= 18.07 dB) for
No=2,M=10and h = 1/28.

For our following experiments, we use a sparse nonuni-
form polynomial spline of order Ny of the form (1) as our
ground-truth signal for the Nyth-order TV regularization to
be an adequate prior. The given signal-to-noise (SNR) val-
ues quantify how faithful our reconstructed signal is to this
ground-truth signal. To verify the robustness of our algorithm,
we add Gaussian white noise to the measurements.

In the experiment shown in Figure 2, we set Ny = 2. We
use two different measurement operators: ideal samples as in
(11); and Fourier-domain samples of the form

T
v (f) = /o f (@) cos(wmax + O, )de, (12)

where m € {1,..., M}, wy, > 0, and 6, € [0, 7). We then
compare the reconstructions results for both measurement op-
erators on the same ground-truth signal with the same number
M = 10 of measurements. As predicted by the theory of CS
(i.e., Fourier matrices are known to have good recovery prop-
erties [22]), the reconstruction using Fourier-domain samples
is very accurate despite the small number of measurements
and the presence of noise. Conversely, our reconstruction us-
ing ideal simples is less faithful since we have no information
on the behavior of the signal between sampling points. This
disparity is underlined by the difference in SNR values (12.03
dB versus 18.07 dB).

Finally, in the experiment shown in Figure 3, we set Ny =
4, with M = 10 Fourier-domain samples of the form (12) as
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(a) Reconstructed signal for h = 1/29 (SNR= 22.71 dB).
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(b) Evolution of j,? with respect to h.

Fig. 3: Example run for Ng = 4 and M = 10 (Fourier-
domain measurements).

measurements. Reconstruction results using Algorithm 1 are
shown in Figure 3a. Once again, despite the small number of
measurements, the reconstruction is quite accurate. The evo-
lution of the optimal cost 7 is shown in Figure 3b. We notice
that it initially decreases at every step of the grid refinement,
but ceases to decrease between h = 1/28 and h = 1/2°. This
indicates that it has reached its limit value, and that there is
no further need to refine the grid. Note that, due to the finite
support of B-splines, Algorithm 1 is extremely efficient and
typically converges in a few seconds.

7. CONCLUSION

We have presented an exact B-spline-based discretization
method for solving continuous-domain inverse problems with
gTV regularization. Our proposed multiresolution algorithm
automatically selects an appropriate grid by exploiting the ad-
vantageous properties of splines. We have then validated our
algorithm numerically with several examples that highlight
its efficiency in terms of computation time.
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